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Preface

Information is physical.
–Rolf Landauer

The universe as a quantum computer.
–Seth Lloyd

Nature exists at the edge of of order and chaos.
– Mitchell Waldrop

Many years later, I can still remember that starry night in a small mountain village of
Shandong, grandmother was cooking in the room, while I was gazing at the galaxy on the
roof, shocked by the magnificent beauty of the universe. I chose science in high school, with
a dream that I can understand the world one day. Today, I am still studying physics, on the
other side of the world, feeling lucky that I can still be surprised by the fantastic puzzles
of nature. Yet, the more I learned, the more I realized how insignificant is my understand-
ing of nature. After so many years, I stand at the cross land of quantum, information, and
complexity, having no idea about where to go.

Whatever, I am going to finish my little thesis today. At the end of this long journey, I
want to thank my family, who fundmywhole master study. Without their love and support,
I would never be here. Also the best thanks to my good friends, they are always by my side
in these tough times. At last, I want to sincerely express my gratitude to my supervisor, Dr.
Dobrovitski, for his guidance, patience, and encouragement. His training and professional
knowledge made this thesis possible.

– Yuning Zhang,
May 11th, 2022
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Chapter 1

Introduction

1.1 A Brief History of Quantum Control

Quantum mechanics has the distinguished fame of being the most successful and the most
mysterious scientific theory. Since the founding of quantum theory in the 1920s, manipu-
lating quantum systems at molecular and atomic levels has become one of the most exciting
dreams of physicists. The earliest attempt to drive a quantum system is realized by Isidor
Rabi in 1938[38] when he found nuclear magnetic momentums can be manipulated and
measured using pulses of resonant RF or microwave radiation. Rabi was awarded the Nobel
Prize in 1944 for this work and his famous discovery is known as Rabi driving today, as one
of the most fundamental ideas in quantum science and technology.

It is quite an astonishing fact that many of the basic concepts and tools that are widely
used in quantum information processing were already invented in the 1950s. Aside from
Rabi driving, the two typical time scales for qubit characterization, relaxation time T1 and
dephasing time T2, also originated from energy absorption and free induction decay exper-
iments in NMR, following the discovery of Purcell et al[37][42]. The well-known concept
of Bloch sphere was proposed in 1954 by Felix Bloch[7]. The idea of coherent quantum con-
trol also emerged during the time, when physicists developed a series of noise mitigation
methods to achieve better spectroscopic characterization of molecules. In 1950, Erwin Hahn
demonstrated that a simple pi/2 pulse could mitigate the impacts of magnetic field inhomo-
geneities and refocus the nuclear spin by equivalently reversing its time evolution[18]. The
discovery is now known as the Hahn echo. More coherent control sequences, such as Carr-
Purcell sequence[11], were later developed to extend the dephasing time of typical NMR
systems[42].

The wide application of NMR techniques in quantum information science is not a co-
incidence. Decades of research in magnetic resonance and spin dynamics provided a so-
phisticated understanding about how to characterize, control, andmanipulate quantum sys-
tems. However, no one realized that quantum systems can be used for information process-
ing until 1980s, when Charles Bennett[6], Paul Benioff[5], and Feynman[17] pioneered the
thoughts, that information can be stored in the state of a quantum system, and processed by
programmable unitary operations constructed from time evolutions of Hamiltonian. The
building block of such a quantum system is naturally proposed to be a quantum bit, or
qubit, a two-level artificial quantum system mimicking its classical adversary[39]. Due to
the equivalence between the qubit and the two-level system from spin magnetization, tech-
niques developed inNMR research can be directly used to drive and control qubits built from
various types of physical systems[46], thus emerged the discipline of quantum control.
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1. INTRODUCTION

1.2 Quantum Control for Quantum Information Processing

Back to today, the last decade has witnessed the explosive growth of quantum information
science and technology. Coherent control and manipulation of many physical systems have
been achieved and utilized to perform information processing, ranging from photons, cold
atoms, and trapped ions, to superconducting circuits and electronic spin in solids. Universi-
ties, research institutes as well as tech giants, and startup companies supported by venture
investors, are all pursuing ambitious newprogress in quantum technologies. One of themost
famous examplesmight be the claim of ”quantum supremacy” byGoogle[2]. Other achieve-
ments include the distribution of entanglement over remote quantum internet[57][23] and
the fast progress and applications of quantum metrology in many fields[12]. Yet, it’s quite
hard to turn these pioneering achievements into a practical advantage of quantum tech-
nology. The power of quantum hardware is limited due to the noise existing in artificial
quantum systems, and the problem of decoherence will become vital as the system size goes
larger. In fact, even the most cutting-edge quantum computing platform still can’t beat its
classical adversary in any practical task. For other applications like quantum communica-
tion and quantum sensing, decoherence and noise also impose severe restrictions in terms
of channel fidelity[54], or measurement sensitivity[12].

In a fundamental view, quantum information processing involves dynamical processes of
quantum systems, which is inherently non-unitary due to the couplings between the system
and its environment. The information stored in qubits will therefore decay over time. To
make information processing possible, the coherence time of a quantum system must be
extended to a considerable scale, such that a meaningful sequence of quantum operations
can be executed before the information is lost.

Realizing that quantum decoherence is inevitable, physicists developed a series of tech-
niques targeting the correction or mitigation of error and noise. One approach is the quan-
tum error correction proposed by Peter Shor in 1995[41][40], following the idea of error
correction in classical computer science. Error correction has become an active research field
in recent years and it has been experimentally demonstrated in physical systems such as su-
perconducting qubits[35][31]. Yet, building a fault-tolerant quantum computer with error
correction code is still quite challenging. First, an error-corrected logical qubit requires mul-
tiple noisy physical qubits, depending on different protocols. Then, the fidelity of physical
qubits must be higher than a threshold to make error correction possible. It’s estimated that
due to these limitations, millions of physical qubits will be needed to perform useful tasks
under the current noise level, and the effect of quadratic quantum speedup can’t compensate
for the cost[3]. To reduce the cost of error correction, the noise level of physical qubits must
be further suppressed.

Therefore, reducing the noise of physical qubits via quantum control techniques would
be important to achieve fault-tolerant quantum computers. This approach is also known as
quantum noise mitigation. As inspired by the Hahn Echo, precisely manipulating the evolu-
tion of qubits with a sequence of control pulses can effectively decouple the qubit from its en-
vironment, and thus mitigate the noise and decoherence. These techniques has been widely
used in major physical platforms, such as NV-center[51][25][59], neutral atoms array[26],
superconducting circuit[10], or ion trap[30], and significantly improved the performance of
these systems. However, it’s not clear whether noise mitigation alone will be sufficient to
satisfy the hardware requirement of modern quantum technology. More exploration is still
needed to characterize the noise in quantum systems and design proper protocols tomitigate
them.
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1.3. Many-body Noise and Control of Interacting Spins

1.3 Many-body Noise and Control of Interacting Spins
As one of the most fundamental elements in the quantum world, spins play a major role in
various quantum information processing platforms. Spin qubit in silicon quantum dots is
regarded as one of the potential approaches to general quantum computing [52][56]. Elec-
tronic spins associated with NV-centers in diamond are widely used for nano-scale sensing
and imaging[8][44]. Other application based on solid-state spins includes photonic quna-
tum netwroks[54] and quantum memory[9].

Spin systems are also troubled by noise and decoherence. General sources of noise in-
clude magnetic field inhomogeneities and spin-spin interactions such as magnetic dipolar
interactions. Mitigating these noises and improving the coherence time of spin qubits will
directly benefit all potential applications based on spin systems. Thanks to the research in
NMR fields, coherent control techniques have been developed to handle different types of
noises. Themagnetic field inhomogeneities inNV systems can be effectivelymitigated by the
CP(Carr-Purcell) like sequences ormore advanced XY-8 sequence[25], whilemagnetic dipo-
lar interactions can be mitigated by WAHUHA(Waugh-Huber-Haeberlen) sequence [53].

Yet, these traditional dynamical decoupling techniques are usually less efficient when
disorder and strong spin-spins interactions are present[59], despite their great success in
applications to NMR and other weakly coupled spin systems. Besides, the control pulse
imperfections, such as the finite duration of pulses and the imperfect shape of pulses, will
also deteriorate the performance of the control protocols. Small errors in the control pulses
(treated as high order terms in the averagedHamiltonian theory)may accumulatewith time,
and lead to unexpected behaviors such as long-lived coherence[20][28]. Furthermore, the
dynamics and noise features of low dimensional interacting spin systems (2D, 1D) are not
so clear, compared with the well studied 3D case[14].

In brief, precise control of a disordered, strongly interacting spin system remains an
open problem. More research and exploration are needed to understand the many-body
dynamics and achieve a more sophisticated control. In the view of physics, characterizing
the many-body noise can also provide insight into a diverse array of physical phenomena,
ranging from Cooper-paired super-fluidity to quantum criticality and many-body localiza-
tion[15][33][22].
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Chapter 2

Spin Qubit in Bath

2.1 Spin as a Qubit
Spin is one of themost fundamental elements of quantummechanics. We start with themost
simple case of spins, spin-1/2. In a background field B⃗, its magnetic energy is described by
the Hamiltonian

H = −µ⃗ · B⃗ = −h̄γB0Iz. (2.1)

The z axis is along the quantizing field, and B0 is the field strength. γ is the gyromagnetic
ratio of the particle, and Iz is the normalized angular momentum operator in the ẑ direction.
Angular momentum for spin-1/2 are given by Pauli matrices Ij = σj/2, j = x, y, z, where

σx ≡
(
0 1
1 0

)
, σy ≡

(
0 −i
i 0

)
, σz ≡

(
1 0
0 −1

)
, (2.2)

Spin-1/2 particles naturaly satistify the definition of a qubit, which can be clearly seen in the
matrix form,

H = −h̄ω0Iz =

[
−h̄ω0/2 0

0 h̄ω0/2

]
, (2.3)

The Hamiltonian marks a two-level quantum system with energy splitting ω0 = γB0, as
shown in Fig. 2.1.

h̄ω0

|0⟩

|1⟩

Figure 2.1: Two-level system as a qubit

The states |0〉 and |1〉 represent the two energy levels of the system,which are also referred
as spin up |↑〉 and spin down |↓〉. For single spins, the energy splitting between the two levels,
which is just Zeeman splitting, is determined by the Larmor frequency ω0.

Any state of such a two-level system can be expressed as

|ψ〉 = eiδ

[
cos
(
θ

2

)
|0〉+ eiϕ sin

(
θ

2

)
|1〉
]
, (2.4)

where θ and ϕ are the two parameters on the sphere, δ is a global phase. It can be visualized
with the Bloch sphere, as shown in Fig. 2.2.
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2. SPIN QUBIT IN BATH

φ

θ

x̂ = |+⟩

ŷ = |i⟩

ẑ = |0⟩

−ẑ = |1⟩

|ψ⟩

Figure 2.2: Bloch sphere

The vector from the origin to the quantum state marks the direction of its magnetic mo-
mentum, as the momentum is characterized by Pauli matrices. Spin-1/2 particles are a nat-
ural candidate for qubits. Higher-order spins are not addressed in this thesis since qubit is
more relevant in the field of quantum information.

2.2 Cluster of Interacting Spins
Nucleus and electrons are everywhere in nature, and so are spins. Those basic fermion parti-
cles are identical and possess odd spin numbers. Electron is spin-1/2 particle, while different
species of nuclear spins have different spin quantum numbers, such as 1/2, 3/2, etc. Yet, the
abundance of spins in nature is not good news for artificial quantum devices based on spins
qubits. An interacting spin cluster can be viewed as a spin qubit in a spin bath, where the
impact from the bath on the qubit can be treated as environmental noises. Decoherence and
dynamics of the spin qubit can be further studied based on this picture. In order to manip-
ulate spin qubits and protect them from noise and decoherence, the interactions between
spins must be taken into consideration. Constructing the basic many-body Hamiltonian for
such a spin cluster is the first step to understand the system.

2.2.1 Magnetization
For a cluster of spins in a background quantizing fieldB0, their total Zeeman energy is given
by the static Hamiltonian

HZ = h̄
∑
i

γi(B0 +∆Bi)S
z
i . (2.5)

in which ∆Bi is the inhomogeneity of local magnetic field.

2.2.2 Dipolar Coupling
The most intrinsic interaction between spins is the magnetic dipole-dipole interaction, which is
also known as dipolar coupling. Consider a cluster of spins, in which two spins are labeled
by i and j. The dipolar interaction can be written as a pair-wise summation over all possible
(i, j),

HD =
∑
i<j

h̄γiγj
|r⃗ij |3

[3(I⃗i · n⃗ij)(I⃗j · n⃗ij)− I⃗i · I⃗j ]

µ0 is the magnetic permeability of free space, and γi is the gyromagnetic ratio of i-th spin.
n⃗ij is the normalized vector between the location of spin i and the location of spin j. I⃗i is a
vector of all Pauli matrices of the spin I⃗i = (Ixi , I

y
i , I

z
i ).
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2.2. Cluster of Interacting Spins

The dipolar coupling originated from the electromagnetic force and is thus a long-range
interaction. It exists between both electron spins and nuclei spins.

2.2.3 Qubit in a Spin Bath

Given theHamiltonian of a single spin and the spin interactions, we canmodel the spin qubit
in an interacting spin bath, as shown in Fig. 2.3. The cluster contains two parts, the central
spin qubit, and the environmental spins as a noisy bath. Interactions between the bath spins
and the central spin qubit will lead to decoherence of the qubit.

Figure 2.3: A solid spin qubit in a bath of interacting spins

For nitrogen-vacancy centers in diamonds, dipolar interaction between the spin qubit
and nuclear spins (13C ), and paramagnetic impurities (N) in its environment is a major
source of the noise. NV-associated electronic spin will inevitably interact with these spins in
the environment and thus suffer from decoherence[32][21]. Due to the low density of bath
spins, the average distance between two bath spins is much larger than the lattice constant.
Thus the long-range dipolar couplingwill be dominant, while scalar couplings and hyperfine
couplings can be safely ignored.

Situations aremore complicated for spin qubits in semiconductor quantum dots. Dipolar
coupling between the electron spin in dots and bath spins, such as 71Ga and 75As in GaAs
quantum dot[24], is still an important source of decoherence, but other types of noise such
as hyperfine coupling between the nuclei and electron spins or charge noise originated from
the Columb interaction will also affect the performance of the qubit[36].

Among all the spin interactions given above, dipolar interactions between spins is the
most general one. A model of interacting spins cluster based on dipolar couplings will be
useful to study various topics in spin dynamics and quantum information processing, the
Hamiltonian of which can be given as

Hsys = HZ +HD = h̄
∑
i

γi(B0 +∆Bi)S
z
i +

∑
i<j

h̄2 µ0γiγj
4π|r⃗ij |3

[3(S⃗i · n⃗ij)(S⃗j · n⃗ij)− S⃗i · S⃗j ]. (2.6)

The interaction is written in SI unit thus there is a prefactor of µ0/4π. We use a dimensionless
spin operator S, thus an extrah̄ is appended. This norm will follow in the coming chapters.

We will focus on the many-body Hamiltonian given in Eqn. 2.6 and explore the coherent
control of such a system. Sophisticated interactions of electron spins will not be covered in
this thesis.
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2. SPIN QUBIT IN BATH

2.3 Hamiltonian in the Rotating Frame
As a basic discovery in magnetic resonance, spins precess around the z axis in a quantizing
field[42]. In a many-spin system, the precessions, considering the inhomogeneity as well,
can be fully eliminated by using a joint rotating frame of all spins.

2.3.1 Rotating Frame Transformation
A transformation to the joint rotating frame of multiple spins is

|ψ〉 →
∏
j

e−itω̃jS
z
j |ψ〉R (2.7)

in which ω̃j is the angular velocity for each spin. Substitute the transformation into the
Schroedinger equation will give the Hamiltonian in the rotating frame, as shown in the ap-
pendix B.1

Hrot = V †HlabV −h̄
∑
j

ω̃jS
z
j , V = e−it

∑
j ω̃jS

z
j . (2.8)

The product
∏
j e

−itω̃jS
z
j can be contracted to a exponential summation since Szj is commu-

tative with each other.
Apply the transformation to the system Hamiltonian given by Eqn. 2.6,

Hrot = V †HlabZ V + V †HlabD V −h̄
∑
j

ω̃jS
z
j . (2.9)

2.3.2 Secular/Non-Secular Hamiltonian
For the dipolar coupling, most terms are oscillating after the rotating frame transformation,
asS+

i S
−
j e

i(ω̃i−ω̃j)t, while others, such asSzi Szj are not. Those termswhich are oscillating at the
Larmor frequencies of spins, can not be observed with a low-frequency measurement since
their time integral during the measuring period goes to zero[42]. These oscillating terms are
called non-secular terms, and those non-oscillating terms are called secular. Here we need
to decide which terms are secular that should be preserved and which terms are non-secular
and thus should be dropped.

It can be shown that all the other terms in (S⃗i · n⃗ij)(S⃗j · n⃗ij) are oscillating with Lar-
mor frequencies, with proof given in the appendix B.1. Here all the crossing terms are
non-secular that should be dropped, while further discussions are needed for flip-flop terms
n2xS

x
i S

x
j + n2yS

y
i S

y
j .

Like Spins

We start from the case of like spins, which means the two spins have quite similar Larmor
frequencies. In this case, the difference between Larmor frequencies can be ignored com-
pared with the dipolar interaction strength |ωi − ωj | � Dij . This condition can be extended
to multiple spins, |ωi − ωj | �

√∑
ij D

2
ij for any pair of spins in a spin cluster. An ideal ex-

ample of this situation is a cluster of homonuclear spins in a uniform global magnetic field,
where all spins have the same Larmor frequency given by the quantizing field ωi = ωj = ω0.

The Hamiltonian of likes spins in the rotating frame is given by

Hrot = Hrot
Z + V †HD,ijV =

∑
i<j

h̄2µ0γiγj
4π

3n2z − 1

2|r⃗ij |3
(3Szi S

z
j − S⃗i · S⃗j) (2.10)

8



2.4. Thermalized Spin Bath

in which the constant coefficients are dropped and we used that n2x + n2y + n2z = 1. Write
elementary vector in spherical coordinate, (nx, ny, nz) = (sin θ cosϕ, sin θ sinϕ, cos θ), then
you can get the formula of dipolar coupling strength

Dij,like =
h̄ µ0γiγj

4π

3 cos2 θij − 1

2|r⃗ij |3
. (2.11)

Unlike Spins

If the difference between Larmor frequencies of spins is much larger than the dipolar cou-
pling strength, |ωi − ωj | � Dij , then the two spins are called unlike spins. This is a typical
case when a strong inhomogeneity of magnetic field is present in the system. Therefore the
oscillating terms related with e−it(ωi−ωj) are non-secular. In this case, all the flip-flop terms
are dropped and only Ising zz terms are preserved.

Hrot = Hrot
Z + V †HD,ijV =

∑
i<j

h̄2µ0γiγj
4π

3n2z − 1

|r⃗ij |3
Szi S

z
j (2.12)

with a coupling strength

Dij,unlike =
h̄ µ0γiγj

4π

3 cos2 θij − 1

|r⃗ij |3
(2.13)

The approximation of unlike spins is more useful in practical quantum devices. For an ex-
ample, the Larmor frequency of 13C at B0 = 7.04T is 75.47MHz. While in a dimond lattice
the unit cell length is approximately a = 3.56Å. The dipolar coupling strength between two
neighboring 13C spins is then (µ0γ

2h̄)/(4πa3) ≈ 13.45Hz. The noise linewidth of multiple
interacting spins is given by b =

√∑
j D

2
j . Taking this into consideration, the effective mag-

nitude of dipolar coupling is still much smaller than the Larmor frequency even at a lower
magnetic field.

Summary

Define the dipolar coupling strength of like spinsDij,like as a newDij , thenDij,unlike = 2Dij .
We can rewrite the Hamiltonians given in Eqn. 2.12 as

Hlike =
∑
i<j

h̄Dij(3S
z
i S

z
j − S⃗i · S⃗j), Hunlike =

∑
i<j

2h̄DijS
z
i S

z
j .

In practice, the approximation of unlike spins is a better description of the experimental
system due to strong local field inhomogeneity.

2.4 Thermalized Spin Bath
In the picture of a spin qubit and a noisy bath, we must first know the basic properties of
the bath before analyzing the dephasing of the qubit. First, we assume that the qubit is
surrounded by a bath at a constant temperature, such that the system can be described by
a canonical ensemble[42]. Then we assume that the spin bath is large enough and fully
thermalized such that the bath should stay at its equilibrium state.

In a canonical ensemble, the equilibriumdistribution of possible energy eigenstates obeys
the Boltzmann statistics

P (|p〉) = 1

Z
exp

(
− Ep
kBT

)
, Ep = 〈p|H|p〉 , Z =

∑
p

exp
(
− Ep
kBT

)
. (2.14)
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2. SPIN QUBIT IN BATH

in which T is the temperature of the spin bath, Z is the canconical partition function given
by The energy eigenstate |p〉 is defined by the configurations of spins, which takes a form
|↑↑↓↑ . . .〉. Due to the orthogonality of eigenstates, non-diagnoal termswill be zero, 〈i|H |j〉 =
0, i 6= j. Thus the equilibirum density matrix of the bath is given by

ρB =
1

Z

∑
p

exp
(
− Ep
kBT

)
|p〉〈p| . (2.15)

in which N is the volume of all possible states. The expectation of any observerable in such
a quantum system is given by

〈
Â
〉
=

N∑
i=1

piÂi =
1

N

N∑
i=1

〈i|ρB Â|i〉 , (2.16)

which i labeles an eigen states |i〉 andAi = 〈i|A|i〉,N = 2n is the total number of the possible
states. This formulation enables a Monte-Carlo based numerical simulation of the quantum
dynamics, which will be introduced in later chapter of the thesis.

In reality, the energy scale of Ep is mainly characterized by the Zeeman energy of bath
spins. Ep = 〈p|H|p〉 ' h̄ γnB0 〈p|

∑
j S

z
j |p〉, inwhich γn is the gyromagnetic ratio of bath spins

andB0 is the strength of quantizing field. For example, we can choose γn as the gyromagnetic
ratio of 15N, and B0 = 1 T, then |h̄ γnB0| ≈ 4.2−9eV.

Since kB T ≈ 8.6×10−5eV at T = 1K,we can always assume that |h̄ γnB0|/kB T ≈ 4×10−5.
Assuming the bath is dilute, thenwe can consider only a limited amount of spins n < 1000 in
the bath that are close to the qubit as the dipolar couplings decaywith |r|−3. In this condition,
we can say that ϵ� 0 in general. Therefore,

P (|p〉) ≤ exp(−n|h̄ γnB0|/kBT ) = lim
ϵ→0

e−ϵ ≈ 1− ϵ, (2.17)

in which n is the total number of spins, and ϵ = n|h̄ γnB0|/kB T . The density matrix can be
gien as

ρ =
1∑N

p 1− ϵp

1− ϵ1
. . .

1− ϵN

 ≈ 1

N
1, (2.18)

in which 1 is an identity matrix of N × N dimension. This case usually appears at a high
temperature, where kB T � Ep. It’s a quite interesting fact that 1 Kelvin is already quite
”hot” for nuclear spins.

2.5 Decoherence
Quantum decoherence indicates a dynamical quantum process where phase information of
a system is gradually lost due to its coupling to the environment. While noisy qubits can be
treated as an open system with a master equation governing its dynamics, a more intuitive
approach to understand the decoherence is tomodel the noisy qubits as a closed systemwith
both qubits and noisy bath. Knowing the interacting Hamiltonian of cluster spins, we can
build themodel of a central spin qubit interactingwith a noisy spin bath. The noise spectrum
and quantum decoherence process can then be derived from the system dynamics.

2.5.1 Free Induction Decay
Long before the concept of decoherence was introduced into physics in 1970[58], physicists
in NMR fields already found that the signal generated from transverse nuclear polarization
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2.6. Equivalent Noise

will decay over time, known as the free induction decay(FID)[19]. This experiment is one of
the earliest demonstrations ofT2 relaxation, which shows a quite intuitive picture of quantum
decoherence.

The experiment initializes a spin at transverse axis |+〉 and then observes the spontaneous
decay of the polarization. Consider a spin cluster of n+ 1 unlike spins, in which the central
spin qubit is labeled by ’0’, and the spin bath labeled ’b’. The Hamiltonian of the system is
then given by Ising-type interactions that can be exactly solved.

H =

n∑
j=1

2h̄DjS
z
jS

z
0 (2.19)

The transverse polarization f(t) ∝ 〈Sx0 (t)〉 will decay with time, which can be solved using
Eqn. 2.16.

〈Sx0 (t)〉 =
1

N

N∑
p=1

〈p|Sx0 (t)|p〉 =
1

N

N∑
p=1

〈p|USx0U †Sx0 |p〉 . (2.20)

In the above expression, |p〉 is one eigenstate of the bath spins, and the total number of bath
eigenstates is N = 2n. An effective magnetic field operator can be defined as

B̂ =
∑
j

2DjS
z
j = 1⊗ B̂b. (2.21)

B̂b is an effective operator on the bath subspace. Its eigenvalue can be easily found as

βp = 〈p|Bb|p〉 =
∑
j

pjDj = P⃗p · D⃗ (2.22)

with P⃗p = (p1, p2, . . . , pn), pj = ±1; j = 1, 2, 3 . . . is a state of spin configurations, and
D⃗ = (D1, D2, . . . , Dn) is the set of dipolar coupling strengths.

It can be shown that the FID curve is given by,

〈Sx(t)〉 =
1

2

1

N

N∑
p=1

cos(βpt) =
1

2

∏
j

cos(Dj t). (2.23)

with detailed derivation given in Appendix. B.3, B.4. The fomula contains a set of cosine
Fourier components, in which the effective frequencies of each component is given by βp.
Here we should notice that the βp is not in the dimension of field strength, but in the dimen-
sion of frequency, just like {Dj}. βp/γ is in the actual effective field.

2.6 Equivalent Noise
The dephasing process can also be characterized as relaxationwith noise, from an equivalent
fluctuation of the backgroundfield. This equivalence between noise anddecoherence is a key
insight that enables the modeling of decoherence from a statistical approach.

2.6.1 Continuous Spectrum Appriximation
We start from the basic formula for free induction decay and prove that it equals an Gaussian
type fluctuation of the background field. In the microcanconical ensemble, any observable is
given by the unweighted average, as given by Eqn. 2.16. This is also true for the FID observ-
able given in Eqn. B.22. If we look at the formulas more carefully, we will realize that the
discrete expectation, which is a summation labeled by p, can be well approximated by an

11



2. SPIN QUBIT IN BATH

integral over a continous probability distribution. Rewrite the expectation of observerable,
it can be transformed into

〈Sx0 (t)〉 =
1

N

N∑
p=1

Tr
[
SxU(βp; t)SxU(βp; t)

†
]

=

∫ ∞

−∞
〈Sx(t;β)〉P (β)dβ,

(2.24)

in which the discrete expectation is transformed into an continuous one, as shown in B.5.
The derivations above demonstrates the equivalence between the dephasing and effective
fluctuation of field, subject to a static noise distributionP (β). The effective unitary is given by
U(β; t) = cos(βt/2)− i sin(βt/2)σz = e−iHβt/h̄, fromwhich we can get the effect Hamiltonian

Hβ = h̄ βSz = h̄ γ δB Sz. (2.25)

Now the physicalmeaning of β is clear, it equals a fluctuation of the local fieldwith a constant
prefactor δB = β/γ.

2.6.2 Distribution of Noise
The statistical properties of the distribution can be obtained from the Van Vleck method[45],
by analyzing the momentum of its characteristic function (Fourier transform).

f(t) =

∫ ∞

∞
P (ω)e−iωtdω (2.26)

And the k-th order momentum is given by

Mk =

(
dkf(t)
dtk

)
= (−i)k

∫ ∞

−∞
βkP (β)e−iβtdβ (2.27)

Substitute in Eqn. 2.22, β =
∑n

j=1 pjDj , then we can get the second order momentum and
fourth order momentum

M2 =
∑
i

D2
i , M4 = 3(

∑
i

D2
i )

2 − 2
∑
j

D4
j . (2.28)

A detailed derivation is given in B.7 The fact M4 < 3M2
2 indicates that P (β) is similar to

Gaussian distribution. This can be seen by deriving the Van Vleck momentum of Gaussian
distribution,

N (0, b) =
1√
2πb

e−
x2

2b2 . (2.29)

At t = 0, the second and forth order momentum are M2|t=0 = −b2, M4|t=0 = 3b4. Thus
the forth order momentum of the Gaussian distribution is three times to the second order
momentum,M4 = 3M2

2 , at t = 0. Compare it with the result we get from the spin noise,
we can get the standard deviation, or linewidth b,of the Gaussian distribution

b =

√∑
i

D2
i (2.30)

If we assume the noise distribution is precisely a Gaussian noise, then we can get the free
induction decay curve from its Frouier transform.

〈Sx(t)〉 =
∫ ∞

−∞
〈Sx(β, t)〉P (β)dβ =

1

2
Re
∫ ∞

−∞
e−iβtP (β)dβ =

1

2
e−

1
2
b2t2 (2.31)

The integral part is exactly the characteristic function of the noise spectrum P (β). The co-
herence time is given by T2 = b−1.
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Chapter 3

Ensemble of Spins

3.1 Ensemble of Disorder Realizations
The model of a cluster of interacting spins has been discussed in the previous chapter. Yet,
there is still one question to answer – how couldwe choose a specific cluster of spins? A spins
cluster is defined by a variety of global parameters such as the species of spins, the natural
abundance of these spin-possessing isotopes, the crystal structure in which they are placed,
or the chemical bonds in amolecule if we are looking into anNMR system. These parameters
can be specified by a given experimental setup. However, there always exist local variables
that can’t be controlled experimentally. In the context of a spin qubit in a noisy bath, the
properties of the bath are one problem that can’t be addressed by engineering efforts. The
noise spectrum produced by the bath spins can vary significantly even in the same calibrated
system. Advanced nano-fabrication skills may reduce flaws and noise in a quantum device,
but full elimination of environmental couplings is almost impossible.

As a result, randomness is inevitably introduced into the system. This kind of random-
ness, or disorder as known by condensed-matter physicists, is an intrinsic property of nature.

In our simplifiedmodel, a cluster of interacting spins is characterized by a set of coupling
strengths {Dj} of themagnetic dipolar interactions. The distribution of {Dj} depends on the
positions as well as the species of spins. We can write it in a concise form

D⃗ξ = D⃗({r⃗(ξ)j }, {γ
(ξ)
j }) (3.1)

in which {r⃗(ξ)j } is a set of positions for the spin cluster, and {γ(ξ)j } is their gyromagnetic
ratios. A disorder realization (DR) of our spin cluster is uniquely specified by the two set
of parameters, which is labeled by ξ.

The positions of spins {r⃗(ξ)j } is a key issue to be addressed. In solids, spins are associated
with nucleis placed on a crystal lattice. A simple case is that the lattice is fully occupied by
spins, then {r⃗(ξ)j } is just a set of fixed positions of lattice sites with geometrical symmetry. If
the natural abundance of the spins-possessing atoms is smaller than 1, then a random subset
of sites must be chosen to place spins. In this case, the symmetry of the crystal lattice is
no longer present, as shown in Fig. 3.1. Such an absence of symmetry, or disorder, is a key
feature to be considered in our system. The dynamics of the system may change drastically
due to the significant statistical fluctuation of random spin distribution.

Since the local magnetization of a spin is affected by its surrounding spin-bath, the dis-
order of spin positions will lead to a fluctuation in local field strength. Thus if an external
transverse magnetic field is applied to drive a spin cluster, the Rabi frequency will be differ-
ent for each spin. Some spins with a very large local magnetization can’t be effectively driven
by external fields. In this way, disorder brings extra complexity to the system and makes the
precise control of a quantum system more challenging.
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3. ENSEMBLE OF SPINS

(a) Order (b) Disorder

Figure 3.1: Comparison between ordered and disordered spin clusters

In principle, there are infinitelymany possible realizations of a spin cluster, given that the
bath spins can be randomly distributed. Thus it doesn’t make much sense if we only study
one specific cluster. Statistical approaches will be necessary to provide more insights into
the system. We define a spin ensemble as a collection of all the possible realizations of a spin
cluster, Ω(ξ) = {D⃗ξ}, where ξ labels a realization of spin cluster. Since there is no difference
between one disorder realization and another. The probability of reaching each realization
will be equal,

P (ξ) =
1

|Ω(ξ)|
. (3.2)

The properties of such an ensemble are defined by various parameters.

Spin Species
The configuration of gyromagnetic ratios {γj} is decided by the species of spins. For homonu-
clear spins, γ is just a fixed parameter. Assume that we have k different types in n spins, the
number of which is nk respectively, then the configuration can be represented by a integer
string {θi}, θi = 1, 2, . . . k. The total number of combinations is given by

Nθ =

(
n

n1

)(
n− n1
n2

)
. . .

(
n−

∑k−1
i=1 ni

nk

)
=

(
n

n1, n2, . . . nk

)
=

(
n+ k − 1

k − 1

)
(3.3)

The there is only one species of spins, then positional disorder will be the only parameter as
shown in Eqn. 3.1 and Nθ = 1.

Crystal Lattice
If spins are placed on a crystal lattice, then their positional disorder can be characterized by
a bitstring {ϕi}, where ϕi = 0/1 indicates wether a lattice site i is filled. Thus filling fraction
is therefore given by

f =

∑
i ϕi

|{ϕi}|
=

n

m
(3.4)

in which m is the total number of sites on lattice, and n is the number of spins. The crystal
lattice can be treated as a mapping from the biting string {ϕi} to a set of spin positions {r⃗j}.

L : {ϕi} 7→ {r⃗j} (3.5)

Then the size of a homonuclear ensemble is given by the combination Nϕ =
(
m
n

)
. If we con-

sider the configuration of spin species, then the total number of possible disorder realization
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3.1. Ensemble of Disorder Realizations

(DR) is

M = |Ω(ξ)| =
(
m

n

)(
n+ k − 1

k − 1

)
= Nϕ ·Nθ (3.6)

Dimension
Dimensionality plays an important role in theworld of condensed-matter physics, governing
many interesting phenomenons like phase transition and localization. For example, the Ising
model, as a close variant of our system, demonstrates phase transition in two dimensions but
is trivial in one dimension.

In our system, dimension is another intrinsic parameter. This can be show by a simple
calculation. Consider a d dimensional cubic lattice with cell constant a. If the filling fraction
is f , then the density of spins will be ρ = f/ad, the average distance between two spins is

r̄ =
d
√
V̄ =

a

f1/d
(3.7)

For a fixed filling fraction f , the average distance between spins is completely different. As
a result, the statistical distribution of coupling strengths {Dj} varies significantly with di-
mensions, leading to completely different effective noises and relaxation curves for different
dimensions[16].

Dimension can be regarded as a meta-parameter of the crystal lattice, since lattice has
different symmetries in different dimensions.

L(d) : {ϕi} 7→ {r⃗j}

Abundance
Here, the spin abundance, or the filling fraction f , which is the average spin per lattice site,
plays an important role since it directly decides how much randomness will be here in the
system. When filling fraction is approximately f ≈ 0, the average distance between each
pair of spins will be very large such that r̄ � a. Then the lattice structure can be ingored
and positions of spins can be treated as quasi-continuous. In this situation, the number of
total lattice sites is also much more larger than the filling sites,m� n, so the combinational
number will goes to infinity as f approaching zero,

lim
f→0
|Ω(ξ)| = lim

m→∞

(
m

n

)
=∞. (3.8)

As shown in Eqn. 3.7, the filling fraction for a dilute ensemble, r̄ � a varywith the dimension
of the system. For example if we want r̄/a = 10 then the filling fraction would be f = 0.1 for
a one dimensional spin chain, but f = 0.001 for a 3D spin cluster.

On the opposite, if the filling fraction is higher, the lattice structure can no longer be
ignoredwhen considering the spin positions. A particularly interacting situation is when the
lattice is fully occupied by spins f ≈ 1. In this case, the system Hamiltonian will degenerate
to an Ising model, which exhibits many fascinating phenomena such as ferromagnetism and
phase transition.

In this thesis, we only focus on dilute spin system where the filling fraction is quite small
f � 1. A dilute ensemble is a reasonable approximation to practical experimental systems
since purified spin-free isotopes are used in the fabrication process to reduce the environ-
mental coupling[47][4]. Thus the abundance of nuclear spins in solids can be reduced to a
very low level When multiple types of spins exist in the system, providing all of them are
sufficiently dilute, the system can be regarded as a simple superposition of many randomly
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3. ENSEMBLE OF SPINS

distributed spin clusters. Therefore, the combinations of different types of spins are not a
concern to our system. Positions of spins will be the only parameter of coupling strengths.

D⃗ξ = D⃗({r⃗(ξ)j })

3.2 Averaged Dephasing in Dilute Ensemble
The formula of free induction decay (FID) of a central spin is given in Section. 2.5.1. From
this formula we can derive the the cluster average FID on a specific spin cluster is given by

〈G(t)〉c =
1

n

n∑
k=1

∏
j ̸=k

cos(Djkt) (3.9)

following the formalism in previous section, in which n is the number of spins, Djk is the
coupling strength. We dropped the prefactor 1

2 , which is from the spin 1/2.
Define the ensemble average of an observable G, following the same formalism,

〈G〉ξ =
1

M

∑
{ϕi}

G({ϕi}) (3.10)

in whichM is the number of possible disorder realization {ϕi}|.
According to statistical physics, if the spin ensemble is large enough (macroscopic), then

the macro properties of the system should converge to their statistical expectations,
limn→∞ | 〈G〉c−G({ϕi})| = 0, providing that filling fraction f is fixed. Heren is the number of
particles(spins) in the system. That means the observable from any two disorder realization
{ϕi}A and {ϕi}B would be the same when n or equivalently M is large enough and statis-
tical fluctuation of spin configuration is eliminated. This property is called self-averaging.
Therefore, the observable from a very large spin cluster is equivalent to the ensemble average
over disorder realizations at the macroscopic limit.

Using the self-averaging theoremwe can find that the cluster average equals the ensemble
average when the cluster size n is very large.

lim
n→∞

〈G〉c = G({ϕi}) =
1

M

∑
{ϕi}

G({ϕi}) (3.11)

As shown in the last section, we can assume the spins are distributed in a continuum
space and drop the lattice structure providing the spin ensemble is dilute (f � 1). At the
dilute limit, the species of spins are also irrelevant, and thus degenerate to a constant γ.
Replace the discrete spin configurations {ϕi} with a a set continuous positions {r⃗j}, where
r⃗j denotes the location of j-th particle. The ensemble average of FID can be rewritten as

〈G(t)〉c =
∫
· · ·
∫ dDr1

V

dDr2
V

. . .
dDrN−1

V
G(t; {r⃗j}) (3.12)

Substitute in the Eqn. 3.9 and we get

〈G(t)〉c =
1

N

∑
k

∫
· · ·
∫ dDr1

V

dDr2
V

. . .
dDrN−1

V

∏
j ̸=k

cos(Djkt)

=
1

N

∑
k

∫ cos(D1kt)

V
dDr1

∫ cos(D2kt)

V
dDr2· · ·

∫ cos(Djkt)

V
dDrj

(3.13)

The series of integrals is the average over the locations of N − 1 spins, labeled by j, around
a central spin k. Then the label k is averaged.
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3.2. Averaged Dephasing in Dilute Ensemble

In a macroscopic ensemble, the spins are indistinguishable from each other. Thus we
can swap the indices of any two spins and 〈G(t)〉c should remain the same. The symmetry
implies quantities labeled by an index j should be statistically equivalent,∫ cos(Dikt)

V
dDri =

∫ cos(Djkt)

V
dDrj

With this approximation, the Eqn. 3.13 can be further simplified

〈G(t)〉c =
1

N

∑
k

[
1

V

∫
cos(Djkt)dDrj

]N−1

≈ 1

N

∑
k

[
1− 1

V

∫
(1− cos[Djkt])dDrj

]N−1

≈ 1

N

∑
k

exp
{
−N
V

∫
[1− cos(Djkt)]dDrj

}

in which we used the formula in last step.

lim
n→∞

(1 +
a

n
)n = lim

n→∞
exp

[
n ln

(
1 +

a

n

)]
= ea

We can invoke the indices symmetry again to drop the average over k

〈G(t)〉c = exp
{
−N
V

∫
[1− cos(Djkt)]dDrj

}
(3.14)

The physical picture of the above formula is quite similar tomean-field theory (MFT), where
the FID of a central spin k is affected by the mean-field average of all bath spins labeled by
j. It should be noticed that Eqn. 3.14 only works for macroscopic, (N →∞) dulite (f � 1)
spin ensemble.

In the following derivations, the dimension is labeled byD to distinguish from the deriva-
tive symbol d, the particle number is labeled by N instead of n. Substitute Dij into the
Eqn. 3.14 and assume that the average position of central spin k is zero, then

〈G(t)〉c = exp
{
−N
V

∫ [
1− cos

(
1− 3 cos2(θ)

2r3
µ0γ

2h̄t

)]
rD−1 dr dA

}
(3.15)

inwhichwe used that dD r⃗ = dv = rD−1drdA and dA is the area element inD−1 dimension.
Evaluate Eqn. 3.15 will give the ensemble-averaged FID curves in different dimensions.

The detailed derivation is shown in the Appendix. B.9.

1D

The ensemble averaged FID cruve in 1D is given by,

〈G(t)〉c = exp
{√

3ρ

3
Γ

(
−1

3

) ∣∣∣∣1− 3 cos2(θ)
2

µ0γ
2h̄t

∣∣∣∣1/3
}

(3.16)

in which θ is the angle between the 1D spin chain and the external field. ρ = N/V is the
density of the spin cluster.
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2D
The ensemble averaged FID cruve in 2D is given by,

〈G(t)〉c = exp
{
−ρ
3

(
µ0γ

2h̄t

2

)2/3

Φ(θ)S2

}
. (3.17)

in which Φ(θ) is an integral about θ, given by

Φ(θ) =

∫ 2π

0

∣∣1− 3 cos2(θ) cos2(φ)
∣∣2/3 dφ. (3.18)

Here θ is the angle between the external field and the 2D plane. θ = 0 when the external
field is parallel to the plane. θ = π/2 when the external field is perpendicular to the plane.
For these two case we get Φ(0) ≈ 6.01 and Φ(π/2) = 2π

When θ = π/2, we get

〈G(t)〉c = exp
{
πρ

3
Γ

(
−2

3

)(
µ0γ

2h̄t

2

)2/3
}

(3.19)

3D
The ensemble averaged FID cruve in 2D is given by,

〈G(t)〉c = exp
{
−1

6
ρ π2µ0γ

2h̄ t · 8

3
√
3

}
. (3.20)

The formula is not related to the direction of the external field since 3D space is isotropic so
the z-axis can always be chosen along the external quantizing field. The derivation for the
ensemble-averaged FID curve in arbitrary D dimension is put in Appendix. ??.

General D dimensional situations
The general expression for D dimensional FID is given by Eqn. 3.15,

〈G(t)〉c = exp
{
−N
V

∫ [
1− cos

(
1− 3 cos2(θ)

2r3
µ0γ

2h̄t

)]
rD−1 dr dA

}
Following the same approach we used in 1/2/3 dimensions, we can get

〈G(t)〉c = exp
{
−ρ
3

(
µ0γ

2h̄t

2

)D/3

ΦD SD

}
(3.21)

SD =

∫ ∞

0
(1− cosu)u−(1+D/3)du = − cos

(
Dπ

6

)
Γ(−D

3
) (3.22)

We should notice that this formula comes from Gamma integral, Eqn. B.41, which requires
that−2 < Reα < 0. Thus 〈G(t)〉c converges for all dimensions 1 ≤ D ≤ 5. One special case is
D = 3, in this case the Γ(−1) gives complex infinity. But the integral itself is still convergent,
since

lim
α→−1

cos
(aπ

2

)
Γ(α) = −π

2
.

ΦD =

∫
VD−1

∣∣1− 3 cos2(θ)
∣∣D/3 dA (3.23)

Here dA is the surface element in D − 1 dimension.
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3.3 Nondimensionalization
Nondimensionalization is a widely used technique in numerical simulation. By removing
physical dimensions, physical problems can be better parameterized and simplified, and
scaling-irrelevant features can be better observed. In a spin ensemble, a set of natural scales
can also be chosen and set as basic units, in order to get a dimension-free system.

3.3.1 Coherence Time
The free induction decay is also know as T2 processes, as the dephasing is characterized by a
coherence time T2. A general decoherence curve in d dimension is given in Eqn. 3.21. It can
be written in a more concise form

f(t) ∝ exp
[
−( t
T2

)d/3
]

(3.24)

From Eqn. 3.16, Eqn. 3.19 and Eqn. 3.20, the T2 in 1D/2D/3D can be obtained,

3D : T2 =
2

A0

9
√
3

8ρ π2
, (3.25)

2D : T2 =
2

A0

[
ρπ

2
Γ

(
1

3

)]−3/2

, (3.26)

1D : T2 =
2

A0

[
ρ√
3
Γ(−1/3)

]−3

, (3.27)

in which A0 = µ0γ
2h̄ is a combined constant. Here it’s assumed that the external quantiz-

ing field is perpendicular to the spin chain in 1D, and the spin grid in 2D. We can find an
interesting property, that the decoherence time of dilute spin ensembles only depends on di-
mensionality and spin density. The higher the spin density, the shorter the coherence time.
In reality, temperature is also a key factor affecting the coherence time[4]. It is not considered
in our model as a closed system based on microcanonical ensemble is assumed.

3.3.2 Units Scaling
The coherence time T2 can be normalized to an arbitrary time unit t0, in order to get a dimen-
sionless numerical system. Set T2 = 1 in the unit t̂ = t0, then a normalized ρ0 can be given
as

3D : ρ0 =
2

A0t0

9
√
3

8π2
≈ 0.39486 [A0t0]

−1, (3.28)

2D : ρ0 =
25/3

π Γ(13)(A0t0)2/3
≈ 0.37723 [A0t0]

−2/3, (3.29)

1D : ρ0 =
3
√
2
√
3

Γ(−1
3)(A0t0)1/3

≈ 0.53712 [A0t0]
−1/3 (3.30)

Thus, unit for the density in d dimensions can be rescaled as [A0t0]
−d/3. Respectively, the unit

of length will be r̂ = [A0t0]
1/3. The dipolar coupling strengthDij and effective fluctuation of

the magnetic field βζ both have a dimension in frequency, thus their units should be ω̂ = t−1
0 .

All the numerical in the following chapters of this thesis will be given in such a system of
units.
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3. ENSEMBLE OF SPINS

Minimal Threshold
A threshold for minimal distance, a, is needed for continuum approximation to avoid sin-
gularity in coupling strength. It should be characterized by the minimum lattice constant,
which is at the scale of angstroms in solids. The rescaled unit of length r̂ depends on the
choice of time unit t0 and is thus an arbitrary variable. But we can still give a rough estima-
tion about what should be the scale of a.

Typical nuclear T2 in solid system is usually at the scale of microseconds [43]. Assume
that t0 = 1µs, then the unit length will be r̂ = [µ0γ

2h̄t0]
1/3 ≈ 7.4 × 10−9, thus a minimum

threshold at a = 0.1 ∼ 0.05 is resonable.

Filling Fraction
The filling fraction can be calculated as f = ρ ad providing that a approximately equals lattice
constant. At a = 0.1, d = 3, f ' 500ppm. This is a reasonable approximation. In practice, the
residual concentration of 29Si spins in purified isotopes is typically 800 ∼ 900ppm [47][36],
while the natural abundance of 15N is approximately 0.4%, the spin concentration in NV
center system can be lower after fabrication process like chemical vapor deposition.

3.4 Normalized Coherence Time
The technique of rescaling can be used to choose a fixed set of parameters for the spin ensem-
ble. In our model, an ensemble consisting spin clusters of all possible disorder realizations
can be defined by a set of parameters, including spin density, number of spins, or equiv-
alently the max range of spin distribution, and minimum distance threshold between the
central qubit and the bath spins. These parameters must be properly defined to make the
model meaningful to experiments.

Given the discussions about , a set dimensonless parameters of the model can be choosed
as shown in Table. 3.2. The ensembles are normalized in terms of coherence time. We choose

dimension [d] spin density [ρ] lattice const [a] max range [R] spin number [n]
3 0.39486 0.1 10 1653
2 0.37723 0.05 30 1066
1 0.53719 0.05 200 214

Table 3.2: Parameters of Spin Ensembles in 1D/2D/3D

this approach of normalization because that dynamic processes will be themain focus of this
thesis. Dynamical processes and effects of quantum control protocols can be better observed
in such a time scale.

The ensemble-averaged T2 relaxations from the normalized models can be checked as a
verification of the model. As shown in Fig. 3.3, the numerical results acquired from Monte-
Carlo sampling match well with analytical predictions.

3.4.1 Ensemble Averaged Noise
As shown in the Section. 2.6.2, the effective noise of a typical spin cluster should be quasi-
Gaussian. Assume the noise is exactly Gaussian, then the ensemble-averaged effective noise
can be given as

P (B) =
1√
2πb2

exp
(
−B

2

2b2

)
(3.31)

For an ensemble of clusters given by different disorder realizations, their noises are given
by a set of Gaussians. It’s proved that linewidths of the Gaussians b follow the distribution
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3.4. Normalized Coherence Time

Figure 3.3: Fitted analytical T2 relaxations compared with Monte-Carlo sampled results.
The relaxation curves are evaluated by Monte-Carlo sampling, with M ′ = 4000 disorder realizations (DRs) and
N ′ = 1000 spin configurations. The numerical data points are plotted as vertical lines and the fitting of analytical
result is plotted as solid curves. The original figure without fitting is attached in C.7.

below in three dimension[13],

P (b) =
1

b2

√
2

π
Γ exp

(
− Γ2

2b2

)
. (3.32)

in which Lorentzian linewidth Γ is determined by the parameters of the ensemble (abun-
dance, etc). Take the ensemble average of the noise,

P (B) =

∫ ∞

0
P (b)P (B)db = Γ

π(B2 + Γ2)
, (3.33)

the result is a Cauchy distribution characterized by Lorentzian linewidth Γ. Derivation of
the above formulas is given in the Appendix. B.10. Numerical results acquired from Monte-
Carlo sampling match well with the Lorentzian noise, which is shown in Fig. 3.4. It should
be noticed that the Lorentzian distribution is only an approximation to the real noise distri-
bution in the 3D system because the cluster distribution is not precisely Gaussian, as shown
by the Van Vleck momentum methods. There is also a small deviation between Lorentzian
prediction and the numerical result at |β| < 1.

For 3D ensemble, the corresponding ensemble averaged free induction decay curve is
given by the Fourier transform of the noise distribution.

〈Sx(t)〉 =
∫ ∞

−∞
〈Sx(B; t)〉P (B)dβ =

1

2
Re
∫ ∞

−∞
e−iBtP (B)dB (3.34)

The characteristic function of Lorentzian noise is

F (t) =

∫ ∞

−∞
e−iBt

Γ

π(B2 + Γ2)
dB = e−Γ|t|. (3.35)
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Figure 3.4: Effective noise distribution in 3D compared with analytical prediction.

The coherence time T2 is defined as F (t) = e−|t|/T2 . Thus T2 = 1/Γ for a Lorentzian noise.
This result is verified by the previous analytical solution given by Eqn. 3.20.

In 2D and 1D, analytical approximations of the noise is not available. Numerical sim-
ulation is needed to analyze the system in low dimension. The effective noise distribution
obtained from Monte-Carlo sampling in low dimensions is displayed in Fig. 3.6 and Fig. 3.5.
The distributions of effective noise are heavily tailed, which can be characterized by the sta-
tistical indicator kurtosis,

Kurt[X] = E
[(

X − µ
σ

)4
]

(3.36)

inwhich µ is themean value and σ is the standard deviation. Normal distribution is regarded
as a standard for non-tailed, with Kurt[X] = 3. Based on this condition, excess kurtosis
K[X] = Kurt[X]− 3 is used to characterize the tailedness of a distribution.

As given in Fig. 3.5, the excess kurtosis of the effective noise is much larger than zero.
Hence there is a large probability to produce outliers or anomalies in sampling, whichmakes
the numerical approach more unstable. Yet, it’s a quite counter-intuitive fact that K3D >
K2D > K1D, while σ3D < σ2D < σ1D in terms of deviation. The 1D distribution is much
sharper in shape compared with the 3D case, and it owns a fatter tail compared with the 3D.
However, its kurtosis is lower than the quasi-Lorentzian distribution of 3D.

lim
a→∞

∫ a

−a
x2

Γ

π(Γ2 + x2)
dx = lim

a→∞

2Γ

π

(
a− Γ tan−1

(a
Γ

))
=∞ (3.37)

providing Γ > 0, similiarly

lim
a→∞

∫ a

−a
x4

Γ

π(Γ2 + x2)
dx = lim

a→∞

2Γ

3π

(
a3 + 3Γ3 tan−1

(a
Γ

)
− 3aΓ2

)
=∞. (3.38)

In fact, theCauchy-Lorentziandistribution owns infinite second-ordermomentumand fourth-
order momentum, which makes the distribution much harder to predict, as shown above.
The tail extremity is a key feature of our system, strong singularities will be present due
to such kind of long-tailed distribution.
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Figure 3.5: Distribution of ensemble averaged noise at different dimensions.
Distribution of effective noise in linear scale, with sampling size M ′ = 2 × 105 and N ′ = 1000. The standard
deviations of the distributions are σ3D = 17.639, σ2D = 153.783 and σ1D = 419.558 for 3D, 2D, 1D, seperately.
Relative kurtosis of the distributions are K3D = 419.972, K2D = 265.065, K1D = 39.948.
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Figure 3.6: Distribution of ensemble averaged noise at different dimensions, log scale.
a): Distribution of effective noise in log scale. b): Long tails of the same noise in log scale, taken absolute value.
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Chapter 4

Driving a Bath-Coupled Qubit

4.1 Control Hamiltonian
This chapter will introduce the control of spin qubits with driving pulses, and then study
how the driving will be affected by the coupling between qubits and the environment. As
mentioned in Chapter. 1, Rabi driving is the key approach for manipulating spins and can
be generalized to many other modern quantum hardware. Rabi driving on spin qubits is
achieved via an external AC magnetic field, which is resonant with the Larmor frequency
ω0 of the target qubit. The Hamiltonian for a cluster of spins under the driving field can be
given as

HC(t) = −h̄
∑
j

γjB[cos(ωct+ ϕ)Ixj + sin(ωct+ ϕ)Iyj . (4.1)

in which ϕ is the phase of the AC field, and B is the amplitude. Then the total Hamiltonian
for the cluster under a driving field isH = HZ+HD+HC(t), in which theHZ is themagneti-
zation energy andHD is the dipolar interactions,HC(t) is the oscillating driving field. Here
we need to notice that we are discussing the Hamiltonians in the laboratory frame. Perform
the rotating frame transformation then we can get the rotating frame Hamiltonian.

For a spin cluster representing a spin qubit in bath, the external global field drives not
only the spin qubit, but also the bath spins in the environment. Yet, only the spin qubit is con-
cerned in experiment. Assume the qubit we want to control is labeled by 0, its Hamiltonian
in the rotating frame can be given by

H0 =h̄(ω0 − ω̃0)I
z
0 +

N∑
j=1

2DjI
z
j I

z
0

−h̄γ0B [Ix0 cos ((ωC − ω̃0) t+ ϕ) + Iy0 sin ((ωC − ω̃0) t+ ϕ)].

(4.2)

Derivation of the equation is listed in Appendix. B.8

Resonant Driving
Ignore the environmental coupling. Then the driving frequency ωC can be set at a resonant
frequency to ωC = ω̃ ' ω0, such that the time-dependent control Hamiltonian is equivalent
to a static driving in the rotating frame, as shown below.

H = −h̄γ0B (Ix0 cosϕ+ Iy0 sinϕ). (4.3)

The Zeeman term is eliminated. The Larmor frequencies of nuclear spins range from ap-
proximately 40MHz to 170MHz, which is in the range of radiofrequency. This case is known
as resonant driving.
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4. DRIVING A BATH-COUPLED QUBIT

The evolution unitary of such a driving Hamiltonian is given by

U(t) = e−iHt/h̄ = eγ0B t/2 (σ⃗·n⃗) = cos
(
γ0B t

2

)
+ i sin

(
γ0B t

2

)
(σ⃗ · n⃗) (4.4)

in which n⃗ = (cosϕ, sinϕ, 0) is a unit vector on the X-Y equator defined by the direction
of the driving field ϕ. σ⃗ = (σx, σy, σz) is the vector of Pauli matrices. From the view of
physical images, the state of a qubit equals a unit vector on the Bloch sphere. Then the unitary
represents a rotation of the state vector along the driving direction n⃗, which can be visualized
as

In the ideal situation of resonant driving, any single-qubit gate can be perfectly con-
structed from such a Hamiltonian with properly tuned parameters (ϕ,B, t). The driving
is also known as XY driving since the driving axis n⃗ lies on the XY equator. More details of
quantum gates will be covered in later chapters of the thesis.

Non-Resonant Driving
In reality, the driving is always non-resonant since the driving frequency can’t be precisely
set at the Larmor frequency of qubit. In reality, Larmor frequency is shifted by both the
local field inhomogeneity ∆B0 and an effective magnetization β produced by the dipolar
coupling, ω′

0 = γ0(B0 +∆B0) + β.

H′ = h̄(γ0∆B0 + β) Iz0 −h̄γ0B (Ix0 cosϕ+ Iy0 sinϕ). (4.5)

Suppose that β is static and there is no fluctuation, then the driving is still a unitary process.
Denote γ0∆B0 + β as ∆ω, the unitary can be given as

U ′(t) = e−iH
′t/h̄ = eΩ t/2 (σ⃗·n⃗

′) = cos
(
Ω t

2

)
+ i sin

(
Ω t

2

)
(σ⃗ · n⃗′) (4.6)

in which Ω =
√
(γ0B)2 +∆ω2 is a shifted Rabi frequency, with

n⃗′ = (cosϕγ0B
Ω

, sinϕγ0B
Ω

,
∆ω

Ω
).

Obviously, there will be a small shift in the Rabi frequency as well as the driving direction.
The state will not precisely rotate along the axis n⃗ on the XY plane, but along a new twisted
axis n⃗.

Yet, if we consider the fluctuation of effective field β produced by the environment, then
the evolution of the qubit will be a noisy quantum process instead of a unitary. This is intro-
duced in the following sections.

When a global driving field is applied on a cluster of spins, only the spin(qubit) at the
frequency of the driving field will be driven resonantly under the ideal condition, while all
other spins will be driven non-resonantly.

4.2 Rabi Driving with Effective Noise
Rabi driving is always a noisy quantum process in reality, which can be modeled using the
same approach given in Section. 2.5.1. Environmental coupling between the spin qubit and
bath spins can be treated as a continuous noise β, which obeys the Gaussian/Lorentzian
distribution. Integrating over the noise density will provide a damped Rabi driving curve.
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4.2. Rabi Driving with Effective Noise

Gaussian noise for a spin cluster
From the above results, we have seen that the effective noise from environmental spins obeys
a Gaussian distribution. Thus we can study the Rabi oscillation starting with the noisy
Hamiltonian of the central spin, given by a modified version of Eqn. 4.5

H = βSz + hSx.

in which h characterizes the driving strength γB, in the dimension of frequency. Here we
dropped all the irrelevant constants such as h̄ and γ to make the derivation more concise.
As shown in the discussion of Van Vleck momentums, section2.6, the distribution of β is
approximately Gaussian,

P (β) =
1√
2πb

e−
β2

2b2 (4.7)

In a strong driving limit, h� b, an analytical description of Rabi driving is available.

Sz(t) =
1

2
ReF (t) = A cos (ht+ ϕ) , Sy(t) =

1

2
ImF (t) = −A sin (ht+ ϕ) , (4.8)

in which F (t) is

F (t) =

∫ ∞

−∞
e−iΩtP (β)dβ =

e−iht√
1 + i b

2t
h

, (4.9)

and

A =
1

2

(
1 +

b4t2

h2

)−1/4

, ϕ =
1

2
arctan

(
b2t

h

)
(4.10)

Lorentzian noise for an ensemble average
The ensemble average Rabi curve can also be derived from the Lorentzian distribution

Sz(t) =
1

2
Re
∫ ∞

−∞
P (B)eiΩtdB =

1

2
Re{F (t)}

Sy(t) =
1

2
Im
∫ ∞

−∞
P (B)eiΩtdB =

1

2
Im{F (t)}

The function F (t) is given by

F (t) =

∫ ∞

−∞
P (B)eiΩtdB ≈ eiht− iΓ2t

2h erfc(1− i√
2

√
t

2h
Γ). (4.11)

The derivation of the above equations is given in B.11. A more precise approximation in the
regime of weak driving can be given using Mathematica, as appended in B.13

As a verification, the analytical Rabi curve is compared with the numerical result ob-
tained from Monte-Carlo methods, which is given in the later Section. 4.3. The numerical
results match well with the analytical approximation at h = 50. Yet, there is still a small
discrepancy at the crests and troughs of the wave, due to the truncation of high order terms
in the approximation. It should be noticed that the Lorentzian distribution is just an approx-
imation of real noise density in 3D ensembles. In 2D and 1D cases, no analytical solution is
available yet. Thus numerical approach will be necessary.
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4. DRIVING A BATH-COUPLED QUBIT

Figure 4.1: Averaged Rabi oscillation over an emseble of 3D spin clusters at h = 50. The nu-
merical curve is sampled viaMonte-Carlomethods onM ′ = 3000 disorder realizations (DR)
and N ′ = 500 spin configurations for each DR. The analytical curve is given by Eqn. 4.11.

4.3 Rabi Driving from Numerical Sampling
We canwrite the total Hamiltonian in the rotating frame assuming that the Zeeman terms are
already eliminated. ϕ is free to choose so we set the driving field at x axis. For convenience,
we drop constant h̄ in the following derivations. The Hamiltonian on the central qubit can
thus be given as

H =
∑
j

2Dj S
z
jS

z
0 − hSx0 . (4.12)

Following the same approach shown in Section. 2.5.1, the effective unitary projected on a
bath eigenstate can be given as

Up(t) = 〈p|e−iHt|p〉 = cos(ωpt)− i sin(ωpt)(n⃗p · σ⃗) (4.13)

in which n⃗p is the effective direction of driving field, ωp is half of the Rabi frequency.

n⃗p = (np,x, 0, np,z) = (
h

Ωp
, 0,

βp
Ωp

), ωp = Ωp/2, Ωp =
√
h2 + β2p . (4.14)

The central qubit are prepared at |0〉, which is at z axis in Rabi oscillation. Thus the initial
state of the central spin is ρ0 = |0〉〈0| = 1

21+Sz . The expectation of Sz(t) under Rabi driving
is given by,

〈Sz(t)〉 =
1

2n

∑
p

Tr 〈p|Sz0 |p〉 =
1

2n

∑
p

Tr
[
SzUp(t)SzUp(t)

†
]
. (4.15)

Define the observable on a bath state as Tr 〈p|Sz0 |p〉 = f
(p)
z (t), then

f (p)z (t) = Tr
[
SzUp(t)SzUp(t)

†
]
=

1

2

[
cos2(ωpt) + sin2(ωpt)(n

2
p,z − n2p,x)

]
, (4.16)
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Similarly, we can derive Sx(t) and Sy(t) in the Schördinger picture

〈Sy(t)〉 =
1

2n

∑
p

f (p)y (t) = − 1

2n

∑
p

np,x sin(ωpt) cos(ωpt), (4.17)

〈Sx(t)〉 =
1

2n

∑
p

f (p)x (t) =
1

2n

∑
p

nznx sin2(ωpt). (4.18)

Detailed derivation of the above results is given in Appendix. B.12. Take disorder realiza-
tions into consideration, the above results can be further extended to an ensemble average
by replacing label p with the combinational index ζ = (p, ξ), where ξ is the label of disorder
realization. Thus the ensemble average Rabi curve is given by

Fz(t) =
1

M

M∑
ζ=1

f (ζ)z (t) =
1

M

M∑
ζ=1

[
cos2(ωζt) + sin2(ωζt)(n

2
ζ,z − n2ζ,x)

]
(4.19)

in which we dropped the prefactor I = 1
2 , which is from the spin 1/2. With the formulas

above, the ensemble-averaged Rabi driving curve can be effectively evaluated from Mote-
Carlo sampling.

4.4 Damping of Continuous Driving

The first specialized topic we want to discuss is a continuous Rabi driving with constant
driving strength h. Experimentally, such a continuous driving can serve as a method to
prolong the effective decoherence time T2,R of spin qubits. As shown in Eqn. 4.8, the damped
Rabi oscillation with Gaussian noise is enveloped by a function A(t), this envelope decays
very slowly so the coherence of qubit can be preserved for a very long time. The effective T2∗
given by this continuous nutation is much longer comparedwith the original coherence time
of the qubit. As a dynamical decoupling approach, the simple continuous driving is robust
against various noises, such as magnetic, electric, and temperature fluctuations[34]. It can
also be used to construct a decoupling-protected quantum gate[55].

4.4.1 Rabi Envelope

The envelope of Rabi oscillation can be extracted from an array of oscillating points by taking
themaximum of each period. Envelopes of averaged Rabi driving for 3D, 2D, and 1D ensem-
bles, obtained from Monte-Carlo sampling are shown in Fig. 4.2a, Fig. 4.2b and Fig. 4.3. The
horizontal line marks the 1/e threshold of amplitude decay. The x coordinates of crossing
points, where Rabi curves intersect with the 1/e line, are the T2,R of corresponding curves.
Using the continuous driving, the effective coherence time T2,R is improved by 102 to 103 at
magnitude in 2D and 3D (remember that the original coherence time is normalized to 1).
However, Rabi driving in one dimension demonstrates a very strong singularity, the decay
of oscillation amplitude is quite slow that 1/e decay can’t be observed in a short time. For
this reason, further analysis is needed to understand its asymptotic behavior in the long-time
regime.
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(a) Envelope of ensemble averaged Rabi oscillation in 3D.
Coherence time at 1/e decay are T2,R = 100, 226, 402, 905, for h = 20, 50, 100, 200. Monte-Carlo sampling size is
given by M ′ = 2000, N ′ = 500.
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(b) Envelope of ensemble averaged Rabi oscillation in 2D.
Coherence time at 1/e decay are T2,R = 251, 377, 553, 980, for h = 20, 50, 100, 200. Monte-Carlo sampling size is
given by M ′ = 3000, N ′ = 500.

Figure 4.2: Envelope of ensemble averaged Rabi oscillation in 3D and 2D, obtained from
numerical sampling.
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Figure 4.3: Envelope of ensemble averaged Rabi oscillation in 1D, shown in log scale.
The averaged Rabi oscillation decays very slowly in one dimension, 1/e decay is not observed at short time.
Further analysis is needed to understand its asymptotic behavior at long time. The Monte-Carlo sampling size
is given by M ′ = 8000, N ′ = 500.

4.4.2 Asymptotic Behavior
Exponential Approximation

The approximate solution of ensemble-averagedRabi driving owns a quite complicated form,
as shown in Eqn. 4.11. Yet, the behavior of the function 〈Sz(t)〉 can be much simplified at a
limit t = 0 or t =∞ by taking a series expansion and truncating high order terms. Following
this idea, a simple and intuitivemodel can be found to describe the behavior in the short-time
regime and long-time regime, as shown below.

Short time model:
S(1)
z (t) ≈ 1

2

[
1− (

t

T2,R
)d/6

]
, (4.20)

⇒ F1(t) = log
(
1− 2S(1)

z (t)
)
=
d

6
(log t− logT2,R).

Long time model:

S(2)
z (t) ≈ 1

2
(t/T2,R)

−d/6, (4.21)

⇒ F2(t) = log
(
2S(1)

z (t)
)
= −d

6
(log t− logT2,R).

A linear relation y = k x+ b is expected in log-log scale, if we replace x = log t and F (t) = y,
in which |k| = d/6 and |b| = |k| logT2,R. Fig. 4.4 displays the results obtained from a linear
regression y = k x+ b in log-log scale, at h = 100 in an 3D ensemble. Both long time model
and short time model are plotted in the figure. A clear transition period can be observed
between the short time behavior and long time behavior, as marked by t1.
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4. DRIVING A BATH-COUPLED QUBIT

Pointer State

In long time, the damped Rabi oscillation will decay to a equilibrium state called pointer
state.

lim
t→∞

Sz(t) = n(b)z Sz(0), n(b)z =
b√

b2 + h2
, (4.22)

in which b is the linewidth of noise density. Thus the pointer state should be proportional to
the noise linewidth when the driving field is much larger than the noise. For the ensemble-
averaged driving in 3D, the noise density is a Lorentzian with normalized linewidth b = Γ =
1, thus the pointer state should be Sz(t) = 1/

√
h2 + 1 ≈ 1/h. Such a pointer can be observed

in the numerical results at the long time limit of 3D ensembles, as shown in Fig. 4.4. The
analytical prediction matches well with the numerical results.

Figure 4.4: Ensemble averaged Rabi oscillation envelope in log scale. 3D, h=100.
Rabi envelope is obtained at M ′ = 10000, N ′ = 500. The short time fitting result is k = 0.4984, b = −1.3401.
The long time fitting result is k = −0.4442, b = 0.7345.

For 2D and 1D cases, larger linewidths can be expected due to larger standard deviations,
as shown in the previous chapter, Fig. 3.5. Due to the large divergence of effective noise in
1D and 2D, the driving might happen in a weak driving regime where h/b ∼ 1. In such a
case a large component of the pointer state can be observed at the long time limit, as shown
in Fig. 4.6. At 1D, h = 50, the pointer state is about nz = 0.166, which means the effective
linewidth of 1D noise density is about Γ ≈ 8.1. Similarly, a clear transition period between
the long-time decay and equilibrium pointer state can be observed, which is marked by t2.
Even if a fixed linewidth can not be found, larger pointer states indicate larger statistical
fluctuations in the noise.

More figures of h = 200, 100, 50, 20 is given in the Appendix. C. From the figures, it can
be concluded that the larger the driving field, the longer the coherence. Both t1 and t2 will
be prolonged under a stronger driving.
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4.4. Damping of Continuous Driving

Figure 4.5: Ensemble averaged Rabi oscillation envelope in log scale. 2D, h=100.
Rabi envelope is obtained at M ′ = 10000, N ′ = 500. The short time fitting result is k = 0.3281, b = −0.9852.
The long time fitting result is k = −0.339, b = 0.5069.

Figure 4.6: Ensemble averaged Rabi oscillation envelope in log scale. 1D, h=50.
Rabi envelope is obtained at M ′ = 10000, N ′ = 500. The short time fitting result is k = 0.1992, b = −0.8132.
The long time fitting result is k = −0.1396, b = 0.0867.
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Chapter 5

Noisy Quantum Gate

5.1 Driving Error
In reality, the Rabi driving on a qubit is always non-resonant due to the fluctuation in local
field strength produced by dipolar couplings. Such a fluctuation β will lead to inevitable
errors in the Rabi driving, disturbing both the driving axis and accumulated phase. Studying
the error distributions and their properties will provide an insight into error mitigation and
benefit the quantum information processing at a fundamental level.

The evolution unitary of a qubit under non-resonant driving is shown in Eqn. 4.6. If
we take positions and configurations of bath spins (disorder realization) into consideration,
then the effective unitary will be labeled by ζ, 1

U(t, ζ) = cos
(
Ωζ
2
t

)
+ i sin

(
Ωζ
2
t

)
σn(ζ) (5.1)

in which
Ωζ =

√
h2 + β2ζ , σn(ζ) = σ⃗ · ( h

Ωζ
, 0,

βζ
Ωζ

). (5.2)

h is an effective driving strength given by γ0B, Ωζ is the local field inhomogeneity ∆ω, de-
cided by the environmental couplings. They are both in the dimension of frequency.

For an arbitrary drving axis n⃗0 with constant pulse strength h. The Rabi frequency and
driving axis can be given by

Ωζ = ||βζ n⃗ζ + hn⃗0||, n⃗ζ = (βζ n⃗ζ + hn⃗0)/Ωζ (5.3)

5.1.1 Phase Error
In order to determine the optimal duration for a Pi pulse, we need to calibrate our systemwith
Rabi signal. The spin is prepared at Z state and then rotated around X axis, and measured
from Y basis. The signal is

〈Sy(t)〉ζ = −nx 〈sin(Ωζt)〉ζ (5.4)
The optimal duration of Pi pulse, tπ, is defined by

f(t) = 〈sin(Ωζtπ)〉ζ =
1

N

N∑
ζ=1

sin(Ωζtπ) = 0, (5.5)

It can be found at the zero point of 〈Sy(t)〉, as shown in Fig. 5.1. Taking the zero point of
Sy(t) is more efficient compared with finding the minimum of Sz(t), since the error of slope
detection is lower. But the phase accumulation on a specific disorder realization Ωζtπ is not

1ζ here is a combinational index for both disorder realization and spin configurations, detailed description
about ζ is given in Appendix. A.
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5. NOISY QUANTUM GATE

Figure 5.1: Corrected gate time for Pi pulse tπ in 3D ensemble at h = 20.
tπ can be found by fitting the linear line around π/h and calculating the zero root. The curve is sampled at
M ′ = 2000 and N ′ = 1000.

necessarily π. Phase error ε is defined by

〈sin(π + εζ)〉ζ = 0 ⇒ εζ = Ωζtπ − π. (5.6)

The distribution of Ωζ can be obtained via a numerical sampling for βζ . Besides, tπ can
be obtained by finding the first zero root of an ensemble-averaged Rabi oscillation. The dis-
tribution of phase error can be obtained numerically.

We found that the phase errors of Rabi driving are highly skewed with remarkable long
tails2, as shown in Fig. 5.2. This can be understood from the expression of Ω. Expand it

Ωζ =
√
h2 + β2ζ ≈ h+

β2ζ
2h
−

β4ζ
8h3

+O(β/h)6, (5.7)

then we will immediately realize that the β2ζ term lead to a positive fluctuation beyond the
resonant Rabi frequency Ω0 = h. Substitute the formula into the phase error

εζ ≈ ε0 +
β2ζ
2h
tπ, ε0 = htπ − π. (5.8)

We find that the error is peaked at ε0 = h tπ(h) − π, and then gradually decays to a flat tail
on the right side. This picture is clearly shown in Fig. 5.3. The location of the most probable

2In statistics, the skewness of a distribution is related with its third-order momentum, defined by

µ̃3[X] =

∑N
i (Xi − µ)3

(N − 1)σ3
,

in which µ is the mean value and σ is the standard deviation. Skewness characterizes the asymmetry observed
in a probability distribution.
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Figure 5.2: Distribution of phase error ε under various driving strength in 3D spin ensemble
The error is sampled withM ′ = 2000 disorder realizations(DR), andN ′ = 400 spin configurations for each DR.
the histogram is plotted from -0.08 to 0.02 with 400 bins in total.

error ε0 depends on the driving strength h. As h goes from 20 to 200, ε0 is effectively reduced
from 10−2 to 10−3. The long tail diverges to a significantly large scale because the second-
order momentum of the Lorentzian distribution does not converge, as given in Eqn. 3.37
The statistical indicators of the distributions are demonstrated in Table. 5.4.

h mean std skewness kurtosis median
0 10.0 0.088264 0.509461 5.318630 33.110874 -0.064319
1 20.0 0.033233 0.360468 8.537711 84.078919 -0.041424
2 50.0 0.018340 0.251193 11.808517 163.677854 -0.019313
3 100.0 0.008155 0.158776 19.530045 473.378535 -0.007441
4 200.0 0.006242 0.148085 23.379660 637.224210 -0.004295

Table 5.4: Statistics of 3D phase error distribution

We find that both the standard deviation and fluctuation of mean value are shrunk with
h going larger.

Yet, the growing kurtosis, which is at the scale of 102, means that even if we will safely
get a small error most of the time, significant error may still happen with a small probability.
Such a property of long-tailed distribution is related to a famous phrase, ”black swan”, which
means a rare event with a huge impact.

Another counterintuitive finding is that the medians of the error distributions are strictly
0. It means we have equal probabilities to get positive errors and negative errors, P (ϵ > 0) =
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Figure 5.3: Log scale probability distribution function of ε in 3D ensemble under various
driving strengths.
The range of the log scale histogram is adjusted with ε0, with 400 bins used in total. The distributions are similiar
to each other, only scaled on the horizontal axis.

P (ϵ < 0) = 1/2, so the distributions are still ”balanced”, while highly skewed. The difference
is that the negative errors are confined in a limited range ϵ ∈ [ϵ0, 0), while the positive errors
are stretched in a large area ϵ ∈ (0,∞] with thin probabilities.

Similiar phenomenons can be observed in 2D and 1D systems. The phase error distri-
bution in 2D is attached in Appendix,Fig. C.8, and the 1D case is shown here in Fig. 5.5.
Compared with the 3D case, the phase error of 2D and 1D is more centralized. The peaks
are higher and thinner, corresponding to lower kurtosis. Detailed statical indicators of the
distributions are appended in table D.3 and 5.7. We found that the distributions of phase
error in low dimensions are less tailed and skewed, yet have larger fluctuations. For ex-
ample, the kurtosis at h = 50 is 163.68 for 3D, 72.96 for 2D, and 28.18 for 1D, such that
Kurt[ε3D] > Kurt[ε2D] > Kurt[ε1D]. However, their relation on standard deviation is reversed
σ3D = 0.25 < σ2D = 1.19 < σ1D = 5.82. The large variance in low dimensional systems make
them hard to sample. As shown in Fig. 5.6, the fluctuations on the distribution can be clearly
observed even if we increase the sampling size toM ′ = 5000 and N ′ = 1000.

5.1.2 Axis Error

The rotation axis of Rabi driving is given by

n⃗ζ = (nζ,x, nζ,y, nζ,z) = (
h

Ωζ
, 0,

βζ
Ωζ

)
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Figure 5.5: Distribution of phase error ε under various driving strength in 1D spin ensemble
The error is sampled with M ′ = 5000 disorder realizations(DR), and N ′ = 1000 spin configurations for each
DR. the histogram is plotted from -0.12 to 0.02 with 600 bins in total.

h mean std skewness kurtosis
0 10.0 2.745321 7.622191 3.612021 13.807976
1 20.0 1.944198 6.542662 4.462761 21.581191
2 50.0 1.552844 5.822662 5.050152 28.185031
3 100.0 1.257895 5.475406 5.613614 34.153929
4 200.0 0.982550 4.829757 6.612477 48.233012

Table 5.7: Statistics of 1D phase error

in which the driving field is applied along the X-direction. In an ideal limit, the Rabi driving
is a perfect rotation around X-axis such that n⃗ = (1, 0, 0). So we expect that 〈nz(ζ)〉ζ = 0,
〈nx(ζ)〉ζ = 1. Yet, due to the local effective field produced by the bath spins, the driving axis
will be shifted to a small angle. The error of the driving axis can be defined as

δnζ,z = nζ,z, δnζ,x = 1− nζ,x. (5.9)

Since
√
n2ζ,x + n2ζ,z = 1, we only need to study one of the error δnζ,z . Expand the expression

δnζ,z =
βζ√
β2ζ + h2

≈
βζ
h
−

β3ζ
2h3

+O(βζ/h)5. (5.10)

On the contrary to phase error, the axis error is related with the odd terms of βζ in the ex-
pansion. If we trancate the high order terms, then the distribution of nζ,z is just a rescaled
distribution of the original βζ , as shown in Fig. 5.8, 5.9, 5.10. Statistical indicators of the dis-
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Figure 5.6: Log scale probability distribution function of ε in 1D ensemble under various
driving strengths.

tributions are given in Appendix. D. The standard deviation is shrunk by approximately 1/h
as expected while the kurtosis is increased with growing h.
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Figure 5.8: Distribution of axis error in 3D ensemble under various driving strengths.
The error is sampled withM ′ = 2000 disorder realizations(DR), andN ′ = 400 spin configurations for each DR.
The histogram is plotted from -0.1 to 0.1 with 300 bins in total. The fluctuations of sampling increase with the
driving strength h.
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Figure 5.9: Distribution of axis error in 2D ensemble under various driving strengths.
The error is sampled withM ′ = 2000 disorder realizations(DR), andN ′ = 400 spin configurations for each DR.
The histogram is plotted from -0.1 to 0.1 with 300 bins in total.
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Figure 5.10: Distribution of axis error in 1D ensemble under various driving strengths.
The error is sampled with M ′ = 5000, and N ′ = 1000. Significant fluctuations can be observed in the sampling
even though the sampling size is larger. The histogram is plotted from -0.1 to 0.1 with 300 bins in total.

5.2 Combined Error Distribution

In reality, Rabi driving of spin qubits is simultaneously affected by both the phase error and
axis error. The combinational error distribution can be visualized in the following 2D heat
maps, as demonstrated in Fig. 5.11, Fig. 5.12, and Fig. 5.13.

A quadratic curve can be clearly observed in the heat maps, which is given by

εζ − ε0 =
htπ
2
n2ζ,z, h� βζ . (5.11)

It can be obtained by expanding εζ , nζ,z and preserving 2 order terms. As h increased from
20 to 200, the range of axis error is reduced from 10−1 to 10−2 while the phase error is reduced
from 10−2 to 10−3 in 3D ensembles. This is good news for experimentalists, as we can always
improve the driving fidelity of qubit by applying a stronger driving field.

However, due to the skewness of phase distribution, the combined errors are largely cen-
tralized around the bottom of the quadratic curve, which corresponds to the bright yellow
areas on the heat map. From 3D to 1D, the probability density is more and more concen-
trated, as the distribution of β becomes sharper. In 1D, the error density is almost squeezed
to a small spot on the vertex of the quadratic curve, as shown in Fig. 5.13.
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5.2. Combined Error Distribution

Figure 5.11: Distribution of driving error in 3D ensembles
The resolution of the heat maps is 50× 50, with bin area dA = ∆ε∆nz depending on the plotting range of phase
and axis error. A quadratic structure can be observed in the combined error distribution.

Figure 5.12: Distribution of driving error in 2D ensembles
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5. NOISY QUANTUM GATE

Figure 5.13: Distribution of driving error in 1D ensembles

5.3 Fidelity of Quantum Gate
Quantum gates are the central concept in the circuit-based quantum computation model.
A quantum gate defines a certain unitary operation on qubits, such as X or CNOT which is
analogous to classical logic gates in digital electronics. For spin qubits, single qubit quantum
gates are just Rabi driving with a set of fixed parameters implemented using the RF driving
field. For example, in ideal resonant driving, X gate can be implemented by setting the
driving field along the axis, ϕ = 0, and keeping the driving time for t = π/(γ0B), as shown
in Eqn. 4.4.

However, as we have seen in previous discussions, errors from the environmental cou-
pling are inevitable in the driving process. As a consequence, what we get in reality is ac-
tually a noisy quantum operation, instead of an unitary gate. In order to estimate the effect
of environmental noise and know how well we can control and manipulate qubits, fidelity
metrics are needed.

5.3.1 Pulse Gate as a Quantum Operation
Consider a spin qubit an interacting spin bath, where the qubit is labeled by ”0” and the bath
is label labeled by ”b”. For the central spin qubit, evolution of its density matrix is given by

ρ0(t) = Trb U(ρ0 ⊗ ρb)U † =
∑
k

〈k|U(ρ0 ⊗ ρb)U †|k〉 =
∑
k

ck 〈k|U |k〉 ρ0 〈k|U †|k〉 (5.12)

in which |k〉 denotes a eigen state of the bath spins, cb(k) = 〈k|ρb(0)|k〉 is the probability of
|k〉 state. The effective unitary is already given in previous chapter as

〈k|U |k〉 = e−i⟨k|H|k⟩t = 〈k| e−iHt |k〉 = cos
(
Ωkt

2

)
− i sin

(
Ωkt

2

)
(n⃗k · σ⃗). (5.13)
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If we define the operator Ek =
√
ck 〈k|U |k〉 =

√
ckUk, then the density matrix can be

written in the Kraus operator form of qunatum operation

ρ0(t) =
∑
k

〈k|U |k〉 ρ0 〈k|U †|k〉 = E [ρ0(0)] =
2n−1∑
k=0

Ekρ0E
†
k. (5.14)

Hence the time evolution of the the density matrix is not a unitary but a non-unitary
quantum operation, denoted by E . We can easily check its property as a TPCP (trace preserving
completely positive) map ∑

k

EkE
†
k =

∑
k

ckUkU
†
k = 1. (5.15)

5.3.2 Entanglement Fidelity
A good metric to measure the distance between the quantum operation and the desired uni-
tary is the average gate fidelity, which is the average fidelity over all possible input states. For
convenience in the calculation, it can be derived from the entanglement fidelity.

The entanglement fidelity of the quantum channel can be write as

Fent(U, E) = 〈Ψ| (I ⊗ T )(|Ψ〉〈Ψ|) |Ψ〉 (5.16)

in which the T (ρ) = U †E(ρ)U is a converted quantum channel, |Ψ〉〈Ψ| is the maximal entan-
glement state for dimension d.

|Ψ〉 = 1√
d

d−1∑
k=0

|k, k〉 , (5.17)

Since the quantum channel E is a single-qubit process (d = 2), themaximal entanglement
state is just Bell state |Ψ〉〈Ψ| = 1√

2
(|00〉+ |11〉). The Eqn. 5.16 can be further derived into the

form

Fent = 〈Ψ|(I ⊗ T )(|Ψ〉〈Ψ|)|Ψ〉 = 〈Ψ| (I ⊗ U †)(I ⊗ E)(|Ψ〉〈Ψ|)(I ⊗ U) |Ψ〉 (5.18)

=
2n−1∑
k=0

ck 〈Ψ|(I ⊗ U †Uk) |Ψ〉〈Ψ| (I ⊗ U †
kU)|Ψ〉 (5.19)

Using the expression above we can derive the entanglement fidelity of all common used
single qubit gate. It can be prove that, if U is a Pauli matrix Pj then its fidelity is

〈Ψ|(I ⊗ P †
j Uk) |Ψ〉〈Ψ| (I ⊗ U

†
kPj)|Ψ〉 = (n⃗k · e⃗j)2 sin2

(
Ωkt

2

)
, Pj = X,Y, Z; j = 1, 2, 3

(5.20)
Thus the entanglement fidelity of Pauli gates (X,Y,Z) can be given by

Fent(Pj , E) =
2n−1∑
k=0

ck(n⃗k · e⃗j)2 sin2

(
Ωkt

2

)
. (5.21)

With the same approach we can give that for Pi/2 pulse gates (
√
X,
√
Y ,
√
Z(S))

Fent(
√
Pj , E) =

1

2

2n−1∑
k=0

ck

[
cos
(
Ωkt

2

)
− (n⃗k · e⃗j) sin

(
Ωkt

2

)]2
(5.22)

For Hadamard gate

Fent(H, E) =
1

4

2n−1∑
k=0

ck (nkx + nkz)
2 (1− cos (Ωkt)) (5.23)
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There is a relation between entanglement fidelity and average gate fidelity

Favg =
dFent + 1

d+ 1
(5.24)

in which d is the dimension of the system, which is d = 2 for single qubit. Using this formula
we can easily derive the overall average gate fidelity. The average gate fidelity can also be
obtained by finding the state average fidelity over all possible input states. This approach
will give the same result as shown in Appendix. B.15.

5.3.3 Numerical Results
Given all the results above, the fidelity of single qubit gates can be well evaluated by Monte-
Carlo Method. Here the infidelities 1 − F (U, E) of X,Y, Z gates are displayed in Fig. 5.14.
Similiar plot for Pi/2 gates (

√
X,
√
Y ,
√
Z(S)) is shown in Appendix. C.13

We find that the infidelities of pulse gates decrease quasi-linearly in the log scale, follow-
ing the relation ln

(
1− Favg

)
= mh+ b. The fitting result is listed in Table. D.5.

Increasing the driving strength h can effectively reduce the infidelities of quantum gates.
For X,Y gates in 3D,m ≈ −0.011 with b ≈ −3.6. Such a result means that the 1% infidelity
threshold for error correction can be achieved at h ≈ 77 for a 3D ensemble. Higher precision
can be achieved by further increasing the driving strength. 0.1% will be achieved at h ≈ 270.

Yet, the suppression of error is more difficult in low dimensions. The initial infidelity at
h = 20 is even larger than 10% for 1D case, which is completely unacceptable for information
processing. The fitting result is m ≈ −0.007 with b ≈ −2.6 for 2D and m ≈ −0.011 with
b ≈ 0.4 for 1D. If this prediction can be extrapolated to the stronger driving regime, then that
means we need h ≈ 250 to achieve 1% infidelity for 2D spin ensemble, and h ≈ 600 in 1D,
which would be a challenge in experiments.

In brief, the fidelity of single quantum gates in low dimensions is significantly limited
due to the large fluctuation in local field induced by the environmental couplings.
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Figure 5.14: Average Gate Fiedlity of Single Qubit Gates
(a): X gate infidelity, in normal scale. (b): Y gate infidelity, in log scale. (c): Y gate infidelity, in normal scale.
(d): X gate infidelity, in log scale. (f): Z gate infidelity, in normal scale. (e): Z gate infidelity, in log scale. The
results is obtained fromMonte-Carlo samplingwithM ′ = h2 ,N ′ = 1000. Two fold of themean error is displyed
to make the errorbar visible.
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Chapter 6

Decoupling Protocols

6.1 Periodic Driving System

6.1.1 Periodic pulse driving

As has been demonstrated by Hahn and Purcell, a properly designed sequence of pulses
can effectively mitigate decoherence. By adding Floquet terms to the system Hamiltonian,
periodic pulse sequence can remove the environmental couplings from the time average of
Hamiltonian[27][49]. The coherence time of the system can be equivalently extended in the
sense of synchronized measurements. This approach is known as dynamical decoupling
since the system seems to be decoupled from its environment. The sequence of pulses used
for dynamical decoupling constitutes a quantum control protocol.

An essential question is that in what extent can we eliminate the environmental coupling
for the artificial quantum system? This question is partially answered by the theoretical work
of Seth Lloyd[48], in which he proved that given an arbitrary form of interaction Hamilto-
nian, the environmental coupling can be fully eliminated by a periodic control protocol at
the limit of infinite-short pulse operation.

However, an infinite short pulse, or equivalently infinite strong pulse strength, is impos-
sible in reality. For spin qubits, the driving strength is limited by the maximal RF magnetic
field we can produce. In recent experiments, the pulse time for a Pi gate is at the scale of
10−7 ∼ 10−8s, which is about 10ns ∼ 100ns[59][14]. The finite duration of pulse time plays
an important role in the performance of dynamical decoupling protocols [20] [28].

Consider a spin qubit interacting with bath spins, and drived by an RF field, its Hamil-
tonian can be written as

H(t) = H0 +HC(t), HC = −h̄ωp[cosϕIx + sinϕIy] = −h̄ωp(n⃗ · I⃗) (6.1)

in whichH0 is the internal Hamiltonian of the system andHC is the term from driving pulse.
Denote the pulse duration as tp, then the evolution of the system can be written as

Pϕ(tp) = exp
[
− i
h̄
(H0 +HC)tp

]
(6.2)

If the pulse strength ismuch stronger than the internal interactions, whichmeans ‖HC‖ �
‖H0‖ . Then the pulse unitary applied to the system, as shown in Eqn.6.2, can be regarded
as a perfect rotation gate with angle θ.

Pϕ(θ) ≈ exp
(
− i
h̄
HCtp

)
= exp

[
i

h̄
(n⃗ · I⃗) θ

]
, θ ≡ ωptp (6.3)

49



6. DECOUPLING PROTOCOLS

n⃗ · I⃗ = cos(ϕ)Ix + sin(ϕ)Iy. ωp is the strength of driving field. We expect that tp ≈ 0 for very
strong driving. The default evolution of the system can be written as

U(t) = exp
(
− i
h̄
H0t

)
(6.4)

since the Zeeman and dipolar terms are commutative. For a periodic pulse sequence with n
repetitions, the evolution of system can be depicted as

ρ(t) = ρ(n tc) = {U(τ)PϕU(τ)}n ρ(0)
{
U †(τ)P †

ϕU
†(τ)

}n
(6.5)

in which tc is the period of the driving, tc = 2τ + tp.

6.1.2 Average Hamiltonian Theory
In the following derivations we drop the constant by assuming thath̄ = 1.

For a time dependent HamiltonianH(t), its time evolution is a unitary can be given by

U(t) = exp
(
− i
h̄

∫ t

0
H(τ)dτ

)
(6.6)

The unitary can be rewrite into a time evolution of static Hamiltonian.

U(t) 7→ U(tc) = exp
(
−iH̄tc

)
(6.7)

under the conditions
1. The HamiltonianH(t) is periodic for tc.
2. The measurement is synchronized with the periods.
In a discrete approximation we can split H(t) into a set of static Hamiltonians in a set of

small time intervals.

H(t) = Hk,
k−1∑
0

τi < t <
k∑
0

τi (6.8)

such that

U(t) = exp(−iHnτn) exp(−iHn−1τn−1) . . . exp(−iH2τ2) exp(−iH1τ1) (6.9)

Then the effective static Hamiltonian H̄ can be given by the Baker-Campbell formula

eBeA = exp
{
A+B +

1

2
[B,A] +

1

12
([B, [B,A]] + [[B,A], A]) + . . .

}
(6.10)

Use this formula the evolution operator can be reduced to

U(t) = exp

−i
n∑
k

Hkτk +
1

2

n∑
j=1

j−1∑
k=0

[−iHjτj ,−iHkτk] + . . .

 (6.11)

Compare with the Eqn. 6.7, we can get that

H̄ = H̄(0) + H̄(1) + H̄(2) + . . . (6.12)

in which

H̄(0) =
1

tc

n∑
k

Hkτk, H̄(1) =
−i
2tc

n∑
j=1

j−1∑
k=0

[Hjτj ,Hkτk] (6.13)

The above expansion of static Hamiltonian, which Eqn. 6.12 is called Magnus expansion.
Usually, when the time step τk � 1 is very small, the higher-order terms in the expansion

are negligible to O(τ2k ). The only remained term is the zero-order term, which is what we
called average Hamiltonian.
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6.2 Dynamical Decoupling Sequence
6.2.1 Toggling frames transformation
Now suppose we have a system with Hamiltonian H0. A dynamical decoupling protocol
is applied to the system, which can be described by a set of pulses Pk, separated by time
intervals τk. They should satisfy the condition

PnPn−1 . . . P2P1 = I (6.14)
The pulses are assumed to be perfect, meaning that their pulse duration is infinite short.
The Hamiltonian is untouched during the pulse intervals. Then we can write the system
envolution
U(tc) = exp(−iH0τn)Pn exp(−iH0τn−1) . . . P3 exp(−iH0τ2)P2 exp(−iH0τ1)P1 exp(−iH0τ0)

(6.15)
The equation can be transformed to another form by inserting P1P

†
1 = I between τ1, τ2,

P2P1P
†
1P

†
2 = I between τ2, τ3, etc

U(tc) = exp(−iH0τn)Pn exp(−iH0τn−1) . . . P3 exp(−iH0τ2)P2P1P
†
1 exp(−iH0τ1)P1 exp(−iH0τ0)

=PnP
†
n exp(−iH0τn)Pn . . . P3 exp(−iH0τ2)P2P1U1U0

=PnP
†
n exp(−iH0τn)Pn . . . P3P2P1P

†
1P

†
2 exp(−iH0τ2)P2P1U1U0

=PnP
†
n exp(−iH0τn)Pn . . . P3P2P1U2U1U0

=UnUn−1 . . . U2U1U0

(6.16)
in which we replaced that

U0 = exp(−iH0τ0),

U1 = P †
1 exp(−iH0τ1)P1

U2 = P †
1P

†
2 exp(−iH0τ2)P2P1

Uk = P †
1P

†
2 . . . P

†
k exp(−iH0τk)Pk . . . P2P1

the notation can be written as

Uk =W †
k exp(−iH0τk)Wk, Wk = Pk . . . P2P1 (6.17)

Then we can proved that for any matrix A, V the following relation is true.
V exp(A)V −1 = exp

(
V AV −1

)
(6.18)

Use this equation we can rewrite the Eqn.6.17 as

Uk =W †
k exp(−iH0τk)Wk = exp

(
−iW †

kH0Wkτk

)
= exp

(
−iH̃ktk

)
(6.19)

in which we define the effective Hamiltonian in toggling frame

H̃k =W †
kH0Wk = P †

1P
†
2 . . . P

†
kH0Pk . . . P2P1 (6.20)

The name of toggling frame indicates that the Hamiltonian is rotated, flipped up and down
by the controlling pulses.

Now use the formula of average Hamiltonian, Eqn. 6.13, we can write the first order av-
erage effective Hamiltonian of the system

H̄(0) =
1

tc

n∑
k=0

W †
kH0Wktk =

1

tc

n∑
k=0

H̃ktk (6.21)

It’s exactly the time average of the Hamiltonian in the toggling frame.
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6.2.2 Dynamical decoupling sequence
Dynamical decoupling is a technique of Hamiltonian engineering, that decouples a quan-
tum system from its environment using dynamical control signals, in order to protect the
quantum system, from decoherence caused by couplings with the environment.

As the averageHamiltonian theoremhas shown, a dynamical decoupling protocol, which
usually contains a periodic sequence of driving pulses {τ − P1 − 2τ − P2 − . . . 2τ − Pn − τ},
can eliminate the zero-order time average of the coupling Hamiltonian.

H̄(0) = 0, H̄(1) = δ(τ) (6.22)

The higher-order terms of average Hamiltonian is a small quantity to the order of inter-
pulse intervals, which can be ignored at a short period limit. Thus the time evolution of the
system is approxiamtely an identity matrix.

Ū(t) = exp
(
−iH̄t

)
≈ 1 (6.23)

By repeating the pulse sequence {τ −P1− 2τ −P2− . . . 2τ −Pn− τ}n, the system is freezed
to its original state in the sense of time average, [Ū(t)]nρ(0) ≈ ρ(0), so that information can
be stored in the quantum state without loss over time.

6.2.3 Spin dynamics during theecoupling sequence
For a noisy Mote-Carlo simulation, we can use a piece-wise model to track the dynamics of
qubit under the decoupling protocol. Consider a simple model of pulse {τ − P − τ}, for a
specific noise β, its unitary can be given as a piece-wise function

U(β, t) = U0(β, t), 0 < t < τ

U(β, t) = P (β, t− τ)U0(β, τ), τ < t < τ + tp

U(β, t) = U0(β, t− τ − tp)P (β, tp)U0(β, τ), τ + tp < t < 2τ + tp

(6.24)

where P is the effective unitary of a pulse P (t) = exp
(
−i[βSz + h (n⃗ · S⃗)]t

)
, where h is the

driving strength and n⃗ is the direction of the driving pulse P . And U0(β, τ) = exp(−iβτSz)
is the unitary during the free evolution.

With the above formulation, the dynamics of the spin during a pulse sequence can be
treated as a quantum operation,

ρ(t) = E(t)[ρ(0)] = 1

N

∑
β

U(β, t) ρ(0)U(β, t)†, (6.25)

following the same norm shown in Chapter. 5. Such a model can be effectively evaluated by
Monte-Carlo sampling on β, assuming that β obeys a distribution P (β).

6.3 Carr-Purcell Typed Sequences
6.3.1 Protocol Review
Carr-Purcell typed sequences are the oldest and simplest dynamical decoupling protcol[11].
CP-like sequence only contains periodic π pulses, as shown in Fig. 6.1.

Here X−180 means a Pi pulse along the negative axis of X, in order to compensate for
the phase error accumulated in the process. The sequence of CP protocol can be written
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6.3. Carr-Purcell Typed Sequences

(a): CP/APCP (b):CPMG/APCMPG

Figure 6.1: Diagram for one cycle of Carr-Purcell typed dynamical decoupling sequence.

as {τ − 180X − 2τ − 180X − τ}, which is just a simple periodic Pi pulse. By flipping the
second pulse, it becomes the APCP sequence (Alternating Phase Carr-Purcell), the sequence
ofwhich can be given as {τ−180X̄−2τ−180X−τ}. Themodel contains twoparameters, τ , the
interval between pulses, and the driving strength h. When the pulse phase ϕ is determined,
the duration of one pulse can be given by tp = ϕ/h. The pulse duration is usually ignored in
an ideal model, as the analysis assumes h to be infinite.

Similiarly, the sequence of CPMG/APCMPG protocol can be given by {τ − 180Y − 2τ −
180Y − τ}, {τ − 180Ȳ − 2τ − 180Y − τ}. CPMG(Carr-Purcell-Meiboom-Gill) and APCPMG
sequence simplely replace the X pulse with Y.

Given a perfect pulse with infinite short time and strong driving, CP/CPAP can fully
eliminate the decoherence caused by Zeeman terms (noise related with Sz). The following
proof will be trivial using toggling frame Hamiltonian picture.

H̃0 ∼ Sz, H̃1 ∼ XSzX = −Sz, H̃2 ∼ XXSzXX = Sz

H̄(0) ∼ τSz − 2τSz + Sz = 0 (6.26)

However, the protocol can’t handle the noise of Ising terms (ZZ couplings) sinceXjXkS
z
jS

z
kXjXk =

SzjS
z
k . The Ising terms remain untouched since the pulse drives both the qubit spin and bath

spin.

6.3.2 Effective Hamiltonian

Yet, as we havementioned above, the finite pulse duration tp actually plays an important role
in the dynamics. tp can’t be ignored especiallywhen τ ∼ tp or τ < tp. Providing the sequence
for four types of CP-like sequences, the effective Hamiltonian of the noisy system can be
given by Magnus expansion. The average Hamiltonians (first order Magnus expansion)for
the four protocols are easy to give

CP: H̄0 =
1

tc
[(4τ + 2tp)βSz + 2tphSx] (6.27)

APCP: H̄0 =
1

tc
[(4τ + 2tp)βSz] (6.28)

CPMG: H̄0 =
1

tc
[(4τ + 2tp)βSz + 2tphSy] (6.29)

APCPMG: H̄0 =
1

tc
[(4τ + 2tp)βSz]. (6.30)
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The first order Hamiltonians are
CP: H̄1 = 0 (6.31)

APCP: H̄1 =
1

2tc
[h tp β(2τ + tp)Sy] (6.32)

CPMG: H̄1 = 0 (6.33)

APCPMG: H̄1 = −
1

2tc
[h tp β(2τ + tp)Sx]. (6.34)

The results are different from the derivations given in Barrett’s work[29] since we used a
simplified model of unlike spins, thus only Ising (Izi Izj ) terms are preserved in the dipolar
interaction.

6.4 Long-lived Coherence
The finite duration of pulses will lead to an accumulation of error due to the non-zero first
order average Hamiltonian and therefore result in a much longer coherence time, up to 105

of T2[29][28]. The results we get from the Monte-Carlo assisted piece-wise model is dis-
played below. We prepare the spin qubit at y-axis ρ(0) = |+i〉〈+i| and apply periodic CP-like
sequences on it, then measure the angular momentum 〈Sy(t)〉 at the end point of each time
interval tp and τ .

First, we look at the situation where the spin is placed in a bath with ensemble-averaged
noise. Distributions of this noise in different dimensions are given in Fig. 3.5. The ensemble
parameters is set at T2 = 1. The long-lived coherence is observed in one, two, and three
dimensions, as shown in Fig. 6.2.

Figure 6.2: Dynamics of qubit under CPMG sequence, with ensemble averaged bath noise in
different dimensions. Sequence parameters are set at h = 100 τ = 0.7. Recall that T2 = 1.

As suggested by previous research, independence of dimensionalities is a critical feature
of the long-lived coherence[20]. Comparewith 3D, the noise distributions in 1D, and 2Down
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6.4. Long-lived Coherence

larger variance and extremely fatter tails, which has been discussed in Chapter. 3. However,
envelope of spin echos (Sy) in 1D and 2D shows samiliar height (〈Sy(t)〉 ≈ 0.846 for 1D,
0.965 for 2D, and 0.994 for 3D) as in 3D case, which indicates this pheonmenon is very robust
against the long tail noise spectrum in low dimensions.

6.4.1 Origin Mechanism

While the CP-like sequences are quite simple and similar in structure, they demonstrate com-
pletely different behaviors when applying to the qubit prepared at Y polarization. Among
the four types of CP-like sequences, only APCP and CPMG demonstrate long-lived tails,
due to the accumulation of higher-order terms in the Hamiltonian, as shown in Fig. 6.3. The
polarization of qubit soon decays under the driving of CP and APCPMG sequence. Sim-
ilar behaviors can be observed in 2D and 1D, as displayed in the appendix, Fig. C.15 and
Fig. C.14.

Such a pattern has been demonstrated in the paper of Barrett.[29]. Our simplified model
reproduced the results using the Monte-Carlo sampling instead of full-scale Hamiltonian
simulations. This is a verification that the simulation produces the correct result.

Figure 6.3: Spin echos envelope of Sy(t) under different decoupling sequences in 3D. Se-
quence parameters are set at h = 100 τ = 0.7.
The measurements are synchronized with the time points of spin echos, thus the curves shows an envelope of
the periodic oscillations.

The origin of the long-lived coherence can be understood from the average Hamiltonian,
as given in last section. It can be seen that the effective Hamiltonian of CPMG and APCP
both possess similiar formHeff = H̄0 + H̄1 = ηySy + ηzSz . For CPMG sequence,

Heff = H̄0 + H̄1 = βSz + λhSy, λ =
2tp
tc

(6.35)
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where λ is the duty cycle of CPMG. The evolution of the average Hamiltonian equals an
rotation

Ueff(t) = exp(−iHefft) = exp
[
−iΩeff t (n⃗eff · S⃗)

]
(6.36)

in which Ωeff =
√
β2 + (λh)2, n⃗eff = (0, λh/Ωeff, β/Ωeff). The effective rotation locates on the

YZ equator of Bloch sphere, with an polar angle θ = π/2−arcsin(β/λh), as shown in Fig. 6.4.
As we can see in Fig. 6.4, the qubit state is prepared at the Y-axis at the beginning, and

then start rotating around the axis n⃗eff. Thus the trajectories of these rotations will be a set of
circles centered at n⃗eff and pass by Y-axis, which are plotted with blue dashed circles on the
sphere.

Then Sy(t, β) can be given using a little geometry knowledge,

Sy(t, β) = cos2(ϵ) + sin2(ϵ) cos(t) = 1− β2

h2λ2
(1 + cos t), ϵ = arcsin(β/λh) (6.37)

in which ϵ is the angle between n⃗eff and Y axis.
At an echo time point techo = n(2τ + tp), n = 1, 2, 3 . . . , 〈Sy〉 can be obtained by integrat-

ing over the distribution of β. If we assume that β obeys a distribution with linewidth b, that
b/λh� 1, then it can be expected that the rotation trajectories will be centralized in a smaller
circle around Y-axis, thus the time average of Sy(t) will be approximately 1. Hence the co-
herence is preserved. The situation is similar in APCP sequence, the effective Hamiltonian
of which is also ηySy + ηzSz . On the opposite, if the effective rotation is around X-axis, as in
the cases in CP and APCPMG, the rotation trajectories will be a large circle close to the YZ
equator. The average value of the Y component is therefore 0.

This simple and intuitive model provides a good view to understand the mechanism
behind the long-lived coherence. Yet, it is still limited since we truncated all the high order
terms in the Magnus expansion. Average Hamiltonian can not provide any information on
the real trajectory of the spin state either, as only one single rotation is assumed. To investigate
the sophisticated effect of control sequences in spin dynamics, exact simulation via Monte-
Carlo methods is needed.

Figure 6.4: Effective rotation of average Hamiltonian
The effective rotation axises with different β are marked with a set of red lines. Trajectories of these rotations are
plotted on the sphere as a set of blue dashed circles.
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6.4.2 Effect of noise linewidth
As shown in the analysis above, the linewidth of noise distribution will directly affect the
average height of the CPMG long-coherence. Such a behavior can be observed in Fig. 6.5.
Here, the noise is set to Gaussian distribution centered at 0 with linewidth b = 1, 5, 10, the
driving strength is set to h = 10. It can be observed that the height of spin echos is shorter
with b increasing. This result suggests that the height of the spin echos produced by CPMG
protocol depends on the standard deviation, or effective linewidth, of the corresponding
noise distribution.

Figure 6.5: Relation between the noise linewidth and height of spin echos.
The noise is set to Gaussian distribution centered at 0 with linewidth b = 2, 5, 10. The paramters of CPMG are
set to h = 10, τ = 0.7.

Further investigation on the linewidth is shown in Fig. 6.6. Here, 〈Sy(t)〉 is the average
height of spin echos underCPMGdriving over time. The pulse-pulse interval of the sequence
is fixed at τ = 0.7. The value of b and h are chosen from both the weak driving regime b ∼ h
and the strong-driving regime h� b.

We found that the decay of echo height in the strong-driving regime (h� b), as shown in
subfigure (a), is well described by the quadratic decay predicted by the average Hamiltonian
model, as given in Equation. 6.37. The dashed lines display the fitting of numerical results
using quadratic decay. As we can see, the theoretical prediction of quadratic decay matches
well with the simulation in this regime.

In the regime of strong noise, the height of spine echos decays quasi-linearly with the
linewidth of noise b, as shown in Fig. 6.6, (b).
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(a): Decay of echo height in the strong driving regime h ≫ b.

(b): Decay of echo height in weak driving regime h ∼ b.

Figure 6.6: Average height of spin echos under different driving strength h and noise linewidth b.

6.4.3 Effect of pulse-pulse interval

Different from the previous results, our model based on finite-duration pulses indicates that
such a phenomenon also exists when pulse-pulse interval τ is close to T2 (τ ≈ 0.7). Besides,
the pulse-pulse interval τ lead to a completely different response to noise at the same driving
strength, as shown in Fig. 6.6.

To further understand the role of pulse interval in CPMG, we set a fixed Gaussian noise
with linewidth b = 5 and then observe the echo height at different values of τ . The spin qubit
is set at Sy as before. The result is shown in Fig. 6.7.

The long-lived coherence emerges at both the long time regime τ > T2 and the short time
regime τ < T2. This discovery is different from the previous research where the long-lived
coherence does not present at τ > T2[20].
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Figure 6.7: Average height of spin echos under different driving strength h and noise
linewidth τ . The noise linewidth is set at b = 5.

For strong driving h � b, the height of the spin echos does not depend on τ in the time
range we choose. Yet, for the weak driving case h ∼ b, the performance of CPMG starts
degenerating after τ > T2 as expected. Surprisingly, the average spin-echo height also decays
at τ < 1/h. A peak of echo height can be observed around τ = 1/h. This result provides an
interesting insight on the design of dynamical decoupling sequence, as it implies an optimal
choice for τ at τ ≈ 1/h(T ∗

2 ).
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Chapter 7

Conclusion

7.1 Summary and Discussion
In Chapter. 1, we identified decoherence as one of the most profound changes on the way
to fully-fledged quantum technologies, and introduced noise mitigation based on quantum
control as the main approach to handle the challenge. Focusing on spin systems, this thesis
studied various problems in the quantum control techniques from a fundamental level of
spin dynamics.

• In Chapter. 3, we identified a set of dimensionless parameters to characterize an en-
semble of disordered and dilute bath spins. Based on this model, we demonstrated the
average noise spectrumof a spin qubit interactingwith bath spins via dipolar couplings
in different dimensions. We found the effective noise in low dimensions demonstrates
strong statistical fluctuation, characterized by a long tail in the average noise spectrum.

• In Chapter. 4, we studied the Rabi driving of the qubit surrounded by disordered bath
spins in all different dimensions. Using Monte-Carlo simulation, we provided a long-
time profile for continuous Rabi nutation under different driving strengths. Specifi-
cally, the continuous Rabi nutation demonstrates different asymptotic behaviors in the
short-time regime and long-time regime, depending on dimensions. We identified the
transition time between the two stages and provided a simple exponential model to
describe the behaviors in different time regimes.

• In Chapter. 5, we demonstrated the distributions of errors presented in single quantum
gates, including both errors on their rotating axis and errors on driving phases. We
found that the phase error obeys a highly skewed distribution, with a long tail laid on
the positive axis. The axis error obeys the same distribution of the effective noise in the
strong driving regime. Based on these insights, we provided the average gate fidelities
of single quantum gates under different driving strengths.

• In Chapter. 6, we studied the performance of Carr-Purcell typed dynamical decoupling
protocols on the noisy spin qubit. We found that CP-type sequences can protect the
qubit from decoherence in all one, two, and three dimensions, providing an extremely
long coherence time. We found that the height of spin echos obeys a quadratic decay
with noise linewidth in the strong driving regime, and decays linearly in the weak
driving regime. The height of spin echos in the long lived coherence demonstrates a
maximum around the inverse of driving strength 1/h.

In summary, we studied the dynamics of a spin qubit interacting with disordered bath
spins in 3D/2D/1D. Bymodeling the spin environment from fundamental dipolar couplings
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and employing Monte-Carlo simulations, this research provides an insight into the pre-
cise driving and control of a noisy spin qubit, including the noise distribution, decoherence
mechanism, driving error, gate fidelity, and performance of dynamical decoupling sequence.
These knowledeges will be helpful to the future design of quantum gates and potential de-
coupling protocols of spin qubits.

7.2 Outlook
Personally, I consider the work presented in this thesis unfinished. More problems can be
investigated based on the results obtained in this thesis.

• First, I wish to visualize the motion of the spins under periodic pulse driving, by mak-
ingmoving trajectories on the Bloch sphere, in order to better understand its dynamics.

• Second, further exploring the parameter space of long-lived coherence would be help-
ful to understand the mechanism behind such a phenomenon.

• Third, the performance of various dynamical decoupling sequences (like XY-8) against
noise can be further investigated using the noisy model.

The above questions can be answered by further exploiting the current model and numerical
tools. Beyond thiswork, we can extend the environmental noise from a static distribution to a
stochastic process (Ornstein-Uhlenbeck process) by considering the evolution of the system.
Such a dynamical model is a better description to reality. Furthermore, the current model
only considers a single spin qubit in a noisy bath. More problems can be investigated if in-
troduce multiple qubits and their interactions in the system. For example, we can study the
performance of two-qubit gates under a such noisy environment. The design of a better dy-
namical decoupling protocol to mitigate noise is also an exciting challenge. Aside from noise
mitigation, the technique of quantum control can also be exploited to design a dynamically
decoupled quantum gate. By better understanding the coupling between qubits and envi-
ronment, we would be able to mitigate these noises in every operation performed on qubits,
this would be an ultimate challenge on the way to general quantum information processing.
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Appendix A

Monte-Carlo Methods

As shown in the previous chapter2.5.1, the environmental noise is equivalent to a fluctuation
on the local field, defined by a bath spin state P⃗ p and a set of dipolar coupling strengths D⃗ξ,

βp,ξ = P⃗p · D⃗ξ (A.1)

in which the bath spin configuration is labeled by p, and the disorder realization (DR) is
labeled by ξ.

The properties and dynamics of an ensemble of interacting spin clusters can thus be stud-
ied from a view of ensemble average[13].

〈A〉 = 1

N

1

M

∑
p

∑
ξ

A(βp,ξ) =
1

N
∑
ζ

Aζ , (A.2)

inwhich Eqn. 2.16 is used to obtain the expectation of one specific disorder realization. M ,N
are the total volume of eigenstates and disorder realizations respectively. Here ζ = (s, ξ) ∈
Ω(s) ⊗ Ω(ξ) labels a combinational state of a specific spin configuration and a specific dis-
order realization. N = N ·M is the total number of possible combined states. Basicaly the
combined ensemble is still microcanconical as the probability to reach each microstate is the
same.

The Eqn. A.2 is simple in form but hard to compute in practice. The observable Aζ must
be be evaluated for each ζ. Thus the calculation must be repeated by N = |Ω(s) ⊗ Ω(ξ)| =
2n ·

(
m
n

)
times. Obviously, the problem is non-polynomial, as its complexity grows super-

exponentially.

Estimtator
In such a situation, Monte-Carlo sampling can be used to effectively evaluate the result in a
trade-off to precision[50]. Instead of iterate over the full space spanded by of P⃗ p and D⃗ξ, the
algorithm only samples a subspace with limited sizeM, as shown below

ĀM =
1

N ′
1

M ′

N ′∑
p=1

M ′∑
ξ=1

A(βp,ξ) =
1

M
∑
ζ

Aζ , (A.3)

Ā is an estimator of 〈A〉 using the average calculated from a random sampled subspace. The
volume of the subspace isM =M ′N ′ < N .

Sampling

The spin configuration P⃗ p equals a bitstring of length n, we can randomly generate many
bitstrings, with a total number N ′ < N . P⃗ 7→ |0011 . . . 1001〉 = |↑↑↓↓ . . . ↓↑↑↓〉. Disorder
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A. MONTE-CARLO METHODS

realization D⃗ equals a set of occupations {ϕi} if we preserve the lattice. It can also be sampled
from a bitstring {ϕi} = 0011 . . . 1001 of length m with a Hamming weight n. If we ignore
the lattice structure at a limit of dilute ensemble, then the postions can be generated as an
array of random numbers, {r⃗j}. However, singularity might be introduced into our system
by assuming a continuous coordinates. Dj can be unreasonablely large when a very small
r⃗j is generated by chance, as Dj ∝ 1/|r⃗j |3. In reality, the maximum strength of a dipolar
interaction between two spins is limited by the minimal lattice constant. Thus we can set a
minimum threshold a distance that r⃗j > a for all j in order to eliminate the singularity.

Error
The error of Monte-Carlo estimator is given by the Chebychev inequality

P

{
|ĀM − 〈A〉 | ≥ [

var[A]
δ

]1/2
}
≤ δ. (A.4)

in which var[A] is the variance of A. It’s given equivalently in the form of central limit theo-
rem,

|ĀM − 〈A〉 | ∼
Normal(0,var[A])√

M
, (A.5)

where Normal(µ, σ2) denotes a normal distribution. As shown in the equation, the mean
error of Monte-Carlo estimator decays with a square root of the sampling size, which can be
given by

δ[A] =
σ[A]√
M

=

√√√√ 1

M2

M∑
ζ=1

(
Aζ − Ā

)2
. (A.6)

σ[A] is the standard deviation of A.
Numerical analysis based on Monte-Carlo sampling will be the basic methodology used

in this thesis.
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Appendix B

Supplementary Derivations

B.1 Transformation of Joint Rotating Frame
The transformation from a static frame to a joint rotating frame

|ψ〉 →
∏
j

e−iω̃jS
z
j t |ψ〉R (B.1)

substitute this into the Schordinger equation we will get

ih̄
d |ψ〉
dt = H |ψ〉 ⇒ ih̄

d
dt
(
e−it

∑
j ω̃jS

z
j |ψ〉R

)
= H e−it

∑
j ω̃jS

z
j |ψ〉R

ih̄

−i
∑

j

ω̃jS
z
j

 e−it
∑

j ω̃jS
z
j |ψ〉R + e−it

∑
j ω̃jS

z
j
d
dt |ψ〉R

 = H e−it
∑

j ω̃jS
z
j |ψ〉R

ih̄

−i
∑

j

ω̃jS
z
j

V |ψ〉R + V
d
dt |ψ〉R

 = H V |ψ〉R

in which the transformation is denoted as V = e−it
∑

j ω̃jS
z
j . The derivative on unitary is

treated as normal since theSzj are commute to each other and they are all diagnoal. Substitute
the equation in rotating frame into the formula

ih̄
d |ψ〉R

dt = HR |ψ〉R

We get that∑
j

ω̃jS
z
j

V |ψ〉R + V HR |ψ〉R = H V |ψ〉R ⇒ V HR =H V −h̄

∑
j

ω̃jS
z
j

V

The final expression forHR

HR = V †H V −h̄ω0

∑
j

Szj

 (B.2)

since V is commute to Szj .
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B.2 Two-Spin Interaction Hamiltonian in Rotating Frame
Let the unitary V be a transformation to joint rotating frame of two spins

V = e−iω̃1Sz
1 te−iω̃2Sz

2 t = e−iω̃1t/2(σz⊗I)e−iω̃2t/2(I⊗σz) = e−iω̃1t/2σz ⊗ e−iω̃2t/2σz (B.3)

Then we have
[Sz1 , S

z
2 ] = 0⇒ V †Sz1S

z
2V = Sz1S

z
2 (B.4)

V †Sx1S
z
2V =

1

4
e+iω̃1t/2σzσxe

−iω̃1t/2σz ⊗ σz = cos(ω̃1t)S
x
1S

z
2 − sin(ω̃1t)S

y
1S

z
2 (B.5)

similarly we get
V †Sy1S

z
2V = cos(ω̃1t)S

y
1S

z
2 + sin(ω̃1t)S

x
1S

z
2 (B.6)

using the fact that

(cosA+ i sinAσz)σx(cosA− i sinAσz) = cos2Aσx + sin2Aσzσxσz + i sinA cosA[σz, σx]
= (cos2A− sin2A)σx − 2 sinA cosAσy
= cos(2A)σx − sin(2A)σy

(cosA+ i sinAσz)σy(cosA− i sinAσz) = cos2Aσx + sin2Aσzσyσz + i sinA cosA[σz, σy]
= (cos2A− sin2A)σy + 2 sinA cosAσx
= cos(2A)σy + sin(2A)σx

Then for the crossing terms

V †Sx1S
y
2V = [cos(ω̃1t)Sx − sin(ω̃1t)Sy]⊗ [cos(ω̃2t)Sy + sin(ω̃2t)Sx]

= cos(ω̃1t) cos(ω̃2t)S
x
1S

y
2 − sin(ω̃1t) sin(ω̃2t)S

y
1S

x
2

+ cos(ω̃1t) sin(ω̃2t)S
x
1S

x
2 − sin(ω̃2t) cos(ω̃2t)S

y
1S

y
2

To get V †Sx1S
y
2V , we only need to switch the indices 1, 2.

The xx and yy terms can be obatined similarly

V †Sx1S
x
2V = cos(ω̃1t) cos(ω̃2t)S

x
1S

x
2 + sin(ω̃1t) sin(ω̃2t)S

y
1S

y
2

− cos(ω̃1t) sin(ω̃2t)S
x
1S

y
2 − sin(ω̃2t) cos(ω̃2t)S

y
1S

x
2

V †Sy1S
y
2V = cos(ω̃1t) cos(ω̃2t)S

y
1S

y
2 + sin(ω̃1t) sin(ω̃2t)S

x
1S

x
2

+ cos(ω̃1t) sin(ω̃2t)S
y
1S

x
2 + sin(ω̃2t) cos(ω̃2t)S

x
1S

y
2

The flip-flop term xx+yy can be calculated as above, but it’s better to use the ladder op-
erator form. First we calculate the transformation on ladder operators,

(cosA+ i sinAσz)σ+(cosA− i sinAσz) = cos2Aσ+ + sin2Aσzσ+σz + i sinA cosA[σz, σ+]
= cos(2A)σ+ + i sin(2A)σ+
= exp(i2A)σ+

notice that the lowering operator have an opposite sign on commutation.

(cosA+ i sinAσz)σ−(cosA− i sinAσz) = cos(2A)σ− − i sin(2A)σ− = exp(−i2A)σ−

The following basic properties are used

σzσ+σz =
1

2
σz(σx + iσy)σz =

1

2
(−σx − iσy) = −σ+, σzσ−σz = −σ−
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[σz, σ+] =
1

2
([σz, σx] + i[σz, σy]) =

1

2
(2iσy + 2σx) = 2σ+

[σz, σ−] =
1

2
([σz, σx]− i[σz, σy]) =

1

2
(2iσy − 2σx) = −2σ−

V †σ+1 σ
−
2 V = e+iω̃1t/2σzσ+e

−iω̃1t/2σz ⊗ e+iω̃2t/2σzσ−e
−iω̃2t/2σz = σ+ ⊗ σ−ei(ω̃1−ω̃2)t (B.7)

V †σ−1 σ
+
2 V = σ− ⊗ σ+e−i(ω̃1−ω̃2)t (B.8)

Therefore the S⃗1 · S⃗2 contains Ising(zz) and flip-flop and is secular. The crossing terms
in (S⃗1 · n⃗)(S⃗2 · n⃗) are more tricky. Of course zz should be preserved as well. All the terms
that contains only one z spin should be dropped.

Notice that the corssing terms Sx1S
y
2 are also oscillating since that

V †(Sx1S
y
2 + Sy1S

x
2 )V = cos(2ω0t)(S

x
1S

y
2 + Sy1S

x
2 )

The following term should be treated carefully

V †(n2xS
x
1S

x
2 + n2yS

y
1S

y
2 )V

since it contains both secular and non secular terms.
A convenient way is using direct matrix product

V †(n2xS
x
1S

x
2 + n2yS

y
1S

y
2 )V =

1

4


0 0 0 eit(ω1+ω2)

(
n2x − n2y

)
0 0 eit(ω1−ω2)

(
n2x + n2y

)
0

0 e−it(ω1−ω2)
(
n2x + n2y

)
0 0

e−it(ω1+ω2)
(
n2x − n2y

)
0 0 0


B.2.1 Like Spins
For like spins, eit(ω1−ω2) ≈ 1 is secular, while eit(ω1+ω2) is oscillating and thus non-secular.

The fast oscillating entries can be dropped, then the remained part is

1

4


0 0 0 0

0 0 eit(ω1−ω2)
(
n2x + n2y

)
0

0 e−it(ω1−ω2)
(
n2x + n2y

)
0 0

0 0 0 0

 ≈ 1

2

(
n2x + n2y

)
(Sx1S

x
2 + Sy1S

y
2 )

After dropping all non-secular terms, the Hamiltonian is transformed into

HRD =
1

|r⃗12|3
[
3(n2xS

x
1S

x
2 + n2yS

y
1S

y
2 + n2zS

z
1S

z
2)− (Sx1S

x
2 + Sy1S

x
2 + Sz1S

z
2)
]

(B.9)

Then for like spins

HD =
1− 3n2z
2|r⃗12|3

(S⃗1 · S⃗2 − 3Sz1S
z
2)

in which we used that n2x + n2y + n2z = 1,

(nx, ny, nz) = (sin θ cosϕ, sin θ sinϕ, cos θ)

write elementary vector in spherical coordinate then you can get the formula of dipolar cou-
pling strength

D12 =
1− 3 cos2 θ

2|r⃗12|3
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B. SUPPLEMENTARY DERIVATIONS

B.2.2 Unlike Spins
However, for unlike spins |ω1+ω2| � D, b. So the terms related ei(ω̃1−ω̃2)t are also oscillating
and should be dropped. The only remained part is the zz terms.

The result is

HR
D =

1

|r⃗12|3
(3n2z − 1)Sz1S

z
2

B.3 Effective Field
The eigenvalue can be found by

B̂ =
∑
j

2DjS
z
j =

∑
j

Djσ
z
j = 1⊗

∑
j

Dj1
⊗(j−1) ⊗ σz ⊗ 1⊗(n−j)

If we take n = 2 then we will get

Bb = D1(σz ⊗ 1) +D2(1⊗ σz) =


D1 +D2 0 0 0

0 D2 −D1 0 0
0 0 D1 −D2 0
0 0 0 −D1 −D2


The formula can be easily extended into multiple spins. Thus the eigenvalue of βp is

βp =
∑
j

pjDj , pj = ±1 (B.10)

B.4 Free Induction Decay
The experiemnt initializes an spin at transverse axis |+〉 and then observes the spontaneous
decay of the polarization. Consider a spin cluster of n+ 1 unlike spins, in which the central
spin qubit is labeled by ’0’, and the spin bath labeled ’b’. The Hamiltonian of the system is
then given by an Ising-type interactions that can be exactly solved.

H =
n∑
j=1

2h̄DjS
z
jS

z
0 (B.11)

in which Sz0 = Sz ⊗ 1b, and Szj = 1
21

⊗j ⊗ σz ⊗ 1⊗(n−j+1). The 1b = 1⊗n is an identity matrix
on bath space, of 2n dimension. σj , j = x, y, z are Pauli matrices.

The central spin qubit is initialized at a mixed state polarized on the x axis.

ρ0 =
1− λ
2

1+ λ |+〉〈+| = 1

2
1+ λSx (B.12)

in which 0 < λ < 1 is a coefficient characterizing the probability of |+〉 in the mixed state.
The initial state of the spin bath is ρb = 2−n1b as given by the assumption of hot spin bath.

We want to know its angular momentum on x axis as a function of time.

f(t) ∝ 〈Sx0 (t)〉 = Tr
{
U(t)ρ(0)U †(t)Sx0

}
= 2−nλTr

{
USx0U

†Sx0

}
(B.13)

in which the initial state is ρ(0) = ρ0(0) ⊗ ρb(0). The formula can be simplified as f(t) =
2 〈Sx0Sx0 (t)〉. Here a factor 2 is added before 〈Sx0 (t)〉 since the angular momentum of spin-1/2
is associated with a 1/2 factor.
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B.4. Free Induction Decay

The time evolution is a unitary, assuming that the system is closed, which can be given
by

U(t) = exp(−iHt/h̄) =
∏
j

e−i2DjS
z
j S

z
0 t, (B.14)

as all the Ising terms SzjSz0 in the summation is commute with each other.
Given that (σz1σz2)2 = 1, then the time evolution of Ising Hamiltonian is e−iAσz

1σ
z
2 t =

cos(At)− i sin(At)σz1σz2 . Here Sz = σz/2, substitute the expression we can get that

U(t) =
∏
j

Uj(t) =
∏
j

[
cos(Dj t/2)− i sin(Dj t/2)σ

z
0σ

z
j

]
(B.15)

Substitute the unitary into the expression of f(t), expand the term

USx0U
†Sx0 =

1

4
σx0

{
. . . U3U2[cos(D1t/2)− i sin(D1t/2)σ

z
0σ

z
1 ]σ

x
0 [cos(D1t/2) + i sin(D1t/2)σ

z
0σ

z
1 ]U

†
2U

†
3 . . .

}
=
1

4
σx0

{
. . . (cos(D1t/2)

2 − sin(D1t/2)
2)σx0 − 2i sin(D1t/2) cos(D1t/2)σ

z
1σ

y
0 . . .

}
=
1

4
σx0

{
. . . U3U2[cos(D1t)σ

x
0 − i sin(D1t)σ

z
1σ

y
0 ]U

†
2U

†
3 . . .

}
in which we used σz0σx0σz0 = −σx0 (anti-commute) and [σx0 , σ

z
0 ] = −2iσy.

Noticing that Tr[σx0σx0 ] = 2n+1, Tr[σx0σ
y
0 ] = 0, the only remaining term after trace will be

cos(Dj t). Thus the final result is

〈Sx0 (t)〉 =
1

2n
Tr
[
USx0U

†Sx0

]
=

1

2

∏
j

cos(Dj t). (B.16)

Another approach is

〈Sx0 (t)〉 =
1

N

N∑
p=1

〈p|Sx0 (t)|p〉 . (B.17)

The value of an observable on eigenstates can be given by

〈p|Sx0 (t)|p〉 = 〈p|USx0U †Sx0 |p〉 = 〈p|U |p〉〈p|Sx0 |p〉〈p|U † |p〉〈p|Sx0 |p〉 , (B.18)

since the H is diagnoal on the subspace of bath. The projection on the subspace is given by
〈p|Sx0 |p〉 = Sx, and

〈p|U |p〉 = 〈p| e−iHt/h̄ |p〉 = e−i⟨p|H|p⟩t/h̄, (B.19)

The unitary is thus given by

Up = 〈p|U |p〉 = cos(βpt/2)− i sin(βpt/2)σz (B.20)

noticing that 〈p|H|p〉 = h̄ 〈p|B̂b ⊗ Sz|p〉 = h̄βpSz Therefore, the observable on a specific sub-
state is

〈p|Sx0 (t)|p〉 = Tr
{
SxUpSxU

†
p

}
=

1

2
cos(βpt). (B.21)

Thus the normalized decoherence curve f(t) = 2 〈Sx0 (t)〉 is given by

f(t) =
1

N

N∑
p=1

fs(t) =
1

N

N∑
p=1

cos(βpt). (B.22)
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B. SUPPLEMENTARY DERIVATIONS

Use the formula of triangle fucntions cos(ω1t) cos(ω2t) =
1
2 [cos (ω1 + ω2) t+ cos (ω1 − ω2) t],

it can be proved that Eqn. B.16 is equivalent to Eqn. B.22

〈Sx0 (t)〉 =
1

2n

∑
{pj}

cos

(D1 +

n∑
j=2

pjDj) · t

, pj = ±1
=

1

2N

N∑
p=1

cos
(
|P⃗p · D⃗| t

)

=
1

2

 1

N

N∑
p=1

cos(βpt)


(B.23)

B.5 Equivalent Noise

This approach can be easily justified since βp = 〈p|β̂|p〉 is just an eigenvalue on some eigen-
state p. The Hilbert space is of 2n dimension, and the βp almost forms a continous spectrum
given a large enough quantum system with n � 1. In the sum over p, we can count the
number of βp appears in an interval (B,B +∆B),

N(B) = |{βp|B ≤ βp ≤ B +∆B}|

Then we get the probability density function P (B).

Pr[B ≤ βp ≤ B +∆B] =
N(B)

N
=

∫ B+∆B

B
P (β)dβ, N = 2n

lim
∆B→0

P (B)∆B = lim
N→∞

1

N

N∑
p=1

δ(B − βp)

We can write the PDF of β directly

P (β) =
1

N

N∑
p=1

δ(β − βp) (B.24)

This formula follows the definition of discrete probability density function

P (t) =
n∑
i=1

pi δ(t− xi) (B.25)

in which pi is the probability of t being at xi. We can see it is well normalized.∫ ∞

−∞
P (β)dβ =

1

N

N∑
p=1

∫ ∞

−∞
δ(β − βp)dβ =

1

N

N∑
p=1

1 = 1 (B.26)

B.6 Observerable on Subspace Eigenstates
Consider a spin cluster with n + 1 spins, in which the central spin is labeled by ’0’, and rest
n spins are labeled by ’b’,

Given a central qubit Hamiltonian taking the form

H =
∑
j

DjS
z
jS

z
0 + hSx0 ,
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B.6. Observerable on Subspace Eigenstates

and its unitary defined by U = r−iH t/h̄, we want to find the value of observable Sx0 projected
on a bath eigenstate |s〉 ∈ Sb.

The observable on an eigenstate can be expanded using projective operators,
∑

q |q〉〈q| =
1b, which also applies to r, s.

〈p|Sx0 (t)|p〉 = 〈p|USx0U †Sx0 |p〉 =
∑
q,r,s

〈p|Sx0 |q〉〈q|U |r〉〈r|Sx0 |s〉〈s|U †|p〉

It can be proved that the term is not zero only when p = q = r = s on the eigen basis,
a) Sx0

〈r|Sx0 |s〉 = 〈r|Sx ⊗ 1b |s〉 = Sx 〈r|1b |s〉 =

{
0, r 6= s

Sx, r = s

2) U(t)

〈p| e−iHt |q〉 = 〈p|1⊗(n+1) |q〉 − i 〈p|H |q〉 t− 1

2
〈p|H2 |q〉 t2 + . . .

in which

H = BSz0 + hSx0 = (1⊗Bb)(Sz ⊗ 1b) + h(Sx ⊗ 1b) = Sz ⊗Bb + h(Sx ⊗ 1b)

〈p|H |q〉 = 〈p|Bb |q〉 ⊗ Sz + h 〈p|1b |q〉 ⊗ Sx =

{
0, p 6= q

βpSz + hSx, p = q

The βp is an effective magnetic field. We can rewrite the non zero case as

〈p|H|p〉 = βpSz + hSx = ωp(np,xσx + np,zσz) = ωp(n⃗p · σ⃗)

in which we normalized the pointer state with ωp = 1
2(β

2
p + h2)1/2. for higher order terms,

we have

〈p|H2 |p〉 = 〈p|B2(Sz0)
2 + h2(Sx0 )

2 +Bh{Sx0 , Szo} |q〉 = 〈p|B2 |q〉+ h2 〈p|1⊗(n+1) |q〉

Here (Sz0)
2 = (Sx0 )

2 = 1⊗(n+1), anti-commutor {Sx0 , Sz0} = 0. Noticing that B = 1 ⊗ Bb =∑
j 2DjS

z
j is a diagnonal matrix, which means Bb is also a diagnoal matrix, then we can get

〈p|B2 |q〉 = 1⊗ 〈p|B2
b |q〉 = 1⊗

{
β2p , if p = q

0, else

the same applies for 〈p|1⊗(n+1) |q〉. Hence 〈p|H2 |q〉 = ω2
p1. Thus the term is not zero only

when p = q = r = s. The summation should include just one label p.
Use the result we get above, we can easily find that

e−i⟨p|H|p⟩t = e−iωpt(n⃗p·σ⃗) = cos(ωpt)− i sin(ωpt)(n⃗p · σ⃗) (B.27)

and

〈p| e−iHt |p〉 = 〈p|1n⊗(n+1) |p〉 − i 〈p|H |p〉 t− 1

2!
〈p|H2 |p〉 t2 + 1

3!
i 〈p|H3|p〉 t3 + . . .

= 1− iωpt(n⃗p · σ⃗)−
1

2
ω2
pt

2 + i
1

3!
ω3
pt

3(n⃗p · σ⃗) + . . .

= cos(ωpt)− i sin(ωpt)(n⃗p · σ⃗)

Therefore we get 〈p| e−iHt |p〉 = e−i⟨p|H|p⟩t. The observable is

〈p|Sx0 (t)|p〉 = 〈p|U |p〉 〈p|Sx0 |p〉 〈p|U †|p〉 〈p|Sx0 |p〉

75



B. SUPPLEMENTARY DERIVATIONS

B.7 Van Vleck Momentum
At t = 0, we have

Mk|t=0 =

∫ ∞

−∞
βkP (β)dβ =

1

N

∑
p

∫ ∞

−∞
βkδ(β − βp)dβ =

1

N

∑
p

βkp (B.28)

here we dropped the constant (−i)k
Then we can substitute into Eqn. 2.22, with β =

∑n
j=1 pjDj .

M2 =
1

N

N∑
p=1

(∑
i

piDi

)∑
j

pjDj

 , pi,j = ±1

=
1

N

N∑
p=1

(∑
i

p2iD
2
i

)
+

1

N

N∑
p=1

∑
i ̸=j

pipjDiDj

 , pi,j = ±1

=
1

N

N∑
p=1

∑
i

D2
i , ← pipj = ±1, p2i = 1

=
∑
i

D2
i

(B.29)

The fourth order momentum is

M4 =
1

N

N∑
p=1

∑
i,j,k,l

pipjpkplDiDjDkDl

 , pi,j = ±1 (B.30)

Let’s focus on the prefactor pipjpkpl. Since pi = ±1, the summation is always zero if the
pipjpkpl = ±1. The summation is non-zero only when pipjpkpl = 1, or pipjpkpl = −1, we can
discuss these cases in detail.

a)
i = j, k = l, j 6= k ⇒ pipjpkpl = 1,

To pick 2 indices from 4, we have
(
4
2

)
/2 = 3 choices. Then the valid indices is reduced from

4 to 2. For the remained 2 indices,∑
i

∑
j

D2
iD

2
j = (

∑
i

D2
i )(
∑
j

D2
k) =

∑
j=i

D4
j +

∑
i

∑
j ̸=i

D2
iD

2
j

Therefore, the summation from case a) is

M
(a)
4 = 3

∑
i

∑
j ̸=i

D2
iD

2
j = 3

(∑
i

D2
i )

2 −
∑
j

D4
j

 (B.31)

the condition i 6= j means we need to substract the diagnoal terms (i, i) from the pairs of
(i, j)

b)
i = j, k = l, j = k ⇔ i = j = l = l ⇒ pipjpkpl = 1,

the summation is simply
M

(b)
4 =

∑
j

D4
j (B.32)
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Finally we arrive the summation of all non-zero terms that formsM4

M4 =M
(a)
4 +M

(b)
4 = 3(

∑
i

D2
i )

2 − 2
∑
j

D4
j (B.33)

For a Gaussian distribution

N (0, b) =
1√
2πb

e−
x2

2b2 (B.34)

Its characteristic function is

f(t) =

∫ ∞

−∞

1√
2πb

e−
x2

2b2 e−ixtdx = e−
1
2
b2t2 (B.35)

the second order momentum is

M2 =
d2f

dt2 = b2e−
1
2
b2t2

(
b2t2 − 1

)
(B.36)

the fourth order momentum is

M4 =
d4f

dt4 = b4e−
1
2
b2t2

(
b4t4 − 6b2t2 + 3

)
(B.37)

B.8 Driving Hamiltonian in Rotating Frame
Then the total Hamiltonian for the cluster under a driving field is H = HZ + HD + HC , in
which the HZ is the magnetization energy and HD is the dipolar interactions, HC(t) is the
driving field.

Consider one spin qubit labeled by j, the total Hamiltonian of this qubit in rotating frame
is given byHj = h̄(ωj − ω̃j)Iz0 + V †

j HD,iVj + V †
j HC,jVj , in which Vj = eiω̃itI

z
i , ωj is its Larmor

frequency. The control term is given by

V †
j HC,jVj = −h̄γjB eiω̃jtI

z
j [cos(ωct+ ϕ)Ixj + sin(ωct+ ϕ)Iyj ]e

−iω̃jtI
z
j

= −h̄γjB [Ixj cos ((ωC − ω̃j) t+ ϕ) + Iyj sin ((ωC − ω̃j) t+ ϕ)].

The dipolar Hamiltonian in the rotating frame is given by V †
j HD,iVj =

∑N
i=1 2DijI

z
i I

z
j ,.

Set j = 0 as the label of central spin qubit, and substitute above results into the formula, then
we can get that

H0 =h̄(ω0 − ω̃0)I
z
0 +

N∑
i=1

2Di0I
z
i I

z
0

−h̄γ0B [Ix0 cos ((ωC − ω̃0) t+ ϕ) + Iy0 sin ((ωC − ω̃0) t+ ϕ)].

(B.38)

B.9 Ensemble Averaged FID
B.9.1 One Dimension, D=1
Let θ be the angle between the 1D spin chain and the external field.

〈G(t)〉c = exp
{
−ρ
∫ ∞

−∞

[
1− cos

(
1− 3 cos2(θ)

2r3
γ2h̄t

)]
dr
}

(B.39)

= exp
{
−ρ
∫ ∞

−∞

[
1− cos

(
a3

r3

)]
dr
}

(B.40)
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B. SUPPLEMENTARY DERIVATIONS

in which we define a constant a3 = (1− 3 cos2(θ)) γ2h̄t/2 and particle density ρ = N/V .
Focus on the integral part∫ ∞

−∞

[
1− cos

(
a3

r3

)]
dr = 2

∫ ∞

0

[
1− cos

(
a3

r3

)]
dr ← cos(x) = cos(−x)

= 2 lim
r→0

∫ a3/r3

0
[1− cos(u)] (−a

3
)(−1)1/3u−4/3 du ← u =

a3

r3

= 2

∫ ∞

0
[1− cos(u)] (−|a|

3
)(−1)1/3u−4/3 du

=
2|a|
3

∫ ∞

0
(1− cosu)u−4/3 du

=
2|a|
3

(
−
√
3

2

)
Γ

(
−1

3

)
We used the integral formula of negative Gamma function in the last step∫ ∞

0
xα−1(1− cosx) dx = − cos

(πα
2

)
Γ(α), −2 < Reα < 0 (B.41)

Then we can substitute the integral result into Eqn. B.40

〈G(t)〉c = exp
{
−2ρ

3

∣∣∣∣1− 3 cos2(θ)
2

γ2h̄t

∣∣∣∣1/3 S1
}

(B.42)

in which
S1 = −

√
3

2
Γ

(
−1

3

)
B.9.2 Two Dimension, D=2
In 2D plane, the volume element is dv = r dr dφ. Assume the angle between the external
field and the plane is θ. The angle between a location vector and the projection of the external
field is φ. Then the angle Θ between a loctiona vector and the external field is cos(Θ) =
cos(θ) cos(φ).

〈G(t)〉c = exp
{
−ρ
∫ 2π

0

∫ ∞

0

[
1− cos

(
1− 3 cos2(Θ)

2r3
γ2h̄t

)]
r dr dφ

}
(B.43)

= exp
{
−ρ
∫ 2π

0

∫ ∞

0

[
1− cos

(
a3

r3

)]
rdrdφ

}
(B.44)

Focus on the integral first∫ ∞

0

[
1− cos

(
a3

r3

)]
rdr =

∫ ∞

0
[1− cos(u)] (au−1/3)(−a

3
)(−1)1/3u−4/3 du

=
a2

3

∫ ∞

0
(1− cosu)u−5/3du

=
a2

3

(
−1

2

)
Γ(−2

3
)

The a contains ϕ so we need to do integral again

Φ(θ) =

∫ 2π

0

∣∣1− 3 cos2(θ) cos2(φ)
∣∣2/3 dφ (B.45)
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B.9. Ensemble Averaged FID

Here θ is a constant. θ = 0 when the external field is parallel to the plane. θ = π/2 when
the external field is perpendicular to the plane. For these two case we get Φ(0) ≈ 6.01 and
Φ(π/2) = 2π

Write the final form of the formula, with S2 =
(
−1

2

)
Γ(−2

3).

〈G(t)〉c = exp
{
−ρ
3

(
γ2h̄t

2

)2/3

Φ(θ)S2

}
(B.46)

When θ = π/2, we get

〈G(t)〉c = exp
{
πρ

3
Γ

(
−2

3

)(
γ2h̄t

2

)2/3
}

(B.47)

B.9.3 Three Dimension, D=3
Pick the external field at z direction. The volume element is dv = r2 sin(θ)drdθdφ

〈G(t)〉c = exp
{
−ρ
∫ 2π

0

∫ π

0

∫ ∞

0

[
1− cos

(
1− 3 cos2(θ)

2r3
γ2h̄t

)]
r2 sin(θ)drdθdφ

}
(B.48)

Use the same approach∫ ∞

0

[
1− cos

(
a3

r3

)]
r2dr =

∫ ∞

0
[1− cos(u)] (au−1/3)2(−a

3
)(−1)1/3u−4/3 du (B.49)

=
|a|3

3

∫ ∞

0
(1− cosu)u−2du (B.50)

(B.51)

In which

S3 =

∫ ∞

0
(1− cosu)u−2du = 2

∫ ∞

0

sin(u/2)2

u2
du =

∫ ∞

0

(
sinx
x

)2

dx =
π

2
(B.52)

The remained part of integral is

Φ =

∫ 2π

0

∫ π

0

∣∣1− 3 cos2(θ)
∣∣ sin(θ)dθ dφ

= 2π

∫ 1

−1

∣∣1− 3 cos2(θ)
∣∣d cos(θ)

= 4π

[∫ 1/
√
3

0

(
1− 3x2

)
dx+

∫ 1

1/
√
3

(
1− 3x2

)
dx
]

= 2π · 8

3
√
3

The numerical constant comes from the angular integral. Substitute into the formula

〈G(t)〉c = exp
{
−ρ
3

(
γ2h̄t

2

)
ΦS3

}
= exp

{
−1

6
ρ π2γ2h̄ t · 8

3
√
3

}
(B.53)

This is exactly the result we can see from textbook [1] (except the 1/3 constant from
’truncated coupling strength’).
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B.10 Ensemble Average Noise

P (B) =

∫ ∞

0
P (b)P (B)db

=

∫ ∞

0

1√
2πb2

exp
(
−B

2

2b2

)
1

b2

√
2

π
Γ exp

(
− Γ2

2b2

)
db

=
Γ

π

∫ ∞

0

1

b3
exp

(
−B

2 + Γ2

2b2

)
db

= − Γ

2π

∫ ∞

0
exp

(
−B

2 + Γ2

2
u

)
du← u =

1

b2

= − Γ

2π

2

B2 + Γ2
exp

(
−B

2 + Γ2

2
u

)
∞
0

=
Γ

π(B2 + Γ2)
,

(B.54)

B.11 Rabi Driving with Approximate Noise

Gaussian

As we have seen from the Equation.4.13, the evolution unitary of H is

U(β; t) = e−iHt = cos(ωt)− i sin(ωt)(n⃗ · σ⃗), ω =
1

2

√
β2 + h2

in which n⃗ · σ⃗ = nxσx + nzσz and nx = h
Ω ,nz = β

Ω .
The Gaussian noise is centered at zero with linewidth b. Thus h � b suggests h � |β|.

Assume h� |β| ⇒ nx ≈ 1, nz ≈ 0. So we can approximate the unitary by n⃗ · σ⃗ ≈ σx

Ũ(β; t) ≈ cos(ωt)− i sin(ωt)σx = e−iωσxt = e−iΩSxt (B.55)

noticing that Sx = 1
2σx and Ω = 2ω Thus

〈Sz(t)〉 ≈ Tr
{
SzŨ(β; t)SzŨ(β; t)†

}
= +

1

2
cos(Ωt)

〈Sy(t)〉 ≈ Tr
{
SyŨ(β; t)SzŨ(β; t)†

}
= −1

2
sin(Ωt)

(B.56)

Obviously 〈Sx(t)〉 ≈ 0 since the unitary is rotation around x axis. These results can also be
derived from Equation. B.64, Equation. B.63, Equation. B.60 by using nx ≈ 1, nz ≈ 0.

Then we start considering the noise spectrum, The Rabi oscillation can be rewrite as

Sz(t) =
1

2
Re
∫ ∞

−∞
e−iΩtP (β)dβ, Sy(t) =

1

2
Im
∫ ∞

−∞
e−iΩtP (β)dβ (B.57)

This formula is quite similar with the characteristic function of P (β) but it is more compli-
cated. When P (β) subject to Gaussian distribution, we can define F (t)

F (t) =

∫ ∞

−∞
e−iΩtP (β)dβ =

e−iht√
1 + i b

2t
h

(B.58)

80



B.12. Exact solution of Rabi driving

The integral is calculated as following∫ ∞

−∞
e−iΩtP (β)dβ =

∫ ∞

−∞

1√
2πb

e−
β2

2b2 e
−it

(
β2

2h
+h

)
dβ

=
1√
2πb

e−iht
∫ ∞

−∞
e
−
(

1
b2

+i t
h

)
β2

2 dβ

=
1√
2πb

e−iht
∫ ∞

−∞
e
− β2

2ξ2 dβ

=
ξ

b
e−iht

in which we used that

Ω =
√
β2 + h2 ≈ h+

β2

2h
+O(β)4, ξ2 =

(
1

b2
+ i

t

h

)−1

.

Lorentzian

Sz(t) =
1

2
Re
∫ ∞

−∞
P (B)eiΩtdB =

1

2
Re{F (t)}

≈ Re 2Γ

π
eiht

∫ ∞

0

1

B2 + Γ2
exp

{
i
B2

2h
t

}
dB ← Ω =

√
B2 + h2 ≈ h+

B2

2h
+O(B)3

according to NIST handbook of special integrals

erfc(az) = 2z

π
e−a

2z2
∫ ∞

0

exp
(
−a2t2

)
t2 + z2

dt (B.59)

The integral part can be evaluated

I =

∫ ∞

0

1

B2 + Γ2
exp

{
i
B2

2h
t

}
dB

=

∫ ∞

0

exp
(
−a2t2

)
t2 + z2

dt← a2 = − it

2h
, z = Γ

= erfc(az)ea2z2 π
2z

= erfc(1− i√
2

√
t

2h
Γ)e−

iΓ2t
2h

π

2Γ

Substitute it back into the formula we get

B.12 Exact solution of Rabi driving

zp(t) = Tr
[
SzUp(t)SzUp(t)

†
]

=
1

4
Tr
{
σz
(
[cos2(ωpt)σz + sin2(ωpt)(n⃗p · σ⃗)σz(n⃗p · σ⃗)] + i sin(ωpt) cos(ωpt)[σz, (n⃗p · σ⃗)]

)}
=

1

4
Tr
{
σz
(
[cos2(ωpt)σz + sin2(ωpt)((n

2
p,z − n2p,x)σz + 2nznxσx)]− 2np,x sin(ωpt) cos(ωpt)σy

)}
=

1

2

[
cos2(ωpt) + sin2(ωpt)(n

2
p,z − n2p,x)

]
(B.60)
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in which we used that

(n⃗p · σ⃗)σz(n⃗p · σ⃗) = (np,xσx + np,zσz)σz(np,xσx + np,zσz) = (n2p,z − n2p,x)σz + 2nznxσx

[σz, (n⃗p · σ⃗)] = [σz, (np,xσx + np,zσz)] = np,x[σz, σx] = 2i np,xσy

Similarly, we can get Sx(t) and Sy(t) in Schördinger picture

〈Sy(t)〉 =
1

2n

∑
p

[SyUp(t)SzUp(t)
†] =

1

2n

∑
p

yp(t) (B.61)

〈Sx(t)〉 =
1

2n

∑
p

[SxUp(t)SzUp(t)
†] =

1

2n

∑
p

xp(t) (B.62)

yp(t) = Tr
[
SyUp(t)SzUp(t)

†
]

=
1

4
Tr
{
σy
(
[cos2(ωpt)σz + sin2(ωpt)((n

2
p,z − n2p,x)σz + 2nznxσx)]− 2np,x sin(ωpt) cos(ωpt)σy

)}
= −np,x sin(ωpt) cos(ωpt)

(B.63)
xp(t) = Tr

[
SxUp(t)SzUp(t)

†
]

=
1

4
Tr
{
σx
(
[cos2(ωpt)σz + sin2(ωpt)((n

2
p,z − n2p,x)σz + 2nznxσx)]− 2np,x sin(ωpt) cos(ωpt)σy

)}
= nznx sin2(ωpt)

(B.64)
If we replace ωp with Ωp =

√
h2 + β2p , the formula can be rewrite as

f (p)z (t) = +
1

2

[
n2p,z + n2p,x cos(Ωpt)

]
f (p)y (t) = −1

2
np,x sin(Ωpt)

f (p)x (t) = +
1

2
[np,xnp,z − np,xnp,z cos(Ωpt)]

(B.65)

Of course we can verify that

(f (p)x )2 + (f (p)y )2 + (f (p)z )2 =
1

4

[
sin2(ω)

(
n2p,x + n2p,z

)
+ cos2(ω)

]2
=

1

4
, (B.66)

given that n2p,z+n2p,x = 1. Thus the angular momentum is normalized since the spin number
is 1/2.

B.13 Weak Driving
In practical experiments, strong field is hard to achieve. Thus the approximation of strong
rabi driving is no longer valid. For weak driving, we can start from the exact formula B.65.
With the symbol integral of Mathematica, we can get a more rigirous result.

〈Sz(t)〉 =
∫ ∞

−∞
zp(t;β)P (β)dβ = 1+

1

b

√
π

2
he

h2

2b2 Re
(
e

iht
2 erfc

(√
h (h− ib2t)√

2b

)
+ erf

(
h√
2b

)
− 1

)
(B.67)

〈Sy(t)〉 =
∫ ∞

−∞
yp(t;β)P (β)dβ = Im

eiht
(
2h2 + b2(−1− 2iht)

)
2
√
h (h− ib2t)3/2

(B.68)
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For an ensemble averaged rabi driving, the situation in weak driving is quite similiar. We
can get a sloppy approximation assuming that

〈Si(β, t)〉 = Si(〈β〉, t)

Then

〈Sz(t)〉 =
1

2
[n2p,z + n2p,x Re{F (t)}] (B.69)

〈Sy(t)〉 =
1

2
np,x Im{−F (t)} (B.70)

〈Sx(t)〉 =
1

2
np,xnp,z[1− Re{F (t)}] (B.71)

The final result can be given using Mathematica.

〈Sz(t)〉 =
∫ ∞

−∞
zp(t;β)P (β)dβ = (B.72)

Γ

Γ + h
+

Γ + h

h− Γ
Rehe iht

2

(
−Γ(1 + i)erfi

(
1 + i

2

√
ht

)
+ heit(h

2−Γ2)/2h

(
1 + ierfi

(
1 + i

2
Γ

√
t

h

)))
(B.73)

〈Sy(t)〉 =
∫ ∞

−∞
yp(t;β)P (β)dβ = (B.74)

eiht

2
√
πh2

(
√
π
(
Γ2 + 2h2

)
e−

iΓ2t
2h

(
1 + ierfi

((
1

2
+
i

2

)
Γ

√
t

h

))
+ (−1− i)Γ

√
h

t

)
(B.75)

〈Sx(t)〉 =
∫ ∞

−∞
xp(t;β)P (β)dβ = 0 (B.76)

B.14 State Fidelity
Assume the target unitary of the pulse is U , and the system start from some pure state ρ0 =
|ψ0〉〈ψ0|. The noisy quantum process E envolves the system into a mixed state E(ρ0), and we
can use state fidelity to compare it with the desired state Uρ0U †. The state fidelity is

F (ρ, σ) =

(
tr
√√

ρσ
√
ρ

)2

(B.77)

in which ρ, σ are density matrices. Let ρ = Uρ0U
† and σ = E(ρ0). Denote that U |ψ0〉 = |ψ〉,

we can find that √ρ =
√
|ψ〉〈ψ| = |ψ〉〈ψ| due to the fact that |ψ〉〈ψ| |ψ〉〈ψ| = |ψ〉〈ψ|. Hence

F (ρ, σ) =
(
tr
√
|ψ〉〈ψ|σ |ψ〉〈ψ|

)2
= 〈ψ|σ|ψ〉 (B.78)

The transformation can be derived from

F (ρ, σ) =
(
tr
√
|ψ〉 f 〈ψ|

)2
=
(
tr
√
f
√
|ψ〉〈ψ|

)2
=
(√

f tr |ψ〉〈ψ|
)2

= f

since the projection of the σ on another state |ψ〉 is just a number f = 〈ψ|σ|ψ〉 ∈ R.
Substitute into the formula of quantum operation

F = 〈ψ|σ|ψ〉 = 〈ψ0|U †E(|ψ0〉〈ψ0|)U |ψ0〉

=

2n−1∑
k=0

〈ψ0|U †Ek |ψ0〉〈ψ0|E†
kU |ψ0〉

=

2n−1∑
k=0

ck| 〈ψ0|U †Uk |ψ0〉 |2

(B.79)
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Use the expression of Ek =
√
ckUk and

Uk = cos
(
Ωkt

2

)
− i sin

(
Ωkt

2

)
(n⃗k · σ⃗) (B.80)

Assume we want a pi pulse on X axis, then U = Rx(π) = e−iπσx/2 = −iσx. The formula can
be further simplified for a single quantum gate.

〈ψ0|U †Uk|ψ0〉 = −i cos
(
Ωkt

2

)
〈ψ0|σx|ψ0〉 − sin

(
Ωkt

2

)
〈ψ0|(n⃗k · σ⃗)σx|ψ0〉 (B.81)

B.15 Average Gate Fidelity
For any single qubit pure state on the Bloch sphere, it has a form

|ψ0〉 = cos(θ/2) |0〉+ eiϕ sin(θ/2) |1〉 , (B.82)

thus
〈ψ0|σx|ψ0〉 = sin(θ) cos(ϕ) (B.83)

〈ψ0|(n⃗k · σ⃗)σx|ψ0〉 = 〈ψ0|nkx + nkzσzσx|ψ0〉 = nkx + i sin(θ) sin(ϕ)nkz (B.84)
substitute it into the formula

〈ψ0|U †Uk|ψ0〉 = −i cos
(
Ωkt

2

)
sin(θ) cos(ϕ)− sin

(
Ωkt

2

)
[nkx + i sin(θ) sin(ϕ)nkz] (B.85)

then

| 〈ψ0|U †Uk|ψ0〉 |2 = sin2(
Ωkt

2
)n2kx + sin2(θ)

[
sin
(
Ωkt

2

)
sin(ϕ)nkz + cos

(
Ωkt

2

)
cos(ϕ)

]2
= sin2(

Ωkt

2
)[n2kx + n2kz sin2(θ) sin2(ϕ)] + cos2(Ωkt

2
) sin2(θ) cos2(ϕ)+

2 sin
(
Ωkt

2

)
cos
(
Ωkt

2

)
sin2(θ) sin(ϕ) cos(ϕ)nkz

(B.86)
The average gate fidelity is defined as an ensemble average over all possible initial states

F̄ (E , U) =

∫
F (E , U, |ψ〉)dψ =

∫
dψ 〈ψ|U †E(ψ)U |ψ〉 (B.87)

in which ∫
dψ =

1

4π

∫ π

0
sin θ dθ

∫ 2π

0
dϕ = 1 (B.88)

If we use 〈. . .〉ψ to denote the average over the sphere surface
∫
dψ, then the average of these

coefficients are〈
sin2(θ) cos2(ϕ)

〉
ψ
=
〈
sin2(θ) sin2(ϕ)

〉
ψ
=

1

3
,
〈
sin2(θ) sin(ϕ) cos(ϕ)

〉
ψ
= 0 (B.89)

Substitute the result into average fidelity

F̄ (E , U) =

2n−1∑
k=0

ck

{
1

3
cos2(Ωkt

2
) + sin2(

Ωkt

2
)[n2kx +

n2kz
3

]

}

=
2n−1∑
k=0

ck

{
1

3
+

2

3
n2kx sin2(

Ωkt

2
)

} (B.90)
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C. SUPPLEMENTARY FIGURES

(a) 3D, h=200. Rabi envelope is obtained at M ′ = 10000, N ′ = 500. The short time fitting result is
k = 0.4906, b = −1.4622. The long time fitting result is k = −0.4566, b = 0.8929.

(b) 3D, h=100. Rabi envelope is obtained at M ′ = 10000, N ′ = 500. The short time fitting result is
k = 0.4984, b = −1.3401. The long time fitting result is k = −0.4442, b = 0.7345.

Figure C.1: 3D ensemble averaged Rabi oscillation envelope in log scale.
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(a) 3D, h=50. Rabi envelope is obtained at M ′ = 4000, N ′ = 500. The short time fitting result is
k = 0.5061, b = −1.2163. The long time fitting result is k = −0.4182, b = 0.5351.

(b) 3D, h=20. Rabi envelope is obtained at M ′ = 4000, N ′ = 500. The short time fitting result is
k = 0.5165, b = −1.0849. The long time fitting result is k = −0.3744, b = 0.3257.

Figure C.2: 3D ensemble averaged Rabi oscillation envelope in log scale.
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(a) 2D, h=200. Rabi envelope is obtained at M ′ = 10000, N ′ = 500. The short time fitting result is
k = 0.3379, b = −1.0694. The long time fitting result is k = −0.354, b = 0.6214.

(b) 2D, h=100. Rabi envelope is obtained at M ′ = 10000, N ′ = 500. The short time fitting result is
k = 0.3281, b = −0.9852. The long time fitting result is k = −0.339, b = 0.5069.

Figure C.3: 2D ensemble averaged Rabi oscillation envelope in log scale.
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(a) 2D, h=50. Rabi envelope is obtained at M ′ = 2500, N ′ = 500. The short time fitting result is
k = 0.3357, b = −0.9353. The long time fitting result is k = −0.2909, b = 0.3089.

(b) 2D, h=20. Rabi envelope is obtained at M ′ = 4000, N ′ = 500. The short time fitting result is
k = 0.3453, b = −0.8906. The long time fitting result is k = −0.2613, b = 0.1902.

Figure C.4: 2D ensemble averaged Rabi oscillation envelope in log scale.
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(a) 1D, h=200. Rabi envelope is obtained at M ′ = 3000, N ′ = 600. The short time fitting result is
k = 0.2103, b = −0.828. The long time fitting result is k = −0.1729, b = 0.1869.

(b) 1D, h=100. Rabi envelope is obtained at M ′ = 3000, N ′ = 600. The short time fitting result is
k = 0.2146, b = −0.8323. The long time fitting result is k = −0.1633, b = 0.1473.

Figure C.5: 1D ensemble averaged Rabi oscillation envelope in log scale.
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(a) 1D, h=50. Rabi envelope is obtained at M ′ = 10000, N ′ = 500. The short time fitting result is
k = 0.1992, b = −0.8132. The long time fitting result is k = −0.1396, b = 0.0867.

(b) 1D, h=20. Rabi envelope is obtained at M ′ = 4000, N ′ = 500. The short time fitting result is
k = 0.1957, b = −0.8527. The long time fitting result is k = −0.0948, b = −0.0193.

Figure C.6: 1D ensemble averaged Rabi oscillation envelope in log scale.
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Figure C.7: Ensemble averaged T2 relaxations with normalized coherence time.
The relaxation curves are evaluated by Monte-Carlo sampling, with M ′ = 4000 disorder realizations (DRs) and
N ′ = 1000 spin configurations.
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Figure C.8: Distribution of phase error ε under various driving strength in 2D spin ensemble
The error is sampled withM ′ = 2000 disorder realizations, andN ′ = 400. The histogram is obtained from -0.13
to 0.02 with 400 bins in total.
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Figure C.9: Probability distribution function of ε in 2D ensemble
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Figure C.10: Distribution of axis error of 3D ensemble under various driving strengths
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Figure C.11: Distribution of axis error of 2D ensemble under various driving strengths
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Figure C.12: Distribution of axis error of 1D ensemble under various driving strengths
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Figure C.13: Average Gate Fiedlity of Single Qubit Gates
(a):

√
X gate infidelity, in normal scale. (b):

√
Y gate infidelity, in log scale. (c):

√
Y gate infidelity, in normal

scale. (d):
√
X gate infidelity, in log scale. (f):

√
Z gate infidelity, in normal scale. (e):

√
Z gate infidelity, in log

scale. The results is obtained fromMonte-Carlo sampling withM ′ = h2 ,N ′ = 1000. Two fold of the mean error
is displyed to make the errorbar visible.
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Figure C.14: Spin echos envelope of Sy(t) under different decoupling sequences in 2D. Se-
quence parameters are set at h = 100 τ = 0.7.

Figure C.15: Spin echos envelope of Sy(t) under different decoupling sequences in 1D. Se-
quence parameters are set at h = 100 τ = 0.7.
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Figure C.16: Spin echos envelope of CPMG driving.

Figure C.17: Average height of signal under different driving strength h and noise linewidth
b in a strong noise regime b > h.

97



C. SUPPLEMENTARY FIGURES

Figure C.18: Average height of spin echos under different driving strength h and noise
linewidth τ . The noise linewidth is set at b = 5. The height of spin eachos shows a sharp
drop
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Appendix D

Supplementary Table

h mean std skew kurtosis
0 10.0 -0.000050 0.304136 0.004367 2.950771
1 20.0 0.000134 0.207064 0.007630 8.724538
2 50.0 -0.000087 0.135213 -0.045515 21.030015
3 100.0 0.000090 0.083268 0.118819 50.514382
4 200.0 -0.000068 0.062385 -0.171311 97.119852

Table D.1: Statistics of 3D axis error

h mean std skewness kurtosis
0 10.0 -0.000107 0.401549 -0.002157 1.299047
1 20.0 0.000612 0.325054 0.010417 3.510374
2 50.0 0.000289 0.238899 0.010321 8.747155
3 100.0 0.000135 0.213003 0.014871 11.146226
4 200.0 -0.000180 0.152086 -0.014145 23.993511

Table D.2: Statistics of 2D axis error

h mean std skewness kurtosis
0 10.0 0.492398 1.850346 4.529376 22.510094
1 20.0 0.371559 1.685833 5.446609 32.671633
2 50.0 0.167302 1.186249 8.134491 72.961305
3 100.0 0.115516 0.803774 9.989193 125.682360
4 200.0 0.078450 0.711548 11.800746 165.615432

Table D.3: Statistics of 2D phase error

h mean std skewness kurtosis
0 10.0 -0.000086 0.586029 -0.000249 -0.468492
1 20.0 0.000127 0.516439 0.000454 0.207183
2 50.0 -0.001101 0.405957 -0.003737 1.865981
3 100.0 -0.000134 0.403200 0.000266 2.177632
4 200.0 0.000068 0.362904 0.000190 3.323167

Table D.4: Statistics of 1D axis error
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D. SUPPLEMENTARY TABLE

gate dim m b res h for 1% h for 0.1%
0 X 1D -0.00442 -1.85307 0.04286044808385873 623.29754 1144.78890
1 X 2D -0.00785 -2.62126 0.2684924689483453 252.81750 546.24472
2 X 3D -0.01190 -3.67716 0.4056663311878712 77.99645 271.52251
3 Y 1D -0.00467 -1.81795 0.07050728221281014 597.11007 1090.39576
4 Y 2D -0.00749 -2.65271 0.12962917457792922 260.57625 567.88085
5 Y 3D -0.01350 -3.44283 0.3613780183169373 86.08766 256.62715
6 Z 1D -0.00372 -2.14028 0.043585379540038244 662.71113 1281.78419
7 Z 2D -0.00739 -2.63020 0.17300598765223335 267.28720 578.91350
8 Z 3D -0.01161 -3.27963 0.4745589251607463 114.19870 312.57188
9 sqrtX 1D -0.00494 -2.07853 0.046403754024412526 511.57288 977.78061
10 sqrtX 2D -0.00789 -2.94800 0.19043207744990137 210.12639 502.09096
11 sqrtX 3D -0.01318 -3.92302 0.3227487317929805 51.74994 226.43084
12 sqrtY 1D -0.00472 -2.11699 0.0424371802028181 527.57953 1015.80670
13 sqrtY 2D -0.00811 -2.94794 0.20230260202375913 204.22538 487.98060
14 sqrtY 3D -0.01320 -3.91178 0.5370930597289919 52.54561 227.03727
15 sqrtZ 1D -0.00406 -2.37685 0.0495970598345798 548.63615 1115.55610
16 sqrtZ 2D -0.00778 -3.04736 0.17868995610425392 200.21808 496.15891
17 sqrtZ 3D -0.01216 -3.95653 0.4316827033630947 53.36189 242.78814

Table D.5: Fitting of pulse gate fidelities versus driving strength in log scale
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Appendix E

Reproducibility: Data and Code

All the data and codes developed during the project are uploaded to the 4TU data archive:
Zhang, Yuning (2022): Thesis Project. 4TU.ResearchData. Collection

https://doi.org/10.4121/19766887

E.0.1 Code
The code part include two project package.

The first one, SpinControl.jl is a Julia package to generate random spin baths system and
simulate its dynamics viaMonte-Carlomethods. This package contains highly reusable code
with well designed interfaces and data structure.

It’s published on GitHub, at: https://github.com/Neuromancer43/SpinControl.jl.
The ”Simulation” folder is a project collection of all the Julia/Python scripts and note-

books used to deploy computation tasks and process the results. This project is less orga-
nized compared with the first one. The directories given in this

- data: folder to store all the experiment data.
- explore: folder to store all the Jupyer notebooks for basic exploration.
- out: folder to store exported images and tables.
- plot: folder to store plotting notebooks.
- src: folder for the reusable source code.
- tasks: folder for the data generation scripts.

Here attched a UML diagram describing the architecture of this package, as shown in
Fig. E.1.

E.0.2 Data
This data part includes all the numerical simulation results obtained fromMonte-Carlometh-
ods. Part of the simulation results are stored in an array of files in .csv format (comma seper-
ated values), named by hash strings of corresponding simulation. Other results are stored in
.jld format, which is a binary file that can be loaded and processed by the Julia programming
language. There is also a set of .siminfo files named with the same hash strings to store the
relevant information of corresponding simulation, such like parameter settings and descrip-
tions of tasks. These files are all generated automatically by program, encoded in text format
and and be opened with any text editor.
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E. REPRODUCIBILITY: DATA AND CODE

Figure E.1: A UML diagram on the architecture of the software.
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