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SUMMARY

Atrial fibrillation (AF) is a common age-related cardiac arrhythmia. AF is characterized
by rapid and irregular electrical activity of the heart leading to a higher risk of stroke and
heart failure. During AF, the upper chambers of the heart, called atria, experience chaotic
electrical wave propagation. However, despite the various mechanisms introduced in the lit-
erature, there is still an ongoing debate on a precise and consistent mechanism underlying
the initiation and perpetuation of AF. Some studies show that AF is rooted in impaired elec-
trical conduction and structural damage of atrial tissue, known as electropathology. Atrial
electrograms (EGMs) recorded directly from heart’s surface, provide an important diagnos-
tic tool to localize and quantify the degree of electropathology in the tissue. However, the
analysis of the electrograms is currently constrained by the lack of suitable methods that
can reveal the hidden electrophysiological parameters of the tissue. These parameters can
be used as local indication of electropathology in the tissue.

We believe that understanding AF and improving AF therapy starts with developing
a proper forward model that is accurate enough (from a physiological point of view) and
simultaneously simple enough to allow for subsequent parameter estimation. Therefore, the
main focus of this thesis is on developing a simplified forward model that can efficiently
explain the observed EGM based on AF relevant tissue parameters.

An initial step before performing any analysis on the data is to remove noise and arte-
facts. All atrial electrogram recordings suffer from strong far-field ventricular activities
(VA). Therefore, as the first step, we propose a new framework for removal of VA from
atrial electrograms, which is based on interpolation and subtraction followed by low-rank
and sparse matrix decomposition. The proposed framework is of low complexity, does not
require high resolution multi-channel recordings, or a calibration step for each individual
patient.

In the next step, we develop a simplified electrogram model. We represent the model in
a compact matrix form and show its linear dependence on the conductivity vector, enabling
the estimation of this parameter from the recorded electrograms. The results show that de-
spite the low resolution and all simplifying assumptions, the model can efficiently estimate
the conductivity map and regenerate realistic electrograms, especially during sinus rhythm.

In the next contribution of this dissertation, we propose a new approach for a better
estimation of local activation times for atrial mapping by reducing the spatial blurring effect
that is inherent to electrogram recordings using deconvolution. Employing sparsity based
regularization and first-order time derivatives in formulating the deconvolution problem,
improved performance of transmembrane current estimation is obtained.

In the final part, we focus on translating our findings from research to clinical applica-
tion. Therefore, we studied the effect of electrode size on electrogram properties including
the length of the block line observed on the resulting activation map, percentage of ob-
served low voltage areas, percentage of electrograms with low maximum steepness, and
the number of deflections in the recorded electrograms.

xi





SAMENVATTING

Atriumfibrilleren (AF, ook wel boezemfibrilleren genoemd) is een veelvoorkomende leeftijds-
gerelateerde hartritmestoornis. AF wordt gekarakteriseerd door snelle en onregelmatige
elektrische activiteit van het hart en geeft een hogere kans op een beroerte (herseninfarct)
en hartfalen. Tijdens AF vertonen de bovenste kamers van het hart (de atria) een chaotische
elektrische golfgeleiding. Verschillende mechanismen worden in de literatuur beschreven.
Desondanks is er nog steeds discussie over een nauwkeurig en consistent mechanisme dat
ten grondslag ligt aan de initiatie en bestendiging van AF. Sommige onderzoeken tonen
aan dat AF gebaseerd is op een verminderde elektrische geleiding en structurele schade aan
atriumweefsel, bekend als elektropathologie. Atriale elektrogrammen (EGM’s) die direct
op het hartoppervlak worden opgenomen, bieden een belangrijk diagnostisch hulpmiddel
om de mate van elektropathologie in het weefsel te bepalen en te lokaliseren. De analyse
van elektrogrammen wordt momenteel echter beperkt door een gebrek aan geschikte me-
thoden om de onderliggende elektrofysiologische parameters van het weefsel te schatten.
Deze parameters kunnen worden gebruikt als een lokale indicatie van de elektropathologie
van het weefsel.

Wij menen dat het begrijpen van AF en het verbeteren van AF-therapie begint bij het
ontwikkelen van een wiskundig voorwaarts model dat nauwkeurig genoeg is (vanuit fy-
siologisch oogpunt) en tegelijkertijd eenvoudig genoeg om een latere parameterschatting
mogelijk te maken. Daarom is de belangrijkste focus van dit proefschrift gericht op het
ontwikkelen van een vereenvoudigd voorwaarts model dat efficiënt de waargenomen EGM
kan verklaren op basis van AF-relevante weefselparameters.

Voordat een analyse van de gegevens wordt uitgevoerd, is een eerste stap het verwijde-
ren van ruis en artefacten. Alle atriale elektrogramregistraties hebben last van sterke verre-
veld ventriculaire activiteiten (VA). Daarom stellen we als eerste stap een nieuw raamwerk
voor voor het verwijderen van VA uit atriale elektrogrammen, gebaseerd op interpolatie en
aftrekking gevolgd door bepaalde lage-rangs matrixontbindingen. Het voorgestelde algo-
ritme heeft een lage complexiteit en heeft geen hoge-resolutie meerkanaalsopnames nodig,
of een kalibratiestap voor elke individuele patient.

In de volgende stap ontwikkelen we een vereenvoudigd elektrogrammodel. We gieten
het model in een compacte matrixvorm die de lineaire afhankelijkheid van de geleidbaar-
heidsvector zichtbaar maakt, waardoor de schatting van deze parameter uit de opgenomen
elektrogrammen mogelijk wordt. De resultaten laten zien dat ondanks de lage resolutie en
alle vereenvoudigingen het model efficiënt de geleidbaarheidskaart kan schatten en realisti-
sche elektrogrammen kan regenereren, vooral tijdens sinusritme.

Vervolgens richten we ons op een nieuwe en betere aanpak voor de schatting van de
lokale activeringstijden in EGM’s. Het probleem hierbij is dat bij het opnemen van elek-
trogrammen deze vervaagd worden door een convolutie met een (ruimtelijk) laagdoorlaat-
filter. Het onderliggende deconvolutieprobleem kan geformuleerd worden met behulp van
op sparsity gebaseerde regularisatie en eerste-orde tijdsafgeleiden, en hierdoor wordt een
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xiv SAMENVATTING

betere schatting van de transmembraanstroom verkregen.
In het laatste deel richten we ons op het vertalen van onze bevindingen naar klinische

toepassingen. Hiertoe hebben we het effect van de elektrodegrootte op elektrogrameigen-
schappen bestudeerd, waaronder de lengte van de blokkades waargenomen in de resulte-
rende activeringskaart, het percentage waargenomen gebieden met lage spanningen, het
percentage elektrogrammen met een lage maximale steilheid, en het aantal deflecties in de
opgenomen elektrogrammen.



1
INTRODUCTION

1.1. RESEARCH MOTIVATION
The heart is a muscular organ that pumps blood containing oxygen and nutrients throughout
the body in each cardiac cycle or heartbeat. The number of heartbeats per minute (i.e.,
the speed of the heartbeat) is called heart rate. A group of conditions known as cardiac
arrhythmia can affect the heart normal activity. As a result, the heart might beat faster,
slower or irregular. In general, cardiac arrhythmia refers to any abnormality in the heart rate
or heart rhythm and ranges from harmless disorders to potentially fatal problems, including
cardiac arrest and stroke.

A common age-related type of arrhythmia is atrial fibrillation (AF). AF originates from
the atria, the upper chambers of the heart, and causes irregular and often rapid heart beats.
Initially, patients experience short episodes of AF that come and go. However, due to the
progressive nature of AF, typically the frequency as well as the episode length increase,
which increases the chance of stroke and heart failure [1]. Patients with AF have five times
higher risk of strokes, especially ischemic stroke with higher death rate [2, 3].

In a normal heart, the electrical activity that causes the heart muscles to contract, is
initiated by the sinoatrial (SA) node. The generated activity then propagates throughout
the whole atria in regular pathways and then reaches the atrioventricular (AV) node. After
a short delay in the AV node, the electrical impulses propagate through the ventricles, the
lower heart chambers, and causes them to contract and to pump the blood throughout the
body [4]. However, during atrial fibrillation the regular cardiac conduction pathways are
disrupted and as a result the electrical wave breaks into several smaller waves that propagate
in highly irregular patterns. Once one of these waves reaches the AV node, it initiates
ventricular activation. This results in the irregular and often rapid heart beats observed in
AF patients [5].

Although many studies have investigated the pathological mechanisms that are respon-
sible for the initiation and the maintenance of AF [6–9], its main cause(s) are not yet com-
pletely discovered. Most common pathological mechanisms that can explain the initiation
and maintenance of AF to some extent are: ectopic foci, reentry, rotor, breakthroughs, and
multiple wavelets [6].

1
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2 1. INTRODUCTION

The inhomogeneity and complexity in defining the causes of AF consequently ham-
pers the success rate of atrial fibrillation treatments, ranging from medication to surgical
intervention.

Some studies have shown that the development and progression of AF is rooted in im-
paired electrical conduction and structural damage of atrial tissue, known as electropathol-
ogy [5, 10]. Gaining more understanding on the electropathology starts with studying elec-
trical wave propagation in the atrial tissue. The recording of atrial electrical activity can
be done through atrial mapping. Atrial mapping provides a strong diagnostic tool to inves-
tigate the wave propagation in the tissue. During this procedure, an array of electrodes is
positioned on the heart surface to record the electrical activity of the heart. The resulting
signal per electrode is called an electrogram. As shown in previous studies, electrograms
can help to localize and quantify the degree of electropathology and to stage AF [5, 10, 11].

However, the analysis of electrograms is currently constrained by the lack of suitable
methods that can reveal the hidden electrophysiological parameters of the tissue. These
parameters can be used as a local indication of electropathology in the tissue. Currently,
cardiologists mostly analyze the electrical propagation and electropathology based on lo-
cal activation times (LATs) and local conduction velocities (CVs), defined as the distance
traveled by the depolarization wavefront in a unit of time. However, the interpretation of
these propagations, due to the interaction of many parameters, is quite complex, needs ex-
pert intervention, and is time varying (from beat-to-beat during AF). The changes in CVs
may have multiple causes of both pathologic and non-pathologic origin; even pathological
causes might not be local and might originate from a different area in the atrium.

The electrical propagation in the tissue is governed by electrophysiological models and
is directly connected to its underlying parameters [12]. Many studies have successfully
employed these detailed models to show the effect of tissue properties like anisotropy and
heterogeneity on the resulting electrograms [13, 14]. However, using such models in the
inverse problem of extracting tissue properties from electrograms is nearly impossible due
to the complexity of these models and the large number of parameters that need to be
estimated.

Our hypothesis is that understanding atrial fibrillation and improving AF therapy starts
by developing a proper forward model that is accurate enough (from a physiological point
of view) and simultaneously simple enough to allow for subsequent parameter estimation.
The main focus of this study is, therefore, to develop a simplified forward model that can
efficiently explain the observed electrogram morphology based on the tissue properties,
and its application in estimating such parameters. These parameters, which are indicators
of electropathology, can potentially unravel the mechanisms underlying atrial fibrillation.

1.2. RESEARCH OBJECTIVES
The studies presented in this dissertation are done as part of "Atrial Fibrillation FInger-
Printing: Spotting bio-electrical markers to early recognize atrial fibrillation by the use of
a bottom-up approach (AFFIP)" project. This project, carried out by a multidisciplinary
team involving medical doctors, technical engineers and molecular biologists, thereby en-
ables integration of basic, translational and technological science into daily clinical practice.
The main goal of this project is to develop age and gender based, bio-electrical diagnostic
tests, the invasive and non-invasive AF Fingerprint, which consists of electrical atrial signal
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profiles and levels of atrial specific tissue/blood biomarkers. In daily clinical practice, this
novel diagnostic instrument can be used for early recognition or progression of AF by deter-
mination of the stage of the electropathology. As such, AF Fingerprinting enables optimal
AF treatment, thereby improving patients’ outcome.

As part of the AFFIP project, the studies in this dissertation are done towards our final
goal of early recognition or progression of AF. Many other studies, e.g. [6, 7, 9, 15, 16], also
focus on this goal. However, despite the improvements made and the various mechanisms
introduced, there is still an ongoing debate on a precise and consistent mechanism. Our
main focus, however, is to provide a better understanding of atrial fibrillation by providing
signal processing algorithms for analyzing wave propagation and electrogram generation in
the atrial tissue.

We believe that in order to provide a better understanding of AF, we need to start with
the electrophysiological models that govern the electrical wave propagation in the atrial
tissue. By analyzing these models and estimating their underlying parameters, we can iden-
tify and investigate electropathological mechanisms that disrupt normal wave propagation
in the tissue. However, application of the detailed and precise models that are already intro-
duced in literature, e.g. [13, 14], in inverse problems that aim to estimate AF relevant tissue
parameters, is nearly impossible. This is due to the large number of unknown parameters
and nonlinear dependencies of electrograms on these parameters.

To overcome these issues, we narrowed down the focus of this dissertation in order to
answer the following research questions:

Q1. Can we simplify the underlying electrophysiological models of electrograms to fa-
cilitate accurate tissue parameter estimation using well-known signal processing approaches?

Subsequently, we would like to know whether we can use such a simplified model for
estimation of underlying tissue properties. This has led to two more specific questions
focusing on two important parameters: conductivity and LATs, as:

Q2.1. Can we use these simplified models for the estimation of tissue conductivity?
Q2.2. Can we use these models for a better estimation of LAT in fractionated electro-

grams?

As the next step, we are interested in translating our findings from research to clinical
application. Therefore, we pose the following question that is of high importance in clinical
applications:

Q3. Can we use the electrogram model to simulate clinical electrograms recorded by
different electrode sizes and use them to analyze the effect of the electrode size on electro-
gram properties?

Although providing an answer to these questions will not bring us to our final goal of
early recognition or progression of AF, they are the initial steps towards our goal.

1.3. DISSERTATION OUTLINE AND CONTRIBUTION
In this section, we present the outline of this dissertation and summarize its contributions
per chapter. A summary of these contributions is also shown in Fig. 1.1. To answer the re-
search questions discussed in Section 1.2, we start with EGM recordings and move towards
our final goal, which is analysing electropathology as a mechanism underlying AF.
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Figure 1.1: Analysing EGM recordings for studying electropathological mechanisms underlying atrial
fibrillation, based on the contributions of this dissertation.

1.3.1. CHAPTER 2: BACKGROUND AND FUNDAMENTALS
In this chapter we provide the background necessary for reading this dissertation. We start
with a brief review of the heart physiology and anatomy, its electrical conduction system,
and diagnostic tools to measure its electrical activity. Next, we introduce atrial fibrillation,
the pathological mechanisms underlying atrial fibrillation, and its treatments. Furthermore,
we discuss the atrial mapping and electrogram recording procedure in clinical setting. We
provide a review of the preprocessing approaches performed on electrograms and finally
provide a review of the electrophysiological models for action potential propagation and
electrogram arrays.

1.3.2. CHAPTER 3: VENTRICULAR ACTIVITY REMOVAL
In this chapter, we develop a framework for removing ventricular activities (VAs) from the
recorded unipolar electrogram while preserving the components with atrial activity (AA).
We first remove the VA-containing segments and interpolates the remaining samples. This
will also partly remove the atrial components that overlap with VA signals, e.g., during
atrial fibrillation. To reconstruct the AA components, we estimate them from the removed
VA-containing segments based on a low-rank and sparse matrix decomposition and add
them back to the electrograms. The presented framework is of rather low complexity, pre-
serves AA components, and requires only a single EGM recording. Instrumental compari-
son to template matching and subtraction and independent component analysis shows that
the proposed approach leads to smoother results with better similarity to the true atrial sig-
nal. Although this does not answer any of our research questions, it is a necessary step
before performing any analysis on the data.

1.3.3. CHAPTER 4: A COMPACT MATRIX MODEL FOR ATRIAL ELECTRO-
GRAMS FOR TISSUE CONDUCTIVITY ESTIMATION

To answer research questions Q1 and Q2.1, we first develop in this chapter a simple but ef-
fective forward model to replace the computationally intensive reaction-diffusion equations
that we will discuss in Chapter 4 governing the electrical propagation in tissue. Using this
simplified model, we present a compact matrix model for electrograms including conduc-
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tivity. Subsequently, we exploit the simplicity of the compact model to solve the ill-posed
inverse problem of estimating tissue conductivity. The algorithm is demonstrated on simu-
lated data as well as on clinically recorded data. The results show that the model allows to
efficiently estimate the conductivity map. In addition, based on the estimated conductivity,
realistic electrograms (limited to 2D tissue) can be regenerated demonstrating the validity
of the model.

1.3.4. CHAPTER 5: IMPROVED LOCAL ACTIVATION TIME ANNOTATION
OF FRACTIONATED ATRIAL ELECTROGRAMS FOR ATRIAL MAP-
PING

To answer research question Q2.2, we exploit in this chapter multi-electrode electrogram
recordings to amplify the local activity in each electrogram and subsequently improve the
annotation of LATs. An electrogram array can be modeled as a spatial convolution of per
cell transmembrane currents with an appropriate distance kernel, which depends on the
cells’ distances to the electrodes. By deconvolving the effect of the distance kernel from
the electrogram array, we undo the blurring and estimate the underlying transmembrane
currents as our desired local activities. However, deconvolution problems are typically
highly ill-posed and result in unstable solutions. To overcome this issue, we propose to
use a regularization term that exploits the sparsity of the first-order time derivative of the
transmembrane currents. We perform experiments on simulated two-dimensional tissues,
as well as clinically recorded electrograms during paroxysmal atrial fibrillation. The results
show that the proposed approach for deconvolution can improve the annotation of the true
LAT in the electrograms. We also discuss, in summary, the required electrode array speci-
fications for an appropriate recording and subsequent deconvolution. By ignoring small but
local deflections, algorithms based on steepest descent are prone to generate smoother acti-
vation maps. However, by exploiting multi-electrode recordings, we can efficiently amplify
small but local deflections and reveal new details in the activation maps that were previously
missed.

1.3.5. CHAPTER 6: ANALYZING THE EFFECT OF ELECTRODE SIZE ON
ELECTROGRAM AND ACTIVATION MAP PROPERTIES

To answer research question Q3, we use in this chapter, the electrode transfer function to
model and analyze the effect of electrode size on the properties of measured electrograms.
To do so, we use both simulated as well as clinical data. To simulate electrogram arrays we
use a two-dimensional (2D) electrogram model as well as an action potential propagation
model. For clinical data, however, we first estimate the transmembrane current for a higher
resolution 2D modeled cell grid and later use these values to model electrograms with dif-
ferent electrode sizes. We simulate electrogram arrays for 2D tissues with 3 different levels
of heterogeneity in the conduction and stimulation pattern to model the inhomogeneous
wave propagation observed during atrial fibrillation. Five measures are used to characterize
the properties of the simulated electrogram arrays of different electrode sizes. The results
show that increasing the electrode size increases the error in LAT estimation and decreases
the estimated length of conduction block lines. Moreover, visual inspection also shows
that the activation maps generated by larger electrodes are more homogeneous with a lower
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number of observed wavelets. The increase in electrode size also increases the low voltage
areas in the tissue while decreasing the maximum steepness of the atrial activities and the
number of detected deflections. The effect is more pronounced for tissue with higher level
of heterogeneities in the conduction pattern. Similar conclusions hold for the measures per-
formed on clinical data. The electrode size affects the properties of recorded electrogram
arrays, which can subsequently complicate our understanding of atrial fibrillation. This
needs to be considered while performing any analysis on the electrograms or comparing
the results of different electrogram arrays.

1.3.6. CHAPTER 7: CONCLUSION
In this chapter, we conclude this dissertation by summarizing our contributions and dis-
cussing some practical open questions and our suggested approach for addressing these
challenges.
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2
BACKGROUND AND

FUNDAMENTALS

2.1. THE HEART AND ITS PHYSIOLOGY
2.1.1. THE HEART
The heart pumps blood containing oxygen and nutrients throughout the body. It is a mus-
cular organ located between the lungs behind and slightly to the left of the breastbone. The
heart consists of four chambers, two upper chambers, the atria, and two lower chambers,
the ventricles shown in Fig. 2.1 (a). With these four chambers, the heart pumps blood via
a system of blood vessels, called the circulatory system, in successive cardiac cycles. The
right and left chambers of the heart are separated. The right chambers pump the oxygen-
poor blood to the lungs and the left chambers pump the oxygen-rich blood to the body.
Each cardiac cycle starts with the atria (upper chambers) and the ventricles (lower cham-
bers) being in a relaxed state. In this state the atria get refilled with blood. This is followed
by a contraction in the atrial muscles that ejects the blood into the ventricles. Ventricular
contraction occurs with a short delay afterwards and pumps the blood through the body.
This cycle lasts on average 0.8 seconds in a human heart [4].

2.1.2. CARDIAC CONDUCTION SYSTEM
The cardiac cycle occurs as a result of the generation and conduction of a series of electrical
impulses by the cardiac conduction system as shown in Fig. 2.1 (b). These electrical im-
pulses are generated by a group of cells at the sinoatrial (SA) node (anatomical pacemaker)
located in the wall of the right atrium. Theses impulses travel to the left atrium through
Bachman’s bundle (BB) and to the atrioventricular (AV) node via specific electrical path-
ways (shown by the red arrows in Fig. 2.1). The propagation of these electrical impulses
causes the atrial muscles to contract. The impulses are then delayed at the AV node for
about a tenth of a second. This brief delay is enough to ensure that the blood is completely
ejected from the atria into the ventricles. The electrical signal then propagates through the
ventricles, which causes them to contract next [19].

9
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Figure 2.1: (A) The diagram of the heart as well as (B) the cardiac conduction system . The red arrows shows the
direction of electrical wave propagation in normal heart (adapted from [17] and [18]).

The electrical activity in the heart arises from the pacemaker cells at the SA node that
can automatically generate an action potential (AP). An AP is a sequence of changes in the
cell membrane potential from its resting potential (around -90mV). It starts with a rapid
rise in the potential membrane (depolarization phase) followed by a plateau and a fall in
the potential membrane (repolarization phase). The depolarization phase of the pacemaker
cells initiates the AP generation in the neighboring cardiomyocytes, the cells that make up
the heart muscles. This leads to the contraction of these cells as well as the initiation of the
AP in their neighboring cells. This results in the propagation of the depolarization wave
through the whole heart. Fig. 2.2 (a) shows different APs generated by different type of
heart cells [19].

Fig. 2.2 (b) shows a zoomed version of an example atrial AP. There are two important
parameters that characterize an AP and that are of higher importance in our study. These are
the activation time and the refractory period. The activation time of a cell is annotated as
the time when the cell’s potential reaches a threshold value of -40mV in the depolarization
phase of its AP. This ensures that the AP is triggered in the cell, otherwise no action poten-
tial will be fired by the cell. The refractory period is the minimum period that is required
for a cardiac cell before another AP can be fired. This is around 250 ms, which is a bit
shorter than the duration of an AP and helps to protect the heart from generating very rapid
heart beats [19].

2.1.3. MEASURING THE HEART ELECTRICAL ACTIVITY
Measuring the electrical activity of the heart provides important information about the func-
tioning of the heart. The most common way for recording this activity is by placing elec-
trodes on a patient’s body surface. The measured electrical activity of the heart over time at
the electrode location, is called an electrocardiogram (ECG or EKG) which is actually the
spatial average activity of all heart cells. Fig. 2.2 (a) shows an example ECG of a normal
heart rhythm, also called sinus rhythm (SR). As can be seen, it consists of three different
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Figure 2.2: (A) Different APs generated by different cardiac cells during one complete cardiac cycle as well as
the resulting ECG recorded from the body surface (adapted from [20]). (B) The zoomed version a standard atrial

action potential.

waves. The P wave, which is associated with atrial depolarization, the QRS complex, which
is associated with ventricular depolarization, and the T wave, which is associated with ven-
tricular repolarization [19]. The morphology and the timing of these waves with respect to
each other provides important diagnostic tools for detection and analysis of many types of
cardiac disorders.

More detailed information about the electrical activity of the heart is obtained by plac-
ing the electrodes directly on the heart tissue instead of on the body surface. This can be
done during open chest or open heart surgeries, or by using a catheter inside the heart.
The measured signals are called atrial or ventricular electrograms (EGMs) [21]. The sig-
nals that are recorded from the outer layer of the heart surface are called epicardial EGMs,
while the signals that are recorded from the inner layer of the heart surface are called endo-
cardial EGMs. Compared to body surface measurements, electrograms provide more local
and higher spatial resolution recordings of the depolarization wave propagation through the
heart tissue and are less affected by different structures that surround the heart. Fig. 2.3 (a)
shows an example of a normal unipolar EGM, which records the difference between the
electrical activity at one electrode and a reference electrode. As can be seen, it is composed
of a positive spike followed by a sharp negative deflection. As the depolarization wave
moves towards the electrode, it measures the positive potentials, when the depolarization
wave is exactly under the electrode it measure a zero potential. This coincides with the ac-
tivation time of the cells that are under the electrode and is annotated as the local activation
time (LAT) of the electrogram. As the wave moves away from the electrode, it measures a
negative potential [21].

Another type of electrogram recording, used more often in practice, is the bipolar elec-
trogram. Bipolar electrograms are computed by subtracting two closely spaced unipolar
electrograms. Fig. 2.3 (b) shows an example of a normal unipolar and a bipolar electro-
gram. Due to the subtraction (which acts as high-pass spatial filtering), bipolar EGMs are
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Figure 2.3: (A) generation of a normal unipolar EGMs. (B) An example of simultaneously recorded unipolar and
bipolar EGM.

less affected by artifacts and nonlocal activities and provide a sharper representation (higher
frequency information) of the depolarization wave propagation. This makes them more
favorable in practice. However, these recordings suffer from serious drawbacks includ-
ing sensitivity to propagation direction and speed, inter-electrode distances, and potential
strength distribution. This is because of the loss of information as a result of the subtraction.

In this study, we are focusing on developing a simplified model for an array of electro-
grams and will use the model in more advanced signal processing algorithms (than only the
subtraction in the bipolar case) to extract useful information from the array of electrograms.
Therefore, we will only use unipolar electrograms without the subtraction performed on
them.

2.2. ATRIAL FIBRILLATION
2.2.1. WHAT IS ATRIAL FIBRILLATION?
The electrical abnormalities that may be present in the heart activity are called arrhythmia.
Some arrhythmias are not directly life threatening, but can cause many different problems
to the patient. Among these is atrial fibrillation (AF), which is caused by chaotic and
irregular depolarization of the atrial tissue. This could lead to irregular and rapid beats in
the ventricles too. The cause of these chaotic and irregular depolarization waves is not yet
well-known. However, AF is one of the most common age-related cardiac arrhythmia. In
Europe, 1–3% of the population (more specifically the elderly) suffers from AF [2]. Patients
may initially experience spontaneous short episodes of AF that come and go, which is not
dangerous by itself. However, in some cases the episodes get longer, happen more often
and may become continuous over time. Accordingly, AF is classified in four categories:
paroxysmal, persistent, long-standing persistent, and permanent AF. The progression of
AF can lead to blood clots, stroke, heart failure and other heart-related complications and
requires treatment [3].

Although the main cause of AF is not known, it is more common among elderly and
people with some pre-existing conditions that cause abnormalities or damage to the heart
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structure. Common conditions are high blood pressure, a previous heart attack, abnormal
heart valves, and congenital heart diseases. However, sometimes none of the conditions
that can be related to AF are observed in a patient, a condition called lone atrial fibrillation
[22].

An ECG test is the most common diagnostic tool to confirm whether a patient suffers
from AF. An example of an ECG during SR and AF is shown in Fig. 2.4. As can be seen, AF
can be characterized by irregular heart beats as indicated from irregular intervals between
successive QRS complexes and the absence of P waves that happens due to unsynchronized
atrial electrical activities [15].

Figure 2.4: recorded ECG during atrial fibrillation (top) and sinus rhythm (bottom). The purple arrow indicates a
P wave, which is lost in atrial fibrillation [23].

2.2.2. PATHOPHYSIOLOGICAL MECHANISMS UNDERLYING AF
Many studies have been performed to explain the initiation and maintenance of AF in atrial
tissue. Despite the various mechanisms introduced in the literature by different studies,
there is still an ongoing debate on a precise and consistent mechanism. Most common
pathological mechanisms that can explain the initiation and maintenance of AF to some
extent are: ectopic foci, reentry, rotor, breakthroughs, and multiple wavelets [6].

Some studies have shown that AF initiation and sustenance can be correlated to spon-
taneously firing pulmonary vein (PV) and non-PV foci that interfere with sinus activity
(Fig. 2.5(a)) [6, 9]. Reentry happens due to a circuit within the myocardium, where the
activation wave propagates in a circular path and fails to die out. This can for example
happen around a scar in the tissue. Rotors, on the other hand, are regions of functional
reentry, which drive AF [9]. Since rotors are not related to anatomical structures, they can
move through the tissue (Fig. 2.5(b)). Endo-epicardial breakthroughs that happen due to
asynchronous wave propagation in endocardial and epicardial surface can also lead to atrial
fibrillation (Fig. 2.5(c)) [8]. Another mechanism that mainly contributes to maintenance of
AF is the multiple wavelet mechanism. As the propagating wave moves through the tissue,
it may break into multiple wavelets when going through an anatomical barrier like a vein
or a scarred tissue. The resulting wavelets may spread out in different directions and with
different velocities and may also break into other wavelets. This can result in the chaotic
and irregular wave propagation observed during AF (Fig. 2.5(d)) [7].

Note that the previously mentioned mechanisms are not always contradictory to each
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Figure 2.5: Different AF mechanisms.

other but can be complementary on providing a comprehensive description of the overall
mechanism underlying AF. Moreover, differences in measurement methods and equipment,
and the analysis performed on the data can result in different interpretation of the same
process. For example, a breakthrough can be mistaken as a reentry due to lack of mea-
surements from underlying tissue. Regardless of the mechanism underlying AF, studies
have shown that its development and progression is, to a large extent, rooted in impaired
electrical conduction and structural damage of atrial tissue, known as electropathology.
Therefore, localizing and quantifying the degree of electropathology in the atrial tissue can
help to provide a better understanding of atrial fibrillation.

2.2.3. AF TREATMENT: ABLATION
The earlier AF is diagnosed, the higher the chance of a successful treatment will be. These
treatments can be categorized in three groups: (i) medication to prevent blood clots or to
restore normal heart rate and rhythm, (ii) non-surgical procedures including electrical car-
dioversion, radiofrequency catheter ablation, (iii) surgical procedures including pacemakers
and the open-heart maze procedure.

Ablation therapy is a minimally invasive treatment for atrial fibrillation and is performed
using catheters that are guided through the blood vessels into the heart. The catheter can
also be used for recording endocardial electrograms that will be used for localization of
areas in the tissue that may be initiating AF or may be creating irregular electrical pathways.
Next, the catheter is used to scar or destroy these areas and to disrupt AF. If the therapy is
successful, a normal heart rhythm will be restored. However, in some cases AF may return.

There are four common types of catheter ablation including: (i) pulmonary veins isola-
tion ablation, which scars the tissue where the pulmonary veins are connected to isolate AF
triggers [24]. This type of ablation is also performed together with other types of ablations.
(ii) atrioventricular (AV) node ablation, that prevents the irregular atrial signals to propagate
to the ventricles [25]; (iii) linear atrial ablation, ablation that creates long lines of scarred
tissue in the atria [26], and (iv) electrogram guided ablation, where the vulnerable tissue
that is mostly correlated with complex fractionated electrograms or low voltage areas are
first identified using the recorded electrograms and then ablated [27].

Despite the progress in developing ablation therapies, the overall success rate is yet lim-
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ited. This is mainly due to the lack of understanding about the mechanisms initiating and
maintaining AF as discussed in Section 2.2.2. This also holds for other types of AF treat-
ment. Therefore, to improve the success rate of AF treatment procedures, a comprehensive
understanding of the mechanisms underlying AF is necessary.

2.3. ATRIAL MAPPING AND ELECTROGRAM RECORDING
Although ECG recordings are non-invasive, they provide rather limited information on
what is actually going on in the atria. The large distance to the heart results in a spa-
tially smoothed signal. On the other hand, recording the electrical activity of the atria using
closely spaced electrodes directly positioned on the atria, known as atrial mapping, can
help to improve our understanding of atrial fibrillation [5]. This provides a spatio-temporal
recording of the wavefront propagation in the tissue, which can potentially be used for the
localization of patient specific substrates that initiate or perpetuate AF. They can also help
to localize and quantify the degree of electropathology and to stage AF in patients.

During the mapping procedure used in this study, epicardial electrograms were recorded
using a 192-unipolar flexible electrode array (8×24) with 2 mm inter-electrode distance and
0.45mm electrode diameter. The electrogram array and some sample electrogram record-
ings are shown in Fig. 2.6 A. The electrode array is sequentially positioned on 9 locations
using the anatomical borders, visually by the surgeon (shown in Fig. 2.6 B), to cover the
whole right and left atria including Bachman’s bundle (shown in Fig. 2.6 C).

The array records 5 seconds of sinus rhythm (SR) signals and 10 seconds of induced
atrial fibrillation. AF is induced by fixed rate pacing at the right atrial free wall, which
starts at a rate of 200 beats per minute (bpm). If an AF induction attempt is not successful
after three burst attempts, the rate is increased by 50 bpm, up to maximal 400 bpm until
AF occurs. The acquired signals are amplified, filtered (bandwidth 0.5 to 400 Hz), sampled
(1 kHz), analogue to digital converted (16 bits) and recorded on a hard disk.

2.4. EGM PRE-PROCESSING AND ANALYSIS
2.4.1. EGM PREPROCESSING
As mentioned in Section 2.3, our electrograms are band-pass filtered (bandwidth 0.5 to
400 Hz) and notch filtered at 50 Hz (to cancel out power-line interference) by the recording
device. However, we still need to perform noise and artifact removal before performing any
analysis on the data. Three important preprocessing steps for atrial electrograms include:
(i) high-pass filtering for baseline wander removing, (ii) low-pass filtering for removing
high frequency noise, and (iii) removing strong far-field ventricular artifacts.

Baseline wander is a low frequency noise mostly caused by patient’s movement and
respiration. On the other hand, high frequency noise mostly includes additive white Gaus-
sian noise. To remove these noises we perform low-pass and high-pass filtering of EGMs
using a wavelet decomposition. Each electrogram is first decomposed using order N=10
(length of 2N=20) Daubechies wavelet at level 9. For high-pass filtering the approximation
coefficients at level 9 having the frequency range of 0 to 500/512=0.98 Hz are removed
from the signal. Next, a standard wavelet shrinkage denoising method is used for low-pass
filtering [28]. Fig. 2.7 shows an example of two EGMs, one recorded during SR and one
recorded during AF, before and after high-pass and low-pass filtering. Note that throughout
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Figure 2.6: Electrode array and some sample electrogram recordings (A), The positioning of the electrogram on
atria during open chest surgeries by the surgeon (B), and the 9 successive locations where the electrode array is

positioned (C) [5].

this study, we visually selected clean electrograms and avoided noisy recordings. There-
fore this simple filtering approach will suffice for our application and we did not focus on
extensive filtering approaches.

Electrograms also suffer from a strong artifact caused by far-field ventricular activities
(VAs) as a result of ventricular depolarization. Although during SR, atrial activity (AA) and
VA are separated in time due to the brief delay at the AV node, they might overlap during
AF. As an example, Fig. 2.7 shows the onset and offset of VAs denoted by red vertical
lines. When overlapping with AAs, these strong VAs distort the morphology of the pure
AAs, complicate their further analysis, and affect their final interpretation. Therefore, a step
required before any further processing of the recorded electrograms is to estimate the pure
atrial activities by removing the VAs. In this dissertation, we developed a new framework
for removing VA which is based on a sparse and low rank matrix decomposition. The
approach is discussed in detail in Chapter 3.

2.4.2. ELECTROGRAM ANALYSIS

In clinical practice, various measures are estimated from a single electrogram or an array
of electrograms to characterize its properties, investigate wave propagation in the tissue, or
study AF and electropathology. In this section, we introduce some of the common measures
that are used in our study.
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Figure 2.7: Two electrograms, recorded during SR and AF respectively, before and after high-pass and low-pass
filtering. Segments containing the onset and offset of a VA are denoted by red vertical lines.

Local Activation Time (LAT) In a normal electrogram, the activation time of the cells
that are under the electrode coincides with the point having the steepest descent in a single
atrial beat [29]. Fig. 2.8 shows and example of a normal electrogram with its LAT.

Activation map (AM) For an array of electrograms, the activation map is an image of
similar size as the array, where each pixel color corresponds to a value that equals the
LAT of its corresponding electrode on the array in each atrial beat 1. The LATs are color
coded from red (small values) to purple (larger values) to better visualize wave propagation
through the array. Fig. 2.8 shows two examples of AMs recorded during SR and AF. The
black arrows show the direction of the depolarization wave propagation.

Slow conduction zone and conduction block If the absolute difference between the LAT
of two neighboring cells is larger than a defined threshold value, the border between them
will be considered as a slow conduction zone or a conduction block. The threshold values
differ between studies and are mostly defined with respect to application and inter-electrode
distances. Thick lines in activation maps shown in Fig. 2.8, denote the estimated conduction
blocks.

Deflections and fractionation Deflections are the steep descents in an electrogram that
have an average negative slope smaller than a defined threshold value. A normal electro-
gram has one main deflection. However, due to inhomogeneous activations, remote activa-
tions, and/or artifacts, electrograms may have multiple deflections [31] (shown in Fig. 2.9).
Such an electrogram is called a fractionated electrogram. Fig. 2.10 shows an example of a

1By atrial beat we mean a time window in which all the cells, in the recording area, get activated once. The time
window is selected such that all the cells are at their resting potentials in the being, get activated once and go
back again to their resting potential at the end.
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Figure 2.8: a normal electrogram with its local activation time (a). Activation maps recorded during SR and AF,
(a) and (b) respectively. The black arrows show the direction of depolarization waves and thick lines in the AMs

show the conduction blocks [30].

fractionated electrogram and some of its parameters. Fractionated electrograms are of high
importance in studying AF because their pathological causes can help to study the initiation
and maintenance of AF. Fractionated electrograms are also observed in normal hearts and
during SR, however their occurrence and complexity increase during AF.

Figure 2.9: Causes of fractionation [31].

Low voltage electrograms If the peak-to-peak amplitude of an electrogram (shown in
Fig. 2.10) is smaller than a defined threshold value, the electrogram is considered as a low
voltage electrogram and the recording site is indicated as a low voltage area in the tissue.
Low voltage electrograms do not show a distinct steep deflection and are mostly associated
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Figure 2.10: An example of a fractionated electrogram and its different measures.

with complex fractionated (atrial) electrograms (CFAE) with no distinct resting zero poten-
tial in between atrial beats [32]. Fig. 2.11 (B) shows an example of low voltage fractionated
electrogram together with a normal electrogram for comparison. These locations are also
of high importance in studying electropathology and atrial fibrillation, and also as targets
for EGM guided ablation therapies as locations that help to maintain AF (see ).

Figure 2.11: (A) An example of a normal electrogram, (B) An example of low voltage fractionated electogram.
The red vertical dashed lines show the start and end of ventricular activity.

2.5. AP AND EGM MODELS
2.5.1. ACTION POTENTIAL MODEL
To understand what is actually being measured by an electrogram, we first need to intro-
duce the electrophysiological model of the action potential. The cell membrane, separating
intracellular and extracellular spaces, can be modelled as a capacitor connected in parallel
to variable resistances and voltage sources which represent the ionic channels and driving
forces [33]. Fig. 2.12 shows the simplified equivalent electrical circuit of the cell model,
where V (t ) is the transmembrane potential at time instant t , C ≈ 1µFcm−2 is the total mem-
brane capacitance, Ist is the external stimulus current, and Iion is the total ionic current. The
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total ionic current includes all ionic and pump currents through the membrane and is cal-
culated based on the Courtemanche model in [33]. The capacitive current through the cell
membrane, which is equal to C∂V /∂t , is given by

C
∂V (t )

∂t
= Ist(t )− Iion(t ,V ). (2.1)

Figure 2.12: Equivalent electrical circuit of the action potential model.

2.5.2. ACTION POTENTIAL PROPAGATION MODEL
To develop the action potential model in Eq. (2.1) to include the flow of current and action
potential in the atrial tissue, we use the generalized cable theory or the mono-domain ap-
proach [13]. In this approach the tissue is discretized on a two (or three) dimensional grid
and the electrical propagation (from cell-to-cell) is governed by a reaction-diffusion equa-
tion. Let V (x, t ) be the transmembrane potential of the cell at location x and time instant
t , then the capacitive current through the cell membrane is given by the reaction-diffusion
equation which models the membrane current as a function of three currents,

C
∂V (x, t )

∂t
= Itm(x, t )+ Ist(x, t )− Iion(x, t ,V ), (2.2)

where Itm(x, t ) is the cell transmembrane current per unit area that accounts for the spatial
evolution (diffusion) of the transmembrane potential. It is given by

Itm(x, t ) = S−1
v ∇· (Σ(x)∇ V (x, t )), (2.3)

where Sv = 0.24µm−1 is the cellular surface to volume ratio, ∇ is the gradient operator, and
∇· is the divergence operator. Σ(x) = [σxx ,σx y ;σy x ,σy y ] is a location-dependent conductiv-
ity tensor containing the tissue’s electrical conductivity at location x, in different directions
(see Section 4.2.3 for more details). Eq. (2.2) can be discretized and solved with no flux
boundary conditions (sealed ends by setting ∂V /∂x = 0 at boundaries), using various ap-
proaches including a finite difference method (FDM) for regular rectangular meshes, or
using a finite element method (FEM) or finite volume method (FVM) for irregular triangu-
lar meshes and curved surfaces.
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2.5.3. ELECTROGRAM MODEL
An electrogram is a record of changes in the electrical potential of the (many) cells in the
neighborhood of an electrode that is positioned on the heart surface, denoted by Φ(y, t ),
where y is the location vector of the electrode. The electrogram can be modeled using a
current source approximation for a large volume conductor [13], i.e.,

Φ(y, t ) = 1

4πσe

∫
A0

Itm(x, t )

‖y−x‖ dA(x) , (2.4)

where the modeled cells are located within the area A0, σe is the constant extra-cellular con-
ductivity, and Itm(x, t ) is the trans-membrane current per unit area as defined in Eq. (2.3).

Figure 2.13: The space-descritized representation of the 2D modelled tissue and the electrode.

To model the measurement process, we develop a space-discretized representation of
Eq. (2.4) for an electrode array. Consider an array of M electrodes, and let ym be the
location of an electrode with index m ∈ {1,2, . . . , M }. Also let xn denote a ∆l -by-∆l dis-
cretization of x with a = (∆l )2 the area of each element of the grid and n the index of an
element (modeled cell) in the grid. This is shown in Fig. 2.13 for a modeled cell at xn and
an electrode at distance rm,n from the cell. The space-discretized representation of Eq. (2.4)
on a two-dimensional (2D) gridded tissue is

Φm(t ) = 1

4πσe

N∑
n=1

Itm(xn , t )

rm,n
a (2.5)

where Φm(t ) ≡Φ(ym , t ). In Eq. (2.5), rm,n denotes the distance between the electrode with
index m and the cell with index n ∈ {1,2, . . . , N } where N = rc × cc is the total number of
modeled cells or the elements of the grid with rc rows and cc columns. We will assume
that the electrodes are also located on a 2D grid parallel to the tissue surface at a height that
equals z0. If we neglect for simplicity the electrode diameter,2 we can write

rm,n =
√
‖ym −xn‖2 + z2

0 (2.6)

and we define rm = [1/rm,1,1/rm,2, ...,1/rm,N ]T to contain the inverse of the distances of all
cells to electrode m.
2Later in Section 6.2.2 we consider the effect of the electrode diameter. However, since in most of our simulations
a relatively large spatial step size ∆l is considered, the electrode diameter which is smaller than ∆l can be ignored.
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A space-discretized representation of all cellular transmembrane currents in Eq. (2.3) is
then given by

Itm(xn , t ) =S−1
v ∇·Σn∇ Vn(t )

=S−1
v

(
∂

∂x

(
σxx,n

∂Vn

∂x

)
+ ∂

∂x

(
σx y,n

∂Vn

∂y

)
+ ∂

∂y

(
σy x,n

∂Vn

∂x

)
+ ∂

∂y

(
σy y,n

∂Vn

∂y

))
(2.7)

where Σn ≡Σ(xn) and V (xn , t ) ≡Vn(t ).

2.5.4. SIMULATED TISSUE AND ACTIVATION MAPS
The models introduced in Eqs. (2.2) and (2.7) can be used in a forward approach to simulate
electrical wave propagation in 2D tissues. First the 2D tissue and its conductivity map Σn

should be defined. An example conductivity map is shown in Fig. 2.14 where the inhomo-
geneity in the tissue is introduced by random lines of blocks (having zero conductivity),
denoted by dark blue lines. The red circles show the location of electrode array on the
tissue. Eq. (2.2) is then used to estimate AP wave propagation in the tissue. Note that the
tissue is stimulated with a stimulation current injected to the cell at the left bottom of the tis-
sue for 1 ms. The total ionic current is also calculated based on the detailed Courtemanche
model in [33]. The resulting activation map is also shown in the figure. Finally, Eqs. (2.5)
and (2.7) are used to compute the electrograms. As can be seen, due to the inhomogene-
ity in the tissue, the resulting electrograms are fractionated. More details on the simulated
tissue parameters and employed inhomogeneity patterns can be found in Chapters 4 to 6.

One important observation in simulated fractionated electrograms is that the steepest
descent, that is commonly annotated as the LAT, can provide an inaccurate LAT estimate.
This happens due to the strong inhomogeneous activations in neighbouring cells that can
still be recorded by the electrode. These strong activities can over-impose the main small,
but local deflections. Therefore, more sophisticated algorithms are needed for a better esti-
mation of LATs. This will be discussed in detail in Chapter 5.

Figure 2.14: Conductivity map of a 2D model tissue (only showing σxx , with σxx =σy y and σx y =σy x = 0 )
and its simulated activation map and some representative simulated electrograms. The red circles on the

conductivity map show the electrode array location.
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2.5.5. DEVELOPING A SIMPLIFIED ELECTROGRAM MODEL
As can be seen, the models governing electrophysiological wave propagation in the tissue,
i.e., Eq. (2.2) and Eq. (2.7) are too complicated to be used in inverse problems that aim to
estimate AF relevant tissue parameter. Therefore, to perform well-known signal processing
approaches on these models, the first step is to simplify the models and present them in
a compact matrix model based on the parameters of interest. To do so, we exploit the
observation that, once activated, all cells produce almost the same stereotype AP, denoted
by V0(t ) [34, 35]. As a result, the depolarization wavefront can be modelled as a series of
delayed Dirac delta functions temporally convolved with the stereotype V0(t ). The delay
equals the activation time τn of the cell with index n that fires an AP. To simplify the model
further, we can rewrite the summation in Eq. (2.5) as a 2D spatial convolution, assuming
that the electrode height z0 is constant in the recording area. This concept is demonstrated
in Fig. 2.15. Since the stereotype V0(t ) and the electrode transfer function are known, the
electrograms can be modelled based on two parameters, the cell activation time τn and the
cell conductivity in its main direction σn . More detail on the derivation of these simplified
models is presented in Chapters 4 and 5.

Figure 2.15: The concept of developing a simplified electrogram model. Note that for simplicity the effect of
gradient and divergence operators on V0(t ) has been ignored in the picture.
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VENTRICULAR ACTIVITY

REMOVAL

Diagnosis and treatment of atrial fibrillation can benefit from various signal processing ap-
proaches employed on atrial electrograms. However, the performance and interpretation of
these approaches get highly degraded by far-field ventricular activities (VAs) that distort the
morphology of the pure atrial activities (AAs). In this chapter, we aim to remove VAs from
the recorded unipolar electrogram while preserving the AA components. To do so, we have
developed a framework which first removes the VA-containing segments and interpolates
the remaining samples. This will also partly remove the atrial components that overlap with
VA signals, e.g., during atrial fibrillation. To reconstruct the AA components, we estimate
them from the removed VA-containing segments based on a low-rank and sparse matrix
decomposition and add them back to the electrograms. The presented framework is of
rather low complexity, preserves AA components, and requires only a single channel EGM
recording. Instrumental comparison to template matching and subtraction and independent
component analysis shows that the proposed approach leads to smoother results with better
similarity to the true atrial signal.

3.1. INTRODUCTION
Atrial fibrillation (AF) is one of the most common age related cardiac arrhythmia whose
persistence and progression is rooted in impaired electrical conduction known as elec-
tropathology. Atrial electrograms (EGMs), i.e. a record of changes in the electrical po-
tential of the (many) cells in the neighborhood of an electrode that is positioned on the
heart surface, play an important role in the analysis of AF and examining the level of
electropathology in human tissue [5]. However, these electrograms suffer from far-field
ventricular activities (VAs) caused by ventricular depolarizations. Although during sinus

This chapter is based on the article published as "Ventricular Activity Signal Removal in Atrial Electrograms
of Atrial Fibrillation" by B. Abdi, R.C. Hendriks, A.-J. van der Veen, N.M. de Groot in the 12th International
Conference on Bio-inspired Systems and Signal Processing BIOSIGNALS, pp. 179-184, 2019.
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rhythm (SR), atrial activity (AA) and VA are separated in time, they might overlap during
AF. These strong VAs distort the morphology of the pure AAs, complicate their further
analysis and affect their final interpretations. Therefore, a required step before any further
processing of the recorded electrograms is to estimate the pure atrial activities by removing
the VAs.

Rieta et al. in [36] categorizes the developed algorithms for VA removal into three
groups. The first group of algorithms is based on template matching and subtraction (TMS)
[37]. A second group is based on adaptive filtering using a VA reference [15], which is
obtained using a reference ECG lead. The third group of VA removal algorithms is based
on blind source separation approaches that try to separate the components based on the
assumption that VA and AA are uncorrelated, orthogonal, or statistically independent from
beat to beat over time or over space in multichannel recordings. Independent component
analysis (ICA) is one of the most widely used approaches from this group [38]. None
of above mentioned approaches results in a pure AA estimate. A perfect performance is
hampered by the fact that these signals share overlapping components in both time and
frequency domain and are also partially correlated over time and space.

In this study we develop a new framework for removing VA which is based on a sparse
and low rank matrix decomposition. Initially, VA-containing segments are detected, re-
moved and replaced with subsequent spline interpolation. However, the performance of
this approach is limited during AF, as VAs might overlap with the depolarization phase of
AAs. In our approach, we propose to reconstruct AAs in the removed segments and add
them back to the interpolated signal. Finally, using simulations, we compare the perfor-
mance of the proposed algorithm with two other approaches, TMS and ICA.

The remainder of this chapter is as follows. In Section 3.2 we formulate the ventricular
and atrial activity separation problem and present our proposed framework for solving the
problem. In Section 3.3 we present the results and compare them with two other methods.
Finally, in Section 3.4, conclusions are drawn.

3.2. METHOD
3.2.1. ELECTROGRAM MODEL
We consider a sampled unipolar atrial electrogram m ∈ RN×1 with N the number of time
samples. We assume that m is the summation of AAs and VAs, modeled as

m = a+v, (3.1)

where vectors a and v contain the AA and VA samples produced by atrial and ventricular
sources respectively. From the physiological point of view, the AA is composed of two
phases, the depolarization phase and the repolarization phase. The depolarization phase, is
of most interest and consists of a predominantly positive spike followed by a sharp negative
deflection. It mostly contains high frequency AA components and shows a sparse repre-
sentation in time. The repolarization phase on the other hand, changes very smoothly in
time and contains very low frequency components. These repolarization activities are often
viewed as baseline wandering and may even fade out in some recordings. The first row
in Fig. 3.1 shows an example electrogram including some examples of the depolarization
phase (sharp deflections) followed by the repolarization phase of the AAs with some over-
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lapping VAs denoted by red vertical lines. Depending on the homogeneity of the depolar-
ization wavefront and the speed of the electrical propagation in the tissue, the morphology
of these two components (AA and VA) may vary from activity to activity even during SR,
and they cannot be simply considered as a shifted version of each other, especially during
AF.

3.2.2. DATA MATRIX FORMATION
To overcome the unnecessary introduction of artifacts, we use the concept of minimal pro-
cessing and process only VA-containing segments. In this study, we used a simultaneously
recorded ECG as reference signal to specify the VA-containing segments in the electrogram
which coincide with the QRS complexes in ECG. Since the QRS complex or the R peak
is easily detectable, any simple detection algorithm could be used. A rectangular window
centered at each detected R peak with a fixed width W is used to mark the onset and offset
of the VA and to denote the VA-containing segments that might also contain AA during AF.

The baseline wandering of the electrogram is mainly caused by the repolarization phase
of AA. To remove the VA without affecting this component, we first remove the VA-
containing segments and then replace them by spline interpolation applied to the remaining
data samples. This can to some extent replace the removed baseline in the VA segment and
is one of the most basic and efficient approaches for VA cancellation during SR [39]. The
interpolated data is denoted by m′ and has the same length as the recorded electrogram m.
During SR and in some cases during AF, the VA does not overlap with the depolarization
phase of AA, and leaves this component unaffected. Removal and interpolation cancels the
VAs thus sufficiently and no further processing would be necessary, cf. the input signal m
and interpolated signal m′ in the first VA-containing segment of Fig. 3.1. However, un-
like during SR, it is likely that during AF the depolarization phase of the AA and the VA
completely or partially overlap. In this case VA removal and interpolation also removes the
overlapping depolarization phase of AA. Therefore, processing the removed component,
i.e., x = m−m′, is required to extract the potentially removed atrial components and add
them back to the interpolated data, cf. the m, m′ and the removed signal x in the second
and third VA-containing segments of Fig. 3.1.

Before employing any further processing, we construct an appropriate data matrix X of
size W ×K , where each column of X = [xT

1 ,xT
2 , ...,xT

K ]T is one VA-containing segment (of
length W ) of x stored in the vector xk , k ∈ 1,2, ..,K , and where K is the total number of
detected segments. The data matrix X is modelled as the sum of two components: (i) matrix
V containing the aligned ventricular activities, and (ii) matrix A containing the randomly
occurring atrial activities that coincide with the VA-containing segment, i.e.

X = A+V. (3.2)

3.2.3. VA AND AA SEPARATION
We now formulate the problem of decomposing the data matrix X into its two components, V
and A. The problem can be considered as a highly underdetermined blind source separation
where the number of unknowns, A and V, is twice the number of given measurements, X.
However, prior knowledge of the two sources can be employed to derive useful approximate
solutions: (i) The aligned VAs in V, from beat-to-beat, have an almost similar morphology
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Figure 3.1: The input electrogram m and output signals at each stage of the algorithm with v̂ and â as the final
extracted VA and AA output. The onset and offset of VA-containing segments are denoted by red vertical lines.

The segments where AA and VA overlap are also denoted by *.

which indicates that V is a low-rank matrix, while the occurrence of AA and its morphology
in these segments is random indicating that A is not a low-rank matrix. (ii) When presented
in frequency domain, the VAs are much sparser (have narrower bandwidth than AAs). As
an example, Fig. 3.2 shows two segments of a clinically recorded EGM containing AA and
VA, as well as their amplitude spectrum. Note that the segments are not overlapping in time
as the EGM is recorded during SR. (iii) AAs are sharper and more spiky in time domain
compared to VAs, matrix A can therefore be constrained to be sparse. Exploiting these three
properties, we formulate the separation problem as

min
{A,V}

rank(V)+β‖ΨT V‖1 +α‖A‖1 s. t. X = A+V, (3.3)

where rank(·) is the rank operator, ‖A‖1 =∑
i j |Ai j | is the l1-norm of A,ΨT performs a two-

dimensional discrete cosine transform (DCT) [40], and α and β are penalization parameters.
Since the rank function is non-differentiable and non-convex, it is in most studies ap-

proximated with the nuclear norm, ‖V‖∗ = ∑K
i=1σi (V), that is the summation of all sorted

(from largest to smallest) singular values σi of matrix V. However, minimizing the trun-
cated nuclear norm (TNN) ‖V‖r =∑K

k=r+1σi (V), that is the summation of the K −r smallest
singular values, performs better in minimizing the rank function than minimizing the nu-
clear norm [41]. The TNN, on the other hand, is non-convex and it cannot be minimized
directly. To overcome this issue, the TNN can be rewritten as its convex surrogate [41]

‖V‖r =
K∑

i=r+1
σi (V) = ‖V‖∗−

r∑
i=1

σi (V) = ‖V‖∗− max
UT

r Ur =I,HT
r Hr =I

Tr(UT
r VHr ), (3.4)

where Tr(·) indicates the trace of a matrix, and Ur and Hr are matrices containing the first
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Figure 3.2: Two segments of a clinically recorded EGM containing AA and VA, as well as their amplitude
spectrum. Note that the segments are not overlapping in time as the EGM is recorded during SR.

r columns of the left and right singular vectors of V respectively, where V = Udiag(σ)HT

is the singular value decomposition (SVD) of V. Using Eq. (3.4), the new optimization
problem for separation of VA and AA can be written as

min
{A,V}

{‖V‖∗− max
UT

r Ur =I,HT
r Hr =I

Tr(UT
r VHr )+β‖ΨT V‖1 +α‖A‖1} s. t. X = A+V, (3.5)

Generally, the lower K (i.e., the number of VA-containing segments in M), the less
accurate the SVD will be. This might lead to AA components erroneously ending up in
the low-rank matrix V. Constraining V to be sparse in the frequency domain using the l1

regularization on ΨT V overcomes that AA components, that are constrained to be sparse in
time domain, end up in the V matrix. Notice that we did not extensively search for efficient
dictionaries forΨ. However, we found that the application of the DCT was computationally
of rather low complexity, while leading to good performance.

A variety of numerical approaches can be used to solve the optimization problem in
Eq. (3.5), among which we opt for the alternating direction method of multipliers (ADMM)
[42]. This algorithm solves a convex optimization problem by breaking it into smaller
pieces which are simpler to implement. Furthermore, ADMM has a fast convergence rate
to a reasonable precision in practice. To solve Eq. (3.5), we follow the same approach
and algorithmic steps introduced in [43]. The estimated AAs in A are added back to the
corresponding samples in the interpolated electrogram m′ using a rectangular window. This
results in the final estimated atrial activity â. The ventricular activities in V are also added
to their corresponding samples in a zero signal of same length as m using a rectangular
window.

3.3. RESULTS
The proposed framework, from here on referred to as low-rank and sparse matrix decom-
position (LRSD) method, is tested on clinically recorded epicardial unipolar electrograms.
The electrograms consist of 10 s of induced AF signals recorded at similar locations on the
right atrium of multiple patients, filtered (bandwidth 0.5 to 400 Hz) and sampled (1 kHz).
More details on the electrode specifications can be found in [5]. To provide a clear un-
derstanding of the steps of the algorithm and enable visual inspection of the results, we
initially employ it on the clinically recorded data and demonstrate the output of each step in
Section 3.3.1. However, in a more detailed evaluation will be performed on synthetic data.
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The results are evaluated using quantitative performance indices and will also be compared
to TMS and ICA approaches.

3.3.1. EXPERIMENTS ON CLINICAL DATA
Fig. 3.1 visualizes a fragment of each stage of the proposed framework, employed on 10 s
of a clinically recorded electrogram during induced AF. We normalize the electrogram first
by removing the average and next by scaling the signal such that the average ventricular
activity (average of all VA containing segments) has an absolute maximum amplitude of
1. This helps to make up for the variations of EGM amplitude within the patients, to some
extent. The 10 seconds contain K = 16 VA-containing segments, each windowed with a
rectangular window with a fixed length of W = 100 samples (100 ms). Since the focus of
this study is on introducing the algorithm itself and not on optimal tuning of its parameters,
we used values that yielded visually good source separation, that are, α= 0.5, β= 0.8, and
r = 3.

The input signal is shown as m in Fig. 3.1. The VA-containing segments are initially
removed and interpolated and the result is shown as m′. LRSD is employed on the data
matrix X containing the VA-containing segments of x = m−m′. The separated atrial and
ventricular activities resulting from the LRSD are plotted as as and v̂ respectively. â =
as +m′ demonstrates the final atrial activity estimated from the input signal m. For an
easier visual inspection, we show for both â and v in Fig. 3.3 a zoomed version of 3 VA-
containing segments from the example in Fig. 3.1.

To compare the performance of the algorithm with two other approaches we select the
TMS [37] and ICA [38] approaches. TMS, similar to the LRSD, only requires one elec-
trogram as well as the ECG signal only for detection of VA-containing segments and is
computationally of low complexity. However, to separate the two sources, ICA requires the
complete ECG signal. Moreover, taking care of the permutation and scaling in the result
of ICA is complicated and can affect its performance. Fig. 3.4 demonstrates four clini-
cally recorded electrograms m from four different patients as well as the three estimated
atrial components for each patient. As we can see, LRSD visually provides the best and
smoothest output. The smoothness of the atrial component is of high importance for further
processing of the data, since any added distortion might be misinterpreted as fractionated
AAs.

3.3.2. PERFORMANCE EVALUATION
Evaluating the performance of the proposed method using quantitative performance in-
dices, requires the pure AA and VA (ground truth), which are not available from clinically
recorded data. On the other hand, due to the big range of variations in AAs and VAs mor-
phology during AF, generating realistic synthetic data for a fair performance evaluation is
difficult. To avoid these complications and test the framework on realistic data, we gen-
erated the synthesized data in two steps. First we select a sample VA-containing segment
from the electrogram and we make sure it does not coincide with AA. We then extract the
VA in this segment using spline interpolation and subtraction. Since VA does not overlap
with AA, this provides us with well separated AA and VA components. The separated VA,
referred to as pure VA, is then added to another location on the same EGM where it overlaps
with pure AA and not with another VA. The pure VA is also shifted in small steps (10 ms)
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Figure 3.3: Zoomed version of the three specified VA-containing segments in Fig. 3.1 as well as v̂ and â as the
final extracted atrial and ventricular activity.

to create different degrees of overlap with the AA. The same steps are also performed on
the ECG signal. Finally, TMS, ICA, and LRSD are employed on the synthesized data.

To evaluate the performance of the introduced approaches in separating the AA and
VA components, we use four different performance indices. The first performance index
we use is the normalized cross-correlation coefficient (Pearson’s correlation coefficient)
between the pure AA a and the extracted AA â, referred to as the similarity metric, that is

Si = cov(a, â)

std(a)std(â)
, (3.6)

where cov(·) is covariance and std(·) is the standard deviation. The closer this variable is to
1, the more similar the signals are. The second performance index is the mean square error
(MSE) between a and â, denoted by MSEa . The smaller this value is, the better the results.
The third performance index is the ventricular depolarization reduction (VDR) defined as
[36]

VDR =
∣∣∣∣1− max(|v̂|)

max(|v|)
∣∣∣∣ (3.7)

where max(|v|) is the maximum amplitude of ventricular activity that coincides with the
R-peak in ECG and max(|v̂|) is the maximum amplitude of extracted ventricular activity.
The smaller the VDR is, the better the ventricular reduction. We also introduce a new
performance index that measures smoothness, abbreviated as Sm. It is calculated as the the
standard deviation of the first time derivative of the difference between a and â, which is

Sm = std

(
d(a− â)

dt

)
. (3.8)

The smaller this value is, the less fractionated the results are.
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Figure 3.4: The signals shown above are respectively the clinically recorded electrogram m from four different
patients (a) to (d), and the separated atrial activity after employing TMS, ICA and the LRSD. The vertical lines

indicate the onset and offset of VA-containing segments. Overlapping AA and VA are indicated by *.

Table 3.1 shows the results of the instrumental measures evaluated on synthesized data
of five different patients, where the VAs and AAs are separated using the three introduced
approaches TMS, ICA and the LRSD. The patients are sorted based on the regularity in their
VA-containing segments, where the mean square error between the average of all segments
and the pure VA denoted by MSEv is used as the indicator of the regularity. For all patients,
the added pure VA overlaps with several randomly selected AAs, with different levels of
overlap, except for patient 2 where we purposely chose samples with no overlap with AA.
The performance of ICA in our simulations is relatively bad. This might be partly due to (i)
the low quality of the ECG signal (as the second signal needed for separation of two sources
using ICA, it mostly contains VAs) we had access to in this experiment and (ii) the errors
in handling the permutation and scaling issues in ICA. Note that in this study, extracted
VAs from ICA where automatically selected as the signal having more correlation with the
initial VA containing segments.

As can be seen, the results with respect to similarity and MSE are quite comparable
for all patients, however as the regularity in VA-containing segments decreases, the LRSD
outperforms the other two approaches in almost all measures. Only for the first patient with
very regular segments, TMS performs better than the proposed LRSD. As previously men-
tioned, the smoothness is of high importance since the added distortions might be misin-
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Table 3.1: Summary of quantitative performance indices

MSEv Si MSEa VDR Sm
P1 0.005 TMS 0.96 0.005 0.19 0.01

ICA 0.29 0.124 0.59 0.03
LRSD 0.75 0.031 0.26 0.02

P2 0.008 TMS 0.89 0.008 0.13 0.01
ICA 0.80 0.058 1.53 0.02

LRSD 0.97 0.007 0.06 0.01
P3 0.021 TMS 0.82 0.02 0.25 0.01

ICA 0.53 2.250 2.64 0.09
LRSD 0.86 0.01 0.04 0.01

P4 0.071 TMS 0.71 0.07 0.32 0.04
ICA 0.36 0.958 2.64 0.09

LRSD 0.84 0.038 0.15 0.03
P5 0.148 TMS 0.68 0.148 0.28 0.07

ICA 0.25 2.820 2.52 0.19
LRSD 0.79 0.038 0.15 0.03

terpreted as fractionated electrograms. However our simulations on synthesized data show
that if the AA is already fractionated, the added distortions after employing TMS and ICA
completely change the morphology of pure AA, while the LRSD preserves the pure AA
morphology, resulting in better performances.

3.4. CONCLUSION
In this chapter we proposed a new framework for removal of VA from atrial electrograms,
which is based on interpolation and subtraction followed by low-rank and sparse matrix
decomposition. The proposed framework is of low complexity (for the 10 seconds EGM
used in this study the algorithm takes around 1 second to run on a 2.9 GHz Intel i5 MacBook
Pro and MATLAB R2019a.), does not require high resolution multi-channel recordings,
or a calibration step for each individual patient. The approach outperforms the reference
methods TMS and ICA with respect to instrumental measures. In particular in cases where
the ventricular activities are less regular. It provides smooth AA estimates, which is of high
importance for signal processing applications that are based on the fractionation evaluation
in atrial activities.
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A COMPACT MATRIX MODEL

FOR ATRIAL ELECTROGRAMS
FOR TISSUE CONDUCTIVITY

ESTIMATION

Finding the hidden parameters of the cardiac electrophysiological model would help to gain
more insight on the mechanisms underlying atrial fibrillation, and subsequently, facilitate
the diagnosis and treatment of the disease in later stages. In this chapter, we aim to estimate
tissue conductivity from recorded electrograms as an indication of tissue (mal)functioning.
To do so, we first develop a simple but effective forward model to replace the computation-
ally intensive reaction-diffusion equations governing the electrical propagation in tissue.
Using the simplified model, we present a compact matrix model for electrograms based on
conductivity. Subsequently, we exploit the simplicity of the compact model to solve the
ill-posed inverse problem of estimating tissue conductivity. The algorithm is demonstrated
on simulated data as well as on clinically recorded data. The results show that the model
allows us to efficiently estimate the conductivity map. In addition, based on the estimated
conductivity, realistic electrograms can be regenerated demonstrating the validity of the
model.

4.1. INTRODUCTION
Atrial fibrillation (AF) is a common age-related cardiac arrhythmia characterized by rapid
and irregular electrical activity of the atria. In Europe, 1 to 3 % of the population (more
specifically elderly) suffer from AF. These patients have five times higher risk of strokes,

This chapter is based on the article published as "A compact matrix model for atrial electrograms for tissue
conductivity estimation" by B. Abdi, R.C. Hendriks, A.-J. van der Veen, N.M. de Groot, Computers in Biology
and Medicine, 2019, 107 , pp.284-291.
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especially ischemic stroke with higher death rate or worse prognosis at higher cost [2]. The
development and progression of AF is rooted in impaired electrical conduction and struc-
tural damage of atrial tissue, known as electropathology. Electrograms recorded during
surgery or high-resolution mappings of the entire atria can help to localize and quantify the
degree of electropathology and to stage AF [5, 10]. However, the analysis of the electro-
grams is currently constrained by the lack of suitable methods that can reveal the hidden
electrophysiological parameters of the tissue. These parameters can be used as local indica-
tion of electropathology in the tissue. The lack of such methods also limits the success rate
of some AF therapies, e.g., electrogram-based ablation that targets areas with complex frac-
tionated electrograms. This happens due to the inhomogeneity and complexity in defining
fractionation and its relation to pathological causes in tissue [31].

Currently, cardiologists mostly analyze the electrical propagation and electropathology
based on local activation times (ATs) and local conduction velocities (CVs), defined as the
distance traveled by the depolarization wavefront in a unit of time. However, the interpre-
tation of these propagations, due to the interaction of many parameters, is quite complex,
needs expert intervention and is time varying (from beat-to-beat during AF). The changes
in conduction velocities may have multiple causes of both pathologic and non-pathologic
origin; even pathological causes might not be local and might origin from a different area in
the atrium. For example, in a two-dimensional (2D) isotropic and homogeneous tissue, the
changes in the propagation velocity from the steady state velocity (for flat wavefront prop-
agation) have a linear relationship with the local curvature [44]. In general, concave wave-
fronts propagate faster than convex wavefronts without having any pathological causes.
This is actually due to the amount of local excitatory current supplied by the cells at the
wavefront compared to the membrane area downstream that will be excited next. CV also
depends on the pacing cycle length and typically decreases for shorter cycles without indi-
cating electropathology in the tissue [45].

The electrical propagation in tissue is governed by electrophysiological models and
is directly connected to its underlying parameters. Particularly, the propagation is corre-
lated to the tissue intracellular conductivity. It plays an important role in the underlying
dynamics and functional connections in the tissue as a mechanism of inter-cellular com-
munication. The estimation of these hidden parameters can be essential in the diagnosis
and staging of the disease. Moreover, the developed physiological models can potentially
be used for testing and determining appropriate treatments, e.g., guiding the electrogram
based ablation therapies. Unlike CV, analyzing tissue conductivity does not require expert
intervention and it can be correlated to local electropathology. As an example, it has been
shown in previous studies [46, 47] that one way to represent fibrosis (as the hallmark of
electropathology and AF progression) in computer models of AF is via slow conductivities.
Despite the beneficial effect of conductivity in analyzing electropathology, the complexity
of the electrophysiological models makes its estimation challenging and not practical in
clinical settings.

Realistic computer electrophysiological models of electrograms during sinus rhythm
(SR) and AF have been developed in [13, 14, 16]. The results show that an analysis of
the morphology of a single electrogram can provide useful information about the substrate
maintaining AF. This detailed model is very useful for analyzing the effect of tissue prop-
erties like anisotropy and heterogeneity on the resulting electrograms. However, using this
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model in the inverse problem of extracting tissue properties from electrograms is nearly
impossible due to the large number of parameters that need to be estimated. In another
study [48], the tissue conductivity map is directly estimated from cellular action potentials
(APs) recorded by high resolution micro-electrode arrays, which is not practical for living
human tissue. In [49, 50], a quite different approach was used based on Eikonal equa-
tions to approximately model the cells’ activation times, based on the apparent conductivity
while ignoring all the microscopic details of the process, including cellular potentials and
electrograms.

Our hypothesis is that understanding atrial fibrillation and improving AF therapy starts
by developing a proper forward model that is accurate enough (from a physiological point
of view) and simultaneously simple enough to allow for subsequent parameter estimation.
Thus, the main focus of this chapter is on developing a simplified forward model that can
efficiently explain the observed electrogram morphology based on the tissue conductivity.
Using a parsimonious parametrization, this model can then be used in the inverse problem
of estimating tissue conductivity as an indicator of electropathology.

The remainder of this chapter is organized as follows. In Section 4.2 we present the
electrophysiological models that describe the electrical propagation and electrogram gen-
eration in cardiac tissue. Next, we introduce a simplified matrix model for the electrogram,
formulated in terms of two parameter vectors: the activation times and the tissue conduc-
tivity map. In Section 4.3 we formulate the inverse problem of conductivity estimation and
present initial algorithms for solving the problem. In Section 4.4 we demonstrate the perfor-
mance of our proposed approach on simulated data and compare its results with two other
reference approaches. In Section 4.5 we apply these algorithms to clinically recorded data,
and demonstrate their effectiveness in the analysis of real data. We conclude in Section 4.6,
and discuss possible future directions.

4.2. ELECTROGRAM MODEL
4.2.1. ACTION POTENTIAL PROPAGATION AND ELECTROGRAM MOD-

ELS
As shown in Section 2.5.2, action potential propagation in the tissue is governed by the
following reaction-diffusion equation that models the membrane current as a function of
three currents,

C
∂V (x, t )

∂t
= Itm(x, t )+ Ist(x, t )− Iion(x, t ,V ). (4.1)

We also showed in Section 2.5.3 that for a 2D tissue where the modeled cells are located
within the area A0, the electrogram model is [13]

Φ(y, t ) = 1

4πσe

∫
A0

Itm(x, t )

‖y−x‖ dA(x) , (4.2)

with its space-descritized version representation as,

Φm(t ) = 1

4πσe

N∑
n=1

Itm(xn , t )

rm,n
a, (4.3)
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where Itm(xn , t ) is the space-discretized representation of all cellular transmembrane cur-
rents and is given by

Itm(xn , t ) = S−1
v ∇·Σn∇ Vn(t )

=S−1
v

(
∂

∂x

(
σxx,n

∂Vn

∂x

)
+ ∂

∂x

(
σx y,n

∂Vn

∂y

)
+ ∂

∂y

(
σy x,n

∂Vn

∂x

)
+ ∂

∂y

(
σy y,n

∂Vn

∂y

))
(4.4)

where Σn ≡ Σ(xn) is the tissue conductivity (see Section 4.2.3 for more details), and
V (xn , t ) ≡ Vn(t ). By stacking all cellular potentials at time instant t in a vector v(t ) =
[V1(t ), . . . ,VN (t )]T and likewise for the currents itm(t ) = [Itm,1(t ), . . . , Itm,N (t )]T , Eq. (4.4)
can be expressed in a space-discretized vector form as

itm(t ) = S−1
v Dσv(t ) . (4.5)

The linear operator Dσ in this equation equals

Dσ = Dx diag(σxx )Dx +Dx diag(σx y )Dy +Dy diag(σy x )Dx +Dy diag(σy y )Dy , (4.6)

where diag(·) is a diagonal matrix with its diagonal entries from the argument vector, and
σxx , σx y , σy x and σy y are vectors stacking the corresponding conductivities of all cells.
As an example, σxx = [σxx,1,σxx,2, ...,σxx,N ]T . Matrices Dx and Dy are respectively the
first-order discrete spatial derivative operators in the x and y directions, where we can use
a forward, backward, or central space difference scheme.

By using Eq. (4.5), we can reformulate Eq. (4.3) as

Φm(t ) = k rT
m Dσv(t ), (4.7)

where all constants are collected in k = a(4πσe Sv )−1. This equation shows that each elec-
trogram is a weighted sum of all cellular action potentials, where the weights depend lin-
early on the inverse of cell distances to the electrode and nonlinearly on their conductivities.

To develop the space-discretized matrix representation of Eq. (4.3), we stack the M
electrogram signals in a single vector φ(t ) = [Φ1(t ), ...,ΦM (t )]T . We also define an M ×N
matrix R that contains all the inverse distances from electrodes to cells, R = [r1,r2, ...,rM ]T .
Sampling over time, the linearized matrix representation of the electrogram array at all time
instances can then be written as

Φ= k R DσV, (4.8)

where Φ= [φ(0),φ(1), . . . ,φ(T −1)] is an M ×T matrix containing all the M resulting elec-
trograms for all time instances, and matrix V contains all the cellular action potentials.

4.2.2. SIMPLIFIED ELECTROGRAM MODEL
Given an electrogram array Φ, our aim is to estimate the conductivity tensor Σ from
Eq. (4.8). Therefore, we first need to compute V using Eq. (4.1). However, we propose
to simplify the electrogram model by skipping the transmembrane potential computation
in Eq. (4.1), and benefit from the observation that once activated, all cells produce al-
most the same stereotype AP, denoted by V0(t ). A similar approach was first employed
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Figure 4.1: Aligned simulated APs of the 29th row of the simulated tissue M3 whose conductivity map and
activation map are plotted in Fig. 4.2.

by Spach et al. in [34] to reproduce experimental electrograms using the activation times
and a stereotype AP. Moreover, the same concept was used by Franzone et al. [35] to model
electrograms and look at tissue properties on more complex electrogram morphologies.
Both studies verify this assumption and show that it can provide realistic electrograms. To
demonstrate this hypothesis, as an example, Fig. 4.1 shows all simulated action potentials
in the 29th row of the anisotropic tissue M3 in Fig. 4.2. This row includes an area with
slower conductivities. The APs have been aligned with respect to their ATs, annotated as
the time when the cell’s potential reaches a threshold value of -40mV in the depolarization
phase of its AP. As can be seen, the depolarization phases of the simulated APs, that are of
importance in calculating electrograms, match reasonably with each other. We will discuss
the simulations in more detail in Section 4.4.

With this assumption, our proposed simplified matrix representation of Eq. (4.8) can be
written as

Φ= k R DσVτ, (4.9)

where the (n, j )th entry of Vτ equals [Vτ]n, j = V0( j Ts −τn), which is a time shifted and
sampled version of V0(t ), τn is the AT of cell n, and Ts is the sampling period. This also
assumes each cell is activated only once (i.e., data contains a single AF cycle length). We
will collect all ATs in a vector τ= [τ1, . . . ,τN ]T . This sparse parametrization of the model
in terms of τ and σ opens up new possibilities for parameter estimation (conductivity) and
further signal manipulations.

4.2.3. COMPACT MATRIX MODEL FOR ELECTROGRAMS BASED ON CON-
DUCTIVITY

To this end, we reformulate Eqs. (4.6) and (4.9) in the form of a measurement equation that
highlights the linear dependency on the conductivity map. As a first step, the conductivity
tensor can be written as

Σn =
[
σxx,n σx y,n

σy x,n σy y,n

]
=σn An

[
1 0
0 α2

n

]
AT

n . (4.10)

The right-hand side of this equation represents an eigenvalue decomposition of the con-
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ductivity tensor. The principal eigenvalue σn describes the conductivity in the main di-
rection of the cell while αn defines the anisotropic ratio (for human atrial cells, αn is of
the order of 0.4 in healthy tissue [49]). The columns of the orthonormal matrix An are the
eigenvectors of the conductivity tensor and define the orientation of the cell in the global
coordinate system. An = [cos(θn),−sin(θn);cos(θn),sin(θn)] is parametrized by θn , a ro-
tation angle that represents the fiber direction. The conductivity tensor can thus be written
as

Σn =σn Kn , Kn = An

[
1 0
0 α2

n

]
AT

n =
[
κn,1 κn,2

κn,3 κn,4

]
, (4.11)

where Kn is parametrized by two parameters, αn and θn .
The remaining parameters are then the cellular conductivities along the main direc-

tion, i.e., σn . Using a stacked vector notation for all cells n ∈ {1, ..., N } we obtain σ =
[σ1,σ2, . . . ,σN ]T . Using Eq. (4.11), Eq. (4.6) can be written as

Dσ = Dx diag(κ1)diag(σ)Dx +Dx diag(κ2)diag(σ)Dy

+Dy diag(κ3)diag(σ)Dx +Dy diag(κ4)diag(σ)Dy , (4.12)

where as an example κ1 = [κ1,1,κ2,1, ...,κN ,1]T . We further use a property of the Khatri-Rao
product (column-wise Kronecker product) denoted by ◦, to write the vectorized form of
Eq. (4.12) to express its linear dependency on σ. The employed property is (BT ◦A)x =
vec(Adiag(x)B), where vec(·) stacks the columns of the argument matrix to form a vector.
The final vectorized version of Eq. (4.12) is

vec(Dσ) =Γσ, (4.13)

where

Γ=DT
x ◦ (Dx diag(κ1))+DT

y ◦ (Dx diag(κ2))+DT
x ◦ (Dy diag(κ3))+DT

y ◦ (Dy diag(κ4)) .

(4.14)

Using Eq. (4.13), and a property of the Kronecker product, denoted by ⊗, which is (BT ⊗
A)vec(X) = vec(AXB), we can also present the vectorized version of Eq. (4.9) as

vec(Φ) = k
(
VT
τ ⊗R

)
vec(Dσ) = k

(
VT
τ ⊗R

)
Γσ. (4.15)

Finally, by writing φ= vec(Φ) and defining the mixing matrix Mτ =
(
VT
τ ⊗ (k R)

)
Γ of size

MT × N , the resulting linear measurement equation based on conductivity, from here on
referred to as the compact matrix model for atrial electrograms (CMM), is

φ= Mτσ. (4.16)

Note that the notation in Mτ hides the parameters κ1,κ2,κ3 and κ4 which depend on two
parameters, αn and θn that are assumed to be known in this this study.

4.3. CONDUCTIVITY ESTIMATION
We have seen how the measured data (φ or φ) can be described in terms of a simple
parametrization: τ, σσσ, and some nuisance parameters, i.e., a 2× 2 matrix Kn that mod-
els the cell direction. Given the data, the inverse problem is to estimate these parameters.
In particular, we are interested in the conductivity map.
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Underlying Model Estimated Model Parameters
Normalized Σ True AM (ms) Σ̂C M M Σ̂ED CV (m/s)
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Figure 4.2: Each row of the figure demonstrates a simulated tissue and its estimated parameters. First and second
columns demonstrate the underlying model including the true conductivity map and the true AM on the 2D tissue
surface, respectively. In all cases the tissue is stimulated from the left bottom corner. The electrode locations
are indicated by *. The third to fifth columns demonstrates the estimated parameters including conductivity map
estimated from the proposed CMM, conductivity map estimated from the Eikonal diffusion equation, and the
conduction velocity map, respectively.

An initial step to reduce the number of unknowns and simplify the inverse problem is
to estimate the ATs in τ using a standard approach. In this study we estimated τ by finding
the minimum of the first time derivative of each electrogram which coincides with the acti-
vation time of the cell that is under the electrode [29]. This provides us with an incomplete
activation map (AM) where the values are only known for cells that are under the elec-
trodes. Next, we linearly interpolate the incomplete AM to provide a higher resolution AM
for modeled cells. This provides a good estimation of ATs when the wavefront is rather
smooth and there is only one single wavefront, that is mostly the case during SR. However,
our simulation showed that in case of multiple wavefronts or existing blocks in the tissue,
that is the case during AF, the activation time estimation using the minimum of the first
time derivative of electrograms is less precise and better estimation methods are required.
This is discussed in more detail in Chapter 5.

Assuming τ is known, the next step is to estimate σ using Eq. (4.16). The amount of
data is M ×T while the number of unknown parameters is a function of the chosen spatial
resolution, i.e., the modeled number of cells N . As they are both on a regular grid, we can
define the ratio of the number of cells to the number of electrodes as the “oversampling
ratio” L2. The number of unknowns in this step (σσσ) is then equal to L2M . We would expect
the number of data samples to be easily larger than the number of unknowns (T À L2), but
unfortunately, most time-domain samples are not very informative. Thus, the mixing matrix
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Mτ is ill-conditioned or ill-posed, in particular for larger L. This issue always arises when
we discretize and solve an inverse problem that has (i ) the form of a first-kind Fredholm
integral equation (Eq. (4.2)), and (i i ) has a Laplacian operator (Eq. (4.1)) in its forward
model.

Estimation of the conductivity mapσ is based on the linear measurement model Eq. (4.16).
Since the mixing matrix is ill-conditioned, simply inverting Mτ produces an unstable so-
lution. Therefore, regularization is needed, which is equivalent to bringing in some prior
information to penalize implausible solutions. Our experiments show that, in general, the
conductivity in each small enough anatomical site varies smoothly around an average value
µσ creating a smooth (low rank) conductivity map Σ of size rc × cc , where σ = vec(Σ).
These smooth variations can partly be due to the changes in the properties of many cells in
the real 3D tissue that are only modeled by a few cells on the 2D recording area. Notice
that the changes in the conductivities of different anatomical sites can also be modeled by
setting different values for µσ with respect to our prior knowledge of the recording site.
On the other hand, in cases of functional or pathological problems, a local conductivity σn

could be much smaller than the average µσ, resulting in a conductivity block that causes
irregular AP wavefront propagation or even results in formation of multiple wavefronts.

These observations encourage regularization conditions that promote a sparse and low-
rank solution for Σ. Among many possibilities, we will consider the following regularized
cost function for estimation of conductivity:

J (σ) = ‖φ−Mτσ‖2
2 +λ1 ‖σ−µσ1‖1 +λ2 ‖Σ−µσ11T ‖∗, (4.17)

where λ1 and λ2 are the regularization parameters, and 1 is the all-ones vector. The `1-
norm regularization term, ‖ · ‖1, promotes a sparse solution, whereas the nuclear norm ‖ ·
‖∗ (the sum of singular values of its argument) promotes a smooth low-rank conductivity
map. Notice that for applications in which we are more interested in localizing conductivity
blocks in tissue, we can ignore the smooth low-rank regularization and only penalize the
optimization problem using the `1-norm which means setting λ2 = 0.

In this chapter we solve Eq. (4.17) using the Split Bregman algorithm [51] which leads
to the following augmented Lagrangian optimization problem,

σ̂= argmin
σ,p,Q

‖φ−Mτσ‖2
2

+λ1 ‖p‖1 +µ1‖p− (σ−µσ1)−b1‖2
2 +λ2 ‖Q‖∗+µ2‖Q− (Σ−µσ11T )−B2‖2

2, (4.18)

where the p and Q are the introduced auxiliary variables, µ1 and µ2 are penalization pa-
rameters, and b1 and B2 are the Lagrange multipliers. The Split Bregman algorithm then
solves this problem iteratively by breaking it into smaller problems, which are simpler to
implement. In each step of each iteration, one unknown parameter is updated by minimiz-
ing Eq. (4.18) while assuming the other unknowns are constant. For more detail on solving
each step we refer to [52]. Overall the algorithm has a fast convergence rate to a reasonable
precision in practice.

4.4. SIMULATION RESULTS
To demonstrate the performance of the proposed conductivity map estimation algorithm,
we have simulated 2D phantom tissue areas of 90× 90 cells with ∆l0 = 0.02cm cell-to-
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Figure 4.3: Each row of the figure demonstrates a simulated tissue and its estimated parameters. First and second
columns demonstrate the underlying model including the true conductivity map and the true AM on the 2D tissue
surface respectively. In each case the tissue is stimulated from the left bottom corner and the electrode locations are
indicated by *. The third to fifth columns demonstrates the estimated parameters including the the estimated AM,
the estimated conductivity map from the proposed CMM, and the estimated conductivity map from the Eikonal
diffusion equation.

cell distances on the grid, based on examples of real tissue. Each simulated tissue has a
different conductivity map with a smooth background and zero, one or two conductivity
blocks in it that are respectively shown in the first column of Fig. 4.2 and are denoted by
M1, M2, and M3. Notice that the plots only demonstrate the 37×37 central cells where
a 5×5 electrode array with inter-electrode distance of 3∆l0 was positioned. The electrode
locations are shown by the *. The tissues are stimulated with a stimulation current injected
to the cell at the left bottom of the tissue. The tissues in M1 and M2 are isotropic (αn = 1)
while the tissue in M3 is anisotropic with αn = 0.4. In all simulations A equals the identity
matrix indicating that the main direction of the cells is along the x-axis. Eq. (4.1) was used
to calculate the propagation of the APs on the tissue with a fixed time step Ts = 0.01ms .
The resulting activation maps in the selected areas are also shown in the second column of
Fig. 4.2. Eq. (4.8) was next used to calculate the electrograms recorded by the electrode
array. Since this high temporal resolution complicates the subsequent parameter estimation,
the resulting electrograms and the stereotype V0(t ) were down-sampled by a factor of 5,
which increases the sampling period of the data to Ts = 0.05ms. Note that we made sure
the upstroke phase of V0(t ) is preserved after down-sampling.

We then use Eq. (4.18) to estimate the conductivity maps of each tissue, assuming that
the isotropic ratio αn and fiber rotation angle θn are known and constant (the same values
that were used in generating the data). To reduce the number of unknowns, the modeled
cell size in the inverse problem was considered three times bigger than the initial cell size
used in the forward model simulation. The inter-electrode distance was considered three
times the modeled cell size (L = 3), i.e., nine times the initial cell size. To focus on the
performance of the conductivity map estimation algorithm itself, and to avoid the errors
in AT estimations, we use the real ATs in this simulation. For each modeled cell, we
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used the activation time of the central cell of the 3×3 block of initial cells that it covers.
Obviously using the ATs estimated from electrograms and interpolating them for higher
resolution modeled cells introduces inaccuracies in estimating the conductivity map. We
will later demonstrate how these inaccurate ATs affect the conductivity estimation. The
equations derived in Section 4.2.3 were then used to calculate the mixing matrix Mτ, and
finally Eq. (4.18) was used to estimate the conductivity maps. The resulting conductivity
maps Σ̂C M M are shown in the third column of Fig. 4.2. Since the focus of this study is on
introducing the model itself and not on optimal tuning of its parameters, we used values that
yielded visually good results in all simulations, which are, λ1 = 1e9, λ2 = 1e8, µ1 = 1e4,
µ2 = 1e4, µσ = 0.9, and the number of iteration Nitr = 100.

For reference, we use the apparent conductivity map estimation using the Eikonal-
diffusion (ED) equation [50]. To the best of our knowledge, this is the only similar ap-
proach that estimates electrical conductivity map and is also applicable to our data. We
also provided the the local conduction velocity map [53] as a commonly used approach in
the literature for analysis of slow conduction and conduction block in tissue. CV for each
cell is determined as the length of the wavefront propagation velocity vector with its two
elements along the rows and columns direction. The velocity in rows (columns) direction is
computed as the cell-to-cell distance over the activation time delay between the cell and its
neighbouring cell in the next row (column). This is because in all our AMs the propagation
is along the increasing rows and/or columns direction.

Notice that unlike CMM and ED, CV does not provide a measurement of conductivity
but only measures the local velocity of the wavefront propagation. The estimated CV map
and the estimated conductivity map from the ED equation, are also plotted in the right two
columns of Fig. 4.2. As shown in the figure, the CV map only provides an overview of areas
with fast and slow conduction which cannot be directly connected to tissue conductivity
and thus electropathology in tissue. ED, on the other hand, performs well for isotropic and
rather homogeneous tissues, but provides inaccurate results around boundaries of the tissue
(case M1 and M2), the main diagonal of the coordinate system, and around the boundaries
of the blocks. It also completely fails to provide any reliable results in case of anisotropic
tissue, which is the case shown in M3. The results in general show that the proposed method
outperforms the two reference methods.

Fig. 4.3 demonstrates two other examples, denoted by M4 and M5. Different from the
simulation in Fig. 4.2, the conductivities are now estimated using the ATs that are estimated
from low resolution electrograms instead of using the true ATs. The ATs are estimated by
finding the minimum of the first time derivative of electrograms, and linearly interpolated to
obtain a higher resolution activation map for all modeled cells. The tissue in M4 is isotropic
while the tissue in M5 is anisotropic. All other parameters used in theses simulations are
equal to those used in generation of Fig. 4.2 and only the conductivity maps are different,
which are plotted in the first column of Fig. 4.3. The ground truth ATs and the estimated
ATs from electrograms are also shown in Fig. 4.3. The proposed CMM and ED were used
for estimation of conductivity and the results are shown in the last two columns of Fig. 4.3
respectively. Notice that we did not include CV in this figure. As can be seen, by comparing
the estimated AM with the true AM, the estimated ATs are less accurate in areas with
blocks. These inaccurate estimations cause the blocks to appear much smoother, or they
are even missed. This can also be affected by the size of the block and its geometry with
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respect to the wavefront propagation direction. As shown in the simulations, the proposed
CMM performs better than the ED because it also depends on the final electrograms and
not only on the estimated ATs.

Fig. 4.4 demonstrates the robustness of the model with respect to inaccurate local acti-
vation times. The first row shows the estimated conductivity map and conduction velocity
map of the simulated tissue M2 that was already presented in Fig. 4.2. The second to fourth
row present three realizations of parameter estimation when uniformly distributed random
errors in range of [−εm ,εm] ms are added to the true activation times. Note that the aver-
age delay between two neighboring modeled cells in the true activation map is about 0.5
ms. The conduction velocity maps are provided for comparison. As can be seen, the con-
ductivity map is less affected by the errors in activation times than CV map due to: (i)
its dependency on the electrograms morphology and not only on the estimated activation
times, and (ii) the regularization terms in conductivity estimation using Eq. (4.17).
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Figure 4.4: The first row demonstrates the estimated conductivity map (using the proposed approach) as well as
the estimated conduction velocity map for the simulated electrograms already presented in M2 in Fig. 4.2. The
second to fourth row show the same estimated parameters, where uniformly distributed local error, in range of
[−εm ,εm ], are added to the true activation times.
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4.5. EXPERIMENTS ON CLINICAL DATA
In this section we apply the proposed method to clinically recorded data. The epicardial
electrograms used in this study were recorded using a 192-unipolar electrode array (8×24)
with 2 mm inter-electrode distance and 0.45mm electrode diameter. The electrode array
is subsequently positioned on 9 mapping atrial sites using the anatomical borders, visually
by the surgeon. The array records 5 seconds of sinus rhythm and 10 s of induced atrial
fibrillation (IAF) signals at each site. This technique was performed in more than 400
patients of 18 years and older, with coronary and/or structural heart disease, with or without
AF, electively scheduled for cardiac surgery and a ventricular ejection fraction above 40%.
We have selected four representative patients from the database denoted by P1 to P4, and
only used the signals recorded from a fixed location in the middle of the right atrium. The
electrograms for P1 to P3 are recorded during SR, and the electrograms for P4 are recorded
during IAF. The acquired signals are amplified, filtered (bandwidth 0.5 to 400 Hz), sampled
(1 kHz), analogue to digital converted (16 bits) and recorded on a hard disk. More details
on the mapping approach and the electrode array specifications can be found in [5].

Before employing Eq. (4.18) to estimate the tissue conductivity, we need to perform
some preparation steps. First the tissue surface is meshed with a 2D mono-layer grid where
each element on the grid is assumed to be a cell. Although a smaller cell size provides
a more accurate estimation of conductivity, to avoid numerical complications and reduce
the number of unknowns in our model, we select the largest possible cell size that still
reasonably models the electrograms. Therefore, in our simulations the modeled cell size
equals ∆l = 0.2/3=0.067cm which is one third of the inter-electrode distance leading to
L = 3. After gridding the tissue surface the inverse of the cell to electrode distances are
calculated and stored in the matrix R.

The ATs are estimated using the maximum negative slope of the electrograms followed
by a 2D interpolation. This provides good estimates of the ATs under the assumption of SR,
and a single smooth wavefront which holds for the P1 to P3. The resulting activation maps
are demonstrated in Fig. 4.5, where the electrode locations are marked by the *. We also
use the same approach to estimate the ATs for P4 whose activation map is demonstrated
in Fig. 4.6. As can be seen, two wavefronts enter the recording area and collide, and as a
result, some electrograms are fractionated. This implies that our approach might provide
faulty and smooth ATs that will eventually affect the estimation of conductivity map as
already demonstrated in simulated tissues in Fig. 4.3.

After completing the activation map, we can build Vτ in Eq. (4.9) by shifting the stereo-
type V0(t ) with respect to the estimated ATs. The matrix Φ containing the recorded elec-
trograms was initially normalized to have a zero average and a minimum to maximum
amplitude of 1. Although we have not measured the tissue fiber direction at the recording
site, An = I for all cells seems reasonable enough with respect to the isochrones geome-
try. Since the conduction velocity across the x-axis is almost twice its value across the
y-axis, we set α2

n = 0.25. After calculating all necessary parameters, the equations used in
Section 4.2.3 were employed to compute the mixing matrix Mτ with k = 1/300. Finally,
Eq. (4.18) was used to estimate the conductivity map which are demonstrated in the second
column of Fig. 4.5 and Fig. 4.6. The optimization parameters used in these simulations are
λ1 = 2, λ2 = 2, µσ = 0.8, µ1 = 1, µ2 = 1, Nitr = 100. Note that such ranges of variation in
the conductivity within a small area is acceptable, as demonstrated in a previous study on
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Figure 4.5: The estimated activation map (first column) as well as the estimated conductivity map (second column)
from the electrograms recorded at the right atrium of three different patients during one heart beat in SR. The
electrode locations are indicated by *. Clinically recorded electrograms of patients P1, as well as the simulated
electrograms using the proposed approach, are also demonstrated in the third column.

similar clinical mapping data [54]. However, these ranges can be further improved by the
correct tuning of the regularization parameters. This is deferred to future work.

There is no ground truth to compare the conductivity map to. Therefore, to demonstrate
the performance of the model, Fig. 4.5 also shows the 5×5 clinically recorded electrograms,
as well as the modeled electrograms for the same recording in P1. Fig. 4.6 also demonstrates
the recorded and simulated electrograms of P4 during IAF. The estimated σ in combination
with the proposed CMM in Eq. (4.16) were used to generate the modeled electrograms.
As we can see, despite the low gridding resolution and all simplifications we made in this
study, the real and modeled signals match reasonably, especially around the AT of each
electrogram. For IAF data in P4, the approach can, to some extent, follow the morphology
of the fractionated electrograms, except for the sharp deflections as in Φ6. This is partly due
to the errors in AT estimation of the fractionated electrograms, and the smooth changes in
the AM due to linear interpolations. Moreover, since the electrical propagation outside the
boundaries of the simulated tissue is neglected, the simulated electrograms at the boundaries
are less accurate.
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Figure 4.6: The estimated activation map (top left) as well as the estimated conductivity map (top right) from the
recorded electrograms during induced AF. The recorded electrograms of each electrode as well as the simulated
electrograms are also plotted.

4.6. DISCUSSION AND CONCLUSIONS
In this study we developed a compact matrix model for atrial electrograms CMM to show
its linear dependence on the conductivity vector, enabling the estimation of this parame-
ter from the recorded electrograms. The results show that despite the low resolution and
all simplifying assumptions, the model can efficiently estimate the conductivity map and
regenerate realistic electrograms, specially during sinus rhythm. We also provided the re-
sults of two other approaches, namely, conductivity estimation based on Eikonal-diffusion
equation and conduction velocity estimation. The provided examples show that our method
outperforms the other two approaches especially in case of anisotropy and inhomogeneity
in the tissue.

However, we need to acknowledge that the presented algorithm may not perform well
in cases where our underlying assumptions are not valid. These can happen in two cases.
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First, when the wavefront is not smooth, as is the case during AF. In this case, multiple
wavefronts enter the area of interest simultaneously or one wavefront breaks into multiple
wavelets due to the inhomogeneity in the conductivity. This complicates the estimation
of the activation times and results in an inaccurate activation map and consequently an in-
accurate conductivity map. Therefore, more robust AT estimation algorithms need to be
developed. Second, for 3D tissues where each layer of tissue might have a different con-
ductivity map and wavefront propagation. In this case our model, like any other approach
that uses electrograms, images all the activities on the 2D tissue surface and ignores the un-
derlying layers and is therefore not valid. Although this can be partly solved by developing
3D models of the tissue following the same principles as 2D, the main problem would be
the estimation of the ATs in the underlying layers which is currently not possible in clinical
recordings.

Future work therefore includes the development of a better algorithm for the estimation
of ATs, analyzing the efficiency and accuracy of various alternative regularization functions
and algorithms for solving the inverse problem, as well as a discussion on the selection of
the regularization parameters.
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IMPROVED LOCAL ACTIVATION

TIME ANNOTATION OF
FRACTIONATED

ELECTROGRAMS

Local activation time (LAT) annotation in unipolar electrograms is complicated by inter-
ference from nonlocal atrial activities of neighboring tissue. This happens due to the spa-
tial blurring that is inherent to electrogram recordings. In this study, we aim to exploit
multi-electrode electrogram recordings to amplify the local activity in each electrogram
and subsequently improve the annotation of LATs. An electrogram array can be modeled
as a spatial convolution of cellular transmembrane currents with an appropriate distance
kernel, which depends on the cells’ distances to the electrodes. By deconvolving the effect
of the distance kernel from the electrogram array, we undo the blurring and estimate the
underlying transmembrane currents as our desired local activities. However, deconvolution
problems are typically highly ill-posed and result in unstable solutions. To overcome this
issue, we propose to use a regularization term that exploits the sparsity of the first-order
time derivative of the transmembrane currents. We perform experiments on simulated two-
dimensional tissues, as well as clinically recorded electrograms during paroxysmal atrial
fibrillation. The results show that the proposed approach for deconvolution can improve the
annotation of the true LAT in the electrograms. We also discuss, in summary, the required
electrode array specifications for an appropriate recording and subsequent deconvolution.
By ignoring small but local deflections, algorithms based on steepest descent of the elec-
trogram deflection are prone to generate smoother activation maps. However, by exploiting

This chapter is based on the article published as "Improved local activation time annotation of fractionated atrial
electrograms for atrial mapping" by B. Abdi, R.C. Hendriks, A.-J. van der Veen, N.M. de Groot, in Computers in
Biology and Medicine, 2020, 117 , p.103590.
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multi-electrode recordings, we can efficiently amplify small but local deflections and reveal
new details in the activation maps that were previously missed.

5.1. INTRODUCTION
Atrial electrograms (EGMs) recorded during high resolution atrial mapping, as well as
their corresponding activation maps, facilitate the identification and localization of potential
triggers and substrates perpetuating atrial fibrillation (AF). They can also be used to guide
cardiologists through treatment approaches such as EGM based ablation therapies [11].

An EGM recording is an aggregation of the cellular activities that are in the neighbor-
hood of an electrode. How strong each individual cell contributes to the total aggregated
potential depends on the distance of the cell to the electrode, as well as on the electrode
dimension [55]. The depolarization wavefront propagation in a rather homogeneous tissue
with a uniform excitation wavefront results in a smooth stereotype atrial activity: a positive
spike followed by a negative deflection in unipolar EGMs. In these cases, the local activa-
tion time (LAT) of the cells that are right under the electrode coincides with the maximum
negative deflection or the steepest descent (SD) of the electrogram.

However, if the tissue is inhomogeneous or multiple excitation wavefronts are propa-
gating in the electrode neighborhood, the recorded EGM may contain nonlocal (far-field)
deflections from the so called “distant active membrane" [56]. In such cases, the steepest
descent annotated as the LAT might belong to a far-field excitation and not to the local
activity. This makes the estimation of LATs prone to errors and will negatively affect the
estimation of other parameters that depend on LATs, such as conduction velocity or tissue
conductivity [57]. This, in turn, complicates the analysis of EGM recordings and the under-
lying atrial substrate for AF by adding confusion about the origin of observed components
[58]. As shown in a study on bipolar electrograms in [59], 67% of complex fractionated
electrograms represent nonlocal activities and are thus not consistent with spatial disorga-
nization in the tissue.

To attenuate the effect of nonlocal activities, bipolar electrograms are alternatively used
in many studies. However, these recordings suffer from serious drawbacks including sen-
sitivity to propagation direction and inability to provide no useful information about the
potential distribution in the electrogram. Many other studies directly focus on improv-
ing LAT estimation in fractionated atrial electrograms. A review of such methods can be
found in [29]. Some of these approaches try to make use of spatial information offered by
multi-electrode recordings. These include application of cross-correlation, spatial filtering,
spatial gradient or spatial deconvolution, among which only the spatial deconvolution is
formulated according to an electrophysiological model of the tissue. It benefits from the
fact that a multi-electrode electrogram recording can be modeled as a convolution of the
cellular transmembrane current with a spatial filter that depends on the electrode diameter
and its distance to the cells [60].

In this chapter, we also exploit the convolutive electrogram model for a better anno-
tation of the local deflection (and respectively the local activation time) in fractionated
electrograms. We first present a model for the EGM array that reflects the spatial convolu-
tion. By employing this model, we formulate a deconvolution problem to estimate the local
activities. However, the deconvolution problem is under-determined and results in unstable
solutions. To overcome this issue, some studies employ prior knowledge such as planar
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wavefront propagation [60]. Other studies use spatial interpolation and filtering to artifi-
cially introduce more data points [55]. None of the assumptions in these approaches are
satisfactory from a physiological point of view. In this chapter, we propose to use a regular-
ization based on sparsity of the first-order time derivative of the electrograms to solve the
inverse problem of local activity estimation. We solve the proposed deconvolution problem
using the Split Bregman method [51]. Overall, the approach is computationally efficient,
does not suffer from boundary artifacts, and can also perform with incomplete observations.
Our results on simulated and clinically recorded data show that the proposed approach can
efficiently amplify the local activities in an EGM and outperforms the reference approaches
in LAT estimation.

5.2. METHOD
5.2.1. ACTION POTENTIAL PROPAGATION
As shown in Section 2.5.2, an electrogram is the record of changes in the potentials of the
many cells surrounding an electrode. These changes in cellular potentials are the result
of action potential propagation in the tissue. This propagation in a two-dimensional (2D)
tissue can be modeled using the following reaction-diffusion equation [12]

C
∂V (xc , yc , tc )

∂t
= I (xc , yc , tc )+ Ist(xc , yc , tc )− Iion(xc , yc , tc ,V ), (5.1)

where V (xc , yc , tc ) is the cellular potential at location (xc , yc ) and time tc , C ' 1µFcm−2 is
the total membrane capacitance, Ist is the stimulus current, and Iion is the total ionic current
computed according to the Courtemanche model in [33]. The transmembrane current is
given by,

I (xc , yc , tc ) = S−1
v ∇·Σ(xc , yc )∇ V (xc , yc , tc ), (5.2)

where Sv ' 0.24µm−1 is the cellular surface-to-volume ratio, and Σ(xc , yc ) the intracellular
conductivity tensor.

5.2.2. ELECTROGRAM MODEL
An electrogram can be modeled as the weighted summation of cellular transmembrane
currents. The weights are equal to the inverse of the cell-to-electrode distance. The distance
between a cell at position (xc , yc ) and an electrode at position (xm , ym) and a (constant)

height z0 above the 2D tissue equals
√

(xc −xm)2 + (yc − ym)2 + z2
0 . The electrogram can

thus be modeled as [12]

φ(xm , ym , tc ) = 1

4πσe

∫
A

I (xc , yc , tc )√
(xc −xm)2 + (yc − ym)2 + z2

0

dA(xc , yc ) , (5.3)

for m = 1,2, · · · , M , where M is the total number of electrodes, A is the area in which the
modeled cells are located, A(xc , yc ) is the area variable, and σe is the constant extra-cellular
conductivity.
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Eq. (5.3) represents a 2D spatial convolution of I (xc , yc , tc ) with a distance kernel R0

given by

R0(xc , yc ) = 1√
x2

c + y2
c + z2

0

. (5.4)

A plot of R0 is shown in Fig. 5.1 (a). The spatial sampling implemented by the electrode
array is modeled by a sampling operator S0,

S0(xc , yc ) =
M∑

m=1
δ(xc −xm)δ(yc − ym)

where δ(xc ) is a Dirac delta impulse. Note that we introduce S0 to only select (sample) those
cells that have an electrode on top. In simple words, to move from the higher-resolution
representation (in terms of the cell locations) to a low-resolution representation (in terms of
the electrode locations). The measurement model in Eq. (5.3) can thus be written as

φ(xc , yc , tc ) = 1

4πσe
S0(xc , yc )

(
R0(xc , yc )∗∗ I (xc , yc , tc )

)
, (5.5)

where ∗∗ denotes the 2D spatial convolution. Note that we have assumed the electrode
diameter can be neglected in the model for R0. We will motivate this assumption in Sec-
tion 5.3.6.

To be able to invert the model, we discretize Eq. (5.5) in space as well as in time. In
space, we use source clamping and replace each block of cells in the three dimensional
tissue with a modeled “cell” on a uniform 2D grid of cells with cell-to-cell distance ∆x
and N = rc × cc the total number of cells. symbols rc and cc are the number of rows and
columns of the grid, respectively. We also sample in time with sample period Ts and total
number of time-domain samples T . The discretized convolutive model of the electrogram
then becomes

φ[x, y, t ] = c S0[x, y]
(

R0[x, y]∗∗ I [x, y, t ]
)
, (5.6)

where x, y, t are integers that index the sample grid, and c = ∆x2/4πσe contains all con-
stants and will be omitted for simplification. The sampled distance kernel R0[x, y] is repre-
sented by a limited support of size (2b+1)×(2b+1) elements. To implement the convolution,
the modeled 2D grid of cells need to be extended by b cells in each direction. The sam-
pling operator S0[x, y] selects only the M spatial locations on the grid on which we have
measurements, and replaces the other locations with zero. This discretized model is easily
translated into a matrix model [57].

5.2.3. TRANSMEMBRANE CURRENT ESTIMATION
Our aim, in this section, is to estimate the transmembrane currents I [x, y, t ] in Eq. (6.4),
which is both a deconvolution and an interpolation problem. Basically, the deconvolution
can be performed by using a loss function that minimizes the least square error between the
target value φ and the estimated value S0(R0∗∗ I ) (first term in Eq. (5.7), below). However,
since the number of available electrograms is less than the number of modeled cells and the
distance kernel has a low-pass filtering effect, the inverse problem is highly ill-posed and
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Figure 5.1: (a) The distance kernel calculated from Eq. (5.4) with z0 = 1 mm and (b) a cross section of the
distance kernel at the central row with its FWHM denoted by vertical red lines. (c and d) The cross section of the

distance kernel at the central row for (R0) and (R ′
0), without and with considering the effect of the electrode

diameter, respectively. The electrode diameter equals d0 = 0.45mm and d0 = 1mm in (c) and (d), respectively.

results in unstable solutions. To stabilize the solution, we need to introduce regularization
constraints that rule out physically unlikely solutions by employing prior knowledge of the
expected solution.

A classical regularization technique in this context is Tikhonov regularization [61],
however, it provides only a spatial constraint, and the underlying assumptions on the prior
are not strong enough to provide for much interpolation. A priori space-time information
such as a specific wave pattern propagation is too specific and does not hold if the EGMs
are fractionated. On the other hand, a priori information should be simple enough to al-
low an efficient problem solving. As shown in many studies, the sharp deflections in an
electrogram are of high importance in the analysis of wave propagation and AF. These de-
flections are visible in the first-order time derivative of the transmembrane current, denoted
by I ′[x, y, t ]. A prior model is that the temporal derivative should have only a few nonzero
elements, which are its fast temporal deflections. Note that the assumption may not hold
for electrograms recorded at areas with continuous electrical activity and no distinct deflec-
tion (e.g., CFAEs). However, in most types of fractionated electrograms, specially those
due to far-field atrial activities, lines of blocks and wave collisions, the number of deflec-
tions is still small and the first-order time derivative of the transmembrane current can be
considered sparse. In an optimization framework, this is implemented by imposing an `1-
norm constraint as the regularization function (the second term in Eq. (5.7), below). The
`1-norm which is the sum of absolute values, is known to induce sparsity in the solution.
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The resulting regularized optimization problem that we propose is thus given by

min
I

‖φ−S0(R0 ∗∗ I )‖2
2 + λ‖I ′‖1 (5.7)

where
‖I‖2

2 :=∑
x

∑
y

∑
t
|I [x, y, t ]|2 , ‖I ′‖1 :=∑

x

∑
y

∑
t
|I ′[x, y, t ]|

and λ is a regularization parameter that is a weight on the importance of the regularization,
which will be discussed further in Section 5.3.7.

Due to the coupling between the `1-norm and the `2-norm terms, Eq. (5.7) is a hard
problem to solve. An efficient numerical approach to solve `1-regularized problems is the
Split Bregman algorithm [51] which splits the `1-norm and `2-norm components by intro-
ducing new variables. To efficiently employ the Split Bregman algorithm on this problem,
we propose to use two new splitting variables, Z1 = R0 ∗∗ I and Z2 = I ′. The new optimiza-
tion problem will then be

min
I ,Z1,Z2,B1,B2

‖φ−S0Z1 ‖2
2 +µ1 ‖Z1 − (R0 ∗∗ I )−B1 ‖2

2

+λ‖Z2 ‖1 +µ2 ‖Z2 − I ′−B2 ‖2
2 (5.8)

where B1 and B2 are the Bregman iterative parameters and µ1 and µ2 are the penalty pa-
rameters. Due to the decoupling, we can now break the problem in Eq. (5.8) into five easy
steps. Each step updates the value of one of the unknown parameters I , Z1, Z2,B1, and B2.
A proper representation of Eq. (5.8) for structured matrix computations and a detailed de-
scription of the five steps taken to solve it, can be found in our previous work in [62], where
in a preliminary study, we focused on the proper formulation of the present problem and the
derivation of efficient solutions for its steps. In total, the algorithm has a fast convergence
rate to a reasonable precision in practice by avoiding costly matrix inversion and performing
the computations in the Fourier domain.

Note that the modeled cell size ∆x that we use in the inverse problem to estimate the
transmembrane currents is much larger than a real cell size and, as mentioned before, each
modeled cell in our simulation represents a group of cells in the 3D real tissue. Therefore,
the estimated transmembrane currents would actually be more localized electrograms than
the exact cellular transmembrane currents. However, in this chapter, we will keep referring
to them as transmembrane currents.

5.3. SIMULATION RESULTS
5.3.1. STRATEGIES FOR GENERATION OF FRACTIONATED ELECTROGRAMS
To perform an instrumental evaluation of our proposed approach, we need to generate sim-
ulated fractionated electrograms. We use various patterns of heterogeneity for the tissue
conductivity map, based on the literature, to produce fractionation. This assures that the
patterns are sufficient to obtain fractionation and the resulting electrograms are representa-
tive of real clinical data. The size of each map is 101×83 cells, with ∆x = 0.6 mm. The
simulated patterns, in order of increasing level of heterogeneity, are:
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Figure 5.2: The first row of the image shows four normalized conductivity maps (CM) denoted by T1 to T4. The
second row shows the corresponding true activation maps (AM) and the third row shows three example

electrograms recorded by electrodes at locations A, B, and C denoted by the red ∗. The true LAT of each
electrogram is denoted by vertical red dashed lines.

1. A small conduction block: A homogeneous tissue except for two small areas with
smaller conduction in the center (see T1 in Fig. 5.2). Notice that T1 is not represen-
tative of real tissue, but serves as a simple example for visualization purposes.

2. Zones of no conduction: In this model the heterogeneities in conductivity are incor-
porated as a set of randomly positioned lines of blocks, disconnecting the coupling
between the cells on the grid [63] (see T2 in Fig. 5.2).

3. Percolation: the conduction disturbance in this approach is modeled by randomly
disconnecting the coupling between some modeled cells and their neighbors [64]
(see T3 in Fig. 5.2).

4. Zones of no conduction and percolation: both approaches are used simultaneously to
generate new pattern of heterogeneity (see T4 in Fig. 5.2).

To model action potential propagation in the simulated tissues, Eq. (5.1) is discretized
and solved using a finite difference method with no flux boundary condition. A more de-
tailed description of the simulation steps and parameters can be found in Chapter 4. The
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Figure 5.3: The zoomed activation maps around four representative fractionated electrograms selected from T1 to
T4 in Fig. 5.2 are shown in the first row. The electrogram location in the center is denoted by red *. The second
row shows the fractionated electrograms. The true LAT of each electrogram is denoted by red vertical dashed line.
The third and fourth row show the time derivative of the electrograms, and the time derivative of the estimated
transmembrane current with their steepest descent denoted by blue and red vertical lines, respectively.

resulting activation maps are shown in the second row of Fig. 5.2. Each pixel in the activa-
tion map represents the true activation time of its corresponding cell which is annotated as
the time when the cell potential V reaches a threshold value of -40 mV in the depolariza-
tion phase of its action potential. The white pixels belong to the cells that were positioned
on a block and did not get activated. Finally, Eq. (5.3) in the discritized form is used to
compute the electrograms recorded by an assumed 15×9 electrode array (M=135), with an
inter-electrode distance of ∆l = 3∆x, covering the 43×25 central cells and a constant value
of z0 = 1 mm (which will be discussed in Section 5.3.4). We used the largest kernel size
possible, (2b+1)×(2b+1) = 83×83 to compute the simulated electrograms. The last row of
Fig. 5.2 shows the simulated electrograms recorded at three locations on the tissue denoted
by the ∗. The true LAT of each electrogram which equals the activation time of the cell that
is exactly under the electrode, is also denoted by red vertical dashed lines. Due to the het-
erogeneity in the tissues, the recorded electrograms have multiple deflections. Moreover,
as we move from T1 to T4, the level of fractionation increases and the deflections get less
distinct.

5.3.2. TRANSMEMBRANE CURRENTS

To visualize the performance of our proposed approach, we start with examples of single
electrograms. Fig. 5.3 shows four examples of fractionated electrograms selected from T1
to T4, respectively. As can be seen in the zoomed activation maps of the 21× 21 cells
surrounding the fractionated electrogram, the slow conductions and blocks in the wave
propagation induce fractionation in the recorded electrogram. The first-order time deriva-
tives of the electrograms are plotted in the second row. As can be seen, the local deflection
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Figure 5.4: Two example electrograms in which both SDΦ nd SDI fail to estimate the true LAT. The first column
shows the zoomed activation maps around the selected electrograms from T2 and T4. The second column shows
the electrograms with the true and estimated LAT using both approaches. The third column shows normalized Φ′

and I ′. You can see how the deflection with the steepest descent changes in the second row.

that coincides with the true LAT, is not the steepest descent. These examples show that,
although in most studies the steepest descent is used as the LAT, it may not provide reliable
results in fractionated electrograms.

We used the 15×9 electrogram array and Eq. (5.8) to estimate the transmembrane cur-
rent I [x, y, t ]. For simplification the limited kernel size of (2b +1)× (2b +1) = 13×13 was
used in the inverse problem. Since the focus of this study is on introducing the approach
itself and not on optimal tuning of its parameters, we used values that yielded good results
in LAT estimation in all simulations, which are, λ= 7×10−4, µ1 = 1, µ2 = 1, and the number
of iteration Nitr = 100.

The first-order time derivative of the estimated transmembrane currents are plotted in
the third row of Fig. 5.3. As can be seen, the local deflections are amplified and the far-
field activities are attenuated. Now as expected, the steepest descent of the transmembrane
currents coincides with the true LAT. Fig. 5.4 also shows two examples where both methods
fail to estimate the correct LAT. This highly depends on the wave propagation pattern but
mostly happens around areas with a complex propagation pattern, with a strong far-field
activity that is rather close to the electrode location.

As can be seen, the estimated transmembrane currents do not look as sharp as expected
and still some level of fractionation is observed. This is because the estimation of the
transmembrane current in the inverse problem is highly ill-posed and there is no guaran-
tee that the resulting electrograms should look like as expected specially in case of frac-
tionation. This can be imposed on the problem by using different regularizations such as
imposing sparsity constraint on the transmembrane current itself to provide sharper results
or minimizing the error between the estimated currents and a stereotype transmembrane
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current. However, our goal in this chapter is to improve LAT estimation, and our exper-
iments with different regularization terms shows that the current problem formulation in
Eq. (5.7) provides the best results. That is because imposing the sparsity constraint on the
first time-derivative of the transmembrane current helps to preserve the sharp deflections of
the transmembrane current (that are later annotated as LATs) while performing deconvolu-
tion.

5.3.3. LAT ESTIMATION
Since the transmembrane currents are less affected by the far-field activities, they should
provide a better estimation of LATs than the electrograms. To evaluate the performance
of our proposed approach (SDI) in LAT estimation, we have compared its results with two
reference approaches: (i) steepest descent of the electrograms, and (SDΦ) (ii) maximum of
the spatial gradient of the electrogram array (SGΦ) [65]. From each of the three conductivity
patterns demonstrated as T2, T3 and T4 in Fig. 5.2, 5 randomly generated tissues were
simulated. This resulted in 675 simulated electrograms for each pattern. The proposed and
the two reference methods were used to estimate the LATs in each electrogram.

In the estimation of the error, electrograms that were positioned on the cells that did
not get activated were excluded. This resulted in 658, 650, and 649 simulated electrograms
in tissue type T2, T3 and T4, respectively. The resulting root-mean-square errors (RMSE)
between the true LAT and the LAT estimated by each approach per tissue type are shown in
Table 5.1. On average, in all tissue types, the proposed approach outperforms the reference
approaches in LAT estimation.

Table 5.1: RMSE (ms) in LATs estimation of the simulated electrograms using the proposed approach SDI, the
steepest descent SDΦ, and the maximum spatial gradient SGΦ.

T2 T3 T4
SDI 2.5 2.4 1.8
SDΦ 3.1 4.2 2.2
SGΦ 4.7 7.0 3.0

For a better comparison, Fig. 5.5 shows the histogram of the absolute errors (larger than
2 ms) in LAT estimation by SDΦ and SDI. As can be seen, the number of errors with large
values are much larger with SDΦ than with SDI. Since these large errors belong to areas
with blocks in the tissue, this shows that a large number of the blocks and heterogeneities
are ignored by SDΦ.

As an example, Fig. 5.6 demonstrates the true activation map of the 15×9 electrogram
array recorded on T1, as well as the three estimated activation maps using SDI, SDΦ, and
SGΦ. As can be seen, there is an area with slower conduction in the center of the tissue
which causes fractionation in the resulting electrograms. Since this area is small and has
a low conductivity, its local deflections are smaller than the nonlocal deflections caused by
far-field activities of the neighboring cell. As a result, SDΦ and SGΦ both miss the local
deflections, and annotate the far-field activities as the LAT. On the other hand, the proposed
approach first amplifies the local activities and then annotates them as the LAT, which helps
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to preserve the block in the center.
Fig. 5.7 also provides another example of a simulated tissue with two extensive lines of

block that can potentially lead to a reentry circuit (denoted by the white arrows) in larger
scales. The white rectangle in the middle of the tissue denotes the location of the 15× 9
electrode array. The activation maps estimated using the steepest descent SDΦ and our
proposed approach SDI of the simulated electrograms are also shown. As can be seen, no
evidence of the block lines is visible in the SDΦ. This is because the local deflection cased
by the wave propagating in between the two lines is very small compared to the strong
activity of the neighboring cells. On the other hand, our proposed approach SDI accurately
annotates the small local deflections except for the two electrodes at the boundaries due to
the incomplete observations in their neighborhoods.

5.3.4. ELECTRODE HEIGHT Z0
Throughout this chapter, we used a constant value z0=1 mm for the electrode height, as
suggested in [66, 67]. In this section, we aim to examine if this value is applicable in our
simulation setup and how it affects the simulated electrograms. To do so, we have designed
an experiment as follows: (i) first, an 8×8 subsection of the clinical electrogram array with
equal number of rows and columns is selected. To avoid further complications, a subsection
of the array with non-fractionated electrograms is selected. (ii) The activation map of the
selected subsection is estimated and interpolated (using cubic interpolation). The resolution
is increased by 3 times in both the x and the y direction. The higher resolution activation
map is used as the activation map of the modeled cells whose sizes are one-third of the inter-
electrode distance. (iii) To regenerate electrograms based on the higher resolution activation
map, the simplified electrogram model in Chapter 4 is used. It employs the simplifying
assumption that once activated, all cells produce the same stereotype action potential V0(t ).
The stereotype V0(t ) is estimated from the Courtemanche model for a single cell. The action
potential produced by each modeled cell will therefore be Vn(t ) = V0(t −τn), where τn is
the activation time of the cell. (iv) The transmembrane currents are then calculated using

Figure 5.5: The histogram of absolute errors (larger than 2 ms) in LAT estimation using SDΦ and SDI on
simulated electrograms.
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Figure 5.6: The true (simulated) activation map of the 15×9 electrogram array in T1, as well as the estimated
activation maps using the proposed approach SDI, the steepest descent SDΦ, and the maximum spatial gradient

SGΦ, respectively.

I (x, y, t ) = S−1
v σ∇·∇ V (x, y, t ), assuming the conductivity is the same in the recording area

as the propagation is also homogenous. We further normalize the amplitudes of regenerated
and clinical electrograms and ignore all the constants. (v) Finally, Eq. (5.3) is used to
calculate the regenerated electrograms from the transmembrane currents. Since the LATs
and other parameters are estimated from the clinical electrograms, the only left parameter
that can affect the morphology of the regenerated electrograms is z0.

As an example, Fig. 5.8 (a) shows the high resolution activation map estimated from
the selected 8×8 subsection of a clinical electrogram array. Fig. 5.8 (b, c and d) show a
clinical electrogram as well as its corresponding regenerated electrograms (using the above
approach) with three different values of electrode height: z0 = 1 mm, z0 = 0.2 mm, and
z0 = 5 mm, respectively. The electrogram location is denoted by the red * on the activation
map. As can be seen, the effect of z0 is more evident on the steepness of the main de-
flection and the regenerated electrogram with z0 = 1 mm has the best match to the clinical
electrogram. Although an extension of the above approach can be used for the systematic
estimation of z0, the accuracy of the result will largely depend on the accurate estimation of
other underlying parameters including activation map, conductivity map and the stereotype
V0. This makes the correct estimation of z0 in a clinical setup prone to error and almost
impractical.
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Figure 5.7: Simulated tissue with two parallel vertical lines of block close to the center of the tissue that can
potentially lead to a reentry circuit (denoted by white arrows). The white rectangle in the middle of the tissue

denotes the location of the 15×9 electrode array. The activation maps estimated using the steepest descent SDΦ

and our proposed approach SDI are also shown.

Fig. 5.9 shows two examples of using wrong values for z0 in our proposed inverse
problem for estimating LATs for T1 in Fig. 5.6. The values used in the inverse problem are
z0 = 0.5 mm, z0 = 1 mm, and z0 = 2 mm, while the true value used in the forward model for
generating the electrograms is z0 = 1 mm. As can be seen, using smaller values for z0, to
some extent, will still provide better results than SDΦ. This is because the distance kernel
has a larger value on its central element and using it in the inverse problem will sharpen the
electrograms.

5.3.5. SPATIAL SAMPLING RESOLUTION
The required inter-electrode distance for spatial sampling of the tissue using the electrode
array depends on the spatial bandwidth (Nyquist rate) of the electrograms. Although the
true spatial bandwidth of the underlying electrogram is at the micrometer level and un-
known, it is unavoidably filtered by the response of the measurement electrodes. In other
words, the blurring caused by the distance kernel R0 limits the spatial resolution of the
recorded electrical activity. The distance kernel (also known as point spread function (PSF)
in the image processing literature [68, 69]) performs as a low-pass filter and inevitably
removes the high-frequency components of the recorded signal.

The so-called “Full Width at Half Maximum (FWHM)” of the distance kernel is com-
monly used as a short-hand measure of the required spatial resolution [69]. It is equal to
the width between the two points on the distance kernel where the amplitude has dropped
to half of its maximum value. Fig. 5.1 (a) shows the symmetric 2D distance kernel of size
60× 60 mm2, calculated using Eq. (5.4) with z0 = 1 mm and with ignoring the electrode
diameter. The distance kernel is normalized to have a maximum of 1. Fig. 5.1 (b) shows
a cross section of the distance kernel at the central row where the FWHM is also denoted.
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Figure 5.8: (a) The high resolution activation map estimated from an 8×8 subsection of a clinical electrogram
array. (b,c and d) The clinical and regenerated electrogram of the electrode at the location denoted by * with

z0=1 mm, z0= 0.2 mm and z0= 5 mm, respectively.

Figure 5.9: Three different values of z0 = 0.5 mm, z0 = 1 mm, and z0 = 2 mm are used in the inverse problem to
estimate LATs for T1 in Fig. 5.6. The true value used in the forward model for generating the electrograms is

z0 = 1 mm.
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For this kernel the FWHM, and therefore the maximal spatial sampling distance, equals 3.4
mm. Although sampling at Nyquist rate guarantees perfect reconstruction of the sampled
signal, a more conservative approach would be to record the electrograms at smaller dis-
tances than the FWHM. Therefore, the spatial resolution we use in our clinical setup equals
2 mm. Note that a denser electrode array will only improve the signal-to-noise ratio but will
not reduce the blurring caused by the distance kernel. Also note that the estimated maximal
spatial sampling distance is strongly dependent on the selected electrode height z0.

5.3.6. ELECTRODE SIZE
The distance kernel, and therefore the measured electrograms, also depend on the diameter
d0 of the electrodes. In this section, we investigate the effect of the electrode’s diameter
d0 on the measurement model. We describe the effect of the non-zero diameter by an
averaging of all cellular electrograms that the electrode surface covers. This can be modeled
by updating the distance kernel in Eq. (5.4) as

R ′
0(x, y) = D(x, y)∗∗R0(x, y), (5.9)

where function D(x, y) is 1 if
√

x2 + y2 < d0/2, and 0 otherwise. The convolution results in
an averaging effect over the electrode surface.

Fig. 5.1 (c and d) shows the distance kernel after considering the electrode diameter,
calculated using Eq. (5.9). In Fig. 5.1 (c) the electrode diameter is d0 = 0.45 mm. This is
equal to the electrode size we use for recording our clinical data. Fig. 5.1 (d) also shows the
PSF for d0 = 1 mm. As can be seen, the electrode size does not change the morphology of
the distance kernel considerably and its effect will be ignored in this study. This is because
of the large value of z0 which is inherent to the tissue and cannot be improved. This result
also implies that decreasing the electrode diameter to smaller values than we currently use
will not considerably improve the resolution of the electrogram recording.

5.3.7. REGULARIZATION PARAMETER λ
As discussed in Section 5.2.3, the inverse problem of transmembrane current estimation is
highly ill-posed and may result in many unfavorable solutions. To overcome this issue, we
added a regularization term to the optimization problem in Eq. (5.7). Although many regu-
larization terms can be used to stabilize the results, we opt for the sparsity of the first-order
time derivative of the transmembrane current. This helps to preserve the sharp deflections of
the transmembrane current (that are later annotated as LATs) while performing deconvolu-
tion. However, one can, depending on the application, employ different regularizations such
as imposing a sparsity constraint on the transmembrane current to provide sharper results,
or minimizing the error between the estimated currents and a stereotype transmembrane
current.

The regularization parameter λ controls the importance of the regularization term. Fig. 5.10
shows the logarithm of the RMSE in LAT estimation using SDΦ and SDI with different
values of λ for the five randomly generated tissues based on the T4 pattern in Fig. 5.2. Al-
though using larger value for λ makes the resulting transmembrane current sharper, as can
be seen, it increases the error in LAT estimation drastically. This is because the deconvo-
lution error is ignored. On the other hand, decreasing the value of λ after a certain point
causes almost no regularization and the error will stay constant.
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Figure 5.10: The logarithm of RMSE in LAT estimation using SDΦ and SDI with different values of λ for the
five randomly generated tissue based on the T4 pattern as in Section 5.3.1. The logarithm of the RMSE is

normalized so that the steepest descent has an amplitude of 1.

5.4. CLINICAL RESULTS
In this section, we applied the proposed method to clinically recorded data. The epicar-
dial electrograms used on this study were recorded using an 8×24 unipolar electrode array
(M = 192) with a 2 mm inter-electrode distance and d0 = 0.45mm electrode diameter. The
electrode array were subsequently positioned visually by the surgeon on 9 mapping atrial
sites using anatomical borders. The array records 5 seconds of sinus rhythm and 10 sec-
onds of induced atrial fibrillation (IAF) signals at each site. This technique was performed
in more than 400 patients of 18 years and older, with coronary and/or structural heart dis-
ease, with paroxysmal AF, electively scheduled for cardiac surgery and a ventricular ejec-
tion fraction above 40%. The acquired signals were amplified, filtered (bandwidth 0.5 to
400 Hz), sampled (1 kHz), analogue-to-digital converted (16 bits) and recorded on a hard
disk. More details on the mapping approach and the electrode array specifications can be
found in [5].

As with the simulated data, we used the steepest descent of the clinical electrograms
(SDΦ) as well as the steepest descent of estimated transmembrane currents (SDI) to estimate
the activation map of the electrogram array. However, we did not have access to the true
LATs to evaluate and compare the performance of these two approaches. For this reason,
we manually inspected the electrogram array to explain the differences in the resulting
activation maps and to identify the local deflections for the clinical examples shown in this
section. Although this is a quite complicated task, some spatio-temporal criteria of the
electrogram array can help us. The common criteria of nonlocal activities are: (i) having no
evidence of propagation [70], (ii) having time-equivalent deflections with lower amplitudes
at neighboring electrodes whose amplitudes decrease with distance [71], and (iii) matching
highly with the average of the neighboring electrograms [70]. While none of these criteria
alone can perfectly single out the local deflection, observing some of these criteria together
increases the probability of a correct annotation.

In the following subsections, we provide four categories of common cases where our
proposed approach provides different results compared to the steepest descent. In each
case, we use one representative example (recorded from different patients) to visualize and
discuss the results. Notice that these results are based on our visual observation on a limited
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number of patients and a more robust validation on a larger number of patients is deferred
to future work. The clinically recorded electrograms for one array (8×24 electrodes) and
Eq. (5.8) are used to estimate the transmembrane currents I [x, y, t ] and subsequently the
local deflection. It takes about 1.4 seconds to solve the deconvolution problem (with 100
iterations) for the clinical data of size M = 24∗8 and a single atrial beat (100 ms), without
increasing the resolution, and about 6.7 seconds if we increase the resolution by 9 times to
have smaller modeled cells (3 times increase in each axis) on a 2.9 GHz Intel i5 MacBook
Pro and MATLAB R2019a.

5.4.1. TURNING A SMOOTH PROPAGATION INTO A NON-SMOOTH PROP-
AGATION

The most noticeable difference between the activation maps (AMs) generated from the
electrograms SDΦ and our proposed approach using the estimated transmembrane currents
SDI is that, in general, the AMs estimated from electrograms tend to be smoother. An
example of such a case is shown as P1 in Fig. 5.11. As can be seen, SDI introduces some
heterogeneities in the area denoted by a red circle in the map, while the SDΦ shows a
homogeneous propagation. To investigate the results, we have plotted a 3×3 subsection of
the electrograms recorded in the area of interest. The electrode locations are denoted by
white dots on the AMs. The blue vertical lines denote the LAT estimated using SDΦ and
the red vertical lines denote the LAT estimated estimated using SDI. As can be seen, the
recorded electrograms are fractionated, which is an indication of a zone of slow conduction
in the tissue [72]. This observation matches with the AM we get using SDI, but not with
the AM we get using SDΦ. This is similar to the example already shown in Fig. 5.6.

5.4.2. CHANGING THE LOCATION OF THE LINE OF COLLISION OR (FUNC-
TIONAL) CONDUCTION BLOCK

Another noticeable difference between the AM generated by SDΦ and SDI, is in the location
of the line of collision or the line of (functional) conduction block. As can be seen in P2 in
Fig. 5.11, a distinct late wavefront (color coded by purple) invades the mapping area from
above. The AM estimated using the SDI shows that this wavefront covers more parts of the
mapping area compared to the AM estimated from SDΦ. It also shows that the two distinct
discontinuities in the SDΦ map are connected. To investigate the results, we have plotted a
3×3 subsection of the electrograms recorded in the area of interest. The electrode locations
are denoted by white dots on the AMs. The blue vertical lines denote the LAT estimated
using SDΦ and the red vertical lines denote the LAT estimated estimated using SDI. As
expected, the electrograms show double potentials, which is an indicator of a collision or a
functional block [72]. We can also explain the low amplitude of the second deflection by
the small area its corresponding wavefront covers. On the other hand, the other wavefront
(color coded in red, yellow and green) covers a bigger area and produces stronger activities.
As a result, the electrodes in this area record a nonlocal activity that is much stronger than
its true local activity. Moreover, on the right-hand side of the block, all electrodes have
similar LAT and there is no evidence for wavefront propagation. This is an indicator of
superposition of far-field activity. However, the local activity seems to be very small such
that it cannot even be detected using estimated transmembrane currents.
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Figure 5.11: Each row of the figure shows a different clinically recorded electrogram array denoted by P1 to P3.
The first column shows the LATs estimated from the electrograms SDΦ and the second column shows the LATs

estimated from the estimated transmembrane currents SDI. In each case some representative electrograms
belonging to the locations denoted by red dashed circles and white dots are shown at the right hand side of the
figure. The blue vertical lines denote the LAT estimated using SDΦ and the red vertical lines denote the LAT

estimated estimated using SDI. The red arrow in P3 shows a new distinct wavefront in the activation map that is
only visible in the activation map estimated using SDI. The plot at the right-hand side of P3 shows the

electrogram Φ(4,4) and the average electrogram of its 8 neighboring electrodes.
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Figure 5.12: The estimated activation maps of three succeeding atrial beats at the same location. The first row
shows the activation map estimated using SDΦ and the second row shows the activation map estimated from SDI.

5.4.3. INTRODUCTION OF MORE DISTINCT WAVEFRONTS IN THE MAP-
PING AREA

In some cases, the proposed approach introduces new wavefronts in the mapping area. P3
in Fig. 5.11 shows an example where the estimated activation map using SDΦ contains
two main distinct wavefronts, while the activation map estimated using SDI contains a new
wavefront color coded by blue and denoted by a red arrow. We have also plotted three elec-
trograms whose locations are denoted by white dots on the activation map. As can be seen,
each electrogram belongs to one of the observed wavefronts. SDΦ and SDI provide a similar
result in LAT estimation for Φ(4,3) and Φ(4,5), while they annotate two different deflec-
tions for Φ(4,4). As can be seen, Φ(4,4) is composed of 3 main deflections, two of which
coincide with its two neighbors, which implies these are the nonlocal activities. However,
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Figure 5.13: Two example electrograms from the block line in P5, the electrode locations are denoted by white
dots in the activation map. The second and the third row show the first-order time derivatives of the electrogram

and the estimated transmembrane current. The steepest point of each derivative (LAT) is denoted by vertical lines.

the second deflection does not match with the two wavefronts in its neighborhood. This in-
dicates that the second deflection belongs to the local activity. This conclusion is more clear
when we compare Φ(4,4) with the average activity of its 8 neighboring electrodes shown in
the right-hand side of P3 in Fig. 5.11. As can be seen, the difference is more distinct around
the second deflection.

5.4.4. PROVIDING MORE CONSISTENT MAPS OVER SUCCEEDING BEATS
One remarkable difference between an AM generated by SDΦ and SDI is that the proposed
approach provides more consistent activation maps over succeeding atrial beats. Fig. 5.12
shows the activation maps generated by both approaches for three succeeding atrial beats
for the same location. As can be seen, both approaches show some large conduction delays
in the area denoted by the red oval. However, the pattern is more consistent in the maps
estimated using the proposed approach (second row). Note that P4 (in Fig. 5.12) and P2 (in
Fig. 5.11) are similar. In Section 5.4.3 we provided some evidence to explain the difference
between the activation patterns generated by SDΦ and SDI.

Fig. 5.13 also demonstrates two example electrograms denoted by white dots in the line
of block of P5. The first-order time derivative of the electrograms and of the estimated
transmembrane currents are also plotted. As can be seen in both cases, the amplitude of the
smaller deflection increases after the deconvolution. This indicates that this small activation
is a local activity and not the far-field effect of the neighboring cells.

5.5. DISCUSSION AND CONCLUSION
5.5.1. SUMMARY
In this chapter, we proposed a new approach for a better estimation of local activation times
for atrial mapping by reducing the spatial blurring effect that is inherent to electrogram
recordings, using deconvolution. Employing sparsity based regularization and first-order
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time derivatives in formulating the deconvolution problem, improved the performance of
transmembrane current estimation. We solved the regularized deconvolution problem ef-
ficiently using the Split Bregman algorithm. We also discussed, in summary, the required
electrode array specifications including the electrode height, the electrode size and the re-
quired spatial resolution for an appropriate deconvolution. Unlike other approaches, our
algorithm uses electrophysiological models to incorporates spatial information to improve
LATs. We also showed, using realistic simulated tissue, that our algorithm outperforms
two reference approaches: steepest descent (SDΦ) as the most common approach for LAT
annotation, and the approach based on the spatial gradient (SGΦ) which also requires multi-
electrode recording. Our results on simulated and clinically recorded data, show that SDΦ

is prone to make the activation maps smoother by always selecting the steepest descent and
ignoring local small deflections. This arises in situations where the local activities belong to
a wavefront that only invades a small part of the mapping area. The activities generated by
this wavefront are thus smaller in amplitude compared to the nonlocal activities that belong
to a wavefront that covers a larger area. The deconvolution, on the other hand, reduces the
effect of nonlocal activities and amplifies the local activities which results in a better esti-
mation of true local deflection. This can result in estimation of AMs that are less smooth
and more irregular with probably more distinct wavefronts. It also changes the location of
estimated (functional) conduction blocks or collision lines in the tissue.

5.5.2. LIMITATIONS OF THE PROPOSED METHOD
In this study, we replaced each block of 3D tissue with a modeled cell in a 2D mono-layer
tissue with constant cell-to-cell distance, ignoring the tissue curvature and thickness which
might affect the results. Moreover, we assume a constant electrode height of z0 = 1 mm,
to compute the distance kernel while it might be subject to spatial variation and quality of
contact. Due to complications of simulating 3D tissue, the performance of the proposed
approach was tested on two-dimensional simulated tissue. Since we do not have access to
the true local activities of clinically recorded electrograms, we used manual annotation to
analyze the performance of the approach.

5.5.3. FUTURE WORK
While the focus of this chapter is to develop a new algorithm for a better estimation of LATs
in electrogram arrays, future work will include an evaluation on the effect of these improve-
ments on the further analyses performed on LATs regarding AF. More specifically, we aim
to investigate the effect of the new approach on the association of conduction disorders
with substrates underlying AF and on the performance of existing methods in classification
of AF stages in a larger group of patients. Moreover, to provide a more robust claim on
the consistency of the estimated activation map over time, we aim to provide a measure of
consistency/stability for a larger group of patients.
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Atrial electrograms recorded from the epicardium provide an important tool for studying the
initiation, perpetuation, and treatment of AF. However, the properties of these electrograms
depend largely on the properties of the electrode arrays that are used for recording these sig-
nals. In this study, we use the electrode transfer function to model and analyze the effect of
electrode size on the properties of measured electrograms. To do so, we use both simulated
as well as clinical data. To simulate electrogram arrays we use a two-dimensional (2D)
electrogram model as well as an action propagation model. For clinical data, however, we
first estimate the transmembrane current for a higher resolution 2D modeled cell grid and
later use these values to interpolate and model electrograms with different electrode sizes.
We simulate electrogram arrays for 2D tissues with 3 different levels of heterogeneity in
the conduction and stimulation pattern to model the inhomogeneous wave propagation ob-
served during atrial fibrillation. Four measures are used to characterize the properties of the
simulated electrogram arrays of different electrode sizes. The results show that increasing
the electrode size increases the error in LAT estimation and decreases the length of conduc-
tion block lines. Moreover, visual inspection also shows that the activation maps generated
by larger electrodes are more homogeneous with a lower number of observed wavelets. The
increase in electrode size also increases the low voltage areas in the tissue while decreasing
the slopes and the number of detected deflections. The effect is more pronounced for a tis-
sue with a higher level of heterogeneity in the conduction pattern. Similar conclusions hold

This chapter is based on the article "Analyzing the Effect of Electrode Size on Electrogram and Activation Map
Properties" by B. Abdi, M.S. van Schie, N.M. de Groot, R.C. Hendriks, in Computers in Biology and Medicine,
2021, p. 104,467.
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for the measurements performed on clinical data. The electrode size affects the properties of
recorded electrogram arrays which can consequently complicate our understanding of atrial
fibrillation. This needs to be considered while performing any analysis on the electrograms
or comparing the results of different electrogram arrays.

6.1. INTRODUCTION
Recording and processing of electrograms (EGMs) is the cornerstone of mapping proce-
dures guiding ablative therapies of cardiac arrhythmias. Thorough understanding of the
impact of recording technology on EGM morphology is of paramount importance, particu-
larly in case of complex tachyarrhythmias such as atrial fibrillation (AF) [11, 73]. However,
the properties of these electrograms depend to a large extent on the physical dimensions of
the electrode arrays that are used for recording these signals.

As shown in several studies, the electrode size (or diameter) is an important parameter
that can affect the characteristics of the recorded electrograms. Most studies focus on bipo-
lar electrograms and measurements that are performed only on clinical recordings [74–78].
There are only a few studies investigating the effect of the electrode size on the properties of
the unipolar electrograms using both electrophysiological models and clinical recordings.
These properties include signal-to-noise ratio (SNR), fractionation level, voltage level, and
the error in local activation time (LAT) estimation [63, 66, 79]. In general, these studies
show that increasing the electrode size increases the SNR and consequently the atrial ac-
tivity is less affected by noise and artifacts [80, 81]. However, this is mainly the case for
homogeneous tissue. It has also been shown that the number of deflections and the level
of fractionation also increase by increasing the electrode size [63, 78, 79]. Moreover, low
voltage areas in the tissue also increase when using bigger electrode sizes [63, 77]. It has
also been shown that using larger electrodes, increases the error in LAT estimation [66],
which will result in activation maps with less detail and less conduction blocks [74, 76].
These effects are more pronounced in zones of conduction block or slow conduction in the
tissue (i.e., scarred tissue) [74, 75].

Some of these studies use clinical recorded electrograms using different electrogram
arrays with different electrode sizes that are successively positioned on similar locations
on the atria. However, it should be noted that not all observed changes in the electro-
gram properties are due to changes in electrode size, but also due to the spatio-temporal
varying nature of electrical wave propagation (specially during AF) and the changes in the
inter-electrode distances. Moreover, bipolar electrograms are also affected by varying prop-
agation directions. In this chapter, we exclusively investigate the effect of the electrode size
on the properties of high resolution unipolar electrogram arrays by keeping the other pa-
rameters like inter-electrode distances and electrical wave propagation patterns fixed. We
use both clinical observation and electrophysiological models that govern the wave propa-
gation and electrogram generation to analyze and investigate these effects. This is done by
investigating the electrode transfer function and its properties, making the comparisons and
conclusions more robust. Moreover, we investigate these results for tissues with different
levels of inhomogeneity in the conductivity map. We also focus on the overall properties
of the electrogram array and not only on the per-electrode features. These include the over-
all error in local activation time estimation, length of slow conduction or block lines, low
voltage areas in the tissue, as well as the number of deflections.
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We first present the electrogram model, our approach for generating simulated elec-
trograms, and our proposed framework for generating high resolution electrogram arrays
with different electrode sizes from clinical electrograms in Section 6.2. We also provide
a description of our clinical recording setup and employed measures for characterizing the
electrogram array properties in the same section. In Section 6.3 and Section 6.4, we per-
form our approach on simulated and clinical electrograms, respectively, and present the
final results. We also discuss the optimal electrode diameter and appropriate inter-electrode
distances for electrode arrays with different electrode sizes, the maximum electrode size for
capturing scarred tissue of different sizes, and a proper scaling of the electrogram ampli-
tude for a better comparison of electrograms recorded with different arrays. We discuss our
findings and conclude this chapter in Section 6.5.

6.2. METHOD

6.2.1. ATRIAL TISSUE COMPUTER MODEL
As shown in Section 2.5.2, in our model we consider the atrial tissue as a two dimensional
mono-layer grid of cells where the electrode array is positioned at a constant height z0 above
the atrial tissue. We model the electrogram as a weighted summation of transmembrane
currents produced by the cells in the tissue in the vicinity of the electrode, where the weights
depend on the inverse of the cell-to-electrode distances. An electrogram at location (x, y)
and at time sample t can then be modeled as [12]

φ(xm , ym , t ) = 1

4πσe

∫
A

Itr(x, y, t )√
(x −xm)2 + (y − ym)2 + z2

0

dA(x, y) , (6.1)

where m = 1,2, · · · , M is the electrode index with M the total number of electrodes, Itr(x, y, t )
is the transmembrane current, A is the area in which the modeled cells are located, A(x, y)
is the area variable, and σe is the constant extra-cellular conductivity. Note that for now we
assume that we are recording the electrograms with point electrodes whose diameters can
be neglected. We will investigate the effect of electrode diameter later in Section 6.2.2.

The transmembrane current produced by each cell can be computed using the following
equation [13]

Itr(x, y, t ) = S−1
v ∇·Σ(x, y)∇ V (x, y, t ), (6.2)

where V (x, y, t ) is the cellular potential, Σ(x, y) is the intracellular conductivity tensor, and
Sv = 0.24µm−1 is the cellular surface-to-volume ratio. The potential and transmembrane
current can simultaneously be calculated using the reaction-diffusion equation that governs
the action potential propagation in the tissue [13],

C
∂V (x, y, t )

∂t
= Itr(x, y, t )+ Ist(x, y, t )− Iion(x, y, t ,V ), (6.3)

where C = 1µFcm−2 is the total membrane capacitance, Ist is the stimulus current, and Iion

is the total ionic current computed according to the Courtemanche model in [33].



6

76
6. ANALYSING THE EFFECT OF ELECTRODE SIZE ON ELECTROGRAM AND

ACTIVATION MAP PROPERTIES

6.2.2. ELECTRODE’S TRANSFER FUNCTION MODEL
For a uniform grid of cells with ∆x denoting the cell-to-cell distance, we can rewrite
Eq. (6.1) as a 2D spatial convolution of transmembrane currents with an appropriate elec-
trode transfer function R0(x, y) as

φ(x, y, t ) = c S0(x, y)
(

R0(x, y)∗∗ Itr(x, y, t )
)
, (6.4)

where ∗∗ denotes the 2D spatial convolution, and c = ∆x2/4πσe contains all constants
and will be omitted for simplification. We introduced in Eq. (6.4) the sampling operator
S0(x, y) =∑

m δ(x − xm , y − ym) with Dirac delta functions to select the M spatial locations
on the grid on which we have measurements and replace the other locations with zero. This
can also be used to de-select faulty electrodes. The electrode transfer function is

R0(r ) = 1√
r 2 + z2

0

. (6.5)

where r =
√

x2 + y2 is the horizontal distance between the electrode (at origin) and a cell
at location (x, y). However, an electrode whose diameter is bigger than the modeled cell
size (i.e., d0 >∆x) can no longer be considered as a point electrode. The transfer function
should therefore take the diameter of the electrode into account as proposed in [63], i.e.,

Rd0 (r ) = 2arcsin
d0√

(r −d0/2)2 + z2
0 +

√
(r +d0/2)2 + z2

0

. (6.6)

The first row of Fig. 6.1 shows the 2D representation of the electrode normalized transfer
function of a point electrode from Eq. (6.5) as a function of x and y , as well as the normal-
ized transfer function based on r , both computed by setting z0 = 0.5 mm. As can be seen,
the value of the transfer function, or the weight of the transmembrane current in Eq. (6.4),
for the cell that is exactly under the electrode center equals to 1. A large weight indicates
more influence on the final recorded electrogram. As we move further from the center, the
weights decrease but the values are still noticeable. One important parameter commonly
used to characterize the transfer function is the full width at half maximum (FWHM), de-
noted on the plot. It shows the diameter at which the weight of the cells is greater than
half of the maximum value, indicating their significant influence on the final recorded elec-
trogram. A small FWHM (a narrower transfer function) denotes that the electrode records
data from a smaller area thus providing more local electrograms. However a large FWHM
denotes that the recorded electrogram will be the summation of activities in a larger area.
This can severely affect the morphology of the local activities if the propagation is not ho-
mogeneous in the electrode neighborhood. In general, summing up activities in a larger
area will smooth out the important local details.

The bottom left plot in Fig. 6.1 shows the transfer functions for different electrode di-
ameters d0 ∈ 0.5,2,4,8 mm with z0 = 0.5 mm. The bottom right plot in Fig. 6.1, also shows
the transfer functions when z0 = 1 mm, assuming a thicker tissue. As can be seen in both
plots, as the electrode diameter increases, the transfer function gets wider (larger FWHM)
indicating that the recorded electrogram will be more influenced by the neighboring activi-
ties. The difference in FWHM is more evident in thinner tissues and for smaller diameters.
This will be investigated in more detail in Section 6.3.3.
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Figure 6.1: Top left: the 2D representation of the electrode normalized transfer function R0(x, y) of a point
electrode. The red dashed circle represents the FWHM. Top right: the electrode transfer function based on R0(r ).

Bottom: Rd0
(r ) for different electrode diameters d0 ∈ 0,0.5,2,4,8 mm with z0 = 0.5 mm (left) and z0 = 1 mm

(right).

6.2.3. MODELING ABNORMAL TISSUE
To generate simulated fractionated electrograms that are representative for clinical data, var-
ious approaches have been suggested in the literature. Jacquemet et al. in [63] incorporate
the heterogeneities in the conductivity as a set of randomly positioned lines of conduction
block that disconnect the coupling between the cells on the grid. However, Vigmond et al.
in [64] model the conduction disturbance by randomly disconnecting the coupling between
some modeled cells and their neighbors through randomly positioned dots of conduction
block. In this chapter, we use both patterns simultaneously for simulated conductivity maps
of modeled tissue. This provides simulated electrograms and activation maps that are more
similar to clinical recordings (by visual inspection).

To simulate electrograms with different levels of fractionation, we use conductivity
maps with varied levels of conduction block density. These are shown in the first row of
Fig. 6.2 denoted as T1, T2 and T3 having a low, medium and high density of conduction
block, respectively. For comparison, we have also shown the results for a homogeneous
tissue with planar wave propagation, denoted by T0, which serves as a standard reference
for other tissue types. The size of each tissue is 213×173 cells, with a cell-to-cell distance
of ∆x = 0.5 mm. We also activate the tissues using one or two activation waves (by injecting
stimulation currents) entering the tissue from different locations to simulate the activation
maps during AF (for one atrial beat, lasting around one second).

To model action potential propagation in the simulated tissues, Eq. (6.3) is discretized
and solved using a finite difference method with no flux boundary condition. The activities
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Figure 6.2: Conductivity map, activation map and an example electrogram simulated for different electrode sizes
of four simulated tissues. T0 is modeled as a homogeneous tissue while T1, T2 and T3 have a low, medium and

high density of conduction block in their conductivity map, respectively. The red rectangle represents the
electrode array position. We assume there is one electrode on top of each modeled cell.

are simulated for 1000 ms to include one complete atrial beat, but only a selected time
window of 150 ms in length is used for evaluation of electrograms as it includes all the
atrial activities. A more detailed description of the simulation steps and parameters can be
found in Chapter 4. The resulting activation maps are shown in the second row of Fig. 6.2.
Each pixel in the activation map represents the true activation time of its corresponding cell
which is annotated as the time when the cell potential V reaches a threshold value of -40
mV in the depolarization phase of its action potential. The white pixels belong to the cells
that were positioned on a conduction block and did not get activated. Finally, Eq. (6.1)
is used to compute the simulated electrograms recorded by an assumed electrode array of
size 77× 33 cells positioned on the center of the tissue at a constant height of z0 = 0.5
mm, which is denoted by a red rectangle on the maps. The last panels in Fig. 6.2 show
example electrograms that are randomly selected from different locations on each tissue.
Each electrogram is computed for four different electrode diameters d0 ∈ 0.5,2,4,8 mm.
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Figure 6.3: (a) Unipolar electrogram with the peak-to-peak voltage denoted by the red two-sided arrow. If the
peak-to-peak voltage is smaller than 0.2 V, the EGM will be counted as a low voltage electrogram. (b) Unipolar

electrogram from (a) with two of its deflections (downward slopes) denoted by red lines. As can be seen there are
more deflections in the signal but we only count those with an average slope that is smaller than -0.02 V/ms. (c)
Example activation map (a segment of T7 in Fig. 6.10) with the lines of block denoted by black lines. These are

the areas between two neighboring cells with delays in LAT that are larger than 0.7 ms.

6.2.4. CLINICAL STUDIES
The study population consisted of 10 adult patients undergoing surgery in the Erasmus
Medical Center Rotterdam. This study was approved by the institutional medical ethical
committee (MEC2010-054/MEC2014-393) [82, 83]. Written informed consent was ob-
tained from all patients. Patient characteristics (e.g., age, medical history, cardiovascular
risk factors) were obtained from the patient’s medical record. Epicardial high-resolution
mapping was performed prior to commencement to extra-corporal circulation, as previ-
ously described in detail [84]. A temporal bipolar epicardial pacemaker wire attached to
the RA free wall served as a reference electrode. A steel wire fixed to subcutaneous tis-
sue of the thoracic cavity was used as an indifferent electrode. Epicardial mapping was
performed with a 192-electrode array (electrode diameter 0.45 mm, inter-electrode dis-
tances 2.0 mm). The electrode array is subsequently positioned visually by the surgeon on
9 mapping atrial sites using the anatomical borders. We only use the data recorded from
Bachmann’s bundle. Ten seconds of induced AF were recorded from every mapping site,
including a surface ECG lead, a calibration signal of 2 mV and 1000 ms, a bipolar reference
EGM and all unipolar epicardial EGMs. Data were stored on a hard disk after amplification
(gain 1000), filtering (bandwidth 0.5 to 400 Hz), sampling (1 kHz) and analogue to digital
conversion (16 bits).

INTERPOLATING (CLINICAL) ELECTROGRAMS AND ESTIMATING ELECTROGRAMS FOR
DIFFERENT ELECTRODE SIZES

Due to the unstable and unpredictable nature of electrical wave propagation during AF, it
is not possible to repeat similar recordings with different electrode arrays (having different
electrode diameters and therefore different inter-electrode distances) during AF. To over-
come this issue and to interpolate and estimate the electrograms recorded with different
arrays, we first estimate high resolution transmembrane currents and subsequently model
the effect of larger electrode dimensions . We discretize the 3D tissue activity in space.
We use source clamping and replace each block of cells in the real three dimensional tissue
with a modeled “cell” on a uniform 2D grid of cells similar to the simulated data. Next,
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we estimate the high resolution transmembrane currents using Eq. (6.4) and the recorded
electrograms. This can be done by solving the following regularized optimization problem
as suggested in Chapter 5

min
I

‖φ−S0(R0 ∗∗ I )‖2
2 + λ‖I ′‖1 (6.7)

where
‖I‖2

2 :=∑
x

∑
y

∑
t
|I [x, y, t ]|2 , ‖I ′‖1 :=∑

x

∑
y

∑
t
|I ′[x, y, t ]|

and where λ is the regularization parameter. Employing the `1-norm regularization func-
tion (i.e., ‖.‖1) helps to preserve the main features of the transmembrane currents among
which sparse fast temporal changes (deflections). These are of high importance for correct
LAT estimation. More details on an efficient approach to solve Eq. (6.7) can be found in
[62]. After estimating the high resolution transmembrane current, we can estimate different
electrograms for varying electrode sizes and inter-electrode distances using Eq. (6.4) with
an appropriate transfer function from Eq. (6.6).

6.2.5. ELECTROGRAM ANALYSIS
Here, we introduce four measures that are used to characterize the properties of the elec-
trogram arrays. Notice that both simulated and clinical electrograms’ amplitudes are scaled
with a constant value so that the amplitude of the electrograms of a homogeneous wave
propagating through the tissue (as in tissue type T0) recorded by the smallest electrode
(d0 = 0.5 mm) equals 1 V. The scaling value is different for clinical and simulated record-
ings but similar for different electrode sizes. We characterize the properties of the simulated
and clinical high resolution electrogram arrays recorded during one atrial beat using the fol-
lowing four measures:

1. LATE: percentage of large absolute errors in LAT estimation denoted by LATE.
These are the error values that are larger than 10 ms. This measure is only evalu-
ated for simulated tissue where we have access to true activation times. The true
activation time is annotated as the time when the potential of the cell that is exactly
under the electrode reaches the value of -40 mV, insuring that the action potential is
triggered. The estimated activation time of the simulated electrogram is annotated
as the point with the steepest descent. The threshold value of 10 ms was selected
heuristically. However different threshold values yield a similar pattern of changes.

2. LSC/B: length of lines of slow conduction or block in the tissue denoted by LSC/B.
To compute this value we first find the delay between each cell and its four direct
neighbors on the grid of cells. If the delay is bigger than 0.7 ms it will be considered
as a slow conduction or block with the length of ∆x. This threshold value is selected
with respect to the standard delay between neighboring cells estimated from the stan-
dard tissue T0. Note that this is not a small threshold considering the cell-to-cell
distances of ∆x = 0.5 mm in the simulation. Moreover, since we model inhomogene-
ity in the tissue using dots and small lines of block, their effects on the LAT also
ranges from very small to large values. Fig. 6.3 (b) shows an example activation map
with its lines of slow conduction or block denoted by thick black lines.
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Figure 6.4: An example of a simulated atrial activity recorded using different electrode sizes.

3. LVA: percentage of electrograms with lower peak-to-peak voltage than 0.2 V denoted
by LVA. The peak-to-peak voltage is defined as the difference between the maximum
and the minimum electrogram amplitude and is shown in an example electrogram
in Fig. 6.3 (a). The threshold value was selected heuristically, making sure it is
small enough to indicate the changes in between different tissue types and electrode
diameters.

4. ND, SD, and MD: percentage of electrograms having no deflection (ND), a single
deflection (SD), or multiple deflections (MD). We only count the deflections having
an average slope smaller than -0.02 V/ms. The threshold value was selected heuristi-
cally to avoid small negligible deflections caused by noise and artifacts. Fig. 6.3 (c)
shows an example electrogram with 2 deflections.

It is important to note that all the measures are evaluated for high resolution electro-
gram arrays assuming that there is one electrode on top of each cell. This is not possible in
practice because the inter-electrode distance should be larger than the electrode diameter.
However, the results will confirm that the changes in the measures are due to the changes
in the electrode size and not due to the different inter-electrode distances. The above men-
tioned measures are computed using custom written MATLAB codes.

6.3. SIMULATION RESULTS
6.3.1. EFFECT OF ELECTRODE SIZE ON ELECTROGRAM PROPERTIES
In this section, we investigate the effect of the electrode size on the properties of the sim-
ulated electrograms using the measures we introduced in Section 6.2.5. Five randomly
generated conductivity maps were modeled for each tissue type T1 to T3, which were pre-
viously shown in Fig. 6.2. The tissues were stimulated with one or two activation waves
entering the tissue from different locations and the resulting electrograms were computed
for four different electrode diameters d0 ∈ 0.5,2,4,8 mm. The last row of Fig. 6.2 shows an
example electrogram from each tissue computed for the four different electrode diameters.
For a better comparison, Fig. 6.4 also shows simulated electrograms for different electrode
sizes in one plot. These electrograms belong to T5 in Fig. 6.5 with two distinct deflections
as a result of a long line of block (for more details see Section 6.3.4).
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The measures introduced in Section 6.2.5 were evaluated for all 2541×5 = 12705 sim-
ulated electrograms of each tissue type (77×33 = 2541 electrograms per map) and are pre-
sented in Tables 6.1 to 6.4. As can be seen in the resulting tables, increasing the electrode
size increases the error in LAT estimation while the length of detected slow conduction or
block lines in the tissue decreases. Except for the homogeneous tissue T0, where using
bigger electrode diameters results in an increase in LSC/B which is almost similar for all
electrode diameters. As a result, the final activation maps seem smoother. This will be
discussed in more detail in Section 6.3.2.

The percentage of low voltage areas in the tissue also increases by increasing the elec-
trode size, indicating that using bigger electrodes decreases the amplitudes of recorded
electrograms. However, by comparing the results of lower voltage areas in Tables 1 to 3, it
seems that a larger diameter is more useful at indicating the differences in low voltage areas
of different tissue types and respectively the mean conductivity of the underlying substrate,
even if the discrete block lines in the simulation are missed.

The percentage of single and multiple deflections in the electrograms decreases by in-
creasing the diameter. This is because the slope of some of the deflections gets very small
and it will not be annotated as a deflection anymore.

Table 6.1: Measures evaluated for m = 77×33 EGMs of tissue type T0.

Table 6.2: Measures evaluated for m = 77×33×5 EGMs of tissue type T1.

Table 6.3: Measures evaluated for m = 77×33×5 EGMs of tissue type T2.
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Figure 6.5: Activation map estimated from high resolution electrogram arrays with different electrode sizes. T4
has the same tissue conductivity pattern as T2 and in T5 two lines of block are positioned along the center of the

tissue.

Table 6.4: Measures evaluated for m = 77×33×5 EGMs of tissue type T3.

However, as can be seen in the tables, the variations in electrogram properties caused
by using different electrode diameters are more evident in tissues with higher level of het-
erogeneity or more scarred tissues. This also indicates that electrograms generated in ho-
mogeneous tissues will not be much affected by the electrode diameter.

6.3.2. EFFECT OF ELECTRODE SIZE ON THE ACTIVATION MAP
We use some examples to visualize the effect of electrode size on the resulting activation
maps. As discussed earlier in Section 6.3.1, using bigger electrode sizes increases the error
in LAT estimation and decreases the length of detected conduction block lines. This hap-
pens because the electrograms recorded by bigger electrodes are affected more by neigh-
boring activities. Therefore, the deflection generated by larger and stronger inhomogeneous
waves in the neighborhood may over-impose the small, but main, local deflections. As a
result, the final activation maps seem smoother and more homogeneous.

Fig. 6.4 shows an example of a simulated atrial activity recorded using different elec-
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trode sizes. As can be seen, two deflections are visible in each activity. The first deflection
(at 90 ms) belongs to the local main activity and the second deflection (at 123 ms) belongs
to a strong neighboring activity. As the electrode size increases, the second deflection gets
steeper compared to the first deflection. Annotating the steepest descent as the LAT will
then result in annotating the second deflection for electrode of diameters d0 =4 mm and 8
mm. That is an absolute error of about 33 ms in LAT estimation.

Fig. 6.5 shows estimated activation maps of two simulated tissues recorded using elec-
trode arrays having different electrode sizes. These examples imitate the two patterns of
common changes that we observed in clinical cases. T4 has the same tissue conductivity
pattern as T2 (medium density of conduction blocks) with a different stimulation pattern
(explained in Section 6.2.3) resulting in generation of complex fractionated atrial electro-
grams. As can be seen, small waves in the tissue are over-imposed by larger and stronger
activities in their surrounding and the smooth variations from one color to another are re-
placed by sharp variations. In T5 (second row of Fig. 6.5) two lines of block are positioned
along the center of the tissue. The activation map starts from the area in-between these
lines and then propagates through the whole tissue. As can be seen, this abnormal area is
completely lost when we use bigger electrode sizes. As mentioned before, this happens
because the activities generated in this abnormal area have lower amplitude compared to
the stronger activities outside the block lines and an electrode with a bigger size records
more activities from its neighborhood. We discuss this case in more detail in Section 6.3.4.

6.3.3. OPTIMAL ELECTRODE DIAMETER AND INTER-ELECTRODE DIS-
TANCE

The electrode transfer function in Eq. (6.6) and shown in Fig. 6.1 can be used for calculating
the optimal electrode diameter and inter-electrode distance. This can be done by investi-
gating the FWHM of different electrode diameters. Fig. 6.6 shows the calculated FWHM
as a function of the electrode diameter (with z0 = 0.5 mm). This plot has two important
features. First, even for a point electrode, FWHM= 1.73 mm is nonzero. This is because
of the electrode height z0 > 0 . Secondly, FWHM is almost constant for small diameters
and the curve bends around d0 = 0.5 mm. These observations can lead to two important
conclusions:
(i) Optimal electrode diameter: an optimal electrode diameter is around d0 = 0.5 mm. This
is the largest value with a similar FWHM to a point electrode. Note that smaller electrodes
are affected more by noise so there is a trade-off between high SNR and small FWHM.
Therefore, it is also not preferred to use the smallest electrode possible.
(ii) Optimal inter-electrode distance (in order to capture all the spatial information of the
electrical activities in the tissue): To find this parameter, we first need to estimate the maxi-
mum spatial frequency that is presented in electrical activities. This can be a quite compli-
cated task due to the three dimensional inhomogeneous structure of the atrial tissue and the
complex unstable wave propagation patterns. On the other hand, no matter how high these
spatial frequencies are, they will eventually be recorded by surface electrodes which inher-
ently perform as a spatial low-pass filter. As shown in Chapter 5, the FWHM discussed in
Section 6.2.2 can be also used as a short-hand measure of the appropriate inter-electrode
distance. As an example for an electrode with d0 = 0.5 mm, we suggest an optimal inter-
electrode distance of around 1.9 mm, which is equal to its FWHM at z0 = 0.5 mm.
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Fig. 6.7 shows the FWHM as a function of both d0 and z0. As can be seen in this figure,
as the electrode diameter or the electrode height (or equivalently tissue thickness) increases,
the required inter-electrode distance also increases. This means that FWHM and the low-
pass filtering effect of the electrode increases. This will result in losing spatial information
by electrodes. Even putting them closer to each other in an array will not compensate
that loss. Therefore, we can effectively use larger inter-electrode distances. Conversely,
electrodes with smaller diameters have smaller FWHM and can potentially capture spatial
information with higher frequencies and by putting these electrodes closer to each other on
an array, we can record this information.

Figure 6.6: FWHM calculated for different electrode diameters with z0 = 0.5 mm.

Figure 6.7: The estimated FWHM for different values of d0 and z0.

6.3.4. MAXIMUM ELECTRODE SIZE FOR RECORDING SCARRED TISSUE
In this section, we perform an experiment to investigate the maximum electrode size for
the detection of abnormal areas and conduction block lines using simulated tissue. We use
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Figure 6.8: Maximum electrode diameter d0,max for recording a visible scarred tissue, as a function of Lblock
which denotes the distance between two lines of block.

the same pattern as in T5 in Fig. 6.5 for the scarred tissue where two lines of conduction
block are positioned along the center of the tissue with a distance of Lbl ock . The activation
wave starts from the area in between these lines and then propagates through the whole
tissue. As can be seen in T5, this abnormal area is completely lost when we use bigger
electrode sizes. As mentioned before, this happens because the activities generated in this
abnormal area have lower amplitude compared to the stronger activities outside the block
lines and an electrode with a bigger size records more activities from its neighborhood.
We increased the distance between the two parallel lines of blocks and visually inspect
the activation map estimated from different electrode arrays to determine the maximum
electrode diameter d0,max that can still provide some evidence of the abnormality in the
tissue. The results can be seen in Fig. 6.8. As an example, the two block lines in T5
are distanced at Lblock = 3.5 mm, and, as can be seen in Fig. 6.8, the maximum electrode
diameter that can still provide an evidence of this abnormality is around 4.2 mm. Notice that
this is a simple example compared to complex clinical cases where the results are affected
by many underlying parameters of the tissue.

6.4. CLINICAL RESULTS
As discussed in Section 6.2.4, due to the unstable and unpredictable nature of electrical
wave propagation during AF, it is not possible to repeat similar clinical recordings with
different electrode arrays. Therefore, to model these recordings, we use our approach pre-
sented in Section 6.2.4 to first estimate high resolution transmembrane currents and then use
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Figure 6.9: Real (in orange) and interpolated/simulated electrograms (in blue) for clinical recordings with
d0 = 0.5mm. Note that for an easier inspection, only electrograms from dark blue electrodes have been shown.

them to interpolate and calculate electrograms with bigger electrode sizes. The methodol-
ogy used for estimation of transmembrane current is discussed and evaluated in [62]. Here,
to evaluate its performance in reproducing the electrograms, we find the mean correlation
coefficient between the real clinical electrograms and their simulated electrograms after
finding the transmembrane currents and recalculating the electrograms. The mean correla-
tion coefficient is equal to 0.97±0.004 (mean ± standard deviation) which indicates a good
simulation. Note that we can only calculate this measure for the low resolution 24×8 clini-
cal electrograms and for d0 = 0.5 mm, as we do not have the ground-truth EGMs for bigger
electrode sizes or higher resolutions. Fig. 6.9 shows four neighboring clinical (real) EGMs
(in orange) and the interpolated electrograms in between them.

6.4.1. STATISTICAL ANALYSIS
A similar analysis as in Section 6.3.1 was performed on 10 clinical electrogram arrays of
size 24×8 recorded from Bachmann’s bundle for 10 different patients. The signals were
recorded for 10 seconds during induced AF resulting in fractionated electrograms with
various levels of fractionation. Note that the electrograms were initially interpolated and
modeled for different electrode sizes. This resulted in 24×8×4 electrograms in total. The
measures introduced in Section 6.2.5 were evaluated for one atrial beat of length 150 ms
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(visually selected to make sure each electrogram contained atrial activity) and are presented
in Table 6.5. We did not present the result for the error in LAT estimation because we do
not have access to the true values in clinical data. As can be seen in the table, the changes in
the properties of electrograms recorded using different electrodes follows the same pattern
as for the simulated data.

Table 6.5: Measures evaluated for 24×8×42 ×10 interpolated clinical electrograms recorded from Bachmann’s
bundle

6.4.2. CHANGES IN ACTIVATION MAPS
Similar patterns as in Section 6.3.2 are also seen in the clinical data. Fig. 6.10 shows two
examples of how the high resolution activation maps change by using different electrode
sizes. As expected, the small deflections and small wavelets in T6 are over-imposed by
larger and stronger activities in their surrounding area as the electrode size increases. This
leads to a decrease at the total number of wavelets in the area. T7 also shows an example
where the abnormal area with long delays in the activation map is partly or completely
missed due to the increase in the electrode size.

6.4.3. SCALING ELECTROGRAMS’ AMPLITUDE
A proper scaling of the electrograms’ amplitudes recorded with different electrode sizes
can to some extent compensate for differences in the measures that characterize the elec-
trograms. We propose to use the ratio between the norm of the transfer functions of the
electrodes for scaling their amplitudes for a better comparison of their recorded electro-
grams. This can be formulated as

φ̂d0 (xm , ym , t ) = ‖R0(r )‖2

‖Rd0 (r )‖2
φd0 (xm , ym , t ) (6.8)

where R0(r ) and Rd0 (r ) are calculated from Eqs. (6.5) and (6.6), φ̂ is the scaled electrogram,
and ‖.‖2 is the Euclidean norm or l2-norm. This will make the measures like LVA and the
number of deflections, more invariant to the electrode diameter. However, it will not affect
the estimation of LATs, or any parameter that is extracted from it like LSC/B.

Table 6.6 shows the new measures (cf. the non-scaled version in Table 6.5) after using
the norm of the distance kernel for scaling the data. Notice that approaches like the maxi-
mum amplitude or steepness of the recorded electrograms for scaling or normalizing them
are realization based and thus less stable. Such parameters will depend on the propagation
patterns and are prone to spatial and temporal variations, making the results incomparable
and not generalizable.
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Table 6.6: Measures evaluated for 24×8×42 ×10 interpolated clinical electrograms recorded from Bachmann’s
bundle after scaling the electrograms.

6.5. DISCUSSION AND CONCLUSION
In this chapter, we studied the effect of electrode size on the properties of the recorded elec-
trograms. We started by simulated electrograms of 2D atrial tissues and present the effect
of different electrode sizes on electrogram properties including the error in LAT estima-
tion, the length of slow conduction or blocks (LSC/B) observed on the resulting activation
map, percentage of observed low voltage areas (LVA), and the number of deflections in the
recorded electrograms. The results were then tested on clinical electrograms of 10 patients
recorded from Bachmann’s bundle. Since we had no access to the recorded electrograms
recorded with different electrode diameters, we first estimated the high resolution trans-
membrane current maps using the approach in Chapter 5 and then used the currents and
the electrode transfer function to generate such recordings. The results were comparable to
those of simulated data.

The results show that using bigger electrodes produces larger error in LAT estimation,
which is in accordance with previous results shown in a previous study [66]. These errors
in LAT estimation will result in the estimation of a smoother activation map than the true
map. These results were also observed in experiments on clinical bipolar electrograms in
[74, 76].

The electrograms recorded with a bigger electrode size are in general smoother with
smaller slopes and smaller peak-to-peak voltages. Some of the deflections in these signals
are so smooth that they are not annotated as a deflection in the recording. This will result
in an increase in low voltage areas in the tissue, which agrees with the result of previous
studies in [63, 77]. However, if there is no recording with a smaller electrode available for
setting the proper thresholds, one might use smaller threshold values for detecting such de-
flections. This can result in detecting more deflections. This can explain why some studies
such as [63, 78, 79] suggest that increasing the electrode size increases the fractionation
level in the tissue.

However, by comparing the results of lower voltage areas in Tables 1 to 4, it seems
that a larger diameter is more useful at indicating the difference in low voltage areas in
between different tissue types with different inhomogeneity levels. Considering that in the
inhomogeneous cardiac tissue lower conductivity also means lower voltage in that area, we
can conclude that bigger electrodes are more useful at indicating the mean conductivity of
the underlying substrate, even if the discrete slow conduction or block lines in the activation
map are missed.

Although these conclusions have been partly discussed or hinted in previous studies,
in the current study, we developed a more systematic approach. By employing the elec-
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Figure 6.10: Example activation maps estimated from high resolution electrogram arrays with different electrode
sizes, estimated from clinically recorded electrogram arrays.

trophysiological models and the electrode transfer function, we could analyze and discuss
these effects in more depth. Moreover, the introduced approach for interpolating and mod-
eling clinical electrograms with different electrode sizes allowed us to investigate these
effects for recordings of similar wave propagation patterns. It also enabled us to only focus
on the electrode diameter and not the inter-electrode distances.

Moreover, we discussed the effect of the optimal electrode diameter and the required
inter-electrode distances (or the array resolution) for capturing all the possible spatial infor-
mation. We performed an experiment to investigate the required minimum electrode size
for capturing an inhomogeneous activity in between two parallel block lines in the tissue.
We also introduced a proper way for scaling electrograms with different electrode diameter
for a better comparison.

These results show the importance of the recording electrode array on the properties of
the electrograms, and this needs to be considered in any further evaluation and analysis of
the data; especially if considered for treatment such as electrogram-based ablations.

6.5.1. STUDY LIMITATIONS
In this study, we modeled the 3D tissue of the atria as a 2D grid of cell assuming a constant
electrode height of z0 for the whole tissue that is under the electrode array. Although 3D
forward tissue models of the atria with varying values z0 have already been developed in
literature, employing them in an inverse problem for estimation of transmembrane current is
not practical due to the complexity of these models. Moreover, that would require a proper
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estimation of z0 for each recording site beforehand.
We did not have access to electrograms recorded from similar locations and different

electrode sizes for a more complete evaluation of our results, as this is not possible in prac-
tice due to the temporal and spatial variations of the underlying wave propagation patterns
during AF and especially for areas with complex fractionated electrograms.

The clinical electrograms used in this study were recorded from Bachmann’s bundle
with a predominant route of conduction from right to left and with a a potential role in AF
[85] which may differ from the rest of atria. However, there are already regional differences
in potentials in atria even during SR [86]. Although our method does not depend on these
specific properties, the exact results in Tables 6.1 to 6.6 may not be generalizable to other
regions in atria.

We used similar threshold values for evaluation of the measures introduced in Sec-
tion 6.2.5 for simulated and real electrograms. Although both types of electrograms were
scaled such that a homogeneous planar wave has a maximum absolute amplitude of 1 V,
exact selection of these parameters is more prone to error in real electrograms as we do
not have access to such exact recordings. Moreover, we ignored the effect of noise in our
simulations. Although smaller electrodes provide sharper and more localized recordings,
they are more affected by noise and artifacts. Therefore, using a smaller electrode may not
always improve the recordings.





7
CONCLUSION

In this chapter, we conclude this dissertation and provide a summary of our conclusions
in response to the research questions that were posed in Chapter 1. We also address some
limitations and assumptions that need to be taken into account in further studies. Some
open problems and our suggested solutions are also discussed in future work.

7.1. CONCLUSION
Throughout this thesis, in response to the research questions that we posed in Chapter 1,
we developed a simplified electrophysiological model for atrial electrograms and used it in
different applications for providing a better estimation or understanding of the underlying
tissue parameters that are important for studying and analyzing AF. In this section, we
conclude and discuss our answers to each research question.

7.1.1. SIMPLIFIED ELECTROGRAM MODEL FOR TISSUE PARAMETER ES-
TIMATION

The electrical propagation in tissue is governed by electrophysiological models and is di-
rectly connected to its underlying parameters. Detailed realistic electrophysiological mod-
els of electrograms are very useful for analyzing the effect of tissue properties on generated
electrograms or studying wave propagation patterns in forward simulations. However, us-
ing these models in inverse problems of extracting tissue properties from electrograms, is
nearly impossible. This is due to the large number of parameters that need to be estimated.
However, our hypothesis was that understanding AF and improving its therapy starts with
developing a proper forward model that is accurate enough (from a physiological point
of view) and simultaneously simple enough to allow for subsequent parameter estimation.
Therefore, we proposed the following research question:

Q1. Can we simplify the underlying electrophysiological models of electrograms for
tissue parameter estimation using well known signal processing approaches?

Our answer to this question is:
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A1. As shown and discussed in Chapter 4, it is possible to develop a simplified for-
ward model for electrograms in a compact matrix representation, using a parsimonious
parametrization. We showed that this simplified model can efficiently explain the observed
electrograms’ morphology based on the tissue conductivity and local activation times. To
investigate the effectiveness of the model we also investigate its performance throughout
other chapters.

However, we need to acknowledge that for 3D tissues, where each layer of tissue might
have different properties and different wave propagation patterns, our model needs to be
further developed.

7.1.2. ESTIMATION OF UNDERLYING TISSUE PARAMETERS
TISSUE CONDUCTIVITY ESTIMATION
The electrical propagation in tissue is particularly related to the tissue intracellular conduc-
tivity. It plays an important role in the underlying dynamics and functional connections in
the tissue as a mechanism of inter-cellular communication. The estimation of these hidden
parameters can be essential in the diagnosis and staging of the disease. Despite the ben-
eficial effect of conductivity in analyzing electropathology, the complexity of the electro-
physiological models makes its estimation challenging and not practical in clinical settings.
Therefore, we proposed the following research question:

Q2.1. Can we use the proposed simplified model for estimation of tissue conductivity?

Our answer to this question is:

A2.1. As shown and discussed in Chapter 4, we can use the proposed simplified model
for estimation of tissue conductivity. To do so, we reformulated our simplified model to
show its linear dependence on the conductivity vector, enabling the estimation of this pa-
rameter from the recorded electrograms. The results show that, despite the low resolution
and all simplifying assumptions, the model can efficiently estimate the conductivity map
and regenerate realistic electrograms, especially during sinus rhythm. The provided exam-
ples show that our method outperforms the other reference approaches especially in case of
anisotropy and inhomogeneity in the tissue.

However, we need to acknowledge that the presented algorithm may not perform well
in cases where our underlying assumptions are not valid. These can happen in two cases.
First, when the wavefront is not smooth, as is the case during AF. In this case, multiple
wavefronts enter the area of interest simultaneously or one wavefront breaks into multiple
wavelets due to the inhomogeneity in the conductivity. This complicates the estimation
of the activation times and results in an inaccurate activation map and consequently an
inaccurate conductivity map. Therefore, more robust AT estimation algorithms need to be
developed. Second, the presented algorithm may not perform well for 3D tissues where
each layer of tissue might have a different conductivity map and wavefront propagation. In
this case our model, like any other approach that uses electrograms, images all the activities
on the 2D tissue surface and ignores the underlying layers. Although this can be partly
solved by developing 3D models of the tissue following the same principles as in 2D, the
main problem would be the estimation of the ATs in the underlying layers which is currently
not possible in clinical recordings.
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IMPROVED LAT ESTIMATION

If the tissue is inhomogeneous or multiple excitation wavefronts are propagating in the
electrode neighborhood, the recorded EGM may contain nonlocal (far-field) deflections
and the steepest descent annotated as the LAT might belong to a far-field excitation and not
to the local activity. This makes the estimation of LATs prone to errors and will negatively
affect the estimation of other parameters that depend on them. Therefore, we proposed the
following research question:

Q2.2. Can we use our developed model for a better estimation of LAT in fractionated
electrograms?

Our answer to this question is:

A2.2. As shown and discussed in Chapter 5, we can use electrophysiological electro-
gram models to propose algorithms that incorporate spatial information for an improved
LAT estimation. Our approach reduces the spatial blurring effect that is inherent to elec-
trogram recordings, using spatial deconvolution. Our results on simulated and clinically
recorded data show that using steepest descent for estimating LATs is prone to make the ac-
tivation maps smoother by ignoring local small deflections. This arises in situations where
the local activities belong to a wavefront that only invades a small part of the mapping area.
The activities generated by this wavefront are thus smaller in amplitude compared to the
nonlocal activities that belong to a wavefront that covers a larger area. The deconvolution,
on the other hand, reduces the effect of nonlocal activities and amplifies the local activities,
which results in a better estimation of true local deflection. This can result in estimation of
activation maps that are less smooth and more irregular with probably more distinct wave-
fronts. It also changes the location of estimated (functional) conduction blocks or collision
lines in the tissue.

It is important to note that, in this study, we replaced each block of 3D tissue with
a modeled cell in a 2D mono-layer tissue with constant cell-to-cell distance, ignoring the
tissue curvature and thickness, which might affect the results. Moreover, we assumed a con-
stant electrode height, while it might be subject to spatial variation and quality of contact.
Due to complications of simulating 3D tissue, the performance of the proposed approach
was tested on two-dimensional simulated tissue. Since we do not have access to the true
local activities of clinically recorded electrograms, we used manual annotation to analyze
the performance of the approach.

7.1.3. THE EFFECT OF ELECTRODE SIZE ON ELECTROGRAM PROPERTIES
The properties of electrograms depend to a large extent on the physical dimensions of the
electrode arrays that are used for recording these signals. The electrode size is an important
parameter that can affect the characteristics of the recorded electrograms including SNR,
fractionation level, and voltage level. Therefore, it is important to provide a thorough in-
vestigation on these effects. However, it is not possible in practice to provide simultaneous
recordings of the same propagation pattern in tissue with different electrode sizes as these
pattern may change (especially during AF). Therefore, we proposed the following research
question:

Q3. Can we use the electrogram model to simulate clinical electrograms recorded by
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different electrode sizes and use them to analyze the effect of electrode size on electrogram
properties?

Our answer to this question is:

A3. As shown and discussed in Chapter 6, we can use the electrogram model to first es-
timate high resolution transmembrane current maps for clinical electrograms and then used
the currents and the electrode model to estimate recordings with different electrode sizes.
We also simulated electrograms of 2D atrial tissues. We presented the effect of different
electrode sizes on clinical and simulated electrogram properties including the length of the
block line, observed on the resulting activation map, percentage of observed low voltage
areas, percentage of electrograms with low maximum steepness, and the number of deflec-
tions in the recorded electrograms. The results show that using a bigger electrode provides
a smoother activation map, because the small deflection in the tissue will be over-imposed
by large neighboring activities. The resulting electrograms are in general smoother, with
smaller steepness and voltages. Some of the deflections will be so smooth that they will not
be annotated as a secondary deflection. Moreover, we discussed the effect of the required
inter-electrode distances (or the array resolution) for capturing all the spatial information.
We introduced a proper way for scaling the resulting electrograms so that the results are
comparable. We also performed an experiment to investigate the required minimum elec-
trode size for capturing an inhomogeneous activity in between two parallel block lines in
the tissue.

In is important to note that, as mentioned before, we modeled the the 3D tissue of the
atria as a 2D grid of cells assuming a constant electrode height of z0 for the whole tissue that
is under the electrode array. Although 3D forward tissue models of the atria with varying
electrode height have been already developed in literature, employing them in an inverse
problem for estimation of transmembrane current is not practical due to the complexity of
these models. We also did not have access to electrograms recorded from similar locations
but different sizes for evaluation of our results. This might be difficult in practice for the
complex fractionated electrograms recorded during AF used in this study, due to the tem-
poral and spatial variations of the underlying wave propagation patterns. Note that in this
study, we ignored the effect of noise. It is has been shown in the literature that, although
smaller electrodes provide sharper and more localized activity, they are more heavily af-
fected by noise and artifacts leading to a smaller SNR.

7.2. STUDY LIMITATIONS AND FUTURE WORK
In this section, we introduce some of the open questions and our suggested solutions, based
on the conclusions we draw in this dissertation.

IMPROVED VENTRICULAR ACTIVITY REMOVAL

Our proposed approach in Chapter 3 exploits the temporal properties of ventricular activ-
ities by using electrograms recorded during multiple atrial beats. After putting all these
activities in a matrix, we constructed an appropriate data matrix and introduced a matrix
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decomposition problem, for an improved removal of ventricular activities. The approach
only uses one electrogram recording, while in most studies we have access to high res-
olution spatio-temporal electrogram recordings. The spatial information can potentially
improve the ventricular activity removal either by forming a data tensor or by expanding
the previous data matrix to include electrograms recorded in multiple locations.

2.5D MODELING OF THE TISSUE USING SIMULTANEOUSLY RECORDED EPICARDIAL
AND ENDOCARDIAL ELECTROGRAMS
Although 3D electrophysiological models of the atrial tissue have been developed in the
literature, as stated before, due to their complexity, they are hard to use in signal processing
approaches. However, a feasible practical solution to this problem can be derived by using
two layer, also called 2.5D, tissue models together with the simultaneously recorded epicar-
dial and endocardial electrograms. After forming such a model, with some modifications,
the approaches introduced throughout this dissertation can be employed.

IMPROVING CONDUCTIVITY MAP ESTIMATION
We believe that tissue conductivity is an important parameter that can be directly correlated
to electropathology in the tissue, and consequently to mechanisms underlying AF. However,
our proposed approach in Chapter 4 needs to be improved for a better estimation of con-
ductivity maps, especially during atrial fibrillation. This can be done by: (i) using improved
approaches for a better estimation of activation maps, (ii) using electrograms recorded dur-
ing multiple beats instead of a single beat, (iii) using 3D tissue models. Moreover, for a
thorough investigation of wave propagation patterns and electropathology in the tissue, this
approach can be integrated with other approaches that aim to estimate tissue impedance by
injecting current to the tissue.

ESTIMATION OF TISSUE PARAMETERS
There are many parameters involved in estimation of tissue conductivity and/or local acti-
vation times. Among these are the electrode height and tissue fibre direction that can have a
large impact on the output results. New algorithms are needed to estimate these parameters.
In some cases, these parameters can be physically measured, to some extent, on a patient’s
heart. Using the measured parameters instead of their assumed conventional values, can
result in a better estimation of other tissue parameters that depend on them and reduce our
uncertainty about the accuracy of our results. Although it might not be practical to measure
these parameters for every patient, it will be useful to measure them for an experimental
setup.

EXPERIMENTING ON LIVE HEARTS IN THE LAB
A hindering complication in unravelling a precise and constraining mechanism for AF orig-
inates from the uncertainty in measuring and estimating AF relevant parameters in the tis-
sue, especially those that characterize electrical wave propagation. This is mainly because
of the fact that the heart is a complex system and the true values of these parameters can-
not be accessed, especially not when performing the recordings on a patient’s heart during
surgery. Animal or human hearts that are kept alive in a laboratory outside of the body have
provided many new opportunities for studying AF and its hidden sources. These hearts can
be easily manipulated and the parameters of interest can be measured using much more
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higher resolution techniques. These data can then serve as a ground truth for evaluation of
different signal processing approaches that aim to improve measurement or estimation of
these parameters in a patient’s heart. This can especially help with developing more accu-
rate activation map estimation techniques because we can intentionally create scarred tissue
with different patterns, thickness, and length that can be activated from different locations.

MULTILAYER STAINING OF TISSUE
A multilayer staining of the tissue can provide a three-dimensional structural map that can
be used in studying correlation between the electrical wave propagation patterns and dif-
ferent structures in the tissue that can be responsible for AF, like fibrosis. To do so, we
can first map the wave propagation in the tissue using high resolution micro-electrode ar-
rays and later perform staining on the same tissue. Using the wave propagation pattern, we
can identify locations with conduction abnormalities and use the stained tissues to look for
structures that can be correlated with those abnormalities.

7.3. CLOSING REMARKS
Although this thesis is getting to an end, as discussed in future works more research and
development is needed to make our findings applicable in clinical practice. We tried to have
a detailed analysis on the wave propagation and tissue parameters starting with the electro-
physiological models that govern these propagations. Although it makes our path in relating
these parameters to AF much longer, we believe that this is the correct systematic path that
needs to be taken. Detours like characterizing electrogram morphology and using machine
learning approaches provide features that can help to differentiate between different types of
AF or can provide some guidelines in studying AF. However, more comprehensive studies
are needed to unravel the true cause(s) of atrial fibrillation.

Various experiments and measurements have been performed on simulated and/or real
hearts which are all complicated, expensive and challenging due to their clinical nature.
Thus providing a setup that includes all important measurements might not be affordable
by one single organization. We believe that this cannot be done without an extensive multi-
disciplinary research team where scientists with many different backgrounds join data and
analysis that look at the heart and AF from different points of views. Moreover, introducing
open source integrated datasets will help to progress the research into AF and hopefully to
understand its underlying causes and its proper treatments.



LIST OF ABBREVIATIONS

AA atrial activity

AF atrial fibrillation

AM activation map

AP action potential

AV atrioventricular

BB Bachmann’s bundle

CFAE complex fractionated atrial electrograms

CM conductivity map

CMM compact matrix model for atrial electrograms

CV conduction velocities

DCT two-dimensional discrete cosine transform

ECG electrocardiogram

ED Eikonal-diffusion

EGM electrograms

FDM finite difference method

FEM finite element method

FVM finite volume method

FWHM full width at half maximum

IAF induced atrial fibrillation

LAT local activation time

LSC/B length of slow conduction or blocks

LVA low voltage areas

SA sinoatrial

SD steepest descent

SNR signal-to-noise ratio

SR sinus rhythm

PV pulmonary vein

VA ventricular activities

2D two-dimensional
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