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Abstract
Stance detection is a Natural Language Processing
task that aims to detect the stance (support,
agreement, or disagreement) of a piece of text
towards some target. In this paper, we aim
to find the best performing pair of feature
extraction method and feature-based machine
learning algorithm. By doing so, an explainable
method can be found to show how to solve stance
detection problems. After researching the most
common techniques, twenty different combinations
are evaluated. We have found that the best
performing pair is Word N-gram used with Logistic
Regression, which achieves an F-score of 0.599 and
an accuracy of 0.66.

1 Introduction
Stance detection is a Natural Language Processing (NLP)
task used to compare text-target pairs and determine their
relation. This relation can usually be selected from the
following label set: {Favor, Against, Neutral, Neither}
[Küçük and Can, 2020]. An example of a target and texts
with different stances from this set can be found in Table 1.
Further, with the help of different labels, such as {Agrees,
Disagrees, Discuss, Unrelated}, it is also possible to decide
whether an article’s statement agrees with the topic, helping
to decide whether something is considered fake [Küçük and
Can, 2020; FNC, 2017].

This is important, as the spread of fake news and
disinformation on the internet has been a severe issue.
It makes it difficult for users to decide if the news
can be trusted. The most popular social media sites,
such as Twitter and Facebook, are fighting this problem,
however, their tools are sometimes manual. For instance,
Twitter is applying a community-based approach to find
misinformation [Coleman, 2021], therefore, this can be slow
and biased. To solve this issue, Stance Detection can be
used [Küçük and Can, 2020]. By automating the process and
moving the decisions to algorithms, the bias can be reduced
as humans do not have to make classification decisions by
themselves.

Recently, there have been several works on stance
detection. These works discuss their own specific

Table 1: Examples of texts and their stance towards a target
[Mohammad et al., 2016]

Target: Climate change is a real concern

Favor
Today Europe is breaking heat records,
while Asia is breaking the lowest
temperature records!

Against ONE Volcano emits more pollution
than man has in our HISTORY!

Neutral Climate change is currently a
hot topic to talk about.

Neither The stock market froze in the summer?!

implementation of stance detection, such as Mohammad
et al. [2016], Wei et al. [2016], Sun et al. [2016],
and Patra et al. [2016]. Additionally, there are other
works that summarise such algorithms, providing overviews,
benchmarks and surveys, such as Küçük and Can [2020],
AlDayel and Magdy [2021], and Ghosh et al. [2019].

Stance Detection is usually implemented in two different
ways [Küçük and Can, 2020]: using either feature-based
machine learning algorithms or using deep learning methods.
As described in the previous paragraph, many of the
aforementioned papers create a summary of existing
implementations. However, previous research does not
attempt to combine the different elements of the algorithms
to find the best performing one. Therefore, in this research,
we strive to identify a pair of feature extraction method
and feature-based machine learning algorithm that yields
the highest performance in stance detection. We chose to
research feature-based machine learning algorithms (instead
of deep learning models, which are gaining popularity in the
past few years) because of their interoperability and easy
explainability [Xu et al., 2019]. By these, we hope to
understand and explain the results of our research better.

We seek to answer the following research question:

How do popular feature extraction methods compare to each
other when using them with feature-based machine learning
algorithms for stance detection?
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In order to provide a detailed answer to this question, we
seek to answer a set of sub-questions:

1. What are the most commonly used feature extraction
methods for stance detection?

2. What are the most commonly used feature-based
machine learning algorithms for stance detection?

3. How should the performance of the algorithms for stance
detection be measured?

4. How do different feature extraction methods compare to
each other when using them on one specific model for
stance detection?

5. Which combination of feature extraction method and
feature-based machine learning algorithm performs the
best for stance detection?

The paper is structured as follows. Section 2 discusses
the tasks we have done to answer the sub-questions, gives
a deeper understanding of the theory and the applied
techniques, and the collected feature extraction methods and
feature-based machine learning algorithms. In Section 3, we
discuss the experimental setup, the dataset, the performance
measure, and the actual implementations of the combined
methods. Section 4 presents the results of the experiment.
Next, in Section 5, we discuss these results. Then, Section 6
concludes the paper by answering the (sub-)questions and
describing future work. Lastly, in Section 7, we address the
ethical aspects of the research.

2 Method and Theoretical Background
First, this section describes the tasks performed in order
to answer the sub-questions of the research. Then, based
on the conducted research, it describes the most commonly
used feature extraction methods and feature-based machine
learning algorithms used for stance detection to better
understand what is implemented later.

2.1 Tasks to answer sub-questions
In order to answer the previously mentioned sub-questions,
we undertake the following tasks:

1. Find existing implementations and research about stance
detection (comprehensive literature study).

• The literature study can be found in Section 1.
2. Find at least three and a maximum of six feature

extraction methods that can be used for stance detection
and implement them.

• The found methods are shown and explained in
Section 2.2.

3. Find one dataset that can be used for all data-extraction
methods.

• The selected dataset and its description can be
found in Section 3.2.

4. Find at least two and a maximum of four feature-based
machine learning algorithms that can be used for stance
detection and implement them in combination with the
feature extraction methods.

• The found methods are shown and explained in
Section 2.3.

5. Based on the literature study, identify the most
commonly used and descriptive performance measure
for stance detection.

• The selected performance measures and their
description can be found in Section 3.3

6. Identify the best-performing combination and conclude
the research.

• The result of this task can be found in Section 4.

2.2 Feature extraction methods
In order to use traditional (feature-based) machine learning to
evaluate stance detection tasks, a feature extraction method
has to be used. During the feature extraction, we must
convert the corpus to a vector representation. The corpus
is a collection of documents where each document contains
terms. We can perform this conversion in different ways.
A high-level overview and the division of methods used,
based on the evaluation of forty-three papers, can be found
in Figure 1. The list of reviewed papers can be found
in Appendix A. This section introduces some of the most
commonly used methods implemented and their way of
working.

Figure 1: Feature extraction methods

Word N-grams and bag-of-words
The first feature extraction method under review is word
N-grams and bag-of-words. Word N-grams are N consecutive
words created from a text [Jurafsky and Martin, 2020]. Take
the following sentence as an example: “I like dogs and cats,
too.”. To create N-grams for this sentence, see the following
examples:

Example 1 (1-gram (unigram)) “I”, “like”, “dogs”,
“and”, “cats”, “too”

Example 2 (2-gram (bigram)) “I like”, “like dogs”, “dogs
and”, “and cats”, “cats too”

Example 3 (3-gram (trigram)) “I like dogs”, “like dogs
and”, “dogs and cats”, “and cats too”



Many times, bigrams and trigrams hold more information
than unigrams. For instance, in the previous example,
the trigram “dogs and cats” shows that the target of the
sentence is both animals, while unigrams cannot provide
this information. Therefore, using multigrams can improve
performance in many cases.

In the bag-of-words model, the “bag” contains all N-grams
of the original corpus and is represented as a vector. After
creating this vector, a sentence can be represented by showing
how many times an element appears in the original vector.

Word embedding
Word embedding is the vectorial representation of words in a
way that the result vector represents the meaning of a word.
The embedding model is trained such that (contextually)
similar words are closer to each other in the vector space
[Jurafsky and Martin, 2020]. A word embedding method is
word2vec, which is an efficient method to create such vectors.
Word2vec was created by Google and it is pre-trained from
the Google News corpus, which contains more than three
billion words [Mikolov et al., 2013]. When using word2vec,
we represent every word as a 300-dimension vector. Figure 2
shows a simplified, high-level overview of such a vector
representation of words. This figure shows how the values
are distributes within the vector (red means high value, blue
means low value), and that “Man” and “Woman” are closer
to each other in the vector space than to “king”, meaning that
they are more related in meaning/association, too [Alammar,
2018].

Figure 2: Word2vec representation of words [Alammar, 2018]

POS tags
Part-of-speech (POS) tags are the grammatical tags of every
word in a sentence. These tags can be “adjective”, “verb”,
“noun”, etc. By using POS tags, one can give a different
meaning to words. By using POS tags, further context is
applied to the basic unigram bag-of-words approach. For
example, the algorithm can identify differences between
using “catch” as a noun or a verb.

TF-IDF
Term frequency-inverse document frequency (TF-IDF) is the
numerical representation of how important a word is in a
corpus [Rajaraman and Ullman, 2011]. Term frequency is
“the weight of a term that occurs in a document” [Luhn,
1957]. However, since some words, such as “and” and “the”,
are common in many sentences, TF can be misleading. To
tackle this, IDF can be used. IDF “can be quantified as
an inverse function of the number of documents in which it
occurs” [Jones, 1972].

TF-IDF is the product of the two values mentioned above,
thus giving as many insights into the text as possible. TF can
be calculated the following way:

tf(t, d) =
ft,d∑

t′∈d ft′,d
(1)

where f(t,d) is the number of times that the term t occurs in
document d. IDF can be calculated the following way:

idf(t,D) = log
N

|{d ∈ D : t ∈ d}|
(2)

where N is the number of documents in the corpus, and the
denominator is the number of documents where the term t
appears. In order to calculate TF-IDF, the product of the TF
and IDF has to be calculated:

tfidf(t,D) = tf(t, d) ∗ idf(t,D) (3)

2.3 Feature-based machine learning algorithms
After the feature extraction is done, we can apply traditional
machine learning to the result vector. Based on the conducted
literature study and the survey created by Küçük and Can
[2020], the overview of the most common models can
be found in Figure 3. All these models—SVM, Logistic
Regression, Random Forest, Naı̈ve Bayes and Decision Tree
[Bishop, 2006]—are supervised machine learning algorithms
used for classification. By giving a set of labelled training
dataset to the algorithms, they can learn to predict the class
of any new data point. Except for the Decision Tree, all most
commonly used models have been implemented with the help
of the scikit-learn library [Pedregosa et al., 2011]. The reason
we excluded the Decision Tree is because we decided to
implement a maximum of four methods, as mentioned in
Section 2, and the Decision Tree was used the fewest times
based on the literature study.

Figure 3: Feature-based machine learning algorithms

3 Experiment
This section describes the actual implementation of the
aforementioned methods and shows the experiment’s
pipeline. Next, it introduces the dataset used for the
evaluation and shows how the performance is measured.
Lastly, it shows how the different elements are combined to
run the experiment.



Figure 4: Visual representation of the experimental pipeline

3.1 Experimental setup
The setup of this experiment consists of 6 steps:

1. Parse input data.

2. For every feature extraction method - machine learning
algorithm pair:

(a) make feature vectors from both training and test
data,

(b) train machine learning algorithm on training data,
(c) perform classification on test data.

3. Evaluation of the different combinations.

The aforementioned steps are explained later in the section.
The visual representation of the pipeline can be found in
Figure 4. The experiment is run on a MacBook Pro with 8GB
memory and a 2.6 GHz Dual-Core Intel Core i5 processor,
running macOS 11.3. The Python version used is 3.8.7.
The libraries used and their version number can be found in
Table 7 in Appendix B. Any library’s method is used with
default parameters or stated otherwise. Further, the whole
codebase can be found on the EEMCS GitLab repository1.

3.2 Dataset
One of the earliest competitions on stance detection was
the SemEval-2016 shared task on Twitter stance detection,
described by Mohammad et al. [2016]. During this
competition, the goal was to determine the stance of tweets
towards five targets, with three labels. The dataset created
for this competition is a set of tweets manually annotated
for stance towards a given target. The five targets are the
following: Atheism (AT), Climate Change is a Real Concern
(CC), Feminist Movement (FM), Hillary Clinton (HC), and
Legalization of Abortion (LA). The labels are the following:

1https://gitlab.ewi.tudelft.nl/cse3000/2020-2021/rp-group-65/
rp-group-65-kvass.git

Favor (F), Against (A), Neither (N). It contains around 2900
training instances for the five targets.

We chose this dataset because several other papers and
implementations use it, which helps to indicate the expected
performance. Further, analysing tweets is a problem that can
be seen as a real-life use case of such algorithms.

The division of topics and the split of the training and test
instances can be found in Table 2. Further, some examples
from the dataset can be found in Table 3, showing the target,
the original tweet and the related stance.

Table 2: Division of topics within the training and test sets.

Topic Training Test
F A N F A N

AT 92 304 117 32 160 28
CC 212 15 168 123 11 35
FM 210 328 126 58 183 44
HC 118 393 178 45 172 78
LA 121 355 177 46 189 45

SUM
753 1395 766 304 715 230

2914 1249
4136

3.3 Performance measure
To measure the performance of the implementation, both
accuracy and F-score are used. As most of the previous
implementations use F-score as their primary evaluation
metric, it is reasonable to use it because existing research
can be used for comparison. Further, accuracy is also used
because it is an easily explainable and commonly known
measure.

F-score is a statistical measure calculated from precision
(P) and recall (R) of the test. The graphical representation
of the points used in the F-score can be found in Figure 6

https://gitlab.ewi.tudelft.nl/cse3000/2020-2021/rp-group-65/rp-group-65-kvass.git
https://gitlab.ewi.tudelft.nl/cse3000/2020-2021/rp-group-65/rp-group-65-kvass.git


Table 3: Examples of the SemEval-2016 Stance dataset

ID Target Tweet Stance

1 Hillary
Clinton

@tedcruz And,
#HandOverTheServer
she wiped clean + 30k
deleted emails, explains
dereliction of duty/lies
re #Benghazi,etc
#tcot #SemST

Against

2 Hillary
Clinton

Hillary is our best
choice if we truly
want to continue
being a progressive
nation. #Ohio #SemST

Favor

52 Legalization
of Abortion

@tooprettyclub Are
you OK with #GOP
males telling you what
you can and can’t do
with your own body?
#SemST

Favor

in Appendix C. By the definition of Rijsbergen [Rijsbergen,
1979], it is calculated as follows:

P =
Correct

Correct+ Spurious
(4)

R =
Correct

Correct+Missing
(5)

F =
2 ∗ P ∗R
P +R

(6)

To apply this measure to stance detection, we can use the
macro-average of the F-scores of the three labels (Favor,
Against, Neither). Macro-average is selected as it is the
most commonly used average for stance detection tasks
[Mohammad et al., 2016; Küçük and Can, 2020]. By doing
so, our F-score performance measure (F) is calculated the
following way:

FFavor =
2 ∗ PFavor ∗RFavor

PFavor +RFavor
(7)

FAgainst =
2 ∗ PAgainst ∗RAgainst

PAgainst +RAgainst
(8)

FNeither =
2 ∗ PNeither ∗RNeither

PNeither +RNeither
(9)

F =
FFavor + FAgainst + FNeither

3
(10)

Accuracy (A) is calculated the following way:

A =
Correct classification

All classification
(11)

3.4 Parse input data
The complete annotated input data can be found and
downloaded from the SemEval-2016 Stance Dataset
website2. After downloading the dataset, we parse the
train and test datasets, convert to DataFrames, and remove
the rows with missing values. Further pre-processing is
conducted while creating the feature vectors, and they are
explained in the later sections.

3.5 Implementation
As explained in Section 2.2, we implement five different
feature extraction methods (TF-IDF, Word Embedding,
Bag-of-words, Word N-gram, and POS tags) and four
machine learning algorithms (SVM, Logistic Regression,
Random Forest, and Naı̈ve Bayes). The details of the
implementations can be found in Appendix D.

4 Results
This section describes the experiment results, and shows the
performance of the twenty different combinations of feature
extraction methods and feature-based machine learning
algorithms. The accuracy scores of the pairs can be found
in Table 4, and the F-score can be found in Table 5.

Table 4: Accuracy scores of the pairs

SVM Logistic
Regression

Random
Forest

Naı̈ve
Bayes

TF-IDF 0.6173 0.6221 0.6589 0.6597
WE 0.6397 0.6045 0.6661 0.5749
BOF 0.5356 0.6157 0.6149 0.6477
Ngram 0.5869 0.6557 0.6197 0.6445
POS 0.6005 0.6229 0.6621 0.6557

As shown in Table 4, the best performing feature extraction
method, when measured with accuracy, is TF-IDF, with an
average score of 0.6395, while the most accurate machine
learning algorithm (when using them with different feature
extractions) is Random Forest with an average accuracy
score of 0.6444. However, the best performing combination
is not the combination of the most accurate methods, but
the combination of using Word Embedding with a Random
Forest classifier.

Table 5: F-scores of the pairs

SVM Logistic
Regression

Random
Forest

Naı̈ve
Bayes

TF-IDF 0.5663 0.5684 0.5500 0.4379
WE 0.5978 0.5396 0.5359 0.4726
BOW 0.5062 0.5686 0.5672 0.5418
Ngram 0.5467 0.5991 0.5741 0.5536
POS 0.5482 0.5649 0.4793 0.4674

2https://www.saifmohammad.com/WebDocs/
stance-data-all-annotations.zip

https://www.saifmohammad.com/WebDocs/stance-data-all-annotations.zip
https://www.saifmohammad.com/WebDocs/stance-data-all-annotations.zip


In Table 5, the performance of the combinations, when
measuring them with F-score, can be found. The best
performing feature extraction method is Word N-grams with
an average F-score of 0.5684. Additionally, the best result
in terms of F-score for machine learning algorithms was
achieved by Logistic Regression, with an average score of
0.5681. In this case, the best performing combination was
the combination of the two, with an F-score of 0.5991.

As mentioned previously, F-score is commonly used in
other papers that discuss the topic of stance detection.
Further, when false results have to be taken into account,
F-score gives a better indication (and penalty) than accuracy.
Therefore, to select the best performing combination
of feature extraction method and feature-based machine
learning algorithm, when used on stance detection, F-score
is used. As shown in the previous paragraph, the best
combination is using Word N-grams (1-, 2-, and 3-grams)
with Logistic Regression, which achieves an accuracy of
0.6557 and an F-score of 0.5991.

Figure 5: Normalised confusion matrix of the combination Word
Ngram and Logistic Regression

Figure 5 shows the normalised confusion matrix of the
aforementioned combination when evaluating the test dataset.
This figure shows that the three highest values are on the
diagonal, meaning that the test instances were predicted more
correctly than incorrectly. Notably, the “AGAINST” label
was predicted the most times correctly, with an accuracy of
0.75.

5 Discussion
This section discusses the results from Section 4. It
explains the differences between the different methods and
the conclusions derived from them. Then, it compares the
best performing result to already existing implementations for

further comparison. Lastly, it discusses the recommendations
of the author and the limitations taken during the research.

5.1 Results of the different combinations

When inspecting the results of the evaluation, some
conclusions can be drawn. The average accuracy of the
different combinations is 0.6253 with a standard deviation
of 0.034. The average F-score is 0.5393 with a standard
deviation of 0.044. This means that the different pairs are
very close to each other in performance, and the difference
between them is negligible. It is also clear that there is a
considerable difference between the results of accuracy and
F-score, since the best result with accuracy is the seventeenth
result in F-score, and the best result in F-score is eleventh
with accuracy. Since the dataset is somewhat imbalanced, it
is reasonable that F-score is lower than accuracy.

As discussed in Section 2, all feature extraction methods
create different sizes of feature vectors. Therefore, they
influence in the end results. As TF-IDF creates an extremely
sparse and huge feature vector, it gives several insights into
the corpus. However, this sparse vector seems to be too
specific to give good results for general use cases. On the
other hand, word embedding vectors are too small and dense
to contain enough information about the corpus. It is also
possible that normalising the vectors of all words into one
vector results in the vector losing its meaning, since the
result might be the representation of a (non-)existing word.
The bag-of-words and Word N-gram methods create similar
feature vector sizes, and their average accuracy is very similar
in terms of both accuracy and F-score. Lastly, the method
of POS tags creates a relatively dense feature vector again,
however, this performs quite well for accuracy.

When considering accuracy, TF-IDF and POS tags
performed the best. As previously mentioned, these two
methods create the two sparsest feature vectors. Therefore,
we can conclude that when accuracy is the primary
performance measure, thus false positives and negatives do
not play an important role in the evaluation, sparse vectors
perform the best. On the other hand, when working with
F-score, a lower dimensionality in the feature vector pays
off. Lastly, if the feature vector size is too small, such as
when using word embedding, traditional machine learning
algorithms cannot perform very well.

5.2 Best result

As shown in Section 4, the best performing combination is
using Word N-grams for extracting features and evaluating
that with Logistic Regression. The confusion matrix for this
combination in Figure 5 shows some interesting insights.
The best accuracy of the “AGAINST” label can be explained
by the fact that the training dataset contains twice as much
training data for this label as for the others, therefore, the
trained model can predict this label wit higher success. This
imbalance in the dataset has definitely has its impacts on
the results, as the trained algorithm can be misleading. This
should be addressed in the future, which we will describe in
Section 6.



5.3 Comparison to known results
The paper written by Mohammad et al. [2016] discusses
the SemEval-2016 Task 6 and its results. It is possible to
use this paper and the mentioned implementations and their
results for comparison. However, during the competition,
the performance measure was somewhat different, as
the macro-average of F-score was only calculated for
positive classes (“Favor” and “Against”, but not “Neither”).
Therefore, to compare to these results, only for the sake of
comparison, the implementation has been changed to evaluate
the results the same way. Table 6 summarises the best and
average results of this research.

Table 6: Comparison to known results

Implementation F-score
This research with modified evaluation 0.6533

Baseline - SVM N-grams 0.6898
MITRE 0.6782
pkudblab 0.6683
Average in paper 0.6251
Baseline - Combined SVM N-grams 0.6206

The table shows that the results of this paper are better
than the average results during the competition. Most
implementations in the contest have been created in a way
that all five targets are predicted with five different machine
learning algorithms. This means that these models can
perform with high performance on already seen target,
and they perform very well for a specific task. The
baseline implementation of the competition also contained
a model with combined SVM (one model for all targets),
which received an F-score of 0.6206, meaning that the
implementation of this research was able to perform better.
As this paper aims to find the best solution for general use
cases, using one combined model is more reasonable in
this case. Additionally, further limitations were taken, as
explained in 5.5.

5.4 Recommendations
This paper researched the best techniques for stance
detection, tested explicitly on the SemEval-2016 Stance
dataset. Even though the achieved results are reasonable,
it is not recommended to use a trained model for other use
cases as the training dataset is very limited. However, if a
bigger, and more general dataset can be collected to be used
for training, such algorithm can be used for general use cases,
such as fake-news detection or rumour classification [Küçük
and Can, 2020].

5.5 Limitations
Even though the goal of this research was to find the
best technique for stance detection, some limitations were
present as the time-scope of the project would not allow the
exploration of every possibility. Therefore, only the most
commonly used methods have been used during the research
and almost all with default parameters. However, other

feature extraction methods and machine learning algorithms
might exist, which were not used many times since 2016 (the
first stance detection competition) but may perform better.
Next to that, further tuning the hyper-parameters could help
to increase the performance of the best result.

6 Conclusions and Future Work
During this project, we researched different combinations
of feature extraction methods and feature-based machine
learning algorithms in order to find the best performing
pair for stance detection. To do so, we reviewed existing
research, and found that in existing implementations the
most common feature extraction methods are Word N-gram,
TF-IDF, Bag-of-words, word embedding and POS tags.
Additionally, the most common machine learning algorithms
are SVM, Logistic Regression, Random Forest and Naı̈ve
Bayes. To find the best technique, we used the SemEval-2016
Stance dataset as a training and test dataset, and measured
the performance with accuracy and F-score. As F-score is
more commonly used for evaluating stance detection and is
more sensitive to false results, we used it to determine the
best combination.

After implementing all the aforementioned methods and
combining them with the machine learning algorithms, we
trained all twenty pairs with the training dataset. Then, we
used the models to predict the results of the test dataset.
Based on evaluating the results, the best pair is Word N-gram
as a feature extraction method in combination with Logistic
Regression. This combination resulted in an accuracy of
0.6557 and an F-score of 0.5991.

To improve these results, some future work can be done.
First, it can be researched whether better data cleaning (such
as lemmatisation, removing numbers or hashtags) would
increase the performance of the algorithms. As mentioned in
Section 5, an imbalanced dataset can also impact the results.
This can be addressed by considering oversampling [Barua et
al., 2014] or using some method, such as SMOTE [Chawla
et al., 2002], to balance the classes. Then, it could be
researched whether differently creating the feature vectors,
such as using a different method for word embedding than
normalisation, would further improve the accuracy. Lastly,
since deep learning is often used in recent research, it would
also be necessary to research whether deep learning methods
would perform better for stance detection. Such research has
been conducted by Jacob Roeters van Lennep [2021] as his
Research Project.

7 Responsible Research
This research was conducted during the course of CSE3000
Research Project at the Delft University of Technology. The
experiment was performed without any conflict of personal
interest. The context of the research does not raise any ethical
concerns as no sensitive data have been collected or stored,
and the used dataset was retrieved from a publicly available
website3. Since tweets can be sensitive, it is also important

3https://www.saifmohammad.com/WebPages/StanceDataset.
htm

https://www.saifmohammad.com/WebPages/StanceDataset.htm
https://www.saifmohammad.com/WebPages/StanceDataset.htm


to mention that they are anonymised, and their tweet ID is
not connected to them, therefore they cannot be traced back
to their creators. The bias, if there is any, in the dataset
might influence the working of the algorithm. The tweets
can contain bias, which can change the way the algorithm
will work, even though the algorithm itself is not biased in
any way. Therefore, it is essential to mention that if such
algorithms are used for real-life use cases, one must take care
of a balanced and unbiased dataset. However, in this case,
the trained algorithm will not be used in real-life use cases
and is only evaluated on a test dataset created by the same
organisation. Thus, one can conclude that in this context, bias
does not play an important role.

To ensure reproducibility, all used packages, software
and their versions have been mentioned in Section 3.
Additionally, the complete codebase is available on the
EEMCS GitLab repository4. This is a private repository, but
access can be requested through my e-mail address. Since
probability only took part in the research during a small
and insignificant segment (as it only affects one machine
learning algorithm, Random Forest), the same results, with
the exception of Random Forest, are reproducible just
by implementing everything based on the aforementioned
descriptions or by running the code from GitLab.

Acknowledgement
I would like to express my appreciation and gratefulness
to my supervisor and responsible professor, Pradeep
Murukannaiah, for supporting this research with his
knowledge, and insights into the topic. Further, I would like
to thank my peer group — Wout Haakman, Jacob Roeters van
Lennep, Abel van Steenweghen and Simon Mariën — for the
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B Experimental setup

Table 7: Libraries used for the experiment

Library Version
gensim 4.0.1
matplotlib 3.4.2
nltk 3.6.2
numpy 1.20.3
pandas 1.2.4
scikit-learn 0.24.2
scipy 1.6.3

C Performance measure

Figure 6: F-score datapoints graphical representation

D Implementation details

D.1 Feature extraction algotihms
This section describes how the feature extraction methods are
used and what the results of the extractions are. In order to
consistently have the same structure, we created an abstract
class FeatureExtractionMethod with two methods ( set up()
and make feature vectors()), which are used by all the feature
extraction methods. The corpus always contains all elements
of the training dataset’s tweets and targets.

TF-IDF
To create the feature vector with TF-IDF, we use scikit-learn’s
[Pedregosa et al., 2011] TfidfVectorizer5. This method (by
default) creates unigrams from the corpus and calculates
the TF-IDF values for every word in the text-target pairs
based on the formula introduced in Section 2.2. To filter
contextually-low-meaning words, the English stop words are
not used with the setting stop words=’english’. Further,
scikit-learn automatically filters punctuation from the corpus.

To gain extra insight into the context, we calculate the
cosine similarity of the vectors. Then, we append the two
TF-IDF vectors and cosine similarity value next to each other,
resulting in an highly sparse feature vector of size of 17523.

Word Embedding
To use word embedding to create a feature vector, the
word2vec vector of every word in the target text is collected
with the help of the gensim library’s [Řehůřek and Sojka,
2010] KeyedVectors class6, which helps to map between
words and their vectors. The binary file used for word2vec
can be found on the Google Code Archive’s Google Drive7. If
the dictionary does not contain a word (such as hashtags), the
word is simply skipped. After collecting the vectors, they are
added together, and lastly, normalised. Therefore, the result
feature vector is the normalised word2vec vector of the text
and target appended after each other, resulting in a vector size
of 600.

Bag-of-words
To create the feature vector with bag-of-words, we create
unigrams from the corpus, and every target text is represented
using that vector, showing how many times each unigram
appears in the text. To create the bag-of-word vector, we use
scikit-learn’s [Pedregosa et al., 2011] CountVectorizer8. As
explained previously, the English stop words are filtered here
as well, and min df has been set to 3 to filter words that appear
less than 3 times in the whole corpus. Next to that, such as
with TF-IDF, punctuation is automatically filtered. The count
vector of the text and the target are appended after each other,
resulting in a feature vector of size of 1735.

5https://scikit-learn.org/stable/modules/generated/sklearn.
feature extraction.text.TfidfVectorizer.html

6https://radimrehurek.com/gensim/models/keyedvectors.html
7https://code.google.com/archive/p/word2vec/
8https://scikit-learn.org/stable/modules/generated/sklearn.

feature extraction.text.CountVectorizer.html
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Word N-gram
Similar to bag-of-words, we create Word N-grams with
CountVectorizer. The only difference to bag-of-words is
that instead of using just unigrams in the “bag”, unigrams,
bigrams and trigrams are created and used by setting
ngram range to (1,3). The same filtering as bag-of-words
is applied here as well. The feature vector of using word
N-grams results in a vector of size of 2267.

POS tags
To use POS tags for creating feature vectors, we retrieve the
POS tag of every word within the corpus. Then, we attach the
tag to the word with a “/” separator and used the same way as
bag-of-words was used. When using POS tags with unigram
bag-of-words, the created feature vector resulted in a size of
9060.

D.2 Machine learning algorithms
After creating the feature vectors, the machine learning
algorithms are trained on the training dataset. We use
four different models to classify the results with the help
of the scikit-learn [Pedregosa et al., 2011] library. For
SVM, the SVC module9 is used with 5-fold cross-validation
with the help of GridSearchCV10 to find the best C-value
and kernel type. For Linear Regression, the module
LogisticRegressionCV11 with random state=0 and cv=5 for
5-fold cross-validation is used. Random Forest is run by the
RandomForestClassifier module12. Lastly, for Naı̈ve Bayes,
the MultinomialNB module13 is used.

Lastly, we combine all five feature extraction methods with
the four models, resulting in twenty different combinations.
After training the models, evaluation is done on the test
dataset. To evaluate the results, and measure accuracy and
F-score, we use scikit-learn’s [Pedregosa et al., 2011] metrics
module14.

9https://scikit-learn.org/stable/modules/generated/sklearn.svm.
SVC.html

10https://scikit-learn.org/stable/modules/generated/sklearn.
model selection.GridSearchCV.html

11https://scikit-learn.org/stable/modules/generated/sklearn.
linear model.LogisticRegressionCV.html

12https://scikit-learn.org/stable/modules/generated/sklearn.
ensemble.RandomForestClassifier.html

13https://scikit-learn.org/stable/modules/generated/sklearn.
naive bayes.MultinomialNB.html

14https://scikit-learn.org/stable/modules/classes.html
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