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Abstract

Stochastic Dynamic Programming (SDP) has shown promising results for sequential decision
problems of the route optimisation for an Electric Vehicle (EV) with the presence of stochastic
variables in the travel cost. However, in studies, the optimisation problem formulation for EVs
has been lacking in detail. For example, possible waiting times at a Charging Station (CS)
have been neglected. This thesis uses SDP to formulate a more holistic optimisation problem
for EVs moving through a road network where travel speeds and charging station availability
are stochastic. The goal is to optimise the travel costs, which consists of, e.g., the journey
time and the charging cost, for an EV on long-haul trips.

In this thesis, four simulation-based case studies are conducted: (1) comparison of conven-
tional navigation system with the proposed method; (2) speed optimisation in order to im-
prove the travel costs; (3) charging platform selection in order to improve the travel cost; (4)
uncertainty influence on the travel costs. The case studies are conducted to create insight
into how the travel costs of an EV can be optimised. In these case studies, the influence of
multiple factors has been taken into account and investigated. For example, cabin climate
control, which is dependent on the ambient temperature, has a significant influence on the
energy consumption of the EV resulting in higher travel costs.

The simulation results have shown interesting results. Compared to a Min algorithm, which
uses a strategy to minimise the travel and charging time, the proposed method can find an
optimal policy that is in some cases 5% shorter in terms of journey time. It is profitable
for certain ambient temperatures and maximum allowable driving speeds in terms of journey
time and charging cost to optimise the driving speed below the maximum allowed driving
speed on highways. This results in a shorter journey time and saving charging costs. For
example, for a maximum speed of 120 (km/h) and an ambient temperature of 20°C, 3% of
journey time advantage can be achieved by optimising the driving speed.

Master of Science Thesis J. den Daas



J. den Daas Master of Science Thesis



Table of Contents

Acknowledgements xi
1 Introduction 1
1-1 Problem statement . . . . . . . . . .

1-2 Thesisoutline . . . . . . . .

2 Electric Vehicle Model

2-1 Energy Consumption . . . . . . . . ...
2-2 Charging Time . . . . . . . . . 8
2-3 Battery Thermal Model . . . . . . . . . .. . 10
2-4 Conclusions . . . . ... 11
3 Road Network and Charging Infrastructure Model 13
3-1 The Network . . . . . . . . . 13
3-2 Edge Cost . . . . . . . 13
3-2-1 Edge Length . . . . . . . . 14
3-2-2 Driving Speed . . . . ... 14
3-2-3 Travel Time . . . . . . . 15
3-2-4 Energy Consumption . . . . . .. .. .. 15
3-3 Node Cost . . . . . . . . 15
3-3-1 Charging Time . . . . . . . . . . 16
3-3-2 Waiting Time . . . . . . . .. 16
3-3-3 Charging Cost . . . . . . . . .. 16
3-4 Conclusions . . . . .. 17

Master of Science Thesis J. den Daas



iv Table of Contents

4 Stochastic Dynamic Programming 19
4-1 An Introduction to Stochastic Dynamic Programming . . . . . . . . .. ... .. 19
4-2  Stochastic Dynamic Programming Formulation . . . . . .. ... ... ... .. 21

4-2-1 State Variables . . . . . . . ... 21
4-2-2  Control Variables . . . . . . .. .. . .. 22
4-2-3 Random Disturbances . . . . . . . . .. ... 23
4-2-4  State Transition Function . . . . . . . . . ... L 24
4-2-5 Stage Cost . . . . . . ... 25
4-2-6 Recursive Value Iteration . . . . . . .. ... .o 26
4-2-7 Uncontrollable State Components . . . . . . . . . .. ... ... .... 26
4-3 Conclusions . . . . . .. e 27

5 Parameter Sensitivity Studies 29

5-1 Simulation Setup . . . . . ... 29
5-1-1 Case Networks . . . . . . . . . . . 29
5-1-2 Random Disturbances . . . . . . . . . ... ... 30
5-1-3 Battery Thermal Model Specifics . . . . . . ... ... ... ... .... 32

5-2  Verification and Sensitivity Analyses . . . . . . . . ... oL 34
5-2-1 Verification of Simplification . . . . . . .. .. ... ... ... ... 34
5-2-2  Sensitivity to Charging Granularity . . . . . . . ... ... ... ... .. 36
5-2-3 Sensitivity to Charging Time Penalty . . . . . . . ... ... ... ... .. 39
5-2-4 Influence of the Battery Temperature and Ambient Temperature . . . . 40
5-2-5 Trade-off between Charging Cost and Journey Time . . . . . . . ... .. 42

5-3 Conclusions . . . . . . 44

6 Case Studies and Results 47

6-1 Case study A - Comparison with Min Algorithm . . . . . . . .. .. .. ... .. 47
6-1-1 Simulation Setup of Case Study A . . . . . . . . .. ... L. 47
6-1-2 Min Algorithm . . . . . . . .. 48
6-1-3 Results of Case Study A . . . . . . . L 49
6-1-4 Conclusions of Case Study A . . . . . . . . . . ... L. 54

6-2 Case study B - Speed optimisation . . . . . . .. ... ... ... .. ... 54
6-2-1 Simulation Setup of Case Study B . . . . . . . ... ... 54
6-2-2 Resultsof Case Study B . . . . . . . .. ... 56
6-2-3 Conclusions of Case Study B . . . . . . . ... ... ... ... 60

6-3 Case study C - Charging Platform Selection . . . . ... ... ... ... .... 61
6-3-1 Simulation Setup of Case Study C . . . . . . . ... ... ... ... .. 62
6-3-2 Resultsof Case Study C. . . . . . . .. ... ... 63
6-3-3 Conclusions of Case Study C . . . . . .. . ... .. ... ... ..., 66

6-4 Casestudy D - Uncertainty . . . . . . . .. . ... 67
6-4-1 Simulation Setup of Case Study D . . . . . . . ... ... L. 68
6-4-2 Results of Case Study D . . . . . . .. ... 70
6-4-3 Conclusions of Case Study D . . . . . . . .. ... ... ... 74

6-5 Conclusions . . . . . . 74

J. den Daas Master of Science Thesis



Table of Contents

\

7 Conclusions and Discussion 77
7-1 Conclusions . . . . . . . . 7
7-2 Future Work . . . . . 81
Bibliography 83
Glossary 87
List of Acronyms .. . . . . . . . . 87

Master of Science Thesis

J. den Daas



Vi Table of Contents

J. den Daas Master of Science Thesis



List of Figures

2-1 Example of energy consumption B, based on driving speeds v [23]. . . . . . . . 6
2-2 Relation between the ambient temperature and the power required for the cabin
climate control. . . . . . . . .. 7
2-3  Charging profile of a Nissan Altra EV [3]. . . . ... ... .. ... .. ..... 8
2-4  Charging time relation with SoC. . . . . . . . ... ... ... ... ... ... .
2-5 Lithium-ion battery cell-, module-, and pack-level of a Nissan Leaf [26]. . . . . . 10
2-6 Example of an air controlled battery pack temperature regulator [8]. . . . . .. 11
3-1 Example of a network with directed edges and nodes. . . . . . .. ... .. ... 14
4-1 lllustration of an N-stage stochastic optimal control problem [1] . . . . . . . .. 20
4-2 Example network to illustrate control variable j. . . . . . . .. ... ... ... . 23
5-1 Three networks [15]. . . . . . . . . ... 30
5-2 Realisations of the Probability Density Function (PDF) of the different mean travel
speed groups. . . . . .. 31
5-3 Distribution of fast charger events throughout the day in The Netherlands [25]. . 32
5-4 Realisations of PDF of the different waiting time groups. . . . . . . . . ... .. 33
5-5 First result of the optimal policies of one simulation for the method with simplifi-
cation (cyan) and the method without simplification (red) for network 1. 35
5-6 Second result of the optimal policies of one simulation for the method with sim-
plification (cyan) and the method without simplification (red) for network 1.. . . 35
5-7 Third result of the optimal policies of one simulation for the method with simpli-
fication (cyan) and the method without simplification (red) for network 1. . . . . 35
5-8 Influence of charging granularity on run time and cost. . . . . . .. .. ... .. 38
5-9 Percentile run time decrease compared to the parameter é. before. . . . . . .. 39
5-10 Number of stops and average charged energy for each simulated charging penalty. 40
Master of Science Thesis J. den Daas



viii List of Figures

5-11 Initial battery temperature and ambient temperature influence on the expected
cost for the different networks. . . . . . . . ... ... 42

5-12 Normalised drive time and normalised charging costs for different values of . . . 44

6-1 Optimal policies created by Fastest preference (cyan) and Min algorithm (red),
with accompanied amount of charged energy, for one simulation of network 1. . . 51

6-2 Optimal policies created by Fastest preference (cyan) and Min algorithm (red),
with accompanied amount of charged energy, for one simulation of network 2. . . 52

6-3 Optimal policies created by Fastest preference (cyan) and Min algorithm (red),
with accompanied amount of charged energy, for one simulation of network 3. . . 53

6-4 Mean journey times and average driving speeds for different maximum speeds at
an ambient temperature of —20°C. . . . . . ... 57

6-5 Mean journey time, average driving speeds, total charged energy and the number
of charging events for different maximum speeds at an ambient temperature of 0°C. 58

6-6 Average charging time decrease versus the average driving time increase with an
ambient temperature of 0°C. . . . . . . . ... 58

6-7 Mean journey time, average driving speeds, total charged energy and the number
of charging events for different maximum speeds at an ambient temperature of

20°C. . 59
6-8 Average charging time decrease versus the average driving time increase with an

ambient temperature of 20°C. . . . . . ..o 60
6-9 Percentage of type of charger that is used by the preference setting of the algorithm

for 100 simulations of network 1 with an ambient temperature of 20°C. . . . . . 64
6-10 Percentage of type of charger that is used by the preference setting of the algorithm

for 100 simulations of network 1 with an ambient temperature of 0°C. . . . . . . 65
6-11 Percentage of type of charger that is used by the preference setting of the algorithm

for 100 simulations of network 1 with an ambient temperature of —20°C. . . . . 67
6-12 Network with motorway (cyan) and provincial-road (red). . . . . . ... ... .. 68

6-13 Results of the expected costs of the provincial-roads and the motorway, with dif-
ferent standard deviations of the driving speed for an ambient temperature of 20°C. 71

6-14 Results of the expected costs of the provincial-roads (PR) and the motorway (MW),
with different standard deviations of the driving speed for an ambient temperature
of 0°C. . . . 72

6-15 Results of the expected costs of the provincial-roads (PR) and the motorway (MW),
with different standard deviations of the driving speed for an ambient temperature
of —=20°C. . . . . . 73

J. den Daas Master of Science Thesis



List of Tables

5-1 Division of theday. . . . . . . . . . .. 30
5-2 Division of the day accompanied with belonging waiting time group. . . . . . . . 32
5-3 Cooling and heating mechanisms. . . . . . . . ... ... oL 34
5-4 Battery parameters. . . . . . .. L 34
5-5 Mean running time of 100 simulations of the method without simplification an the

method with simplification. . . . . . .. ... oo 36
5-6 Parameters for simulations of the charging granularity. . . . .. .. .. ... .. 37
5-7 Parameters for simulations of the charging time penalty sensitivity. . . . . . . . . 40
5-8 Parameters for simulations of the temperature's influence. . . . . . .. ... .. 41
5-9 Parameters for each simulation for the trade-off between charging cost and journey

time. . . . e 43
5-10 Route preference with accompanied valueof . . . . . . . . .. .. .. ... .. 44
6-1 Parameters for each comparison with Min simulation. . . . . . . . . .. ... .. 48

6-2 Results of the waiting time, charging time, driving time and journey time in minutes
and charging cost in euros, for different algorithms for 100 simulations of network 1. 50

6-3 Results of the waiting time, charging time, driving time and journey time in minutes
and charging cost in euros, for different algorithms for 100 simulations of network 2. 50

6-4 Results of the waiting time, charging time, driving time and journey time in minutes
and charging cost in euros, for different algorithms for 100 simulations of network 3. 50

6-5 Detailed results of the waiting time, charging time, driving time and the journey

time in minutes of one simulation of network 1. . . . . . . . . . . ... ... .. 51
6-6 Detailed results of the waiting time, charging time, driving time and the journey

time in minutes of one simulation of network 2. . . . . . . . .. . ... ... .. 52
6-7 Detailed results of the waiting time, charging time, driving time and the journey

time in minutes of one simulation of network 3. . . . . . . . . .. ... .. ... 53
6-8 Parameters for each speed optimisation simulation. . . . . . .. .. .. ... .. 55

6-9 Different types of chargers with their accompanied charging power present in each
node. . . . . L 62

Master of Science Thesis J. den Daas



X List of Tables

6-10 Parameters for each CS selection simulation. . . . . . . . . . . . . . . ... ... 63

6-11 Results of the waiting time, charging time, driving time and journey time in minutes
and charging cost in euros, for different algorithms for 100 simulations of network
1 with CS selection with an ambient temperature of 20°C. . . . . . .. ... .. 63

6-12 Results of the waiting time, charging time, driving time and journey time in minutes
and charging cost in euros, for different algorithms for 100 simulations of network
1 with CS selection with an ambient temperature of 0°C.. . . . . . . . ... .. 64

6-13 Results of the waiting time, charging time, driving time and journey time in minutes
and charging cost in euros, for different algorithms for 100 simulations of network
1 with CS selection with an ambient temperature of —20°C. . . . . . . . .. .. 66

6-14 Parameters for each uncertainty simulation. . . . . . . . ... ... ... .. .. 70

6-15 Cross over point, in terms of the charging standard deviation, when the provincial-
road is preferred over the motorway at an ambient temperature of 20°C, 0°C and
—20°C. . e 73

J. den Daas Master of Science Thesis



Acknowledgements

This thesis has not been as expected due to the ongoing Corona pandemic. Being forced
to work from home instead of on the Faculty of Mechanical Engineering has most definitely
asked for a certain change in my mentality. This makes me even more proud of the final
result, and therefore I would like to thank some people who have helped me along the way.

First of all, I would like to thank my supervisor Azita Dabiri for asking critical questions
during our meetings, providing helpful feedback and insights on my work, thinking along,
and pushing me in the right direction when needed.

Also, I would like to thank Viktor Larsson and Mitra Pourabdollah from Volvo for their
support, feedback, insights from the field and our interesting discussions on the topic of
electric vehicles. My final result would have never been so applicable without you.

Thanks to Jaap, Roel, Cas, Bart and Floris for spending all this time at home with me,
having coffee breaks, a good laugh and all other distractions at home during the thesis.

I want to thank Charlotte, Laura and in particular my parents, Paul and Marian, for their
unconditional support, enabling me to make my own choices, and for keeping me motivated.
Without you, I would have never written this thesis or completed my studies. Thank you.

“Education is the most powerful weapon which you can use to change the world.”
— Nelson Mandela

Delft, University of Technology J. den Daas
February 11, 2022

Master of Science Thesis J. den Daas



Xii Acknowledgements

J. den Daas Master of Science Thesis



Chapter 1

Introduction

Dependence on petroleum contributes to severe environmental and energy problems. One
of the significant contributors to energy consumption and greenhouse gas emissions is the
transportation sector. A study from the International Energy Agency indicates that the
transportation sector contributes 28% of global energy consumption and 23% of global green-
house gas emissions [18]. A promising solution lies in the usage of EVs since these have better
characteristics compared to conventional Internal Combustion Engine Vehicles (ICEV) such
as high energy efficiency and emission reduction, which both can contribute to reduced global
warming. Primarily if the energy used for the charging of EVs is obtained from renewable
energy sources, their usage can make a significant impact [21].

However, one of the challenges that have to be overcome for the stimulation of EV adaption
is range anxiety [2, 17, 22, 4]. Range anxiety refers to EV drivers concerned about running
out of battery energy on trips, or that much charging is required during the travel. The lack
of charging infrastructure strengthens this range anxiety while not offering charging security.
Moreover, the charging time associated with EV driving also leads to range anxiety. For
example, if someone is in a hurry to reach a specific destination and has to charge the battery
of the EV to reach the destination. The charging time could lead to the destination not being
reached in time. To overcome range anxiety, route planning for EVs is of high importance.
With accurate route planning, the charging processes can be included, and the EV driver will
be given detailed instructions for reaching the destination, lowering the range anxiety.

The route planning for EVs is much more challenging than for ICEV. Due to the lacking
charging infrastructure for EVs, the energy consumption of the EV is of much higher im-
portance compared to ICEV. EVs will deliberately have to plan where to charge since, in
contrast to ICEV, battery recharging takes significantly more time than refuelling. On top
of that, because there is a lack of charging infrastructure for EVs, many EVs will arrive at
the same CS, which can lead to charging poles being taken. Since the charging process takes
at least 30 minutes to charge from 20% State of Charge (SoC) to 80% SoC [13, 7], this can
cause waiting times to arise at CSs. The selection of a CS can therefore have a high impact
on the travel time of an EV and is thus a delicate problem.
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2 Introduction

The route guidance systems for the EV have evolved over the years. The systems mainly differ
in the way the traffic information, such as the traffic speed and density or the waiting times
at a CS, is handled. The proposed approaches in the literature all seem to share a similar
objective function, reaching the destination of the EV with minimal travel costs. The travel
costs are, however, formulated differently among the presented literature. For example, in
[28], the used energy of the EV en route is minimised, while in [27], the travel costs consisting
of the travel time, energy consumption and charging costs, are minimised.

The literature shows the most significant distinction in how CS characteristics are modelled,
such as charging costs, charging time, and charging demand. Since the charging demand of
EVs has a stochastic nature, the literature seems to find it hard to incorporate this demand
in their methods. Historical data has the disadvantage that it can be temporary and spatially
bounded, which makes it unusable for a general case. Therefore, some literature assumes that
some of these essential characteristics are a fixed variable or do not take these characteristics
into account. For example, in [12], only the selection of a CS with a specific charging efficiency
is taken into account. The method does not provide any information on the CS properties,
such as the energy price or the waiting time at the CS. To simulate the amount of EVs present
in a CS for charging, the method presented in [27], makes use of a fixed arrival rate of EVs
at a CS. In this way, the method includes the waiting time at a CS in their solution. The
more recent literature tackles the problem of charging demand with real-time communication
systems. With the use of an Intelligent Transportation Systems (ITS), EVs and CSs can
communicate with each other. Due to this communication, the EVs can reserve a charging
spot at a CS for a specific moment, such as in [10], or the EV driver can see the current waiting
time at a CS, such as presented in [7]. The latter has a disadvantage that if a disturbance
occurs on the way to the CS, which will impact the arrival time at the CS, the reservation of
a charging spot or the expected waiting time at arrival has become useless.

To solve the route guidance problem of EVs Dynamic Programming (DP) is one of the methods
that is mainly used. In specific, problems that encounter stochastic variables use SDP. SDP
has shown excellent results in providing route guidance for EVs in, for example, [9, 14] it is
used to find an optimal route for EVs. It is a promising control method for the route guidance
of EVs since: (1) it can coordinate and control multiple control objectives at the same time,
which makes it able to control, e.g., both the amount of energy to be charged at a CS and
the following link the EV will travel; (2) constraints can be added, such that the solution
is feasible, e.g. the EV will not run out of energy during the route; (3) it allows stochastic
variables in the optimisation, e.g., stochastic driving speeds and waiting times can be used.

1-1 Problem statement

In recent studies, the focus lies on lowering the travel costs, such as the driving, charging and
travel time [12, 27, 10, 7, 9, 14] in order to overcome range anxiety; however, these studies
have overlooked the characteristics of CSs such as possible waiting times and the significant
impact of the charging process and its role in the route planning problem. Since most EV
drivers make use of charging recommendations, such as in [22], or routing and charging point
reserving systems, such as in [4], EV clustering at CSs can take place. This causes long waiting
times at CSs, contributing to overall travel time. However, the lack of charging infrastructure
combined with busy CSs at specific times of the day results in a long waiting time at CSs.
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1-2 Thesis outline 3

In this thesis, the expected travel costs of an EV moving from origin to destination will be
minimised. The novelty of this thesis lies in the approach regarding the waiting times at
CSs and the inclusion of all aspects that influence the travel costs of an EV, which will be
discussed later.

SDP has proven to be an effective algorithm to solve decision-making problems under different
circumstances. These circumstances are related to the available traffic information, which can
be deterministic, using DP, but for SDP methods, this information can be stochastic as well.
The main goal of this thesis will be to investigate how the travel costs of an EV can be
minimised. This goal will be reached by answering the following main research question:

How can the travel cost of an electric vehicle on long haul trips, with historical charging
occupancy information and historical average road network travel speeds, be minimised?

The following sub-questions are used to answer the main research question:

1. What factors influence the travel costs of the Electric Vehicle on long-haul trips?

Which factors are important for the travel costs that the EV incurs during a long-haul
trip. Next to the obvious costs, such as the charging cost, are there any factors that
have a significant influence on the travel costs or certain decisions that have to be made
during the navigation of EVs on long-haul trips?

2. How can Stochastic Dynamic Programming be used to optimise the travel costs of an
Electric Vehicle?

What possibilities arise using SDP to further optimise the EV’s travel costs on long-haul
trips. Are there new insights that can be created regarding the costs that influence the
route optimisation of EVs, which potentially could change the way it is now, in general,
looked at the way the optimal route for an EV is created?

1-2 Thesis outline

The outline of this thesis is as follows. The used electric vehicle model and all of its compo-
nents are explained in Chapter 2. In Chapter 3, the road network and charging infrastructure
model will be discussed. This includes all the costs that are incurred for an EV during the
route. Next, the methodology concerning SDP will be presented in Chapter 4. In Chapter 5,
parameter sensitivity studies will be executed as well as verification of the proposed method
and validation of the suggested simplification. The conducted case studies will be elaborated
in Chapter 6, among the results is comparing the performance of the proposed method with
a conventional method to optimise the travel costs of EVs. This thesis is concluded with an
overall discussion, conclusions, and suggestions for future work in Chapter 7.
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Chapter 2

Electric Vehicle Model

In this chapter, the EV model will be discussed. It will be discussed what parts the energy
consumption of an EV consists of and how this is modelled in the thesis. Multiple factors
influence energy consumption, e.g., cabin climate control and the propulsive power demand.

Moreover, it will be discussed how the charging time of an EV is modelled. For the charging
time, various factors influence this process, e.g., the battery temperature and the available
charging power.

Lastly, it will be discussed how the battery temperature is modelled. The battery temperature
is of importance, while it has numerous effects. Among these effects is that the temperature
can influence the charging speed. However, it also affects the safety of EV passengers. High
battery temperatures can cause thermal runaway and an explosive battery fire in the worst
case. However, high battery temperatures are generally avoided because this decreases the
battery lifetime. Therefore, the battery temperature must be incorporated in the model and
the possibility to heat or cool the battery if required. In this chapter, the used battery thermal
model and the battery’s thermal heating and thermal cooling are discussed.

2-1 Energy Consumption

Many factors influence the energy consumption of an EV. The prediction of energy consump-
tion is important because this influences the moment and place for the charging process.
In this section, the factors that contribute to the energy consumption of the EV will be
elaborated.

First, there is the propulsive power demand. This is the energy that is required to move
the EV. Multiple aspects affect the propulsive power demand required to move the EV. For
example, during the acceleration of the EV, there is more propulsive power demand required
compared to the situation where the EV is driving at a constant speed. Moreover, if there
are elevation differences on the road segment, this can impact the propulsive power demand
to keep the same speed for the EV. For simplicity, it is assumed that there are no elevation
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6 Electric Vehicle Model
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Figure 2-1: Example of energy consumption B, based on driving speeds v;; [23].

differences and that the EV is driving at a constant speed. Therefore, a relation between the
average driving speed and the energy consumption for the propulsive power demand is used.
An example of such a relation is given in Figure 2-1.

For each speed, a specific energy consumption B, is present. This energy consumption rep-
resents the number of kWh per driven km. To determine the energy that is required for
the propulsive power demand to advance over a segment, denoted by e,. The length of this
segment has to be multiplied with the energy consumption rate based on the driving speed
given by:

ep = d* By, (2-1)

where d the length of the segment, and:

By = fe(v). (2-2)

In Eq. (2-2), the function f.(v) gives the energy consumption rate B, based on the driving
speed.

Aside from the propulsive power demand, there is also energy consumption because the cabin
climate has to be regulated. The cabin climate control energy consumption is quite substantial
on the total energy consumption [19]. The amount of energy spent on the cabin climate
control depends on the ambient temperature and the time the cabin climate control is active.
More cabin climate control is required for very cold and very hot ambient temperatures. An
example of a relation between the ambient temperature and the power for the cabin climate
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2-1 Energy Consumption 7
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Figure 2-2: Relation between the ambient temperature and the power required for the cabin
climate control.

control is given in Figure 2-2. The required energy for the cabin climate control during a time
period 7 is given by:
€cc = T * Bee, (2-3)

where B is the cabin climate control rate and is given by:

Bcc = fcc(Tambient)- (2'4)
In Eq. (2-4), fee(Tambient) is @ function that gives the energy consumption rate for the cabin
climate control based on the ambient temperature.

Next to the cabin climate control, there is also the energy required for the thermal heating
and cooling of the battery, which will be explained in detail in Section 2-3. This heating or
cooling of the battery is present while driving. Therefore, the energy consumption for the
heating or cooling of the battery is given by:

EB = T * Bb, (2—5)

where 7 is a given time period and By, is the cooling or heating rate of the battery.

Lastly, there is base-load present due to the auxiliary energy consumption, for example, for
all electronics on board of the EV. The energy consumption for a given time period due to
this base-load is given by:

ea = T * By, (2-6)

where By is the base-load.

Master of Science Thesis J. den Daas



8 Electric Vehicle Model
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Figure 2-3: Charging profile of a Nissan Altra EV [3].
2-2 Charging Time

When an EV is about to run out of battery energy capacity, the battery has to be recharged.
In contrast to ICEV, this process takes much longer. The charging takes place at a CS,
where the EV driver must plug in their EV to a charging pole. The charging time depends on
multiple factors. In this section, it will be explained how this charging time can be calculated.

The amount of energy to be charged depends on the arrival energy at the CS of the EV,
which is given by e. The departure energy of the EV at the CS is denoted by ¢’. Therefore
the amount of energy that is charged, denoted by Ae, is equal to:

Ae=c¢ —e. (2-7)

The energy to be charged is linked to a certain charging time, denoted by 7.. The tempera-
ture of the battery upon arrival at the CS, denoted by 7', has a big influence on this charging
time since the battery temperature influences the charging speed that can be achieved. For
example, a very cold battery (0°C) charges much slower than a warm battery (30°C). Fur-
thermore, the charging speed also depends on the State of Charge (SoC), the battery capacity
level, of the battery. A low SoC battery charges faster than a high SoC battery. The SoC
namely influences what the maximum effective charging power, denoted by p.s, can be. The
higher the SoC, the lower the maximum effective charging power. An example of a charging
speed profile is shown in Figure 2-3. In this figure, it can be seen that the maximum effec-
tive charging power drops fast when reaching high SoC. This means that the charging speed
decreases if the SoC increases.
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Figure 2-4: Charging time relation with SoC.

An example of the relation between the charging time, depending on the departure energy
and the arrival energy, is given in Figure 2-4. One can calculate the charging time with this
relation by subtracting the required charging time of the departure SoC with the required
charging time of the arrival SoC. This charging time model, based on [23], assumes a linear
charging time up to 80 % SoC, where after the charging time becomes non-linear. In Figure 2-
4 a charging speed of 40 kW is used as example. An example of the charging speed, of which
the function is denoted by f.(Ae), in relation to the SoC, is given by:

Ae/pes if 0 < SoC <80,
fe(Ae) = ¢ 1.25 x Ae/pes if 80 < SoC < 90, (2-8)
1.75 x Ae/pes if 90 < SoC < 100,

where p¢s is the charging power provided by the CS. The charging time is also dependent
on the battery temperature, an example of the relationship between the charging time and
battery temperature is given by:

o0, if T'<0,
Te = (Tmin/T) * fC(A€>, Hfo<T < Tinin, (2—9)
fC(Ae)¢ itT Z Tmin-

From Eq. (2-9) it can be seen that for battery temperatures lower than or equal to 0 degrees
Celsius the charging time becomes infinity. For temperatures lower than T, which is a
temperature that can be set arbitrary, the charging time increases with a factor Ty, /T > 1.
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AESC cell 4 cells per module 48 modules, 192 prismatic cells Nissan Leaf

Figure 2-5: Lithium-ion battery cell-, module-, and pack-level of a Nissan Leaf [26].

2-3 Battery Thermal Model

To control the battery temperature, a battery thermal model can be used. There are various
thermal modelling approaches, such as a lumped capacitance thermal approach, numerical
and analytical thermal models and equivalent circuit thermal models. In [24] the advan-
tages, disadvantages and recommended applications of these modelling approaches have been
investigated. Considering the scope of this research and taking in mind the recommended
applications described in [24], the lumped capacitance thermal approach will be used. Mainly
the fact that a fast processing time can be achieved using this model while at the same time
the model can predict the thermal behaviour of the battery in a satisfactory manner gives
rise to picking this sort of model.

With the lumped thermal capacity model, it is assumed that the battery remains at a uniform
temperature while undergoing a transient thermal response. We may ignore minor differences
in temperature within the battery. The assumed uniform temperature of the battery can be
specified in terms of changes in the internal energy of the battery. The heat transfer from
the battery to the surroundings and vice versa might happen via conduction, radiation, or
convection. To model the battery temperature of the EV, we start with the energy balance
of the battery, which is given by:

dr
mbCp% = Qin(t) - Qout(t)a (2'10)
where my, is the battery mass, C}, is the specific heat capacity, 1" is the battery temperature,
Qin(t) is the heat generated at time ¢ and Qout(t) is the heat dissipation from the battery at
time t. The battery mass consists of the mass of all cells that are present within the battery.
In Figure 2-5, one can see that a battery pack consists of multiple modules and the modules

consist of a number of cells. Therefore, the battery mass, denoted by my,, is given by:

Mp = N * Ne * Meells (2-11)

where ny, represents the number of modules contained in a battery pack, n. is the number
of cells present in a module and mcq is the mass of a single battery cell. In the following of
this section, it will be discussed how the heat generation and heat dissipation at time ¢ are
defined and how the battery can either be cooled or heated.

In the case of having a battery temperature that is lower than the desired temperature, one
would like to heat the battery. Looking at Eq. (2-10), in order to achieve a battery heat
increase, the heat generation @i, has to be larger than the heat dissipation Qo at time ¢.
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Figure 2-6: Example of an air controlled battery pack temperature regulator [8].

There are multiple ways to create an external heat dissipation into the battery. Examples
of this kind of heating system are air heating systems or refrigerated heating systems. An
example of an air heating system is given in Figure 2-6, in this figure, one can see that ambient
air is blown through a Heat, Ventilation and Air Conditioning (HVAC) system, which can
heat the air. This hot air can then be used to heat the cabin and the battery pack.

When the battery temperature is higher than the desired temperature, active cooling of
the battery has to occur. Eq. (2-10), in order to achieve a battery heat decrease, the heat
generation ()i, has to be smaller than the heat dissipation oyt at time t. When cooling the
battery, there is passive cooling and active cooling. Passive cooling of the battery takes place
due to, for example, convection and radiation. However, this passive cooling might not be
sufficient to cool the battery down to the desired temperature within a certain time period.
Active cooling might then be required from an external source. This external cooling can, for
example, be the same as in Figure 2-6, where instead of heating the ambient air, the ambient
air is cooled down such that the battery pack loses heat.

2-4 Conclusions

In this chapter, the EV model has been discussed. The energy consumption consists of the
propulsive power demand, which depends on the driving speed, the cabin climate control,
which depends on the ambient temperature, and the auxiliary load. Together, these factors
determine the energy consumption of an EV while driving.

The charging time is dependent on the amount of energy to be charged, the available charging
power, the SoC at the start and end of the charging process, and the battery temperature
at the start of the charging process. A non-linear relation is used in order to determine the
charging time.

The battery temperature can affect the travel cost for an EV, while too low temperatures have
a negative effect on the charging process. However, also too high temperatures can impose
safety dangers. Therefore, the heating or cooling of the battery is required to guarantee a
safe trip or to optimise the travel cost of an EV. The thermal model presented in this chapter
can be used to model the battery temperature and the cooling or heating of the battery to
the extent required for this purpose.
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Chapter 3

Road Network and Charging
Infrastructure Model

This chapter will discuss the model for the road network and charging infrastructure. The
costs incurred for an EV during the route will be explained. These costs consist of costs that
are incurred at a CS but also of costs that are incurred while driving from a CS to another
CS. First, it will be explained how a network for the optimisation is constructed, and then
the specific costs will be discussed.

3-1 The Network

The route optimisation takes place between an origin and destination. It is assumed that this
origin and destination, referred to as o and d subsequently, are both present in a network with
directed edges. These directed edges connect the nodes, representing either a single CS or a
cluster of CSs. The edges represent roads, which can, for example, be highways or provincial
roads that connect the CSs. Since the edges are directed, the road can only be used in one
direction. For example, in Figure 3-1 one can travel from origin o to CS 1, but not from CS
1 to origin o.

We assume that a network is defined as a directed graph G = (N, .A). Nodes in the network
are given by i € N/, whereas an arc between node i and j is given by (7,7) € A. Each CS in
the network represents a decision point, the decision that can be made consists of multiple
criteria. Each edge in the network has a certain cost attached to it. This cost of an edge can
have both deterministic and stochastic parts. In the remainder of this section, these costs
will be elaborated.

3-2 Edge Cost

First, the edge cost will be discussed. This is the cost incurred when travelling from one node
to another node. Essential for the edge cost are the edge length, the driving speed, the energy
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e
N

Figure 3-1: Example of a network with directed edges and nodes.
consumption and the travel time, which will be explained in the following.

3-2-1 Edge Length

Each edge in the network has a specific length, denoted by dj; (km). This length is determin-
istic and will not change. It represents the distance between node ¢ and node j. The length
of each edge is contained in set D, such that d;; € D. Possible elevation in link segments is
neglected.

3-2-2 Driving Speed

Next to the length of each edge, a certain driving speed is present. This driving speed is
assumed to be the average driving speed for the whole edge length. However, this driving
speed is not deterministic. It is only possible to predict a certain driving speed incurred for a
certain edge at a specific time. Therefore, each edge has a certain probabilistic driving speed,
which is dependent on the time, denoted by ¢. The expected driving speed, denoted by wj;
(km/h), of an edge with probability distribution P,(t) is given by:

vij = E{vy(1)}, (3-1)
where:
E{uv;(t)} = quipi € Py(t) = vip1 + vap2 + ... + vnpn. (3-2)
i=1

In Eq. (3-2), the expectation of vj; is expressed as the weighted sum of the possible speeds,
denoted by v;, with their probabilities to occur, denoted by p;, as weights. Since p; + p2 +
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... + py = 1, this weighted sum can be used. However, this only holds if the random variable,
denoted by vj5, has a finite number of outcomes. The probability distribution P, (t) depends
on the time ¢, while for different time intervals the expected speed can differ severely. For
example, during rush hour the expected speed can be lower than during hours outside the
rush hour.

3-2-3 Travel Time

The travel time between node 7 and node j, denoted by 7, is dependent on the expected
driving speed. Therefore, the travel time can change based on the time of day. The travel
time is the drive time between the two charging stations and thus represents the time spent
from leaving node ¢ and arriving at node j. This travel time is given by:

(3-3)

3-2-4 Energy Consumption

Based on the expected driving speed, the energy consumption for the propulsive power de-
mand of an edge should be calculated. The expected driving speed is used because the energy
consumption differs for different driving speeds, as discussed in Section 2-1. The energy con-
sumption of an edge is denoted by ej; [kWh], based on the expected driving speed the share
of energy consumption for the propulsive power demand is equal to:

eij = dij * By, (3-4)

This energy consumption is based on the expected driving speed. Therefore the energy con-
sumption per edge can be different based on the time. Next to the propulsive power demand,
there is also energy consumption because the cabin climate has to be regulated, the battery is
actively heated or cooled, and an auxiliary load is present. All of these energy consumption’s
are present while driving. Therefore the energy consumption has to be multiplied by the
travel time, described in Eq. (3-3). The total energy consumption between node 7 and node
j is given by:

eij = dij * By + 735 * (Bo + Be + By), (3-5)

3-3 Node Cost

Next to the edge cost, there is also the node cost. This is the cost that is incurred at a node
in the network. For the node cost, essential factors are the waiting time, the charging time
and the charging cost, which will be discussed in the following.
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3-3-1 Charging Time

Each node in the network represents a decision point. For example, a decision regarding the
amount of energy charged in the current node and to which node is travelled next has to be
taken. The amount of energy to be charged depends on the arrival energy at node 7, which
is given by e. To arrive at the next node j, the energy of departure at node i, denoted by ¢/,
has to be higher than ej such that the EV does not run out of battery. This would cause
the travel cost to increase severely since one would need to be towed to the nearest CS. The
energy to be charged is linked to a certain charging time at a CS, denoted by .

If the arrival energy is sufficient to reach the next CS at node j, it is an option to refrain
from charging. The departure time at node ¢ is then equal to the arrival time. However, if
charging takes place, a charging penalty time, denoted by t,, has to be added. This penalty
is present because the EV has to leave the road it is currently driving on, set up the charging
process and get back on the road again. Therefore, the charging time 7; is defined as

= {0, if Ae =0, (3-6)

T + tp, otherwise.

3-3-2 Waiting Time

Because the charging infrastructure is limited, waiting times at charging stations can be
present. This could be the case, especially during hours when many people want to charge
their EV. Unfortunately, this waiting time is not known. Therefore, a probability distribution
can model the waiting time at a CS. Based on a probability distribution Py(t), which is
dependent on the time of the day, t, the expected waiting time, denoted by wj;, at node 7 is
given by

w; = E{wi(t)}, (3-7)
where the expected value is calculated by:

m
E{wi(t)} =Y wipi € Py(t) = wip1 + waps + ... + WP (3-8)
i=1

This expected waiting time is incurred before the charging takes place. However, if no charging
occurs, there is also no waiting time incurred.

3-3-3 Charging Cost
Finally, the energy that is charged is not cost-free. A dynamical pricing model is used for
the energy costs, denoted by ¢ (t), representing different energy prices based on the time of

day and day in the week. This cost is based on the time of arrival at CS at node ¢ and the
amount of energy that is charged and is given by:

Ce = Cp(t) * Ae. (3-9)
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3-4 Conclusions

In this chapter, the model for the road network and charging infrastructure has been discussed.
This model describes the costs incurred for an EV during the route. These costs consist of
the edge cost and the node cost. The edge cost gives the cost required to travel from node 7
to node j. This cost depends on the expected driving speed, the energy consumption, which
also depends on the driving speed, the required energy consumption for the cabin climate
control and the required energy for the cooling or heating of the battery. The travel time
between two nodes depends on the edge distance and the expected driving speed.

The cost incurred at a node is given by the charging time, depending on the amount of energy
charged, the battery temperature at arrival, the SoC at arrival and the charging power that
the CS can deliver. Other costs incurred at a node are given by the waiting time and the
price for the charging event.

Now that the edge cost and node cost are clearly defined, we can elaborate on the used
methodology to find an optimal policy for the EV in a network. The used methodology is
explained in the next chapter.
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Chapter 4

Stochastic Dynamic Programming

In this chapter, the used methodology of SDP will be discussed in detail. It will be elaborated
on how the travel costs of an EV can be minimised using SDP. A simplification to improve
the computation time of the method while having the same optimal policy, as a result, will
be discussed. First, a general explanation of SDP will be given, followed by a more tailored
method for the optimisation problem of the route guidance of an EV on long-haul trips.

4-1 An Introduction to Stochastic Dynamic Programming

DP can be used for problems in many settings. These problems often consist of optimisation
problems that evolve over time. The problems range from the control of heating systems
to managing entire economics. Examples of similar optimisation problems are scheduling
problems, selling assets, investing money in portfolios, purchasing new equipment, forecast
problems, or simply playing a game of backgammon. All these problems have in common:
they involve making decisions, then observing information, after which more decisions are
taken, and so on. Such problems are known as sequential decision problems. These problems
might be straightforward to formulate, however solving them is another matter.

This is where DP comes into play. With DP, problems are broken down into smaller sub-
problems using recursive equations that depend on a state variable to find the optimal solu-
tions to the sub-problems iteratively—ultimately leading to the overall optimal solution.

With DP problems, specific control actions generate a sequence of states from a discrete-time
dynamic system [1]. If the system evolves over a finite number of N steps, the problem is
said to be a finite horizon problem. The state and control at time k are denoted by zi and
uy respectively.

For stochastic finite horizon optimal control problems the evolution of state xy is influenced
by a random disturbance wy, which is characterised by a probability distribution Py(-|xk, uk)
that may depend explicitly on x) and wuy, but not on values of prior disturbances wy_1, ..., wg.
The states of the system evolve according to the following equation:
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Random Transition Terminal Cost
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Figure 4-1: lllustration of an N-stage stochastic optimal control problem [1]

Tk+1 = fk(xlnukawk)a k= 07 17 7N - 17 (4_1)

where k is the time index, xy is the state of the system, an element of some space, uy is the
selected control variable at k from some given set Uy(xy), wy is a random disturbance, fi is
a function of (xy,uk,wy) that describes the mechanism by which the state is updated from
time k to time k+1 and N is the horizon or number of times control is applied.

The stochastic finite horizon optimal control problem involves a cost function that is additive
in the sense that the cost incurred at time k, denoted by gi(xk,uk,wyk), accumulates over
time. The cost incurred at time k is referred to as the stage cost. An illustration of how the
stage cost, starting from state x) under control variable wy, develops for a N-stage stochastic
optimal control problem is shown in Figure 4-1.

An important difference with deterministic DP is that the optimisation for SDP does not
optimise over control sequences but rather over policies. These policies consist of a sequence
of functions, where py, maps states xj into controls ui, = uy(xk), and also satisfies the control
constraints, such that uy(zx) € Ux(zk). In the presence of stochastic uncertainty, policies can
result in improved cost since they allow choices of controls uy that incorporate knowledge
of the state xx. Suppose there is no knowledge present on the effect of the disturbance on
the state z). In that case, the controller cannot adapt appropriately to unexpected values
of the state, which can adversely affect the cost. This is a fundamental difference between
deterministic and stochastic optimal control problems.

Evaluating various quantities such as cost function values for stochastic problems involves
forming expected values, which is another important distinction between deterministic and
stochastic optimal control problems. With an initial state xy and policy m = {uo, ..., un—1},
the future states x) are defined through the following system equation:

Tk+1 = fk(xkauk(wk)7wk)7 k= 07 17 ceey N —1. (4_2)

Thus, for given functions gi, k£ = 0,1,..., N — 1, the expected cost of 7 starting at xg is:

N-1
(o) = E{QN(HTN) + > gk g (), wk)}7 (4-3)
k=0

where E{-} represents the expected value operator over all the random variables wy and xy.
An optimal policy 7* is one that minimises the expected cost, given in Eq. (4-3), i.e
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Jre (w0) = min Ty o), (4-4)

where II is the set of all admissible policies. The optimal cost depends on xy and is denoted
by J*(xg), given by:

J*(zg) = 173161%[1 Jr(z0). (4-5)

The function in Eq. (4-5) can be seen as a function that assigns the optimal cost J*(zg) to
each initial state, such that J*(z¢) can be seen as the optimal cost function. The optimal
policy for SDP problems can then found by starting with:

Ix(an) = gn(ax), (4-6)

where gn(zn) is a terminal cost incurred at the end of the process. For k =0,..., N — 1, let:

Ji () = min E{gk($k, uk, wy) + Jy g <fk(:nk, U, wk)> } (4-7)

ug €Uy (xi)

Then, if uf = pf(xrx) minimises the right side of Eq. (4-7) for each xx and k, the policy
7 ={po, ..., p5_1 } is optimal.

4-2 Stochastic Dynamic Programming Formulation

In the following, it will be discussed how our problem is formulated as an SDP problem. This
will involve describing the state variables, the control variables, state transition functions and
other vital parts of the methodology.

4-2-1 State Variables

As described, zy is the state of the system. In our case, this system is the EV. The physical
system is characterised by a set of parameters called the state variables. The state of the
system can influence the possible control decisions. The set of all possible states at time &
is called the state space, and denoted by Sk. In our research, it is assumed that the state
variable is defined as follows:

Tk = (iaekatlth)a (4_8)
where 7 is the CS, ey is the SoC, #y is the time and Tj is the battery temperature. The system’s
state influences the control decision set presented during the optimisation—for example, the

amount of energy that the EV can charge at a CS.
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4-2-2 Control Variables

As stated in Section 4-1, during the optimisation, an optimal policy is sought such that the
expected costs with the initial state, denoted by xg, are minimised. This optimal policy is
a function of the state . For this optimisation problem, the control actions consist of (i)
which charging station should be travelled to next (ii) the amount of energy to be charged
(iii) the amount of cooling or heating of the battery during the driving. Hence, the control
action is given by:

Uk = (]7 Aelﬂ Qk)a (4_9)

where j is the next node, ¢, is the heating or cooling rate between node ¢ and node j, and
Aey is the amount of energy to be charged. The amount of energy to be charged is given by:

Aey = e} — e, (4-10)

where e} is the departure energy. Upon arrival at each node, whether charging takes place
or not, a decision has to be taken as to which node to travel next. This decision depends on
the state xix. Take the network given in Figure 4-2 as an example, where an optimal policy
is sought between origin o and destination d. It is straightforward to see the fact that at the
origin o only one decision is optimal regarding which node to travel next to since the only
node which can be travelled next to is node 1. However, upon arrival at node 1, the EV can
either travel to node 2 or node 3, respectively. This decision is dependent on state zy, while
this state can influence the associated cost to travel to node 2 and node 3, which makes one
node favourable, in terms of cost, to travel to the next over the other node.

A node is said to be reachable, meaning one can travel from the current node to the node in
question, if the edge between the two nodes is contained in set A, given by:

(i,§) € A. (4-11)

The nodes that can be reached from node i are contained in set N'" and satisfy the condition
given in Eq. (4-11). Therefore the possible set of nodes to travel next to, denoted by Uj(xy),
when in node 7 is given by:

Us(a) = {j € N}, (4-12)

Next to deciding to which node to travel next to also a decision has to be made regarding the
amount of energy that is charged at node i. Therefore a charging control decision set, Ue(x),
is presented. This charging control decision set is dependent on state zy, while it describes
the amount of energy to be charged, which is dependent on the arrival energy. The charging
control decision set is equal to:

Ue(zk) = {0 < Aex < ec — ex}. (4-13)

In Eq. (4-13), it can be seen that the minimum of the charging control decision set is equal to
zero. This is a particular case where no charging takes place. In the case that charging does
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Figure 4-2: Example network to illustrate control variable j.

take place, the amount of charged energy depends on the state x). The maximum amount of
energy to be charged is the battery capacity, denoted by e., minus the arrival energy, which
means that the charging process can go to a maximum of 100% SoC.

Finally, there is a control variable that controls the heating or cooling of the battery. As
stated in Section 3-3, the battery temperature influences the charging time. Therefore, it is
desired that the battery temperature upon arrival at a CS is higher or equal to T,y and lower
or equal to Ty, for safety reasons. The control variable ¢, which controls the cooling or
heating rate of the battery is chosen from the set Ugy(xy) which is dependent on the predicted
battery temperature upon arrival at the next charging station, denoted by 7}, x 1. This control
variable should be contained in the set, gx € Uq(zx), given by:

Qheaty if Tp,k+1 < Tmina
Uq(xk) = 07 if Tin < Tp,k+1 < Tmax’ (4'14)
Qcooh if Tp,k+1 > Tmax7

where Qneat and Qg0 are variables that can be optimised and i, and Ty are temperature
values that can be set for the optimal charging of the battery as well as the safety for the
EV drivers respectively. The predicted temperature of the battery upon arrival of the next
charging station can be calculated using Eq. (2-10) described in Section 2-3.

4-2-3 Random Disturbances

There are two random disturbances present that influences the system’s dynamics. The first
disturbance influences the waiting time at a CS, while this waiting time is not known until
arrival at the CS. The disturbance on the waiting time at stage £ is denoted by wy x and
is dependent on the arrival time at the CS. The second disturbance influences the driving
speed between two nodes. The driving speed between nodes is random, while this depends on
multiple factors, such as the weather, traffic density and possible accidents. The disturbance
in the driving speed, on the edge between node ¢ and node j respectively, is denoted by wy j;.
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There is a given collection of probability distributions Py, = {Pu1,---s Pym}, corresponding
to m possible distributions describing the probability for the disturbance wy x to occur. In a
distribution, the probability for a certain disturbance to take place is described. The arrival
time at a certain CS, determines which probability distribution will be used to describe
the set of disturbances wy k. Therefore, this is described by the conditional probability

wa,k (ww’k|xk) .
For the disturbance on the driving speed, also a given set of probability distributions P, ;; =
{Py1, ..., Pyn}, corresponding to n possible distributions is present. The probability distribu-

tion for the distribution on the travel speed depends on the state, the control action, and the
waiting time disturbance, and is defined by Py, ;; (wy ij| 7k, Uk, Wy x)-

As can be seen, the probability distribution of the travel speed can be affected by a control
input. However, the evolution of the component wy, 1 cannot be affected by control, except
indirectly through xi. Since the random disturbance wy, x influences the arrival state of our
system, we have to include this random event in our state. Therefore, the augmented state
of our system is given as:

Ty = (Tk, Wy k) (4-15)

4-2-4 State Transition Function

Based on the current state, the control policy and the random disturbances, the evolution of
the main state component xy is defined in the following way:

Trp1 = fe(T, Ui, Wiy e, W jj) 5 (4-16)

where fi(+) is a non-linear function obtained from Algorithm 1.

Algorithm 1 function fi(zk, uk, Wy k, Wy ij)

1= fc(eip ex, Tk) > Charging time
2 5 = dij/ (V35 + wy ij) > Driving time
3: ejj = dij * fe(vij + wy i) + 75 * (Bo + Be + By) > Energy consumption

4: if Aeix !'= 0 then

5: =T + tp

6: ekp1 = €} — €jj > Arrival energy
7. Tiy1 = fr(eij, Be, Tij, Tk, Tambient) > Arrival battery temperature
8 lit1 =l + Wywk + 71 + 75 > Arrival time
9: Txy1 = (J, €xt1s tkr1s Tir1) > Next state

return xyy

The first line in Algorithm 1, calculates the charging time, denoted by 7, which is dependent
on the energy e, when leaving the charging station, the energy when arriving at the charging
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station denoted by e and the battery temperature upon arrival at charging station 7, denoted
by Ti. The driving time between the two charging stations is calculated in the second line.
This is done by dividing the distance d;; between the two charging stations by the expected
driving speed, which is disturbed by the driving speed disturbance. The required energy to
travel between charging station ¢ and j is given by ej;.

In line 5, a charging penalty, ¢, is added if charging takes place. This penalty is present
because the EV has to leave the road it is currently driving on, set up the charging process
and get back on the road again. One can then calculate the energy level upon arrival at the
next charging station with line 6. The temperature upon arrival at the next charging station
is calculated by function fr(esj, Be, 7ij, Tk, Tambient ). The arguments of this function include
the required energy to travel from charging station i to charging station j, the required time
to travel between these two charging stations, the energy required for the cooling or heating
of the battery, the battery temperature upon arrival at charging station ¢ and the ambient
temperature. Moreover, the arrival time at the next station will be updated according to line
8. This concludes the calculation of the next state xyy1, given by Algorithm 1.

4-2-5 Stage Cost

The stochastic optimal control problem is finite since the system evolves over a N finite
number of stages, which are the nodes within the network. At each stage, a stage cost
Ik (Tk, Uk, Wy i, Wy i) is incurred. The stage cost gx(-), consists of the cost for the charging
and the cost for time, defined as:

G (T, Ui, Wi ), Wy ij) = ¢p(tic) * Aex + a(ww,k + 7 + (%fliuvu)), (4-17)
the cost for the charging process is given by the charging price at the arrival of the CS, given
by cp(tk), multiplied with the amount of energy that is charged, denoted by Aey. Moreover,
parameter a can change the relative importance of the charging cost to the time cost. The
influence and appliance of this parameter will be discussed in Chapter 6. The time cost is
given by the total amount of time spent between arriving at node ¢ to arriving at node j. The
stage cost depends on both the disturbance on the driving speed wy jj, and the disturbance
concerning the waiting time w. .

In the stage cost function, o can be used to set different navigation modes; « has an influence
on the relative impact of the charging cost and the elapsed time. The charging cost is given
by the first term in Eq. (4-17), which describes the cost for the charging process, given by:

Ccharging = Cp (tk) * Aeku (4_18)

where Ccharging stands for the charging cost. The second term of Eq. (4-17), gives the cost for
the elapsed time. The elapsed time is the time required to travel from the current charging
station to the next charging process at the next CS, measured from the moment of arrival at
the current charging station. This time cost is given by:

dij

4 (4-19)
(0 + wy i)

Ctime = Wwk + 71 +
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Such that the stage cost is given by:
gk = Ccharging T & * Ctime- (4—20)

4-2-6 Recursive Value lteration

Now that the stage cost and evolution of the main state component is defined, the optimal
cost-to-go at a specific stage k and the augmented state (zk,wy ) is defined as follows:

min E{kmkukwkw~
u UK (T1, Wy k) Wviij i@ s V’U)
Ji (@, Wy ) = +> w1 Pw T (fk(l'kyukywmkvwv,ij)aw)‘ww,k}a if k<N, (4-21)
min E {gk(mk,uk,wka,wv,ij) ww,k}, if k= N.
ug €Uk (Tk, Wy k) Wviij

Where py, is the probability that the next disturbance wy k41 is selected according to proba-
bility distribution P,

kT

4-2-7 Uncontrollable State Components

It is possible to see wy k as a disturbance, but there is a difference: wy x is observed before
we apply control uy, while wy ;; occurs after applying uy. Therefore, wy, i is an uncontrollable
state component. Which means that we can simplify our method by averaging out the uncon-
trollable component wy 1 and we execute the DP algorithm over the controllable component
xk. To do so, let Ji(zk,wwx) denote the optimal cost-to-go at stage k and state (xy, wy k),
and define:

Jilay) = wEk{J;(xk, Wy o)k }- (4-22)

w,

We will derive a DP algorithm that generates jk(xk), starting with

Jx(zx) = F min E {gk($k7ukaww,kawv,ij)
Ww k| ux €Uk (K, Wy, k)  Wv,ijTh41,Ww,k+1
(4-23)
+ Ji 1 (@1, Wy 1) |2, U, ww,k}‘l‘k}a
which can be rewritten as:
Jx(zx) = FE min E {gk(ﬂ% Uk, Wy K, Wy ij)
Wy k ukEUk(xk,ww,k) Wv,ij,Th+1

(4-24)

+ wEk{Jﬁﬂ(kaH, Wy k1) [ Tr41 } |z, Uk, ww,k} ‘xk}
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and finally:

Ww,k ukEUk(mk) Wy ij

J(zx) = E { min F {9k($k7uk,ww,k7wv,ij)
(4-25)

+ Jit1 (fk(ﬂfk, Uk, Wy k, wv,ij))}‘ﬂﬁk}-

The advantage of this equivalent DP algorithm is that is executed over a significantly reduced
state space [1]. For example, if xy takes n possible values and wy, x takes m possible values,
then DP is executed over n states instead of nm states.

4-3 Conclusions

In this chapter, the methodology of SDP has been introduced and discussed. It is well known
that DP offers a good framework for sequential decision problems [20]. Therefore, SDP is well
suited to find the optimal policy in a road network where travel speeds and charging station
availability are stochastic for an EV. The control actions for our problem will consist of (i)
the next node to travel to (ii) the amount of charging that takes place (iii) the amount of
cooling or heating of the battery is applied.

A simplification is suggested in Section 4-2-7, with respect to the uncontrollable state com-
ponent wy 1, the waiting time. With the presence of an uncontrollable state component,
the DP algorithm can be simplified considerably and executed over the state’s controllable
components.

In the next chapter, the proposed method will be verified, the simplification will be validated,
and parameter sensitivity analyses will be performed.
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Chapter 5

Parameter Sensitivity Studies

This chapter will discuss the verification of the proposed method and parameter sensitivity
analyses. The sensitivity analyses are executed to test the influence of specific parameters
on the proposed method. The verification of the proposed method is executed to check the
validity of the proposed method. First, the simulation setup will be discussed, followed by
the verification and sensitivity analyses.

5-1 Simulation Setup

In this section, the simulation setup used during the case studies will be discussed. First,
the networks used for the case studies will be described. Then, it will be discussed how the
random disturbances are modelled, followed by elaborating on the battery thermal model
specifics.

5-1-1 Case Networks

There will be three networks on which the case studies are performed. The topology of these
networks are adapted from [15] and are given in Figure 5-1, accompanied by their number
of nodes and links. As shown in the figure, the network is a directed network. The arrows
are pointing from node to node represent in which direction the car can travel. Moreover, as
can be seen in Figure 5-1, there is a difference between the networks. The first and second
networks have the same amount of links; however, the number of nodes, representing either
a single CS or a cluster of CSs, is different. The second and third networks do not have the
same amount of links but do have the same amount of nodes. For each of the networks, the
first node, denoted by node 1, is the origin node o and the last node is the destination node
d, which is node 10 in the first case and node 12 in the second and third case.

At the beginning of each simulation, the distance of the links in the network is randomly dis-
tributed between [100km, 120km]. Therefore, the distance between the origin and destination
nodes lies between 500-600 kilometres, which causes the fact that the EV will have to charge
at least once, and the trip is considered a long-haul trip.
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Case | Node | Link Topology
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Figure 5-1: Three networks [15].

Table 5-1: Division of the day.

Time Interval | Peak | Intermediate | Base
00:00-06:59 X
07:00-09:59 X
10:00-14:59 X
15:00-18:59 X
19:00-23:59 X

5-1-2 Random Disturbances

A set of probability distributions is present for the travel speed between the nodes. This set
is denoted by P, . For the creation of the travel speed distributions, a difference is made
between peak-hours, intermediate-hours, and base-hours. To be more specific, a day is split
up into time intervals assigned to the specific mean travel speed group. The division of the
daytime is given in Table 5-1.

For each of the peak-hours, intermediate-hours, and base-hours a different probability dis-
tribution is present. Intuitively, one can understand that during peak hours, the chance
of running into a traffic jam is more significant than during base hours. This is since the
traffic density is, in general, higher during peak-hours, which increases the probability of ac-
cidents happening and a higher probability of a lower average driving speed. The probability
distributions are normally distributed, which can be described by N(u,o?), where p is the
mean and o is the variance. Without loss of generality, let us assume that the peak-hours,
intermediate-hours, and base-hours can be described by:

60, 02 =5),  Peak,
N(p,0%) ={ N(u=80, 0 =3), Intermediate, (5-1)
100, 02 =1), Base.

The distributions in Eq. (5-1), describe the probability for a particular mean travel speed to
occur. During the peak-, and intermediate hours there is a higher variance present, meaning
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Figure 5-2: Realisations of the Probability Density Function (PDF) of the different mean travel
speed groups.

that there is a bigger chance of having a mean travel speed that varies from the mean of the
distribution, shown in Figure 5-2.

As discussed in Section 3-2, the propulsive energy consumption on a link /;; depends on the
mean travel speed, which gives a specific energy consumption B per kilometre. In this base
case study, the relation between energy consumption per driven kilometre and the mean travel
speed, presented in Figure 2-1 is used. The available charging power of each CS is set to be
equal to 50kW, there is no spatial or temporal dependency of this charging power. This
means that the available charging power in each node, representing a CS, is the same. The
charging price, denoted by c,, depends on energy demand, hence the time of the day. The
charging price is given by:

0.42 (EUR/kW), if tx € tpeaky
cp(ti) = { 0.40 (EUR/KW), if ti € tintermediates (5-2)
0.35 (EUR/kW), if tk € thase;

where tpeak, fintermediate; and thase represent the set of all time intervals belonging to the
corresponding group and ¢ is the arrival time