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Summary

H igh-precision motion systems are crucial for many applications, such as in semicon-
ductor equipment, microscopy, robotics, and medical devices. Next to high operating

speeds, high accuracy and precision are required, which makes the design of these sys-
tems a challenging task. Dynamics, feedback control, and their interaction all play an
important role in the design and its final performance.

This dissertation shows that topology optimization in combination with additive man-
ufacturing offers new opportunities for the automated design of motion systems with
unprecedented performance. The main challenges addressed are the manufacturability
of the designs, the computational time required for full-scale topology optimization, and
the effective formulation of integrated controller-structure optimization problems for im-
provement of the closed-loop system performance.

First of all, a systematic optimization setup is presented in Chapter 2 to obtain directly
producible optimized designs, while initially focusing on structural eigenfrequency maxi-
mization. It includes all subsequent manufacturing steps, such as additive manufacturing,
milling, and assembly of components. A full-scale optimized design has been produced
and its performance has been validated experimentally.

Although significant eigenfrequency gains can be obtained through optimization, this
does not directly mean that the integrated system performance is good, as the resonance
amplitudes are also very important to consider. Therefore, a new method for topology
optimization is proposed in Chapter 3, which enables limitation of resonance amplitudes
in the frequency domain. Additionally, design sensitivities are calculated efficiently by
approximation with reduced-order models.

Next, a PID controller is included for a truly integrated SISO controller-structure opti-
mization in Chapter 4. The Nyquist curve includes both phase and amplitude information.
By its local approximation using circles, topology optimization can be performed in an
efficient and stable manner. Only using a limited number of constraints have to be used
to influence the global shape of the Nyquist curve in the complex domain. This allows
topology optimization to maximize bandwidth while ensuring closed-loop stability and
robustness against disturbances, based on the modulus margin.

Finally, the method is extended to MIMO systems in Chapter 5. The local approxima-
tions are used to approximate the complex closed-loop sensitivity function, which quantify
the disturbance rejection of the system. To ensure robustness against simultaneous distur-
bances on multiple channels, theℋ∞ norm is approximated and limited during optimiza-
tion. This ensures differentiability and prevents the need for additional constraints for the
different inputs and outputs. Furthermore, significant computational gain is achieved by
approximation of the computationally expensive design sensitivities for the eigenmodes,
enabling optimization of full-scale 3D systems. Combining all these techniques, this dis-
sertation demonstrates that it is possible to perform integrated controller-structure topol-
ogy optimization of motion systems of industry-relevant complexity.
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Samenvatting

P ositioneringssystemen met hoge precisie zijn cruciaal voor veel toepassingen, zoals
in halfgeleiderapparatuur, microscopie, robotica en medische apparaten. Naast hoge

werksnelheden zijn een hoge nauwkeurigheid en precisie vereist, wat het ontwerp van
deze systemen uitdagend maakt. Dynamica, terugkoppelingsregeling en hun interactie
spelen een belangrijke rol in het ontwerp en de uiteindelijke prestaties ervan.

Dit proefschrift laat zien dat topologie optimalisatie in combinatie met additieve fabri-
cage nieuwe mogelijkheden biedt voor het automatisch ontwerpen van positioneringssys-
temen met ongekende prestaties. Hier zijn de belangrijkste uitdagingen de maakbaarheid
van de ontwerpen, de rekentijd die benodigd is voor de topologie optimalisatie en het
formuleren van geïntegreerde optimalisatieproblemen met zowel regelaar als structuur.

Allereerst wordt in Hoofdstuk 2 een systematische optimalisatie-opzet gepresenteerd
om geoptimaliseerde ontwerpen te verkrijgen die direct maakbaar zijn. Hierbij wordt
in eerste instantie gefocust op maximalisatie van structurele eigenfrequenties. De opzet
omvat alle opeenvolgende productiestappen, zoals 3D printen, frezen en assemblage van
componenten. Een geoptimaliseerd ontwerp is geproduceerd op volledige schaal en de
prestaties hiervan zijn experimenteel gevalideerd.

Hoewel door optimalisatie aanzienlijk hogere eigenfrequenties kunnen worden be-
reikt, betekent dit niet direct dat ook de geïntegreerde systeemprestaties goed zijn, omdat
de resonantie-amplitudes ook erg belangrijk zijn om te beschouwen. Daarom wordt in
Hoofdstuk 3 een nieuwe methode voorgesteld die beperking van resonantie-amplitudes
in het frequentiedomein mogelijk maakt. Daarnaast worden de ontwerpgevoeligheden
efficiënt berekend door benadering met gereduceerde-orde modellen.

Vervolgens wordt een PID-regelaar toegevoegd voor een geïntegreerde SISO optimali-
satie met regelaar en structuur in Hoofdstuk 4. Door de Nyquist curve lokaal te benaderen
met behulp van cirkels kan de topologie optimalisatie op een efficiënte en stabiele manier
worden uitgevoerd. Een beperkt aantal restrictie-functies kan worden gebruikt om de glo-
bale vorm van de Nyquist curve te beïnvloeden in het complexe domein. Op basis van de
modulus marge maakt dit het mogelijk om de bandbreedte te maximaliseren waarbij de
gesloten-lus stabiliteit en de robuustheid tegen verstoringen worden gewaarborgd.

Tenslottewordt demethode uitgebreid naarMIMO systemen inHoofdstuk 5. De lokale
cirkel benaderingen worden gebruikt om de complexe gesloten-lus gevoeligheidsfunctie
te benaderen, die de verstoringsonderdrukking van het systeem kwantificeert. Om de ro-
buustheid tegen gelijktijdige verstoringen op meerdere kanalen te garanderen, wordt de
ℋ∞-norm benaderd en gelimiteerd tijdens optimalisatie. Dit zorgt voor differentieërbaar-
heid en voorkomt extra restrictie-functies voor de verschillende in- en uitgangen. Verder
wordt een aanzienlijke rekenwinst behaald door de ontwerpgevoeligheden van de eigen-
modi te benaderen. Door al deze technieken te combineren demonstreert dit proefschrift
dat het mogelijk is om geïntegreerde topologie optimalisatie met structuur en regelaar uit
te voeren voor positioneringssystemen met industrie-relevante complexiteit.
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1
Introduction

M odern society heavily depends on electronic chips, which can be found in virtually
any device. These chips contain billions of transistors, made out of tiny structures

on a nanometer scale. Their production is a complex process involving many steps, where
multiple layers containing patterns are overlaid on top of each other. Using lithography,
the desired pattern for each layer is transferred to the chip using a source of light and a
mask partially blocking the light. For a fully functioning chip, each new layer needs to be
positioned at exactly the correct position with respect to the previous. Additionally, this
needs to happen at extreme speeds and accelerations to achieve a high throughput and
keep production costs low. The precise positioning is done using amotion stage, on top of
which the chips are placed (Martinez and Edgar, 2006). Next to semiconductor equipment,
other applications also require high-performance motion stages for precise positioning.
For instance, samples under a (scanning probe) microscope require precise positioning for
accurate measurements and fast scanning for a quick analysis (Abramovitch et al., 2007).
The main challenge is to increase the speed at which the motion stage operates, without
sacrificing accuracy.

1.1 Motion control
High precision in a motion system is achieved by feedback control, as is illustrated in
Fig. 1.1. Motions of the stage are detected by sensors, e.g., using laser interferometry. The
difference between the measurement and the desired reference position is then fed into
the controller, e.g., a proportional-integral-derivative (PID) controller. Based on the error,
the controller determines a correction action, which is applied as a force on the stage, e.g.,
using electro-magnetic actuators. This loop is continuously repeated at real-time during
operation to ensure accurate positioning (Åström and Murray, 2008).

In reality, the motion stage does not move like a rigid body. Especially when high
speeds and accelerations are involved, dynamic loads will deform the stage, as illustrated
in Fig. 1.2. The sensor thus not only measures the position of a stage, but also its dynamic
deformations. The nature of the system dynamics limits the maximum bandwidth of the
motion stage: this is the frequency up to which errors can effectively be corrected by the
feedback loop. A system with a higher bandwidth is able to move faster. However, if
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Motion
Actuator force

Sensor
Measurement

+

−
Reference Error CorrectionController

Figure 1.1: Schematic overview of a simple feedback loop for motion control.

the controller bandwidth is tuned too high with respect to the system dynamics, it be-
comes increasingly sensitive to disturbances. Disturbances can be caused by, for instance,
measurement noise, vibrations from the environment, or imperfections in the system. In
extreme cases, bad controller tuning may even lead to instability, where measurement
and reference signal amplify each other, resulting in a positive feedback loop. This makes
both the dynamics of the stage and the controller integral parts of the design of a motion
system, as studied in the discipline of mechatronics (Munnig Schmidt et al., 2011). Their
interaction makes the design of a motion system difficult, especially for multi-input multi-
output (MIMO) systems, where different control loops interact together (Skogestad and
Postlethwaite, 2001).

(a) (b)

Figure 1.2: a) An undeformed motion stage for which accuracy is required on the top. b) A stage which is
deformed due to dynamic excitation (deformation amplified for illustration).

1.2 Dynamics
Thedynamics of a motion system can be analyzed in the frequency domain. This is favored
over analysis in the time domain, as it allows for straight-forward quantification of perfor-
mance and disturbance rejection characteristics in amotion system. The dynamic behavior
is described using eigenmodes (Fig. 1.3) and corresponding eigenfrequencies at which they
occur (Rayleigh, 1945). For a force exciting the structure at a certain frequency, the dy-
namic deformation is a combination of all eigenmodes of the system. However, calculating
all eigenmodes requires a prohibitive amount of computational time. Therefore, usually
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a limited number of eigenmodes is used to model the system dynamics (e.g., Geradin and
Rixen, 2015).

(a) Mode 1 at 569Hz (b) Mode 2 at 735Hz (c) Mode 3 at 880Hz

Figure 1.3: The first three flexible eigenmodes of a motion stage.

A frequency response diagram shows the ratio between the amplitude of input force
and measured displacement as a function of frequency, as is illustrated in Fig. 1.4. Around
the eigenfrequencies, resonance occurs due to the flexible eigenmodes of the structure.
The interaction with a controller depends on the eigenmodes associated with these reso-
nances and their corresponding frequencies. By altering the design, the eigenmodes and
eigenfrequencies change, which may lead to better system performance (Munnig Schmidt
et al., 2011). The main challenge here is how to change them. For instance, increasing the
eigenfrequencies may lead to a higher bandwidth, as the flexible dynamics only start at a
higher frequency. However, increasing eigenfrequencies may also affect the eigenmodes,
which may counteract the anticipated effect. Next to this, it is very difficult to predict
by intuition how the dynamics will change when designing a structure. This is where
(topology) optimization techniques can aid the engineer responsible for the design of a
controlled structure.

0.1 1.0
Frequency (kHz)

-40

-30

-20

-10

0

10

A
m
pl
itu

de
(d
B)

Flexible

Resonances

Rigid

Figure 1.4: The frequency response function shows
the measured amplitude for an harmonic unit load
on the actuators. As the frequency increases, it gen-
erally becomes more difficult to move the mass. Res-
onances occur around the eigenfrequencies, which
are caused by flexible deformations of the structure.

1.3 Topology optimization
Optimization techniques are used to systematically find an optimized structure with im-
proved performance, for instance, optimized for maximum stiffness with a given amount
of material. This can be done by changing dimensions in a structure, by changing its shape,
or in addition by also changing its topology (Christensen and Klarbring, 2009), as seen in
Fig. 1.5. Topology optimization provides the ultimate freedom in terms of geometry, with
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(a) Size (b) Shape (c) Topology

Figure 1.5: The three different types of structural optimization. a) In size optimization, only the dimensions of
the members can be changed. b) For shape optimization the shape of the structure can be changed but not the
amount of holes. c) Topology optimization offers maximum design freedom by allowing new structures to form.

the potential of achieving better performance (Bendsøe and Sigmund, 2003). Here, we
focus on density-based topology optimization, which is the most developed method and
provides a wide array of manufacturability filters (e.g. overhang filter for additive manu-
facturing). The entire design domain is divided into small elements and by continuously
scaling their material fractions between 0 and 1, elements can become solid (1) or void
(0). An optimization algorithm is then used to gradually change all the material fractions
step by step, until a final design with optimal performance is obtained (Papalambros and
Wilde, 2000).

An important ingredient for efficient topology optimization is the calculation of design
sensitivities. These provide information on how changing the material fractions affects the
performance of the design. The optimization algorithm uses design sensitivities to deter-
mine which design changes are most effective. Therefore, the number of design iterations
can be small, reducing the total computational time required.

Many different metrics can be used to characterize performance, which leads to a large
selection of possibilities for optimization. As mentioned, the stiffness can be improved
(Bendsøe and Kikuchi, 1988), but also dynamic measures, such as eigenfrequencies can
be maximized (Ma et al., 1995), or the dynamic response over a range of frequencies (Ma
et al., 1993). An example of a 3D motion stage optimized for maximum eigenfrequencies
can be seen in Fig. 1.6.

(a) Initial (b) Intermediate (c) Final

Figure 1.6: Example of a 3D topology optimization formaximum eigenfrequencies, showing the design evolution.

Specifically for motion control, the controller can be designed such that it accommo-
dates the dynamics of the system, or vice versa the dynamics of the system can be adapted
such that it shows favorable characteristics for control. In this dissertation, an approach
is explored in which the controller and the structure are optimized simultaneously, using
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topology optimization.
A good starting point is provided by the work of Van der Veen et al. (2015, 2017),

who optimized for maximum bandwidth of a motion stage, subject to constraints on dis-
turbance rejection properties and closed-loop stability. However, significant challenges
remain before these methods can be applied to the practical design of a motion stage.

1.4 Challenges
For the current dissertation, three main challenges can be identified that prevent applica-
tion of topology optimization to the design of realistic motion systems.

I. Manufacturing considerations and validation
Already since the mid 90’s, topology optimization has been applied to improve dynamic
properties, such as the maximization of eigenfrequencies (Ma et al., 1995). With the emer-
gence of additive manufacturing during the same period, it has become possible to also
produce the intricate designs obtained from topology optimization. As with any manufac-
turingmethod, additivemanufacturing comeswith its own set of constraints on the design,
some of which have been successfully incorporated in topology optimization (Gaynor and
Guest, 2014; Langelaar, 2016; Van de Ven et al., 2020b). However, for a realistic design,
multiple additional manufacturing steps need to be incorporated, such as milling and as-
sembly of different components (for instance, magnetic actuators). The integration of the
full manufacturing sequence into the optimization presents new challenges that have not
been researched extensively in the context of motion systems. Also, topology optimized
designs for dynamics have been analyzed numerically, but their experimental validation
has not yet been reported in literature, especially for systems of industry-relevant com-
plexity.

II. Computational effort
A fine design resolution enables a large geometric freedom, but comes at the price of a
high computational effort. Large scale 3D topology optimization has been demonstrated
for maximization of stiffness, by exploiting parallelization and cluster computing (Aage
et al., 2017). However, optimization of dynamic systems is significantly more challenging
in terms of computational time. During optimization, many eigenmodes are required to
describe the dynamics of a motion system, which can easily cost over an order of magni-
tude more computation time than a static analysis (e.g., Geradin and Rixen, 2015). Next to
this, design sensitivities of the eigenmodes have to be calculated, which adds another sig-
nificant amount of computation time (Lee, 1999; Van der Veen et al., 2017). This presently
prevents efficient topology optimization of motion systems in 3D with a fine resolution.

III. Application to 3D and MIMO
Besides significant computation time, 3D structures are characterized with more eigen-
modes in the same frequency range compared to 2D structures. This increases the com-
plexity of integrated controller-structure optimization, preventing successful optimization
in 3D according to preliminary studies following the work of Van der Veen et al. (2017).
Additionally, a magnetically levitated stage is considered as a central carrier problem in
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this dissertation, which needs to be controlled in six degrees of freedom. For this MIMO
system, additional attention is required to prevent disturbances of one control loop affect-
ing the other control loops (Skogestad and Postlethwaite, 2001).

Given the challenges outlined above, the ultimate aim of this dissertation is therefore:

Enabling the large-scale 3D and MIMO integrated controller and structure
topology optimization for motion system design.

1.5 Scope
The topology optimization methods used in this dissertation are based on the density
method (Bendsøe and Sigmund, 2003), which is the most developed and offers many dif-
ferent manufacturability filters. The topology methods used are ideally kept as standard
as possible. The structural dynamics are assumed to be linear, with only weak damping
(e.g. hysteretic, Rayleigh, or modal damping), as the intended systems are made out of
metal with only few other metal parts rigidly connected.

The focus of this dissertation is on the combination of topology optimization, manufac-
turability, and controller tuning, and not on the synthesis of state-of-the-art controllers.
Therefore, only basic PID controllers are used. Furthermore, no time delay is included and
the systems are assumed to be linear time-invariant (LTI). The controllers are used for the
control of one or more rigid body modes, as is the case for a magnetically levitated stage.

The intended production process for the designs is additive manufacturing by laser
powder-bed fusion. In the optimization, only geometric design rules are incorporated
(e.g., feature size, overhang) without considering other (thermo)mechanical phenomena
related to the printing process .

1.6 Outline
This dissertation content is based on multiple papers. Therefore, each chapter can mostly
be read independently of each other, with exception of Chapter 5, which is inmany aspects
an extension on Chapter 4. Due to the paper-based content, the mathematical notations
in each chapter might differ slightly, and some repetition is inevitable. The papers are
incorporated as-is, with only changes in layout, mathematical notation, and omission of
several appendices. The main contents of each chapter are as follows:

Chapter 2 The focus of this chapter is on Challenge I: the optimization process of a mo-
tion stage with emphasis to the entire manufacturing sequence, including additive
manufacturing, milling, and the assembly of actuators. For the additive manufactur-
ing limitations, an improved overhang filter is presented with enhanced flexibility
in tuning the maximum overhang angle and print direction. Further considerations
for large-scale 3D maximization of eigenfrequencies are presented and an efficient
method of ensuring a minimum length-scale is introduced. Finally, a demonstrator
is realized based on the optimized design, which is also experimentally verified.

Chapter 3 Next, the topology optimization of frequency response functions is explored.
A method is presented that enables frequency-dependent constraints on maximum
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resonance amplitudes. With regard to Challenge II, in order to keep the computa-
tion time low, different kinds of reduced-order models are compared with the ex-
plicit solution of the full model. An additional gain in computational effort may be
attained by approximation of the design sensitivities. It is found that depending on
the choice of reduced-order model, the approximated design sensitivities improve
in accuracy.

Chapter 4 Moving towards the integrated controller-structure optimization of a single-
input single-output (SISO) motion system, this chapter explores optimization us-
ing the Nyquist curve. In the Nyquist curve of the open-loop system, mechani-
cal resonances result in characteristic circles. Using local analytical descriptions of
these circles, geometrical constraints can be imposed in the complex domain. These
constraints can be used to influence and restrict the global shape of the Nyquist
curve, for instance, to simultaneously enforce closed-loop stability and ensure suf-
ficient modulus margin. Additionally, an efficient robust formulation is presented
for topology optimization of dynamic problems. This enables control on minimum
length-scale in the design without additional computational effort.

Chapter 5 Finally, to address Challenge III, the method is extended to MIMO systems
by local approximation of the ℋ∞ norm corresponding to the sensitivity function.
Based on local circle approximations of the sensitivity function in the complex do-
main, upper bounds can be imposed on the peak values of its singular values. By
using an adaptive correction scheme and imposing constraints on each local approx-
imation, a maximum limit can effectively be imposed on theℋ∞ norm. This enables
efficient optimization including the disturbance rejection properties for MIMO sys-
tems, involving the effect of combined disturbances on the multiple control loops.
Furthermore, design sensitivities of the eigenmodes are approximated with a new
method that significantly reduces computation time, while keeping sufficiently ac-
curate sensitivities. This corresponding computational gain enables the integrated
controller-structure topology optimization of 3D and MIMO structures, which is
demonstrated using numerical examples.

Chapter 6 concludes this dissertationwith themain findings, as well as several suggestions
for future research.
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2
Large-scale eigenfrequency

optimization
The design of high-precision motion stages, which must exhibit high dynamic performance,
is a challenging task. Manual design is difficult, time-consuming, and leads to sub-optimal
designs that fail to fully exploit the extended geometric freedom that additive manufacturing
offers. By using topology optimization and incorporating all manufacturing steps (print-
ing, milling, and assembly) into the optimization formulation, high-quality optimized and
manufacturable designs can be obtained in an automated manner. With a special focus on
overhang control, minimum feature size, and computational effort, the proposed methodol-
ogy is demonstrated using a case study of an industrial motion stage, optimized for maximum
eigenfrequencies. For this case study, an optimized design can be obtained in a single day,
showing a substantial performance increase of around 15% as compared to a conventional de-
sign. The generated design is manufactured using laser powder-bed fusion in aluminium and
experimentally validated within 1% of the simulated performance. This shows that the com-
bination of additive manufacturing and topology optimization can enable significant gains
in the high-tech industry.

This chapter is based on AATMDelissen, E Boots, D Laro, H Kleijnen, F van Keulen, M Langelaar, Realization and
assessment of metal additive manufacturing and topology optimization for high-precision motion systems, Additive
Manufacturing (2022) (Delissen et al., 2022).
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2.1 Introduction

T he combination of additive manufacturing (AM) and topology optimization has long
been promised as a perfect marriage. However, the step from theory to practice has

been mostly limited to components intended for use as static structures (see, e.g., Yoder
et al., 2018; Lynch et al., 2018). In more demanding applications, such as semiconductor
equipment, robotics, microscopy, medical devices, and micro-electromechanical devices,
extreme dynamic performance is usually required (Munnig Schmidt et al., 2011; Oomen,
2018). Studies on the combination of AM and topology optimization with realistic com-
plexity for these high-tech applications are scarce, which is surprising, since especially in
such applications the potential of this combination is expected to be significant.

The high-tech industry relies on motion systems, e.g. for high-precision positioning
of samples in microscopy and of wafers and components in the semiconductor indus-
try (Munnig Schmidt et al., 2011). Better and better performance is demanded for future
targets, and the time-to-market is crucial in this field (Oomen, 2018). Manual design of
motion systems is a time-intensive process, where a design is iterated between mechan-
ical designers, dynamics engineers, manufacturing experts, and control specialists. The
eigenfrequencies of the system are often limiting the performance (i.e. bandwidth) and a
higher bandwidth can generally be obtained by increasing the eigenfrequencies (Van der
Veen et al., 2017).

With metal AM technology maturing, a vastly increased range of geometries can be
manufactured as compared to traditional machining processes, enabling potential for en-
hanced performance. However, it also further complicates the design process for engi-
neers aiming to fully exploit this potential in terms of performance.

The potential of AM can be systematically exploited by using topology optimization,
where an optimized design is generated in an automated manner (Bendsøe and Sigmund,
2003). Much literature is already available on how to incorporate the remaining limitations
of AM into the optimization (see, e.g., Gaynor and Guest, 2014; Langelaar, 2016; Hoffarth
et al., 2017; Qian, 2017; Liu et al., 2018; Van de Ven et al., 2020b). However, little experimen-
tal data and industrial applications can be found beyond simple monolithic brackets based
on themaximization of stiffness (see, e.g., Yoder et al., 2018; Lynch et al., 2018). For complex
applications in the high-tech industry, the usage of topology optimization is not straight-
forward. The performance of dynamic systems also depends on the mass distribution next
to its stiffness. Despite many theoretical examples of dynamical (i.e. eigenfrequency) opti-
mizations (Ma et al., 1995; Pedersen, 2000; Zargham et al., 2016), the gap towards practical
implementation is still significant, particularly in the context of high-precision motion
systems produced with metal additive manufacturing. Here, three main challenges are
identified, which apply to many complex design applications in the high-tech domain and
beyond. The challenges include various aspects of manufacturability, design resolution
(i.e. computational cost), and assessment of performance by experimental validation.

Manufacturing A manufacturing process usually requires a multi-step sequence, which
does not only involve AM (laser powder-bed fusion), but also milling to obtain the nec-
essary surface finish and accuracy. Additionally, different components are assembled to-
gether to form a system. As each component affects the stiffness and mass distribution,
it is critical to evaluate the performance of the entire assembled system. While only the
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performance of the complete system is evaluated, all preceding manufacturing steps must
be represented in the optimization process in order to arrive at a realizable design. First
of all, the AM process imposes an overhang angle restriction everywhere in the structure.
Secondly, small and fragile features need to be prevented to avoid local overheating and/or
warping during manufacturing. Thirdly, the support structures required for the AM pro-
cess can be removed by milling after printing, but the amount of support structures needs
to be minimized as well in order to limit build time and material use. Next to that, suf-
ficient material is required to attach components at interface locations, for instance with
bolts. It is essential to incorporate these practical considerations in the optimization, oth-
erwise accounting for them through modifications afterward will inevitably degrade the
performance of the obtained design. Additionally, these modifications may be tedious to
apply and would needlessly require additional design time.

Design resolution A higher design resolution in topology optimization corresponds to
more freedom in representing geometric features. AM provides a very high spatial reso-
lution, which ideally should correspond to the design resolution of topology optimization.
However, having a fine design resolution inflicts a large computational burden, especially
since eigenfrequency computations are involved, which easily takes up to an order of
magnitude more computation time compared to calculations required for static structures.
Additionally, minimum feature size control in topology optimization (through the robust
formulation (Wang et al., 2011)) requires the solution to three different eigenvalue prob-
lems in each design iteration, further increasing the computational cost by a factor of
three. Ideally, a design with fine resolution can be obtained in a matter of hours.

Validation Lastly, by actually building and testing a demonstrator, the performance of the
optimized structure is assessed in reality. This is the ultimate test to see if all practical
issues are correctly accounted for and if the optimized performance is as expected.

In this work, we aim to incorporate all aforementioned steps using an industrial case of
relevant complexity, from optimization to experimental validation. The main novel con-
tribution is the combination of different aspects required to arrive at a physical industry-
relevant product using topology optimization and AM and demonstration of its promised
potential. Sub-contributions include 1) the representation of the entire (multi-step) manu-
facturing process into the optimization in a structured manner, 2) a simple extension of an
existing overhang filter (Langelaar, 2016), significantly improving its geometric accuracy
and enabling the use of overhang angles and print directions not aligned with the finite
element grid, 3) a novel efficient approach to the robust formulation for eigenfrequency
maximization problems (Wang et al., 2011), reducing the computational cost by a factor
three, and 4) experimental validation of an optimized design for a high-tech case study.

This chapter is organized as follows. First, in Section 2.2, the industrial design case is
introduced, which is used as a demonstration for the challenges and optimization process.
All aspects of themulti-stepmanufacturing process are captured into the optimization for-
mulation, and each manufacturing step is explained in detail. In Section 2.3, an optimized
design is obtained for the case study using the proposed methodology. Its performance is
numerically compared with several reference designs and also experimentally validated.
Section 2.4 provides a discussion on the possibilities and limitations of the current work.
Finally, concluding remarks can be found in Section 2.5.
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2.2 Case description and methods
2.2.1 Chuck optimization case
To help illustrate the challenges and methodology, the design case of a high-precision
motion stage is introduced (Fig. 2.1a). This concept can be used, for instance, for the
precise positioning of microchips during their production or for their inspection under
a microscope. For this application, a high level of precision and repeatability is required
as chips consist of many stacked layers with nanometer-sized features and their correct
functioning critically depends on connections between the layers. Additionally, this setup
is suited for operation in a vacuum environment (Laro et al., 2013). A long-stroke stage
first provides an extended range of motion with coarse precision. On top of the long-
stroke stage, a short-stroke chuck (Fig. 2.1b) is magnetically levitated and its position is
actively controlled by a feedback system to provide the required accuracy. This makes
the short-stroke chuck the most important component from a system point of view. By
designing a chuck with high eigenfrequencies, a high bandwidth can be achieved, which
results in higher operating speeds and better accuracy (Van der Veen et al., 2017). The goal
is therefore to maximize the eigenfrequencies of the short-stroke chuck using topology
optimization.

Short-stroke
chuckMetrology

frame Long-stroke
stage

Force frame

(a)

Magnets
(Neodymium)

Measurement bar
(Aluminium)

Design domain
(Aluminium)

Symmetry plane

(b)

Figure 2.1: CAD geometry of the motion stage. a) Model of the entire stage setup, with the chuck indicated in
blue. b) Bottom view of the chuck showing the design domain for the topology optimization (blue) and required
components. The blue and green components are made of aluminium, the yellow of stainless steel, and the red
parts are neodymium magnets.

Eight sets of permanent magnets are mounted on the chuck (Fig. 2.1b) and are used
for position control in 6 degrees of freedom. The positions of all components are given a
priori and therefore cannot be changed during the optimization. Two pairs of rectangular
magnets are used for in-plane actuation and the four circular magnets are used for out-of-
plane actuation and gravity compensation (Laro et al., 2013). These are specifically tuned
to support a total chuck mass of 18.5 kg. Since 11 kg is used for the magnets (neodymium)
and their mounts (stainless steel and aluminium), the remaining 7.5 kg is available for an
optimized aluminium frame (AlSi10Mg) produced by the AM process of laser powder-bed
fusion.
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The outer dimensions of the design domain (excluding components) are 400 × 400 ×
48mm. This both fits in the build-chamber of the MetalFAB1 system of Additive Industries
(Additive Industries, 2021) which is used for fabrication, and meets the mass requirement
when using 50% of the maximum available volume (i.e. volume fraction). To provide
sufficient geometric freedom for the optimization, 1 × 1 × 1mm cubes are used for the
parametrization of the design as well as its analysis. The entire chuck including the exter-
nal components is meshed into a grid of 427×430×49 elements. Each of these elements has
a continuous design-density between 0 (void) and 1 (solid), defined in the design field x.
Although the printing process provides a higher resolution than 1mm, this resolution al-
ready results in a formidable computational challenge, as will be discussed in Section 2.2.2.
Optimization problem For the goal of maximizing a number of eigenfrequencies, effective
optimization formulations exist (see, e.g. Ma et al., 1995; Zargham et al., 2016). Following
the formulation of Ma et al. (1995), objective and constraints are adapted to the problem
at hand as

min
x

3
∑
𝑖=1

1
Ω2𝑖

+ 𝑔supp,

s.t. 𝑉 ≤ 𝑉lim,
𝑔sol ≤ 0,
0 ≤ x ≤ 1.

(2.1)

By minimizing the reciprocals of the lowest three eigenfrequencies Ω𝑖 , the individual
eigenfrequencies are maximized, with focus on the lowest one. An additional penalty
𝑔supp is added to minimize the use of support structures that are removed by milling (Sec-
tion 2.2.2). This ensures that support material is only added when it is beneficial for higher
eigenfrequencies. The design volume 𝑉 is limited to a maximum of 𝑉lim, in order to satisfy
the mass requirement. Another constraint 𝑔sol is added to enforce sufficient solid material
at component interfaces (Section 2.2.2). During optimization, the challenge is to find those
design parameters x which result in a minimal objective, while satisfying all constraints.
Optimization process The objective and constraint values need to be evaluated for each
design iteration. These depend on the design field x, but to ensure a manufacturable de-
sign, the design field is passed through a sequence of filters before the calculation of the
eigenfrequencies. Each filter accounts for a different aspect towards manufacturability by
transforming the design variables, such as enforcing a minimum feature size, removing
overhanging features, removing material in milling, or adding the components. A graphi-
cal overview of the full filtering and analysis structure can be found in Fig. 2.2. The series
of filters can be seen as a composition of mathematical operators, which transform the
initial design field x and eventually results in the quantities required for the optimization
problem in Eq. 2.1. All operations in the graph are evaluated from start to end during each
design iteration. The individual operations are explained in more detail in Section 2.2.2.

The design sensitivities (i.e. gradients) of the objective and constraints are also cal-
culated during each design iteration, which is required for an effective optimization. The
derivations of sensitivities are not discussed in this manuscript, as for all operations they
can either trivially be derived, or they can be found in corresponding literature (Bruns
and Tortorelli, 2001; Wang et al., 2011; Langelaar, 2016; Ma et al., 1995). Once the design
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Figure 2.2: Graphical overview of the optimization formulation (Eq. 2.1). The design variablex are passed through
a sequence of filters and mathematical operations (the blue blocks) in order to obtain the objective and constraint
values (in black) corresponding to a manufacturable design. The entire sequence of operations is executed in
each design iteration, where the optimizer repeatedly determines the new design x. The design used for actual
printing in green. The individual operations are explained in detail in corresponding sections.
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sensitivities are available, the design parameters x are updated towards an optimal design,
using the method of moving asymptotes (MMA) (Svanberg, 1987), and the process is re-
peated until the design stabilizes. Typically 50-150 design iterations are required for an
eigenfrequency optimization, depending on the complexity of the optimization formula-
tion.

2.2.2 Methods
This subsection describes the specific methods involved in the chuck topology optimiza-
tion scheme outlined in Fig. 2.2. The large-scale computational process to evaluate the
eigenfrequencies is also discussed.
Symmetry Starting with the first step in the scheme of Fig. 2.2, which is to convert the
design field x into a symmetric design s. Although a symmetric design is not strictly re-
quired, it is preferred to keep the center of gravity close to the midpoint of the chuck,
which in this case gives reason to enforce symmetry. Symmetry can be achieved by re-
flecting the design over the chosen plane of symmetry and calculating the average of the
original and the mirrored design as

s = x + xmir
2 . (2.2)

This essentially takes the density of an element and that of another element at the location
mirrored from the first, and sets both element densities to the average of the two. In this
way, the density field s will become symmetric.

Additive manufacturing
In order to ensure that the optimized geometry is producible by AM, we apply methods to
control the minimum feature size and the maximum overhang angle. Furthermore, assur-
ing the presence of enough material at component interface locations requires a specific
constraint. These three measures are discussed in more detail below.
Minimum feature size The minimum feature size is controlled by applying a projection-
based robust formulation in combination with a density filter (Bruns and Tortorelli, 2001;
Wang et al., 2011). Next to ensuring a minimum feature size, this method causes the design
to become more robust against shape deviations that might occur during printing.

First, as shown in Fig. 2.2, a length scale is introduced into the design by applying a
density filter (Bruns and Tortorelli, 2001), which is standard practice in topology optimiza-
tion. This converts the symmetrized design s into a smoothed design d. Next, by using a
projection operator, three designs are produced: a nominal (r̄), an eroded (ř, i.e. shrunk),
and a dilated (r̂, i.e. grown) design, as is shown in Fig. 2.3. The projection operator is
defined as

𝑟(𝑑) = tanh(𝛽𝜂) + tanh(𝛽(𝑑 − 𝜂))
tanh(𝛽𝜂) + tanh(𝛽(1 − 𝜂)) , (2.3)

where 𝛽 is an intensity factor, and 𝜂 is the cut-off threshold, which takes different values
for the three designs. Together with the density filter, the effective minimum feature size
is controlled by the density filter radius 𝑟filt, the erosion threshold 𝜂er, and the dilation
threshold 𝜂di (Wang et al., 2011).
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Figure 2.3: A cross-section showing the effect of ero-
sion (red) and dilation (green) on the member size.
The nominal structure is displayed in blue.

After evaluating the three designs, each will have a different performance. By focusing
the optimization on the worst-case scenario (e.g. a min-max formulation), the robustness
of the final result is improved, and a minimum feature size is obtained (Wang et al., 2011).

In the case of stiffness maximization, it is intuitive that the eroded design always per-
forms worst, as less material means a lower stiffness (Sigmund, 2009). This means that
only one finite element solution (that of the eroded design) needs to be calculated, instead
of three.

However, the worst-case design is not directly evident when optimizing for maximum
eigenfrequencies, since next to the stiffness distribution, the mass distribution also plays
an important role. In order to avoid calculating the eigenfrequencies three times, we use
an adapted worst-case scenario: the mass-field 𝜌𝜌𝜌 is dilated (always more mass) and the
stiffness-field E is eroded (always less stiffness), as is indicated in the diagram of Figure 2.2.
Using these settings, a single solution of the eigenvalue problem results in worst-case
eigenfrequencies, which are lower than the nominal expected value (proof is provided in
Appendix A.1). These values are used in the objective function of Eq. 2.1.

Overhang limitation To ensure a maximum overhang angle in the design¹, an overhang
filter is used. Effectively, it converts the projected design r to a printable design p (Fig. 2.2)
by removing all features overhanging beyond a critical angle. In this case, all three de-
signs are filtered, resulting in three printable designs (nominal p̄, eroded p̌, and dilated p̂).
Note that the combination of the robust method with an overhang filter affects the effec-
tive minimum feature size, which could be corrected using more elaborate formulations
(Pellens et al., 2019). Naturally, the nominal design p̄ serves as the printable design used
for actually printing the part, as indicated by the green box in Fig. 2.2.

The overhang filter as proposed by Langelaar (2016) proceeds layer-wise through the
structure and determines the maximum printable density of each element in the layer,
which is used as a threshold to limit the original density. The maximum printable density
is determined by taking the maximum value of the supporting elements below the current
element (3 elements in 2D as illustrated in Fig. 2.4, and 5 or 9 in 3D).

Because in the original formulation discrete elements are used as a support, the effec-
tive maximum overhang angle is non-uniform and dependent on the alignment with the
Cartesian coordinate system of the mesh Langelaar (2016). Ideally, a printable cone has an
axisymmetric maximum overhang angle around the print direction, independent on the

¹Maximum overhang angle as measured from the normal to the buildplate.
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𝑟

Figure 2.4: Illustration of the origi-
nal sampling scheme in 2D (Langelaar,
2016), with the graph below showing the
element density distribution of the sup-
porting elements. For a vertical print di-
rection (blue arrow), the active element
(blue) may be printed if the maximum
supporting density is large enough.

mesh. When using 5 support elements, the printable cone is pyramid-shaped (Fig. 2.5a),
which is conservative in the off-axis directions with an effective overhang angle of 35∘
on a cubical mesh. The version with 9 support elements on the other hand shows the
opposite behavior, being less restrictive in off-axis directions with an overhang of 55∘,
which violates the required maximum overhang angle (Fig. 2.5b). Various other overhang
prevention approaches have been proposed (e.g., Gaynor and Guest, 2014; Hoffarth et al.,
2017; Qian, 2017; Van de Ven et al., 2020b) each differing in effectiveness, complexity, and
convergence characteristics.

(a)

Print
direction

(b)

Figure 2.5: The printable cone (the largest printable volume, starting from one element) using the original im-
plementation (Langelaar, 2016), with a 5-element (a) or 9-element support (b).

Here we propose a comparatively simple yet effective improved scheme that still ben-
efits from the regularity of the structured mesh, but reduces the dependency on the mesh.
It enables a more accurate geometric description of the maximum overhang angle and ad-
ditionally enables an arbitrary print direction, a maximum overhang angle other than 45∘,
and a circular-shaped printable cone. To do this, interpolation is used to sample densities
at locations that do not exactly coincide with an element midpoint (Fig. 2.6a). In 2D, a
triangle is projected onto the supporting plane, which is the plane passing through the
midpoints of the supporting elements. The current element may be printed if the maxi-
mum density within the supporting area is large enough. This maximum is located either
on one of the element midpoints within the cone or at the boundary, for which linear
interpolation is used². By changing the opening angle of the projecting triangle, the max-

²This is only assumed for densities in the overhang filter. For each element in the finite element analysis, its
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imum overhang angle can be controlled. A rotation of the triangle results in a change of
print direction, as is illustrated in Fig. 2.6b. For this case, elements adjacent to the cur-
rent element are used for the rotated case, making the supporting surface fold around the
corner.

𝑟

(a)

𝑟

(b)

Figure 2.6: The improved sampling scheme in 2D. a) An overhang angle smaller than 45∘ uses one element mid-
point (green) and two interpolation points (red) below the active element (blue) as support. b) A diagonal print
direction, where one sampling point interpolates between the two elements to the right of the active element.
Elements indicated with cyan are used only in interpolation. The horizontal axis of the density graph is wrapped
around the corner.

In 3D, the supporting area is determined by a cone instead of a triangle, as demon-
strated in Fig. 2.7. The allowable overhang angle is controlled by the aperture of the cone,
and the print direction by its orientation. Just like the two-dimensional case, the max-
imum printable density is found at one of the element midpoints within the cone or at
the perimeter of the cone. A number of equally spaced sampling points is defined along
the perimeter, approximating the density value at those locations using bilinear interpo-
lation based on the density values of the four closest elements. The weights used for the
bilinear interpolation can be precomputed since a structured grid is used, thus ensuring a
computationally efficient overhang filter.

Themaximum printable density is now obtained by taking a smooth maximum of both
the values at element midpoints encompassed by the cone and the sampled points along
the perimeter of the projected cone. Instead of 5 or 9 points, this results in a variable
number of points, depending on print orientation, maximum overhang angle, and chosen
number of perimeter points. The final step in the overhang filter is to take a smooth min-
imum of the original density of the current element and the maximum printable density,
which is identical to that of the original implementation (Langelaar, 2016).

The printable cone converges to a circular shaped cone by increasing the number of
sampling points, as is demonstrated in Figs. 2.8a and 2.8b, correcting the under- and over-
estimation as observed in the original 5 or 9 element support (Fig. 2.5). Using the improved

material density is constant throughout.
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Figure 2.7: The improved sampling strategy with an
arbitrary print orientation, indicated by the blue ar-
row. The maximum printable density of the active el-
ement (in blue) is determined by the elements in the
direction of the support cone (green). A combination
of densities within the cone obtained directly at ele-
ment midpoint (2x green dots), and interpolated val-
ues along the perimeter of the cone (8x red dots) are
used in a smooth maximum function.

method, overhang angles smaller than 45∘ (narrow support cones, Fig. 2.8c) can easily be
modeled by simply adapting the shape of the supporting cone, thus sampling at different
locations. Additionally, arbitrary printing orientations are enabled by rotating the sup-
porting cone (Fig. 2.8d), instead of requiring domain mapping (Langelaar, 2018a). Also
other support patterns, e.g., elliptic cones, are a natural extension to the method.

Note that in order for this refined overhang filter to work correctly, only processed
elements are allowed to be accessed. This can be ensured by changing the element traver-
sal pattern, depending on the print direction. In general, for overhang angles above 45∘ it
becomes much more difficult or even impossible to obtain a traversal pattern that ensures
all sampled elements are processed. A critical overhang angle of 45∘ is used for the present
study, for which the proposed overhang filter is used for an improved geometric accuracy
of the maximum overhang limitation.

Overhang angle 40∘ 40∘ 20∘ 30∘
Sampling points 8 16 16 16
Print direction [0 0 1] [0 0 1] [0 0 1] [ 12 0 √3

2 ]
(a) (b) (c) (d)

Figure 2.8: The printable cone using different number of sampling points, overhang angle, and orientation, but
using the same mesh. The top row shows the top view, and in the bottom row, the perspective view is displayed.
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Enforcing interfaces For the assembly of the different components to the printed body,
interfaces for bolts need to be generated. This is not evident in the optimization, because
there is no incentive to connect the bodies other than for stiffness. In practice, sufficient
material is required at bolt locations for a hole to be drilled and threaded, as is illustrated
in Fig. 2.9. Only setting the required volume to solid (i.e. frozen/non-design area) does
not ensure printability of these locations, and they may even be removed by the overhang
filter. Therefore, sufficient material is forced at the bolt locations by using an additional
constraint (Langelaar, 2018b), as is depicted in Fig. 2.2. This is done by taking the root sum
of squares for the differences between the density values of the nominal printable design
p̄ and their desired value (in this case 1.0), denoted in a formula as

𝑔sol =
1

𝑁ℱ √
∑
𝑖∈ℱ

(1.0 − ̄𝑝𝑖)2 − 𝜏 ≤ 0. (2.4)

The set of elementsmarked to be solid is denotedℱ , the number of elements in this set𝑁ℱ ,
and a small tolerance value 𝜏 is used to allow some slack. In this manner, the optimization
process will not only ensure the presence of material at these bolt regions, but also its
printability.

Figure 2.9: One of the magnets (blue), and in red
the cylindrical interface volumes large enough for a
threaded and bolted connection.

Milling
The next step in the (simulated) production process is milling (Fig. 2.2). After obtaining a
printable design, pockets are cleared of support structures, as indicated in Fig. 2.10, where
components are to be mounted. Here, by support structures we mean the material that is
required for a printable design, but is removed in the milling step. Any support structures
generated outside of the milled volume are not removed and are considered a part of the
final structure. Adaptive formulations for topology optimization also exist, where support
structures (not in benefit to the final performance) are identified and removed throughout
the domain, instead of only in a pre-determined volume (Langelaar, 2018b; Van de Ven
et al., 2020a). However, this is not incorporated in the current work.

Mathematically the milling is done by taking the printable designs (p̄, p̌, and p̂) and
setting the entries corresponding to the milled volume to zero as

𝑐𝑖 = { 0 ∀ 𝑖 ∈ ℳ
𝑝𝑖 ∀ 𝑖 ∉ ℳ (2.5)

where 𝑐𝑖 are the entries in design vectors c̄, č, and ĉ, denoting the milled designs and
ℳ represents the elements in the milled volume, which are known a priori. Note that in
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Figure 2.10: A detailed view of support structures
(indicated in yellow), which are removed by the
milling operation. Supports are required to print the
upper side wall of the actuator pocket, and therefore
these structures are generated in the optimization
process.

this case, no tool access restrictions are involved, since the relevant pockets are always
accessible from the base of the chuck. A more complex milling formulation, such as in
(Langelaar, 2019), is therefore not required in this case.

As mentioned in Section 2.2.1, the required mass of the unassembled chuck is 𝑀lim =
7.5 kg, for which a constraint can be formed at this point (Fig. 2.2). By a simple addition,
the volume of the machined chuck frame can be calculated as

𝑉 = ∑
𝑖

̄𝑐𝑖𝑉e, (2.6)

with 𝑉e the volume of one element. The volume limit 𝑉lim is calculated as

𝑉lim = 𝑀lim
𝜌alu

, (2.7)

with material density 𝜌alu. Strictly speaking, the volume constraint should be an equality
constraint, but since the upper bound is generally active, it can be reduced to an inequality
constraint, which is easier to implement in the optimization (Eq. 2.1).
Support structure minimization Since the milled field is used for the volume constraint
instead of the printed field, the use of support structures is unbounded, which may lead
to excessive material use during the print process. This effect is counteracted by adding
a penalty on the volume of removed support structures, keeping the amount of support
material to a minimum. The volume of the cleared support structures can simply be cal-
culated from the difference between the nominal printed volume and the volume after
milling 𝑉 (Eq. 2.6) as

𝑉supp = 𝑉print − 𝑉 , with 𝑉print = ∑
𝑖

̄𝑝𝑖𝑉e. (2.8)

This value is added to the objective in Eq. 2.1 as a penalty value (Fig. 2.2)

𝑔supp = 𝛼 𝑉supp𝑁ℳ
, (2.9)

where the volume is normalized using the number of elementsmarked formilling𝑁ℳ , and
𝛼 is a small penalty factor that determines how much focus is on limiting the amount of
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support structure. This causes support structures to appear only when they are effective in
supportingmaterial beneficial for higher eigenfrequencies. A detail of a resulting structure
can be seen in Fig. 2.10.

Material interpolation
The material properties of the chuck’s milled body are a function of density field c, as
can be seen in Fig. 2.2. They are interpolated using SIMP (Solid Isotropic Microstructure
with Penalization), which is a standard method in topology optimization (Bendsøe and
Sigmund, 2003). This enforces a penalization on intermediate design variables (neither
0 or 1), and helps the optimization process to converge towards an interpretable black-
and-white design. In eigenfrequency optimization often problems are encountered with
localized eigenmodes in low-density areas (𝑐 ≈ 0) and their low corresponding frequencies.
To alleviate these problems we use the approach proposed by Zhu et al. (2009), where a
small linear part is added to the usual cubic power of SIMP (Eq. 2.10). This prevents the
stiffness from vanishing as compared to the mass for very small densities 𝑐. The stiffness
Ep and mass 𝜌𝜌𝜌p distribution of the printed and milled part can be calculated using the
eroded č and dilated ĉ density fields, respectively, as

𝐸p,𝑖 = 𝐸alu (𝑐min + (1 − 𝑐min) (0.1 ̌𝑐𝑖 + 0.9 ̌𝑐3𝑖 )) ,
𝜌p,𝑖 = 𝜌alu ̂𝑐𝑖 ,

(2.10)

where aminimumdesign variable 𝑐min prevents the systemmatrices from becoming (more)
singular. In the current design case the matrices are already singular because of rigid-
body-modes, but these modes are known analytically and accounted for, as is explained
in Section 2.2.2.

Component assembly
At this point the distribution of density and elasticity modulus is known throughout
the milled product, and the components (magnets and measurement bar) can be added
(Fig. 2.2). Similar to the milling operation, this is done by setting the entries in the final
material properties (E and 𝜌𝜌𝜌) to either that of the milled part or to that of the components
as

𝐸𝑖 = {𝐸c,𝑗 ∀ 𝑖 ∈ 𝒞𝑗
𝐸p,𝑖 ∀ 𝑖 ∉ ⋃𝑗 𝒞𝑗 (2.11)

and

𝜌𝑖 = {𝜌c,𝑗 ∀ 𝑖 ∈ 𝒞𝑗
𝜌p,𝑖 ∀ 𝑖 ∉ ⋃𝑗 𝒞𝑗 , (2.12)

where 𝐸c,𝑗 and 𝜌c,𝑗 denote the modulus of elasticity and density for each component with
elements 𝒞𝑗 .

Bolted interfaces are modeled by connecting two components with a patch of solid
material (Fig. 2.11). Since all components are modeled in the same mesh, the connecting
patch is 1 element thick. The diameter of the patch is calculated according to a 30∘ frustum
starting at the bolt head, corresponding to the pressure cone of the bolt (Budynas and
Nisbett, 2006). In this way the bolts are modeled in an effective, yet simple manner.
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30∘

Part 1

Part 2

Interface patch

Figure 2.11: A bolted interface with indicated frus-
tum, used to determine the patch diameter (left). The
two discretized parts are connected by a solid patch
of 1 element thickness (right).

Geometry mapping The CAD geometry of the magnetic actuators is converted to a 3-
dimensional structured grid (voxel grid) by using a rasterizing algorithm, also called solid
voxelization. Effectively, this means that all the elements of which the center-point is
inside the solid CAD geometry are detected, and placed into the sets 𝒞𝑗 representing the
different components. The result of this operation can be seen in Fig. 2.12.

The voxelization is implemented as a simple scanline algorithm (see, e.g., Foley et al.,
1993) in three dimensions. Rays are cast in each axis-aligned direction, through the center
of each element in the mesh. For each ray, intersection with the geometry is tested, which
generally results in one or multiple pairs of entry-exit intersections. When an element is
within an intersected range of all three the 𝑥 , 𝑦, and 𝑧-directions, its center is inside the
geometry and thus can be marked as part of the considered geometry set 𝒞𝑗 . This process
only needs to be done once, prior to the optimization.

Figure 2.12: An example of voxelization, where the
original boundary representation of a magnet and its
mount (top left) is mapped onto a 1mm grid (bottom
right).

Finite element modeling
The entire domain is discretized into a grid of trilinear hexahedral solid elements with a
full integration scheme and dimensions 1 × 1 × 1mm, corresponding to the design reso-
lution. For each of the elements, the material properties associated with the respective
components and/or optimization variables have been determined by the preceding steps
shown in Fig. 2.2, where the (penalized) Young’s modulus E and the mass density 𝜌𝜌𝜌 de-
pend on the eroded č and dilated ĉ design fields, respectively (Eqs. 2.10-2.12). Following
standard topology optimization procedure, the stiffness K and mass M matrices can be
constructed by linear scaling of each element 𝑖 with the (penalized) Young’s modulus 𝐸𝑖



2

24 2 Large-scale eigenfrequency optimization

and density 𝜌𝑖 as

K =
𝑁el𝔸𝑖 𝐸𝑖K0 and M =

𝑁el𝔸𝑖 𝜌𝑖M0, (2.13)

where K0 and M0 represent the unit stiffness and mass element matrix, and the operator
𝔸 represents the matrix assembly. The two element matrices are identical throughout the
domain, since a structured mesh of equal-sized elements is used.

After assembly, the next step in Fig. 2.2 is to calculate the eigenfrequencies. The three
lowest eigenfrequencies are found as solutions to the generalized eigenvalue problem,
denoted as

(K − Ω2𝑖M)𝜙𝜙𝜙𝑖 = 0 for 𝑖 = 1, 2, 3
0 < Ω1 ≤ Ω2 ≤ Ω3,

(2.14)

whereΩ𝑖 and𝜙𝜙𝜙𝑖 are the structural eigenfrequencies and their corresponding eigenvectors.
The entire analysis domain (including all components) consists of a total of 9.0million ele-
ments, and 27.6million degrees of freedom. This very large number of degrees of freedom
poses a computational challenge, especially because calculating a single eigenfrequency
is already an order of magnitude more expensive than the solution of a static response.

For an efficient solution, we resort to parallelization of the problem. The finite element
routines are implemented using the PETSc library (Balay et al., 2019), which provides par-
allel linear solvers, data structures for parallelization, and domain decomposition. For
the solution of the eigenfrequencies (Eq. 2.14), specialized eigensolvers are used from the
SLEPc library (Hernandez et al., 2005), which is an add-on to PETSc. A Krylov-Schur
algorithm with a shift-and-invert strategy is used to obtain the three lowest eigenfre-
quencies Ω𝑖 and corresponding eigenvectors 𝜙𝜙𝜙𝑖 . In the calculation of eigenvalues, the
repeated solution to a large linear system of equations is required, for which we use the
iterative Stabilized BiConjugate-Gradient (BiCGStab) method, preconditioned with an al-
gebraic multigrid preconditioner.

Since themotion stage is free-floating, no boundary conditions are present, making the
stiffness matrix singular. To prevent numerical problems in the solvers, deflation is used to
account for the six rigid bodymodes (i.e. nullspace) in both the eigensolver and its internal
linear solver. The deflation ensures a solvable linear system of equations and prevents
recomputation of the rigid body modes, which are already known explicitly (Geradin and
Rixen, 2015). Further details on the aforementioned algorithms can be found in the PETSc
and SLEPc documentation (Balay et al., 2019; Hernandez et al., 2005).
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Settings
In Table 2.1, all settings as used in the optimization can be found. To help convergence, the
first few iterations the overhang filter is not active, but is gradually phased in during iter-
ations 15-65, reducing the aggressiveness of this filter (similar approach as by Van de Ven
et al. (2020b)). Also the robustness factor 𝛽 is gradually increased during the optimization
process in iterations 10-90. The chosen filter radius and erosion/dilation thresholds result
in an effective minimum feature size of 2𝑟filt√𝜂er − 0.5 ≈ 3.2mm, according to Trillet et al.
(2021).

Table 2.1: Options and settings as used in the optimization

Symbol Value Description

𝐸alu 65GPa Young’s modulus (aluminium)

𝜌alu 2700 kg/m3 Density (aluminium)

𝐸neo 160GPa Young’s modulus (neodymium)

𝜌neo 7500 kg/m3 Density (neodymium)

𝐸ss 200GPa Young’s modulus (stainless steel)

𝜌ss 8000 kg/m3 Density (stainless steel)

𝜈 0.3 Poisson’s ratio (all materials)

𝑐min 10−5 Minimum density

𝑟filt 5mm Filter radius

𝜂er 0.6 Erosion threshold

𝜂di 0.4 Dilation threshold

𝛽 10−9-101 Projection intensity factor

45∘ Overhang angle

8 Overhang sampling points

𝜏 10−5 Solid constraint tolerance

𝛼 10−6 Support structure penalty factor
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2.3 Demonstrator and experimental validation
After the optimization, a final geometry is obtained as shown in Fig. 2.13a. This geometry
is the iso-surface of the voxel grid of the nominal printable design p̄ at a density value
of 0.5. The iso-surface can be generated using the marching cubes algorithm, which is
implemented in, e.g., the open source visualization application Paraview (Ahrens et al.,
2005). The support structures and required volumes for component interfaces can clearly
be identified. In Fig. 2.13b, the internal structure of the chuck can be seen. The final
geometry contains several enclosed voids, which were not accounted for during the opti-
mization. To prevent trapped metal powder, the enclosed voids are removed by manual
post-processing. Four small voids were converted to solid material, and for the large void
in the center, two holes were added for powder removal after printing, as indicated in
Fig. 2.13b.

Pr
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n

(a) (b)

Figure 2.13: a) The (printable) geometry of the optimized chuck. b) Cross-section of the geometry, showing the
internal structure of the chuck. Several small enclosed voids are removed (blue) and for the large cavity in the
middle (green), extra holes are added to allow powder evacuation.

Theevolution of the eigenfrequencies throughout the optimization is shown in Fig. 2.14,
fromwhich can be seen that the final frequencies are 607, 763, and 897Hz. However, these
values refer to the robust worst-case design (Section 2.2.2). From a verification analysis on
the nominal design, we find the expected eigenfrequencies as 667, 837, and 1011Hz. The
corresponding mode shapes (Fig. 2.15) are as expected from a fairly flat plate; a torsional,
saddle, and umbrella mode.

To get an indication of the optimized performance relative to other designs, three ref-
erence cases are established. The first two reference designs use a 100% material inside the
design domain (Fig. 2.16a). Since the chuck is originally optimized with a volume fraction
of 50%, the mass of a completely solid chuck will double. Therefore, the first reference has
equal height to the optimized chuck, but doubled mass. In the second reference design,
the height of the chuck is reduced such that the mass is equal to that of the optimized
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Figure 2.14: Iteration history of the eigenfrequencies.

(a) Mode 1 (b) Mode 2 (c) Mode 3

Figure 2.15: a) The first eigenmode at 667Hz (torsion mode). b) Second eigenmode at 837Hz (saddle mode). c)
Third eigenmode at 1011Hz (umbrella mode).

design. And thirdly, a conventional and manually designed chuck (with equal mass and
dimensions to the optimized design) is analyzed (Fig. 2.16b). An overview of the results
for these variations can be found in Table 2.2. The optimized design clearly outperforms
all reference chucks. With respect to solid designs, the performance is roughly doubled, or
the mass can significantly be reduced while still increasing performance. When compared
to a conventional and manually designed chuck, also a considerable performance increase
of about 15% can be realized.

Table 2.2: Results of the numerical comparison between optimized and reference designs. (*) Mass of the ma-
chined part only, excluding any components.

Units Optimized Reference designs

Equal mass Equal height Conventional

Mass* kg 7.5 7.5 15 7.5
Height mm 48 30 48 48
Mode 1 Hz 667 353 −47% 569 −15% 547 −18%
Mode 2 Hz 837 414 −51% 815 −2.6% 735 −12%
Mode 3 Hz 1011 525 −48% 944 −6.6% 880 −13%
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(a) (b)

Figure 2.16: a) Solid reference design, with equal mass or equal height. b) Conventional reference design, with
equal mass and equal height.

In terms of computational time, the entire optimization took 25 hours. This means
that each of the 100 design iterations which were performed, requires an average of 15
minutes. The computations were executed on a 192-core computing node (8× Intel Xeon
8168 24-core CPU and 1536GB of memory).

2.3.1 Additive manufacturing
For larger and complex designs, the part orientation in the build chamber is the key ele-
ment for successful printing. Since print orientation is fixed throughout the optimization,
several part orientations have been analyzed prior to the optimization. Finally, it was
chosen to orient the part vertically for minimal stress in the horizontal plane, to limit the
amount of support structures required, and for an easy part separation from the build-
plate. The disadvantage of this approach is the need to use the full build height, the initial
powder investment, and longer job duration due to the recoater time. However, this is
offset by the opportunity to print multiple parts simultaneously (up to 4 in one job) and
allowing the use of multiple lasers in the MetalFAB1 system (Additive Industries, 2021).
No extra support structures nor any further adaptations to the design were required, as
the overhang filter enforces a self-supported design (Section 2.2.2).

Figure 2.17: The first print attempt, show-
ing the locally overheated and deformed
parts, causing recoater damage.
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The first print was halted due to too large heat accumulation at the connection of two
overhanging areas. Locally melted material protruded above the powder bed, resulting
in recoater damage (Fig. 2.17). Incorporation of a process-based simulation of the print-
ing process into the optimization can potentially avoid these kind of failures, and help in
obtaining a first-time-right print, although its computational feasibility is currently out
of reach for the design resolution targeted in this study (Misiun et al., 2021). After reori-
enting the parts with respect to the recoater, the build job ran smoothly over the full part
height (Fig. 2.18a). The selected print parameter settings are balancing productivity (30 µm
layer thickness) and density, resulting in an ‘as printed’ density above 99.95% (from cross-
sectional analysis) of the AlSi10Mg material. Two parts were printed simultaneously in a
total of 10 days, effectively resulting in 5 days build time per part.

(a) (b)

(c)

Figure 2.18: a) The printed chuck after the powder-bed fusion process is finished. b) After machining, support
structures are removed and interfaces for the components added. c) Assembled chuck in operation, levitated
above the long-stroke stage.

In order to achieve surface and dimensional requirements for the interfaces of all the
magnets which cannot be achieved by the printing process, the part is post-processed by
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traditional machining methods (Fig. 2.18b). The final step is to assemble the magnets and
mount the chuck on the long-stroke chuck, making it ready for usage (Fig. 2.18c).

2.3.2 Validation
Thechuck position in all six degrees of freedom is actively controlled by a closed-loop feed-
back loop, which can be used for a frequency-response measurement (Fig. 2.19). Five eddy
current sensors and one laser interferometer provide position measurement of the chuck,
and eight (sets of) permanent magnets are able to apply forces on the chuckwhen placed in
magnetic fields generated by external voice coils (Fig. 2.1). A force or moment can be ap-
plied on the different degrees of freedom of the chuck fact(𝑡) = [𝐹𝑥 , 𝐹𝑦 , 𝐹𝑧 , 𝑀𝑥 , 𝑀𝑦 , 𝑀𝑧] by
applying a load on multiple actuators simultaneously. Similarly, displacements in global
degrees of freedom usens(𝑡) = [𝑈𝑥 , 𝑈𝑦 , 𝑈𝑧 , 𝜃𝑥 , 𝜃𝑦 , 𝜃𝑧] (translations or rotations) are ob-
tained by a linear combination of the different sensor signals. Further details on sensing
and actuation in this multi-input multi-output system can be found in Laro et al. (2013);
Van der Veen et al. (2017).

Figure 2.19: Feedback loop with indi-
cated measurement signals for experi-
mental validation of the stage.

C(𝑗𝜔) P(𝑗𝜔)+
−

+
+

fin fact
usens

By adding an harmonic disturbance signal fin(𝑡) to the input forces (Fig. 2.19), the
behavior of the structure can be obtained independently of the controller. After taking
the discrete Fourier transforms of these signals into the frequency domain, the sensitivity
function S(𝑗𝜔) and the process sensitivity function R(𝑗𝜔) can be calculated
(Munnig Schmidt et al., 2011) as

𝑆𝑖𝑗(𝑗𝜔) =
𝑓act,𝑖(𝜔)
𝑓in,𝑗(𝜔)

𝑅𝑖𝑗(𝑗𝜔) =
𝑢sens,𝑖(𝜔)
𝑓in,𝑗(𝜔)

, (2.15)

which are multi-input multi-output (i.e. matrix) transfer functions. Using the analytical
relations of these two transfer functions

S(𝑗𝜔) = (I + P(𝑗𝜔)C(𝑗𝜔))−1
R(𝑗𝜔) = P(𝑗𝜔)(I + P(𝑗𝜔)C(𝑗𝜔))−1, (2.16)

the transfer function of the original plant can be extracted as

P(𝑗𝜔) = R(𝑗𝜔)S(𝑗𝜔)−1. (2.17)

Here, the multi-input multi-output transfer functions of plant and controller are denoted
P(𝑗𝜔) and C(𝑗𝜔), respectfully.

From the frequency response functions of the two out-of-plane rotations (tip and tilt),
shown in Fig. 2.20, the resonance peaks can clearly be identified, which occur at the eigen-
frequencies of the chuck. This leads to the experimentally determined eigenfrequencies,
which are summarized in Table 2.3. It is seen that the predicted and measured frequencies
are in close agreement, with a discrepancy of around 1%.



2.4 Discussion

2

31

Table 2.3: Experimental validation of the optimized design.

Units Numerical Experimental

Mode 1 Hz 667 673 −0.9%
Mode 2 Hz 837 829 +1.0%
Mode 3 Hz 1011 1021 −1.0%
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Figure 2.20: Frequency re-
sponse functions of the two
out-of-plane rotations.

2.4 Discussion
In the current work, topology optimization is combined with AM for a high-performance
dynamic application of industry-relevant complexity. The fact that an optimal design is
reached in 25 hours, is paramount for practical use. When dimensions or component po-
sitions change, re-runs are necessary. The fast design time also facilitates comparative
studies of different product requirements by running multiple optimizations. Especially
for repeated optimization of customized products, where the design goal (e.g. perfor-
mance) is similar, these techniques can have a huge benefit in terms of automation. In
fields where time-to-market is important, a fully automated pipeline from concept to pro-
duction could be made, only requiring the optimization structure to be set up once.

The superior performance of the optimized chuck as compared to reference designs
(Table 2.2) clearly demonstrates the added benefit of combining topology optimization
with AM. Recently, advances in topology optimization of 5-axis milling have been made
(Guest and Zhu, 2012; Langelaar, 2019). It would be worthwhile to investigate the perfor-
mance benefit of combining AM and topology optimization, as compared to combining
milling and topology optimization, or even the combination of all three methods.

In the current design, the only manual post-processing operation required is the re-
moval of enclosed voids. In the large central void, two access holes were added to release
the metal powder (as seen in Fig. 2.18a), and four other small voids were removed by con-
verting them to solid material. However, these modifications can have a detrimental effect
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on the final performance. In this case the effects are negligible, but this is not a certainty
in general. Therefore, the avoidance of enclosed voids should be taken into account during
the optimization. This is still an ongoing research topic, where promising methods have
been proposed in recent years (e.g., Li et al., 2016; Gaynor and Johnson, 2020).

The optimized design is experimentally validated with a discrepancy of around 1%.
This indicates that the modeling using a structured mesh that does not exactly represent
the geometry still yields accurate results. However, the accuracy will most likely dete-
riorate for coarser mesh sizes, because the geometric error in the voxelization process
will increase. Next to this, it can also be hard to model small gaps between components,
which are linked to the element size, in this case 1mm. Possible solutions include the use
of substructuring for passive components (De Klerk et al., 2008; Koh et al., 2020).

For the application of a high-precision motion stage, the eigenfrequencies are not
the only important aspect in the final performance. Accurate positioning is achieved by
closed-loop feedback control, making the controller and controller-structure interaction
equally important. By simultaneous optimization of both the controller and structure,
even better performance in terms of bandwidth and positioning accuracy can be expected
(Van der Veen et al., 2017), which is an area for future research.

2.5 Conclusion
In this work, we have demonstrated a fast and systematic process for the design of struc-
tures with high dynamic performance, exploiting the combination of additive manufactur-
ing and topology optimization. The methodology is demonstrated using the design case
of a high-precision motion system and is applicable to a wide range of industrial appli-
cations requiring high eigenfrequencies. All steps of the manufacturing process (additive
manufacturing, milling, and assembly) are incorporated into the optimization procedure.
This results in optimized designs that are almost directly producible. Only minimal man-
ual modifications were required to remove enclosed voids, otherwise trapping the metal
powder used in the laser powder-bed fusion process.

Specifically in the overhang filter, an improved sampling scheme was proposed to
allow more freedom in the choice of overhang angle and print direction. This scheme rep-
resents the geometric overhang more accurately in a Cartesian grid and is less dependent
on the orientation of the grid.

Small geometric features require a fine design resolution, which comes at a computa-
tional cost. In the current work, external components are added by voxelization into the
same mesh. This has the benefit of only having one mesh, but the disadvantage is that
components may only be separated from each other by a minimum gap size of one ele-
ment. More effective inclusion of components for dynamic structures remains a direction
for future research.

A novel cost-effective robust formulation was proposed to allow feature size control
without computation of additional eigenvalue problems. By combining the eroded design
field for the stiffness matrix and the dilated for the mass matrix, a worst-case estimate
is obtained, effectively reducing the computational cost by a factor 3 for the calculation
of eigenfrequencies. In this design case, a new optimal design is generated in 25 hours
using 192 CPU cores, which enables practical use and opens new opportunities for design
methodology of industrial applications.
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As is expected, the optimized design achieves superior performance. In the current
design case of a high-precision motion stage, a performance increase of around 15% is
reached as compared to conventional designs. Additionally, the optimized design is ex-
perimentally validated with a measured performance within 1% of the simulated perfor-
mance. Not only does this reinforce the confidence that the performance can be pre-
dicted correctly, especially in this example with multiple components, but that also the
manufacturing considerations of the optimization are sufficient for production. Using the
outlined approach, this study demonstrates that the benefits of topology optimization in
combination with additive manufacturing can be transferred to industrial high dynamic
applications, where superior performance often is the driving factor.

Even further improvements in performance may be achieved by optimization on a
system level. In the case of a high-precision motion system, the controller and the closed-
loop interaction with the structure are as important as the structure itself. Therefore, this
provides a valuable research direction for the next generation of dynamic systems.
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3
Limitation of resonances

In many engineering applications, the dynamic frequency response of systems is of high im-
portance. In this paper, we focus on limiting the extreme values in frequency response func-
tions, which occur at the eigenfrequencies of the system, better known as resonant peaks.
Within an optimization, merely sampling the frequency range and limiting the maximum
values results in high computational effort. Additionally, the sensitivities of this method are
not complete, since only information about the resonance peak amplitude is included. The de-
sign dependence with respect to the frequency of the extreme value is missed, thus hampering
the convergence. To overcome these difficulties, we propose a constraint which can efficiently
and accurately limit resonant peaks in a frequency response function. It has a close relation
with eigenfrequency maximization, however in that case the amplitudes of the frequency re-
sponse are unconstrained. In order to keep the computational time low, efficient implementa-
tion of this constraint is studied using reduced-order models based on modal truncation and
modal truncation augmentation. Furthermore, approximated sensitivities are investigated,
resulting in a large computational gain, while still yielding very accurate sensitivities and
designs with almost equivalent performance compared to the non-approximated case. Condi-
tions are established for the accuracy and computational efficiency of the proposed methods,
depending on the number of peaks to be limited, numbers of inputs and outputs, and whether
or not the system input and output are collocated.

This chapter is based on  AATM Delissen, F van Keulen, M Langelaar, Efficient limitation of resonant peaks by
topology optimization including modal truncation augmentation, Structural and Multidisciplinary Optimization
(2020) (Delissen et al., 2020).
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3.1 Introduction

T he dynamic behavior of structures is a key aspect of the design process for many
engineering applications. A frequency response function (FRF) expresses the amplifi-

cation of the system under harmonic dynamic excitation, which is a critical aspect of its
functionality. In some applications, the maximum response must be limited, for example
in the case of sensitive equipment which needs protection (Tsai and Lin, 1994), for limit-
ing acoustic transmission (Fesina et al., 2017), or in systems for high positioning accuracy
(Van der Veen et al., 2017). Alternatively, a transmission ratio at a resonance frequency
might be limited from below, for instance in sensor equipment which needs a minimum
response (Xia et al., 2014).

Many engineering applications focus on maximizing eigenfrequencies in order to ex-
tend the bandwidth or the operating frequency range. Doing this manually is a time-
consuming and difficult iterative process. With structural optimization methods this it-
erative process can be performed automatically. Specifically, topology optimization is
a very powerful approach, since no initial concept needs to be given, and a wide range
of resulting shapes and layouts is possible (Sigmund and Maute, 2013). For the classical
problem of optimizing eigenfrequencies, many approaches already have been proposed,
see, e.g., Zargham et al. (2016) for an overview. Several methods exist to maximize spe-
cific eigenfrequencies (Díaz and Kikuchi, 1992; Ma et al., 1995), to create a gap between
two eigenfrequencies (Jensen and Pedersen, 2006), or to obtain eigenfrequencies close to
desired frequencies (Ma et al., 1994). However, resonance occurs when a structure is har-
monically excited at the eigenfrequencies, causing extreme responses. This phenomenon
has received no attention in all the aforementioned methods.

Besides eigenfrequencies and eigenmodes, the dynamic behavior of a system is also
determined by the geometric location and direction of both the input load and the output
at which displacement is observed. Some optimization formulations focus on minimizing
the vibrational amplitude for steady-state periodic loading (i.e. dynamic compliance) at a
specific operating frequency (Ma et al., 1993; Jog, 2002; Du and Olhoff, 2007a). Alternative
objective functions have recently been studied more extensively to improve convergence
of these problems, especially for operating frequencies above the first natural frequency,
based on the input power (Niu et al., 2018; Silva et al., 2020). Instead of one specific work-
ing frequency, others focus on minimizing the frequency response amplitude over a range
of frequencies (Ma et al., 1993; Yoon, 2010; Shu et al., 2011; Liu et al., 2015). However, for
some applications only the peak amplitudes of a frequency response within a range of fre-
quencies are of importance. Theminimization of maximum frequency response amplitude
in the entire frequency range (i.e. the 𝐻∞-norm) is shown for a sizing optimization of a
beam model (Venini and Pingaro, 2017), but not yet in a topology optimization setting.

The approach of Venini and Pingaro (2017) could be used to limit the maximum value
of the FRF, schematically shown in Fig. 3.1. It relies on an iterative search to obtain
the frequency corresponding to the maximum amplification (Bruinsma and Steinbuch,
1990). However, this algorithm requires many evaluations of the FRF and the solution
of additional eigenvalues, making it infeasible for practical use in large scale continuum
problems. Especially in cases with low damping, where very sharp resonance peaks are
present, extra search iterations are needed to obtain the maximum value with sufficient
accuracy, adding further to the computational cost. Furthermore, the optimization con-
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Figure 3.1: Resonant peaks of the fre-
quency response function are not allowed
to be above the indicated limit.

vergence with this method is slow, because sensitivity information regarding the resonant
peak is incomplete. The sensitivities include information on themaximumpeak amplitude,
but not on the frequency at which the peak is located. Additionally, by only focusing on
the maximum peak frequency, the multi-modal nature of the peak amplitudes is not cap-
tured. This means that whenever the amplitude of one or more peaks are close to the
maximum peak amplitude, a small design change could cause one of the other peaks to
become themaximum peak, leading to a jump in peak frequency and a non-smooth behav-
ior in maximum peak value. Only using the maximum peak value also limits practical uses
such as individually constraining peaks at distinct levels, or upper limits which are a func-
tion of frequency (see Fig. 3.1). This motivates the present study of constraining a finite
number of peak amplitudes in a set of multiple frequencies, instead of only considering
the global maximum peak. Other implementations of a resonant peak constraint, which
can overcome the above limitations, have not been studied, to the best of our knowledge.

For each point in the frequency response function, a different complex-valued linear
system needs to be solved, which involves tremendous computation time for large scale
problems, even for only a few frequency points. Additionally, a second linear system needs
solving in the case of non-self-adjoint problems, increasing the computational effort even
more. Computation time could be saved by using a reduced-order model, requiring at each
frequency point only a small system to be solved. Many different methods exist to create
reduced-order models tailored for a wide variety of applications, see, e.g., Besselink et al.
(2013). In the field of structural dynamics, the most common is modal truncation (MT),
where eigenvectors are used to create the reduced-order model. An alternative is modal
truncation augmentation (MTA), where a reduction basis consisting of eigenvectors is
augmented with correction vectors, to compensate the errors introduced by the removal
of higher-frequency modes (for detailed information, see, e.g., Rayleigh (1945); Dickens
et al. (1997); Craig and Kurdila (2006); Besselink et al. (2013)). Both these methods are
suitable for approximating the low-frequency range with high accuracy.

When using a reduced-order model, calculating the frequency response function be-
comes inexpensive, but to calculate fully consistent sensitivities, the design dependence
of the base vectors has to be taken into account (Hooijkamp and van Keulen, 2018). These
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base vector sensitivities are expensive and usually involve the solution of a full linear
system per base vector. A possible reduction in computational cost can be achieved by
neglecting the sensitivities of the reduction basis. Using such approximate sensitivities,
Han (2012) investigates frequency response sensitivities for a Krylov-based reduced-order
model, and concludes that the sensitivities are still usable although some degree of accu-
racy is lost. Furthermore, Yoon (2010) reports the approximate sensitivities hamper the
optimization process due to their inaccuracy in non-self-adjoint problems. The direct rea-
son for this lack of accuracy has not yet been clarified. The reduction method is usually
chosen such that the response, in this case a resonance peak, is most accurate. However,
in an optimization the sensitivities are driving, thus in addition to an accurate response,
the accuracy of the sensitivities is equally important.

We propose a constraint which can effectively limit extreme values in an FRF (Fig. 3.1),
where our focus is on weakly damped structures. Using the eigenfrequencies of a mechan-
ical system, which are related to the peak values of the FRF, a lower or upper limit can be
set on the resonant peaks. Each eigenfrequency of interest is individually constrained to
take care of the non-smoothness problem of the maximum amplitude described earlier, i.e.
jumps in frequency corresponding to the maximum resonant peak are not possible. Addi-
tionally, having a constraint per resonant peak enables individual peaks to be limited by
distinct limits, and the use of frequency-dependent limit functions becomes possible, thus
providing a more flexible constraint than the approach of Venini and Pingaro (2017), who
only use the maximum resonant peak value. Furthermore, by including the eigenvalue
sensitivity information, our sensitivities become consistent with the resonance frequency
and thus more accurate. To limit the time spent in calculating the resonance peak ampli-
tudes and their sensitivities, we propose to use reduced-order models with approximated
sensitivities. Using the reduction strategies MT and MTA, the accuracy and optimization
convergence of the approximated sensitivities is investigated for both self-adjoint and non-
self-adjoint problems. The implementation uses density-based topology optimization, but
can be applied to other topology optimization approaches as well (Sigmund and Maute,
2013). For clarity, we will limit ourselves to the SISO case, but the method is also extend-
able to MIMO cases.

The paper is organized as follows. In Section 3.2, the considered finite element model
is introduced, followed by the definition of the optimization problem. The proposed con-
straint is explained in detail, by either solving full systems or model reduction techniques
(MT and MTA). Additionally, for the reduction methods, both the consistent and approxi-
mate sensitivity calculation is described. Section 3.3 studies the different implementations
using both self-adjoint and non-self-adjoint test cases. The performance of the approxi-
mated sensitivities are inspected and also their effect on the optimization is shown. Next
to that, results of some variations in limit functions are given, to show potential in prac-
tical use.
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3.2 Methods
3.2.1 Dynamic response modeling
Working towards a model suited for topology optimization, we first establish the con-
siderations used regarding design parametrization and secondly, the numerical modeling
of the dynamic response. Since density-based topology optimization is used, each ele-
ment’s elasticity and density is scaled continuously according to the design variables x
between 𝑥min (void) and 1 (solid) (Bendsøe and Sigmund, 2003). First, the design variables
are filtered using a spatial density filter, resulting in filtered design variables 𝜌𝜌𝜌 (Bruns and
Tortorelli, 2001). To force the optimizer to a clear solid/void design, intermediate density
variables are penalized using scaling factors for the element matrices of stiffness 𝜅 and
mass 𝜇, respectively, as

𝜅𝑖 = (1 − 𝑤)𝜌𝑝𝑖 + 𝑤𝜌𝑖 and 𝜇𝑖 = 𝜌𝑖 . (3.1)

This penalizationwas investigated by Zhu et al. (2009) in order to prevent low-frequency
eigenmodes of void areas, which often hamper topology optimizations using eigenfre-
quencies. For the scaling of stiffness, it uses a combination of a linear term (weighted by
𝑤) and a part with exponent 𝑝.

For the discretization we use bi-linear quadrilateral finite elements, a 2 × 2 Gaussian
quadrature, and assume a plane strain condition. The stiffness and mass matrices are
assembled, respectively, by

K =
𝑛el𝔸𝑖 𝜅𝑖K(𝑖)

el and M =
𝑛el𝔸𝑖 𝜇𝑖M(𝑖)

el , (3.2)

with the assembly operator𝔸 and the element matrices denoted K(𝑖)
el andM(𝑖)

el .
We introduce damping in the form of structural damping (i.e. hysteresis), often used in

airplane vibrations and flutter analysis, which is proportional to displacement. Effectively,
a damping factor of 𝜂 is used to create a complex stiffness (Craig and Kurdila, 2006). This
kind of damping does not change the frequencies at which the peak amplitudes occur,
which means the undamped eigenfrequencies can directly be used. A viscous damping
such as Rayleigh or modal damping could also be used without adding computational
effort, as the damped eigenfrequencies correspond to the peak amplitudes in that case,
which can be calculated as a simple correction on the undamped eigenfrequencies.

Using a steady-state SISO system with harmonic inputs and outputs for the sake of
simplicity, the discretized 𝑁 -dimensional frequency-domain system of equations is

(K(1 + 𝑖𝜂) − 𝜔2M)u(𝜔) = b𝑞(𝜔),
𝑦(𝜔) = c𝑇u(𝜔), (3.3)

where u denotes the state vector capturing the displacements and deformations of the
entire structure. The input vector b describes the spatial distribution and direction of the
unit input force, and the output vector c describes that of the observed unit displacement.
The unit input vector is scaled with the input force 𝑞 and the resulting output displacement
is denoted 𝑦, both dependent on frequency 𝜔. For a derivation is referred to any dynamics
text book, such as Craig and Kurdila (2006).
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We can write this into a complex frequency-dependent transfer function 𝐺(𝑗𝜔), de-
noting the transmission between input force and output displacement,

𝐺(𝑗𝜔) = 𝑦(𝜔)
𝑞(𝜔) = c𝑇 (K(1 + 𝑖𝜂) − 𝜔2M)−1b

= c𝑇Z(𝜔)−1b,
(3.4)

with Z(𝜔) the complex symmetric 𝑁 × 𝑁 frequency dependent dynamic stiffness matrix.
The magnitude¹ of this function |𝐺(𝑗𝜔)| is used to obtain the amplification of harmonic
amplitudes from input to output, possibly scaled to decibel, denoted as |𝐺(𝑗𝜔)|dB.

The undamped eigenfrequenciesΩ𝑖 and eigenvectors𝜙𝜙𝜙𝑖 of the system can be calculated
by solving the generalized eigenvalue problem

K𝜙𝜙𝜙𝑖 = Ω2𝑖M𝜙𝜙𝜙𝑖 for 𝑖 = 1, … , 𝑛 (3.5)

for which the eigenfrequencies are ordered as 0 ≤ Ω1 ≤ Ω2 ≤ … ≤ Ω𝑛 for the 𝑛 eigenfre-
quencies of interest. The eigenvectors ΦΦΦ = [𝜙𝜙𝜙1, 𝜙𝜙𝜙2, … ,𝜙𝜙𝜙𝑛] are mass-orthonormalized ac-
cording toΦΦΦ𝑇MΦΦΦ = I. Since structural damping is used, the peak frequencies are equal to
the undamped eigenfrequencies 𝜔𝑖 = Ω𝑖 , at which the FRF amplitude |𝐺(𝜔 = 𝜔𝑖)| reaches
its extreme values.

3.2.2 Optimization problem formulation
A general optimization problem involving resonance peak constraints can be formulated
as

min
x

𝑓 (x)

s.t. ||𝐺(𝑗𝜔𝑗(x),x)||dB ≤ 𝑔upp(𝜔𝑗(x)) ∀ 𝜔𝑗 ∈ 𝒮upp

|𝐺(𝑗𝜔𝑘(x),x)|dB ≥ 𝑔low(𝜔𝑘(x)) ∀ 𝜔𝑘 ∈ 𝒮low
𝑥min ≤ x ≤ 1

(3.6)

The proposed constraints can be used as either an upper limit or as a lower limit (Eq. 3.6)
for the response at any peak frequency, provided these frequencies are known from eigen-
value calculation. Any peak frequency (𝜔𝑖 ∀ 𝑖 ≤ 𝑛) can be placed in subsets 𝒮upp or 𝒮low,
or both. Additionally, the formulation is not limited to one single upper and lower limit
function (𝑔upp and 𝑔low), e.g. the first resonance peak could be limited differently than the
second. For robustness against mode switching, a mode tracking strategy (Kim and Kim,
2000) is advisable to ensure continuity of the constraints.

Any reasonable choice of objective function 𝑓 is possible, but in this paper wewill limit
ourselves to an objective function in the form of a mean eigenvalue (Ma et al., 1995). To
maximize 𝑛 eigenfrequencies, the harmonicmean of those frequencies is taken as objective

𝑓 (x) = − (
𝑛
∑
𝑖=1

1
Ω𝑖(x)2

)
−1

. (3.7)

¹The notation |•| means to take the complex norm or magnitude of the value •
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This objective function is relatively insensitive to mode switching, which otherwise could
introduce discontinuities if not taken into account correctly (see e.g., Kim and Kim, 2000;
Du and Olhoff, 2007b). In order not to obscure the scope of the paper, we choose to avoid
using these techniques. Additionally, this objective helps preventing trivial solutions: in
case 𝑛 peaks corresponding to the 𝑛 lowest frequencies are limited from above, a possible
trivial solution would be to create 𝑛 artificial rigid body modes (by means of disconnected
parts or mechanisms), which have no effect on the point of interest and a very low trans-
mission ratio, but do replace the lowest eigenfrequencies.

In order to prevent ill-conditioning of the system matrices, the lower bound on the
design variables is set to 𝑥min. Secondly, a volume constraint is imposed to prevent triv-
ial all-solid solutions. In total this leads to the following optimization problem which is
considered throughout this paper:

min
x

− (
𝑛
∑
𝑖=1

1
Ω𝑖(x)2

)
−1

s.t. 𝑉 (x) ≤ 𝑉lim
||𝐺(𝑗𝜔𝑗(x),x)||dB ≤ 𝑔upp(𝜔𝑗(x)) ∀ 𝜔𝑗 ∈ 𝒮upp

|𝐺(𝑗𝜔𝑘(x),x)|dB ≥ 𝑔low(𝜔𝑘(x)) ∀ 𝜔𝑘 ∈ 𝒮low
𝑥min ≤ x ≤ 1

(3.8)

For further use, we abbreviate the frequency response value at 𝐺(𝑗𝜔𝑖) as 𝐺𝑖 . In subse-
quent sections, three different methods are proposed to calculate the peak values |𝐺𝑖 |. All
methods require the eigenpairs (Ω𝑖 , 𝜙𝜙𝜙𝑖) to be calculated beforehand.

3.2.3 Full method
The most straightforward method to calculate the FRF amplitudes at each required peak
frequency, by solving the full linear system:

𝐺𝑖 = c𝑇u𝑖 = c𝑇Z(𝜔𝑖)−1b ∀ 𝜔𝑖 ∈ 𝒮upp ∪ 𝒮low. (3.9)

The sensitivities of this function with respect to the filtered design variables are

d𝐺𝑖
d𝜌𝑗

= − c𝑇Z(𝜔𝑖)−1
dZ(𝜔𝑖)
d𝜌𝑗

Z(𝜔𝑖)−1b

= − 𝜉𝜉𝜉𝑇𝑖 ( dK
d𝜌𝑗

(1 + 𝑖𝜂) − 𝜔2𝑖
dM
d𝜌𝑗

− 2𝜔𝑖M
d𝜔𝑖
d𝜌𝑗

)u𝑖

= − 𝜉𝜉𝜉𝑇𝑖 K(𝑗)
el u𝑖

d𝜅𝑗
d𝜌𝑗

(1 + 𝑖𝜂) + 𝜔2𝑖 𝜉𝜉𝜉𝑇𝑖 M(𝑗)
el u𝑖

d𝜇𝑗
d𝜌𝑗

+ 2𝜔𝑖𝜉𝜉𝜉𝑇𝑖 Mu𝑖
d𝜔𝑖
d𝜌𝑗

,

(3.10)

where u𝑖 is the state vector containing the solution of the harmonic response, and 𝜉𝜉𝜉 𝑖 the
adjoint vector at each peak frequency 𝜔𝑖 . The last term in Eq. 3.10 adds the sensitivity in-
formation with respect to the peak frequency (and thus the eigenfrequency), which cannot
be included in any method which iteratively finds the peak value in an FRF (such as Venini
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and Pingaro, 2017). Both the state and adjoint require a full complex-valued system to be
solved,

Z(𝜔𝑖)u𝑖 = b and Z(𝜔𝑖)𝜉𝜉𝜉 𝑖 = c, (3.11)

where the state is only dependent on the input vector b, and the adjoint depends on the
output vector c. Hence, the importance of the output location on the sensitivities is ex-
plained by the adjoint system having the output vector as a right-hand side. Note that
these equations could be solved using one matrix factorization. In case an iterative solver
is used, the systems would have to be solved separately if b ̸∝c.

To complete the sensitivity calculation, the derivatives of the interpolation functions
(Eq. 3.1) are

d𝜅𝑗
d𝜌𝑗

= 𝑝(1 − 𝑤)𝜌𝑝−1𝑗 + 𝑤 and
d𝜇𝑗
d𝜌𝑗

= 1. (3.12)

The peak frequency sensitivities are equal to the undamped eigenfrequency sensitivities
in case of structural damping, and are calculated by

d𝜔𝑖
d𝜌𝑗

= dΩ𝑖
d𝜌𝑗

= 1
Ω𝑖

𝜙𝜙𝜙𝑇𝑖 K(𝑗)
el 𝜙𝜙𝜙𝑖

d𝜅𝑗
d𝜌𝑗

− Ω𝑖𝜙𝜙𝜙𝑇𝑖 M(𝑗)
el 𝜙𝜙𝜙𝑖

d𝜇𝑗
d𝜌𝑗

, (3.13)

which does not require the solution of any extra linear systems (a derivation is found in
e.g., Haftka and Gürdal, 1992).

The peak responses of a damped dynamic system are complex values and so are their
sensitivities. To obtain the magnitude of the frequency response, the complex norm is
taken as²

|𝐺𝑖 | = √𝐺𝑖𝐺∗𝑖 = √Re (𝐺𝑖)2 + Im (𝐺𝑖)2. (3.14)

The sensitivity of the complex norm is calculated as

d |𝐺𝑖 |
d𝜌𝜌𝜌 = 1

|𝐺𝑖 |
(Re (d𝐺𝑖

d𝜌𝜌𝜌 )Re (𝐺𝑖) + Im (d𝐺𝑖
d𝜌𝜌𝜌 ) Im (𝐺𝑖)) , (3.15)

resulting in a real valued sensitivity. In case a transformation to decibel is used, the re-
sponse and its sensitivity can be calculated as

|𝐺𝑖 |dB = 20 log10(|𝐺𝑖 |) and
d |𝐺𝑖 |dB
d |𝐺𝑖 |

= 20
|𝐺𝑖 | log(10)

. (3.16)

Finally, the sensitivities are treated with the density filter as described in the work of Bruns
and Tortorelli (2001).

These last five differentiation operations in Eqs. 3.12-3.16 (material interpolation,
eigenfrequency, complex norm derivatives, decibel transformation, and filter) are iden-
tical in the following methods using reduced-order models.

²The notation •∗ means the complex conjugate of •
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3.2.4 Modal Truncation
In order to reduce the time spent in calculating all the required frequency response val-
ues, model reduction techniques can be used. Although it is very expensive to compute
the eigenvectors, still the solution of the dynamic systems of equations will contribute sig-
nificantly to the total computation time. The main reasons for this is twofold. First of all,
the eigensolver only requires solution of real-valued matrices, while the resonance peaks
involve a complex-valued matrix to be solved, which can be compared to a real-valued
matrix of size 2𝑁 × 2𝑁 . Secondly, each peak requires an unique system of equations to
be solved, while an eigensolver uses only one system of equations to iteratively converge
towards the eigenpairs. When using a direct solver, this means that a factorization is re-
quired for each resonance peak in the optimization problem, while only one factorization
is enough for the eigensolver. In case of an iterative solver, the same could be said about
the preconditioner.

By using the eigenvectors which are already computed for the objective, modal trun-
cation can be applied to obtain smaller (𝑛 << 𝑁 ) reduced systemmatrices K̃ and M̃ ∈ ℝ𝑛×𝑛 ,
and input-output vectors b̃ and c̃ ∈ ℝ𝑛 (see, e.g., Craig and Kurdila, 2006). Thus, the higher
modes of the system are truncated, as is assumed that these do not greatly affect the lower
frequency spectrum. The reduced system is obtained by a Galerkin projection of the full
system matrices on all the known eigenvectors ΦΦΦ, as

K̃ = ΦΦΦ𝑇KΦΦΦ = diag (Ω21, Ω22, … , Ω2𝑛) , b̃ = ΦΦΦ𝑇b,
M̃ = ΦΦΦ𝑇MΦΦΦ = I, c̃ = ΦΦΦ𝑇 c.

(3.17)

Since the matrices are projected on the eigenvectors, the resulting system matrices are
diagonal.

The diagonal terms of the reduced stiffness matrix become �̃�𝑘𝑘(𝜔) = Ω2𝑘(1 + 𝑖𝜂) − 𝜔2,
which makes the response calculation very efficient using modal superposition. Again the
frequency 𝜔 is chosen as peak frequency 𝜔𝑖 , resulting in the reduced response as³

𝐺𝑖 ≈ �̃�MT𝑖 = c̃𝑇 Z̃(𝜔𝑖)−1b̃

=
𝑛
∑
𝑘=1

c𝑇𝜙𝜙𝜙𝑘𝜙𝜙𝜙𝑇𝑘 b
Ω2𝑘(1 + 𝑖𝜂) − 𝜔2𝑖

∀ 𝜔𝑖 ∈ 𝒮upp ∪ 𝒮low.
(3.18)

In order to calculate the sensitivities of this function, two approaches are proposed. The
first one is the consistent calculation of sensitivities, and the second method is an approx-
imation of the sensitivities by ignoring the design dependence of the reduction basis.

Consistent sensitivities
The sensitivities for the consistent method become more involved than the full model sen-
sitivities, since a reduction step has been added. The sensitivities now have to be calculated

³The use of a reduced model is indicated by •̃. The superscript indicates the type of model order reduction
technique used: •MT for MT and •MTAfor MTA)



3

44 3 Limitation of resonances

using:

d�̃�MT𝑖
d𝑥𝑗

=
𝑛
∑
𝑘=1

1
Ω2𝑘(1 + 𝑖𝜂) − 𝜔2𝑖

d𝜙𝜙𝜙𝑇𝑘
d𝑥𝑗

(c(𝜙𝜙𝜙𝑇𝑘 b) + b(𝜙𝜙𝜙𝑇𝑘 c))

−
2c𝑇𝜙𝜙𝜙𝑘𝜙𝜙𝜙𝑇𝑘 b

(Ω2𝑘(1 + 𝑖𝜂) − 𝜔2𝑖 )
2 (Ω𝑘(1 + 𝑖𝜂)dΩ𝑘

d𝑥𝑗
− 𝜔𝑖

d𝜔𝑖
d𝑥𝑗

) , (3.19)

in which the adjoint eigenvector sensitivity of d𝜙𝜙𝜙𝑇𝑘
d𝑥𝑗

needs to be calculated. The term in-
volving the eigenvector derivatives is the sensitivity with respect to the reducing basis.
By solving the adjoint saddlepoint problem

[K − Ω2𝑘M M𝜙𝜙𝜙𝑘
𝜙𝜙𝜙𝑇𝑘M 0 ] [𝜈𝜈𝜈𝑘𝛼𝑘] = [−c(𝜙𝜙𝜙

𝑇𝑘 b) − b(𝜙𝜙𝜙𝑇𝑘 c)0 ] , (3.20)

the adjoints 𝜈𝜈𝜈𝑘 and 𝛼𝑘 can be calculated. For a detailed explanation the reader is referred
to the work by Lee (1999, 2007).

After solving for adjoints, the eigenvector sensitivities can be obtained as

d𝜙𝜙𝜙𝑇𝑘
d𝑥𝑖

(c(𝜙𝜙𝜙𝑇𝑘 b) + b(𝜙𝜙𝜙𝑇𝑘 c)) =
𝛼𝑘
2 𝜙𝜙𝜙𝑇𝑘

dM
d𝑥𝑖

𝜙𝜙𝜙𝑘 + 𝜈𝜈𝜈𝑘 (
dK
d𝑥𝑖

− Ω2𝑘
dM
d𝑥𝑖

)𝜙𝜙𝜙𝑘 . (3.21)

Note that for the calculation, a factorization of the matrix introduced in Eq. 3.20 is needed
for each eigenvector in the base, or one iterative solution per eigenvector, for each peak to
be observed. Instead of solving complex systems, now real-valued matrices can be used,
which saves considerable computation time. Additionally, the number of linear systems
to be solved is reduced by a factor of two in case the problem is not self-adjoint and an
iterative solver is used.

Approximate sensitivities
From the exact sensitivities in Eq. 3.19, it can be seen that the first term is divided by
the modal stiffness (�̃�𝑘𝑘(𝜔𝑖) = Ω2𝑘(1 + 𝑖𝜂) − 𝜔2𝑖 ), and the second term is divided by the
modal stiffness squared. The sensitivities are largest when the dynamic stiffness is very
small (𝜔𝑖 ≈ Ω𝑘 ), causing the second term in Eq. 3.19 to become dominant, since it is
squared. Therefore, in order to reduce computational effort, we propose to approximate
the sensitivities by ignoring the first term containing eigenvector sensitivity terms with
respect to input b and output c. Effectively, this means that the design dependency of the
reduction basis in Eq. 3.17 is not considered and taken as constant, when taking the design
sensitivities of Eq. 3.18. This results in

d�̃�MT𝑖
d𝑥𝑗

≈ −
𝑛
∑
𝑘=1

2c𝑇𝜙𝜙𝜙𝑘𝜙𝜙𝜙𝑇𝑘 b
(Ω2𝑘(1 + 𝑖𝜂) − 𝜔2𝑖 )

2 (Ω𝑘(1 + 𝑖𝜂)dΩ𝑘
d𝑥𝑗

− 𝜔𝑖
d𝜔𝑖
d𝑥𝑗

)

= −c̃𝑇 Z̃(𝜔𝑖)−1ΦΦΦ𝑇 dZ(𝜔𝑖)
d𝑥𝑗

ΦΦΦZ̃(𝜔𝑖)−1b̃

= − ̃𝜉𝜉𝜉𝑇𝑖 ΦΦΦ𝑇 dZ(𝜔𝑖)
d𝑥𝑗

ΦΦΦũ𝑖 ,

(3.22)
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where the reduced state and adjoint are now calculated using the reducedmodel by solving

Z̃(𝜔𝑖)ũ𝑖 = b̃ and Z̃(𝜔𝑖)𝑇 ̃𝜉𝜉𝜉 𝑖 = c̃. (3.23)

This method does not require any solution to the full linear system at all, but it may ham-
per convergence, because it is an approximation and information regarding the input and
output is only contained via the eigenvector projection. This means that the sensitivities
do not contain information anymore about the parts of b and c orthogonal to the eigen-
vectors in the basis, which was previously included in Eq. 3.21. In case the basis does not
change with respect to the design (i.e. the eigenvectors do not change), these sensitivities
are exact. Additionally, the above approximation makes implementation very easy, since
the sensitivity of the approximated MT-based method (Eq. 3.22) strongly resembles the
sensitivity of the full method Eq. 3.10, with the following substitutions:

𝜉𝜉𝜉 𝑖 ≈ ΦΦΦ ̃𝜉𝜉𝜉 𝑖 and u𝑖 ≈ ΦΦΦũ𝑖 , (3.24)

which are simply the projections of the approximated problem. For comparison, Table
3.1 shows an overview of the number of full system solutions required for the different
methods.

Table 3.1: Comparison on the number of real and complex linear solutions required on the full system, depending
on the number of peaks to be constrained 𝑛p and the combined number of unique in- and outputs 𝑛io. In case
direct solvers are used, the number of matrix factorizations is equal to 𝑛io = 1 and 𝑛p = 1, except for consistent
MTA, which requires 1 + 𝑛 factorizations. All methods require the solution of 𝑛 eigenvalues and eigenvectors of
the full system.

Consistent Approximated

Method Real Complex Real Complex Use

Full 0 𝑛io ⋅ 𝑛p N/A A very small number of peaks
MT 𝑛 ⋅ 𝑛p 0 0 0 Many in- and outputs, many peaks
MTA 𝑛io + (𝑛 + 𝑛io)𝑛p 0 𝑛io 0 Few in- and outputs, many peaks

3.2.5 Modal Truncation Augmentation
MTA is an established concept ofmodel reduction in the field of structural dynamics (Dick-
ens et al., 1997). By augmenting the reduction basis with extra correction vectors, the re-
duced model becomes more accurate. The correction vectors add localized information,
which was lost by removing the high-frequency content in MT. By extending the basis
with specific local information, not only the response becomes more accurate, but also
the the accuracy of sensitivities might be enhanced. Instead of only augmenting the solu-
tion to the input force b, we choose also to add a correction with respect to output vector
c. Since the adjoint vector 𝜉𝜉𝜉 is determined by solving the system using the output vector
(Eq. 3.11), this should improve the approximated sensitivities. The reduction basis ΦΦΦ is
extended with undamped linear solutions v1 and v2 of the input and output vectors, at a
shift frequency 𝜎 < Ω1,

v1 = (K − 𝜎2M)−1 b, v2 = (K − 𝜎2M)−1 c, (3.25)
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to obtain the augmented reducing basis

V = span {ΦΦΦ, v1, v2} s.t. V𝑇MV = I. (3.26)

Note that for a collocated system (b ∝ c), only one vector needs to be added as both vectors
would be linearly dependent. In case of MIMO systems, it is trivial to add more vectors
for all distinct inputs and outputs (Dickens et al., 1997).

The augmentation vectors are orthonormalized with respect to the other vectors, by
solving a small eigenvalue problem to diagonalize the matrix

ΨΨΨ𝑇MΨΨΨ = QΛΛΛQ𝑇 with Q𝑇Q = I, (3.27)

where ΨΨΨ = [ΦΦΦ v1 v2], Q is an orthogonal matrix containing the eigenvectors, and ΛΛΛ
a diagonal matrix with the eigenvalues of the un-orthogonalized projected mass matrix.
Using these, we can obtain a linear combination to get the orthonormal system

ΛΛΛ− 1
2Q𝑇ΨΨΨ𝑇MΨΨΨQΛΛΛ− 1

2 = V𝑇MV = I. (3.28)

The reducing basis thus becomes

V = ΨΨΨQΛΛΛ− 1
2 or V𝑗 = ∑

𝑘
ΨΨΨ𝑘

𝑄𝑘𝑗
√Λ𝑗𝑗

(3.29)

and the reduced model can be obtained as

K̃ = V𝑇KV, M̃ = V𝑇MV = I,
b̃ = V𝑇b, c̃ = V𝑇 c.

(3.30)

Note that the reduced stiffness matrix K̃ now is not diagonal anymore. Therefore, we write
the dynamic stiffness matrix as Z̃(𝜔) = K̃(1+ 𝑖𝜂)−𝜔2M̃. The peak values can be calculated
using

𝐺𝑖 ≈ �̃�MTA𝑖 = c̃𝑇 Z̃(𝜔𝑖)−1b̃ ∀ 𝜔𝑖 ∈ 𝒮upp ∪ 𝒮low. (3.31)
It is possible to calculate consistent sensitivities of this reduced model, however, it

involves a lengthy derivation which is omitted here for the sake of compactness, and can
be found in the journal publication of this chapter (Delissen et al., 2020). In contrast, the
approximated sensitivities where we neglect the design-dependence of all base vectors,
are just as straightforward to derive as with the MT method. They can be calculated using

d�̃�MTA𝑖
d𝑥𝑗

≈ −c̃𝑇 Z̃(𝜔𝑖)−1V𝑇 dZ(𝜔𝑖)
d𝑥𝑗

VZ̃(𝜔𝑖)−1b̃

= − ̃𝜉𝜉𝜉𝑇𝑖 V𝑇 dZ(𝜔𝑖)
d𝑥𝑗

Vũ𝑖 ,
(3.32)

which is merely a change of basis as compared to the approximated sensitivities of the MT
method (Eq. 3.22). The reduced linear system now involve a matrix of size (𝑛 + 2) × (𝑛 + 2):

Z̃(𝜔𝑖)ũ𝑖 = b̃ and Z̃(𝜔𝑖)𝑇 ̃𝜉𝜉𝜉 𝑖 = c̃. (3.33)
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This last method is not as inexpensive as the approximated sensitivity MTmethod, due
to the additional solutions required to augment the basis, but also not as expensive as the
full method or the consistent sensitivity MT method (an overview is given in Table 3.1).
It only requires one extra matrix factorization, or one iterative linear solution per unique
input and output. Since we only consider the SISO case, only one solution (collocated
system) or two solutions (non-collocated system) are required. But in case of MIMO, each
unique in- and output vector of interest would have to be augmented, each requiring a
linear solution (Dickens et al., 1997).

3.3 Results

3𝐿

𝐿
𝐿
8

(a) Cantilever

6𝐿

𝐿𝐿
2

(b) Stage

Figure 3.2: a) The cantilever problem with collocated input and output at the tip, and b) the stage problem with
non-collocated input at the sides and output at the top middle.

Two test cases are used to study the optimization process, and the influence of various
model reductions. First of all, a cantilever problem (Fig. 3.2a), with a solid non-design
region in the middle of the domain, and a collocated input and output. Secondly, a free
floating stage (Fig. 3.2b) is used, with non-collocated input and output, where the input is
distributed along two square non-design domains which represent actuators. The output
location is in the center of the top surface. Since the structure is free-floating, it exhibits
three rigid body modes. For the MTA approach, this means that the augmentation vectors
cannot be static (𝜎 = 0). Instead a quasi-static solution is obtained at 𝜎 = 50 rad/s, which
is well below the first eigenfrequency and will be used for both test cases. The objective
involves 𝑛 = 3 structural eigenvalues, which are also limited in amplitude (𝑛p = 3). For
simplicity, no mode tracking is applied in all examples. Further parameters used for the
optimization are listed in Table 3.2.

The optimization problem is solved usingMMA (Svanberg, 1987), of which the number
of iterations are limited to a maximum of 200. All the results presented converged to a
stationary solution, unless otherwise mentioned. Furthermore, the objective function is
scaled to be −100 in the first iteration and the volume constraint is scaled by a factor 10.

First, optimization results of the different peak constraint implementations with the
consistent approach are given in Section 3.3.1. After that, in Section 3.3.2 a comparison
is made between consistent and approximate sensitivities. Finally, optimizations using
approximate sensitivity information are shown in Section 3.3.3.
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Table 3.2: Physical properties and variables used in the optimization problems.

Parameter Description Value

𝐿 Length scale 1m
𝑡 Thickness 0.1m
𝐸 Young’s modulus 1MPa
𝜈 Poisson’s ratio 0.3
𝜌 Density 1 kg/m3

𝜂 Hysteretic damping 10−3
𝑥min Minimum design value 10−3
𝑛 Number of eigenvalues calculated 3
𝑟 Filter radius 2 Elements
𝑤 Interpolation ratio 0.1
𝑝 Interpolation power 3

𝑉lim Volume fraction 0.5
𝜎 Frequency shift for MTA 50 rad/s

Cantilever mesh 240 × 80
Stage case mesh 240 × 40

3.3.1 Consistent Optimization
To show the operation of the proposed peak constraint, the test cases are optimized using
the full method and the two reduced-order models using consistent sensitivities. For ref-
erence, the results of an unconstrained optimization (i.e. only constrained in volume) are
also shown.

Cantilever
The cantilever problem is constrained with an upper limit of 𝑔upp = −1 dBfor the first
three peak amplitudes. This value is arbitrarily chosen here: it is physically achievable,
and this limit will cause the constraint to be active. In practice the designer would provide
a limit based on operational targets. Using the method involving full system solutions for
optimization (Section 3.2.3), we obtain the design shown in Fig. 3.3b. The reference design
of an optimization without any peak constraints is shown in Fig. 3.3a.

An overview of the performance values is given in Table 3.3 and FRFs of the designs
are shown in Fig. 3.4. From these can be seen that the peaks are indeed limited with
𝑔upp = −1 dB. The lower peak values come at a cost, because the first two eigenfrequen-
cies are significantly lower than in the design without peak constraints. This is reflected
in the higher objective function, in which the lowest eigenfrequencies contribute most.
When looking at the mode shapes in Fig. 3.5, it is evident that they are different from the
reference case. At the left side of the constrained design a mechanism can be recognized,
which rotates the right part of the structure such that the tip displacements are reduced.

As for the results involving reduced-order models (Sections 3.2.4-3.2.5), the final de-
signs of the MT and MTA method are respectively shown in Fig. 3.3c and Fig. 3.3d. These
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(a) Reference (b) Full

(c) Consistent MT (d) Consistent MTA

Figure 3.3: Resulting cantilever designs of the mean eigenvalue maximization without peak constraint (a) and
with peak constraint, solved by the full method (b). The results of using reduced models with consistent sensi-
tivities are shown for MT (c) and for MTA (d).
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Figure 3.4: FRFs of the different cantilever designs.

designs are hard to distinguish from the design obtained using the full method (Fig. 3.3b),
and their performance is equivalent (Table 3.3). Looking at the convergence history of the
cantilever optimization, as shown in Fig. 3.8a, it can clearly be seen that the three meth-
ods have similar convergence. In our Python implementation, using matrix factorizations
whenever possible, solving the required eigenvectors takes about 13 s, one real-valued
factorization 0.85 s, and a complex factorization 2.5 s. This means that factorizing three
complex matrices, required for the full method, represent a significant portion (about a
third) of the computational time. Using the reduced-order models, only 3 real factoriza-
tions for MT or 4 for MTA have to be made, hence the time saved per iteration (Table 3.3).
In case of iterative solvers, this computational gain is more debatable, as the adjoints can-
not be calculated with simple back-substitutions anymore and separate iterative solutions
are needed.
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(a) Reference, mode 1 (b) Full, mode 1

(c) Reference, mode 2 (d) Full, mode 2

Figure 3.5: The first two eigenmodes of the optimized structure for optimization without peak constraint (a and
c). First two eigenmodes of the constrained optimization using the full method with 𝑔upp = −1 dB(b and d).

Table 3.3: Comparison of final performance values for the cantilever case, using 𝑔upp = −1 dB. The number of
inputs and outputs 𝑛io = 1 and 𝑛p = 3. Evaluated on the full model.

Ref. Full MT MTA

Objective rad2/s2 −822.2 −428.2 −428.5 −427.8
Volume - 0.500 0.500 0.500 0.500
Ω1 rad/s 186.8 140.6 140.7 140.4
Ω2 rad/s 454.5 247.6 247.3 246.8
Ω3 rad/s 601.5 605.1 603.5 612.0

|𝐺1|dB dB 5.970 −1.000 −1.001 −1.001
|𝐺2|dB dB 1.343 −1.001 −1.002 −1.002
|𝐺3|dB dB −5.580 −17.62 −15.37 −20.20
No. factorizations

per iteration - 3 Complex 3 Real 4 Real

Time / iter. s 14.2 22.2 16.8 18.9

Although beyond the scope of this work, it should be noted that model order reduc-
tion with consistent sensitivities could become more viable using aggregation strategies.
Aggregation already has been implemented successfully for instance in stress constraints
(Yang and Chen, 1996) to reduce computational time for the sensitivity calculation, and in
eigenvalue optimization (Torii and de Faria, 2017) to overcome differentiability issues. In
our case, for the full solution strategy, each peak constraint is dependent on a different
Z(𝜔𝑗), which requires an adjoint to be solved for each of the peaks. When a reduced-order
model is used, the adjoints would not be expensive, as they are evaluated on the reduced
model Z̃(𝜔𝑗). The expensive adjoint solutions (in this case the model reduction basis sen-
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sitivities) are involving identical system matrices for each peak constraint, allowing the
expensive sensitivities only to be calculated once when aggregating. This effectively re-
sults in only 𝑛 linear solutions on the full system for MT and 2𝑛io + 𝑛 linear solutions for
MTA, independent of the number of peaks considered, compared to the full method, still
requiring the solution of 2𝑛p full complex linear systems if the constraints would be aggre-
gated. In Table 3.1 the resulting number of solutions on the full system for an aggregated
constraint could be seen as 𝑛p = 1 for MT and MTA, but not for the full method.

Stage
The second example involves the optimization of a free-floating stage (Fig. 3.2b). In com-
parison with the cantilever case, this example has a non-collocated input and output vec-
tor. Additionally, there are rigid body modes present in this example, which means that
the peaks of the 4th, 5th, and 6th eigenmode (the first three flexiblemodes) are constrained.
We choose the constraint limit as 𝑔upp = −25 dB.

(a) Reference (b) Full

(c) Consistent MT (d) Consistent MTA

Figure 3.6: Resulting stage designs of the mean eigenvalue maximization for (a) without peak constraint and (b)
with peak constraint, solved by the full method. Results of using reduced models with consistent sensitivities
are shown for MT (c) and MTA (d).
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Figure 3.7: FRFs of the different stage designs.

The resulting design of the optimization without peak constraint (Fig. 3.6a) and the
constrained designs (Figs. 3.6b-3.6d) again show a trade-off between peak limitation and
eigenfrequency values (Table 3.4). The peak limits are attained at cost of lower eigenfre-
quencies.
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Table 3.4: Comparison of values for the stage case, using 𝑔upp = −25 dB. Evaluated on the full model.

Ref. Full MT MTA

Objective rad2/s2 −412.6 −365.0 −364.3 −364.9
Volume - 0.500 0.500 0.500 0.500
Ω1 rad/s 197.3 187.2 187.2 187.2
Ω2 rad/s 373.8 361.3 356.9 360.5
Ω3 rad/s 464.6 402.4 405.5 402.6

|𝐺1|dB dB −16.36 −25.00 −25.00 −25.00
|𝐺2|dB dB −83.82 −83.23 −84.29 −83.39
|𝐺3|dB dB −82.28 −35.39 −34.82 −35.40
No. factorizations

per iteration - 3 Complex 3 Real 5 Real
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Figure 3.8: Iteration history of the objective for a) the cantilever case and b) the stage case. The cantilever
optimizations become feasible at iteration 25, except for approximate MT, which does not reach a feasible design
within 200 iterations. For the stage, feasibility is reached at iteration 15 for all methods, except for approximate
MT which only becomes feasible at iteration 82.
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Between the designs resulting from the full method (Fig. 3.6b) and the consistent MTA
(Fig. 3.6d), the difference in design is hardly recognizable. The design resulting from
consistent MT (Fig. 3.6c) is different although its performance is equivalent to the other
designs (Table 3.4 and Fig. 3.7), indicating a different local optimum. Also here, when
looking at the convergence history in Fig. 3.8b, the use of reduced-order models with
consistent sensitivities does not hamper optimization convergence and the convergence
is very similar.

3.3.2 Comparison of consistent and approximate sensitivities
As already observed in previous section, the use of consistent sensitivities in optimization
with reduced models yields comparable results to using a full model. However, using
reduced-order models with consistent sensitivities in the previous examples results only
marginally increased computational efficiency compared to the full method. Therefore,
we investigate the effect of approximating the sensitivities of the reduced-order models,
by ignoring the design dependency of the model reduction basis.

The effect of neglecting the reduction basis sensitivities, therefore not requiring any
expensive solution of the adjoint problem, is visually demonstrated in Fig. 3.9. This fig-
ure shows the sensitivities of the first two peak constraints of the stage case in the first
design iteration, thus consisting of a uniform density field. It is clear that the localized
details around the output location (Figs. 3.9a and 3.9b) are not present in the approximate
sensitivities (Figs. 3.9c and 3.9d). Identical observations could be made for the third peak
constraint, not shown here. The local features are present again in the approximate sensi-
tivities of the MTA method (Figs. 3.9e and 3.9f), where the additional vectors provide this
information.

−0.01 −0.005 0 0.005 0.01

(a) Sensitivities of peak 1, using consistent MT (b) Sensitivities of peak 2, using consistent MT

(c) Sensitivities of peak 1, using approx. MT (d) Sensitivities of peak 2, using approx. MT

(e) Sensitivities of peak 1, using approx. MTA (f) Sensitivities of peak 2, using approx. MTA

Figure 3.9: The exact sensitivities (a), and the approximate sensitivities using MT (c), of the first peak. Consistent
and approximate sensitivities of the second peak respectively (b) and (d). The approximate sensitivities of the
first two peaks using MTA are shown in (e) and (f).
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To quantify the error between approximate and consistent sensitivity fields, we intro-
duce a sensitivity error norm as

𝜖𝑖 =
∑𝑗

||||
d||�̃�𝑖 ||dB
d𝑥𝑗

− d||�̃�𝑖 ||dB
d𝑥𝑗 approx

||||
∑𝑗

|||
d||�̃�𝑖 ||dB
d𝑥𝑗

|||

. (3.34)

Again, the sensitivities are evaluated in the first design iteration for both the test cases. In
Table 3.5, the error values are reported for both the cantilever and the stage case. Two ob-
servations can be made from these values. First of all, the sensitivity error is much lower
for the MTA sensitivities than for the MT. Second, the sensitivity errors for the peak con-
straints go up for higher eigenfrequencies when using MTA. This might be related to the
choice of shift frequency 𝜎 (chosen below the first eigenvalue) to evaluate the augmented
response.

Table 3.5: Comparison of sensitivity error values for the cases in the first iteration. Error norm of the approximate
sensitivities with respect to the consistent sensitivities.

Cantilever Stage

MT MTA MT MTA

𝜖1 0.0619 0.000 129 0.150 0.001 47
𝜖2 0.532 0.0789 0.330 0.072
𝜖3 0.506 0.215 0.290 0.244

3.3.3 Optimization with approximate sensitivities
The effect on the optimization process when approximating the reduced-order model sen-
sitivities, is demonstrated in this section. Designs and performance are compared between
the consistent and approximate approaches.

Cantilever
Starting again with the cantilever case, the results of optimization with approximate sen-
sitivities are shown in Fig. 3.10b and Fig. 3.10c for respectively MT and MTA. Especially
the design optimized with approximate MTA is very similar to the consistent design (Fig.
3.10a). This can also be seen from the performance values in Table 3.6. The objective
and eigenfrequencies of the consistent design and the approximated MTA design are very
similar. However, the optimization with approximated MT did not even converge, as a
feasible design was not reached (volume constraint violation). This can also be seen in
the iteration history (Fig. 3.8a), which shows that the approximate MTA follows a similar
path compared to the consistent methods, while the approximate MT completely different
path as the optimization progresses.

The introduced sensitivity approximations achieve further computational gain. The
timings in Table 3.6 show that the approximate MT method requires virtually no extra
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(a) Consistent (b) Approximate MT (c) Approximate MTA

Figure 3.10: Results of the cantilever mean eigenvalue maximization with peak constraint (a), solved by the full
method. The results of using reduced models with approximated sensitivities are shown for MT (c) and for MTA
(d).

time to calculate the peaks and their sensitivities, compared to the reference case without
peak constraints (Table 3.3). The approximate MTA method saves about a quarter of total
computation time, which means that the time required to calculate the peak values and
their sensitivities is shortened almost an order of magnitude (8 s for the full method versus
1.2 s for approximate MTA). When using iterative solvers, the computational gain might
even be larger, since no iterative solutions are required for the sensitivities.

Table 3.6: Comparison between consistent and approximated sensitivities of final performance values for the
cantilever case.

Consistent Approximated

Full, MT,MTA MT MTA

Objective rad2/s2 −428.2 −364.4 −429.3
Volume - 0.500 0.517 0.500
Ω1 rad/s 140.6 122.9 140.8
Ω2 rad/s 247.6 277.2 247.7
Ω3 rad/s 605.1 597.3 604.9

|𝐺1|dB dB −1.000 −0.999 −1.000
|𝐺2|dB dB −1.001 −1.002 −1.002
|𝐺3|dB dB −17.62 −42.51 −13.06
No. real factorizations 0, 3, 4 0 1

No. complex factorizations 3, 0, 0 0 0
Time / iter. s 17-22 14.5 15.4

Stage
Theoptimization results of the stage case are shown in Figs. 3.11b and 3.11c for theMT and
MTA methods using approximate sensitivities. For comparison, the design obtained from
the consistent optimization (Fig. 3.11a) is also shown. Again, the design resulting from
approximateMT is clearly distinct from the other designs. In contrast to the cantilever, the
resultingMT stage design is feasible, although it took 82 iterations instead of 15, which the
other methods required. Again, the convergence of the approximate MTA is very similar
to the other methods (Fig. 3.8b), while the approximate MT method causes a completely
different convergence path and a worse optimum.



3

56 3 Limitation of resonances

(a) Consistent

(b) Approximate MT (c) Approximate MTA

Figure 3.11: Results of the stage of mean eigenvalue maximization with peak constraint (a), solved by the full
method. The methods using approximated sensitivities produce results MT (b) and MTA (c).

Table 3.7: Comparison between consistent and approximated sensitivities of final performance values for the
stage case.

Consistent Approximated

Full, MT,MTA MT MTA

Objective rad2/s2 −365.0 −224.2 −366.5
Volume - 0.500 0.500 0.500
Ω1 rad/s 187.2 202.6 187.2
Ω2 rad/s 361.3 205.1 363.9
Ω3 rad/s 402.4 219.0 404.4

|𝐺1|dB dB −25.00 −25.00 −25.00
|𝐺2|dB dB −83.23 −25.00 −83.13
|𝐺3|dB dB −35.39 −29.36 −35.47
No. real factorizations 0, 3, 5 0 2

No. complex factorizations 3, 0, 0 0 0

3.3.4 Case variations
In this section, variations of the limit function are explored to gain more insight into the
behavior and possibilities of the proposed constraint. Both the full and approximate MTA
methods are used for the optimizations.

To illustrate the individual control of peaks in the FRF, the first variation is to choose a
lower limit instead of an upper limit on the cantilever case. For the first peak we now use
|𝐺1|dB ≥ 10 dB. The other two peak constraints are kept on their original upper limit of
𝑔upp = −1 dB. The resulting designs and FRF are shown in Fig. 3.12, fromwhich can be seen
that the requirements are fulfilled. Although the design optimized with approximate MTA
is asymmetric, it performs a little better (higher eigenvalues) than the design optimized
with the full method. The bulk of the material is distributed in the same manner for both
designs, with the main difference the slender structure being removed at the top part for
the approximate MTA design.
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Figure 3.12: Results of choosing a lower limit for the first peak |𝐺1 |dB ≥ 10 dB. The design from the full method
(a) and the approximate MTA method (b) and their FRF (c).
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Figure 3.13: Result of choosing the frequency-dependent lower limit for all peaks as Eq. 3.35. The design from
the full method (a) and the approximate MTA method (b) and their FRF (c)
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Also non-constant limit functions can be used, which is demonstrated using the lower
limit

𝑔low(𝜔) = −10 log(𝜔) + 20. (3.35)

With a logarithmic frequency axis, it represents a sloped straight line in an FRF. Any
other user-defined peak envelope function can also be used for the constraint. Note that
the sensitivity of this function also needs to be taken into account as this is a function
of frequency. The resulting designs are feasible and all three constraints are active, as is
shown in Fig. 3.13. Both optimized designs are very similar to each other, with nearly
identical dynamic behavior.

Next to a frequency-dependent constraint limit, another possibility is an adaptive limit.
Instead of maximizing the eigenfrequencies, the maximum peak can be minimized. Prac-
tical implementation of this min-max problem can be done using a bound formulation,
which results in the following optimization problem:

min
x,𝛽 𝛽

s.t. 𝑉 (x) ≤ 𝑉lim
||𝐺(𝑗𝜔𝑗(x),x)||dB ≤ 𝛽 ∀ 𝜔𝑗 ∈ 𝒮upp

𝑥min ≤ x ≤ 1
− 80 ≤ 𝛽 ≤ 20

(3.36)

The results of this optimization problem are shown in Fig. 3.14. The obtained designs
feature appendages near the tip, that are weakly connected to the main structure. These
appendages add low-frequency modes to the structure, that do not result in a large am-
plitude at the output point. This is advantageous in this example because the response of
only the three lowest peaks is limited. It is clear that the optimizer exploits not having a
penalization on low eigenfrequencies, by adding these artificial low-frequency modes in
the process. This demonstrates the need for additional requirements on the optimization
problem in order to obtain a meaningful design.

In practice, operational conditions might impose other requirements on the FRF. For
example, in equipment operating at a constant frequency, a low response amplitude at
exactly that frequency is desired. This can be achieved by extending the optimization
problem in Eq. 3.36 with the constraint ||𝐺(𝑗𝜔op,x)||dB ≤ −80, where 𝜔op is the operational
frequency, chosen as 300 rad/s, initially just in between de second and third natural fre-
quency. Note that extra bounds on the FRF can be set without adding any computational
expense when using approximate MTA.

The results of the optimization with this extra constraint can be seen in Fig. 3.15.
The full design satisfies the operating frequency constraint with a value of −80.01 dB at
𝜔op, whereas the design optimized with approximate MTA is just infeasible with a value
of −79.87 dB evaluated on the full model, while it is feasible on the reduced model. This
might be explained by the loss of accuracy when using reduced-order models. Especially
when the response is close to zero, a small absolute error might introduce a large error
in the decibel scale. For the full design, the optimum design is found with 𝛽 = −2.00 dB,
while for the approximate MTA design 𝛽 = −2.40 dB.
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Figure 3.14: Results of a maximum peak minimization as in Eq. 3.36 (a and b) and their corresponding FRF (c),
where the first three eigenmodes of the full design are shown as insets.
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Figure 3.15: Results a maximum peak minimization subject to an additional maximum amplitude constraint at
300 rad/s (a and b) and their corresponding FRF (c).
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3.4 Conclusions
In this chapter, we proposed a constraint to limit peak frequency response amplitudes. It
is able to effectively and efficiently limit peak values of an FRF. By using the eigenvalues
and eigenvectors of interest, versatile upper and lower limits can freely be selected per
resonance peak.

Various ways to reduce the computational effort have been explored using three dif-
ferent implementations of this constraint, one based on solving the full system, and two
involving reduced-order models (modal truncation (MT) and modal truncation augmen-
tation (MTA)). It has been shown that by using consistent sensitivities, thus by including
sensitivities of the reduction base vectors, the optimization converges to nearly identical
designs with equal performance. In this case, no complex linear systems need solving
anymore, but a larger number of real-valued linear solutions are required.

The sensitivities of the reduced models can be approximated by ignoring the design
dependence with respect to the model reduction basis. Only having eigenmodes in the
basis (MT) leads to inferior convergence during optimization and infeasible design. It is
shown that the approximation in case of MT fails to reveal local details in the sensitivity
field, since higher-frequency eigenmodes are truncated. By augmenting the basis with
correction vectors (MTA), important local details, which were previously truncated, are
resolved in the sensitivities and results similar to the consistent optimization are obtained.
Sensitivity approximation has two advantages, the first being implementation ease. The
sensitivities directly use the projected reduced solution for evaluation, thus easy to im-
plement in code which already uses sensitivities based on the full model. Secondly, fewer
real-valued linear solutions are required as the number is not dependent on the number of
peaks anymore, but dependent on the number of augmented vectors. In examples shown,
the time required to calculate the peaks and the associated sensitivities can be reduced
by almost an order magnitude when using the proposed techniques, with a possibility of
even further time reduction when iterative solvers are used.

Looking forward, an interesting research direction is the aggregation of peaks. Com-
bining reduced models with aggregation of the resonant peaks, the number of full so-
lutions can be reduced, which is not possible using the full method. Theoretically, the
number of linear solutions could be independent of the number of peaks, while still us-
ing consistent sensitivities. This is especially interesting in cases where many peaks are
constrained, or when many inputs and outputs are present (MIMO), making both directly
evaluating the full system and the MTA method computationally expensive. In this case
MT consistent optimization might be very suitable.

It needs to be noted that, depending on application demands, the damping model re-
quires improvement for more accurate results. In order to improve accuracy, it is recom-
mended to consider modal damping or even Voigt/Maxwell-type models, depending on
the constituent material. Related to this, an interesting research direction is multi-material
design in a peak limitation context, where multiple materials with different damping prop-
erties can be placed (see, e.g., Van der Kolk et al., 2017). In this manner, the amplitude of
a peak can be changed both by changing the eigenmodes (as in the current work) and by
effective placement of material with different damping properties.
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4
Integrated optimization in the

Nyquist domain
The design of high-performance mechatronic systems is very challenging, as it requires deli-
cate balancing of system dynamics, the controller, and their closed-loop interaction. Topology
optimization provides an automated way to obtain systems with superior performance, al-
though its application to integrated controller-structure optimization has been limited. To al-
low for topology optimization ofmechatronic systems for closed-loop stability and disturbance
rejection properties such as modulus margin, we introduce local circular approximations of
the Nyquist curve. These circular approximations enable analytical characterization of the
Nyquist curve and allow for constraints that affect closed-loop performance. Additionally,
a computationally efficient robust formulation is proposed for topology optimization of dy-
namic systems. Based on approximation of eigenmodes for perturbed designs, their dynamics
can be described with sufficient accuracy for optimization, while preventing threefold increase
of additional computational effort. Optimized systems with significantly higher performance
are found, with bandwidths up to 350% higher than systems optimized for maximum eigenfre-
quencies, while still satisfying the required modulus margin. The proposed approach enables
new directions of integrated (topology) optimization, with precise control over the Nyquist
curve and efficient enhancement of geometric robustness.

This chapter is based on  AATM Delissen, F van Keulen, M Langelaar, Integrated topology and controller opti-
mization using the Nyquist curve, Submitted .
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4.1 Introduction

M any high-tech applications require positioning at both high accuracy and high speed,
for which motion systems are used. These are, for instance, used in semiconduc-

tor equipment, microscopy, robotics, and medical devices (Munnig Schmidt et al., 2011;
Oomen, 2018). The required speed and accuracy in these positioning systems is achieved
by feedback control. In the quest for more extreme performance, the design of motion
systems poses a significant challenge.

The final performance and accuracy of such systems heavily depend on system dynam-
ics, the controller, and the (closed-loop) interaction between the two (i.e. mechatronics).
Various complex design problems have been effectively addressed by topology optimiza-
tion in recent years, and the need exists to also apply it to motion systems. Although
optimization is frequently used in the design of feedback controlled systems, it is mostly
applied in a sequential manner. First, the structure is designed, e.g. for maximum eigen-
frequencies using topology optimization (Ma et al., 1995; Delissen et al., 2022), after which
a controller is tuned for this structure that achieves system requirements, such as high
bandwidth, stability, and disturbance rejection (Munnig Schmidt et al., 2011). However,
this approach usually leads to sub-optimal system performance. High eigenfrequencies
are often a characteristic of good system performance, but it does not mean that higher
eigenfrequencies always result in a higher bandwidth. Therefore, for superior perfor-
mance of the combined system, an integrated approach is required (Fathy et al., 2001;
Van der Veen et al., 2015, 2017), which is also sometimes referred to as control co-design
(Garcia-Sanz, 2019). Through integrated (topology) optimization, the dynamic behavior
of the structure and the controller can both be adapted to accommodate each other in a
more optimal manner, potentially resulting in a better closed-loop performance.

A large portion of existing research on integrated controller-structure optimization is
focused on state-feedback controllers in the time domain, which determine their correction
signals based on the state of the structure (e.g. positions, deformations, and/or velocities).
The optimal controller in this case can be calculated algebraically as the minimizer of a
linear quadratic control cost function, based on ℋ2 synthesis (a generalization of clas-
sic LQ/LQR/LQG theory) (Doyle et al., 1989; Anderson and Moore, 1989). The result is
an optimal controller balancing vibration levels and control effort over time. Most exist-
ing methods reformulate the integrated controller-structure optimization problem into a
nested formulation, where an optimal controller is found algebraically during each struc-
tural design iteration (Haftka, 1990; Fathy et al., 2001). For the outer structural problem
the same linear quadratic cost function as for the nested controller optimization can be
used (Miller and Shim, 1987). However, this approach is limited to truss problems with
few design variables due to its significant computational effort, as the solutions are needed
of an algebraic Ricatti equation and of additional Lyapunov equations for the gradients of
each design variable. Alternatives in literature are based on minimizing combined strain
and control energy in a steady-state setting (Ou and Kikuchi, 1996a,b; Molter et al., 2013)
or other (multi-)objective formulations (Zhu et al., 2002; da Silveira and Fonseca, 2010).
While these are computationally feasible for topology optimization, they do not directly
relate to the integrated system performance. A more complete overview of different ap-
proaches is given in the review paper by Allison and Herber (2014).
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4.1.1 Frequency domain control
In practice, state feedback and linear quadratic optimal controllers in the time domain
are rarely used for high-performance positioning systems. For positioning systems the
tracking error, disturbance rejection, and noise attenuation are essential aspects to obtain
high precision. The quantification of these effects is difficult in the time domain (Doyle,
1978; Zhou et al., 1996), but can be represented easier in the frequency domain. This is
one of the reasons that frequency-based PID controllers are the current industry standard
(Munnig Schmidt et al., 2011).

𝐶(𝑗𝜔) 𝐻(𝑗𝜔)+
−

+
+

𝑟 𝑒 𝑢 𝑦
𝑑Controller Structure

Figure 4.1: Controller and plant placed in a feedback
loop, with the aim for the output 𝑦 to track the ref-
erence signal 𝑟 . The correction signal 𝑢 generated
by the controller is based on the measured error 𝑒.
If tuned correctly, the closed-loop system is able to
reject disturbances 𝑑 .

In order to clearly describe the open challenges for integrated controller-structure op-
timization in the frequency domain, we will first discuss some aspects of classical control
theory. The influence of disturbances and noise on the controlled structure is charac-
terized by the sensitivity function 𝑆(𝑗𝜔) (Åström and Murray, 2008), which is not to be
confused with the design sensitivities. The sensitivity function is the transfer function be-
tween external disturbance 𝑑 and output 𝑦 (Fig. 4.1), which is dependent on the frequency
𝜔. Here, the disturbances may, for instance, be external loads on the controlled system or
motions of the measurement frame. The sensitivity function is defined as

𝑆(𝑗𝜔) = 1
1 + 𝐿(𝑗𝜔) , (4.1)

with the open-loop transfer function 𝐿(𝑗𝜔) = 𝐻(𝑗𝜔)𝐶(𝑗𝜔) of the controller and plant
in series. The amplitude of the sensitivity function |𝑆(𝑗𝜔)| provides a bound on the dis-
turbance rejection properties. A typical example is shown in Fig. 4.2a. Disturbances are
attenuated in closed-loop if |𝑆(𝑗𝜔)| < 0 dB, but they are amplified if |𝑆(𝑗𝜔)| > 0 dB. Ide-
ally, the sensitivity function is small for frequencies below the bandwidth 𝜔b, where the
controller is able to correct disturbances, and which also ensures a small tracking error.
Due to the waterbed effect, lowering the sensitivity function at certain frequencies leads
to an increase at other frequencies (Munnig Schmidt et al., 2011). Therefore, peaks are
to be avoided for frequencies above the bandwidth to prevent over-amplification of high-
frequency noise. This is usually done by limiting the maximum value of |𝑆(𝑗𝜔)| to, for
instance, 6 dB. Further details can be found in textbooks on control, e.g. Åström and
Murray (2008); Munnig Schmidt et al. (2011).

Examples in the literature of integrated optimization for PID control are less common
than optimization based on linear quadratic control. One example is the work by Al-
bers and Ottnad (2010), who use a PID controller optimization nested within a structural
topology optimization based on strain energy minimization. Here, load cases are itera-
tively updated based on the control action. However, this approach will not yield optimal
performance, since the structure is optimized for a minimum strain energy instead of the
integrated system performance.



4

64 4 Integrated optimization in the Nyquist domain

0.1 1.0 10
Frequency (rad/s)

-30

-20

-10

0

10
A
m
pl
itu

de
(d
B)

Ba
nd

w
id
th

𝜔 b

(a)

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0
Real

-1.0

-0.5

0.0

0.5

1.0

Im
ag
in
ar
y

𝐿(𝑗𝜔)

Modulus margin

(b)

Figure 4.2: a) A typical example of a sensitivity function |𝑆(𝑗𝜔)|. The upper limit of 6 dB is indicated in red. b)
The corresponding Nyquist curve of the loop gain 𝐿(𝑗𝜔), with the critical −1 point and modulus margin indicated
in red. Peaks in the sensitivity function correspond to the points of the Nyquist curve closest to the −1 point, as
indicated by the colored dots.

A truly integrated approach is proposed by Van der Veen et al. (2015, 2017), who opti-
mize feedback controlled structures for a maximum bandwidth, subject to constraints on
closed-loop stability and disturbance rejection. For the disturbance rejection, constraints
are used that explicitly limit the sensitivity function |𝑆(𝑗𝜔)| below a certain threshold.
Since the sensitivity function is a multi-modal function (Fig. 4.2a), a constraint is imposed
on each individual peak value. The frequencies corresponding to the peak values cannot
be calculated explicitly, so a numerical search algorithm must be used to locate the peak
values (see, e.g. Bruinsma and Steinbuch, 1990). Even though the peaks are found numeri-
cally and as long as the constraints are not dependent on the peak frequency, it is possible
to calculate correct gradient information and use them as constraints in an optimization
(Giesy and Lim, 1993; Venini and Pingaro, 2017; Delissen et al., 2020). A drawback of the
approach of Van der Veen et al. (2015, 2017) is that the number of peaks changes during
the optimization, depending on the controller, the structure, and their interaction. Next
to that, separate constraints need to be applied to ensure closed-loop system stability.
As a result, integrated optimization including control requirements, such as closed-loop
stability and disturbance rejection, remains an open challenge.

For further insight into the behavior of the sensitivity function |𝑆(𝑗𝜔)|, an alterna-
tive interpretation is discussed. The sensitivity function can also be interpreted using the
Nyquist curve of the open-loop transfer function 𝐿(𝑗𝜔), as is shown in Fig. 4.2b. From
Eq. 4.1 can be deducted that the reciprocal of the sensitivity function is equal to the dis-
tance from the Nyquist curve 𝐿(𝑗𝜔) to the critical point at −1 + 0𝑗 in the complex domain
(from here on called the −1 point). A maximum in the sensitivity function therefore corre-
sponds to a minimum distance between the open loop transfer-function 𝐿(𝑗𝜔) and the −1
point. This minimum distance is also commonly known as the modulus margin (Åström
and Murray, 2008).

Outside structural and integrated optimization, several techniques are available which
focus on gradient-based tuning of controllers using the Nyquist curve, e.g. (Karimi and
Galdos, 2010; Van Solingen et al., 2018). These apply geometric constraints on the Nyquist
curve to enforce stability and disturbance rejectionmargins. An advantage of constraining
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the Nyquist curve is an enhanced flexibility in limiting both phase as well as amplitude of
a transfer function, which is otherwise difficult to do. However, this approach is not suited
for topology optimization, since the Nyquist curve 𝐿(𝑗𝜔) is sampled using a finite number
of frequencies, where each sampled point has to be constrained in the complex domain.
This easily results in thousands of constraints that each require a computationally costly
(dynamic) finite element analysis.

Topology optimization has not been done yet using the Nyquist curve, although it may
offer several advantages. There is a straightforward geometrical interpretation of distur-
bance rejection using the open-loop transfer function 𝐿(𝑗𝜔) as opposed to the sensitivity
function |𝑆(𝑗𝜔)|, which is in closed-loop. Also the closed-loop stability can be directly
enforced by preventing encirclements of the −1 point (i.e. the Nyquist stability criterion
in case of a stable open-loop system). This motivates the use of the Nyquist curve in
controller design.

4.1.2 Robust formulation
An important requirement for practical design cases is the control on minimum feature
size in the design. In topology optimization, this is generally done using a density fil-
ter in combination with a robust formulation (Bendsøe and Sigmund, 2003; Wang et al.,
2011). Erosion and dilation operations are performed on the design in order to generate
multiple perturbed designs. By optimizing the design for worst case performance, it is
made robust against uniform geometric deviations. The robust formulation indirectly en-
sures a minimum feature size in the design, dependent on the perturbation amount and
the filter radius. Additionally, it helps in obtaining a binary void-solid design without
intermediate densities, possibly also reducing the appearance of local eigenmodes (Ped-
ersen, 2000). A disadvantage is that the application of this method requires the solution
of additional perturbed designs, which, in the present setting, each require the solution
of a computationally costly eigenvalue problem. Furthermore, the integrated controller-
structure optimization as proposed by Van der Veen et al. (2015, 2017) does not allow for
aggregation of all the perturbed constraint values. This is not possible because the num-
ber of peaks in the sensitivity function |𝑆(𝑗𝜔)|, and thus the number of constraints, may
change due to the design perturbations. The lack of aggregation results in the addition
of many new constraints for each perturbed design, which all require the calculation of
eigenmode design sensitivities. Thus, to apply the robust formulation to existing inte-
grated optimization methods results in an unacceptable increase of computational effort
by at least a factor three.

4.1.3 Approach and contributions
In this work, we present two main contributions towards integrated controller-structure
optimization and application to more practical design cases:

1. Local approximation of theNyquist curve using circles, which can be used in gradient-
based optimization

2. An efficient robust method for dynamic topology optimization problems, that re-
quires negligible additional computational effort
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These new methods are combined, tested, and demonstrated for the integrated controller-
structure topology optimization of a motion system.
Local approximation of the Nyquist curve In order to efficiently influence the shape of the
Nyquist curve during optimization, local circular approximations are generated at each
eigenfrequency. Using multiple circular approximations, the characteristic shape of the
Nyquist curve is captured by simple geometric features. Finally, by geometric restriction
of each circle in the complex domain, the global shape of the Nyquist curve can be influ-
enced during optimization. This can be used to enforce closed-loop stability (encirclements
around the −1 point) and robustness (distance to the −1 point).

This method avoids the requirement of knowing the exact frequencies at peaks in the
sensitivity function, or equivalently where the Nyquist curve of 𝐿(𝑗𝜔) is closest to the
−1 point. Instead, locally approximated sections are used to describe the Nyquist curve
close to the peak frequencies, which may be constrained away from the −1 point. Each
(flexible) eigenmode in the mechanical model exhibits itself as a circle in the Nyquist curve
(Fig. 4.2b), which together form its characteristic shape. This also prevents issues with a
changing number of peaks in the sensitivity function, as the absence of a peak corresponds
to a circle with a radius of zero at the corresponding eigenfrequency.

Circles in the Nyquist curve have historically been used to identify modal parameters
of mechanical systems from experimental data (Kennedy and Pancu, 1947; Miller, 1978).
Here, the reverse process is exploited by fitting a circle related to each eigenfrequency
in the dynamic system, using the corresponding modal parameters. Local approximation
models are actively being researched in the field of control, where they are used to, for
instance, approximate the ℋ∞ norm with limited experimental data (see, e.g, Tacx and
Oomen (2021)). However, to our knowledge the current approximation-based approach
proposed for integrated controller-structure optimization has not been studied before.
Computationally efficient robust formulation To apply the robust formulation to topology
optimization with negligible additional computational effort, we propose to approximate
both the eigenfrequencies and eigenmodes of the perturbed designs. This critical, as both
of these are important to the closed-loop behavior of the system. The eroded and dilated
designs are very similar to the nominal design. Therefore, it may be assumed that their
dynamic behavior is also very similar. After calculation of the eigenmodes of the nominal
design, approximations of eigenfrequencies and eigenmodes for the perturbed designs
may be constructed from linear combinations of the nominal eigenmodes. This avoids
having to solve additional eigenvalue problems for the perturbed designs.

The eigenmodes are used to construct a reduced-order model for each design. After
this, closed-loop performance may be evaluated for each of the reduced-order models,
using the proposed local approximation method of the Nyquist curve. The fact that the
number of circles does not change during iterations allows for aggregation of the con-
straints. Thus, the number of constraints is equal for an optimization with or without
robust formulation, which prevents calculation of additional eigenmode design sensitivi-
ties.

In this chapter, the contributions are applied to integrated controller and topology
optimization with focus on closed-loop system stability and robustness margins on the
disturbance rejection. The research is focused on mechanical LTI and SISO systems, but
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many aspects may be generalized to a MIMO setting. A fixed-structure PID controller is
used for positioning of themechanical systemwith in a singlemotion direction, in the form
of rigid body mode. Fixed actuator and sensor locations are used in the system and modal
damping is assumed. Furthermore, different variations are explored, such as optimization
for position dependency using multiple sensor positions (i.e. single-input multi-output
(SIMO)) with the same controller and application of the proposed robust formulation.

The outline of this chapter is as follows. First, in Section 4.2, the local approximation of
the Nyquist curve using circles is explained and demonstrated on an analytical example.
In Section 4.3, the topology optimization formulation is presented. Next, in Section 4.4,
all modeling aspects are explained in detail, including the proposed efficient robust for-
mulation for dynamic problems. In Section 4.5, the potential of the proposed methods is
demonstrated using numerical examples. Finally, discussion and conclusions are given in
Sections 4.6 and 4.7, respectively.

4.2 Local approximation of the Nyquist curve
4.2.1 Circle parametrization
In this section is explained how the circular-shaped local approximations for the flexible
eigenmodes in the Nyquist curve 𝐿(𝑗𝜔) are constructed, based on theory from experimen-
tal modal analysis (Kennedy and Pancu, 1947; Miller, 1978). Given the transfer function
in the Laplace domain 𝐿(𝑠), the Nyquist curve is obtained with complex frequency 𝑠 = 𝑗𝜔,
which corresponds is a line along the imaginary axis. First, the general transfer function
is given by its decomposition in first-order terms as

𝐿(𝑠) = ∑
𝑖

𝑝𝑖
𝑠 − 𝜆𝑖

, (4.2)

with participation factors 𝑝𝑖 ∈ ℂ, and system poles 𝜆𝑖 ∈ ℂ. It is possible to obtain this
decomposition from any representation of the transfer function, for instance from a state-
space model as is further explained in Section 4.4.3. For frequencies 𝑠 = 𝑗𝜔 in the prox-
imity of a system pole 𝜆𝑖 , the corresponding first-order term is assumed dominant, as its
denominator becomes small. Therefore,

𝐿(𝑠) ≈ �̃�𝑖(𝑠) = ̆𝐿𝑖 +
𝑝𝑖

𝑠 − 𝜆𝑖
for 𝑠 ≈ 𝑗Im (𝜆𝑖) , (4.3)

where the local approximation �̃�𝑖(𝑠) consists of a constant offset ̆𝐿𝑖 ∈ ℂ and a single first-
order term. The offset ̆𝐿𝑖 contains the contributions of all remaining first-order terms at
the frequency of interest and is calculated as

̆𝐿𝑖 = 𝐿(𝑗Im (𝜆𝑖)) −
𝑝𝑖

𝑗Im (𝜆𝑖) − 𝜆𝑖
= ∑

𝑘≠𝑖

𝑝𝑘
𝑗Im (𝜆𝑖) − 𝜆𝑘

, (4.4)

ensuring interpolation of 𝐿(𝑗Im (𝜆𝑖)) = �̃�(𝑗Im (𝜆𝑖)). An illustration of a local approxima-
tion can be seen in Fig. 4.3.

From experimental modal analysis, it is known that a transfer function of the form in
Eq. 4.3 results in a circle in the complex domain (Kennedy and Pancu, 1947; Miller, 1978).
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Figure 4.3: Illustration of one local circle approxima-
tion �̃�(𝑗𝜔) (in blue) fitted to the Nyquist curve 𝐿(𝑗𝜔)
in grey. The radius 𝑅, midpoint 𝑋 , constant offset ̆𝐿,
and an interpolatory point 𝐿(𝑗Im (𝜆)) are indicated.
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Its midpoint and radius are calculated, respectively, using

𝑋𝑖 = ̆𝐿𝑖 −
𝑝𝑖

2Re (𝜆𝑖)
and 𝑅𝑖 =

||𝑝𝑖 ||
2 |Re (𝜆𝑖)|

. (4.5)

An alternative and simplified proof of these relations, based on the theory of generalized
circles (Schwerdtfeger, 1979), is provided in Appendix A.2. As the relations are all an-
alytical, the derivation of the derivatives is deemed trivial and is left to the reader. By
constructing local circle approximations for each relevant system pole 𝜆𝑖 , important fea-
tures of the Nyquist curve of 𝐿(𝑠) can be described using simple geometry.

Note that the radius is non-differentiable when ||𝑝𝑖 || = 0 and additionally approaches
infinity when Re (𝜆𝑖) → 0. The former case occurs when an eigenmode is not excited
by the actuator or when it has no deformation at the sensor location. The latter case will
normally not occur, since the real part of a complex pole is a finite negative value for a
system with damping. To account for non-differentiability when ||𝑝𝑖 || = 0, and thus 𝑅𝑖 = 0,
a small perturbation is added as

�̃�𝑖 = √𝑅2𝑖 + 𝑅2min. (4.6)

This ensures differentiability when 𝑅𝑖 = 0 by setting a (smooth) minimum radius of 𝑅min.

4.2.2 Analytical example
To demonstrate the principle of the local circle approximation, a double mass spring
damper system is used, as is shown in Fig. 4.4a. To keep the equations simple, no con-
troller is used for this example and circles are formed for the plant 𝐻(𝑠) instead of the loop
𝐿(𝑠). The transfer function 𝐻(𝑠) for this system describes the relation between a force on
either of the masses to a displacement on either. Mathematically, it is the superposition
of two second-order systems (Gawronski, 2004; Munnig Schmidt et al., 2011):

𝐻(𝑠) = 𝜒1
Ω21 + 2𝑠𝜁1Ω1 + 𝑠2 + 𝜒2

Ω22 + 2𝑠𝜁2Ω2 + 𝑠2 . (4.7)

Here, undamped eigenfrequencies are denoted Ω1, Ω2, relative damping factors 𝜁1, 𝜁2, and
modal contributions 𝜒1, 𝜒2. These modal parameters can be calculated from the mass, stiff-
ness and damping values of the double mass spring system in Fig. 4.4a and can be positive
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Figure 4.4: a) A double mass spring damper system, which can be described using Eq. 4.7. b) Bode plot of the
double second-order system and c) corresponding Nyquist plot, where the approximated circles and interpolated
points 𝐻(𝑗Im (𝜆𝑖)) are indicated. The parameters used are Ω1 = 1.0 rad/s, Ω2 = 1.1 rad/s, 𝜒1 = 0.2 kg−1 (collo-
cated), 𝜒2 = 0.15 kg−1, and 𝜁1 = 𝜁2 = 0.01.

(e.g. collocated) or negative (e.g. non-collocated) (Gawronski, 2004). This equation can be
rewritten into a notation using system poles 𝜆𝑖 and their conjugates 𝜆𝑖 , becoming

𝐻(𝑠) = 𝜒1
(𝑠 − 𝜆1)(𝑠 − 𝜆1)

+ 𝜒2
(𝑠 − 𝜆2)(𝑠 − 𝜆2)

, (4.8)

where the system poles are calculated as 𝜆𝑖 = −𝜁𝑖Ω𝑖+𝑗Ω𝑖√1 − 𝜁𝑖 in case of an underdamped
system.

The Bode plot of this system in Fig. 4.4b shows the frequency-dependent amplitude
and phase behavior of the transfer function 𝐻(𝑗𝜔). Resonances can clearly be observed,
which are located at the damped eigenfrequencies Im (𝜆𝑖) in the Bode plot. Alternatively,
the transfer function can be represented in the complex domain by a Nyquist plot, shown
in Fig. 4.4c. Looking at the Nyquist plot, the circular shapes can clearly be identified,
with their apexes with respect to the origin coinciding with the damped eigenfrequencies
Im (𝜆). Note that the furthest point from the origin can be calculated explicitly, as opposed
to the distance to the −1 point, which cannot be calculated.

Circles cannot be fit directly to the second-order systems, therefore the transfer func-
tion first needs to be decomposed into first-order terms. In this case, this is simply done
by rewriting Eq. 4.8 into

𝐻(𝑠) = 𝑝1
𝑠 − 𝜆1

− 𝑝1
𝑠 − 𝜆1

+ 𝑝2
𝑠 − 𝜆2

− 𝑝2
𝑠 − 𝜆2

, (4.9)

with corresponding participation factors

𝑝𝑖 = − 𝑗𝜒𝑖
2Im (𝜆𝑖)

. (4.10)
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From the four first-order systems in Eq. 4.9, only one first-order system is assumed dom-
inant around each of the excitation frequencies 𝜔 ≈ Im (𝜆𝑖) and 𝜔 ≈ −Im (𝜆𝑖). Since only
positive frequencies are of interest, the two approximated circles using Eqs. 4.3-4.5 can be
described with radii and midpoints being

𝑅𝑖 =
||𝜒𝑖 ||

4𝜁𝑖Ω2𝑖 √1 − 𝜁𝑖
and 𝑋𝑖 = �̆�𝑖 −

𝑗𝜒𝑖
4𝜁𝑖Ω2𝑖 √1 − 𝜁𝑖

, (4.11)

with constant offsets
�̆�𝑖 = 𝐻(𝑗Im (𝜆𝑖)) +

𝑗𝜒𝑖
2𝜁𝑖Ω2𝑖 √1 − 𝜁𝑖

. (4.12)

Two circles are calculated and overlaid in Fig. 4.4c, demonstrating approximation with a
close match to the original Nyquist curve. Tha approximation is most approximate near
the eigenfrequency at which the circle interpolates the point 𝐻(𝑗Im (𝜆𝑖)). From Eq. 4.11
can be seen that increasing the damping value or eigenfrequency would decrease circle
radius, and the modal contributions 𝜒𝑖 have a proportional effect on the radii.
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Figure 4.5: The Nyquist diagrams and local circle approximations for two systems showing mode interaction
because of frequencies close to each other, at Ω1 = 1.0 rad/s and Ω2 = 1.01 rad/s. The damping parameters
are 𝜁1 = 𝜁2 = 0.01. System input and output can be at either of the two masses. a) Interaction with both
modal contributions positive (𝜒1 = 0.2 kg−1 and 𝜒2 = 0.15 kg−1, e.g. collocated system) results in approximation
smaller than the actual Nyquist curve. b) Interaction with opposed modal contributions (𝜒1 = 0.3 kg−1 and
𝜒2 = −0.15 kg−1, e.g. non-collocated system) results in larger circles than the Nyquist curve, as the two modes
cancel each other.

When eigenfrequencies are close to each other, they start interacting with each other.
The mixing of modes results in non-circular shapes in the Nyquist curve. At this point
the approximation in Eq. 4.3 is unable to fully capture the exact behavior, as the influence
of other modes (�̆� ) is no longer (close to) constant. Using the double second-order sys-
tem, this is demonstrated in Fig. 4.5a for a system with positive modal contributions (e.g.
in a collocated system). In this case the two second-order terms contribute in the same
direction and the total response is larger than the approximations. The opposite happens
when the signs of the modal contributions are opposed (e.g. in a non-collocated system),
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as can be seen in Fig. 4.5b, where the approximated circles are larger than the actual re-
sponse. The two modes compensate each other and the total response becomes smaller.
These examples are specifically tuned to show the effect of mode interaction, but these
extreme cases may be rare to occur in an optimization setting. This will be investigated in
Section 4.5 using numerical examples.

4.2.3 Constraining the Nyquist curve
Using the local circle approximations, the Nyquist curve can be parametrized in the com-
plex domain using simple geometry. This is very useful for optimization problems where
the Nyquist curve must geometrically be constrained in the complex domain.
Distance to a point For instance, the closest distance ℎ from a circle to a point 𝜏 ∈ ℂ is
characterized as the distance to the midpoint of the circle minus its radius

ℎ(𝑋 , 𝑅) = |𝑋 − 𝜏 | − 𝑅. (4.13)

To calculate the distance furthest away, the radius is simply added instead of subtracted

ℎ(𝑋 , 𝑅) = |𝑋 − 𝜏 | + 𝑅. (4.14)

Distance to a line The shortest distance to a line characterized by unit normal direction
𝑛 ∈ ℂ (with |𝑛| = 1) and passing through the point 𝜏 can easily be calculated as

ℎ(𝑋 , 𝑅) = Re ((𝑋 − 𝜏)𝑛) − 𝑅. (4.15)

Distance to an area By composing distances to lines and points, also the distance from
a circle to an area can be characterized. For instance, the shortest distance to a wedge-
shaped area bounded by two line sections with normals 𝑛1, 𝑛2 ∈ ℂ intersecting in the point
𝜏 , is defined as

ℎ(𝑋 , 𝑅) = {
|𝑋 − 𝜏 | if 𝒞1

Re ((𝑋 − 𝜏)𝑛1) if 𝒞2
Re ((𝑋 − 𝜏)𝑛2) if 𝒞3

} − 𝑅, (4.16)

where the conditions𝒞1, 𝒞2, and𝒞3 indicate which of the three sections (lines or point) is
closest to the position of 𝑋 . These functions are mostly smooth and differentiable, except
when point 𝑋 coincides with 𝜏 or at an inflection point between two segments. However,
these cases will numerically rarely occur, especially when these are used in constraints
that serve to keep the point 𝑋 away from 𝜏 .
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4.3 Application to controller-structure optimization
4.3.1 Optimization formulation
In a closed loop controlled system, the interplay between controller and structure deter-
mines the performance that can be achieved. The feedback system consists of a PID con-
troller 𝐶(𝑠) and the structure 𝐻(𝑠), which contains a rigid body mode, placed in a loop, as
is shown in Fig. 4.1.

From an optimization point of view, there is a trade-off between performance (band-
width) and closed loop stability. Stability can be determined by inspecting the closed-loop
poles, which must have a negative real part. Using the Nyquist stability criterion, closed-
loop stability can also be interpreted with the Nyquist curve: for a stable closed-loop
system, the open-loop curve 𝐿(𝑠 = 𝑗𝜔) must not encircle the −1 point (in the current case
where the open-loop system is stable), which for positive 𝜔 means that 𝐿(𝑗𝜔) keeps the
−1 point to the left hand side for increasing frequencies (Munnig Schmidt et al., 2011).
Here, the open-loop transfer-function is calculated as the controller and plant in series
𝐿(𝑠) = 𝐻(𝑠)𝐶(𝑠).

As discussed in the Introduction, the modulus margin gives information on how close
a system is to instability, and it also provides a bound on the influence of disturbances on
the controlled structure. It is characterized as the closest distance of the Nyquist curve
𝐿(𝑗𝜔) to the −1 point.

To ensure a closed-loop systemwhich is stable with a specifiedmodulusmargin, the lo-
cally approximated circles are used to constrain the trajectory of the Nyquist curve 𝐿(𝑗𝜔).
Constraints are defined that prevent the circle approximations, corresponding to the me-
chanical eigenmodes, from entering the wedge-shaped area offset by 𝜇 around the −1 point
as indicated in Fig. 4.6. In this way, both stability and disturbance rejection are enforced
by the constraints.

Figure 4.6: The constrained area in the Nyquist di-
agram indicated in red, which ensures both closed-
loop stability and amodulusmargin of 𝜇. Thewedge-
shaped area (Eq. 4.16) is shaded in dark red, which is
offset with the modulus margin to the lighter shade
of red.
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Also multiple Nyquist curves can be constrained simultaneously, for instance, to ac-
count for position-dependent dynamics. Many high-tech positioning systems consist of
motion systems stacked in series to provide positioning freedom in additional movement
directions or to achieve an extended range of motion. Since contactless measurements are
often used (e.g, laser interferometry or eddy current sensors), a sensor fixed on a measure-
ment frame therefore changes position relative to the measured object. As the measure-
ment position affects the dynamics, it becomes position dependent (Van der Veen et al.,
2017). In this work, the inclusion of multiple (𝑁pos) relative sensor-positions is therefore
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also considered. This results in multiple SISO control loops, or rather SIMO, each requiring
performance constraints on disturbance rejection.

For the topology optimization, a density-based formulation is used (Bendsøe and Sig-
mund, 2003). The optimization formulation used in this work is stated as

min
x,𝜔b

1
𝜔b

,

s.t. 𝑉 (x) ≤ 𝑣f𝑉max,

ℎ𝑖𝑗(x, 𝜔b) ≥ 𝜇 ∀ {𝑖 = 1, … , 𝑁
𝑗 = 1, … , 𝑁pos

,

0 ≤ x ≤ 1,

(4.17)

where x represents the pseudo-density variables used for topology optimization and 𝜔b
the bandwidth, which is the tuning parameter of the PID controller. The number of eigen-
modes in the system is equal to 𝑁 , for each of which circular approximations are con-
strained. The aim is to maximize the bandwidth 𝜔b of the closed-loop system while keep-
ing the volume 𝑉 below a volume fraction 𝑣f of the maximum volume 𝑉max, and simul-
taneously ensuring the circle approximations remain outside of the wedge-shaped area
by using the distances ℎ𝑖𝑗 as defined in Eq. 4.16. These distances are related to the de-
sign variables through the radii 𝑅𝑖𝑗(x, 𝜔b) and midpoints 𝑋𝑖𝑗(x, 𝜔b) of the circular local
approximations.

4.3.2 Optimization implementation and scaling
As optimizer, MMA is used (Svanberg, 1987). Constraint and objective scaling is critical
to this method, so the original optimization formulation of Eq. 4.17 is reformulated as

min
x,𝑥𝜔

100 𝜔(0)
b

𝜔b(𝑥𝜔)
,

s.t. 10 ( 𝑉 (x)
𝑣f𝑉max

− 1) ≤ 0,

𝑔𝑖𝑗(x, 𝑥𝜔) ≤ 0 ∀ {𝑖 = 1, … , 𝑁
𝑗 = 1, … , 𝑁pos

,

0 ≤ x ≤ 1,
0 ≤ 𝑥𝜔 ≤ 1,

(4.18)

where the objective is normalized with the bandwidth at the initial iteration 𝜔(0)
b and a

normalized design variable 𝑥𝜔 is used to tune the controller. The constraints on the circles
are scaled and normalized as

𝑔𝑖𝑗 = 10 (1 − ℎ𝑖𝑗
𝜇 ) . (4.19)

Instead of directly using the bandwidth as a variable, it is scaled exponentially between
the user-defined bounds [𝜔min, 𝜔max] as

𝜔b = 𝜔min (
𝜔max
𝜔min

)
𝑥𝜔

. (4.20)
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This causes less sensitive behavior for parameter changes at low bandwidth, and makes
all optimization variables (x and 𝑥𝜔) equally bounded between 0 and 1.

To ensure a feasible initial controller for a given initial structure x(0) (uniform densities
equal to the volume fraction 𝑣f), a separate controller optimization is performed prior to
the integrated controller-structure optimization. The control variable 𝑥𝜔 is found using
the formulation of this pre-optimization, given as

min𝑥𝜔
100 𝜔min

𝜔b(𝑥𝜔)
,

s.t. 𝑔𝑖𝑗(𝑥𝜔) ≤ 0 ∀ {𝑖 = 1, … , 𝑁
𝑗 = 1, … , 𝑁pos

,

0 ≤ 𝑥𝜔 ≤ 1,

(4.21)

which has its optimum at 𝜔(0)
b . This value is used as initial bandwidth for the integrated

optimization given in Eq. 4.18.

4.3.3 Topology optimization parametrization
Since a density based approach is used, the structural design variables x are first filtered
using a standard density filter, resulting in the filtered design field xf (Bruns and Tortorelli,
2001). The Young’s modulus 𝐸𝑖 and density 𝜌𝑖 of each finite element 𝑖 in the domain ℰ are
obtained from the filtered design parameters using the following material interpolation

𝐸𝑖 = 𝐸0 (𝑥min + (1 − 𝑥min)𝑥3f,𝑖) ∀ 𝑖 ∈ ℰ ,

𝜌𝑖 = {
𝜌0𝑥f,𝑖 for 𝑥f,𝑖 ≥ 𝑡
𝜌0

𝑥6f,𝑖
𝑡5 for 𝑥f,𝑖 < 𝑡 ∀ 𝑖 ∈ ℰ .

(4.22)

The small minimum design density 𝑥min prevents the stiffness matrix from becoming ex-
actly singular when design densities are zero.

The low mass-to-stiffness ratio in Eq. 4.22 for low densities largely prevents the oc-
currence of local eigenmodes (Olhoff and Du, 2005). These are unwanted eigenmodes in
low density areas, with low corresponding eigenfrequencies. Local modes are further pre-
vented using a flood fill algorithm on the design vector x, removing any material that is
disconnected or very loosely connected to actuator or sensor locations. Elements that
are connected to the non-design domains through densities lower than 0.2 are recursively
clipped to the maximum of their neighbors. In an extreme case, the disconnection of bod-
ies results in additional rigid body modes at frequencies close to zero. These measures
prevent undesired localized modes, improving the convergence of the optimization.

Next, the stiffness andmassmatrices are assembled using thematerial propertiesE and
𝜌𝜌𝜌. For this, a grid of bilinear quadrilateral finite elements is used, with a full integration
scheme and a plane strain condition. The assembly is performed as

K =𝔸𝑖∈ℰ 𝐸𝑖K0 and M =𝔸𝑖∈ℰ 𝜌𝑖M0, (4.23)
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where K0 and M0 represent element stiffness and (lumped) mass matrix, respectively,
corresponding to unit material properties, and𝔸 denotes the matrix assembly operation
over the entire domain ℰ .

4.4 Modeling
4.4.1 Mechanical model
From the mass and stiffness matricesM andK, a reduced-order model is constructed using
a truncated modal decomposition. This model approximates the displacement field u(𝑡)
by superposition of a number of eigenmodes 𝜙𝜙𝜙𝑖 scaled over time with amplitudes 𝑞𝑖(𝑡),
denoted as

u(𝑡) ≈
𝑁
∑
𝑖=1

𝑞𝑖(𝑡)𝜙𝜙𝜙𝑖 = ΦΦΦq(𝑡),

ΦΦΦ = [𝜙𝜙𝜙1 … 𝜙𝜙𝜙𝑁 ] ,
(4.24)

whereΦΦΦ is the projection matrix containing all eigenmodes. The eigenfrequencies Ω𝑖 and
corresponding eigenmodes 𝜙𝜙𝜙𝑖 are obtained by solving the undamped eigenvalue problem
for the lowest 𝑁 + 1 modes

(K − Ω2𝑖M)𝜙𝜙𝜙𝑖 = 0 ∀ 𝑖 = 0, … , 𝑁 ,
0 ≤ Ω0 ≤ … ≤ Ω𝑁 ,

(4.25)

using mass-normalization of the eigenmodes as 𝜙𝜙𝜙T𝑖 M𝜙𝜙𝜙𝑖 = 1. The lowest eigenfrequency
Ω0 = 0 rad/ms corresponds to the rigid body mode for the degree of freedom that is con-
trolled by the PID controller.

The projection matrix ΦΦΦ is used to obtain the reduced equations of motion as

ΩΩΩ2q(𝑡) + 2𝜁ΩΩΩq̇(𝑡) + q̈(𝑡) = ΦΦΦTf𝑢(𝑡),
y(𝑡) = GTΦΦΦq(𝑡), (4.26)

whereΩΩΩ is a diagonal matrix containing the eigenfrequencies and 𝜁 the non-dimensional
damping ratio. The input force vector, as exerted by the actuator, is denoted as f and the
output displacement vectors as measured by the sensors with block-vector G, with 𝑁pos
columns for each sensor. The input is denoted 𝑢(𝑡) and the outputs for all sensor positions
y(𝑡), as indicated in Fig. 4.1. The transfer function of the plant becomes

H(𝑠) = GTΦΦΦ (ΩΩΩ2 + 2𝑠𝜁ΩΩΩ + 𝑠2I)−1ΦΦΦTf, (4.27)

which describes the behavior between the input and 𝑁pos outputs of the plant in the fre-
quency domain.

4.4.2 Controller
A PID controller with additional low-pass filter is used for feedback control of the rigid
body mode, which is defined by the control law

𝐶(𝑠) = 𝑘
𝑠 + 1

5𝜔b

𝑠
3𝑠 + 𝜔b
𝑠 + 3𝜔b

5𝜔b
𝑠 + 5𝜔b

, (4.28)
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with tuning parameters gain 𝑘 and bandwidth 𝜔b. This is a PID controller based on indus-
try standard rules-of-thumb, with integral action until 𝜔b/5, phase lead between 𝜔b/3 and
3𝜔b, and first-order roll-off beyond 5𝜔b (Munnig Schmidt et al., 2011; Van der Veen et al.,
2015). The Bode plot of this controller can be seen in Fig. 4.7. In the optimization, only
bandwidth is a design variable, and the gain is calculated using

𝑘 = 𝑘0
|𝐻𝑚(𝑗𝜔b)|

= 𝑘0𝑚𝜔2
b , (4.29)

where𝑚 is the mass of the system, and the rigid body mode response of the plant is equal
to

𝐻𝑚(𝑠) =
1

𝑚𝑠2 . (4.30)

This ensures that the open-loop gain at the bandwidth |𝐿(𝑗𝜔b)| = 𝑘0. In current work, the
gain value is chosen as 𝑘0 = 1.1, which ensures correct interaction between the controller
and the rigid bodymode (Munnig Schmidt et al., 2011). Note that the method is not limited
to this specific control law and variations in control behavior and parametrization are
possible.

Figure 4.7: Bode plot of the controller 𝐶(𝑗𝜔), with
normalized axes. The dotted lines indicate frequen-
cies at 1/5, 1/3, 3, and 5 times the bandwidth 𝜔b.
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The control law can be rewritten into state-space form

ċ(𝑡) = Acc(𝑡) + Bce(𝑡)
u(𝑡) = Ccc(𝑡)

(4.31)

where Ac, Bc, Cc represent the controller structure in canonical form (Skogestad and
Postlethwaite, 2001). The vector c contains the internal state of the PID controller and
is of length 3.

The open-loop response is obtained by placing the controller (Eq. 4.31) and plant (Eq.
4.27) in series, connecting the output of the controller to the input of the plant. In the
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form of a state-space model in the time domain this becomes

ż(𝑡) = Alz(𝑡) + Bl𝑒(𝑡),
y(𝑡) = Clz(𝑡),

(4.32)

with system matrices and state vector

Al = [
Ac 0 0
0 0 I

ΦΦΦTfCc −ΩΩΩ2 −2𝜁ΩΩΩ
] ,

Bl = [Bc 0 0]T ,
Cl = [0 GTΦΦΦ 0] ,
z = [c q q̇]T .

(4.33)

The transfer function of the open-loop gain becomes

L(𝑠) = H(𝑠)𝐶(𝑠) = C (𝑠I − A)−1 B, (4.34)

which can be used to calculate the open-loop responses in the frequency domain.

4.4.3 Modal decomposition
Before circles can be mapped to the open-loop transfer-function 𝐿(𝑗𝜔), the transfer func-
tion needs to be decomposed into first-order terms. From the state-space model (Eq. 4.34),
the poles can directly be obtained by an eigen-decomposition of the system matrix A as

AQ = QΛΛΛ,
A = QΛΛΛQ−1,

(4.35)

where matrix Q contains all eigenmodes of the (right) eigenvalue problem and matrix ΛΛΛ
has all the complex-valued poles 𝜆𝑖 on its diagonal. Substitution into the transfer-function
of Eq. 4.34 yields

L(𝑠) = C (𝑠I − QΛΛΛQ−1)−1 B
= CQ (𝑠I −ΛΛΛ)−1Q−1B

=
𝑁s

∑
𝑖

P𝑖
𝑠 − 𝜆𝑖

.

(4.36)

Here, the matrix P𝑖 denotes the participation factors of all input and output combinations
for mode 𝑖. The participation factors can be calculated as

𝑝𝑖𝑗𝑘 = [CQ]𝑗𝑖[Q−1B]𝑖𝑘 (4.37)

for a general MIMO system, where the outputs are indexed with 𝑗 and the inputs with 𝑘.
The current application only considers one input, so the last index is omitted. The number
of first-order terms equals the number of state variables 𝑁s = 2𝑁 +5; two originating from
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each flexible eigenmode included in the reduced-order model, two from the rigid body
mode, and three from the controller. The negative frequencies are not of interest and the
five poles corresponding to controller and the rigid body mode cannot be approximated
by a circle. Therefore, only 𝑁 circles are fitted to the flexible modes and constrained in
the complex domain. With this decomposition, the radii and midpoints of the circles can
now be found using Eq. 4.5.

4.4.4 Efficient robust formulation
To apply the robust formulation in topology optimization, first perturbed designs need
to be generated by erosion and dilation. This is performed using the smooth Heaviside
operator defined as

𝑥p,𝑖(𝜂) =
tanh(𝛽𝜂) + tanh(𝛽(𝑥f,𝑖 − 𝜂))
tanh(𝛽𝜂) + tanh(𝛽(1 − 𝜂)) ∀ 𝑖 ∈ ℰ , (4.38)

using the filtered design field xf, resulting in a projected design xp (Wang et al., 2011). The
parameter 𝛽 determines the edge contrast of the projection and 𝜂 the amount of dilation or
erosion, where a value of 𝜂 = 0.5 corresponds to the nominal design. By choosing multiple
different values of 𝜂, multiple perturbed designs xp(𝜂𝑘) are generated.

However, straightforward analysis of each of these designs (as described to preceding
sections) results in an additional computational burden, as a model has to be created for
each design. This means that for each projected design the eigenvalue problem needs to
be solved (Eq. 4.25), which is a very computationally intensive step in the analysis.

As an alternative, we propose to approximate the eigenfrequencies and eigenmodes
of the perturbed designs, using the reduction basis ΦΦΦ with eigenmodes corresponding to
the nominal design. This means that only the eigenvalue problem of the nominal design
needs to be solved and it is assumed that the eigenmodes of the nominal model can be
used to describe the behaviour of the other perturbed designs.

The eigenvalue approximation proceeds as follows: using the different perturbed de-
signs xp(𝜂𝑘) instead of the filtered design xf, the corresponding massM𝑘 and stiffness K𝑘
matrices are assembled using Eqs. 4.22 and 4.23. Next, one eigenvalue problem is solved
(Eq. 4.25) using themass and stiffnessmatrices corresponding to the nominal design, yield-
ing the reduction basis ΦΦΦ. Instead of solving additional eigenvalue problems for the other
projected designs, their system matrices are projected using the reduction basis belonging
to the nominal design as

K̃𝑘 = ΦΦΦTK𝑘ΦΦΦ and M̃𝑘 = ΦΦΦTM𝑘ΦΦΦ. (4.39)

These projected matrices are then diagonalized by solving the small eigenvalue problem

K̃𝑘V𝑘 = M̃𝑘V𝑘ΥΥΥ2𝑘 , (4.40)

resulting in
VT
𝑘 K̃𝑘V𝑘 = ΥΥΥ2𝑘 and VT

𝑘 M̃𝑘V𝑘 = I. (4.41)

ThematrixΥΥΥ𝑘 is a diagonalmatrix containing the approximate eigenfrequencies of the per-
turbed design, which are in fact Ritz values. The corresponding approximate eigenmodes
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are linear combinations of the nominal eigenmodes, calculated as ΦΦΦV𝑘 . The system of
equations for the perturbed designs now be found as

ΥΥΥ2𝑘q(𝑡) + 2𝜁ΥΥΥ𝑘 q̇(𝑡) + q̈(𝑡) = VT
𝑘ΦΦΦTf𝑢(𝑡),

y(𝑡) = GTΦΦΦV𝑘q(𝑡).
(4.42)

The remainder of the analysis follows the same steps for each model, so first the con-
troller is added to form the open-loop state-space model (Section 4.4.2). This is again
decomposed into first-order systems by calculating the poles and participation factors
(Section 4.4.3), after which circle approximations are formed for each eigenmode (Sec-
tion 4.2.1). Finally, distances from the circles to the −1 point are calculated for each eigen-
mode to form constraints.

After the calculation, each perturbed model 𝑘 has different constraint values 𝑔𝑖𝑗,𝑘 for
each of its circles, corresponding to mode 𝑖 and sensor position 𝑗. To limit the number of
constraints from the different models, they are aggregated using an induced aggregation
function (Kennedy and Hicken, 2015)

𝑓 = ∑𝑘 𝑓𝑘 exp(𝑏𝑓𝑘)
∑𝑘 exp(𝑏𝑓𝑘)

, (4.43)

for any constraint 𝑓 = 𝑔𝑖𝑗 . This function approximates the worse-case constraint values
(i.e the maximum) between the perturbed projections, controlled by the parameter 𝑏. For a
large parameter 𝑏 this expression approaches the true maximum. This particular function
is chosen because 𝑓 = 𝑓𝑘 in case all values 𝑓𝑘 are equal. The robust parameter 𝛽 introduced
in Eq. 4.38 is increased during the optimization, meaning that for the initial iterations
all perturbed designs are similar, and so are their constraint values. With this choice of
aggregation function, the constraint values are not under- or over-estimated during the
early phase of the optimization. The aggregation ensures the number of constraints does
not increase when using the robust formulation, and thus no extra computational effort is
required to calculate eigenmode design sensitivities (Lee, 1999).

4.5 Results
4.5.1 Case and settings
The numerical case that is used to demonstrate the method is shown in Fig. 4.8. To ensure
a position-independent system, 𝑁pos different sensor positions are defined at the mea-
surement surface. Measuring at any of these locations and using that signal for feedback
control should result in a closed-loop stable system with required disturbance rejection.

In Table 4.1, the settings are listed as used in the optimization, where thematerial prop-
erties correspond to those of aluminium. Furthermore, the maximum number of design
iterations is limited to 200 to prevent excessive calculation times. For the optimization,
MMA is used with default settings. A move limit of 0.05 is used on the design variables to
prevent large steps and oscillations.

4.5.2 Sequential optimization
To be able to compare performance, a reference case is presented based on a sequential op-
timization. The structure is found by maximization of eigenfrequencies, and subsequently
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1𝑁pos

Design domain ℰ
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tu
at
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Figure 4.8: The case used for the optimizations, which has one rigid body mode in vertical direction. The actuator
forces (green arrows) act uniformly on the non-design domain (black) to the left. The top-right non-design
domain represents the surface where accuracy is required. Here, vertical displacements are measured at 𝑁pos
different sensor locations (blue arrows). The domain of dimensions 300 × 100mm, with an in-plane thickness of
300mm, and is discretized into 210 × 70 elements.

Table 4.1: Settings as used for the optimization.

Symbol Value Description

𝜔min 0.1 rad/ms Minimum bandwidth
𝜔max 10.0 rad/ms Maximum bandwidth
𝜇 0.5 Modulus margin
𝐸0 65GPa Young’s modulus
𝜌0 2.6 × 10−6 kg/mm3 Material density
𝑥min 10−7 Min. design density
𝜁 0.01 Damping factor
𝑁 10 Number of eigenmodes
𝑣f 0.3 Volume fraction

2 elements Density filter radius
𝛽 1.0 - 20.0 Robust edge contrast
𝜂 0.5 ± 0.05 Robust cutoff
𝑏 1.0 Aggregation constant

the PID controller is optimized using the proposed method (Eq. 4.21). The optimization
formulation used for the eigenfrequency maximization is given as

min
x

100𝑔Ω(x)
𝑔(0)Ω

,

s.t. 10 ( 𝑉 (x)
𝑣f𝑉max

− 1.0) ≤ 0,
0 ≤ x ≤ 1,

(4.44)

in which 𝑔Ω is the objective function, defined as

𝑔Ω(x) =
3
∑
𝑖=0

1
Ω𝑖(x)

. (4.45)

The superscripted variable 𝑔(0)Ω denotes the value at the initial design iteration. This formu-
lation maximizes the harmonic mean of the first three eigenfrequencies (Ma et al., 1995).



4.5 Results

4

81

-2.0 -1.0 0.0 1.0
Real

-1.0

-0.5

0.0

0.5

1.0

Im
ag
in
ar
y

𝐿(𝑗𝜔)
Pos. 1
Pos. 2
Pos. 3

3 2 1

Figure 4.9: Design and Nyquist plot after max-
imization of eigenfrequencies and sequential
maximization of bandwidth. The sensor loca-
tions are indicated with colors corresponding to
the different Nyquist curves.

The resulting structure after optimization of the eigenfrequencies is shown in Fig. 4.9
and the subsequent controller optimization is able to achieve a bandwidth of 1.11 rad/ms.
From the Nyquist plot in Fig. 4.9 can be seen that the controller satisfies closed-loop sta-
bility and disturbance rejection requirements. It can also be seen that only the sensor
position at the tip (position 1) is limiting the bandwidth, of which the second eigenmode
is touching the margin. Therefore, optimizing for different number of sensor positions
will result in an equal bandwidth, provided the sensor location at the tip is included.

4.5.3 Integrated optimization
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Figure 4.10: Resulting designs and Nyquist plots of integrated optimizations using the proposed method, for
different numbers of sensor positions 𝑁pos. For the first two Nyquist plots, the local circle approximations are
also shown.

Using the proposed procedure, integrated optimizations are successfully performed
for different numbers of sensor positions 𝑁pos = 1, 3, 6. The designs and corresponding
Nyquist plots are shown in Fig. 4.10. Mechanism-like structures can clearly be identified in
the designs. The Nyquist plots show that all the designs meet the requirements on closed-
loop stability and modulus margin. However, not all designs contain binary zero-and-one
densities that can directly be interpreted. Especially the design for one sensor position
(𝑁pos = 1) contains large areas with intermediate densities. The design with six sensor
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positions also contains some areas with intermediate densities. This might be functionally
interpreted as a ‘rubber band’ with a specific stiffness to tune the system dynamics.

Table 4.2: Performance overview of the sequential and multiple integrated optimizations.

Bandwidth Eigenfrequency

Units: rad/ms 𝑁pos 𝜔b Ω1 Ω2 Ω3
Sequential 1, 3, 6 1.11 11.5 22.0 26.4
Integrated 1 3.94 5.66 8.08 11.4
Integrated 3 3.86 5.23 8.60 16.4
Integrated 6 3.52 5.70 10.3 14.6

An overview of the achieved performance, as compared to the sequentially optimized
design, is shown in Table 4.2. All the designs optimized with the integrated approach
have a bandwidth about a factor 3.5 higher than the design optimized for eigenfrequen-
cies. Moreover, the eigenfrequencies are significantly lower for the integrated optimiza-
tions, which clearly demonstrates that the system with the highest bandwidth does not
necessarily need maximized eigenfrequencies.
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Figure 4.11: Bode plots for the plant 𝐻(𝑗𝜔) and loop gain 𝐿(𝑗𝜔), comparing the sequentially optimized design
with the integrated optimized design for 𝑁pos = 3. Only the response of sensor position 1 is shown.

The integrated approach is able to achieve a high bandwidth, relatively close to the
eigenfrequencies. This can be explained using the Bode diagrams in Fig. 4.11, in which the
the dynamic response of the design optimized for integrated performance with 𝑁pos = 3 is
shown. The first eigenmode creates a resonance peak with a very small amplitude, around
5.2 rad/ms. This small amplitude means that the actuator is unable to ‘affect’ this mode
and/or it cannot be ‘seen’ by the sensor (i.e. uncontrollable and/or unobservable). For the
controller it seems as if this mode does not exist, therefore it is not limiting bandwidth.
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Figure 4.12: Comparison of the first three mode shapes for several designs. The outline of the domain in the
undeformed situation is indicated.

Inspecting the mode shapes of the integrated designs in Fig. 4.12, this effect can clearly be
seen. For some modes, the actuator is virtually at a standstill, meaning that the mode is
not excited by the actuator. For other modes, the location corresponding to the sensor is
at a standstill, which means the sensor does not measure the mode.
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Figure 4.13: Convergence history of the bandwidth for the three integrated optimizations.

The convergence history of the three designs is shown in Fig. 4.13. Especially the
design for 𝑁pos = 1 shows significant oscillations. In the Nyquist curves of subsequent
design iterations shown in Fig. 4.14, the circle corresponding to the first eigenfrequency
flips its direction. This flipping is caused by the actuator or sensor displacement crossing
zero and changing sign. Since the modes have a very small excitation amplitude (Fig. 4.12),
the controller is able to attain a very high gain. A small variation in the design then causes
a small change in themode shape, which eventually has a large effect on the system, due to
the high control gain. The designs for 3 and 6 sensor positions exhibit less oscillations and
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Figure 4.14: Nyquist plots showing the oscillatory behavior of integrated optimization for 𝑁pos = 1.

a smoother convergence. Due to the addition of multiple sensor locations, the complexity
of the optimization problem is increased and involves more trade-offs, leading to designs
which are less sensitive to small variations.

4.5.4 Comparison with explicit peak constraint
To demonstrate the added value of proposed method, also an optimization based on the
method of Van der Veen et al. (2015, 2017) is implemented. First, the frequencies corre-
sponding to peaks in the sensitivity function are numerically located in each design itera-
tion, after which they are used as constraints. Additionally, an explicit constraint ensuring
closed-loop stability must be added, to prevent the Nyquist curve from encircling the −1
point. This is done by limiting the (smooth) maximum of all real parts of the closed loop
poles below zero, thus ensuring all poles are in the left half plane. We refer to the original
publications for the full description, as our interest here is primarily in the comparison
with the proposed approach.
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Figure 4.15: Resulting designs and Nyquist plots of integrated optimizations explicitly constraining the peaks of
the sensitivity function |𝑆(𝑗𝜔)| (Van der Veen et al., 2015, 2017), for different numbers of sensor positions.

The results of the optimization based on the method by Van der Veen et al. (2017) are
shown in Fig. 4.15. Although a structure may be recognized in the designs, the structural
features look rather irregular and contain substantial amounts of intermediate densities.
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The design considering one actuator position faces similar convergence issues as the pro-
posed integrated optimization (Fig. 4.10a), where small changes in design and mode shape
cause oscillations. Also for multiple sensor positions, the optimization results in infeasi-
ble designs. During the design iterations, one of the Nyquist curves loops around the −1
point, indicating closed-loop instability (Figs. 4.15b and 4.15c). In this situation, two con-
straints are conflicting: the stability constraint requires the Nyquist curve to pass on the
right side of the −1 point, but the peak constraint prevents this by requiring the curve to
stay outside the circular margin. A change of design or bandwidth will thus violate at least
one of the constraints, making it difficult to escape this situation. The proposed method
does not face these issues, as stability is ensured implicitly by the geometric nature of the
constraints on the Nyquist curve in combination with local circle approximations.

4.5.5 Robust formulation
For the application of the robust formulation to the proposed integrated optimization, the
effect of the robust parameter 𝜂 is studied first. This parameter controls the amount of
dilation or erosion of the design. Both the eigenfrequencies and the distances from the
circle approximations to the −1 point change as a function of 𝜂, as is shown in Fig. 4.16.
Here, a distinction is made between the responses when approximated using the nominal
eigenmodes, as explained in Section 4.4.4, and evaluated exactly using eigenmodes corre-
sponding to the perturbed designs. As can be expected, the error between the exact and
approximated responses deviates more as the design is perturbed further away from the
nominal design at 𝜂 = 0.5.

Another observation that can be made in Fig. 4.16, is the fact that the distances to the
−1 point are not monotonically increasing or decreasing, as is the case for compliance
problems (Sigmund, 2009). The lack of a monotonic behavior means that the worst-case
design is not necessarily coinciding with extreme values of 𝜂. In this work, a value of
𝜂 = 0.5 ± 0.05 is used, for which it can be assumed that the worst-case performance is
likely to be included by evaluating three designs, at 𝜂 = 0.45, 0.5, and 0.55. However, for
larger perturbations and given the non-monotonic behavior, evaluation of the worst-case
performance might require more than three designs to be analyzed.

For the robust optimization procedure, the edge contrast parameter 𝛽 is gradually in-
creased from 1.0 to 20.0 during design iterations 50-180. Also, a filter radius of 8 elements
is used to ensure a large minimum feature size.

The resulting designs of the robust integrated optimizations, using the proposedmethod,
are shown in Fig. 4.17. All designs have clear boundaries between void andmaterial, which
is a characteristic property of the robust formulation. At some locations, hinges appear
with intermediate densities to provide a low-stiffness connection. As for their perfor-
mance, the design with one sensor position achieves a bandwidth of 𝜔b = 3.5 rad/ms,
and the two other designs a bandwidth of 1.9 rad/ms. A design robustly optimized for
maximum eigenfrequencies, with similar settings, is found to achieve a bandwidth of
1.1 rad/ms. This means the performance increase of robust integrated optimization is still
significant.

Although the bandwidth of the design with one sensor position is very high, its dis-
turbance rejection requirement is not met, as can be seen in Fig. 4.19a. This can again be
explained by the dynamic response being very sensitive to (small) design variations. For
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Figure 4.16: Comparison of the effect of
robust parameter 𝜂 on the eigenfrequen-
cies (top) and distances from selected cir-
cles to the −1 point (bottom), for a robust
eigenfrequency optimized design. The
approximated response (Eq. 4.42) is com-
pared with the exact solution (dashed
lines). A value of 𝛽 = 20 is used and a
filter radius of 5 elements.
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Figure 4.17: Resulting designs resulting from robust in-
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the designs optimized with 3 (Fig. 4.19b) and 6 sensor locations, the disturbance rejection
requirements are satisfied for all three design perturbations and at all sensor locations.

The convergence properties are also improved using the robust formulation, as is seen
in Fig. 4.20. Small oscillations are still present, but significantly less than without the ro-
bust formulation (Fig. 4.13). A lower final bandwidth is attained for all designs, compared
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Figure 4.19: Nyquist plots corresponding to different robustly optimized designs.

to the results from optimizations without the robust formulation. However, this is coun-
terbalanced with an increased robustness against geometric perturbations and the added
control on minimum feature size.
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Figure 4.20: Convergence history of the bandwidth for the three robustly integrated optimizations.

The time required for this optimization using the approximated robust formulation is
55 minutes. The same optimization without robust formulation requires 49 minutes in
total. This is for a total of 200 design iterations and 3 sensor positions, on a standard cor-
porate laptop with an Intel Core i7-6600 processor. The difference of 6 minutes (12% extra
calculation time) is required for the Heaviside projections, approximation of perturbed
eigenmodes, and analysis of the reduced-order model for the local approximations. This
is significantly less than the factor 3 that would be required without the proposed method
approximating the eigenmodes for the perturbed designs.
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4.6 Discussion
In the numerical examples, no issues with severe mode interaction and ill-fitting local ap-
proximations are encountered during the optimizations, which were initially identified as
potentially harmful for the optimization (Fig. 4.5). The current work is focused on mono-
lithic structures made out of metal, with a low damping coefficient 𝜁 . Mode interaction
might increase for applications with higher damping, which might lead to issues in con-
vergence. More research is required into the effect of damping and mode interaction on
the optimization.

In the examples, a discrete number of sensor positions is used to account for position-
dependent dynamics. However, position dependency occurs over a continuous line or
even a surface in reality. The current implementation ensures accuracy at several loca-
tions, but it does not account for any other locations also requiring accurate positioning.
Even when locations may not be sensed, their accuracy may still be important to consider
in the design of a motion system.

Moreover, the inclusion of an increasing number of sensor positions leads to a growth
in the number of constraints for the optimization. As eigenmode design sensitivities are
required for each constraint, this directly increases computational cost. Therefore, future
research should focus on methods to include many sensor locations without excessive
computational cost.

The presented framework potentially allows for frequency-dependent constraints. This
could be used, for instance, to incorporate more stringent limitations on high-frequency
eigenmodes. Another possibility is to include the influence of time delay in the control
loop, which has a frequency-dependent effect on the phase. Following the same approach
based on the Nyquist curve could allow for consideration of this effect.

In reality, many systems are MIMO, for which the methods presented in the current
work may also be used (e.g. sequential loop closing (Skogestad and Postlethwaite, 2001)).
However, for a coupled MIMO system multiple loops interact with each other, which re-
quires further analysis of closed-loop behavior. This is done in the method of Van der
Veen et al. (2017), but it requires additional constraints and thus significantly more com-
putational time. Efficient extension to MIMO systems therefore remains an open issue for
future research.

4.7 Conclusion
A novel approach to integrated controller-structure topology optimization is proposed. It
builds on a flexible framework enabling local approximation of the Nyquist curve using
circular shapes. These circles allow analytical formulation of constraints in the complex
domain, making them suitable for gradient-based optimization. In this manuscript, the
approximating circles are used to constrain the Nyquist curve in an integrated controller-
structure optimization, thus enforcing closed-loop stability and disturbance rejection prop-
erties. The approach is general and can be extended to other control objectives that can
be expressed by the Nyquist curve.

From the numerical examples, it can be seen that the proposedmethod is able to greatly
improve system performance. For the studied problem, the state-of-the-art method in
literature (Van der Veen et al., 2015) is not able to converge to feasible designs due to
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conflicting stability and disturbance rejection constraints. In the proposed method, this
problem does not occur as stability and disturbance rejection are ensured simultaneously
by geometrical restriction of the Nyquist curve. Using numerical examples, the integrated
optimization achieves improvements up to 350% in terms of bandwidth compared to se-
quential optimization, while ensuring a sufficient modulus margin.

Also position-dependent dynamics is considered, by the addition of constraints on the
SISO Nyquist curves for multiple sensor positions. Not only does this lead to a structure
and controller that can be used at each of the sensor locations, it also improves conver-
gence properties of the optimization. Optimizing for only one sensor position results in
designs that are very sensitive to small variations in mode shape around the actuator and
sensor positions, leading to severe oscillations. By optimizing for multiple sensor loca-
tions, this detrimental effect is noticeably reduced.

Furthermore, a computationally efficient robust formulation is introduced, approxi-
mating the dynamics of the eroded and dilated designs. It allows for analysis and opti-
mization of perturbed designs without significant additional computational cost, instead
of a threefold increase using the conventional approach. The validity of the approximation
is demonstrated for small design perturbations. For larger design perturbations extra care
is required, because non-monotonic behavior is observed for the modulus margins, poten-
tially resulting in interior worst cases for robust optimization. Using the proposed formu-
lation, the obtained designs are more robust against geometric deviations, a length scale
is imposed, and a positive effect on optimization convergence is observed. Furthermore,
the approximation-based robust formulation is not limited to the current application, but
may also be used for other types of topology optimization involving dynamics.

There are several gaps to bridge in order to arrive at real-world systems with ulti-
mate performance, such as incorporation of time delay, MIMO control, ensuring accuracy
over large surfaces, and further reduction of computational effort. Despite the remaining
challenges, this work provides a step forward in computational design methods for next
generation high-precision motion systems.





5

91

5
Large-scale integrated optimization

for MIMO
The design of high-precision motion systems is challenging, because it involves the interaction
between system dynamics andMIMO closed-loop control. This makes topology optimization a
promising design method in this field. In this work, focus is on the simultaneous optimization
of controller and topology for large-scale 3D problems and MIMO control, where the aim is to
increase bandwidth while ensuring a robustness margin on disturbance rejection properties.
Based on local approximations of theℋ∞ norm, constraints can be formed that ensure rejec-
tion of combined disturbances in MIMO systems. Furthermore, to reduce computation time
spent on design sensitivities, the eigenmode adjoint systems of equations are solved approxi-
mately using a reduced-order model. Using 3D examples with control in 6 degrees of freedom,
designs are generated with bandwidths over 150% higher compared to designs optimized for
maximum eigenfrequencies, while satisfying requirements on theℋ∞ norm. Next to this, the
local approximations provide a natural way to aggregate the MIMO behavior, thus reducing
the number of constraints by a factor 6. Finally, the approximation of eigenmode design sen-
sitivities significantly reduces the computation time by more than two orders of magnitude,
while keeping sufficient accuracy for an effective optimization. The methods presented enable
the 3D integrated controller-structure topology optimization for MIMO in an efficient and ef-
fective manner, providing new possibilities for the design of motion systems with superior
performance.
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5.1 Introduction

T opology optimization is a promising tool for the design of high-precision motion sys-
tems (Van der Veen et al., 2017; Delissen et al., 2022), such as those found in semi-

conductor equipment, microscopy, robotics, and medical devices. The design of such sys-
tems is challenging as it involves both dynamics and control (Munnig Schmidt et al., 2011;
Oomen, 2018). Performance of a motion system is typically characterized by the band-
width, which is the frequency up to which a reference signal can be tracked. A higher
bandwidth thus means the ability to operate at higher speeds. However, an increase of
bandwidth comes at the cost of increased sensitivity to disturbances. These disturbances
may be due to vibrations from the environment, measurement noise, or imperfections
of the system, and can cause stability issues or reduce accuracy. Achieving a high band-
widthwith sufficient disturbance rejection requires careful design of the integrated system
(Munnig Schmidt et al., 2011). Moreover, many positioning systems operate inmultiple de-
grees of freedom, requiring MIMO control. This makes the design even more challenging,
as the performance and disturbance rejection requirements must be satisfied simultane-
ously in multiple directions (Skogestad and Postlethwaite, 2001).

To enable the automatic generation of motion system designs, while satisfying inte-
grated system requirements, topology optimization is a prime candidate due to its large
design freedom. Performance of motion systems is typically specified in the frequency do-
main, as it allows for straightforward quantification of system accuracy (Munnig Schmidt
et al., 2011). Relatively few studies into integrated controller-structure topology optimiza-
tion in the frequency domain are found in literature. Albers and Ottnad (2010) consider
both a topology optimization and a PID controller for a SISO system, but not in an in-
tegrated way, as the objective for the structure (stiffness) does not directly relate to the
controlled system performance. Providing a framework for truly integrated controller and
large scale topology optimization for MIMO systems is the aim of this work. Before dis-
cussing our approach and contributions, we review the relevant state of the art on this
topic.

5.1.1 State of the art
Van der Veen et al. provide a truly integrated topology optimization formulation, first
for SISO systems 2015, and later also for MIMO 2017. In their MIMO approach, all peak
amplitudes of the diagonal entries of the sensitivity function are constrained, thus ensur-
ing robustness for disturbance rejection of the individual input and output pairs. The
sensitivity function for MIMO systems S(𝑗𝜔) transfer function between disturbances d
to outputs y, dependent on complex frequency 𝑗𝜔 (Fig. 5.1). It characterizes the sensi-
tivity of a closed-loop system to disturbances and also robustness against relative plant
model errors (Skogestad and Postlethwaite, 2001). The amplitudes of the entries ||𝑆𝑖𝑗(𝑗𝜔)||
quantify the disturbance rejection properties, which must be limited below a threshold
to ensure robustness against disturbances. As the sensitivity function is multi-modal and
may have peaks at multiple frequencies, separate constraints are imposed on individual
peaks. Only limiting the diagonal entries |𝑆𝑖𝑖 |, as is done by Van der Veen et al. (2017), does
not consider the combined disturbances and interactions between the different controlled
degrees of freedom. When a disturbance enters one loop, it may have detrimental effects
on another loop through the interactions of 𝑆𝑖𝑗(𝑗𝜔) (Skogestad and Postlethwaite, 2001).
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To enable large-scale topology optimization, it is important to consider computational
effort. The system dynamics are commonly captured using a reducedmodel in motion sys-
tem design, usually by including a truncated series of eigenmodes (Munnig Schmidt et al.,
2011; Besselink et al., 2013; Van der Veen et al., 2017). After constructing the reduced-order
model, it reduces the computational effort required for evaluation of the sensitivity func-
tion S(𝑗𝜔). However, it requires additional effort to calculate the design sensitivities of the
associated constraints. These are needed for the gradient-based optimization methods on
which topology optimization relies (Svanberg, 1987). Each constraint involving the sen-
sitivity function requires evaluation of (adjoint) design sensitivities for each eigenmode
included in the reduced system (Lee, 1999; Van der Veen et al., 2017). This results in exten-
sive computation time as each adjoint design sensitivity requires the solution of a large
linear system of equations. The total computation time thus rapidly grows when includ-
ing many constraints and/or many eigenmodes, hampering the application to topology
optimization in 3D.

Straightforward limitation of all entries of the sensitivity function with the method
of Van der Veen et al. (2017) leads to a quadratic growth of the number of constraints,
as a function of the number of inputs and outputs of the system. This growth is even
larger in case multiple sensor positions are included to account for position-dependent
dynamics, which is a common requirement in motion systems. Due to the computational
effort required for these constraints, this is deemed an infeasible approach.

Alternatively, the disturbance rejection properties forMIMO systems can be quantified
using the maximum singular value of the sensitivity function 𝜎(𝜔) = 𝜎(S(𝑗𝜔)) (provided
the closed-loop system is stable). This provides an upper bound to the combined output
y due to combined disturbances d (Figs. 5.1 and 5.2). Instead of having to constrain all
separate entries of ||𝑆𝑖𝑗(𝑗𝜔)|| as in the aforementioned approach, only one scalar value needs
to be limited. Considering all frequencies, the worst-case maximum singular value 𝜎(𝜔)
is captured by the ℋ∞ norm. This quantity is often used to determine the robustness
properties of a MIMO system (Skogestad and Postlethwaite, 2001).

C(𝑗𝜔) H(𝑗𝜔)
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Figure 5.1: A MIMO system, where controller and structure are placed in feedback loops. The system is designed
for the outputs y to track the reference signals r and to reject disturbances d. Based on the measured error e, the
controller C(𝑗𝜔) determines the correction signal u. The plant H(𝑗𝜔) contains couplings between the different
degrees of freedom.

In literature, theℋ∞ norm is also used as an objective for topology optimization con-
sidering uncertain loads for a MIMO dynamic compliance problem (Venini, 2019). How-
ever, this approach has two severe drawbacks. First, it requires significant computation
power to numerically find the ℋ∞ norm, as the transfer function (i.e. S(𝑗𝜔)) needs to
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be sampled many times and no reduced-order model or modal truncation is used. Sec-
ond, the max-max nature of the ℋ∞ norm may cause issues with non-differentiability.
As the maximum singular value 𝜎(𝜔) may reach extreme values at multiple frequencies,
each candidates for the ℋ∞ norm, multi-modal behavior is observed (Fig. 5.2). However,
only the largest peak is marked as the ℋ∞ norm and minimized. In case multiple peaks
of 𝜎(𝜔) reach equal maximum values at different frequencies, as can expected when an
upper limit is imposed, the ℋ∞ norm becomes non-differentiable. Additionally, the max-
imum singular value of a single peak may present a second source of non-differentiability
when two (or more) singular values coincide as the maximum. The numerical calculation
of gradient information might not be the direct issue, but the discontinuities in gradient
information can potentially lead to significant oscillations in the gradient-based optimiza-
tion process, thus hampering convergence (e.g., as seen in Zhu et al., 2003). As will be
discussed below, in this paper we propose an approach to overcome these difficulties, and
enable constraints on the ℋ∞ norm suitable for gradient-based optimization.

Figure 5.2: Figure showing the smallest
(𝜎(𝜔)) and largest (𝜎(𝜔)) singular values
of the sensitivity function S(𝑗𝜔). Also the
the Frobenius norm 𝜎F(𝜔) and local ap-
proximations are illustrated.
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Other literature focused on the tuning of controllers only, where theℋ∞ norm is con-
strained in gradient-based optimization, e.g., Karimi and Galdos (2010); Van Solingen et al.
(2018), impose constraints on a discrete grid of sampling points. This avoids the multi-
modality over the frequency range. However, many constraints in a fixed frequency grid
are required to capture the extreme values, which is infeasible for topology optimization
due to the computational effort required for the adjoint design sensitivities of each con-
straint.

5.1.2 Contributions
In this work, a framework is presented that enables large-scale 3D topology optimization
ofMIMO systems. This is achieved by both limiting the number of constraints required and
reducing the computational effort needed for each constraint. Furthermore, the proposed
approach aims to reduce the impact of multi-modality on optimization convergence. Three
main contributions can be distinguished:

1. A MIMO constraint formulation based on local approximations of the ℋ∞ norm,
suitable for gradient-based optimization.
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2. Approximation of eigenmode design sensitivities using an augmented reducedmodel.

3. Application to integrated 3D controller and topology optimization.

Without going into full detail, we here outline the followed approaches.
Approximation of the H∞ norm Using a double approximation of the ℋ∞ norm with an
adaptive correction scheme avoids non-differentiability and multi-modality. First, the
maximum singular value is approximated over all frequencies using the Frobenius norm.
This provides an analytical and differentiable upper bound of the maximum singular value
𝜎(𝜔) using all entries of the sensitivity function S(𝑗𝜔). Next, local approximations are con-
structed for S(𝑗𝜔) around each closed-loop pole frequency of the system. This provides
an upper bound of the local ℒ∞ norm to the Frobenius norm, for a frequency interval
close to each closed-loop pole frequency. Finally, the approximation is corrected to en-
able exact limitation of the local ℒ∞ norms. This is done based on the exactly calculated
(non-differentiable)ℒ∞ norm of the maximum singular value 𝜎(𝜔) in a frequency interval
close to the characteristic frequency. This both makes the number of constraints indepen-
dent on the number of in- and outputs, and prevents issues with non-differentiability.

In Chapter 4, local approximations were used to account for multi-modality of the
sensitivity function (in the form of the Nyquist curve and the modulus margin). This idea
is inspired by the work of Tacx and Oomen (2021), who use local models based on ratio-
nal functions to locally approximate the ℋ∞ norm in multiple finite-frequency intervals
when limited data is available. Here, we propose to extend the local circle approximations
introduced in Chapter 4 towards MIMO systems and the ℋ∞ norm.
Approximation of eigenmode design sensitivities Thecalculation time required for the eigen-
mode design sensitivities is mainly determined by the solution of an adjoint system of
equations. To reduce the calculation time, the solution is approximated using a reduced-
order basis. We demonstrate that a modal truncated basis, as is used for the analysis of the
system dynamics, does not provide sufficient accuracy. Therefore, the basis is augmented
with a new set of Krylov vectors in each design iteration, enhancing the accuracy of the
approximate solution. Calculation of the augmented Krylov vectors is significantly less
time-consuming as compared to explicitly solving the adjoint systems.

Reduced-order models based on Krylov vectors are commonly used to interpolate
transfer functions, with accurate input-output behavior (Besselink et al., 2013). In Chap-
ter 3, it has been shown that augmentation with a quasi-static correction vector signifi-
cantly improves the quality of the design sensitivities. Here, that idea is extended toMIMO
and further generalized to enhance accuracy at low computational cost.
Integrated 3D motion system optimization The proposed contributions are applied to inte-
grated controller and topology optimization for a motion system in the frequency domain.
The case of a magnetically levitating motion stage is used to demonstrate the method,
which is able to move in 6 degrees of freedom. For the control of the LTI MIMO system,
a fixed structure diagonal PID controller is used. Next to a constraint on the disturbance
rejection properties (using the approximate ℋ∞ norm), an additional constraint is used
to enforce closed-loop stability. Especially the 3D application is challenging, not only be-
cause control is required in 6 degrees of freedom, but also because both the number and
calculation time of relevant eigenmodes increases. With this demonstration of the pro-
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posed methods, we show that the computational effort lowered such that optimization of
industry-relevant motion stages is within reach.

This chapter is structured as follows. First, in Section 5.2, all steps towards the approx-
imation of the ℋ∞ norm for a MIMO system are presented. In Section 5.3, the modeling
aspects on both the mechanical and control side are explained in detail, specifically for
the intended application of a motion stage with multiple rigid body modes. Next, Sec-
tion 5.4 presents a method to efficiently calculate adjoint eigenvector design sensitivities,
enabling optimization with large scale finite-element models. The effectiveness of the pro-
posed methods is demonstrated in Section 5.5, where results for both 2D and 3D topology
optimization cases are presented. Finally, discussion and conclusions are given in Sec-
tions 5.6 and 5.7, respectively.

5.2 Approximation of the H∞-norm
5.2.1 H∞ norm
The disturbance rejection properties for a MIMO system are characterized by the (output)
sensitivity function

S(𝑗𝜔) = (I + L(𝑗𝜔))−1, (5.1)

where L(𝑗𝜔) = H(𝑗𝜔)C(𝑗𝜔) is the open loop gain with 𝑛 inputs and outputs, and S ∈ ℂ𝑛×𝑛 .
This is the transfer function between the disturbances d and the system output y (Fig. 5.1).

The ability to reject disturbances (in case of a stable closed-loop system) for MIMO
is related to the singular values of S(𝑗𝜔). These provide bounds on the amplification of
combined disturbances d on the system output y = S(𝑗𝜔)d as

𝜎(𝜔) ≤
‖S(𝑗𝜔)d‖2

‖d‖2
≤ 𝜎(𝜔) ∀ ‖d‖2 ≠ 0, (5.2)

where 𝜎(𝜔) and 𝜎(𝜔), respectively, are the lowest and highest singular values of S(𝑗𝜔)
(Skogestad and Postlethwaite, 2001). These bounds are shown in Fig. 5.2. Note that for
SISO systems, the maximum andminimum singular values simply reduce to the amplitude
of the transfer function 𝜎(𝜔) = 𝜎(𝜔) = |𝑆(𝑗𝜔)|.

The worst case value for disturbance rejection corresponds to the maximum 𝜎 over all
frequencies. This is defined as the ℋ∞ norm (Skogestad and Postlethwaite, 2001)

‖S‖∞ = max𝜔 𝜎(𝜔). (5.3)

It is the aim to limit this value below a given threshold

‖S‖∞ ≤ 1
𝜇 , (5.4)

which for a SISO system is identical to ensuring a modulus margin 𝜇. Note that this mea-
sure does not provide information on closed-loop stability, for which the closed-loop poles
are used (Van der Veen et al., 2017).
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The ℋ∞ norm thus signifies the largest maximum singular value over all frequencies
in the form

‖S‖∞ = max𝜔 {max {𝜎1(𝜔), … 𝜎𝑛(𝜔)}} , (5.5)

where 𝜎𝑖(𝜔) represent all the singular values of S(𝑗𝜔). For gradient-based optimization,
this max-max operation is troublesome to incorporate, since the maximum operator is
non-differentiable when multiple of its arguments are equal.

5.2.2 Frobenius norm
To avoid the inner maximum operator, the maximum singular value 𝜎(𝜔) can be approx-
imated using a differentiable operation. This is done using the Frobenius matrix norm
(Golub and van Loan, 1996), defined as

𝜎F(𝜔) = ‖S(𝑗𝜔)‖F =
√

𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

||𝑆𝑖𝑗(𝑗𝜔)||
2
. (5.6)

The Frobenius norm aggregates all the entries of the sensitivity matrix S(𝑗𝜔) into one
single value, independent on the number of inputs and outputs. An alternative equivalent
definition of the Frobenius norm is given as (Golub and van Loan, 1996)

𝜎F(𝜔) =
√

𝑛
∑
𝑖=1

𝜎𝑖(𝜔)2, (5.7)

using the individual singular values 𝜎𝑖(𝜔) of the matrix S(𝑗𝜔). From an optimization
perspective, this can be recognized as the widely used p-norm of the singular values (with
𝑝 = 2), thus approximating the maximum singular value.

The Frobenius norm provides analytical bounds to the maximum singular value of
matrix as (Golub and van Loan, 1996)

1
√𝑛𝜎F(𝜔) ≤ 𝜎(𝜔) ≤ 𝜎F(𝜔), (5.8)

which are indicated in Fig. 5.2. In contrast to the maximum singular value, the Frobenius
norm (Eq. 5.6) is differentiable, making it suitable for use in gradient-based optimization.

Combining Eqs. 5.3 and 5.8, using the Frobenius norm to bound theℋ∞ norm over all
frequencies 𝜔 as

1
√𝑛 max𝜔 𝜎F(𝜔) ≤ ‖S‖∞ ≤ max𝜔 𝜎F(𝜔). (5.9)

However, the maximum operation over all frequencies is still present, and is non-differen-
tiable when multiple equal maximum peaks occur. For this, we propose a divide-and-
conquer strategy.

5.2.3 Local circle approximation
To avoid non-differentiability and multi-modality over the entire frequency range 𝜔, the
maximum Frobenius norm is approximated over smaller frequency ranges using local cir-
cle approximations. In the previous Chapter 4, local circle approximations were intro-
duced to approximate the Nyquist curve of the open-loop response 𝐿(𝑗𝜔). By analytical
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fitting characteristic circular features to the Nyquist curve, the use of efficient geometric
constraints is enabled in the complex plane.

Figure 5.3: Nyquist plot of an arbitrary sensitivity
function S(𝑗𝜔) ∈ ℂ3×3, with several fitted circles in-
dicated. Also the limit of 1/𝜇 is indicated.
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Like the Nyquist curve, the closed-loop sensitivity function S(𝑗𝜔) also contains char-
acteristic circles, which can be seen in the Nyquist diagram in Fig 5.3. These circles are
caused by the mechanical eigenmodes, which are still present in the closed-loop system,
even though their poles are shifted due to the loop closing. Using the same procedure as
presented in Chapter 4, local approximations are made for each flexible eigenmode 𝑘 in
the system as

S(𝑗𝜔) ≈ S̆𝑘 +
P𝑘

𝑗𝜔 − 𝜉𝑘
for 𝜔 ≈ Im (𝜉𝑘) , (5.10)

where 𝜉𝑘 are the closed-loop system poles andP𝑘 matrices of participation factors. Further
details on how to calculate these can be found in Chapter 4. The constant offset matrices
S̆𝑘 are calculated as

S̆𝑘 = S(𝑗Im (𝜉𝑘)) +
P𝑘

Re (𝜉𝑘)
. (5.11)

As seen in Chapter 4, this corresponds exactly to circles with midpoints and radii, respec-
tively, being

𝑋𝑖𝑗𝑘 = ̆𝑆𝑖𝑗𝑘 −
𝑃𝑖𝑗𝑘

2Re (𝜉𝑘)
and 𝑅𝑖𝑗𝑘 =

||𝑃𝑖𝑗𝑘 ||
2Re (𝜉𝑘)

, (5.12)

where the indices denote output 𝑖, disturbance input 𝑗, and mode 𝑘. Note that Re (𝜉𝑘) < 0
is required for closed-loop stability, which means the radii and midpoints are finite values.

From Eq. 5.6, it can be deduced that the local maximum Frobenius norm occurs at a
frequency where the individual amplitudes of the sensitivity function ||𝑆𝑖𝑗(𝑗𝜔)|| are large.
Using the introduced circle approximations, the maximum amplitudes of the sensitivity
functions in the vicinity of 𝜔 ≈ Im (𝜉𝑘) can be approximated as

max
𝜔≈Im(𝜉𝑘)

||𝑆𝑖𝑗(𝑗𝜔)|| ≈ ||𝑋𝑖𝑗𝑘 || + 𝑅𝑖𝑗𝑘 . (5.13)
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However, the maximum amplitudes of the individual ||𝑆𝑖𝑗(𝑗𝜔)|| do not necessarily coincide
at one frequency, preventing the calculation of an exact upper bound. Using the approx-
imation of Eq. 5.13, the local maximum Frobenius norm is now (approximately) bounded
by 𝛾𝑘 as

max
𝜔≈Im(𝜉𝑘)

𝜎F(𝜔) ≲ 𝛾𝑘 . (5.14)

By combining Eqs. 5.6 and 5.13, the approximate upper bound is calculated as

𝛾𝑘 =
√

𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

(||𝑋𝑖𝑗𝑘 || + 𝑅𝑖𝑗𝑘)
2
. (5.15)

Through the bounds provided in Eq. 5.8, the value 𝛾𝑘 thus also provides an approximate
upper bound for the local ℒ∞ norm of 𝜎 for frequencies close to Im (𝜉𝑘) as

max
𝜔≈Im(𝜉𝑘)

𝜎(𝜔) ≲ 𝛾𝑘 . (5.16)

Note that 𝛾𝑘 is only non-differentiable when ||𝑋𝑖𝑗𝑘 || = 0, or when ||𝑃𝑖𝑗𝑘 || = 0. For the numer-
ical examples presented in Section 5.5, this did not cause any issues. In case it does cause
issues, the absolute value can simply be approximated by a continuously differentiable
function, e.g., |𝑥| ≈ √|𝑥|2 + 𝜀 with a small value 𝜀.

5.2.4 Adaptive correction factor
Knowing only the approximate upper bounds 𝛾𝑘 is not sufficient for the current optimiza-
tion purpose of limiting theℋ∞ norm, which must be constrained to an exact value of 1/𝜇.
Therefore, an adaptive correction factor is used to improve the accuracy of the approxima-
tion. This is inspired by an existing formulation for topology optimization that includes
constraints on maximum stress value, by Le et al. (2010). In their work, a smooth maxi-
mum stress is computed aggregating all stresses in the domain, using the p-norm. For the
optimization problem an exact limit is required on the maximum stress, but the p-norm
overestimates the maximum stress value. Therefore, a correction factor is introduced to
normalize the aggregated stress measure used in the constraint, in order to match the ex-
act maximum stress value. This correction factor is adapted during the design iterations,
and stabilizes as the optimization progresses with smaller and smaller design changes.

This concept can also be applied here, by introducing a correction factor 𝑎𝑘 such that

𝜎𝑘 = 𝑎𝑘𝛾𝑘 , (5.17)

in which the correction factor is approximately bounded as 1/√𝑛 ≲ 𝑎𝑖 ≲ 1, according to the
bounds that the Frobenius norm provides in Eq. 5.8. The variable 𝜎𝑘 denotes the maximum
singular value close to Im (𝜉𝑘), and is defined as

𝜎𝑘 = max𝜔a≤𝜔≤𝜔b
𝜎(𝜔). (5.18)

This value is non-differentiable, but can be found numerically using, for instance, a simple
bisection algorithm. For efficient numerical evaluation of the singular values of S(𝑗𝜔), a
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limited number of eigenmodes is included in the mechanical model, as further explained
in Section 5.3. The frequency range used for bisection is defined by

𝜔a =
Im (𝜉𝑘−1) + Im (𝜉𝑘)

2 and 𝜔b =
Im (𝜉𝑘) + Im (𝜉𝑘+1)

2 , (5.19)

using the sorted closed-loop pole frequencies as

⋯ ≤ Im (𝜉𝑘−1) ≤ Im (𝜉𝑘) ≤ Im (𝜉𝑘+1) ≤ ⋯ . (5.20)

After a numerical search of 𝜎𝑘 , the exact correction factor 𝑎𝑘 can be calculated as

𝑎𝑘 = 𝜎𝑘
𝛾𝑘

. (5.21)

As the topology optimization progresses towards a final design, the design changes usually
become smaller and smaller. Therefore, it can be assumed that also the correction factor
𝑎𝑘 stabilizes during the optimization. During optimization, the correction factor is treated
as a constant, which means it does not need differentiation.

By calculating multiple local approximations over the frequency range of interest, the
trueℋ∞ norm equal to the largest of the locally approximated norms. Multiple constraints
can now be formed for each flexible eigenmode 𝑘 as

𝛼𝑘𝛾𝑘 ≤ 1
𝜇 . (5.22)

Note that mode switching might occur during optimization, causing constraints to
switch order. Depending on the problem and the chosen optimization algorithm, this
may lead to convergence issues or oscillations. For cases where it is important to avoid
switching, mode tracking can be used to reorder the constraints (Kim and Kim, 2000). In
the numerical examples of Section 5.5 no issues regarding mode switching were observed,
so no mode tracking is used.

To summarize, the steps of the entire procedure to compute approximations of theℋ∞
norm are as follows

1. Find the relevant closed loop poles 𝜉𝑘 for each flexible eigenmode 𝑘
2. Construct local circle approximations to S(𝑗𝜔) around 𝜔 ≈ Im (𝜉𝑘): Eq. 5.12
3. Calculate the Frobenius norm bound 𝛾𝑘 using the circle approximations: Eq. 5.14

4. Numerically find the true maximum singular values 𝜎𝑘 around 𝜔 ≈ Im (𝜉𝑘): Eq. 5.18
5. Calculate the (damped) correction factors 𝛼𝑘 based on the true values 𝜎𝑘 : Eq.5.21
6. Use the approximated local ℒ∞ norms 𝛼𝑘𝛾𝑘 as constraints: Eq. 5.22

5.3 Modeling
The modeling largely follows the same procedure as in Chapter 4. For the sake of com-
pleteness, the modeling steps are also explained here, with focus on the MIMO aspects.
As a starting point, the mass and stiffness matrices (M and K) dependent on the design
variables x are given, as is described in Chapter 4.
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5.3.1 Mechanical model
The mechanical model of the structure is generated using a truncated series of undamped
eigenmodes. The 𝑁 flexible eigenmodes are calculated by solving the eigenvalue problem

(K − Ω2𝑘M)𝜙𝜙𝜙𝑘 = 0 ∀ 𝑘 = 1, … , 𝑁 ,
𝜙𝜙𝜙T𝑘M𝜙𝜙𝜙𝑘 = 1
0 < Ω1 ≤ … ≤ Ω𝑁 ,

(5.23)

where the 𝜙𝜙𝜙𝑘 and Ω𝑖 denote the eigenmodes and eigenfrequencies, respectively. Besides
to the 𝑁 flexible eigenmodes, there are 𝑁c rigid body modes with a frequency of 0 kHz.

To enable efficient calculation of the eigenmodes for large-scale 3D topology opti-
mization, the problem is parallelized using domain decomposition. This is implemented
using the data structures and linear solvers of the PETSc library (Balay et al., 2019), and
the eigensolvers of its add-on SLEPc (Hernandez et al., 2005). As in Chapter 2, a Krylov-
Schur algorithm with a shift-and-invert strategy is used to obtain the lowest 𝑁 flexible
modes. This algorithm resorts to the repeated solution of linear systems involving the
pencil K − 𝜍sM, with shift frequency 𝜍s. The linear systems are solved using the iterative
BiCGStab method, preconditioned with an algebraic multigrid preconditioner (Hernandez
et al., 2005; Balay et al., 2019; Saad, 2003).

In the current application of a motion stage, the absence of boundary conditions re-
sults in multiple rigid body modes ΦΦΦR, up to 6 for systems in 3D. As the rigid body modes
can be constructed explicitly and to prevent wasting computational effort by their recalcu-
lation, deflation is used to remove them from the search space (Balay et al., 2019; Geradin
and Rixen, 2015). This also prevents potential numerical issues due to a singular stiffness
matrix K.

All the 𝑁c rigid body modes inΦΦΦR and 𝑁 flexible eigenmodes are placed in the projec-
tion matrix ΦΦΦ as

ΦΦΦ = [ΦΦΦR 𝜙𝜙𝜙1 ⋯ 𝜙𝜙𝜙𝑁 ] . (5.24)

This projection matrix is used to obtain the reduced system of equations describing the
structure in the time domain as

ΩΩΩ2q(𝑡) + 2𝜁ΩΩΩq̇(𝑡) + q̈(𝑡) = ΦΦΦTFup(𝑡),
yp(𝑡) = GTΦΦΦq(𝑡). (5.25)

Here, ΩΩΩ is a diagonal matrix containing all eigenfrequencies, starting with the 𝑁c zeros
corresponding to the rigid body modes. The matrices containing all the input and output
unit vectors are denoted F and G, respectively. The input up represents the amplitude
of the force of the actuator and yp represents the measurements of the sensors. The state
vector q contains themodal amplitudes corresponding to all the eigenmodes. Transformed
into the Laplace domain, the transfer function becomes

Hp(𝑠) = GTΦΦΦ (ΩΩΩ2 + 2𝑠𝜁ΩΩΩ + 𝑠2I)−1ΦΦΦTF, (5.26)

which is dependent on complex frequency 𝑠.
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5.3.2 Rigid body decoupling
Using rigid body decoupling the transfer function of the plant can be made diagonal for
low frequencies. This limits the interaction between the control loops at low frequencies,
and aids in the design of a decentralized (diagonal) controller (Van der Veen et al., 2017;
Skogestad and Postlethwaite, 2001). Additionally, it allows for transformation of the inputs
and outputs of the plant to forces and motions purely based on the rigid body modes, e.g,
u = [𝑓𝑥 𝑓𝑦 𝑓𝜃] and y = [𝑦𝑥 𝑦𝑦 𝑦𝜃] for a 2D system (Fig. 5.1). A constant input to
one of these signals results in a constant acceleration for one of the rigid body modes.

By using the pre- and post-compensation matricesWa andWs, the plant of Eq. 5.26 is
statically decoupled. Its inputs and outputs are related as

up = Wau and y = Wsyp, (5.27)

which makes the transfer function of the decoupled plant equal to

H(𝑠) = WsHp(𝑠)Wa. (5.28)

Omitting the derivation, the decoupling pre-compensation matrix is calculated as (Van der
Veen et al., 2017)

Wa = (GTΦΦΦRΦΦΦT
RF)

−1
GTΦΦΦD, (5.29)

where ΦΦΦD contains independent user-defined motions, e.g., containing unit translations
and rotations. In the current work, the unit translation and rotation vectors are normal-
ized such that themaximumdisplacement throughout the domain equals 1mm. The subse-
quent post-compensationmatrix imposes amass normalization, such that lim𝑠→0 𝑠2H(𝑠) =
I. This matrix is calculated as (Van der Veen et al., 2017)

Ws = (GTΦΦΦD)
−1

. (5.30)

Note that the rigid body modes are required to be mass orthonormalized as

ΦΦΦT
RMΦΦΦR = I. (5.31)

Further details and derivation of the design sensitivities can be found in the work of
Van der Veen et al. (2017).

5.3.3 Controller
Thedecoupled plant of Eq. 5.28 can effectively be controlled using a decentralized diagonal
controller structure. Again, the same controller structure (PID with additional low pass
filter) as in Chapter 4 is used (Munnig Schmidt et al., 2011; Van der Veen et al., 2017), which
is defined as

𝐶𝑖𝑖(𝑠) = 𝑘𝑖
𝑠 + 1

5𝜔b,𝑖
𝑠

3𝑠 + 𝜔b,𝑖
𝑠 + 3𝜔b,𝑖

5𝜔b,𝑖
𝑠 + 5𝜔b,𝑖

. (5.32)

The controllers are tunedwith the parameters 𝑘𝑖 denoting gain and𝜔b,𝑖 denoting the band-
width. Because the mass is normalized with the post-compensation matrixWs in Eq. 5.30,
the loop gain at the bandwidth ||𝐿𝑖𝑖(𝑗𝜔b,𝑖)|| = 𝑘𝑖𝜔2

b,𝑖 is independent of the system mass. To
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ensure correct interaction between the controller and the rigid body modes, the gain at
the bandwidth is chosen as ||𝐿𝑖𝑖(𝑗𝜔b,𝑖)|| = 𝑘0. This results in a controller gain of

𝑘𝑖 =
𝑘0
𝜔2
b,𝑖
. (5.33)

In current work, a value of 𝑘0 = 1.1 is used. The method is not limited to this decentralized
MIMO control law can potentially be extended to other controller variations.

The control law, relating the measured error e to the correction signal u (Fig. 5.1), can
be rewritten into state-space form

ċ(𝑡) = Acc(𝑡) + Bce(𝑡)
u(𝑡) = Ccc(𝑡)

(5.34)

where Ac, Bc, Cc represent the controller structure in canonical form (Skogestad and
Postlethwaite, 2001). The vector c contains the internal state of the PID controller and
is of length 3𝑁c, where 𝑁c is the number of controllers used. As each rigid body mode is
separately controlled using a controller, 𝑁c is equal to the number of rigid body modes.

5.3.4 Closed loop system
The final step in the modeling is to obtain the transfer function of the closed-loop sensi-
tivity function S(𝑠), which can be represented in state-space form as

ż(𝑡) = Asz(𝑡) + Bsd(𝑡)
y(𝑡) = Csz(𝑡) + Dsd(𝑡)

(5.35)

with system matrices and state vector

As = [
Ac −BcWsGTΦΦΦ 0
0 0 I

ΦΦΦTFWaCc −ΩΩΩ2 −2𝜁ΩΩΩ
] ,

Bs = [−Bc 0 0]T ,
Cs = [0 WsGTΦΦΦ 0] ,
Ds = I,

z = [c q q̇]T .

(5.36)

The transfer function of the sensitivity function then becomes

S(𝑠) = (I + L(𝑠))−1 = Cs(𝑠I − As)−1Bs + Ds, (5.37)

which is used to fit local circle approximations. The closed-loop poles 𝜉𝑘 are found as the
eigenvalues of the closed-loop matrix As. In total there are 5𝑁c + 2𝑁 closed-loop poles: 3
for each controller, 2 for each rigid body mode, and also 2 for each flexible mode. The par-
ticipation factors P𝑘 can be found using a modal decomposition as described in Chapter 4.
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Circles and ℋ∞ norm approximations only have to be constructed for the 𝑁 poles with
largest imaginary values, which correspond to the flexible eigenmodes. To use the ap-
proximatedℋ∞ norm in an optimization setting in order to control disturbance rejection
properties, closed-loop stability is necessary and must be enforced by, e.g., constraining
the real part of the closed-loop poles below zero.

5.4 Approximation of eigenmode design sensitivities
In this section, first will be explained how consistent eigenmode design sensitivities can
be calculated for large-scale systems. Based on this, a strategy is proposed to approximate
the eigenmode sensitivities and reduce computation time.

5.4.1 Consistent eigenmode sensitivities
Given the generalized eigenvalue problem as defined in Eq. 5.23, the eigenmode design
sensitivities capture how the eigenmode changes as the design is changed. To calculate the
eigenmode sensitivities efficiently for problems with many design variables and relatively
few constraints, the adjoint method is used. In the work of Lee (1999), it can be found that
the adjoint sensitivities for an arbitrary response function 𝑓 (Ω𝑘 , 𝜙𝜙𝜙𝑘) with respect to the
stiffness matrix K and mass matrix M can be calculated, respectively, using

𝜕𝑓
𝜕K = −𝜈𝜈𝜈𝑘 ⊗ 𝜙𝜙𝜙𝑘 and

𝜕𝑓
𝜕M = (Ω2𝑘𝜈𝜈𝜈𝑘 +

𝛼𝑘
2 𝜙𝜙𝜙𝑘) ⊗ 𝜙𝜙𝜙𝑘 . (5.38)

Here, the adjoint variables 𝜈𝜈𝜈𝑘 and 𝛼𝑘 are found by solving the saddlepoint problem given
as

[K − Ω2𝑘M −M𝜙𝜙𝜙𝑘
−𝜙𝜙𝜙𝑘 ⋅M 0 ] [𝜈𝜈𝜈𝑘𝛼𝑘] = [

𝜕𝑓
𝜕𝜙𝜙𝜙𝑘1

2Ω𝑘
𝜕𝑓
𝜕Ω𝑘

] , (5.39)

which is a non-singular system of equations.
For a small problems, the solution to this expression can simply be found using a fac-

torization of Eq. 5.39. Factorizations need to be created for the matrices corresponding to
each of the eigenvalues Ω𝑘 , which can be reused for the eigenmode design sensitivities
from different constraints. However, it is usually not feasible to factorize the matrices for
large-scale problems, due to limitations in time and/or memory. Instead, the systems of
equations are usually solved by Krylov methods (e.g., GMRES, BiCGStab, MINRES (Paige
and Saunders, 1975; Saad, 2003)), which iteratively find the solution. For an efficient oper-
ation of these iterative methods, preconditioners (such as multigrid) are used (Saad, 2003).
However, because of changed structure, it is not directly possible to use the same solvers
and preconditioners that were used in solving the eigenvalue problem of Eq. 5.23 (Benzi
et al., 2005). Therefore, an alternative approach is proposed in which the same solvers and
preconditioners can be used as in the solution of the eigenvalue problem.

From here on the subscript 𝑘 is omitted for clarity. The first equation in Eq. 5.39 reads

(K − Ω2M)𝜈𝜈𝜈 = r, with r = 𝜕𝑓
𝜕𝜙𝜙𝜙 + 𝛼M𝜙𝜙𝜙. (5.40)
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This system of equations is singular, due to the original eigenvalue problem defined in
Eq. 5.23. However, it can be solved by combining a homogeneous solution 𝑐𝜙𝜙𝜙 and a par-
ticular solution 𝜈𝜈𝜈p as

𝜈𝜈𝜈 = 𝜈𝜈𝜈p + 𝑐𝜙𝜙𝜙. (5.41)

Now, substituting this into Eq. 5.40 and rewriting yields

(K − Ω2M)𝜈𝜈𝜈p = r. (5.42)

This system of equations is still singular, but a particular solution 𝜈𝜈𝜈p can be found, e.g.,
by constraining one of its entries or to find the minimum norm solution with 𝜙𝜙𝜙T𝜈𝜈𝜈p = 0.
To make the system consistent, the right-hand-side must be orthogonal to the eigenmode.
This is done by choosing the unknown 𝛼𝑘 as

𝛼 = −𝜙𝜙𝜙T 𝜕𝑓𝜕𝜙𝜙𝜙 , (5.43)

which ensures the condition 𝜙𝜙𝜙Tr = 0.
After a particular solution 𝜈𝜈𝜈p is found, the homogeneous solution can be obtained

using the second equation in Eq. 5.39 as

𝑐 = −𝜙𝜙𝜙TM𝜈𝜈𝜈p −
1
2Ω

𝜕𝑓
𝜕Ω . (5.44)

The procedure explained here needs to be executed a total of 𝑁 ⋅𝑁constr times: 𝑁 times
for every constraint that depends on the eigenmodes. This makes it very suitable when
few responses (i.e. constraints) are dependent on only few eigenmodes. However, for the
current application many constraints and eigenmodes are required, which would result in
a colossal computational load.

5.4.2 Approximate eigenmode sensitivities
The computationally expensive step is in the computation of the particular solution 𝜈𝜈𝜈p
given in Eq. 5.42. By approximating the particular solution 𝜈𝜈𝜈p, solving this system of
equations may be prevented. The approximation of eigenmode sensitivities has exten-
sively been researched for direct sensitivities (see, e.g.Wang, 1990; Lin et al., 2020), but to
the best of our knowledge not yet in an adjoint setting.

The particular solution may be approximated using a linear combination of basis vec-
torsW as

𝜈𝜈𝜈p ≈ W ̃𝜈𝜈𝜈p, (5.45)

preventing the computationally costly solution of Eq. 5.42. By Galerkin projection, the
reduced system of equations becomes

(K̃ − Ω2M̃) ̃𝜈𝜈𝜈p = WTr, (5.46)

with the reduced-order system matrices

K̃ = WTKW and M̃ = WTMW. (5.47)
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Instead of having to solve a large system of equations, it is approximated using a small
one. After approximation, the remaining steps in the eigenmode sensitivity calculation
are identical as presented in Section 5.4.1.

The main difficulty in to determine which vectors to incorporate in the basis W, as it
affects the final accuracy of the approximate solution. A straightforward choice is to use
the eigenmodes ΦΦΦ, which are already known and required for the analysis. However, this
might yield inaccurate results, in particular with respect to the input and output locations,
as was shown in Chapter 3. In order to improve accuracy, the eigenmodes are augmented
with a moment matching basis. Moment matching is a method to obtain reduced-order
models with accurate input-output relations (Grimme, 1997; Antoulas, 2004).

To augment the basis with moment matching vectors, Krylov subspaces are used. A
general Krylov subspace with 𝑁𝑟 vectors is defined as

𝒦𝑟 (A, b) ∶= span {b,Ab,A2b, … ,A𝑁𝑟−1b} . (5.48)

For a collocated SISO system, the moment matching basis is calculated as

V = 𝒦𝑟 (K−1𝜍 M,K−1𝜍 f) , (5.49)

where f is the input/output vector and K𝜍 is defined as the shifted pencil

K𝜍 ∶= K − 𝜍2M, (5.50)

with the shift frequency 𝜍 corresponding to the interpolation frequency formomentmatch-
ing, chosen such that K𝜍 is non-singular. In a general MIMO problem there are multiple
inputs and outputs, for which the moment matching basis can be calculated as the union
of multiple Krylov subspaces (Grimme, 1997)

V =
𝑁io

⋃
𝑖=1

𝒦𝑟 (K−1𝜍 M,K−1𝜍 f𝑖) , (5.51)

where the different f𝑖 represent all 𝑁io unique input and output vectors, f𝑖 ∈ span {F,G}.
In total the moment matching basis then contains𝑁𝑟 ⋅𝑁io columns. This moment matching
basis is combined with the existing eigenmodes to obtain the basis used to approximate
the eigenmode sensitivities. The resulting basis is made orthonormal with respect to the
mass matrix M

W = [ΦΦΦ V] s.t. WTMW = I. (5.52)

In order to calculate the MIMO moment matching basis of Eq. 5.51, Algorithm 1 presents
an adapted block Arnoldi algorithm (Saad, 2003). This algorithm ensures orthogonality of
the basis and is numerically stable for higher order Krylov vectors, by using the modified
Gram-Schmidt process on each newly calculated basis vector.
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Algorithm 1 Block Arnoldi augmentation
Require: W ←ΦΦΦ
Ensure: WTMW = I

K𝜍 ← K − 𝜍2M ▷ Apply matrix shift
for 𝑗 = 1, … , 𝑁𝑟 do ▷ Loop over Krylov
size

for 𝑖 = 1, … , 𝑁io do ▷ Loop over
in/outputs

if 𝑗 = 1 then ▷ Initial Krylov
vector

f ← M-Orthonormalize(f𝑖 ,W)
else

f ← v𝑖 ▷ Higher powers
end if
p ← K−1𝜍 Mf
v𝑖 ← M-Orthonormalize(p,W)
W ← [W v𝑖] ▷ Store vector

end for
end for

A known issue for the block Arnoldi algorithm is the chance of linearly dependent
vectors appearing (Ruhe, 1979). Whenever the candidate vector p in the algorithm is linear
dependent on the basis W, the vector will have a length close to zero after the modified
Gram-Schmidt process. Subsequent normalization then results in a vector with random
numerical noise. Monitoring for the situation is recommended, however, in the numerical
examples of Section 5.5 no issues with linear dependency were encountered.

The augmented reduction basis W is not used for the analysis of the controlled sys-
tem, since the moment matching adds new eigenvalues to the reduced-order model (Ritz
values of the original system) that might destabilize the closed loop system. Therefore,
the analysis proceeds with the eigenmodesΦΦΦ, and the augmented basisW is only used for
the approximation of eigenmode sensitivities.

The computationally costly steps in this algorithm is themultiplicationwith the shifted
and inverted matrix to expand the Krylov subspace. The type of linear system of equations

Table 5.1: Comparison in computational effort for eigenmode sensitivities in one design iteration. (*) No factor-
ization is required in case it is reused from the eigenvalue solver. In the application presented 𝑁 and 𝑁constr are
both large, while 𝑁𝑟 and 𝑁io are relatively small.

Consistent Approximate

Factorizations / 𝑁 1 (0*)Preconditioner setup
Backsubsitutions / 𝑁 ⋅ 𝑁constr 𝑁𝑟 ⋅ 𝑁ioIterative solutions
ROM solutions - 𝑁 ⋅ 𝑁constr
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is similar, as the system matrix in Eq. 5.42 and K𝜍 in Eq. 5.50 are both shifted matrices.
However, there are significant benefits in the moment matching approach as opposed to
calculating consistent eigenmode design sensitivities:

• Shift frequency 𝜍 can be chosen such that the matrix K𝜍 is non-singular

• The same preconditioner and solvers can be reused for computing all Krylov vectors

• The same solver and preconditioner used to solve the eigenvalue problem (Eq. 5.23)
can be reused

• In case of a direct solver, only one matrix factorization is required

• The computational cost for additional constraints is negligible

A complete breakdown of the computational cost of the approximate versus the consis-
tent method of calculating eigenmode sensitivities in one design iteration is presented in
Table 5.1.

5.5 Numerical examples
5.5.1 Optimization formulation
The formulation used for integrated controller-structure optimization throughout the nu-
merical examples is given as

min
x,x𝜔

100 (𝑐1
𝑓 (0)𝜔

𝑓𝜔(x𝜔)
+ (1 − 𝑐1)

𝑓 (0)Ω
𝑓Ω(x)

) + 𝑐2𝑓v(x),

s.t. 10 ( 𝑉 (x)
𝑣f𝑉max

− 1) ≤ 0,

𝑔rob,𝑘𝑝(x,x𝜔) ≤ 0 ∀ {𝑘 = 1, … , 𝑁
𝑝 = 1, … , 𝑁pos

,

𝑔stab,𝑝(x,x𝜔) ≤ 0 ∀ 𝑝 = 1, … , 𝑁pos,
0 ≤ x ≤ 1,
0 ≤ x𝜔 ≤ 1.

(5.53)

Here, a number of different relative sensor positions (𝑁pos) may be used to incorporate
position-dependent dynamics into the optimization. The superscript (0) indicates the
function value in the initial iteration, which is used for normalization. The bandwidths𝜔𝜔𝜔b
are exponentially scaled within their bounds (𝜔min and 𝜔max) as

𝜔b,𝑖(𝑥𝜔,𝑖) = 𝜔min (
𝜔max
𝜔min

)
𝑥𝜔,𝑖

. (5.54)

The volume 𝑉 (x) is constrained by an upper limit, which is composed of a fraction 𝑣f of
the maximum available volume 𝑉max. For the numerical examples presented, this volume
constraint is active.
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The objective function in the problem formulation (Eq. 5.53) is composed of multiple
sub-objectives concerning the maximization of bandwidths 𝑓𝜔 , maximization of eigen-
frequencies 𝑓Ω, and penalization of low-density areas 𝑓v. The eigenfrequency objective
𝑓Ω is added to prevent eigenfrequencies from becoming excessively low. To control the
weights between the different objectives parameters 𝑐1 and 𝑐2 can be chosen by the user.
The objective with respect to bandwidths 𝜔𝜔𝜔b is defined as

𝑓𝜔(x𝜔) =
𝑁c

∑
𝑖=0

1
𝜔b,𝑖(𝑥𝜔,𝑖)2

(5.55)

and the objective responsible for maximization the eigenfrequencies Ω𝑖 as

𝑓Ω(x) =
3
∑
𝑖=0

1
Ω𝑖(x)2

. (5.56)
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Figure 5.4: The function used in low density pe-
nalization (Eq. 5.57). Increasing 𝑝v results in a
steeper slope at 0.

The penalty 𝑓v is to aid in removing low densities that otherwise might cause localized
eigenmodes in low density areas and is defined as

𝑓v = ∑
𝑖∈ℰ

tanh(𝑝v𝑥f,𝑖)
tanh(𝑝v)𝑉max

. (5.57)

Here, ℰ denotes the entire design domain (e.g. Fig. 5.5) and xf represents the filtered
density field. The behavior of this function is illustrated in Fig. 5.4. It ensures a steep gra-
dient towards zero, which effectively attracts elements with low densities towards zero.
At higher density values, the function flattens and the effect is decreased. This ensures the
removal of remaining low-density areas when they are not effective for performance, and
thus aids in preventing the appearance of localized eigenmodes. Additionally, any discon-
nected or loosely connected parts are removed through a flood fill algorithm (e.g., Bruns
and Tortorelli, 2003). Elements that are connected to the non-design domains through
densities lower than 0.2 are recursively clipped to the maximum of their neighbors. This
measure also helps to prevent localized modes and additional rigid body modes that ham-
per convergence. The flood fill process introduces a non-differentiable step, however the
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effect of this was found to be far less detrimental to the convergence than the disruptions
caused by localized modes.

For robustness against disturbances, the constraints 𝑔rob,𝑘𝑝 provide limitation of the
local approximated ℒ∞ norms (Eq. 5.22) for mode 𝑘 and relative stage position 𝑝 as

𝑔rob,𝑘𝑝(x,x𝜔) = 10 (𝜇𝛼𝑘𝑝𝛾𝑘𝑝(x,x𝜔) − 1) . (5.58)

Additional constraints are required to ensure closed-loop stability (Van der Veen et al.,
2017), and are defined as

𝑔stab,𝑝(x,x𝜔) =
1
𝑝KS

log (∑
𝑖
exp (𝑝KS

Re (𝜉𝑖𝑝)
2𝜁 )) . (5.59)

This is the KS function (Kreisselmeier and Steinhauser, 1980), approximating themaximum
of the real parts of all closed-loop poles 𝜉𝑖𝑝 at position 𝑝. The maximum must remain
below zero to ensure closed-loop stability. Furthermore, the poles are normalized with
the modal damping ratio 𝜁 . Note that this constraint is generally not active, as the ℒ∞
norm constraints ensure a margin for stability.

Prior to the integrated optimization, the controller is first tuned to meet the closed-
loop requirements for the initial design. This is done using the optimization formulation
given as

min
x𝜔

100 𝑓 (0)𝜔
𝑓𝜔(x𝜔)

,

s.t. 𝑔rob,𝑘𝑝(x𝜔) ≤ 0 ∀ {𝑘 = 1, … , 𝑁
𝑝 = 1, … , 𝑁pos

,

𝑔stab,𝑝(x𝜔) ≤ 0 ∀ 𝑝 = 1, … , 𝑁pos,
0 ≤ x𝜔 ≤ 1.

(5.60)

After optimization of this problem, the controller is tuned to the initial structure. The
resulting bandwidths are used as initial values for the integrated controller-structure op-
timization.

For all the numerical examples, the optimization algorithm MMA is used (Svanberg,
1987). The maximum number of iterations is limited to 100, and a maximum step-size for
the design variables of 0.05 is used. Further default settings as used in the examples are
presented in Table 5.2. The design is forced to be symmetric and a uniform initial design is
used with densities 𝑣f. This is not to violate the volume constraint in the initial iterations.
Additionally, the design is filtered as is standard topology optimization procedure (Bruns
and Tortorelli, 2001; Bendsøe and Sigmund, 2003).

5.5.2 Design case in 2D
First, a 2D design case is presented that will be used to provide insight into the different
aspects of the presented methods. The example contains only one relative sensor position
(𝑁pos = 1) and is shown in Fig. 5.5. It has one sensormeasuring the x-direction (𝑐𝑥 ) and two
in y-direction (𝑐𝑦,1 and 𝑐𝑦2 ). The measurement of the rigid body motion in y-direction is
done by combining the two sensors as 𝑐𝑦,1/2+𝑐𝑦,2/2, and of the rotation degree of freedom
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𝑐𝑦,1 𝑐𝑦,2 𝑐𝑥

𝑏𝑦,1 𝑏𝑦,2

1
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1
2 𝑏𝑥

𝑥
𝑦

ℰ
Figure 5.5: The domain used for the 2D
optimizations, with one relative sensor
position (𝑁pos = 1). The domain has di-
mensions 400 × 100mm, with an in-plane
thickness of 400mm. It is discretized in
192 × 48 square elements.

as −𝑐𝑦,1/2+ 𝑐𝑦,2/2. Similarly, this is done for the inputs by combining the actuators 𝑏𝑥 , 𝑏𝑦,1
and 𝑏𝑦,2. The non-design domains are shown in black and green, for which the green
represents magnetic actuators made out of neodymium. The rest of the part is made out
of aluminium. The material properties for both of these materials are given in Table 5.2.

Table 5.2: Default settings as used for the numerical examples.

Symbol Value Description

𝜔min 0.2 rad/ms Minimum bandwidth
𝜔max 20.0 rad/ms Maximum bandwidth
𝜇 0.5 MIMO margin
𝐸0 65GPa Young’s modulus (Aluminium)
𝜌0 2.6 × 10−6 kg/mm3 Material density (Aluminium)
𝐸neo 160GPa Young’s modulus (Neodymium)
𝜌neo 7.5 × 10−6 kg/mm3 Material density (Neodymium)
𝑥min 10−7 Minimum design density
𝜁 0.01 Damping factor
𝑁 2D: 10, 3D: 20 Number of eigenmodes
𝑣f 0.3 Volume fraction

2 elements Density filter radius
𝑐1 0.8 Objective weight
𝑐2 10 Low-density penalty weight
𝑝v 6.0 Low-density penalty factor
𝑝KS 2.0 Stability aggregation factor
𝑁𝑟 2 Size of Krylov subspace
𝜍 2.0 rad/ms Moment matching shift

5.5.3 Effect of approximate design sensitivities
By adding more Krylov vectors into the reduced-order basis of Eq. 5.52, the accuracy of
the design sensitivities is expected to improve. This is studied using the 2D example given
in Fig. 5.5. The design sensitivities with respect to the disturbance rejection constraints
(Eq. 5.58) are calculated with different sizes of the Krylov subspace 𝑁𝑟 , and compared to
the consistently calculated eigenmode design vectors as described in Section 5.4.1. For
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Figure 5.6: The error in sensitivity
(Eq. 5.61) as function of number of
Krylov vectors 𝑁𝑟 . The errors refers to
the first five constraints on the local ℒ∞
norm, for the initial design in Fig. 5.5
with tuned controller and uniform design
densities at 𝑣f.
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comparison, a relative error norm is defined as

𝜀rob,𝑘 =
‖‖‖(

𝜕𝑔rob,𝑘
𝜕x )

cons
− ( 𝜕𝑔rob,𝑘𝜕x )𝑁𝑟

‖‖‖2
‖‖(

𝜕𝑔rob,𝑘
𝜕x )

cons
‖‖2

. (5.61)

Here, the subscript ‘cons’ indicates consistent sensitivities and the sensitivities subscripted
with 𝑁𝑟 are approximated. Note that the total size of the augmented reduction basis
is 𝑁𝑟 ⋅ 𝑁io. For the current example, the number of unique input and output vectors is
𝑁io = 6 (three inputs and three outputs). In Fig. 5.6, the order of the Krylov subspace is
increased from 0 (no augmentation) to 10. It can clearly be seen that adding a few vectors
significantly reduces the error, although it reaches a plateau for 𝑁𝑟 = 2, … , 7. Adding fur-
ther vectors reduces the error, although less significantly than for the initial few vectors.
From this data, the ‘optimal’ order of the Krylov subspace for the current application is
heuristically chosen as 𝑁𝑟 = 2, balancing accuracy with computational effort.

For the 2D example with one relative sensor position, the choice of 𝑁𝑟 = 2 means
reduction of computational cost by almost a factor 10 (Table 5.1). Since the 2D case is
relatively small, Cholesky factorizations can be used for the solution of the eigenmode
sensitivities (Eq. 5.39). In case of consistent sensitivities, 10 factorizations are required (one
for each eigenmode, 𝑁 = 10), while for the approximations only one single factorization
is required of K𝜍 (Eq. 5.50).

(a) Consistent (b) Approximate

Figure 5.7: Comparison of optimized designs using consistent and approximate eigenmode design sensitivities.
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Next, optimizations are performedwith both consistent eigenmode design sensitivities
and approximated with 𝑁𝑟 = 2. The resulting designs (Fig. 5.7) are visually very similar.
Also their performance is almost identical, with𝜔𝜔𝜔b = [0.93 0.49 1.11] kHz for the con-
sistently optimized design and𝜔𝜔𝜔b = [0.95 0.50 1.13] kHz for the design optimized with
approximate design sensitivities.

0.1 1.0 10.0
Frequency (kHz)

-20

-10

0

10

A
m
pl
itu

de
(d
B)

1/𝜇

Consistent
Approximate

Figure 5.8: Extreme singular value plot
for the sensitivity function, showing
𝜎(𝜔) and 𝜎(𝜔) for the designs op-
timized with consistent and approxi-
mated design sensitivities.

The singular value plot of both designs can be seen in Fig. 5.8. It can be seen that
the second ‘bump’ violates the 1/𝜇 limit around 1 kHz. These first bumps are caused by
the interaction of the rigid body mode and the controller, and could unfortunately not be
limited with the proposed method. However, by the choice of control gain (Eq. 5.33), the
diagonal entries of the sensitivity function |𝑆𝑖𝑖 | satisfy the limit on disturbance rejection.
Furthermore, not all constraints are satisfied in a mathematical sense, although they are
very close to being feasible. For engineering purposes this is assumed not to be an issue.
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(b) Constraint 𝑔rob,11

Figure 5.9: Comparisons in convergence behavior for consistent and approximated design sensitivities. a) Con-
vergence history of the three bandwidths 𝜔𝜔𝜔b. b) Convergence history of the first robustness constraint 𝑔rob,11.

The convergence of the bandwidths throughout the iteration history is depicted in
Fig. 5.9a, which shows their trajectories are very alike. The convergence behavior is not
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very smooth, with quite some oscillations present in the bandwidths. Oscillations are also
observed in the convergence of the constraints, as seen in Fig. 5.9b for the first robustness
constraint 𝑔rob,11. As the oscillations are present in both the consistent and approximated
design sensitivities, it seems reasonable that they are not caused by incorrect design sensi-
tivities, but rather by the nature of the problem. Despite the oscillations, the optimization
converges to a solution that is interpretable and useable.

These results provide confidence that the approximation of eigenmode design sensi-
tivities is suitable for optimization. Additionally, with a limited number of Krylov vectors
(12 in the example) the resulting sensitivities are sufficiently accurate to use in optimiza-
tion. This leads to a significant computational gain for the design sensitivities of almost
an order of magnitude in 2D.

5.5.4 Effect of diagonal sensitivity function limitation
The local circular approximations of the sensitivity function (Eq. 5.13) can also be used
to constrain individual amplitudes. This approach was employed by Van der Veen et al.
(2017), who imposed limitations on the diagonal entries of |𝑆𝑖𝑖(𝑗𝜔)|, although they did
not use local circle approximations and design sensitivity approximation. The effect of
only constraining diagonal entries is demonstrated by an optimization. The constraints
on the approximated ℒ∞ norms (𝑔rob in Eq. 5.53) are replaced with new constraints on
the diagonals

𝑔diag,𝑘𝑝𝑖 = 10 (𝜇(|𝑋𝑖𝑖𝑘 | + 𝑅𝑖𝑖𝑘)𝑝 − 1) ∀ {
𝑘 = 1, … , 𝑁
𝑝 = 1, … , 𝑁pos
𝑖 = 1, … , 𝑁c

. (5.62)

From the subscripts, it can directly be seen that a large number of constraints is required,
resulting in additional computation time. For the current example with three controllers,
the number of constraints is increased threefold.

Figure 5.10: Design as optimized with only diagonal sensitivity entries.

The resulting design after optimization is shown in Fig. 5.10, which looks significantly
different from the design optimized for theℋ∞ norm in Fig. 5.7b. The bandwidths of the di-
agonally optimized design are also significantly higher, with𝜔𝜔𝜔b = [1.15 1.49 2.78] kHz.
In vertical direction and rotation (second and third control loop), the bandwidth has almost
increased threefold. However, this apparent improvement has a clear downside.

In Fig. 5.11a, the diagonal entries of the sensitivity function are presented and com-
pared with the ℋ∞ optimized design of Fig. 5.7b. Clearly, the constraints were effective
in limiting the maximum value, as many peak values are touching the limit 1/𝜇 for the
diagonally optimized design, but none are exceeding the limit. However, when inspecting
the extreme singular values shown in Fig. 5.11b, the diagonally optimized design reaches
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Figure 5.11: Comparing behavior of the sensitivity function between the optimized design considering the di-
agonal entries to the design optimized for the ℋ∞ norm. a) Sensitivity functions corresponding to the diagonal
entries. b) Extreme singular value plot for the sensitivity function.

values up to 27 dB, which is well above the allowed limit. This leads to sensitive MIMO
behavior when disturbances of one control loop enter the other loops, and illustrates the
importance of constraining all entries of the sensitivity function in an integrated optimiza-
tion.

5.5.5 Comparison of performance in 2D
Several variations on the optimization problem are explored to compare performance. Fol-
lowing is a short description on each case variation:

A. A sequential approach, with separate design of structure and controller. First, the
structure is optimized for maximum eigenfrequencies using 𝑓Ω (Eq. 5.56) as an ob-
jective, subject to a volume constraint (as is also done in Chapter 4). Second, the
controller is tuned using the proposed formulation in Eq. 5.60.

B. The integrated 2D optimization case, as already presented in Fig. 5.7b.

C. An integrated optimization, with the bandwidth in all control loops equal to each
other.

D. The integrated optimization as in (B), but with application of the robust method pre-
sented in Chapter 4. A larger filter radius of 5 elements is used, the robust offsets (𝜂)
are chosen as 0.45, 0.5, 0.55, and the edge contrast parameter (𝛽) is linearly increased
from 0.1, … , 20 throughout iterations 15, … , 85 (Wang et al., 2011).

All resulting designs are shown in Fig. 5.12 and their corresponding performance values
are listed in Table 5.3. All designs converged to a feasible solution, although variation C
required more iterations to become feasible (200 instead of 100).

Compared to the sequentially optimized design (A), the integrated optimization (B) re-
sults in significantly higher bandwidths in x-direction (+116%) and in rotation (+45%). For
the design optimized for maximum eigenfrequencies (A), all eigenfrequencies are higher
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(a) Sequential (b) Integrated

(c) Equal bandwidth (d) Robust

Figure 5.12: Comparison of the designs from different optimization variations.

Table 5.3: Performance overview of the sequential and multiple integrated optimizations.

Bandwidth Eigenfrequency

Units: kHz 𝜔b,𝑥 𝜔b,𝑦 𝜔b,𝜃 Ω1 Ω2 Ω3
A. Sequential (max. eigenfrequencies) 0.44 0.50 0.78 2.38 3.49 3.81
B. Integrated 0.95 0.50 1.13 2.38 3.15 3.66
C. Equal bandwidth 0.58 0.58 0.58 2.18 2.73 3.11
D. Robust integrated 0.96 0.51 1.14 2.46 3.30 3.52

than those of the other designs, although the first eigenfrequency is very close to that of
design B.

From all bandwidths, the bandwidth in y-direction is lowest. Even when comparing
the designs from the integrated optimizations (B and D) to the sequentially optimized de-
sign (A), there is little to no increase of bandwidth in y-direction. Only when choosing the
bandwidth equal for all control loops (C), the bandwidth in y-direction increases by +16%.
This may be explained by the aspect ratio of the design domain and the relatively heavy
actuator masses in the corners, which cause the lowest eigenmodes to have relatively large
amplitudes in y-direction as compared to the x-direction.

The design optimized with the robust formulation (D) has a more crisp boundary be-
tween solid and void than the other designs, as is expected (Wang et al., 2011). It also
contains less thin members compared to the other designs, due to the minimum length-
scale introduced by the robust formulation (Trillet et al., 2021), while the overall topology
is still similar to design B. Surprisingly, the bandwidths of design D surpass those of the
integrated design without robust formulation (B) by a small amount. It is difficult to de-
termine the exact reason for this, but the designs might simply be different local minima.
Another explanation can be given by the crisp boundaries of design D having less inter-
mediate densities, and thus less penalized material properties.

5.5.6 Optimization in 3D
Also several optimizations are run in 3D, for which the design case as depicted in Fig. 5.13
is used. The case has 6 controllers for positioning in each degree of freedom. The inputs
and outputs are combined from different individual actuators and sensors, analogous to
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the 2D case (Fig. 5.5).

𝑥
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(b) Bottom (actuators)(a) Top (sensors)

Pos. 1 Pos. 2 Pos. 3

Figure 5.13: The input and output loadcases for the 3D optimization with three relative sensor positions (𝑁pos =
3). As in the 2D case (Fig. 5.5), the loads and measurements are combined over multiple actuators to obtain 6
degrees of freedom for both input and output. The domain measures 400 × 400 × 100mm and is discretized into
192×192×48 elements. Areas shaded green represent non-design domains corresponding to actuators, made out
of neodymium. Each actuator has dimensions 100×100×25mm. The blue-shaded areas are non-design domains
for the sensors. The large sensor domain measures 383 × 25 × 25mm and the small one 183 × 25 × 13mm.

Again, several variations are tested:

A. As a baseline for performance, the structure is optimized for maximum eigenfre-
quencies (𝑓Ω, Eq. 5.56). Subsequently, the controller is tuned using the formulation
in Eq. 5.60.

B. An integrated controller-structure topology optimization is performed for one sin-
gle relative sensor position 𝑁pos = 1. In this case, only the central sensor position
is used (Fig. 5.13), and the non-design domains corresponding to the sensors are
shortened (to 225 and 25mm).

C. Also an integrated controller-structure optimization, but with multiple relative sen-
sor positions 𝑁pos = 3.

D. Using the robust formulation (Chapter 4), the stage is optimized for 3 relative sensor
positions. The same settings as in the 2D robust example are used.

The resulting designs are shown in Fig. 5.14 and their performances are visualized in
Fig. 5.15, with exception of design B.This design has been optimized for a different number
of sensor positions than the other designs and therefore cannot directly be compared. Its
bandwidths are𝜔𝜔𝜔b = [623 559 470 472 675 685]Hz, which is substantially higher
than all the designs optimized for 𝑁pos = 3.
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(a) Sequential 𝑁pos = 3 (b) Integrated 𝑁pos = 1

(c) Integrated 𝑁pos = 3 (d) Robust integrated 𝑁pos = 3

Figure 5.14: Designs for the 3D case variations. The designs are extracted in Paraview (Ahrens et al., 2005) by
taking the iso-surfaces of the density field at 0.5 with linear interpolation.
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Figure 5.15: Comparison in bandwidth performance for the different designs having 𝑁pos = 3. The notation ‘rx’
means rotation around the x-axis.

From the bandwidth comparison in Fig. 5.15 can again be seen that the performance of
the sequentially optimized design (A) is significantly lower than the designs from the in-
tegrated optimizations (C and D). The improvements of the integrated optimization range
from +62% up to +167%, compared to the design optimized for maximum eigenfrequen-
cies. The lowest bandwidth in all the designs is in the z-direction. This can be compared
to the situation in the 2D examples (Table 5.3), where the bandwidth for the y-direction
was lowest. Here, the aspect ratio is such that the eigenmodes exhibit large deformations
in the z-direction.

Like in the 2D results, the performance (Fig. 5.15) of the robustly optimized design



5.5 Numerical examples

5

119

(a) Integrated (C) (b) Robust integrated (D)

Figure 5.16: The 3D designs after integrated optimization for 𝑁pos = 3 with cut-away of the left half, showing
the internal structure of the domain.

(D) is mostly similar to that of the design optimized without robust formulation (C). Only
bandwidth for the rotation around the z-axis shows a decrease, but the other bandwidths
are equal or increased when using the robust formulation. Different than the 2D cases,
the structures of the robust (D) and non-robust (C) designs look quite different (Fig. 5.14).
Also the internal structure of the two designs is quite different, as can be seen in Fig. 5.16.
This indicates the designs converge to different local optima.

The singular values of the sensitivity function are are shown in Fig. 5.17. The sequen-
tially optimized design (A) has a lower bandwidth than the others, which is recognized by
the poor disturbance rejection properties at low frequencies as compared to the other de-
signs. Another significant difference is that the sequentially optimized design exhibits far
less peaks touching the limit of 1/𝜇. In design A, only two of the robustness constraints are
active out of a total of 60, while for design C there are 21 active (as counted for constraint
values above −10−1).

In Fig. 5.17b can be seen that the design optimized with one relative sensor position
(B) is not satisfying all constraints. A peak that is considerably higher the limit of 1/𝜇 can
be identified at a high frequency. This is likely caused by mode switching with modes
outside of the calculated range. In the 3D examples, 𝑁 = 20 eigenmodes are calculated,
so when mode 21 (outside of the spectrum) switches with mode 20 a new peak can arise.
Since 20 eigenmodes are considered for these optimizations, the resulting designs do not
assure limitation of the peaks for mode 21 and onward.

Comparing the sensitivity functions for the robustly optimized design (D, Fig. 5.17d)
with those of the non-robust design (C, Fig. 5.17c), the amplitudes of the high-frequency
peaks are noticeably lower. This is because the worst-case value of the eroded, nominal,
and dilated designs is optimized. It provides a robustness against geometric deviations,
which seems to affect high frequencies more than low frequencies. This is a benefit of the
robust method that also inspires greater confidence in the behavior of eigenmodes outside
of the calculated spectrum.

The computation time required for these optimizations is significant, even with the re-
duction in number of constraints and approximate sensitivities. All the linear systems are
iteratively solved using the BiCGStab method (Saad, 2003), preconditioned by the gener-
alized algebraic multigrid (GAMG) method, which both are implemented in PETSc (Balay
et al., 2019). The cases are all run on 48 cores of a system with Intel Xeon Gold 6240 pro-
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(c) Integrated 𝑁pos = 3
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(d) Robust integrated 𝑁pos = 3

Figure 5.17: Sensitivity plots of the extreme singular values for the different 3D designs.

cessors. In Fig. 5.18, a graphical overview of the calculation times is shown, corresponding
to different methods presented. The most significant reduction of computational time is
caused by the approximation of the design sensitivities. Consistent sensitivities take on
average 24.5min to calculate¹, while the approximated sensitivities only take 5.9 s, which
is a difference of several orders of magnitude. Even with the investment of calculating the
augmentation basis, which takes about 15min, a computational gain is already obtained
for one constraint. In the considered case (with ℒ∞ constraints), there are 66 constraints
in total, which results in a computational gain of almost two orders (a factor 77) for cal-
culating all the design sensitivities, including the construction of the augmentation basis.

The local ℒ∞ norm constraints further reduce the total computation time required,
by limiting the number of constraints. Instead of 360 constraints for robustness when
constraining the diagonal entries, only 60 robustness constraints are required for theℒ∞
approach. Combining the two methods, the total time required to perform one design it-
eration reduces from 8983min (over 149 h) to 37min, which is a speedup of a factor 243.
These improvements in computation time thus enable the large-scale topology optimiza-
tion of 3D structures for closed-loop performance, which was infeasible to do before.

¹Only a few of these design sensitivities were calculated as it is deemed infeasible to do a full design iteration.
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Figure 5.18: Comparison in calculation time for the first design iteration for the 3D case with 𝑁pos = 3. As a
reference, the optimization maximizing the first three eigenfrequencies takes only 4.5min per iteration. Approx-
imated and consistent sensitivities are compared, and also the type of constraints is compared (diagonal entries
only versus local constraints on the ℒ∞ norms). The bars of the consistent sensitivities are clipped, but reach
8983 and 1633min for the diagonal and ℒ∞ constraints, respectively. Timings are obtained using 48 cores of a
system with Intel Xeon Gold 6240 processors.

5.6 Discussion
For the current work, constraints are presented that enable limitation of theℋ∞ norm cor-
responding to the sensitivity function. However, there are many other performance and
robustness measures in control theory that can be incorporated. The presented framework
may be extended by, for instance, a weighted sensitivity function or a mixed sensitivity
formulation (Skogestad and Postlethwaite, 2001), which incorporates the complementary
sensitivity function as well. It is suggested to further study robust control theory and
structured singular values (𝜇-analysis), which incorporate the robustness effect of para-
metric uncertainties in the system (Zhou et al., 1996). Also the effect of time delay is
important for further research, as it may significantly alter the behavior of the system at
high frequencies.

The number of different relative sensor positions incorporated into the optimization is
small for the numerical examples (up to 3). However, accuracy is usually required over an
entire surface for realistic applications. The presented implementation may become diffi-
cult to use for a large number of sensor/accuracy positions, as it directly results in more
constraints and extra computation time. Therefore, it is suggested to look into differ-
ent methods (e.g. aggregation Kennedy and Hicken, 2015) to incorporate many precision
points.

Furthermore, in the present work, a new basis of Krylov vectors is calculated each
design iteration. Since a gradient-based optimization is used, the designs will not differ
much from iteration to iteration, in particular in the later stage of the optimization process.
This means that also the Krylov vectors will be similar to those of the previous iteration.
By adaptively updating the augmentation basis or by using reanalysis techniques (Kirsch,
2010), further reduction of computation time can be expected.
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Also the optimization algorithm can potentially be further refined. The integrated
controller-structure optimization contains two types of variables. The control variables
are analytically related to the constraints and only involve reduced-order models, which
means higher-order derivatives can be calculated. By combining MMA for the density
variables with, for instance, sequential quadratic programming (SQP) for the control vari-
ables, a better convergence might be achieved with less oscillations and less design itera-
tions.

5.7 Conclusion
In this work, two new methods are introduced that enable large-scale 3D topology op-
timization for integrated design of MIMO controllers and structures, with performance
requirements on the ℋ∞ norm of the sensitivity function. The first method efficiently
allows constraints to be placed on the ℋ∞ norm of the sensitivity function for gradient-
based optimization. Local circle approximations are constructed for the Nyquist curves of
the sensitivity function, after which upper bounds of localℒ∞ norms can be calculated. A
correction scheme allows all the localℒ∞ norms to be constrained below an exact thresh-
old. This effectively results in limitation of theℋ∞ norm, thus ensuringMIMOdisturbance
rejection and robustness. The local approximation of theℋ∞ norm prevents convergence
problems due to multi-modality and non-differentiability in gradient-based optimization.

The second proposed method addresses a main computational bottleneck in integrated
controller-structure optimization: the time required for calculation of the adjoint eigen-
mode design sensitivities. In typical MIMO problems, many adjoint solution vectors are
required, which are costly to compute. Therefore, a reduced-order model, containing
eigenmodes augmented with Krylov vectors, is used to approximate the adjoint solution
vectors. This requires an investment in calculation of the Krylov vectors once each de-
sign iteration, but enables the efficient approximation of many adjoint solution vectors.
Using the design sensitivity approximations, the integrated controller-structure topology
optimization of large-scale 3D cases is enabled.

The proposed local approximations of the ℋ∞ norm are demonstrated using design
cases of MIMO motion stages, with three control loops in 2D and six in 3D. The structure
and controller are simultaneously optimized forweightedmaximumbandwidth and eigen-
frequencies subject to closed-loop stability and local ℒ∞ norm constraints on the sensi-
tivity function. Compared to designs optimized solely for maximum eigenfrequencies, the
system performance is significantly improved, increasing bandwidths in all control loops
by 62 − 167% for the demonstrated case in 3D. Also using the robust formulation results
in comparable performance improvements, while incorporating geometric uncertainties
and imposing a minimum feature size. In the existing work of Van der Veen et al. (2017),
only the diagonal entries of the sensitivity function are constrained. Here, it is shown that
this results in an optimized controller and structure with poor MIMO disturbance rejec-
tion properties, which was the initial motivation to use the ℋ∞ norm. Additionally, the
(approximated) ℋ∞ norm provides a natural aggregation for MIMO systems. This makes
the number of constraints independent of the number of inputs or outputs of the sys-
tem, significantly reducing the number of constraints and thereby also the computational
effort.

For the large-scale 3D demonstration case with six control loops, using both proposed
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methods, the time to perform a single design iteration for the integrated optimization
is 37min. Without the approximation of the design sensitivities this would take 44 times
longer, and without also approximation of theℋ∞ norm even 243 times longer (over 149 h
for a single design iteration). This clearly establishes the effectiveness of the approach. It
is also demonstrated that adding a few Krylov vectors already results in design sensitivi-
ties accurate enough for topology optimization. By adding additional Krylov vectors, the
accuracy of the design sensitivities can be improved, thus balancing computation time
with accuracy. An adaptive scheme in which accuracy is increased as the optimization
process converges could be considered in future work.

The current optimizations are focused on the limitation of theℋ∞ norm corresponding
to the sensitivity function. In robust control, the ℋ∞ norm is also used to analyze the
effect of uncertainties in the system. Possibly, the framework can be extended to perform
integrated controller-structure optimization for such cases as well.
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6
Conclusions

T hemain goal of this thesis was the development ofmethods that enable integrated con-
troller and topology optimization for large-scale and 3D systems with MIMO control,

for the application ofmotion system design. Many different aspects have been explored to-
wards this goal. First of all, practical manufacturing considerations are required to ensure
that the optimized results are also producible. Using additive manufacturing, a demon-
strator was physically realized and also experimentally validated. Secondly, topology op-
timization requires a significant amount of computational time. Therefore, efficient meth-
ods must be established to enable the optimization to finish within a reasonable amount
of time. Finally, specific techniques for integrated controller-structure optimization are
presented for both SISO and MIMO systems.

6.1 Manufacturing considerations
The manufacturing of a topology optimized stage is done using a multi-step process, for
instance, using additive manufacturing, followed by milling to remove support material
and improve surface quality, and finally the assembly of actuators and other components.
To prevent manual alterations to the optimized design, and thereby potentially harming its
performance, the manufacturing steps must be included into the optimization. In Chap-
ter 2, a systematic process is presented that incorporates the steps of the manufacturing
process into the optimization. Several small contributions include the geometric mapping
of components into the mesh, ensuring interfaces and connectivity for these components,
and limiting the amount of support material required in the design. Furthermore, an over-
hang filter is used to ensure a maximum overhang angle, allowing the design to be printed.
Based on an existing overhang filter, improvements are proposed that enable extended
freedom in the choice of print orientation and overhang angle.

A robust formulation is often used in topology optimization to ensure performance
levels under manufacturing variations and enable control over the minimum feature size
in a design. After evaluation of performance for multiple geometrically perturbed de-
signs (eroded and dilated), the worst-case performance is used to incorporate a measure
of robustness into the optimization. This is used in Chapters 2, 4, and 5 to prevent the
appearance of very thin and fragile structures in the design. Although the robust for-
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mulation imposes restriction on the design, from the MIMO studies in Chapter 5 it can
be concluded that this has no negative effect on performance. An explanation is that
the considered problem features multiple local optima with similar performance, and the
robust formulation helps to focus on variants with favorable manufacturability character-
istics. Finally, the topology optimization incorporating manufacturing considerations is
demonstrated on an industrial motion stage, optimized for maximum eigenfrequencies.
The design, obtained in a fraction (25 hours) of the conventional design time, is almost
directly manufacturable without manual adaptations. It is printed by laser powder-bed
fusion, after which it is milled, assembled, and experimentally validated. Its measured
eigenfrequencies are within 1% of the expected values, and its performance is increased
by 15% compared to a conventional design. It can be concluded that topology optimization
in combination with additive manufacturing is viable for industrial applications, and can
enable unprecedented performance levels.

6.2 Computational effort
Topology optimization is computationally very intensive, especially for problems where
modal analyses are needed to describe the system dynamics. Parallel computing is awidely
appliedmethod of reducing the time required for optimization. This is considered in Chap-
ter 2, where a uniform voxel-grid is used for an efficient geometric representation of the
design. Using a parallel implementation, an eigenfrequency maximization on a very de-
tailed mesh¹ can be performed in only 25 hours with 192 CPU cores. Furthermore, the
use of the robust formulation requires additional computational effort. Because multiple
perturbed designs have to be analyzed, it typically leads to an increase of computational
cost by a factor 3. In Chapter 2, the mass properties of the dilated design and stiffness
properties of the eroded design are combined to estimate a worst-case performance with
only one analysis instead of three. A further generalization is presented in Chapter 4,
where reduced-order models are generated for each of the perturbed designs, based on
the eigenmodes of the nominal design. Thus besides requiring only one modal analysis
instead of three, these reduced-order models can be used to describe the (approximate)
dynamic behavior of the perturbed designs in a more flexible manner.

Next to the modal analysis of the system, an effective topology optimization also re-
quires calculation of design sensitivities. To calculate these for the eigenmodes is compu-
tationally extremely costly, as large saddlepoint problems need to be solved for the eigen-
modes involved in each constraint. The calculation of the saddlepoint problems is avoided
in Chapter 3 by ignoring the design dependence with respect to the model reduction ba-
sis (i.e., the eigenmodes). It is shown that the design sensitivities remain accurate when
the reduction basis is augmented with quasi-static correction vectors based on the system
input and output. This results in a computational gain of almost an order of magnitude
in the numerical examples. However, a limitation is that the addition of correction vec-
tors introduces fictitious eigenfrequencies in the reduced-order model that can potentially
destabilize a closed-loop system. Therefore, a different method is presented in Chapter 5 to
approximate the eigenmode design sensitivities. The expensive saddlepoint problems are
approximately solved by a reduced-order model augmented with Krylov vectors, which

¹The mesh consists of almost 9 million elements/voxels.
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are based on the system input(s) and output(s). When applied to the 3D topology op-
timization problems for integrated system performance, speedups up to a factor 44 are
achieved. Additionally, the computational effort can be balanced with accuracy by adding
a different number of Krylov vectors. Given these significant computational gains, it is
concluded that these methods enable the efficient large-scale 3D topology optimization
for the integrated system performance.

6.3 Integrated controller-structure optimization
The final challenge is to effectively optimize system performance by integrated controller-
structure optimization. A basic method of optimizing for system performance is to limit
resonances of the structure, which is presented in Chapter 3, although it does not include a
controller. By calculating the resonance frequencies and imposing constraints on the dy-
namic response amplitudes corresponding to these frequencies, the resonance peaks can
effectively be limited below an upper bound. Unfortunately, this approach provides lim-
ited insight into closed-loop behavior and is known to be conservative. Peak frequencies
cannot be calculated explicitly for closed-loop systems, which prevents using the method
of Chapter 3 in integrated controller-structure optimization. Therefore, another approach
is explored in Chapter 4, which is focused on integrated controller-structure optimization
using the open-loop Nyquist curve. Local approximations are constructed to the char-
acteristic circular shapes in the Nyquist curve, which are caused by flexible eigenmodes.
These circular approximations allow for simple geometric constraints in the complex do-
main, effectively restricting the global shape of the Nyquist curve. In this way, closed-
loop stability and disturbance rejection properties (i.e. modulus margin) can be enforced
for SISO systems. Numerical examples show significantly better performance for designs
optimized with this integrated approach, with bandwidths up to 350% higher as compared
to structures simply optimized for maximum eigenfrequencies. Therefore, a clear con-
clusion is that integrated controller-structure optimization based on closed-loop system
characteristics can achieve significantly higher performance levels in comparison to the
eigenfrequency maximization approach.

The SISO approach based on open-loop Nyquist curves cannot be used for MIMO sys-
tems, as it does not incorporate the closed-loop interaction and coupling with the other
control loops. Therefore, the method is extended to MIMO systems in Chapter 5. Instead
of local circular approximations on the open-loop Nyquist curves, they can also be con-
structed on closed-loop Nyquist curves. These approximations can directly be used in
optimizations with constraints on individual entries of the sensitivity function to ensure
disturbance rejection properties. However, it is shown that this approach of constraining a
limited number of entries results in designs with very high singular values of the sensitiv-
ity function, which characterizes a high sensitivity to simultaneous disturbances on multi-
ple channels. Moreover, the computational cost scales directly with the number of entries
constrained. To address these issues, approximate local upper bounds of theℋ∞ norm (i.e.
the peak maximum singular value) are constructed. Using the local circle approximations,
maximum Frobenius norms can be approximated, which provide local upper bounds to
the maximum singular values. An adaptive correction factor is used to correct the error
and enable limitation to an exact upper limit. Additionally, the Frobenius norm provides a
natural way of constraint aggregation, reducing the number of constraints six-fold in 3D,
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thus providing additional computational gain. For 3D numerical examples with control
in six degrees of freedom, designs are generated with bandwidths up to 150% higher than
designs optimized for eigenfrequencies, while satisfying the MIMO disturbance rejection
requirements on theℋ∞ norm. It is therefore concluded that using the proposed formula-
tion based on the Frobenius norm is superior both in numerical performance and accuracy.
With this final extension, the initial goal of this dissertation is fulfilled and designs can
efficiently be obtained in 3D for integrated MIMO system performance.

6.4 Recommendations
Robust control In this dissertation, the focus is on rejecting disturbances entering the con-
trol loop. However, in reality there may be many other factors impeding the performance
of a system, such as geometric differences causing a shift of mass or stiffness, offsets in
loads or sensing position, or time delay. Especially at high frequencies the dynamic prop-
erties may be completely different in reality than as modeled due to such aspects. It is
suggested to incorporate the effect of such uncertainties into the optimization to ensure
more robust designs. The presented method using theℋ∞ norm in Chapter 5 may be seen
as an initial step towards the more general methods that are found in the field of robust
control Zhou et al. (1996).
Accuracy at many positions Many applications require accuracy over entire surfaces in-
stead of only at a small number of positions. In the methods presented in this dissertation,
addition of more locations for accuracy results in a growing amount of constraints. There-
fore, ensuring accuracy over an entire surface by discrete locations becomes impractical,
as it results in a very large number of constraints. To incorporate the effect of spatial
accuracy in an efficient manner, further research is required.
Adaptive updating of reduced-order model While large computational gains are presented
in this dissertation, the integrated controller-structure topology optimization still requires
more than 8 times the computational effort as compared to an eigenfrequency maximiza-
tion. Faster solution times enable optimizations with finer design resolution or with more
constraints (e.g. more sensor positions). Gradient-based optimizations are characterized
by relatively small design differences between iterations. This means that, for instance,
eigenvectors and Krylov vectors will be similar to those in the previous iteration, espe-
cially in the later stage of the optimization where design changes usually becomes smaller.
Significant computational gains might be achieved by adaptively updating reduced-order
models or by correcting the eigenvectors from iteration to iteration.
Widening range of applications Given the gains that were demonstrated in motion system
design, it is of clear interest to explore further design problems that require an integrated
approach. Next to problems involving structural dynamics, also e.g. the thermomechani-
cal behavior of a system is often subject to stringent requirements that could be included.
In a way, this dissertation only forms the beginning of a wide area of applications to ex-
plore, with the combination of the design freedom offered by both topology optimization
and additive manufacturing potentially allowing significant benefits.
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A
Appendix

A.1 Robust formulation for eigenfrequencies
The design sensitivities of eigenfrequency Ω𝑖 (Eq. 2.14) with respect to the Young’s mod-
ulus 𝐸𝑗 and mass density 𝜌𝑗 are (from, e.g., Haftka, 1990)

𝜕Ω𝑖
𝜕𝐸𝑗

= 1
2Ω𝑖

𝜙𝜙𝜙T𝑖
𝜕K
𝜕𝐸𝑗

𝜙𝜙𝜙𝑖 ,
𝜕Ω𝑖
𝜕𝜌𝑗

= −Ω𝑖
2 𝜙𝜙𝜙T𝑖

𝜕M
𝜕𝜌𝑗

𝜙𝜙𝜙𝑖 .
(A.1)

The sensitivities of the stiffness and mass matrix (Eq. 2.13) relate to the unit element ma-
trices K0 and M0 through the assembly operation, which are positive semi-definite and
positive definite, respectively. This implies that the sensitivities of the assembled system
matrices 𝜕K

𝜕𝐸𝑗
and 𝜕M

𝜕𝜌𝑗
are positive semi-definite.

𝜙𝜙𝜙T𝑖
𝜕K
𝜕𝐸𝑗

𝜙𝜙𝜙𝑖 ≥ 0 ∀ 𝜙𝜙𝜙𝑖 ≠ 0,

𝜙𝜙𝜙T𝑖
𝜕M
𝜕𝜌𝑗

𝜙𝜙𝜙𝑖 ≥ 0 ∀ 𝜙𝜙𝜙𝑖 ≠ 0.
(A.2)

Generally, these quadratic forms are positive, as they are only equal to zero in specific cases
of element deformation, such as no deformation or a rigid body deformation of element 𝑗.
Additionally, the eigenfrequency Ω𝑖 is positive, which means the following relations hold

𝜕Ω𝑖
𝜕𝐸𝑗

≥ 0 and
𝜕Ω𝑖
𝜕𝜌𝑗

≤ 0. (A.3)

From these it is evident that increasing the Young’s modulus will generally result in higher
eigenfrequencies and increasing the mass generally results in lower eigenfrequencies.
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A.2 Circle in the complex domain
Below, the proof of the relations in Eq. 4.5 is provided. It additionally proves that the
single first-order mode approximation of Eq. 4.3 describes an exact circle in the complex
domain. A generalized circle is defined by the parametric equation

𝐴𝑤𝑤 + 𝛾𝑤 + 𝛾𝑤 + 𝐷 = 0, (A.4)

with variable 𝑤 ∈ ℂ, parameters 𝐴,𝐷 ∈ ℝ, 𝛾 ∈ ℂ, and • denoting the complex conjugate.
Depending on the values of the parameters, the parametric equation either describes a
circle or a line (Schwerdtfeger, 1979). In case of a circle, its midpoint and radius are defined
by respectively

𝑤0 = − 𝛾𝐴 and 𝑅2 =
||𝛾 ||

2

𝐴2 − 𝐷
𝐴 . (A.5)

The Nyquist curve is evaluated over a line in the direction of the imaginary axis as
𝑠 = 𝑗𝜔. This line can be described using the generalized circle equation (with 𝐴 = 0,
𝛾 = 1 + 0𝑖, and 𝐷 = 0) and using the complex variable 𝑠 as

𝑠 = 𝑗𝜔 ⇔ 𝑠 + 𝑠 = 0. (A.6)

The approximated transfer function �̃�𝑖(𝑠) of Eq. 4.3 is a Möbius transformation (Schwerdt-
feger, 1979), which maps the line from the 𝑠-domain to a circle in the 𝐿(𝑠)-domain. The
parametric equation for the transformed circle can be found using the inverse mapping,
with the constant offset ̆𝐿𝑖 removed, as

𝑤 = �̃�𝑖(𝑠) − ̆𝐿𝑖 =
𝑝𝑖

𝑠 − 𝜆𝑖
⇔ 𝑠 = 𝑝𝑖 + 𝜆𝑖𝑤

𝑤 , (A.7)

with the mapped variable 𝑤 ∈ ℂ. Substituting this into Eq. A.6 and rewriting, yields the
parametric equation of the mapped curve as

𝑝𝑖 + 𝜆𝑖𝑤
𝑤 + 𝑝𝑖 + 𝜆𝑖𝑤

𝑤 = 0, (A.8)

which can be rearranged to another generalized circle equation as

(𝜆𝑖 + 𝜆𝑖)𝑤𝑤 + 𝑝𝑖𝑤 + 𝑝𝑖𝑤 = 0. (A.9)

Using Eq. A.5, the midpoint relative to the offset ̆𝐿𝑖 and the radius respectively become

𝑤0,𝑖 = − 𝑝𝑖
2Re (𝜆𝑖)

and 𝑅𝑖 =
||𝑝𝑖 ||

2 |Re (𝜆𝑖)|
. (A.10)

Again adding the constant offset ̆𝐿𝑖 that was removed in Eq. A.7, the midpoint of the
Nyquist curve �̃�𝑖(𝑗𝜔) is obtained as

𝑋𝑖 = ̆𝐿𝑖 −
𝑝𝑖

2Re (𝜆𝑖)
. (A.11)
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