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Abstract

The energy consumption of mobile networks, particularly the 5G Radio Access Network (RAN),
is becoming a growing concern due to its environmental and economic implications. As the
demand for higher data rates and low-latency services intensifies, 5G networks, integrating
macro cells and small cells, are emerging as critical infrastructures. Although small cells im-
prove coverage and capacity, their increased deployment could lead to a significant rise in the
overall power consumption of 5G systems.

Current small cell selection strategies by User Equipments (UEs), although effective in some
cases, do not fully account for the dynamic nature of traffic conditions and the specific data re-
quirements of users. Moreover, current techniques such as the maximum Signal-to-Interference-
plus-Noise Ratio (max-SINR) and Cell Range Expansion (CRE) purely consider the signal
strength of the link between the user and the base station to allocate users to the base station.
However, this leads to inefficient utilization of base station resources and uneven distribution
of load, causing congestion at some base stations while leaving others underutilized.

In order to address these gaps, this thesis proposes a Traffic Distribution Orchestrator (TDO)
to manage the distribution of users between cells dynamically, and optimize energy efficiency
without compromising network performance. The proposed cell selection model developed in
this thesis also accounts for user mobility and dynamic traffic conditions. The model estimates
instantaneous power consumption and informs a real-time algorithm user equipment-base sta-
tion (UE-BS) association algorithm to dynamically allocate users to the cell which will enhance
the energy efficiency of the network while ensuring the required Quality of Service (QoS) re-
quirements. Complementing this, an adaptive sleep mode mechanism puts underutilized small
cells in a low power mode and reactivates them when demand rises, using hysteresis to prevent
state flapping and reduce idle power.

Through MATLAB simulations, the effectiveness of the model and algorithm is validated,
with results indicating a significant reduction in network power consumption in heterogeneous
5G deployments. The proposed UE-BS association algorithm is compared with the max-SINR,
CRE and a representative association method from the previous studies, whereas the proposed
adaptive sleep mode mechanism is compared with fixed threshold sleep mode mechanism un-
der both bursty and steady traffic. The proposed UE-BS association algorithm combined
with the adaptive sleep mode mechanism reduces total network power consumption relative to
baseline strategies. This research contributes to the advancement of sustainable 5G network
architectures and offers insights into energy efficiency optimization in real-world scenarios.
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List of Definitions

Access Point (AP): In the context of cell-free architecture, AP is a radio unit equipped with
a few antennas, connected via fronthaul to a central processing unit. In the context of this
thesis, the term to be used hereafter is the Radio Unit (RU). [1]

Backhaul: The backhaul connects the Centralized Unit (CU) to the Core Network (CN) [2].

Cell-Free Architecture: Cell-free architecture refers to the type of network architecture which
combines the advantages of massive MIMO (Multiple Input Multiple Output) and distributed
MIMO, where every UE is served by multiple geographically distributed APs (RUs) in the same
time-frequency resources. Therefore, unlike cellular architecture, there are no cell boundaries

[3]-

Cellular Architecture: Cellular architecture comprises of the coverage area divided into a
number of cells where each cell is served by a base station. All base stations are connected to
the CN through backhaul links [4].

Centralized Unit (CU): The CU handles higher-layer protocol processing, including Radio
Resource Control (RRC), mobility management, and IP packet routing. It connects to multi-
ple DUs over the midhaul[5].

Distributed MIMO: Distributed MIMO refers to the deployment of multiple antennas across
a wide area, which are distributed spatially and work together as if they were part of a single
MIMO system [6].

Distributed Unit (DU): The DU performs real-time baseband processing tasks such as schedul-
ing, beamforming, and HARQ. It interfaces with the RU via the fronthaul and may be deployed
closer to the edge for low-latency processing [5].

Fronthaul: Fronthaul is the network that links the radio unit (RU) to the distributed unit
(DU) [2].

Handovers: Handovers refer to the process of transferring an active user connection from
one base station to another without service interruption. This is essential for maintaining

seamless connectivity as users move through the network [7].

Macro Cells: Macro cells are base stations in a mobile network that provide a wide cover-
age area which can range from a few hundred meters up to a few kilometers [7].

Massive MIMO: Massive MIMO refers to the use of a large number of antennas at a base
station to simultaneously serve many users in the same frequency band [3].

Midhaul: Midhaul connects the DU and the CU [2].

iii
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Open RAN: Open Radio Access Network (Open RAN) is an industry initiative to define open
and standardized interfaces between the RU, DU, and CU. It allows multi-vendor interoperabil-
ity, network flexibility, and cost-effective deployment through disaggregation and virtualization

[2]-

Radio Unit (RU): The RU is the component of a base station responsible for transmitting and
receiving radio signals via the antennas. It handles functions like analog-to-digital conversion,
RF amplification, and filtering, and is typically located near or integrated with the antenna [5].

Small Cells: Small cells are low-power, short-range base stations (e.g., femto cells, pico cells)
used to increase coverage and capacity in dense areas. They offload traffic from macro cells
and are crucial for 5G HetNets and energy-efficient deployment [2].

X-haul Network: The fronthaul, midhaul and backhaul together form the x-haul network

[9]-
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Introduction

5G networks mark a transformative shift in wireless communication, designed to meet the
increasing demands of a connected, data-driven world. Beyond just faster data rates, 5G
supports diverse applications, including ultra-reliable low-latency communication and massive
connectivity for billions of devices. It enables next-generation technologies such as autonomous
vehicles, smart cities, and immersive experiences such as augmented reality (AR) and virtual
reality (VR), revolutionizing industries and reshaping how people and devices interact.

1.1. Problem statement and research gap

In order to meet the growing traffic demands, 5G introduces the concept of small cells, which
are low-power, short-range base stations that help extend coverage and increase the capacity of
mobile networks. Unlike traditional macro cells, which have much larger coverage areas, small
cells have a smaller coverage area and are designed to be deployed in areas with high user
density such as urban centers, stadiums, shopping malls, and other public places. They are
crucial for high speed, low latency, and efficient usage of network resources. A paper published
by Ericsson [10] compares the power consumption of LTE (Long Term Evolution, also called
4G) versus that of 5G. Contrary to the notion, the study suggests that the complete shift
from LTE to 5G New Radio (NR) could lead to even higher energy savings while significantly
enhancing the performance in terms of speed and latency, which can be seen in Figure 1.1 [10].

The deployment of 5G has not completely replaced 4G networks. Instead, both technologies
coexist, with 4G still serving as the backbone for coverage and reliability, while 5G introduces
enhanced capacity, low latency, and higher data rates. In fact, most operators have rolled out
5G in Non-StandAlone (NSA) mode, where 5G radio access is anchored to the 4G core. This
ensures seamless mobility and efficient use of existing infrastructure. As the transition toward
StandAlone (SA) 5G progresses, coexistence with 4G remains essential, both to maintain ser-
vice continuity and to maximize spectrum utilization. Consequently, network design, resource
allocation, and energy efficiency strategies must account for the dual operation of 4G and 5G
systems.

Figure 1.1 demonstrates the energy saving potential of 5G NR. As seen in Figure 1.1, the
addition of LTE small cells leads to a substantial increase in power consumption. The small
cells are referred to as 'micro’ base stations in Figure 1.1. Unlike LTE, adding NR small cells
results in a slight increase in power consumption. This trend is observed due to long sleep
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Figure 1.1: Super dense urban Heterogeneous Network daily power consumption

modes that are accessible to NR compared to LTE. The study concludes that the addition of
NR small cells to LTE macro cells alone can lead to almost 50% reduction in power consump-
tion. Moreover, upgrading LTE macro cells to NR macro cells could lead to energy savings of
up to 70%. While the technologies employed in 5G significantly outperform those of previous
generations, direct comparisons may not be entirely fair due to the differences in the number
of devices, the continuously increasing traffic demands, and the higher densities of small cells
in 5G networks.

According to a report published in 2021 [11], the global energy consumption of the telecommuni-
cations industry accounts for 2-3% of the total global energy consumption, making it one of the
most energy-intensive industries. Energy costs, comprising fuel and electricity consumption,
contributed to more than 90% of the total energy consumption. Majority of this energy was
consumed by RANs while a smaller share was consumed by data centers and fiber transport.
However, this increase in energy consumption cannot only be attributed to the advent of newer
technologies such usage of millimeter wave frequency bands or massive MIMO used in 5G. The
operation of LTE and 5G networks, coupled with exponential growth in the data traffic are
projected to triple the energy consumption. As per Ericsson Mobility Report published in 2019
[12], the average data usage per smartphone in 2015 was 2GB per month. This figure rose to
10GB per month by 2019 and it was expected to rise to 42GB by 2029. However, the recent
Mobility Report published by Ericsson [13] has mentioned that the market has experienced a
decline in the mobile data growth rate since the second quarter of 2024. The network data
growth rate is expected to decline from 21% in 2024 to 16% in 2030. The 5G subscriptions are
expected to surpass that of 4G by 2027 and 5G is expected to carry approximately 80% of the
total traffic by 2030. Despite the decline in growth rate, unprecedented data traffic is one of
the major contributors to high energy consumption.

To manage such vast amounts of data, a dense network of small cells with varying coverage ar-
eas and both indoor and outdoor scenarios must be implemented. The definitions of dense and
ultra-dense networks vary from literature to literature. However, according to [11], a density
of more than 103 cells/km? or more than 600 active users/km? can constitute an ultra-dense
network. With such a dense network of small cells, energy consumption is expected to surpass
that of macro cell-only deployment scenarios in LTE.
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Additionally, although 5G utilizes advanced technologies, it still relies on the same UE-BS
association strategy, which connects the UE to the strongest cell [15]. Macro cells transmit
at much higher power than small cells, so their signals typically provide higher received signal
strength at the UE. Under strongest-cell association, this biases attachment toward macro
cells, causing more UEs to connect there even when small cells are nearby. This leads to UEs
prioritizing macro cells over small cells for association, thereby resulting in inefficient use of
new technologies. Despite extensive research on UE-BS association in previous networks, sig-
nificant gaps remain in 5G, particularly in integrating sleep mode mechanisms with realistic
user throughput demands and mobility patterns into a unified and energy-efficient association
framework.

y DO
Core to: [(x1,71), (2, ¥72), oy (X, V) |
Network ., . o
t: [0, 317, (e y2 ), e (0, 9]
to, t1: Time
(x1, y1): Position of UE1
attime to

(x1°, y1’): Position of UE1
attime t1, and so on
n : Number of UEs

SC : Small Cell
MC : Macro Cell
UE : User Equipment

: Backhaul Connection

: Connection between user
and BS

TDO: Traffic Distribution Orchestration

Figure 1.2: 5G Heterogeneous Macro Cell and Small Cell Access Network

Figure 1.2 illustrates the envisioned heterogeneous network architecture, highlighting the inter-
actions between small cells, macro cells, user equipments, and the Traffic Distribution Orches-
trator (TDO). There is a need for an intelligent coordination mechanism that can dynamically
evaluate the energy efficiency (EE) of activating or deactivating small cells based on real-time
network conditions. This thesis addresses this gap by designing and evaluating a Traffic Dis-
tribution Orchestrator (TDO) that adaptively assigns UEs to base stations and determines
small cell sleep states by jointly considering power consumption, user mobility, and per-user
traffic requirements. The proposed solution aims to minimize energy per bit and enhance
energy efficiency while ensuring consistent Quality of Service (QoS) across heterogeneous 5G
deployments.

1.2. Research domain and relevance

This research contributes to the research domain of energy-efficient optimization in 5G hetero-
geneous RAN, with a specific emphasis on UE-BS association strategies. With the deployment
of dense small cell networks and the rapid growth in data traffic, minimizing power consump-
tion while maintaining the network performance has become a critical challenge in 5G and
beyond networks.
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The relevance of this study lies in its contribution to green communication strategies aimed at
reducing RAN power consumption without compromising Quality of Service (QoS). By lever-
aging context-aware, UE-driven association mechanisms, this study proposes a dynamic and
scalable solution aligned with the energy efficiency objectives of modern 5G and future 6G net-
works. This research supports ongoing efforts in sustainable network design and contributes
to advancements in adaptive RAN management techniques.

1.3. Research objective

The objective of this research is to develop a novel approach to minimize power consumption
in 5G RANs by implementing a small cell selection strategy. This strategy aims to optimize
small cell usage based on traffic demands, user mobility, and network load, ensuring energy
savings while maintaining the required service quality.

The thesis also investigates how the deployment of small cells in conjunction with macro cells
enhances the overall energy efficiency of 5G networks. Specifically, it examines the trade-offs
and benefits of heterogeneous network architectures compared to macro cell-only deployments,
highlighting how small cells can reduce transmission distances, offload traffic from macro cells,
and enable more targeted resource utilization. By analyzing these configurations under varying
load and traffic conditions, the study aims to quantify the energy savings achievable through
the integration of small cells in 5G RAN.

1.4. Research questions
In order to achieve the research objective as described in section 1.3, a set of research questions
and sub-questions is formulated as follows:

1. What are the optimal deployment strategies for small cells to maximize energy efficiency
without compromising network performance in 5G networks?

1.1 What are the limitations of the current power consumption models and how can
they be improved to better reflect real-world network conditions?

1.2 What are the key parameters that impact the power consumption of small cells
compared to macro cells in a 5G heterogeneous network?

1.3 How do different (RAN-related) topologies affect the power consumption in the
network?

1.4 What trade-offs arise between minimizing power consumption and ensuring seamless
connectivity in RAN with time-varying traffic and user mobility?

1.5 What are the current energy efficiency maximization techniques developed and what
are their limitations?

2. What simulation scenarios are most effective in evaluating the proposed algorithms per-
formance?

2.1 Which existing algorithms should the proposed algorithm be compared with to
evaluate its performance in terms of energy efficiency, user association, and Quality
of Service (QoS) in heterogeneous 5G networks?

2.2 What key performance metrics should be used to assess the algorithms effectiveness
across different scenarios?

2.3 What urban, sub-urban, and rural deployment scenarios should be simulated to
capture a diverse range of user densities, mobility patterns (stationary, pedestrian,
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vehicular), and traffic loads?

3. What approach enables the development of a dynamic user association algorithm to
optimize energy efficiency and maintain Quality of Service (QoS) in heterogeneous 5G
networks with macro cells and small cells?

3.1 What criteria should be used to determine the optimal distribution of high-volume
and low-volume data traffic between macro cells and small cells to maximize energy
efficiency?

3.2 How can the algorithm optimize the selection of small cells to minimize energy
consumption per bit for various traffic loads and service requirements?

3.3 How can the trade-off between minimizing energy consumption and maintaining
user experience be effectively managed in the algorithm’s decision-making process?

3.4 How can the algorithm dynamically adapt to changes in UE movement and service
requirements, ensuring continuous QoS and satisfactory energy efficiency?

1.5. Methodology

Figure 1.3 illustrates the overall research methodology adopted in this thesis. It outlines a
structured approach comprising three main phases: theoretical analysis, algorithm develop-
ment, and performance evaluation. The first phase involves an extensive literature review and
the formulation of energy consumption models tailored for heterogeneous networks. The second
phase focuses on the design and implementation of a small cell selection algorithm aimed at op-
timizing power consumption. Finally, the third phase evaluates the proposed algorithm under
various simulation scenarios to analyze its effectiveness in improving energy efficiency while
maintaining network performance. This methodology provides a comprehensive framework for
systematically addressing the research objective.

Literature Review

A literature review summarizes
identifying suitable RAN
topologies, their power

consumption models, and the
current power consumption
minimization and energy

efficiency optimization strategies.

Identify the limitations of the
current strategies.

Identify the key parameters
affecting power consumption,
develop a power consumption

model.

Practical Implementation

Based on the outcomes of the
literature survey phase,
develop a system model and
constraints for identified
problem.

Develop strategies to minimize
power consumption adhering
to the formulated constraints.

Integrate the algorithm in the
system model and test the
performance using predefined
metrics.

Evaluation of Research
Results and Deliverables

Evaluate the performance of
the proposed algorithm
through simulations of various
scenarios.

Identify the limitations of the
proposed model and suggest
areas for future work.

Document the entire process,
providing a clear explanation
of the methodology, results
and potential applications.

Figure 1.3: Thesis methodology

1.6. Structure

This thesis is structured as follows:

Chapter 2 reviews power consumption models for base stations and the backhaul, presents
state-of-the-art techniques for reducing power use or improving energy efficiency in 5G RAN,
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and identifies the key gaps this thesis addresses. The chapter answers the research question 1.
Chapter 3 then specifies the chosen RAN topology and full system model, introduces the
proposed sleep-mode strategy and UE-BS association algorithm, and describes the simulation
framework used to integrate them. This chapter answers the research question 3.

Chapter 4 defines the evaluation metrics and baselines, details the simulation scenarios, and
reports results on power consumption, energy efficiency, and energy per bit. The chapter also
answers the research question 2.

Chapter 5 concludes by summarizing the main contributions, findings, and implications, dis-
cussing limitations, and outlining directions for future work.



Literature Review

This chapter provides an overview of the research performed in the field of 5G networks regard-
ing energy efficiency enhancement and energy savings. The chapter begins with the current
issues in the 5G networks related to power consumption, the power consumption models and
then delves into the current solutions that are developed to tackle the issues. These solutions
are categorized into sleep mode strategies, UE-BS association algorithms and load management.
Finally, the limitations of current methods are summarized, highlighting gaps that motivate
the next chapter.

2.1. Overview of power consumption models

The RAN contributes to approximately 75% of the total energy consumption. The NGMN
Network Energy Efficiency Phase 2 report [16] breaks down this RAN power consumption
into more detailed network components. Out of this 75%, the Base Station (BS) equipment
comprising Radio Units (RUs), BaseBand Units (BBUs), and main control, consumes about
50% of the power. Moreover, almost 80 to 90% of the power in the BS is consumed by the
RU. Therefore, it is only reasonable to quantify the energy consumption of the AN accurately
in order to develop strategies to improve the energy efficiency of the network. However, these
models vary based on the network architecture, underlying technologies and the hardware.
Hence, it is essential to analyze the current models and develop an energy consumption model
tailored for a specific network architecture type and technologies. This includes the power
consumption of Macro Cell Base Stations (MCBSs), Small Cell Base Stations (SCBSs) as well
as that of the supporting infrastructure such as the x-haul networks. The system structure of
a cellular network as given by Busch et al. [17] is shown in Figure 2.1.

RAN

(@' D)
backhaul (¢ \¢/ D) ‘ air interface
> < >

core network base station user equipment

Figure 2.1: Cellular network system structure
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2.1.1. Power consumption modeling of base station

Energy consumption in 5G networks is a critical consideration, given the rising demand for
data, the proliferation of devices, and the environmental impact of increasing energy use. Var-
ious models are developed to study, predict, and optimize energy consumption in 5G networks.
These models consider the energy consumed by network components, the influence of opera-
tional strategies, and the trade-offs between energy efficiency and performance.

The paper "Comparison of Power Consumption Models for 5G Cellular Network Base Stations"
by Busch et al. [17] provides a detailed comparative analysis of existing power consumption
models used for 5G cellular networks. The models are broadly categorized into three cate-
gories: analytical, empirical, and machine learning-based models. Analytical models employ
mathematical equations to estimate power consumption, empirical models rely on real-world
measurements, while machine learning-based models use artificial intelligence techniques to
predict BS power consumption dynamically. Among these, analytical models are particularly
relevant for this research as their theoretical foundations make them well suited for simulations.

Although the study by Busch et al. [17] provides valuable insight into the comparative per-
formance and accuracy of different modeling approaches, it solely focuses on the quantitative
evaluation of these models under varying assumptions such as BS types and parameter set-
tings. It does not explicitly present the mathematical formulations of these models. Neverthe-
less, across the surveyed models, the main components contributing to power consumption are
consistently categorized in the same way. Figure 2.2, adopted from [I8], shows a traditional
non-disaggregated BSs, where radio and baseband processing are co-located.

Massive MIMO
antennas

Power grid ((( ~qpr

eNodeB

A

LMT o MML ontro o Fe/e;jer
5 J—':F //
AR ansfe Baseband | //
Other  DEIIY - :ﬂ\:l_ 11
.

l. fa) fal

——» Signal line

Figure 2.2: Architecture of a traditional base station

Thus, the primary contributors to power consumption include:

1. Power Supply and Cooling: Includes power consumed by cooling units and DC-DC
converters.
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2. Baseband Processing: Comprises the power consumed by digital signal processing func-
tions such as channel coding and decoding, equalization, Fast Fourier Transform (FFT)
and Inverse FFT (IFFT), and linear processing.

3. Analog Frontend: Comprises the RF (Radio Frequency) transceivers and power consumed
by circuit components such as converters, mixers, filters attached to each antenna, and

4. Transmit Power: Account for most of the power consumption on the transmit side.

Based on these components, the power consumption of i*" base station is often modeled using
formulations such as the one presented by Ge et al. [18] is:

Ppy - Nrrx + Prr - NTrx + PBB
(1 - UDC)(l - UMS)(l - Ucool)

Pps, = (2.1)

where Ppy is the power consumed by the Power Amplifier (PA) per antenna,

Prr is the transceiver power per antenna,

Ppp is the power consumed by the BBU,

Nrgrx is the number of antennas on the transmitter side, and

opc, ons and oy are the power loss rates of the DC-DC converter, the alternating current
supply and the cooling, respectively.

Building upon Equation 2.1 presented in [18], Daehan et al. [19] extend the framework to
incorporate the impact of massive MIMO technology, with a particular emphasis on circuit
power consumption associated with the mMIMO systems which is shown in Figure 2.3.

A L 5 _,:
f .
— User a1
J/ n=2 Terminal
&2 .
Base I, .
Station . =
. —_—
. Channel A
\j/ln:N User oL
Terminal -
Base Station with L User Terminals with

N transmit antenna a receive antenna

Figure 2.3: A multi-cell architecture with massive Multiple Input Multiple Output (mMIMO) systems at base
stations
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Accordingly, the power consumption for the i*" BS is expressed as:

Py
n(l_afeed)

(1 - UDC’)(l - UMS)(l - Ucool)

+ P, cir + Ploadfindependenti

Ppgs, =

where P, is the transmit power,

1 is the PA efficiency,

P_;, is the circuit power consumption,

O feed is the lossy factor of the antenna feeder,

Pioad—independent; is the baseline power consumption of the ith BS while the rest of the terms
are the same as explained for Equation 2.1. In this model, the circuit power, which refers
to the power consumed to operate the circuit at the transmitter end is expressed as, P, =
N(Ppac + Pmixz + Prit) + Peyn. The circuit power comprises Ppac, Pmiz, Pri and Peyy
that represent the power consumed by the DAC, mixer, filter, and frequency synthesizer, re-
spectively. Thus, the circuit power scales linearly with the number of antennas N, with the
exception of components such as the frequency synthesizer, whose power consumption remains
constant. The model proposed by Daehan et al. [19] includes only the Digital-to-Analog Con-
verter (DAC), mixer, filter, and frequency synthesizer as part of the circuit power, thereby
treating it as the power consumed by the RF or transceiver chains. However, this simplifica-
tion omits the significant power consumed by complex baseband processing circuitry, which
involves both analog and digital components.

To address this limitation, Bjornson et al. [20] propose a more comprehensive circuit power
model for multi-user MIMO systems. Their model accounts for the power consumed not only
by the transceiver chains but also by key processing tasks such as channel estimation, channel
coding/ decoding, linear precoding, and backhaul communication. Importantly, these contri-
butions scale with parameters such as the number of antennas, number of active UEs, and
data rates, often linearly or non-linearly, depending on complexity of the operations involved.
The paper provides a detailed mathematical framework that decomposes each of these com-
ponents and quantifies their individual power consumption. Numerous such complex power
consumption models exist, varying based on underlying technologies such as massive MIMO
and carrier aggregation, or on the level of detail in sub-component modeling. Many of these
models are derived from frameworks like the Energy Aware Radio and neTwork tecHnologies
(EARTH) project or the 3GPP reference model [17].

Although these models offer deep insights into base station power consumption, incorporat-
ing this level of granularity is beyond the scope of this thesis, since the primary objective is to
develop strategies to reduce power consumption rather than to perform an exhaustive analy-
sis of each power-consuming component. Consequently, many studies on the enhancement of
energy efficiency adopt simplified power consumption models to facilitate analysis and reduce
computational complexity. While these models may differ slightly in how they represent base
station power consumption, they generally follow a common structure: modeling the total
power as the sum of load-independent and load-dependent components. Auer et al. [21] in-
vestigated the interdependence of power consumption among components in a BS transceiver,
using empirical data from various BS types, including macro, micro, pico and femto BSs. Their
study concludes that transmit power is almost linearly related to overall BS power consumption.
The power model proposed by Auer et al. [21] simplifies the expression given in Equation 2.2
as follows:

{NTRX : -Pload—independenti + Pload—dependentiy 0< Pload—dependent < Pma:c (2 3)
BS; — .

NTRX : Psleepiv Ploadfdependent =0
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where ]Dloadfdependent = Ap[)outa 0 < Pout < Prax

A, is the multiplier for load-dependent power consumption,

P, is load-dependent transmit power,

Ppqz is the maximum transmit power available at the transceiver,

Pgeep is the BS power consumption in sleep mode while the rest of the terms are the same
as explained for Equation 2.1 and Equation 2.2. In the literature, load-dependent power con-
sumption per base station 7 is modeled in various ways, depending on the system assumptions
and level of abstraction, as follows:

1. Ryu et al. [22] formulate it as:

1

NRB wcl Nau . BRB . logg(l + SINRW)

-Pload—dependenti = Ap * Praz -

where Ngp is the maximum number of Physical Resource Blocks (PRB) at the i** BS,
fu is the data rate for each UE ’u’ belonging to the set of UEs which is denoted by U,
Ty is an integer value {0,1} representing the association between the u'" user and the
ith BS,

N,, is the number of antennas participating in MIMO transmission between the uth UE
and the i*" BS link if the user u is associated to the i** BS, and

SINR;, is the Signal-to-Interference-plus-Noise Ratio (SINR) for the link between the
v’ UE and *" BS.

In LTE (4G) and 5G systems, a PRB is the smallest unit of resources that can be
allocated to a UE in the frequency-time domain. Because a UEs rate scales with the
PRBs it receives, PRB allocation serves as a practical measure of cell load for power
consumption models.

2. Fourati et al. [23] formulate it as:

Cu
Cmaz

Boad—dependenti =p- Prnaz Z Ty X (25)

uelU
where p is the slope of load-dependent power consumption,
C,, represents the capacity (in Mbps) needed to serve UE "u’,
Cinaz 1s the maximum capacity of BS in Mbps while the remaining notations are the
same as those explained for Equation 2.3 and Equation 2.4.

3. Whereas, Kooshki et al. [1] formulate it as:

uelU NRB

Pload—dependenti = Ppaz (26)

S|

where 7 is the efficiency of the power amplifier,
Ny, is the number of PRBs of BS i used by the UE u, and the remaining terms are the
same as those explained for Equation 2.3, Equation 2.4 and Equation 2.5.

Although load-dependent power consumption models may differ in their details, they are fun-
damentally based on the same principle: evaluating how many resources are utilized by each
base station. Equation 2.4 and Equation 2.6 represent these resources in terms of the number
of PRBs allocated to the UEs whereas Equation 2.5 uses capacity expressed as the total data
rate provided to the UEs. However, the data rate offered to each UE depends on the SINR of
the link between the UE and the BS, which varies dynamically and cannot be predetermined
as a fixed capacity value. Therefore, a BSs capacity is more accurately represented in terms of
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PRBs rather than total data rate.

Moreover, although some models express load-dependent power using PA efficiency 7 as given
in Equation 2.6, others consolidate multiple overheads into a multiplier A, on output power
as given in Equation 2.4. Both approaches are valid and commonly published; they represent
the same underlying physical relationship but differ in parameter definitions and modeling
granularity.

The model described in Equation 2.3 is based on the power consumption values for LTE
BSs. While 3GPP NR Release 16 defines a power consumption model for 5G UEs, it does
not provide a corresponding model for 5G networks. To address this gap, Piovesan et al. [24]
proposed a realistic power consumption model based on data obtained from a 5G multi-carrier
mMIMO Active Antenna Unit (AAU). In typical 5G network deployments, the mMIMO BSs
are divided into three components: the CU, the DU and the RU, which is also called as the
AAU. The specific functions performed by each unit depend on the chosen functional split,
which defines the deployment architecture. Functional splits are standardized ways of parti-
tioning the RAN protocol stack across RU, DU, and CU, defining which functions run where
and the fronthaul/midhaul interface requirements, trading off centralization versus latency /-
transport capacity.

The AAUSs considered by Piovesan et al. [24] include the baseband processing, the RF chains,
the PAs and the antennas. The proposed model is based on power measurements collected
over a 12-day period from thousands of AAUs spanning 25 different types, in a real-world
deployment. It captures the impact of advanced technologies such as carrier aggregation and
mMIMO, as well as energy-saving mechanisms including carrier shutdown, channel shutdown,
symbol shutdown and sleep modes. The power consumed by an active AAU is defined as:

T C
1
Paau = Po+ Psg + Y MayvtDrvant + MacDpa + = > Prx.c (2.7)
=1 I n.=
PA ﬁ_/
P’I‘ran Pout

where,

Py is the baseline power consumption which is the power required to keep essential BS func-
tions active,

Ppp is the power consumed by the baseband processing,

Pryan is the power consumed by the transceivers,

Pp 4 is the power consumed by the power amplifiers,

P, is the power used to generate the transmit power, which scales linearly with the number
of PRBs used,

M, is the number of active RF chains,

Dp 4 static power consumed by PA per active RF chain,

Prx . represents the transmit power for carrier c,

7 is the efficiency of PA, and

C' is the number of carriers

Importantly, while this model introduces enhancements tailored to 5G architectures, it re-
mains consistent with the fundamental structure of earlier models by distinguishing between
load-independent and load-dependent power components. This alignment is supported by
empirical evidence from real-world data, validating that the power consumption still scales
predictably with load, as observed in earlier LTE-based models.
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These models represent the power consumption of a BS when it is in the active state. However,
in practice, BSs often transition into low-power or sleep modes during periods of low traffic
to reduce energy consumption. Therefore, it is essential to account not only for the power
consumed in the active state, but also for the power consumed in sleep mode, as well as the
energy required during transitions between active and sleep states. Furthermore, while some
studies consider only two operational states-active (ON) and sleep. Other studies introduce
an additional OFF state, which represents a deeper low-power mode with even lower energy
consumption but potentially longer reactivation times. The choice of states included in the
power model depends on the desired balance between energy savings and system responsive-
ness. Thus, the power consumption of switching between the on, off and sleep states at any
time ¢ given by Fourati et al. [23] is:

Pswitching = Soff X (1 - Ssleep) X Ponfoff + Ssleep X (1 - Soff) X Ponfsleep (28>

where,

Soff and Sgeep € 0,1 are binary variables indicating whether the BS transitions between on
and off, or between on and sleep modes respectively, and

P,_opr and Py, _gieep are the power consumption values for transition between on and off, or
on and sleep modes respectively.

Depending on the specific modeling requirements, the relevant power consumption terms can
be included, while those deemed insignificant or irrelevant to the analysis may be excluded.
Thus, the total power consumption can be formulated as Piotar = PBs + Pswitching- Adding
more detail, if the network includes M macro cells and S small cells, the power consumption
model can be given as Ptotal = ZmeM P(m)macrocell + ZSGS P(s)smallcell + Pswitchinga consider-
ing that the macro cell is always active.

Power use in macro cells and small cells is driven by the same factors (such as the transmit
power, number of active transceiver chains, operating bandwidth, the processing performed
by the base station, load on the cell and site cooling), but with different magnitudes. This
answers the sub-question 1.2 of the research question 1.

2.1.2. Power consumption modeling of x-haul network

Most research aiming to improve energy efficiency or reduce power consumption in 5G networks
predominantly focus on the base station, often overlooking the energy footprint of the x-haul
network. The x-haul network comprises the backhaul, midhaul, and fronthaul segments, de-
pending on the chosen architectural framework. Notably, the selected functional split directly
impacts not only the power consumption but also the data rates handled by each segment of
the x-haul network. Figure 2.4 shows an x-haul network adopted from [2]. RU is the Radio
Unit, DU is the Distributed Unit and CU is the Centralized Unit.

Fronthaul Midhaul Backhaul Core

Network

Figure 2.4: X-haul network

Furthermore, x-haul energy consumption is influenced by both the underlying transmission
technology and the deployment topology. Thus, there are three main factors influencing the
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power consumption of x-haul networks:

1. Underlying Technology: The x-haul network can be implemented using wired, wireless,
or hybrid transmission technologies. Wired solutions include fiber optics, Passive Optical
Networks (PONs), and VDSL2, whereas wireless alternatives utilize microwave, satellite,
Television White Space (TVWS), or millimeter Wave (mmWave) links [25]. In practice,
it is often infeasible to connect all small cells via optical fiber due to high CAPital EX-
penditure (CAPEX) and deployment constraints, particularly for small cells located in
remote or inaccessible areas. Moreover, existing microwave and copper/fiber technologies
may not be sufficient to handle the growing traffic demands of 5G. Notably, PON-based
backhauling is shown to be more energy-efficient at high traffic loads, whereas mmWave
solutions are preferable under low-load conditions. Therefore, hybrid backhaul architec-
tures are considered a practical solution. For example, Munjure et al. [20] propose a
hybrid model where small cells are connected to an aggregate small cell using either PON
or mmWave based on traffic demand, while the macro cell connects to the core network
via PON.

2. Deployment Topology: The aforementioned technologies can be deployed using either
Point-to-Point (PtP) or Point-to-multiPoint (PtmP) topologies. PtP topologies can take
the form of chain, ring, mesh, or tree structures. However, depending on the topology,
additional delays and energy overheads may arise due to increased hop counts and conges-
tion at aggregation points. In contrast, PtmP topologies may offer reduced complexity
and improved energy efficiency in certain scenarios but require careful consideration of
traffic patterns and latency requirements [25].

3. Functional Splits: Functional splits significantly impact the energy consumption of x-haul
networks because they determine the volume and location of processing tasks, thereby
affecting the required data rates across the fronthaul, midhaul, and backhaul links. While
several functional split options exist, industry practice commonly adopts split options 2,
6, and 7 due to their practical trade-offs between performance, latency, and deployment
complexity [5].

From a broader perspective, the power consumption modeling of x-haul networks can be cate-
gorized into wired and wireless. While both types support multiple underlying technologies, as
previously discussed, fiber optics and mmWave backhaul have emerged as the most promising
solutions for 5G Heterogeneous Network (HetNet) deployment. Fiber optics is generally pre-
ferred due to its high capacity, low latency, and reliable performance. However, advancements
in mmWave technology have demonstrated its potential as a high-capacity wireless backhaul
solution.

Power consumption of Passive Optical Network (PON)-based backhaul

Among fiber-based technologies, Passive Optical Network (PON) is widely adopted due to
its support for PtmP communication and the use of passive splitters, which significantly re-
duce operational costs compared to active optical systems. Common PON standards include
GPON, NG-PON, and EPON. A typical PON architecture comprises Optical Network Units
(ONUs) located at BSs and an Optical Line Terminal (OLT) situated at the service providers
central office, which interfaces with the core network. The power consumption of a PON-based
backhaul network can thus be modeled as [26]:

PERN = NpsPonu + NEponPepon + NuwyprPsrp (2.9)

where,
Npg is the number of BSs that can include small cells as well as macro cells,
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Pony is the power consumed by the ONUs

NE G is the number of GPON ports in the OLT and P&%g, is its corresponding power
consumption,

Nyrpr is the number of uplink or downlink interfaces, and

Psppy is the power consumed by the Small Form-factor Plug-in (SFP) interfaces, which are
responsible for converting electrical signals into optical signals and vice versa.

The number of GPON ports in an OLT is computed as:

N
port . BS
NGPON - ’7Nmax —‘ (210)
ONU
. . crert
where NG\, is given as NONG = max %, Nypiitter—ratio |-
CPt n denotes the GPON capacity per port in bps, and

max

ON is the maximum data rate for each ONU.
Nypiitter—ratio Tepresents te splitter ratio which can be 1:8, 1:16, or 1:32.
The number of uplink or downlink interfaces to transmit the aggregated traffic to the core
network is given by:
NUL/DL:max (NgcgtON’l)S(;ax> (211)
int
where, C; is the total aggregated traffic requirements to be backhauled, and

Di'¢* is the maximum transmission rate of an interface.

Power consumption of mmWave-Based backhaul

Nevertheless, as discussed earlier, it is not feasible to connect all RUs using fiber optics alone,
particularly in dense or hard-to-reach urban areas. In such scenarios, mmWave technology
presents a feasible alternative, especially for fronthaul links. The mmWave backhaul power
model follows a structure comparable to that of the access link, comprising both static (load-
independent) and dynamic (load-dependent) power components. The backhaul power con-
sumption is modeled as follows:

1. The power consumption for the I*" backhaul link using the linear approximation model
given by Kuna et al. [27] is:

PP~ TP (SP R+ AR P 212

where, TlBH is the number of active transceiver chains,

P£H is the non-zero power consumption depending on the state
or active,

Ang is the slope-dependent power utilization of the I** link, and

PﬁH is the dynamic power consumption which is given by P+dIPH = SIN R}m” — Gy, +
Lyy, + PLy + LM, + T, + Ny,.

Here, G4, and L., represent the receiver antenna gain and losses of the link /.
SINR™™ represents the minimum SINR for successful transmission of backhaul traffic,
PL; is the Path Loss (PL),

LM is the link margin,

T, is the thermal noise, and

Ny, is the receiver noise figure for link /.

SZBH which can be sleep

RES

The SINR is given by SINR™" = 10logio | 25" — 1 |, where RP¥ is the data traffic to
be backhauled from base station B.S and BW, is the bandwidth allocated for link .
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2. In a simpler way, Hyebin et al. [28] model it as:
pPH = plired L.y (2.13)
! I s :

where Plf wed pepresents the circuit power of the transceiver and the switch,
[ is power consumption per bps,
ts is the traffic to be transmitted per second.

However, despite supporting high data rates, the mmWave backhaul faces certain limitations.
It requires Line-of-Sight (LOS) communication, which can be challenging to maintain in dense
urban environments due to obstruction such as buildings and foliage. Furthermore, the use
of very high frequency bands limits its effective transmission range, making the radio range
significantly shorter than that of fiber optic backhaul.

2.2. Strategies for energy consumption minimization in Radio Access
Network

The energy consumption minimization strategies in 5G RAN can be broadly classified into sleep
mode strategies and UE-BS association algorithms, which will be explained in the following
subsections. Limitations of each study are highlighted in gray for clarity. The following
subsections answer the sub-question 1.4 and 1.5 of the research question 1.

2.2.1. Sleep mode strategies

Sleep mode strategies play a pivotal role in reducing energy consumption in 5G RAN by dy-
namically deactivating underutilized BS hardware components during periods of low traffic.
These strategies vary from light to advanced deep sleep modes, each offering various trade-offs
between energy savings and service latency. The Advanced Sleep Modes (ASMs) were initially
introduced by IMEC [29] within the EARTH project [30], in which four ASMs were identified
by categorizing the BS components into groups with similar activation/deactivation times [31].
Thus, the ASM management strategizes shutting down of BS components gradually from the
ones with lower activation times to the ones with higher activation times. These ASMs were
later standardized by 3GPP in TR38.864 Release 18 [32] document which focuses on stan-
dardizing energy-saving mechanisms, especially sleep modes to enhance energy efficiency in 5G
networks. Sleep modes are classified based on the depth of power savings and the wake-up
latency. Thus, deeper the sleep mode, higher the components deactivated, energy savings as
well as the transition times. Therefore, it is important to strategize the use of these sleep
modes accurately so as to provide users with the required QoS.

This subsection explores the evolution of sleep mode strategies, their implementation chal-
lenges, and the contribution of key studies in advancing this critical area of research. The sleep
mode strategies are further classified into 'non-adaptive’, ’adaptive’ and 'ML-based’ strategies.

Non-adaptive sleep mode strategies

Non-adaptive sleep mode strategies use fixed, context-independent rules to control base station
states. In sleep control, they rely on static on/off thresholds and fixed timers. Although these
methods are straightforward and introduce low overheads, they perform poorly in dynamic
environments where traffic demands or user mobility fluctuate, often causing unnecessary tog-
gling, energy waste and QoS degradation. They serve mainly as baselines for measuring the
benefit of adaptive mechanisms.

The study done by Kooshki et al. [!] proposes an EE enhancement algorithm for cell-free
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architectures that aims to maximize throughput per unit energy while maintaining service
quality. UEs are first associated to the base station with the highest Reference Signal Re-
ceived Power (RSRP). The sleep control mechanism then proceeds in two phases, namely the
"Certain Phase" and the "Conditional Phase". In the Certain Phase, each base station’s In-
terference Contribution Ratio (ICR) is evaluated. The concept of the ICR first introduced by
Shen et al. in [33] is computed as the ratio of the aggregate RSRP observed by non-served UEs
(interference) to the aggregate RSRP of the base station’s served UEs (desired signal). Thus,
higher the ICR of a RU, lesser is the significance of the signal provided by that base station
towards the network. The base stations with high ICRs are put to sleep. In the Conditional
Phase, additional checks based on network-level EE and base station load opportunistically
switch more base stations to sleep while meeting the global performance targets. Although the
base station states are updated over time, the key thresholds (ICR, load, and minimum rate
limits) are preset, making the approach suboptimal under rapidly varying environment.

Building on Kooshki et al. [I], Osama et al. [34] combine a static Soft Frequency Reuse
(SFR) plan with a threshold-based on/off policy driven by the ICR to jointly mitigate interfer-
ence and reduce power in dense HetNets. Small cells are partitioned into center or edge zones
with fixed sub-band allocations, while cells whose ICR exceeds a preset limit are switched off.
The resulting partitioning and SFR pattern as illustrated in [34] is shown in Figure 2.5.
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Figure 2.5: Cell zones and Soft Frequency Reuse

As shown in Figure 2.5, the frequency bands A-D are assigned across neighboring cells so that
each cells edge zone uses a different band, reducing inter-cell interference. Both the SFR par-
titioning, and the ICR and minimum throughput thresholds are preset, making the scheme
non-adaptive.

Similarly, Sudhakar et al. [35] propose a threshold-based scheme that monitors the number of
UEs per base station in a 3x3 cluster and switches off any base station whose load falls below a
preset limit. The associated UEs are then handed over to neighboring base stations subject to
two fixed capacity constraints: a maximum allocating limit per neighbor and a per-base station
maximum serving limit. This is a non-adaptive fixed threshold on/off policy where decisions
depend on static limits rather than real-time traffic dynamics or QoS feedback. Furthermore,
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the analysis is limited to a toy 3x3 homogeneous grid without a macro cell overlay, making
the scenario unrealistic and excluding macro-tier interference.

Unlike the previous non-adaptive schemes, the research done by Salem et al. [30] goes deeper
by explicitly modeling timing parameters such as user request arrival instant, activation/ de-
activation delays, sleep window length and signaling burst periodicity to quantify the energy
latency trade-off. The study investigates ASMs by extending idle periods and coordinating pe-
riodic wake-ups for signaling. Base stations progressively enter deeper sleep levels as inactivity
grows and periodically wake up to transmit signaling bursts. User requests arriving during
inactivity are buffered to curb delay, with buffering time determined by the phase (activation,
sleep or deactivation) and the chosen sleep level. However, as the sleep depth and the wake-up
periodicity are preset, this serves as a non-adaptive strategy.
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Figure 2.6: Advanced Sleep Mode implementation strategy

Fixed threshold approaches are simple with less computational complexity. However, setting
low sleep thresholds could lead to the cells being active even for lower loads and thus consume
unnecessary power. On the other hand, if the threshold is too high, the cells will be in sleep
modes for long times and save more energy but at the cost of QoS of the users.

Adaptive sleep mode strategies

Prior studies on BS sleep strategies largely relied on predefined thresholds, which lack real-time
adaptability. The research done by X. Ma et al. [37] introduces a variable threshold-based
sleep mode scheme to incorporate dynamic changes in the environment. The scheme builds on
a simple association step, which is to connect to the highest rate small cell and fall back to
macro cell to satisfy QoS. Then a Variable Threshold Sleep Process (VT'SP) is applied which
monitors spatio-temporal UE distribution and adjusts each cell’s sleep threshold as a fraction
of its UE-capacity and consequently switches off the lightly loaded cells. Compared with fixed
threshold algorithms, this approach cuts the number of active base stations and total power
while maintaining the required QoS. However, the paper considers load only in terms of the
number of UEs attached to a cell, while excluding the PRBs or the traffic demands of the UEs.
Moreover, it also does not consider the power consumed by the base stations while switching
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from one state to another.

While X. Ma. et al. [37] adapt per cell sleep thresholds to traffic dynamics, Habibi et al.
[38] go further by combining adaptive sleep with transmit power zooming and a joint con-
troller that targets minimum energy efficiency under QoS constraints. The paper [38] proposes
three adaptive schemes for ultra-dense HetNets that maximize the minimum EE of SCBSs
under QoS constraints on RSRP and Spectral Efficiency (SE). UEs first associate by highest
RSRP. Then, an iterative sleeping policy turns of the base stations with lower efficiency if
the network’s minimum EE improves, while a zooming policy adjusts the transmit power to
meet the SE targets and curb interference. Among the three policies studied, sleeping-only,
zooming-only, and joint sleeping plus zooming - the joint scheme yields the lowest total power
and highest energy efficiency, while zooming-only attains the highest spectral efficiency. This
approach as illustrated in [38] is shown in Figure 2.7. Thus, cells that reduce coverage or enter
sleep save power, while neighboring cells that extend coverage serve the offloaded users.The
goal maximizes EE of individual SCBSs which may not reflect the network wide EE.

A SBSs with extended coverage

A SBSs with reduced coverage
A Sleep SBSs

. Small cell user

Figure 2.7: Cell zooming and sleep mode mechanism

The preceding methods adapt parameters but still depend on fixed design choices. Adaptive
approaches can also increase the number of handovers and control overheads if not carefully
tuned. In contrast, the following group of studies replaces these rules with data-driven policies.
These are essentially Machine Learning (ML)-based models that learn when to sleep, wake,
or perform actions to enhance EE from observed spatial and temporal user patterns and QoS
feedback.

Machine Learning-based sleep mode strategies

To overcome the challenges of the non-ML-based approaches as mentioned above, recent re-
search has increasingly turned to ML techniques which offer the ability to learn from past
network behavior, predict future traffic loads and optimize energy-saving strategies dynami-
cally. Unlike traditional approaches, ML models can process large datasets, recognize patterns,
and autonomously adjust system parameters to maximize EE while maintaining network per-
formance.

Among various ML-based approaches, Reinforcement Learning (RL) is gaining significant trac-
tion in optimizing EE in 5G networks. RL is a branch of ML in which an agent learns to
make decisions by interacting with an environment to achieve a specific goal. The agent takes
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actions in various states and obtains feedback in the form of rewards, aiming to maximize
cumulative rewards over time. This learning paradigm is distinct from supervised or unsu-
pervised learning where the learning is achieved through a set of training data which can be
labeled or unlabeled, respectively. Instead, RL focuses on optimal behaviors through trial and
error. A foundational concept in RL is the Markov Decision Process (MDP) is a mathemat-
ical approach to represent an environment in decision-making scenarios, where outcomes are
influenced both by randomness and choices made by a decision-maker. MDP consists of the
following elements as explained by Wiering et al. [39] are:

1. States: A set of states is a complete description of the environment at a decision point,
containing enough information to predict what will happen next under any action. Thus,
in the context of this thesis, the states can be described as the set of values of load, status
of the cells (on/off/sleep) traffic demands of the users, SINR values, mobility parameters,
and power consumption values at any given point of time.

2. Actions: Actions are the choices available to the decision maker in a given state, and
selecting one influences how the environment evolves. Thus, the set of actions could
comprise keeping a cell on, turning it to sleep mode, waking it up from sleep mode or
keeping it in sleep mode.

3. Transitions between states: By applying an action in a state, the system transitions from
that state to the next state. Based on the one of these actions being applied to a state
s at time ¢, the system transitions to a new state. Thus, the new state will comprise the
updated values of the ’states’.

4. Reward function definition: The reward function specifies the rewards for being in a
state or for doing some action in a state. Thus, the reward function implicitly decides
the goal for ’learning’ For instance, if the new state consumes more power than the
previous state or if it fails to provide the minimum required throughput to the users,
the action is penalized. Consequently, reduction in power consumption while ensuring
required throughput to users will be rewarded.

With these MDP elements, RL can be viewed as the closed-loop interaction between a learning
agent, which is the decision maker, and the environment modeled by the MDP.The agent
observes the current state, selects an action, and receives the next state and the reward. This
decision making is influenced by the 'policy’. The policy is the strategy used to determine
the next best action that should be taken based on the current state in order to maximize the
future reward. The interaction among these elements is depicted in Figure 2.8 which is adopted
from [10]. The observation is the state of the environment that is observed after applying an
action. Two fundamental RL algorithms to solve the MDP are State Action Reward State
Action (SARSA) and Q-Learning.
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Figure 2.8: Reinforcement Learning

The Table 2.1 summarizes the RL papers at a glance: what each tries to achieve, which learning
rule it uses, what the agent observes, what actions it can take, how it is rewarded or penalized,
and the key limitations. In brief, almost all papers follow the same pattern. The agent sees
a very small state. The action is to choose the next sleep level or how long to remain in a
level. The reward encourages power savings and penalizes delay or wake-up cost. Exploration
means occasionally trying actions that are not currently preferred so the agent can discover
seek higher-return policies. SARSA learns from the actions it actually took, which makes it
more cautious during exploration. Q-learning learns as if it always picked the best next action,
which makes it more aggressive. This choice affects learning behavior, not the basic problem
setup (state, actions, and reward).

A common limitation across every paper in Table 2.1 is that none of the studies use a re-
alistic RAN topology. Most are single-cell or toy co-coverage, without multi-cell interference,
handovers, or neighbor coordination. Because of this gap, their headline energy gains are not
directly comparable to the earlier adaptive and non-adaptive strategies reviewed under more
realistic multi-cell assumptions. Therefore, in this thesis, the results of these RL-based algo-
rithms are treated as conceptual references rather than performance baselines.

Unlike the previously discussed ML-based approaches that do not use a realistic multi-cell
topology and treat energy saving and interference separately, Romero et al. [11] formulate
sleep control for a multi-cell cluster. They cast the problem as a constrained contextual bandit
in which, a controller chooses cluster settings from the context information such as traffic level,
QoS indicators, and current energy usage. The cluster settings comprise turning small cells
on/off and tuning system parameters such as Almost Blank Subframe (ABS) and Cell Range
Expansion (CRE) bias in order to reduce power consumption. Almost Blank Subframes/Slots
(ABS) is a time-domain muting technique where the macro cell stays silent for a configured
fraction of time so nearby small cells can serve edge users with less interference; this fraction
is the ABS ratio. Cell Range Expansion (CRE) bias is a positive offset added to a small cells
received power during association to steer more UEs onto small cells for load balancing, which
can raise interference unless paired with coordination such as ABS. The proposed Bayesian
Response Estimation and Threshold Search (BRETS) algorithm combines:

e Threshold Search: Finding traffic levels where a setting would violate the QoS require-
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ments, and

o Bayesian Response Estimation: Learning how energy responds to traffic for each setting.
The BRETS methodology involves a two-level framework:

o Global Controller (GC): Manages a group of macro cells and determines the optimal
IC-ES configurations based on network traffic data

o Local Controllers (LC): For every macro cell, the local controllers translate the global
control strategy into local decisions

Although the approach improves energy efficiency under QoS constraints, it is computationally
heavy, which may limit real-time deployment at larger scales.

Another study by Foivos et al. [12] proposes an ML-based sleep mode scheme with three
BS states-sleep (no users), active (medium load), and full load (approximately 100%) which
derived from per-cell user count, traffic, throughput, and energy. It compares a greedy policy
(puts a cell to sleep based only on its own state) with a neighbor-aware policy (also considers
neighboring states and offloads users to active neighbors). The greedy policy suits uniformly dis-
tributed traffic (e.g., households/offices), whereas the neighbor-aware policy is more suitable for
clustered urban hotspots. However, the study ignores mobility, context, and inter-/intra-tier
interference. Its sole QoS metric is users still connected (omitting throughput/latency /relia-
bility), and the user-transfer procedure is unspecified. Greedy can save energy but degrades
QoS, and neither policy guarantees full QoS satisfaction, motivating richer algorithms that
jointly optimize sleep states and service quality.
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No mobility
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penalized

Single cell
No inter-cell coordination
No interference modeling

Table 2.1: Comparison of Reinforcement Learning-based sleep mode strategies
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2.2.2. User Equipment - Base Station association mechanisms

Efficient association of UEs to BS is a key lever for improving EE while lowering power con-
sumption. Good association balances traffic, reduces transmit power, limits interference, and
improves resource use in heterogeneous networks. In contrast, legacy rules such as strongest
RSSI or maximum SINR often overload a few cells while others remain underused, increasing
interference and wasting energy. As a result, some base stations run near peak capacity while
neighbors sit idle, driving up PC and reducing EE.

Signal-based association algorithms

The Max-SINR association technique is a widely used method for connecting UE to the opti-
mal BS in a cellular network [18]. Max-SINR connects each UE to the base station with the
highest SINR, which boosts throughput and QoS. However, it often creates congestion and
macro cell bias in heterogeneous networks. As a result, small cells remain underused while
macro cells run hot, increasing interference and power consumption.

Cell Range Expansion (CRE) addresses this by artificially adding a bias to small-cell sig-
nals so more UEs attach to small cells, improving load balance and spectral efficiency [19]. In
practice, CRE works best with dynamic bias tuning and interference coordination techniques
such as ABS setting. While CRE yields a more even distribution than max-SINR, it does not
explicitly account for real-time cell load, traffic demand, or QoS.

Beyond signal-only rules, an Analytic Hierarchy Process (AHP)-based association presented
by Achki et al. [50] assigns weights to criteria such as SINR, distance, and energy, and selects
the serving cell by minimizing a weighted cost. AHP provides a transparent multi-criteria
framework with a built-in consistency check for the chosen weights.The paper considers a sim-
ple topology consisting of one macro cell and just two small cells. Moreover, the assigned
weights to different parameters are fixed and subjective, limiting adaptability and making
results sensitive to arbitrary weight choices.

Load balancing algorithms

CRE improves offloading relative to Max-SINR but does not react to real-time load, so it can
misallocate users and raise energy use under changing conditions. This motivates load-aware
association. Hassan et al. [51] propose a simple load-balancing method that minimizes the
standard deviation of BS load. Candidate UE-BS pairs are ranked by SINR and current load;
each UE is attached to the least-loaded viable BS, the network-wide load deviation is recom-
puted, and UEs are reassigned until the deviation no longer improves or falls below a threshold.
Compared with Max-SINR and CRE, this yields more even load and higher energy efficiency
and data rates. However, the method uses fixed SINR and deviation thresholds that require
retuning as conditions change, ignores user mobility, and treats each UE as an equal unit of
load without accounting for heterogeneous traffic demands.

Uneven user distribution not only leads to poor allocation of resources but also leads to inef-
ficiencies in handovers which consequently lead to failures or ping-pong effects. Alkalsh et al
[52] propose Dynamic Distance-Based Load Balancing (DDLB), which adapts load-balancing
and handover decisions from real-time conditions. It monitors PRB usage to detect congestion,
computes per-cell dynamic thresholds from neighbor loads, selects offload candidates by signal
strength and proximity, and then adjusts Cell Individual Offset (CIO) values in overloaded
and neighboring cells to steer handovers. This reduces handover failures, radio link failures,
and overload duration. CIO is an offset added to a cells RSRP used in selection and handover;
raising a neighbors CIO makes it more likely to be chosen. The proposed DDLB is evaluated in
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a small cell-only topology. The authors note future research on small-macro coordination for
heterogeneous networks. Performance is reported via mobility and congestion metrics, with
no explicit energy model. Thus energy effects are indirect rather than quantified.

Building on that mobility-driven load balancing, Gures et al. [53] go a step further by combin-
ing load and signal strength with an explicit preference for millimeter-wave cells and careful
tuning of handover margin and time-to-trigger. First, the algorithm prefers millimeter-wave
cells as targets when they meet a load limit and a signal-strength threshold; otherwise it
chooses the macro cell with the strongest signal. If the target is millimeter-wave, the handover
is triggered immediately; if it is a macro cell, a handover margin is applied to avoid flapping.
They also study the effect of the handover margin and the time-to-trigger: shorter times im-
prove load balance, throughput, and spectral efficiency by offloading users faster, while larger
margins push more traffic to neighbors but must be tuned to avoid new overloads. The study
evaluates load-balancing and mobility metrics such as throughput, spectral efficiency, call-drop
rate, and overload duration without an explicit power or energy-efficiency model. Thus, any
energy gains are therefore indirect.

As networks densify, many small cells will not connect directly to the core; traffic may hop via
gateways through neighboring cells. Mesodiakaki et al. [54] therefore use a backhaul-aware
association that maximizes energy efficiency rather than focusing only on the RAN. Their
method first finds candidate base stations for each UE that can meet its throughput with the
fewest resource-block pairs (RBPs) (estimated from the UEs SNR; an RBP is one for UpLink
(UL) plus one for DownLink (DL) resource block). Candidates are then ranked by fewer back-
haul hops to the core and lower backhaul load. Each UE is attached to the highest-ranked BS
that has enough RBPs, and resources are updated iteratively. This balances load and favors
short, uncongested backhaul paths, outperforming max-SINR in both energy efficiency and
load balance.The study ignores interference between cells by simply considering SNR instead
of SINR. Additionally, the power consumption model does not include load independent power
consumption values, making the EE calculations unrealistic.

Recent research adds mobility considerations to cell association policies. ADAptive Cell Se-
lection (ADA-CS), a scheme proposed by Alablani et al. [55] replaces RSSI-only selection by
using RSSI, vehicle speed, travel direction, and cell load, with the goal of maximizing dwell
time to cut handovers. Slow vehicles are attached to small cells whereas fast vehicles are steered
to macro cells to avoid ping pong. The method filters candidate cells by speed, load, and a
direction cone, then selects the best match. The approach significantly reduces unnecessary
handovers and failures compared to the highest RSRP approach. Although it targets mobility
and load balance rather than energy, longer and more stable connections can indirectly lower
energy use by reducing signaling and improving resource use.

Building on their own research Alablani et al. [50] propose an Artificial Neural Network
(ANN)-based cell selection for ultra-dense 5G networks. Trained on actual data, it uses vehicle
location, speed and direction to predict the serving cell that maximizes dwell time, reducing
handovers. A trade-off is that prioritizing dwell time can lead to UE picking cells with lower
RSSI, which may reduce peak throughput. The method also relies on fixed thresholds for
RSSI, speed, and dwell time, which can limit adaptability when conditions change quickly.

Traffic offloading can suffer from heavy signaling, adding latency, energy use, and inefficiency.
To address these issues, Algerm et al. [57] proposes a conditional offloading scheme with online
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RL with an ’intuitive’ component where macro cells anticipate neighbors offloading behavior
without direct communication, cutting coordination overhead. The controller dynamically
switches small cells on/off and offloads users to keep small-cell load within thresholds, preserv-
ing QoS and avoiding power drain. Results show higher energy efficiency and a more even load
balance, with faster convergence than standard RL. The method assumes static user demands
and mobility. Thus, rapid swings in traffic or mobility can degrade offloading decisions. Also,
the threshold for system load to balance EE and QoS trade-off is predefined.

Load-balancing schemes like dynamic load balancing or standard-deviation methods spread
traffic well but are largely heuristic and rule-based. They struggle with the multi-objective
trade-offs of heterogeneous 5G (energy efficiency, spectral efficiency, and QoS), especially under
fast mobility, shifting demand, and backhaul constraints.

Energy and performance-driven algorithms-Power /Throughput/EE

Load-driven association focuses on relieving congestion and equalizing utilization across cells,
which can indirectly help energy use and throughput. However, these methods do not explic-
itly optimize a target metric. This subsection turns to objective-driven approaches that make
the goal function explicitgrouping papers that aim specifically at power reduction, throughput
maximization, or energy-efficiency (EE) enhancement.

Li et al. [58] propose Decoupled Multiple Association (DMA) for ultra-dense HetNets which
solely focuses on enhancing the network throughput. UEs can attach to different sets of base
stations for uplink and downlink, chosen using context such as proximity, signal level, device
type, and application needs. To avoid the combinatorial explosion of many-to-many choices,
the method forms predefined BS groups for uplink and for downlink and solves a many to
one matching problem. A utility that blends data rate, delay, and packet-error guides as-
signments, and the algorithm iterates group choices until no further improvement, yielding a
higher number of UEs meeting QoS requirements than coupled association. Figure 2.9 shows
the illustration of the problem conversion from many-to-many to many-to-one association. Al-
though the algorithm significantly enhances the throughput, it does not consider the power
consumption.

BSs UEs BS Groups UEs

887, & i UL
and BS1 in DL

BS4 in UL and
BS1,BS3 in DL

Many—to-Many Matching Many—to-One Matching

Figure 2.9: An illustration of problem conversion from many-to-many to many-to-one matching

The paper presented by Merve Saimler and Sinem Coleri. [59] formulates user association in
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a heterogeneous Cloud-RAN as a power-minimization problem with UL/DL decoupling and
multi connectivity, so each user may be served by a small set of cooperating base stations
and may use different serving stations in UL and DL. The Multi Connectivity-based User
Association Algorithm (MCUAA), proceeds in two stages. First, it solves a relaxed version
of the problem to obtain a fast draft of which base stations should remain active and which
userstation links are promising; this draft is rounded to a feasible on/off and association plan.
Second, it refines the plan with a lightweight assignment step that reattaches users to the most
power-efficient candidates and toggles base stations on or off only when total network power
decreases while all rate and QoS constraints remain satisfied. The procedure iterates small
changes until no further reduction is possible. MCUAA is compared with a method that re-
peatedly makes small random changes to the current UE-BS assignment and keeps the change
only if it reduces the total power. In comparison to this baseline, MCUAA achieves lower total
power, faster convergence and higher UL/DL data rates. However, the main assumptions of
the study are static user positions and user demands during each run which perform well in
dynamic environments. While multi connectivity increases reliability, the added signaling and
pilot overhead can degrade achievable rates, which is not considered in the study.

2.2.3. Strategies for energy consumption minimization in x-haul networks

There are studies considering joint UE association as well as backhaul routing that are de-
veloped to enhance EE and SE. In joint UE association, backhaul routing, and switch off
model (JUBSM), the UEs are connected to SCBSs satisfying their throughput requirements.
Backhaul routes are selected based on the least power-consuming paths [60]. The least loaded
SCBSs are switched off and the UEs are re-associated with neighboring BSs. The backhaul
links carrying no traffic are turned off. Similarly, the robust UE association, backhaul routing
and switch off model (RUBSM) associates the UEs with SCBSs using a robust uncertainty
value which accounts for variations in resource demands [61]. This value balances between
the minimum PRBs required and the maximum deviation allowed for demand satisfaction.
Backhaul routes are selected based on the availability of multiple paths and their respective
energy costs. Unused SCBSs and backhaul links are switched off to save power. However,
these studies have not considered the minimum power consumption path which rather leads
to increased congestion and power consumption. One major drawback of both JUBSM and
RUBSM is the large computation time. The JUBSM runs up to ten times slower than base-
lines at peak hours while the RUBSM could take up to two days to reach optimality, making
real-time use impractical.

Venkateswararao et al. [27] target the often-ignored backhaul side of energy use. They propose
an intelligent backhauling scheme for UE-BS association, paired with a Load-Sharing-based
SCBS Sleep algorithm (LSCBS), to minimize total power. The association/routing problem is
cast as minimum-cost flow in which the cell and backhaul links are chosen such that the power
consumption is minimized. For each UE, candidate BSs must satisfy PRB needs derived from
its rate and SINR, and paths are chosen by a cost that combines actual power so far with
an estimate to the destination. This is repeated for all UEs to build energy-efficient routes
from small cells to macro cells. For sleeping, BSs are sorted by load and under-utilized small
cells are put to sleep only if neighbors can absorb their traffic without harming service. The
process iterates until no further deactivations are possible while meeting QoS. This algorithm
outperforms all the other algorithms in terms of active SCBSs, backhaul links and load balanc-
ing. However, LSCBS is only approximately 10% slower than JUBSM and 17% slower than
RUBSM, making it still impractical for realistic deployments.
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In the paper presented by Javad-Kalbasi et al. [62] power-cost function includes coupling
between users and links: assigning one user changes which base stations and backhaul links
are active and how heavily they are loaded, so costs are interdependent rather than separable
per user. This makes the objective non-linear and computationally hard. The authors there-
fore use a quadratic upper bound that slightly overestimates power but is easy to optimize;
minimizing this bound keeps the true cost controlled. In simulation, the method improves
energy efficiency by up to 8% over range expansion, minimum path loss, and SNR baselines,
and it also outperforms advanced schemes such as JUBSM and RUBSM on power, backhaul
selection, and load balance, at the cost of a modest increase in runtime.

The novel approach proposed by Mowla et al. [20] targets backhaul energy in 5G small-cell
networks with a hybrid PON-mmWave design. PON is more energy efficient at high load, while
mmWayve suits low load. This model accounts for both spatial and temporal traffic variations,
allowing backhaul links to enter sleep modes during off-peak periods and reactivating them
during peak demand. However, the paper does not include the power consumption cost of
switching between PON-based and mmWave-based backhaul and that of the unused backhaul
infrastructure when one technology is employed.

2.3. Limitations of the existing power consumption models and mini-

mization strategies
Despite significant advancements in power consumption modeling and energy-efficient strate-
gies for 5G RANSs, several gaps persist, necessitating further research. The literature review
has offered several key insights that influenced the approach of this thesis.

Several base-station power-consumption models exist, reflecting different technologies and lev-
els of detail. Although fine-grained models are available, adopting that granularity here is
impractical given data requirements and scope. Most studies therefore use simplified formu-
lations with an idle (baseline) term and a load-dependent term, with baseline values taken
from prior literature. Because vendor-specific, function-level measurements are not publicly
disclosed, published baselines are used, and results are best read as comparative trends rather
than precise absolute values. This answers the sub-question 1.1 of the research question 1.

Firstly, the non-adaptive strategies, although simple, lack the ability to adapt to highly dy-
namic environments. On the other hand, adaptive approaches adjust sleep levels or associations
using current load and QoS, yielding lower power at equal QoS, fewer overloads, and reduced
delay compared to fixed, non-adaptive threshold mechanisms. However, frequent optimizations
can cause ping-pong handovers without careful hysteresis or timers. Moreover, the RL-based
approaches mentioned in Table 2.1 adapt over time but most are evaluated on a single-cell,
omitting multi-tier interference and neighbor coordination. Hence, comparisons to other multi-
cell adaptive baselines are not fair. An exception is [11], which uses a realistic multi-cell
topology but its computation is high and unsuitable for real-time deployments.

Another drawback is that the backhaul power consumption is often ignored. The few works
that co-optimize access and backhaul (explained in subsection 2.2.3) report energy efficiency
gains but at the cost of heavy computation.

In terms of RAN topology, many studies rely on oversimplified and often unrealistic assump-
tions. Sleep-mode mechanisms are frequently evaluated on isolated single cells rather than
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multi-cell networks Table 2.1, removing inter-cell coupling effects. Homogeneous small cell
deployments are commonly modeled on idealized grids, which overlook irregular site layouts
and traffic hotspots [35]. Several works also assume a single macro cell, thereby eliminating
macro-macro interference and biasing results.

A pervasive limitation is the unrealistic modeling of user throughput demand. Many stud-
ies ([51][59] to name a few) assume identical per-UE requirements or draw from a small set
of fixed rates randomly assigned to users [23][30], ignoring application-level traffic profiles and
QoS constraints (e.g., web browsing, adaptive video streaming, interactive gaming, file transfer)
as well as temporal variability and user-to-user correlation. Consequently, the induced load
distribution and scheduling behavior are distorted. Moreover, with few exceptions [55][50],
users are treated as static (no mobility model).

2.4. Summary

This chapter reviewed how 5G energy use is modeled and optimized across RAN comprising
the base station and the x-haul network, and synthesized the main techniques and their limi-
tations that motivate this thesis. The RAN dominates network energy with base station being
the highest contributor of energy consumption. Base station power is commonly decomposed
into load-independent and load-dependent parts, with AAU data confirming this structure and
the need to account for sleep and switching overheads.

Concerning power consumption models:

Analytical models remain the most simulation-friendly and typically express base station power
as baseline plus a load term driven by resource usage, while more detailed formulations include
power consumption by the processing performed at the base station. This thesis adopts a simpli-
fied yet standards-aligned form to enable algorithmic exploration rather than component-level
accounting.

Energy on x-haul network is shaped by the functional split, transport technology and deploy-
ment topology. Fiber PON is typically more efficient at high load, while mmWave is attractive
at low load, suggesting hybrid designs.

Concerning energy consumption minimization techniques:

Most studies related to energy consumption minimization fall under the categories of putting
base stations to sleep and steering users to different cells. They are then further categorized
based on the ’technologies/methods’ applied to achieve the objective. Fixed threshold-based
strategies are simple but fail when traffic changes. Adaptive strategies can save more energy
but can hurt QoS or trigger extra handovers and control overheads leading to ping—pong un-
less carefully tuned. Complex schemes often save the most, yet they are heavy to run and
coordinate.

Concerning gaps and research direction:
The literature often:

. omits realistic multi-cell topologies and thus, interference computation

. simplifies per-UE throughput demand distributions, and

1

2

3. neglects x-haul energy consumption,

4. ignores switching overheads, control signaling overheads, and handover costs
5

. omits user mobility
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These gaps motivate the thesis focus on a tractable power model that spans macro/small cells
and x-haul, combined with adaptive UE-BS association and sleep control evaluated in realistic
urban scenarios.

Of these gaps, this thesis addresses realistic per-UE demands, a realistic multi-cell urban
topology, sleep/wake switching overheads, and user mobility. The x-haul network topology
optimization and energy consumption form a substantial research area on their own. Hence,
the x-haul network is treated as provisioned and outside the scope of energy consumption
accounting.



Joint base station sleep mode and selection
strategy for energy-efficient small cell
networks

This chapter presents the overall system architecture and the methodological framework used
in the simulation. It details the modeling of network components, including macro cells, small
cells, and UEs. The chapter also introduces the power consumption modeling based on the
system model, the simulation workflow, and the proposed adaptive sleep mode mechanism and
the proposed UE-BS association algorithm.

3.1. Selection of optimal topologies and technologies

The architecture of a Radio Access Network (RAN) fundamentally defines how radio and
baseband processing functions are deployed, coordinated, and scaled. Consequently, RAN ar-
chitecture plays a pivotal role in determining how efficiently a mobile network can deliver per-
formance, scalability, and energy savings. Traditionally, mobile networks employed Distributed
RAN (D-RAN) architectures, where each RU was paired with a dedicated BBU located at the
cell site. While D-RAN offered simplicity and independence for each base station, it lacks the
scalability and bandwidth efficiency required for emerging 5G services [63].

To overcome these limitations, the industry introduced Centralized RAN (C-RAN) or Cloud
RAN, in which BBUs from multiple sites are pooled at a centralized location. This central-
ization allows for better coordination, improved resource utilization, and enhanced energy effi-
ciency. However, as 5G networks became denser and more heterogeneous, particularly with the
proliferation of small cells, Heterogeneous C-RAN (H-CRAN) architectures emerged. H-CRAN
combines the advantages of heterogeneous network topologies with centralized processing, and
introduces the decoupling of the control plane and user plane to improve flexibility, scalability,
and load balancing across the RAN [63].

This evolution continued with the introduction of Network Function Virtualization (NFV) ini-
tially in the core network and subsequently extended to the RAN, enabling software-defined,
cloud-native deployment of network components. Building upon these developments, Open
RAN (O-RAN) has gained significant momentum in both academia and industry. O-RAN fur-
ther disaggregates the BBU into two logical components: the Distributed Unit (DU) and the

31
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Centralized Unit (CU). This modularization enables flexible functional splits across network
layers and promotes interoperability through standardized, open interfaces [63]. The evolution
of RAN architectures is shown in Figure 3.1.

D'R.AN C'RAN H'CRAN

2G, 3G,
Early 4G

Late 4G,

Late 4G Farly 5G

Figure 3.1: Evolution of RAN architectures

Functional splits define the functions executed by each unit, which in turn determine the data
carried over the x-haul links (fronthaul, midhaul, backhaul) and in turn, the power consumption
of each unit and each x-haul link. According to 3GPP, there are eight standardized functional
split options. Among these, option 7.2x has emerged as a practical compromise, offering a good
trade-off between RU simplicity, the fronthaul data rate and latency requirements. Under this
configuration, the RU handles functions such as cyclic prefix addition/removal, FFT, beam-
forming, port expansion, and partial precoding. The DU, on the other hand, completes the
remaining lower-layer processing tasks, including parts of precoding, modulation, scrambling,
layer mapping, and mapping to PRBs. This layered, virtualized, and open architecture enables
RAN deployments to be highly adaptive to diverse performance, cost, and energy efficiency
requirements in 5G and beyond which is why it is chosen for this thesis [64] [5].

Earlier RAN architectures required operators to source all components RUs, DUs and CUs -
from the same vendor, leading to vendor lock-in. In contrast, the O-RAN Alliance defines open
interfaces between the RU, DU and CU, enabling multi-vendor interoperability. Additionally,
O-RAN also supports advanced technologies such as massive MIMO, enhancing network ca-
pacity and spectral efficiency, making it an optimal choice for urban outdoor environments,
which is the chosen scenario for this thesis [2].

Figure 3.2 compares the protocol stack division of the traditional BS, the C-RAN architecture
and the O-RAN architecture. As illustrated in Figure 3.2 the O-RAN framework introduces a
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split within the physical layer, separating it into Low-PHY and High-PHY segments. Conse-
quently, a portion of the physical layer processing is handled at the RU, while the remaining
tasks are offloaded to the DU [9].

®
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CU
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(€) =———oed] & | §
Backhaul & Fronthaul

Figure 3.2: (a) Traditional base station with a Radio Access Network (RAN) protocol stack, (b) Cloud-RAN
architecture, (¢) Open-RAN architecture

3.2. Development of the energy consumption model

As explained in section 3.1, O-RAN architecture with split option 7.2 has been selected for this
thesis. As per split option 7.2, apart from RF transmission, the RU performs a few process-
ing functions such as adding cyclic prefixes, performing Fourier Transforms and beamforming,
while the rest of the functions are performed by the DU. The RU performs comparatively less
computationally intensive functions than the DU. However, the exact location of this split is
still under discussion by 3GPP [5]. This ambiguity makes it difficult to incorporate the models
that disintegrate the power consumption based on the hardware and the key processing tasks.

In modern 5G BS deployments, as shown in Figure 3.3, especially those supporting massive
MIMO, AAUs [65] and Antenna Integrated Radio (AIR) [66] units are increasingly being
adopted. These components combine the RU and the antennas in a single light-weight com-
pact enclosure that can easily be deployed on rooftops or poles. These units support massive
MIMO, high bandwidths, multiple frequency bands and advanced beamforming capabilities
while minimizing power consumption. The integration of RUs and antennas leads to a signif-
icant reduction in RF cable losses making them more energy efficient. Moreover, these units
also provide support for O-RAN architecture thereby facilitating 5G HetNet deployments.



3.2. Development of the energy consumption model 34

Huawei
5G Ultra-Lean Site

1 L6

Simplified Simplified Simplified Simplified
Radio Antenna Energy Deployment

HUAWEI

(a) Ericsson Antenna Integrated Radio (AIR) (b) Huawei Active Antenna Unit (AAU)

Figure 3.3: (a) Ericsson (Antenna Integrated Radio) and (b) Huawei (Active Antenna Unit)

These units employ Active Antenna Systems (AAS), which replaces a single power amplifier
by a matrix of smaller power amplifiers. This matrix is then integrated into the antenna which
in turn reduces the cable losses. Figure 3.4 compares the traditional remote radio head with
the AAS [07]. As can be seen from Figure 3.4, the AAS technology fits perfectly into the
O-RAN architecture where the RU includes both processing elements as well as transmission
hardware. However, the detailed technical specifications of these AAUs and AIRs are limited or
proprietary, making it challenging to model power consumption based on real-world hardware.
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Active RF elements Passive antenna
integrated into the anten
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Radiating element
- Passive Antenna (PA) internal losses
-RF cable losses +18dBi Antenna Gain
Each radiatin
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+ AAS RF Power
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i @)
Optical fibre + DC
Baseband
Baseband functionality in a
separate module
(a) Remote Radio Head Versus Active Antenna Design (b) Inefficiencies Avoided by the Active Antenna

Figure 3.4: Active Antenna System

With functional split architectures such as option 7.2, physical layer processing is distributed
between the RU and DU. However, the RU still performs the most power-intensive RF and
analog tasks, whereas baseband processing in the DU and CU can be offloaded to centralized
cloud infrastructure. Additionally, several studies in the literature treat the power consump-
tion of the BBU (comprising the DU and the CU) as largely load-independent. In contrast,
the RU power consumption is typically modeled as traffic dependent. This makes the RU the
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primary on-site power consumer, especially relevant in edge deployments like small cells. This
approach is consistent with previous studies such as [37], which isolate RU power consumption
for energy efficiency analysis in RAN deployments.

To estimate the power consumption of the network components realistically, a bottom-up
modeling approach has been adopted, beginning with radio propagation characteristics and
culminating in the total power consumption of the access and backhaul elements.

3.2.1. System model

Figure 3.5 shows the system model used in this thesis. The system consists of one serving
macro cell base station (MCBS) with multiple small cell base stations (SCBSs) deployed inside
its coverage. Es are placed within the highlighted macro area. or interference, the first-tier
neighboring macro cells (left panel, surrounding hexes) are included in the SINR calculations.
However, only the central macro and its SCBSs participate in the algorithms (association and
sleep control). All BSs operate co-channel, so downlink interference comes from active SCBSs
in the central cell plus the neighboring macro cells. The right panel zooms into the central
site: each SCBS/MCBS radio unit connects over fronthaul to a centralized DU/CU, which in
turn connects over backhaul to the core network. The Traffic Distribution Orchestrator (TDO)
runs near the DU/CU and issues the UE-BS association and SCBS sleep/wake decisions. The
macro cell remains always on to provide coverage; only SCBSs are subject to sleeping. DU/CU
power is assumed constant (no load scaling or sleep), since short-timescale variations are minor
and detailed vendor data are unavailable [37].

TDO

Core Network

PP Backhaul

DU/CU |

Fronthaul

Figure 3.5: System model

The list of symbols and notations used in the energy consumption model are given in Table 3.1.
To ensure a realistic and comprehensive simulation environment, a set of standardized parame-
ters has been defined for both macro cell and small cell configurations. These parameters form
the foundation of the system model and are consistently used throughout the simulation to
evaluate performance metrics such as SINR, throughput, and power consumption. Table 3.2
presents the key simulation parameters, including transmission power levels, operating fre-
quencies, idle and sleep mode power consumption, PRB capacities, and the adopted path loss
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Set of all UEs

Set of all BSs (macro cells and small cells)

Set of macro cells

Set of small cells

Index for UE

Index for base stations (both macro cells and small cells)

Index for small cells

Index for macro cells

Represents association between BS j and UE i (1=associated, 0=not
associated)

Sleep state of small cell (1=sleep, O=active)

Path loss for macro cell and small cell respectively

Distance between UE and BS in kilometers

SINR of user i from BS j

Minimum SINR required for UE-BS association

Maximum transmission power for BS j

Channel gain between UE ¢ and BS j

Thermal Noise

Throughput of UE ¢

Throughput demand of UE i

Bandwidth allotted to UE

Load at base station j

Number of PRBs required by UE i from BS j

Bandwidth of one PRB

Total network power consumption

Power consumption of macro cell and small cell BS respectively
Power consumed by the network while switching between on and
sleep states

Load independent power consumption of a BS in active state

Load independent power consumption of a small cell during sleep
state

Power consumed by individual small cell while switching between on
and sleep states

Efficiency of the power amplifier

Transition between on and sleep states for small cell s(1=transition,
0=no transition)

Energy efficiency of the network

Computation of cost function governed by load and power consump-
tion metrics

Maximum and minimum power that the network can consume, re-
spectively

Average energy per bit values for all users

Threshold value for deciding the transition of small cell s between
sleep and active state

Table 3.1: List of symbols belonging to the proposed system model

models. These values are selected based on widely accepted benchmarks in the literature and
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reflect typical urban deployment scenarios for 5G heterogeneous networks [23].

Parameter ‘ Value
Simulation Configuration

Simulation area 500 m x 500 m
Bandwidth of a PRB 180 kHz
Noise power density —174 dBm/Hz
Power amplifier efficiency 0.39

Frequency and Transmission Power
Macro cell operating frequency 2.6 GHz
Small cell operating frequency 3.5 GHz
Macro cell transmit power 46 dBm
Small cell transmit power 30 dBm

Power Consumption Parameters
Macro cell idle power 780 W
Small cell idle power 21.6 W
Small cell sleep mode power 2 W
Small cell on-sleep switching power 13.5 W
Resource Capacity
Macro cell capacity (Number of PRBs) | 500
Small cell capacity (Number of PRBs) | 100
Path Loss Models

Macro cell path loss model 128.1 4+ 37.6logd [km]
Small cell path loss model 140.7 + 36.7log d [km]

Table 3.2: System model parameters

Path Loss estimation

The first step involves computing the path loss between the transmitter and the receiver,
which directly influences the received signal power. The path loss is modeled as a function
of distance, frequency and propagation environment. This determines the signal degradation
over the wireless link. The path loss models for macro cell and small cell, denoted by PLy;cBs
and PLgcpg respectively are:

PLyops = 128.1 4+ 37.6 % loglg(d) (31)

PLscps = 140.7 + 36.7 x logio(d) (3.2)

where D represents the distance between the transmitter and the receiver in kilometers [33]

[22].

Signal-to-Interference-plus-Noise Ratio calculation
The received signal power obtained from the path loss model is then used to compute the SINR
at the receiver. This accounts for both co-channel interference from neighboring transmitters
and thermal noise. The SINR quantifies the quality of the received signal and directly influences
the achievable data rate over the link. The SINR for the downlink for i** UE, transmitted by
4% BS is given by:
Pt’g;me

YkzjkeB Ping Gik + No

SINR;; = (3.3)
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Throughput estimation

Based on SINR, achievable throughput is estimated using Shannons capacity theorem. The
effective data rate achieved is obtained as a function of the SINR and allocated bandwidth.
This throughput estimation forms the basis for calculating the network load, which directly
impacts the dynamic portion of the power consumption.

R; = BilOQQ(l + SINRM') (3.4)

Load estimation

The network load is determined by the percentage of PRBs that are used. Every RU/ BS has
a fixed capacity, that is, the total number of PRBs. The number of PRBs required by every
user is given as: The higher the SINR, the higher the achieved data rate and the lower is the
number of PRBs used. The number of PRBs required by the UE ¢ from BS j is given by
PRB; ; as follows:

D;
PRB; ; = 3.5
I BPRBlng(l +SINRi,j) ( )
Thus, based on Equation 3.2.1, the load at BS j can be calculated as L DPRB;

3 = PRBiotal;

Power Consumption

The total power consumption of a BS is modeled as the sum of load-dependent and load-
independent components, as explained in subsection 2.1.1. The total power consumption of
the network is calculated as:

Ptotal = PMCBS + Z asPSCBSS + Pswitching (36)
seS

The power consumption of a macro cell BS, which is always active, is:
P = Pactive + P ! L; 3.7)
MCBS — L active txymoBs Wj i ( .

Similarly, the power consumption of a small cell BS considering active and sleep states is given
by:

1 _
Pocns = | Fective + Pitsis (i) Forers =0 33)
sleep) s = 1
The switching power is given by:
Pswitching = Z TsPon—sleep (39)
seS

where Ty is 1 if the state of the small cell s changes from on to sleep or vice versa, and 0
otherwise. Thus, Ty(t) = 1 if as(t) # as(t — 1) and 0, otherwise, where ¢ is the current
timestep and (¢ — 1) is the previous timestep.

Energy Efficiency
The energy efficiency of the network is given as the ratio of total throughput to the total power
consumption, given as:

2iev 1t

EEtatal = P l
tota

(3.10)
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3.3. Problem formulation
The objective of this thesis is to minimize the power consumption without compromising the
QoS. Thus, it can also be expressed as maximizing the energy efficiency.

U p
maz BE = 2= ) (3.11)
Ptotal
Subject to:
R; > D;, Viel (C1)
ajj € {0,1}, Yield, jeB (CQ)
B
Z a; ;< 1, Vield (03)
j=1
as €{0,1}, VjeB (C4)
SINR; j> SINRthresholda Vi €U, j € B (Ch)

The constraint C1 ensures that the data rate R; achievable by UE i is at least equal to its
data demand D;. This is essential for maintaining minimum quality of service (QoS) for all
users in the network. It guarantees that the network does not under-provision any user. The
variable a; ; in C2 indicates whether UE ¢ is associated with BS j, where B is the total number
of base stations. A value of 1 implies that the user is connected to that base station, and 0
otherwise. The third constraint C3 ensures that every UE is connected to at the most one BS.
Every small cell s; can either be in active or sleep state as indicated by C4. Lastly, constraint
C5 ensures that the wireless link between UE ¢ and BS j maintains acceptable reliability and
signal quality.

3.4. Proposed sleep mode mechanism

To minimize power consumption while preserving Quality of Service (QoS), an adaptive sleep
mode mechanism was implemented for small cells in the HetNet. This mechanism dynami-
cally determines whether each small cell should remain active or enter sleep mode based on a
weighted cost function that considers both network load and energy efficiency.

Small cells consume non-negligible power even under light traffic conditions. However, simply
turning off underutilized cells can lead to service degradation, particularly when user demand is
highly dynamic or unevenly distributed. Therefore, a mechanism is required that intelligently
balances load-driven performance with energy-aware operation. The goal is to deactivate (put
in sleep state) small cells during underutilization while ensuring sufficient capacity during
load surges. Thus, deactivating small cells solely based on load values or power consumption is
undesirable. Hence, a cost function-based adaptive sleep mode mechanism has been developed.

3.4.1. Weighted cost function
The decision to transition a small cell to sleep mode is governed by a cost function formulated
as a weighted sum of load and power consumption metrics. For every small cell s, a score
score; is computed as:

Ptotal

scores = wi(s) - Ls + wa(s) - iz
max

(3.12)

where,
Ls € [0,1] is the PRB load of small cell s, s € S,
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Pyotar is the total instantaneous network power consumption,

Ppqz is the maximum power that can be consumed by the network when all base stations are
on and all PRBs of all base stations are allocated,

Thus, Fetat € [0,1], and

wi(s) and wsy(s) are the adaptive weights assigned to the load and power terms, respectively
such that wi(s) + wa(s) = 1.

The adaptive updating of these weights considers three factors: load on base stations, net-
work power consumption and energy per bit value. Energy per bit is how much energy the
network spends to deliver one data bit. A target load Lipreshoid, power threshold Pipgeshold and
energy per bit threshold epbip esnoid are set as below:

o Lipreshold is a predefined constant load value between 0 and 1. The actual value is
explained in chapter 4.

® Pthreshald = 0.6 * Pma:(; + 0.4 Pmina
where P, is the power consumed by the network when all small cells are in sleep mode
and the macro cell is on, but not serving any traffic. Pipresnolg favors curbing power when
the network tends toward its upper value.

o epbinreshold is a predefined constant energy per bit value. The actual value is explained
in chapter 4.

3.4.2. Adaptive weight updating
The weights wi(s) and ws(s) are updated dynamically at every time step to reflect current
network conditions. The weight wi(s) is incremented by 0.1 (capped at 1) when:

o the small cell’s load exceeds a target load value (Ls > Lipreshold),
o the macro cell has high load (L,, > 0.7) , or
o any UE ¢ in coverage of small cell base station s is unsupported (does not meet the QoS

requirements), that is, (ZjeB aij =0).

Conversely, when the network power consumption exceeds a threshold Pijyeshold, the mecha-
nism shifts emphasis towards minimizing power consumption by decrementing the weight w; (s)
by 0.1 (floored at 0) when:

o Piotal > Pinreshold, or

* epbtotal > epbthreshold

. Thus, the weights are updated using the following logic:

min (w1 (S) + 0.1, 1.0) , if Lg > Lipreshold OF
L,, > 0.7 or

wi(5) > jeB a{z’jj} = 0 for UE 7 in coverage area of small cell
base station s

max (w1(s) — 0.1, 0.0), if Pyotar > Pihreshold OF

epbtotal > epbthreshold

(3.13)

wa(s) =1 —wi(s) (3.14)
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where the Pipreshorq is computed as Pipreshold = 0.6 % Prgr + 0.4 % Poyin.

3.4.3. State transition logic
The transitions between sleep and active states are performed based on a threshold value which
is computed as:

Pmin
Pma:(:

Tihresholds = W1(8) * Lihreshold + w2(s) - (3.15)

where,
Ppin is the minimum network power conditions under ideal conditions.

A small cell transitions from active to sleep state if:

scores < Tinresholds

Consequently, a small cell transitions from sleep mode to active mode if:
scores > 1.2 % Tipreshold,

A hysteresis margin is applied to avoid frequent switching of states. Upon entering sleep mode,
the small cell deactivates its transmission chain and is removed from the UE associations and
SINR calculations.

By adaptively adjusting the decision criteria, the mechanism avoids over-prioritizing either
load or energy, leading to improved overall energy efficiency while maintaining user service
levels. This approach offers a practical and computationally efficient method for enabling
energy-aware control of small cells in 5G heterogeneous networks.
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Figure 3.6: Proposed sleep mode algorithm flowchart




3.5. Proposed User Equipment-Base Station association algorithm 43

3.5. Proposed User Equipment-Base Station association algorithm
According to the 3GPP specifications TS 36.304 [68] and related procedural definitions in TS
38.331 [69], the UE connects to the cell that satisfies the selection criteria and that typically
offers the highest received signal strength or quality. While signal strength remains the pri-
mary criterion in standardized cell selection and reselection, it alone is insufficient for optimal
network performance.

In this thesis, additional parameters are incorporated into the cell selection process. Specifi-
cally, the cell load is considered for determining the activation and deactivation of small cells
within the proposed sleep mode mechanism as explained in section 3.4. SINR and throughput
demands are used for defining the UE-BS association strategy. Although cell load and through-
put demand are closely related, since higher throughput demand from UEs increases the cell
load, they represent distinct factors. Load represents the current utilization of cell resources
while throughput demand characterizes the traffic requirements of individual UEs.

Thus, relying solely on signal strength-based association is insufficient for achieving both en-
ergy efficiency and balanced resource utilization in HetNets. While SINR remains the primary
determinant of link quality, its integration with throughput demand enables a more informed
association process that accounts not only for the connectivity quality but also for the energy
cost per bit and distribution of traffic load across cells. This combined consideration forms
the basis for the proposed UE-BS association algorithm, which is designed to reduce energy
consumption and ensure fair utilization of macro cell and small cell resources.

The macro cell, due to its significantly higher transmit power, inherently consumes more energy
per bit compared to a small cell. Since energy per bit is directly proportional to the transmit
power of the serving base station, it is more energy-efficient to serve low throughput demand
users via the macro cell and high-throughput demand users via small cells.

The approach in [23] adopts a binary classification of users into high-load and low-load cat-
egories where low-load UEs are directly associated with the macro cell. For the purpose of
this study, this algorithm is referred to as ’Low-High Load Association (LHLA)’ algorithm
throughout the thesis to facilitate comparison with the proposed algorithm. However, this
methodology can result in inefficient resource utilization. In particular, users within small cell
coverage areas may still be connected to the macro cell, leaving small cell resources underuti-
lized. This necessitates a more refined mechanism to ensure efficient utilization of available
cells.

The algorithm proposed in this thesis still uses signal strength (SINR) as the main factor
for association, because low SINR can limit both high and low demand applications. However,
it also takes the users throughput into account. The macro cell is treated as a fallback option,
only serving users when small cells cannot meet their resource requirements. However, this
leads to the users with low macro cell SINR values unserved. Thus, considering these aspects,
the proposed algorithm is:

1. Initial Allocation: UEs whose SINR with the macro cell falls below a defined threshold
are first redirected to small cells where they meet the minimum SINR requirement. This
ensures that users with poor macro cell link quality are not associated with it, even if
macro cell PRBs are available.

2. Throughput-Based Ordering: The remaining UEs are sorted in descending order accord-
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ing to their throughput demands. This prioritization ensures that high-demand users are
considered earlier in the allocation process, increasing the likelihood that they receive
service from cells with sufficient resources and good link quality.

. SINR-Based Scheduling: For each UE in the prioritized list, the algorithm identifies the

candidate cell offering the highest SINR, but applies a Cell Range Expansion (CRE) bias
of 6 dB to small cells. This bias artificially boosts the measured SINR. of small cells in
the decision process, increasing their selection likelihood over the macro cell when both
have comparable link quality The value '6dB’ is adopted from [70].

. Iterative Scheduling UEs are allocated one by one to the highest-ranked cell from the

adjusted SINR list (with CRE applied), subject to available PRBs. Small cells are
preferred whenever they can provide adequate SINR after biasing. Only when small cell
resources are insufficient or SINR is inadequate will the macro cell be selected.

The flowchart of the proposed algorithm is shown in Figure 3.7.
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Figure 3.7: Proposed association algorithm flowchart
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3.6. Simulation framework

There exist several software platforms for simulating 5G networks, including NS-3 [71], OM-
NeT++ [71], MATLAB [72], and Python-based frameworks [73][71], each offering distinct
advantages depending on the simulation objectives. These tools support different levels of
abstraction, ranging from protocol-level modeling to system-level behavior. Detailed protocol-
level simulators such as NS-3 and OMNeT++ are well-suited for evaluating control signaling,
protocol stack implementations, and lower-layer interactions in communication networks [71].
However, the primary objective of this thesis is to analyze energy efficiency through adaptive
mechanisms such as sleep mode control and UE-BS association, which rely on metrics like
SINR, load distribution, and power consumption. These aspects can be effectively modeled
at a system level without requiring full protocol stack simulation. The choice of simulation
tool thus depends on the trade-off between modeling granularity, computational efficiency, and
the ease of use. In contrast to other 5G simulation tools, MATLAB and Python-based tools
are more suited for system-level performance analysis. In this thesis, MATLAB was selected
due to its strong support for numerical computation, real-time variable inspection [74], and
widespread adoption in the literature for energy efficiency studies in wireless networks [54] [71]

[20] [34].

One of MATLAB’s major strengths lies in its interactive debugging environment, which al-
lows users to set breakpoints, step through code execution line-by-line, and inspect or modify
variables in real time [71]. The workspace panel provides a centralized view of all variables
at any simulation stage, offering a level of interactivity and transparency that is particularly
valuable when debugging complex adaptive algorithms or validating intermediate results. Al-
though Python allows for variable inspection via debuggers or inline cells, it lacks MATLARB’s
centralized variable workspace and requires more manual configuration.

The simulation workflow is shown in Figure 3.8. The process begins with initialization of
the system parameters which are given in Table 3.2. The simulation framework developed in
this thesis aims to evaluate the energy efficiency of 5G heterogeneous networks under varying
traffic loads and control mechanisms. The simulation proceeds in discrete time steps, and each
time step represents a snapshot of the network operation where key decisions such as small
cell sleep mechanism and UE-BS association mechanism are dynamically made based on the
current network conditions.

After initialization of parameters, the simulation then proceeds to channel estimation through
the computation of path loss and SINR values for the link between every UE-BS pair. Based on
channel estimation, an estimate of achievable throughput and PRB demands is made. These
metrics are then mapped to determine the load at every BS.

Based on the calculated load and current power consumption, an adaptive mechanism de-
termines whether the small cell should remain active or enter a sleep mode to save energy
without compromising the user experience. The association algorithm then determines the ap-
propriate BS to serve every UE based on SINR and coverage. The evaluation metrics such as
power consumption, energy per bit, and network energy efficiency are then updated based on a
realistic power consumption model that accounts for baseline power, load dependent transmit
power, and switching power.
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Figure 3.8: Simulation workflow

The process is repeated iteratively over multiple time steps, enabling the simulation to capture
the dynamic behavior of the network under time-varying traffic conditions. To emulate realistic
usage patterns, the simulation incorporates throughput requirements derived from commonly
used applications. Table 3.3 presents representative data rate ranges for services such as
WhatsApp, YouTube, and Netflix, allowing the evaluation to reflect practical load scenarios
encountered in modern mobile networks.

Based on the throughput requirements of various applications presented in Table 3.3, users are
classified into four categories according to their overall data consumption patterns, as shown
in Table 3.4. For a given target cell load, user throughput demands are assigned such that
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’ Application ‘ Data Rate Requirement (Mbps) ‘ Citation
WhatsApp (Text Only) 0.1-0.2 [75]
WhatsApp (Images) 0.5-1.5 [75]
WhatsApp (Voice Messages) 0.3-0.6 [75]
WhatsApp (Voice Call) 0.3-0.6 [75]
WhatsApp (Video Call) 0.5-1.5 [75]
Instagram 0.5-6 [75]
Email ~10 KB per message [75]
Emails with Attachments 0.005-2 [75]
Zoom Meetings i(l)) tlgOSIflbISISl;ps [76]
Microsoft Teams 10Kbps up to 1.5Mbps [77]
Web Browsing (HTML) ~10 KB per page [75]
SD (480p): 1-1.5,
720p HD: 2.5,

YouTube 1080p: 5, [78]
4K: 20
SD: >3,

Netflix HD: >5, [79]
Ultra HD: >15
720p: 2.6,

Real-time Video Gaming 1080p: 6-9, [75]
4K: 25-35

Table 3.3: Data rate requirements for common applications

the distribution of user types aligns with the load condition. For instance, under low-load
scenarios, a larger proportion of users are categorized as light users, and their data rates are
randomly selected within the corresponding range defined in Table 3.4. Furthermore, user

User Type Typical Usage Pattern Throughput Range
(Mbps)
Light User WhatsApp messaging, web browsing, 0.1-0.5
email
Moderate User Social media browsing, occasional video 0.5 -2
calls
Heavy User HD video streaming, frequent video 2-10
conferencing
Very Heavy User 4K streaming, gaming, multiple devices 10 - 25

Table 3.4: User categories based on throughput demand

mobility is modeled by assigning varying movement speeds to users located in hotspot regions.
This approach reflects realistic urban environments, such as city centers and public gathering
spaces, where user mobility patterns are highly dynamic. Incorporating such elements enhances
the fidelity of the simulation and ensures that the proposed energy efficiency mechanisms are
evaluated under realistic and heterogeneous operating conditions. To model user mobility, a
random direction model was implemented.

At each time step, users are assigned a random direction and move with a predefined speed.
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If a user reaches the boundary of the simulation area, their direction is reflected, simulating
a bounce-back effect to keep them within bounds. This approach emulates realistic, uncon-
strained urban movement within a macro cell.

3.7. Summary

This chapter specifies the urban 5G radio access network under study, with a macro layer
overlaid by small cells, and defines traffic and mobility models using realistic per-user demand
profiles, hotspot placement, and user movement. It introduces a base-station power model
with a baseline component and a load-dependent component, and it includes explicit switching
overheads for transitions between sleep and active states. Load is represented through physical
resource block utilization, which links signal-to-interference-plus-noise ratio, achievable rate,
and scheduler decisions.

The chapter then details two control mechanisms: a load-aware controller for sleep and wake
decisions with clear state transitions, and a user-to-base-station association procedure that
extends the strongest-cell rule by ordering users by demand, applying a cell range expansion
bias toward small cells when beneficial, enforcing feasibility with respect to available physical
resource blocks, and using the macro cell as a fallback. The simulation workflow, parameter
choices, and evaluation pipeline are described to ensure reproducibility.



Simulation Results

This chapter outlines the simulation environment, parameters, and traffic configurations used
to evaluate the performance of the proposed mechanisms. Different deployment scenarios,
including varying UE densities, mobility patterns, and small cell placements, are defined to
reflect realistic network conditions and test the scalability of the approach.

4.1. Simulation scenarios

To evaluate the performance of the proposed energy-efficiency mechanisms and understand
the impact of different deployment strategies, a series of simulation scenarios are constructed.
Each scenario is designed to isolate and analyze specific aspects of network behavior in a 5G
heterogeneous environment comprising a macro cell and multiple small cells.

The thesis focuses on an urban scenario since small cells are designed for capacity densifi-
cation and spatial reuse under high UE density, whereas in rural low-density settings, capacity
is not the bottleneck. Key system parameters are configured according to typical urban 5G
deployment values, as summarized in Table 3.2.

The choice of simulation cases is carefully structured to follow a logical progression. Initially,
the impact of small cell deployment is studied to understand the theoretical benefits in terms
of energy and capacity. However, to reflect practical deployment concerns, further simulations
are conducted to analyze how these benefits are influenced by the actual distribution of users.
To gain deeper insight into how user distribution influences the effectiveness of small cell de-
ployment, a SINR contour analysis is conducted to visualize coverage dominance and signal
quality across the simulation area. Building on this, additional scenarios vary the UE distri-
bution to reflect different traffic load levels and evaluate how such distributions impact power
consumption and energy efficiency.

Further simulations examine the break-even points of energy efficiency, determining at what
load levels the HetNet outperforms the macro cell-only configuration. Finally, the effectiveness
of the proposed adaptive sleep mode mechanism is evaluated under dynamic conditions, where
small cells transition between active and sleep states based on traffic load and power consump-
tion, thereby demonstrating real-time energy savings without compromising user experience.
This section answers the sub-question 2.3 of the research question 2.

50
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4.2. Evaluation metrics and testing parameters

To quantitatively evaluate the performance of the proposed energy-efficient mechanisms in
heterogeneous cellular networks, several metrics are employed. These metrics assess the trade-
off between throughput, energy usage, and user experience. The key evaluation metrics are
described below.

1. Total Power Consumption: Total power consumption represents the aggregate electrical
power consumed by all active components in the network, including macro cells, small
cells, and any associated backhaul infrastructure. This metric reflects the energy cost of
operating the network infrastructure and is a key determinant in designing energy-aware
sleep mechanisms.

2. Energy Efficiency (EE): Energy efficiency quantifies how efficiently the network converts
energy into useful data transmission. It is defined as the ratio of total throughput to
total power consumed. This is the primary metric for evaluating the trade-off between
energy and capacity. A higher EE implies that the network is more power-efficient while
still meeting traffic demands.

3. Energy per Bit (EPB): Energy per bit measures the amount of energy consumed to
transmit a single bit of data across the network. Thus, energy per bit computation
considers only the transmit power while excluding the processing power. Energy per
bit for every user as given in [30] can be computed as Ej, = %. Py, is the total
transmit power required for a user 'u’ and R, is the achieved data rate for user 'u’
Then the average of all the EPB values is considered as the network EPB. Although
[30] considers only transmit power for energy per bit computation, it is more realistic
metric also include circuit power which includes baseband processing as explained in
subsection 2.1.1. However, such detailed component-level data is not available due to
which only transmit power has been considered in energy per bit calculation.

This section answers the sub-question 2.2 of the research question 2.

4.3. Evaluated algorithms

Both the proposed sleep mode strategy as well as the association strategy are compared against
baseline algorithms, which are explained in the following subsections. This section answers the
sub-question 2.1 of research question 2.

4.3.1. Evaluated User Equipment-Base Station association algorithms

In order to evaluate the effectiveness of the proposed UE-BS association strategy, four algo-
rithms with varying levels of complexity and decision criteria are compared under identical
simulation conditions. These include:

1. Max-SINR: A baseline approach where each UE connects to the BS providing the highest
SINR, without considering network load or throughput demands.

2. Cell Range Expansion (CRE): A biased Max-SINR approach that applies a fixed positive
offset to small cell SINR values, encouraging more UEs to connect to small cells.

3. Low-High Load Association (LHLA): A load-tiered strategy where UEs are classified
into low-load and high-load groups based on throughput demands, with low-load UEs
assigned to the macro cell and high-load UEs prioritized for small cells.

4. Proposed SINR-Throughput Aware Association (STAA): The developed algorithm which
integrates SINR-based prioritization, throughput demand awareness, CRE bias, and re-
source availability to balance energy efficiency and performance.
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Algorithm SINR CRE Bias Throughput Capacity Awareness
Demand

Max-SINR v X X X

CRE v v (6dB) X X

LHLA v v (6dB) v v

(Low/ High
Demand split)

Proposed v v (6 dB) v v

STAA

Table 4.1: Decision criteria used in compared user—base station association algorithms

Table 4.1 summarizes the decision criteria used in the four UE-BS association algorithms eval-
uated in this thesis. The Max-SINR algorithm represents the baseline approach, where UEs
connect solely to the base station offering the highest instantaneous SINR, without consider-
ing resource availability or traffic demand [51] [70] [81]. The Cell Range Expansion (CRE)
algorithm builds upon Max-SINR by introducing a fixed bias in favor of small cells, thereby
increasing their coverage area; however, it still ignores cell load and throughput demands. The
Low-High Load Association (LHLA) method classifies UEs into low- and high-demand cate-
gories and associates low-demand UEs to the macro cell and high-demand UEs to small cells.
While this improves load balancing, it can underutilize small cells if UEs in their coverage ar-
eas are classified as low demand. Finally, the Proposed SINR-Throughput Aware Association
(STAA) algorithm integrates SINR, CRE bias, throughput demand, and resource availability
to optimize energy efficiency and power consumption.

4.3.2. Evaluated sleep mode algorithms

In addition to evaluating UE-BS association strategies, this thesis compares two sleep mode
mechanisms for small cells: the Fixed Threshold Sleep Mode and the Proposed Adaptive Sleep
Mode. The fixed threshold method relies solely on a pre-defined load value (which is set to 40%
for every small cell) to determine activation and deactivation, whereas the proposed method
dynamically adjusts decision thresholds based on both load and energy efficiency indicators.
The adaptive mechanism employs a weighted cost function, where the relative importance
of load and Energy Per Bit (EPB) changes according to network conditions, enabling more
responsive and context-aware state transitions. Table 4.2 summarizes the main differences
between the two approaches.

4.4. Analysis of key findings

This section sums up the key results and explains their significance. It highlights how energy
efficiency, network power consumption and energy per bit change. It compares a macro cell-
only setup with a mix of macro and small cells, pinpoints the break-even point where adding
small cells with sleep mode starts to save energy, and notes how bursty versus steady traffic
affects the outcome.

4.4.1. Effect of adding small cells in macro cell-only configuration

The deployment of small cells is a widely proposed technique to enhance the capacity and
energy efficiency of next-generation mobile networks. Small cells are typically characterized by
lower transmit power and smaller coverage areas in comparison to macro cells. Theoretically,
introducing small cells into a macro cell-dominated environment can offload traffic from heavily
loaded macro cells, reduce transmission distances, and improve energy efficiency.
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Feature

Fixed Threshold Sleep Mode

Proposed Adaptive
Mode

Sleep

Decision Criteria

Single fixed load threshold for
activating/deactivating small
cells.

Weighted cost function com-
bining cell load and Energy
Per Bit (EPB). Weights (wq,
wg) are adaptively updated.

Load Awareness

Yes (binary: above or below

Yes (continuous influence via

fic scenarios.

threshold). wy; load changes influence
score).
Energy Aware- | No explicit consideration of | Explicit EPB awareness; pri-
ness EPB or power consumption. oritizes energy saving when
EPB or total power is high.
Adaptivity No; same threshold in all traf- | Yes; thresholds dynamically

adapt based on previous load,
EPB, and power consumption
trends.

Inter-cell Aware-

No; decisions made per cell in-

Partially; macro cell load is

by turning off low-load cells.

ness dependently. also considered in weight up-
dates.
Objective Reduce energy consumption | Jointly optimize energy sav-

ings and load handling with-

out sacrificing QoS.

Table 4.2: Comparison of sleep mode mechanisms

To evaluate the effectiveness of small cell deployment, the simulation initially investigates
the impact of gradually increasing the number of small cells within the macro cell coverage
area. A uniform user distribution (with 250 users) is assumed throughout the simulation do-
main, and small cells are incrementally added while keeping user positions and throughput
demands fixed. This ensures a fair comparison between the HetNet scenario and the macro
cell-only configuration. At every iteration a new small cell is added in the coverage area of the
macro cell. The location of small cells is random. User association is governed by the Max-
SINR algorithm, whereby each user connects to the cell offering the highest SINR. Figure 4.1
shows the comparison of network energy efficiency for the macro cell-only scenario and the
HetNet scenario. Since the user distribution and user demands remain constant throughout
this simulation, the energy efficiency of the macro cell-only scenario remains constant. With
users uniformly distributed, each new small cell picks up only a few users. That gives little
throughput gain, but each small cell adds idle power and some interference. Thus, as more
small cells are added, more of them are lightly loaded and their baseline power dominates.
Hence, the total power rises faster than throughput and energy efficiency falls.
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Figure 4.1: Effect of adding small cells on Energy Efficiency of the network

As anticipated, the addition of small cells leads to an increase in UE associations with small
cells. However, the rise in small cell associations is less pronounced than expected due to the
uniform nature of user distribution. Despite this, even a modest increase in small cell usage sig-
nificantly impacts the networks EPB. Since the transmit power of macro cells is substantially
higher than that of small cells, offloading even a few users to small cells results in a noticeable
reduction in energy consumed per bit transmitted.
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Figure 4.2: Effect of adding Small Cells on the energy per bit values

Thus, densifying with uniform demand and no sleep control is energy inefficient. To understand
the distribution for which small cells improve the capacity and network energy efficiency, an
SINR contour plot is studied as explained in subsection 4.4.2.
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4.4.2. Visualization of cell dominance regions

To fully exploit the advantages of a HetNet deployment, it is crucial to understand the user
distribution patterns that can most efficiently utilize the available network resources. Among
the different factors that affect performance, signal strength indicators, especially the SINR,
play an important role because they directly influence key aspects like network load. For ex-
ample, higher SINR values correspond to lower resource block requirements to meet a given
throughput demand. Moreover, SINR can be calculated independently of specific application
requirements, making it a fundamental metric for determining the effective coverage regions of
macro and small cells.

Figure 4.3 shows a contour plot representing the difference in SINR values between the macro
cell and each of the small cells across the simulation area. The macro cell base station is
located at the center (shown as a red triangle), and small cell base stations are marked as blue
squares. The circular boundary corresponds to the macro cell’s coverage radius of 500 meters.

05 SINR Difference between Macro Cell and Small Cell in dB - Contour Plot s
) — 1

¥ Macro cell base station
B Small cell base station

0.3 0.4 0.5

Figure 4.3: Signal-to-Interference-plus-Noise Ratio contour plot

The figure shows the SINR advantage of the macro cell over the best small cell at each location
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(x,y) in dB, defined as
ASINR(xz,y) = SINRycps(x,y) — SINRscps(z,y)

The color scale on the right indicates the difference in SINR in dB scale between the macro cell
and the strongest small cell at each location. Thus, the color bar indicates the ASINR(z,y)
values in dB. The first contour is plotted at regions where the macro cell SINR is equal to the
strongest small cell SINR at that location. Hence the color bar begins from 0 and ranges till 15.
Although the very high ASTNR(x,y) regions are not used for small cell prioritization, they
are still plotted only to understand how SINR values are influenced by distance from macro
cell or neighboring small cells.

The first boundary in dark green color, labeled as ’0’ is the 0 dB locus where the macro
cell and the (plotted) small cell provide equal SINR. Inside this contour, SINR of small cell is
greater than that of the macro cell. Thus, inside the first contour, the ASTN R(x, y) is negative
since at those points, SINR of the small cell is greater than that of the macro cell (only the
boundaries are plotted, not the inner regions). Similarly, the contour labeled as ’3’ indicates
that the macro cell SINR is greater than the small cell SINR by 3dB. The region between the
’0’ and '3’ boundary indicates that 0 < SINRy;cps — SIN Rgcps < 3 dB. This interpretation
applies to all contours.

It can be observed from Figure 4.3 that the boundaries between macro cell and small cell
coverage regions form elliptical contours, rather than perfect circles. These contours indicate
locations where the SINR values from the macro cell and a nearby small cell are comparable.
The elliptical shape arises due to the asymmetric transmit power between macro and small
cells, with the macro cell having a significantly higher transmit power, resulting in a wider
SINR, dominance region for the macro cell.

Furthermore, it is evident that small cells located farther away from the macro cell exhibit
larger green regions-areas where the SINR difference between small cell and macro cell is low,
suggesting a better potential for offloading traffic. In contrast, small cells placed closer to the
macro cell or to each other show smaller effective SINR regions, primarily due to interference
from neighboring base stations and the overwhelming signal strength of the macro cell in close
proximity. These observations emphasize that interference and relative placement significantly
influence the effectiveness of small cell deployments and highlight the importance of strategic
planning in heterogeneous network design.

Thus, it becomes evident that to fully harness the benefits of a HetNet deployment, user dis-
tribution should be concentrated within regions offering higher SINR from small cells. These
regions lie closer to the small cell base stations and experience lower interference from the
macro cell. Such user concentration patterns are commonly observed in urban hotspot envi-
ronments, such as city centers, public transport hubs, and event venues, where large groups of
users tend to cluster within confined areas. This reinforces the need for strategic placement
of small cells in high-demand zones to maximize network performance and energy efficiency.
Also, it is more logical to place small cells closer to the edge of the macro cell coverage area.

This plot is particularly useful for visualizing relative coverage strength. Rather than ab-
solute SINR, it emphasizes where small cells provide competitive or superior signal quality
compared to the macro cell, guiding intelligent UE association strategies. Green regions sug-
gest effective coverage dominance by small cells, which helps offload users from the macro cell
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and can lead to improvements in both capacity and energy efficiency. Such analysis is crucial
for optimizing small cell placement and understanding the spatial influence of signal strength
on network performance.

4.4.3. Power and Energy Efficiency trade-offs in macro cell-only and HetNet deploy-
ments

Since the primary focus of this thesis is to minimize power consumption in 5G Radio Access
Networks (RAN), it is essential to compare the power consumption of a macro cell-only network
with that of a HetNet configuration. However, evaluating power consumption in isolation does
not provide a complete picture of network performance. A more comprehensive and meaningful
metric is energy efficiency, which accounts for both the power consumed and the throughput
delivered to users. This allows for an assessment that balances energy usage with the quality of
service, making EE a more suitable indicator for evaluating the effectiveness of energy-saving
mechanisms.

Power Consumption break-even point

Although small cells are deployed to enhance network capacity and energy efficiency, their
dense deployment can also lead to increased power consumption due to the additional base-
line power required to keep them active. Therefore, mechanisms to minimize small cell power
usage, such as sleep mode strategies and efficient user association algorithms, are critical. It
is important to note that small cells are not always power-efficient; when underutilized, they
may consume significant energy without contributing meaningfully to network capacity.

Figure 4.4 compares the total power consumption of three scenarios: macro cell-only, HetNet
with sleep mode enabled, and HetNet without sleep mode. The overall power consumption is
decomposed into four components: the baseline and transmit power of both the macro cell and
small cells. Excluding the macro cell baseline power (which remains constant), it is evident
that the macro cell-only scenario is often as power-efficient as, or even more efficient than, the
HetNet scenario under low load conditions. For example, at low user densities, the HetNet
without sleep mode consumes the highest power because the small cells remain active while
serving very few users, leading to unnecessary baseline power consumption.

In contrast, the HetNet scenario with sleep mode significantly reduces baseline power at low
loads by switching off underutilized small cells. As the load increases, more small cells are ac-
tivated, effectively offloading users from the macro cell. This not only improves the utilization
of small cell resources but also reduces the macro cell transmit power. For higher loads, the
power consumption of the macro cell-only scenario rises sharply because all users are served
by the macro cell. Consequently, a break-even point is observed: for the HetNet without sleep
mode, power efficiency surpasses the macro cell-only scenario around 50% load (approximately
80 UEs), while the HetNet with sleep mode achieves this break-even point earlier, at around
35% load (approximately 60 UEs).
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Power Breakdown: Macrocell-Only vs HetNet (Sleep and No Sleep)
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This trend is clearly depicted in Figure 4.5. The upper subplot shows the variation in total
network power consumption with respect to the number of UEs, while the lower subplot illus-
trates the number of small cell connections in HetNet scenarios with and without sleep mode.
It can be observed that the number of small cell connections in the HetNet scenario without
sleep mode is consistently higher, since all small cells remain active regardless of the load. In
contrast, the sleep mode-enabled scenario activates only the necessary small cells based on
network load. As the load increases, more small cells transition to the active state, leading to

a gradual increase in small cell connections.
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Energy Efficiency break-even point of macro cell-only and heterogeneous network scenario
Based on the contour plot explained in subsection 4.4.2, the user locations follow a clustered
hotspot pattern with most users concentrated near designated hotspot centers. The number
of UEs is gradually increased to understand the energy efficiency at increasing network loads.
The network contains 5 small cells. The energy efficiency versus offered load is plotted to
identify the break-even load at which activating small cells becomes worthwhile. Each UEs
target rate is 2 Mbps so that the load scales directly with the number of UEs and the break-
even point is easier to see. The sleep mode algorithm used in this is the fixed threshold sleep
mode algorithm. The findings from this graph shaped the development of the proposed sleep
mode algorithm.
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Figure 4.6: Energy Efficiency break-even point

The EE trend closely mirrors the network power consumption behavior. At lower loads, where
small cells remain largely underutilized, the energy efficiency of the HetNet scenario is compa-
rable to that of the macro cell-only setup. As the load increases and small cell resources are
more effectively utilized, EE improves significantly. Notably, the energy efficiency curve for
the macro cell-only scenario plateaus beyond a certain load level, indicating that the macro
cell reaches its capacity limit, leaving many UEs unserved. This highlights a critical advantage
of the HetNet configurationnot only does it enhance energy efficiency at higher loads, but it
also substantially increases overall network capacity. The break-even point for HetNet with
sleep mode is achieved at number of UEs equal to 60 (which corresponds to approximately
35% network load) whereas that for HetNet without sleep mode is achieved at 80 UEs (50%
network load) with respect to macro cell-only scenario. In order to find the break-even point
for one small cell, the same simulation with one small cell is performed. This is done to check
the load on small cell at which the small cell becomes more energy efficient than the macro
cell-only scenario. Figure 4.7 shows the plot of energy efficiency of HetNet with one small cell
(without sleep mode) versus the macro cell-only scenario.
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Figure 4.7: Energy Efficiency break-even point for only one small cell in HetNet scenario

In this case, the break-even point is achieved at approximately 50% load on the small cell (not
the total network load). Thus, from the results achieved from the two simulations, the load
target value, Lipreshold (as explained in subsection 3.4.2), is set to 40%.

Comparison of Energy per Bit for macro cell-only and HetNet scenario

As discussed earlier in subsection 4.4.1, the Energy Per Bit (EPB) decreases in the HetNet
scenario as the number of active small cell connections increases. In Figure 4.8, at low loads,
when all small cells remain in sleep mode, the EPB values are identical to those of the macro
cell-only scenario, as all UEs are served exclusively by the macro cell. However, as the network
load increases and more small cells transition to active mode, the EPB values begin to drop
due to shorter transmission distances and lower transmit power requirements.

Notably, the lowest EPB values are observed in the HetNet scenario without sleep mode,
since it allows the maximum number of UEs to associate with small cells, reducing reliance
on the macro cell. Nonetheless, as load increases and all small cells in the sleep mode-enabled
scenario eventually become active, the EPB values of both HetNet configurations converge.
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While EPB effectively reflects how efficiently the transmit power is used to deliver data, it
can be a somewhat misleading metric as it excludes other significant power components, such
as baseband processing and circuit power. Despite this limitation, EPB remains a valuable
indicator for highlighting the role of small cells in enhancing network performance and energy
efficiency. Based on this plot, the epb;p,eshoid value is set to 0.1uJ since the average energy per
bit values for HetNet scenarios vary from 0.05 to 0.1 uJ.
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4.4.4. User Equipment — Base Station association algorithm performance
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Figure 4.9: Performance comparison of User Equipment - Base Station association algorithms in terms of
Energy Efficiency and power consumption

Figure 4.9 compares the performance of four UE-BS association algorithms Max-SINR, CRE;,
Low-High Load Association (LHLA), and the proposed SINR-Throughput Aware Association
(STAA) in terms of energy efficiency (top plot) and power consumption (bottom plot) for
varying small cell load conditions. The load on every small cell is gradually increased from
10% to 150%. Loads greater than 100% indicate that the small cells are overloaded. The users
and their demands are set such that all of these users will not be able to be served by that
small cell. This is included to replicate realistic conditions in urban hotspots where a large
number of users are concentrated.

In the energy efficiency plot, all algorithms show an upward trend as the small cell load in-
creases, reflecting the higher utilization of energy-efficient small cells. However, the proposed
STAA consistently achieves the highest energy efficiency across the entire load range, with no-
ticeable gains at high loads. This improvement stems from STA As joint consideration of SINR
and throughput demands, which ensures high-load UEs are preferentially served by small cells,
reducing the average energy per bit.

The power consumption plot shows that while Max-SINR and CRE consume similar or higher
total power, particularly at high loads due to suboptimal small cell utilization. STAA main-
tains significantly lower power consumption throughout. The gap is most evident at high loads,
where STAAs targeted small cell activation strategy avoids unnecessary macro cell transmis-
sions, reducing overall energy draw. LHLA achieves slightly better efficiency than CRE at
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lower loads, but its performance plateaus as the load increases due to underutilization of small
cells in some scenarios.

Overall, these results confirm that while Max-SINR and CRE rely primarily on signal strength
or fixed bias, the proposed STAAs load- and throughput-aware association strategy achieves
both higher energy efficiency and lower power consumption, especially under heavy network
load conditions.

Moreover, the LHLA algorithm performs better than Max-SINR and CRE in terms of both EE
and power consumption for loads exceeding around 50%. However, its performance is worse
than both Max-SINR and CRE for loads lower than 50%. This suggests that inclusion of
throughput demands is necessary for improving the algorithm. However, aggressively allotting
low throughput users to macro cells consumes unneccessary power while providing throughput
similar to max-SINR or CRE. This is where the proposed STAA algorithm outperforms LHLA
approach as well as the traditional Max-SINR and CRE approaches.

4.4.5. Sleep mode mechanism algorithm performance

As explained in subsection 4.3.2; the proposed adaptive sleep mode algorithm is compared with
the fixed threshold sleep mode algorithm. The algorithms are compared in terms of power
consumption as well as EE. In this study, the Adaptive Threshold Sleep Mode Mechanism and
the Fixed Threshold Sleep Mode Mechanism are evaluated under two distinct traffic patterns:
bursty traffic, characterized by sudden and irregular spikes in demand, and steady traffic
growth, representing a gradual and sustained increase in network load. These traffic scenarios
are chosen to assess the robustness and adaptability of each mechanism in handling both highly
variable and progressively increasing loads. The algorithms are compared over a sequence of
timesteps where each timestep represents a point at which the throughput demands and in
turn, the small cell loads fluctuate.
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Figure 4.10: Performance comparison of sleep mode algorithms in terms of Energy Efficiency and power
consumption for bursty traffic

Figure 4.10 compares the performance of the adaptive threshold sleep mode mechanism with
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fixed threshold sleep mode mechanism over different small cell loads. As it can be seen from
both the subplots, the adaptive mechanism maintains a relatively stable performance through-
out the simulation, avoiding sharp fluctuations. In contrast, the fixed threshold mechanism
exhibits significant variability, with peaks at certain timesteps (timesteps 2 and 9) but also
noticeable drops (timesteps 4 and 6). While the fixed threshold approach occasionally achieves
higher efficiency than the adaptive mechanism, the gains are inconsistent.

The lower subplot represents the corresponding power consumption for both the algorithms.
The adaptive strategy generally consumes less power during most timesteps. Overall, the re-
sults highlight that the adaptive threshold mechanism provides more consistent performance
across varying network conditions whereas the fixed threshold algorithm may yield occasional
short-term gains but lacks stability. This consistency is particularly advantageous in maintain-
ing the required QoS while ensuring energy savings in dynamic network environments.

Table 4.3 presents the simulation results for ten consecutive timesteps, showing the load per-
centage experience by each small cell (SC1 to SC5) along with the corresponding number of
small cells placed in sleep mode and the number of transitions for both adaptive and fixed
threshold sleep mode mechanism. The table also includes cumulative totals for the number of
sleep instances and the overall power consumption for each approach.

The data points highlighted in yellow in Table 4.3 show the differences in the number of small
cell connections or the number of transitions for both the algorithms. The data points that are
not highlighted in the 'Proposed Adaptive Algorithm’ and 'Fixed Threshold Algorithm’ show
that both the algorithms respond in the exact same way to the loads at the corresponding
timesteps. The cells highlighted in green and red color show the results obtained in terms
of number of small cells in sleep mode, number of transitions of small cell modes, and the
network power consumption for proposed adaptive threshold sleep mode mechanism and fixed
threshold sleep mode mechanism respectively. Focusing on timestep 4, small cells SC3 and
SC4 are in sleep mode since the load is below 40%. However, for the adaptive mechanism,
SC1 is also in sleep mode since the decision depends not only on the current load but also on
the previous load value. For timestep 3, SC1 is in sleep mode. However, for SC1 to turn on
in timestep 4, its score computed as per Equation 3.4.1 must be greater than the threshold
which also includes the hysteresis margin. This condition is not satisfied due to which the SC1
remains in sleep mode even when the load is 50%. Consequently, SC5 is in on mode since it
was already on in timestep 3. Thus, the adaptive mechanism prolongs the state of a small cell
in order to avoid multiple switching of the small cell between on and sleep states. Although
the fixed threshold algorithm also incorporates a hysteresis margin of 20%, it performs more
transitions than the adaptive algorithm since the previous state is not taken into consideration.

Moreover, to make a fair comparison between the two algorithms, the total number of small
cells in sleep mode, the total number of transitions between steps and total network power
consumption for all timesteps is considered. Thus, the adaptive algorithm has more small cells
in sleep modes as well as performs less number of transitions between on and sleep states as
compared to the fixed threshold mechanism. This leads to a reduction in power consumption
of approximately 100 W.

Similar to bursty traffic, the same comparison between two algorithms is done for gradually
increasing small cell load which can be seen in Figure 4.11. The small cell load is gradually
increased from 10% to 90% at every timestep. At timestep 5, when the load on all small cells
is 50%, all small cells turn on from sleep mode for the fixed threshold algorithm, leading to a



4.4. Analysis of key findings 65

Proposed Fixed
Load Percentage Adaptive Threshold
Algorithm Algorithm
Timestep | SC | SC | SC | SC | SC N_sleep | N_switch | N_sleep | N_switch
1 2 3 4 5
1 10 | 10 | 10 | 10 | 10 5 5 5 )
2 90 | 90 | 90 | 90 | 90 0 5 0 5
3 10 | 50 | 40 | 70 | 40 1 1 1 1
4 50 | 90 | 30 | 10 | 50 3 2 2 3
5 90 | 20 | 80 | 10 | 30 3 4 3 3
6 10 | 60 | 10 | 50 | 50 4 3 2 5
7 80 | 10 | 70 | 50 | 30 3 3 2 4
8 10 | 60 | 10 | 40 | 40 4 3 3 3
9 10 | 30 | 40 | 50 | 60 4 2 3 2
10 90 | 70 | 10 | 90 | 30 2 4 2 3
Total 29 32
Total
PC 9407.7
(W)

N_ sleep represents number of small cells in sleep mode at each timestep

N_ switch represents number of transitions of small cells to and from sleep mode
at each timestep

Total PC represents the total power consumed by the network for all timesteps

Table 4.3: Results comparing adaptive and fixed threshold sleep mode algorithms in terms of load distribution,
small cell activity, transitions, and total power usage

sudden spike in power consumption due to inclusion of switching power. However, the adap-
tive algorithm gradually performs this transition leading to lower spikes in power consumption.
Thus at lower loads (till 40%) and higher loads (above 80%), the results produced by both algo-
rithms is the same. The total power consumption of the network for all timesteps for adaptive
algorithm is 9203.6 W and that for the fixed threshold algorithm is 9268.4 W. This difference
in power consumption is caused since the adaptive algorithm lets cells be in sleep mode for
longer times than the fixed threshold algorithm. This comparison reveals that the adaptive
algorithm outperforms fixed threshold algorithm in terms of both EE and power consumption
for bursty as well as steadily changing traffic.
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Figure 4.11: Performance comparison of sleep mode algorithms in terms of Energy Efficiency and power
consumption for gradually increasing traffic

4.5. Summary

This chapter reports the quantitative evaluation of the proposed sleep control and UE - BS
association against fixed-threshold and strongest-cell baselines across urban scenarios with re-
alistic traffic demands and mobility. It presents results for total power consumption, energy
efficiency, and energy per bit, alongside service quality indicators such as the number of UEs
meeting QoS targets, small cell utilization, and sleep/wake transitions.

The initial results show how the user distribution and small cell placements strongly affect the
performance of the network. User distribution and small cell placement are interdependent.
The spatial demand determines where capacity is needed and placement decides whether small
cells actually serve that demand. True small cell potential is unlocked when deployment and
activation aligns with persistent user hotspots.

The experiments integrating the proposed strategies show that coupling association with adap-
tive sleep control reduces network power and energy per bit in moderate-to-high load and
hotspot conditions while maintaining a higher count of QoS-satisfied UEs. Under very light
load, the gains are narrow as small-cell idle overheads dominate.



Conclusion

This chapter presents the thesis’ conclusions, limitations and recommendations for future re-
search. The answers to the research questions and sub-questions that are formulated in sec-
tion 1.4 are summarized in section 5.1 and the limitations are presented in section 5.2. This
chapter concludes with section 5.3 providing directions for future research.

5.1. Conclusions

This thesis addresses energy consumption in the 5G radio access network by focusing on how
small cells are deployed and adaptively managed in a heterogeneous network. A MATLAB sim-
ulation framework evaluates the impact of small-cell placement, user distribution, and adaptive
control on power use and energy efficiency. We study the theoretical motivations for small cells
as traffic offloaders from the macro layer, review power-consumption models and minimization
strategies, and then build a tractable system model that we can use to test algorithms under
realistic conditions.

Power models in the literature range from simple baseline-plus-load formulations to detailed
component models that separate baseband, RF, and power-amplifier contributions. Although
detailed component values exist in vendor data, they are not publicly available in a consistent
form, and embedding an exhaustive model into a system-level simulator adds complexity with
limited benefit for our questions. The thesis therefore uses a common core model for both
macro and small cells with a baseline and a load-dependent term, and we account explicitly for
the energy and delay overheads of transitions between sleep and active states. The topology of
the RAN still matters: where functions are placed determines what each base station processes,
which in turn influences its power.

The thesis adopts an urban multi-cell scenario because small cells are designed to increase
capacity, especially where user density and obstruction are high. Hotspots such as city cen-
ters and train stations dominate demand, so we include heterogeneous per-user throughput
demands and model pedestrian mobility. Unlike many prior studies that assume idealized
grids, no interference, homogeneous traffic, or static users, our evaluation uses a realistic topol-
ogy with interference, realistic demand distributions, mobility, and switching overheads. The
x-haul energy consumption is excluded on purpose: transport-network design and topology
optimization are a large topic of their own, so the transport network is treated as given and
outside our energy accounting.

67
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The results show that user distribution and small-cell placement are interdependent. When
small cells are placed where hotspots persist and are activated only when needed, they carry
more of the load, total power and energy per bit fall, and more users meet QoS. If placement
is misaligned with demand, small cells sit idle while the macro layer is overloaded, which raises
power and harms QoS. We also observe a clear break-even: at very light load, macro-only or
deep sleep is preferable because idle and switching costs dominate; as user density or per-user
demand rises, the advantage shifts to the heterogeneous network once the savings from shorter
links outweigh the fixed costs.

In city-like multi-cell networks, the proposed method cuts total power consumption and energy
per bit especially at medium and high loads and in hotspot regions. It does this by sending
heavy users to nearby small cells so that the transmit power drastically reduces and letting
idle small cells sleep until the loads increase.

At low loads, small cells are not worth waking since idle power consumption dominates the
network power consumption without increasing the network throughput. As user density or
throughput demand increases, serving bits on short links saves energy. Moreover, the proposed
sleep mode mechanism avoids waking up cells even after a certain threshold, until the QoS of
any user is compromised. Thus, it lets the small cell stay in sleep mode for longer time than
the fixed threshold mechanism, thereby saving more energy.

The proposed association algorithm, STAA, performs better than the max—SINR, CRE, and
LHLA algorithms in terms of energy efficiency as well as power consumption, without com-
promising QoS of any users. It still relies on the signal strength as the primary factor for
association. However, the manner in which the users are assigned to base stations ensures
efficient allocation of base station resources. Moreover, the proposed association algorithm has
execution time comparable to that of the max-SINR algorithm, which makes it deployable in
realistic scenarios.

In conclusion, the thesis has made contributions to...

5.2. Limitations of this thesis

The following are limitations of this thesis:

e One of the main limitations is that although the system model includes mobility of the
users, the mobility parameter is not involved in the decision making of the proposed sleep
mode mechanism or the association algorithm.

e The thesis does not incorporate association of a user to multiple base stations, which is
also known as multi-connectivity. Without dual or multi-connectivity, the system cannot
split traffic accross base stations for robustness, smoother handovers or energy-aware load
sharing.

e The data rates are computed from SINR-rate mapping. Beamforming, precoding and
other functionalities are not simulated. This simplifies evaluation but can over- or under-
estimate achievable rates.

e The x-haul network capacity, latency, topology, and energy are treated as given. The
x-haul network topology and technology could provide a more realistic understanding of
the power consumption and latency.

e Moreover, this thesis proposes that the decision-making take place in at the network side,
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precisely, at the TDO. However, the control signaling overheads caused due to this are
not considered.

5.3. Recommendations for future research

While the proposed strategies demonstrate promising energy savings in 5G HetNets, several
directions remain open for future exploration. The foremost extensions could be to create a
more realistic system model by incorporating the following:

1. Model 3D geometry by using BS/UE heights and true 3D distances (and 3D path
loss/blockage).

2. Use map-based deployment with obstacles (e.g., buildings) to place small cells.

3. Co-model the x-haul for capacity, latency, topology, and energy, and make sleep/associ-
ation transport-aware.

4. Add dual-/multi-connectivity (and carrier aggregation) to split traffic for robustness and
energy/QoS trade-offs.

5. Introduce spectrum assignment /reuse (e.g., graph/game-theoretic channel selection among
neighbors) to mitigate interference. One way to do this is using game theory considering
only a few neighboring cells. The cells compete with each other such that they select
different frequency bands to avoid interference.

6. Consider different mobility models to incorporate vehicles and pedestrians, with dwell-
time or handover-risk prediction in the control loop.

7. Include modulation schemes and transmit power control mechanisms.
Another promising direction is to develop machine-learningbased sleep/association controllers

on these more realistic, large-scale models and assess not only energy efficiency but also com-
putational cost, stability, and deployability in live networks.
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Pseudo Code of the proposed sleep mode
mechanism

Algorithm: Adaptive Sleep Mode Decision Function

1: function SLEEPMODE(state, num_ sc, load, epb, sinr_sc, unsupported_ ues, num__ue, wl,

NN N RN NN R NN R = o e e s e e

w2, pc__total, eb_real, ue_dr, mcload, enable_ sleep, previous_ load, previous_ power, pre-
vious__epb)

ideal 1<+ 0.4
tdeal__epb <+ 0.1
Convert epb and previous__epb to pJ/bit using num__ue
epb_max < 0.2
DPtarget < 0.6 - Prmaz + 0.4 - Prin
for : =1 to num__sc do
if |load[i] — previous_load]i]| > 0.1 then
if unsupported_ues > 0 or load[i] > ideal 1 or mcload > 0.7 then
wlli] + min(wl[i] + 0.1, 1.0)
end if
else if pc_total > previous_power or epb > previous_ _epb then
if epb > ideal__epb or pc_total > pigrger then
wl[i] < max(wl[i] — 0.1, 0.0)
end if
end if
w2[i] < 1 —wl]i]
score_threshold[i] < wl[i] - ideal 1+ w2li] - Pz
end for
Initialize score as a zero vector of length num__sc
if enable__sleep == 1 then
for : = 1 to num__sc do
scoreli] <= wl[i] - load[i] + w2[i] - F5==
if scoreli] < score_threshold[i] then
state[i] + 1 > Sleep mode
sinr__sc[:,i] < 0
else if scoreli] > 1.2 - score_threshold]i] then
state[i] « 0 > Active mode
end if

. pc__total

7
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30: end for
31: end if
32: return state, score, sinr__sc, score_threshold, wl, w2

33: end function
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Pseudo Code of the proposed sleep mode
mechanism

Algorithm 1 UE-BS Association with CRE and Throughput-Aware Scheduling

1: function NEWASSOCIATIONALGORITHM (num__ue, num_ sc, prbs_ required,

NN NN DNDN P === = =

27:
28:

ue_throughput_ demands, sinr_sc, sinr_mc, ue_enb_index, ue_dr, bw_prb, down-
link_subcarriers, mc_xpos, mc_ypos, SC_Xpos, SC_ypos, ue_xpos, ue_ypos, mc_R,
sc_R, prb_mc, prb_sc)

sc__connections < 0, mc__connections < 0, unsupported_ues < 0
association < 0, sinr__connected_ue < 0, bw__allotted < 0
available__prbs < [prb__sc,prb_mc], bias__factor < 4 > 6 dB CRE bias
low_sinr_ues < {u | sinr_mclu] < 1}
for v in low sinr_ wues do
(sinr, sc_idzx) < max(sinr__sclu] - bias__factor)
prb__demand < prbs_ required|u]
if sinr > sinr_mc[u] and available_prbs[sc_idxz] > prb__demand then
Assign u to sc_idx, update PRBs, SINR, throughput
else
unsupported__ues < unsupported_ues + 1
end if
end for
remaining _ues < all UEs \ low_ sinr_ues
Sort remaining _ues by ue__throughput__demands (desc.)
for u in remaining ues do
(sinr, sc_idzx) < max(sinr__sclu] - bias__factor)

ue__throughput__demands|u]
prb_demand <« [ bw__prblog, (1+sinr) -I

if sinr > sinr_mclu] and available_prbs[sc_idz] > prb_demand then
Assign u to sc_idx
else if available_prbsimc] > |
Assign u to macrocell
else
unsupported__ues < unsupported__ues + 1
end if
end for
return association, sc_connections, mc__connections, ue_ dr

ue__throughput_demands|u]
bw__prblogs (1+sinr_mclul) —‘ then

29: end function
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