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Abstract

Stochastic Dynamic Programming (SDP) has shown promising results for sequential decision
problems of the route optimisation for an Electric Vehicle (EV) with the presence of stochastic
variables in the travel cost. However, in studies, the optimisation problem formulation for EVs
has been lacking in detail. For example, possible waiting times at a Charging Station (CS)
have been neglected. This thesis uses SDP to formulate a more holistic optimisation problem
for EVs moving through a road network where travel speeds and charging station availability
are stochastic. The goal is to optimise the travel costs, which consists of, e.g., the journey
time and the charging cost, for an EV on long-haul trips.

In this thesis, four simulation-based case studies are conducted: (1) comparison of conven-
tional navigation system with the proposed method; (2) speed optimisation in order to im-
prove the travel costs; (3) charging platform selection in order to improve the travel cost; (4)
uncertainty influence on the travel costs. The case studies are conducted to create insight
into how the travel costs of an EV can be optimised. In these case studies, the influence of
multiple factors has been taken into account and investigated. For example, cabin climate
control, which is dependent on the ambient temperature, has a significant influence on the
energy consumption of the EV resulting in higher travel costs.

The simulation results have shown interesting results. Compared to a Min algorithm, which
uses a strategy to minimise the travel and charging time, the proposed method can find an
optimal policy that is in some cases 5% shorter in terms of journey time. It is profitable
for certain ambient temperatures and maximum allowable driving speeds in terms of journey
time and charging cost to optimise the driving speed below the maximum allowed driving
speed on highways. This results in a shorter journey time and saving charging costs. For
example, for a maximum speed of 120 (km/h) and an ambient temperature of 20 ◦C, 3% of
journey time advantage can be achieved by optimising the driving speed.
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Chapter 1

Introduction

Dependence on petroleum contributes to severe environmental and energy problems. One
of the significant contributors to energy consumption and greenhouse gas emissions is the
transportation sector. A study from the International Energy Agency indicates that the
transportation sector contributes 28% of global energy consumption and 23% of global green-
house gas emissions [18]. A promising solution lies in the usage of EVs since these have better
characteristics compared to conventional Internal Combustion Engine Vehicles (ICEV) such
as high energy efficiency and emission reduction, which both can contribute to reduced global
warming. Primarily if the energy used for the charging of EVs is obtained from renewable
energy sources, their usage can make a significant impact [21].

However, one of the challenges that have to be overcome for the stimulation of EV adaption
is range anxiety [2, 17, 22, 4]. Range anxiety refers to EV drivers concerned about running
out of battery energy on trips, or that much charging is required during the travel. The lack
of charging infrastructure strengthens this range anxiety while not offering charging security.
Moreover, the charging time associated with EV driving also leads to range anxiety. For
example, if someone is in a hurry to reach a specific destination and has to charge the battery
of the EV to reach the destination. The charging time could lead to the destination not being
reached in time. To overcome range anxiety, route planning for EVs is of high importance.
With accurate route planning, the charging processes can be included, and the EV driver will
be given detailed instructions for reaching the destination, lowering the range anxiety.

The route planning for EVs is much more challenging than for ICEV. Due to the lacking
charging infrastructure for EVs, the energy consumption of the EV is of much higher im-
portance compared to ICEV. EVs will deliberately have to plan where to charge since, in
contrast to ICEV, battery recharging takes significantly more time than refuelling. On top
of that, because there is a lack of charging infrastructure for EVs, many EVs will arrive at
the same CS, which can lead to charging poles being taken. Since the charging process takes
at least 30 minutes to charge from 20% State of Charge (SoC) to 80% SoC [13, 7], this can
cause waiting times to arise at CSs. The selection of a CS can therefore have a high impact
on the travel time of an EV and is thus a delicate problem.
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2 Introduction

The route guidance systems for the EV have evolved over the years. The systems mainly differ
in the way the traffic information, such as the traffic speed and density or the waiting times
at a CS, is handled. The proposed approaches in the literature all seem to share a similar
objective function, reaching the destination of the EV with minimal travel costs. The travel
costs are, however, formulated differently among the presented literature. For example, in
[28], the used energy of the EV en route is minimised, while in [27], the travel costs consisting
of the travel time, energy consumption and charging costs, are minimised.

The literature shows the most significant distinction in how CS characteristics are modelled,
such as charging costs, charging time, and charging demand. Since the charging demand of
EVs has a stochastic nature, the literature seems to find it hard to incorporate this demand
in their methods. Historical data has the disadvantage that it can be temporary and spatially
bounded, which makes it unusable for a general case. Therefore, some literature assumes that
some of these essential characteristics are a fixed variable or do not take these characteristics
into account. For example, in [12], only the selection of a CS with a specific charging efficiency
is taken into account. The method does not provide any information on the CS properties,
such as the energy price or the waiting time at the CS. To simulate the amount of EVs present
in a CS for charging, the method presented in [27], makes use of a fixed arrival rate of EVs
at a CS. In this way, the method includes the waiting time at a CS in their solution. The
more recent literature tackles the problem of charging demand with real-time communication
systems. With the use of an Intelligent Transportation Systems (ITS), EVs and CSs can
communicate with each other. Due to this communication, the EVs can reserve a charging
spot at a CS for a specific moment, such as in [10], or the EV driver can see the current waiting
time at a CS, such as presented in [7]. The latter has a disadvantage that if a disturbance
occurs on the way to the CS, which will impact the arrival time at the CS, the reservation of
a charging spot or the expected waiting time at arrival has become useless.

To solve the route guidance problem of EVs Dynamic Programming (DP) is one of the methods
that is mainly used. In specific, problems that encounter stochastic variables use SDP. SDP
has shown excellent results in providing route guidance for EVs in, for example, [9, 14] it is
used to find an optimal route for EVs. It is a promising control method for the route guidance
of EVs since: (1) it can coordinate and control multiple control objectives at the same time,
which makes it able to control, e.g., both the amount of energy to be charged at a CS and
the following link the EV will travel; (2) constraints can be added, such that the solution
is feasible, e.g. the EV will not run out of energy during the route; (3) it allows stochastic
variables in the optimisation, e.g., stochastic driving speeds and waiting times can be used.

1-1 Problem statement

In recent studies, the focus lies on lowering the travel costs, such as the driving, charging and
travel time [12, 27, 10, 7, 9, 14] in order to overcome range anxiety; however, these studies
have overlooked the characteristics of CSs such as possible waiting times and the significant
impact of the charging process and its role in the route planning problem. Since most EV
drivers make use of charging recommendations, such as in [22], or routing and charging point
reserving systems, such as in [4], EV clustering at CSs can take place. This causes long waiting
times at CSs, contributing to overall travel time. However, the lack of charging infrastructure
combined with busy CSs at specific times of the day results in a long waiting time at CSs.
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1-2 Thesis outline 3

In this thesis, the expected travel costs of an EV moving from origin to destination will be
minimised. The novelty of this thesis lies in the approach regarding the waiting times at
CSs and the inclusion of all aspects that influence the travel costs of an EV, which will be
discussed later.

SDP has proven to be an effective algorithm to solve decision-making problems under different
circumstances. These circumstances are related to the available traffic information, which can
be deterministic, using DP, but for SDP methods, this information can be stochastic as well.
The main goal of this thesis will be to investigate how the travel costs of an EV can be
minimised. This goal will be reached by answering the following main research question:

How can the travel cost of an electric vehicle on long haul trips, with historical charging
occupancy information and historical average road network travel speeds, be minimised?

The following sub-questions are used to answer the main research question:

1. What factors influence the travel costs of the Electric Vehicle on long-haul trips?
Which factors are important for the travel costs that the EV incurs during a long-haul
trip. Next to the obvious costs, such as the charging cost, are there any factors that
have a significant influence on the travel costs or certain decisions that have to be made
during the navigation of EVs on long-haul trips?

2. How can Stochastic Dynamic Programming be used to optimise the travel costs of an
Electric Vehicle?
What possibilities arise using SDP to further optimise the EV’s travel costs on long-haul
trips. Are there new insights that can be created regarding the costs that influence the
route optimisation of EVs, which potentially could change the way it is now, in general,
looked at the way the optimal route for an EV is created?

1-2 Thesis outline

The outline of this thesis is as follows. The used electric vehicle model and all of its compo-
nents are explained in Chapter 2. In Chapter 3, the road network and charging infrastructure
model will be discussed. This includes all the costs that are incurred for an EV during the
route. Next, the methodology concerning SDP will be presented in Chapter 4. In Chapter 5,
parameter sensitivity studies will be executed as well as verification of the proposed method
and validation of the suggested simplification. The conducted case studies will be elaborated
in Chapter 6, among the results is comparing the performance of the proposed method with
a conventional method to optimise the travel costs of EVs. This thesis is concluded with an
overall discussion, conclusions, and suggestions for future work in Chapter 7.
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Chapter 2

Electric Vehicle Model

In this chapter, the EV model will be discussed. It will be discussed what parts the energy
consumption of an EV consists of and how this is modelled in the thesis. Multiple factors
influence energy consumption, e.g., cabin climate control and the propulsive power demand.

Moreover, it will be discussed how the charging time of an EV is modelled. For the charging
time, various factors influence this process, e.g., the battery temperature and the available
charging power.

Lastly, it will be discussed how the battery temperature is modelled. The battery temperature
is of importance, while it has numerous effects. Among these effects is that the temperature
can influence the charging speed. However, it also affects the safety of EV passengers. High
battery temperatures can cause thermal runaway and an explosive battery fire in the worst
case. However, high battery temperatures are generally avoided because this decreases the
battery lifetime. Therefore, the battery temperature must be incorporated in the model and
the possibility to heat or cool the battery if required. In this chapter, the used battery thermal
model and the battery’s thermal heating and thermal cooling are discussed.

2-1 Energy Consumption

Many factors influence the energy consumption of an EV. The prediction of energy consump-
tion is important because this influences the moment and place for the charging process.
In this section, the factors that contribute to the energy consumption of the EV will be
elaborated.

First, there is the propulsive power demand. This is the energy that is required to move
the EV. Multiple aspects affect the propulsive power demand required to move the EV. For
example, during the acceleration of the EV, there is more propulsive power demand required
compared to the situation where the EV is driving at a constant speed. Moreover, if there
are elevation differences on the road segment, this can impact the propulsive power demand
to keep the same speed for the EV. For simplicity, it is assumed that there are no elevation
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6 Electric Vehicle Model

Figure 2-1: Example of energy consumption Bv based on driving speeds vij [23].

differences and that the EV is driving at a constant speed. Therefore, a relation between the
average driving speed and the energy consumption for the propulsive power demand is used.
An example of such a relation is given in Figure 2-1.

For each speed, a specific energy consumption Bv is present. This energy consumption rep-
resents the number of kWh per driven km. To determine the energy that is required for
the propulsive power demand to advance over a segment, denoted by ep. The length of this
segment has to be multiplied with the energy consumption rate based on the driving speed
given by:

ep = d ∗ Bv, (2-1)

where d the length of the segment, and:

Bv = fe(v). (2-2)

In Eq. (2-2), the function fe(v) gives the energy consumption rate Bv based on the driving
speed.

Aside from the propulsive power demand, there is also energy consumption because the cabin
climate has to be regulated. The cabin climate control energy consumption is quite substantial
on the total energy consumption [19]. The amount of energy spent on the cabin climate
control depends on the ambient temperature and the time the cabin climate control is active.
More cabin climate control is required for very cold and very hot ambient temperatures. An
example of a relation between the ambient temperature and the power for the cabin climate
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Figure 2-2: Relation between the ambient temperature and the power required for the cabin
climate control.

control is given in Figure 2-2. The required energy for the cabin climate control during a time
period τ is given by:

ecc = τ ∗ Bcc, (2-3)

where Bcc is the cabin climate control rate and is given by:

Bcc = fcc(Tambient). (2-4)

In Eq. (2-4), fcc(Tambient) is a function that gives the energy consumption rate for the cabin
climate control based on the ambient temperature.

Next to the cabin climate control, there is also the energy required for the thermal heating
and cooling of the battery, which will be explained in detail in Section 2-3. This heating or
cooling of the battery is present while driving. Therefore, the energy consumption for the
heating or cooling of the battery is given by:

eB = τ ∗ Bb, (2-5)

where τ is a given time period and Bb is the cooling or heating rate of the battery.

Lastly, there is base-load present due to the auxiliary energy consumption, for example, for
all electronics on board of the EV. The energy consumption for a given time period due to
this base-load is given by:

ea = τ ∗ B0, (2-6)

where B0 is the base-load.
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Figure 2-3: Charging profile of a Nissan Altra EV [3].

2-2 Charging Time

When an EV is about to run out of battery energy capacity, the battery has to be recharged.
In contrast to ICEV, this process takes much longer. The charging takes place at a CS,
where the EV driver must plug in their EV to a charging pole. The charging time depends on
multiple factors. In this section, it will be explained how this charging time can be calculated.

The amount of energy to be charged depends on the arrival energy at the CS of the EV,
which is given by e. The departure energy of the EV at the CS is denoted by e′. Therefore
the amount of energy that is charged, denoted by ∆e, is equal to:

∆e = e′ − e. (2-7)

The energy to be charged is linked to a certain charging time, denoted by τc. The tempera-
ture of the battery upon arrival at the CS, denoted by T , has a big influence on this charging
time since the battery temperature influences the charging speed that can be achieved. For
example, a very cold battery (0 ◦C) charges much slower than a warm battery (30 ◦C). Fur-
thermore, the charging speed also depends on the State of Charge (SoC), the battery capacity
level, of the battery. A low SoC battery charges faster than a high SoC battery. The SoC
namely influences what the maximum effective charging power, denoted by pcs, can be. The
higher the SoC, the lower the maximum effective charging power. An example of a charging
speed profile is shown in Figure 2-3. In this figure, it can be seen that the maximum effec-
tive charging power drops fast when reaching high SoC. This means that the charging speed
decreases if the SoC increases.
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Figure 2-4: Charging time relation with SoC.

An example of the relation between the charging time, depending on the departure energy
and the arrival energy, is given in Figure 2-4. One can calculate the charging time with this
relation by subtracting the required charging time of the departure SoC with the required
charging time of the arrival SoC. This charging time model, based on [23], assumes a linear
charging time up to 80 % SoC, where after the charging time becomes non-linear. In Figure 2-
4 a charging speed of 40 kW is used as example. An example of the charging speed, of which
the function is denoted by fc(∆e), in relation to the SoC, is given by:

fc(∆e) =


∆e/pcs if 0 < SoC ≤ 80,

1.25 ∗ ∆e/pcs if 80 < SoC ≤ 90,

1.75 ∗ ∆e/pcs if 90 < SoC ≤ 100,

(2-8)

where pcs is the charging power provided by the CS. The charging time is also dependent
on the battery temperature, an example of the relationship between the charging time and
battery temperature is given by:

τc =


∞, if T ≤ 0,

(Tmin/T ) ∗ fc(∆e), if 0 < T < Tmin,

fc(∆e), if T ≥ Tmin.

(2-9)

From Eq. (2-9) it can be seen that for battery temperatures lower than or equal to 0 degrees
Celsius the charging time becomes infinity. For temperatures lower than Tmin, which is a
temperature that can be set arbitrary, the charging time increases with a factor Tmin/T > 1.
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Figure 2-5: Lithium-ion battery cell-, module-, and pack-level of a Nissan Leaf [26].

2-3 Battery Thermal Model

To control the battery temperature, a battery thermal model can be used. There are various
thermal modelling approaches, such as a lumped capacitance thermal approach, numerical
and analytical thermal models and equivalent circuit thermal models. In [24] the advan-
tages, disadvantages and recommended applications of these modelling approaches have been
investigated. Considering the scope of this research and taking in mind the recommended
applications described in [24], the lumped capacitance thermal approach will be used. Mainly
the fact that a fast processing time can be achieved using this model while at the same time
the model can predict the thermal behaviour of the battery in a satisfactory manner gives
rise to picking this sort of model.
With the lumped thermal capacity model, it is assumed that the battery remains at a uniform
temperature while undergoing a transient thermal response. We may ignore minor differences
in temperature within the battery. The assumed uniform temperature of the battery can be
specified in terms of changes in the internal energy of the battery. The heat transfer from
the battery to the surroundings and vice versa might happen via conduction, radiation, or
convection. To model the battery temperature of the EV, we start with the energy balance
of the battery, which is given by:

mbCp
dT

dt
= Qin(t) − Qout(t), (2-10)

where mb is the battery mass, Cp is the specific heat capacity, T is the battery temperature,
Qin(t) is the heat generated at time t and Qout(t) is the heat dissipation from the battery at
time t. The battery mass consists of the mass of all cells that are present within the battery.
In Figure 2-5, one can see that a battery pack consists of multiple modules and the modules
consist of a number of cells. Therefore, the battery mass, denoted by mb, is given by:

mb = nm ∗ nc ∗ mcell, (2-11)

where nm represents the number of modules contained in a battery pack, nc is the number
of cells present in a module and mcell is the mass of a single battery cell. In the following of
this section, it will be discussed how the heat generation and heat dissipation at time t are
defined and how the battery can either be cooled or heated.
In the case of having a battery temperature that is lower than the desired temperature, one
would like to heat the battery. Looking at Eq. (2-10), in order to achieve a battery heat
increase, the heat generation Qin has to be larger than the heat dissipation Qout at time t.
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Figure 2-6: Example of an air controlled battery pack temperature regulator [8].

There are multiple ways to create an external heat dissipation into the battery. Examples
of this kind of heating system are air heating systems or refrigerated heating systems. An
example of an air heating system is given in Figure 2-6, in this figure, one can see that ambient
air is blown through a Heat, Ventilation and Air Conditioning (HVAC) system, which can
heat the air. This hot air can then be used to heat the cabin and the battery pack.

When the battery temperature is higher than the desired temperature, active cooling of
the battery has to occur. Eq. (2-10), in order to achieve a battery heat decrease, the heat
generation Qin has to be smaller than the heat dissipation Qout at time t. When cooling the
battery, there is passive cooling and active cooling. Passive cooling of the battery takes place
due to, for example, convection and radiation. However, this passive cooling might not be
sufficient to cool the battery down to the desired temperature within a certain time period.
Active cooling might then be required from an external source. This external cooling can, for
example, be the same as in Figure 2-6, where instead of heating the ambient air, the ambient
air is cooled down such that the battery pack loses heat.

2-4 Conclusions

In this chapter, the EV model has been discussed. The energy consumption consists of the
propulsive power demand, which depends on the driving speed, the cabin climate control,
which depends on the ambient temperature, and the auxiliary load. Together, these factors
determine the energy consumption of an EV while driving.

The charging time is dependent on the amount of energy to be charged, the available charging
power, the SoC at the start and end of the charging process, and the battery temperature
at the start of the charging process. A non-linear relation is used in order to determine the
charging time.

The battery temperature can affect the travel cost for an EV, while too low temperatures have
a negative effect on the charging process. However, also too high temperatures can impose
safety dangers. Therefore, the heating or cooling of the battery is required to guarantee a
safe trip or to optimise the travel cost of an EV. The thermal model presented in this chapter
can be used to model the battery temperature and the cooling or heating of the battery to
the extent required for this purpose.
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Chapter 3

Road Network and Charging
Infrastructure Model

This chapter will discuss the model for the road network and charging infrastructure. The
costs incurred for an EV during the route will be explained. These costs consist of costs that
are incurred at a CS but also of costs that are incurred while driving from a CS to another
CS. First, it will be explained how a network for the optimisation is constructed, and then
the specific costs will be discussed.

3-1 The Network

The route optimisation takes place between an origin and destination. It is assumed that this
origin and destination, referred to as o and d subsequently, are both present in a network with
directed edges. These directed edges connect the nodes, representing either a single CS or a
cluster of CSs. The edges represent roads, which can, for example, be highways or provincial
roads that connect the CSs. Since the edges are directed, the road can only be used in one
direction. For example, in Figure 3-1 one can travel from origin o to CS 1, but not from CS
1 to origin o.
We assume that a network is defined as a directed graph G = (N , A). Nodes in the network
are given by i ∈ N , whereas an arc between node i and j is given by (i, j) ∈ A. Each CS in
the network represents a decision point, the decision that can be made consists of multiple
criteria. Each edge in the network has a certain cost attached to it. This cost of an edge can
have both deterministic and stochastic parts. In the remainder of this section, these costs
will be elaborated.

3-2 Edge Cost

First, the edge cost will be discussed. This is the cost incurred when travelling from one node
to another node. Essential for the edge cost are the edge length, the driving speed, the energy
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14 Road Network and Charging Infrastructure Model

Figure 3-1: Example of a network with directed edges and nodes.

consumption and the travel time, which will be explained in the following.

3-2-1 Edge Length

Each edge in the network has a specific length, denoted by dij (km). This length is determin-
istic and will not change. It represents the distance between node i and node j. The length
of each edge is contained in set D, such that dij ∈ D. Possible elevation in link segments is
neglected.

3-2-2 Driving Speed

Next to the length of each edge, a certain driving speed is present. This driving speed is
assumed to be the average driving speed for the whole edge length. However, this driving
speed is not deterministic. It is only possible to predict a certain driving speed incurred for a
certain edge at a specific time. Therefore, each edge has a certain probabilistic driving speed,
which is dependent on the time, denoted by t. The expected driving speed, denoted by v̄ij
(km/h), of an edge with probability distribution Pv(t) is given by:

v̄ij = E{vij(t)}, (3-1)

where:

E{vij(t)} =
n∑

i=1
vipi ∈ Pv(t) = v1p1 + v2p2 + ... + vnpn. (3-2)

In Eq. (3-2), the expectation of vij is expressed as the weighted sum of the possible speeds,
denoted by vi, with their probabilities to occur, denoted by pi, as weights. Since p1 + p2 +

J. den Daas Master of Science Thesis



3-3 Node Cost 15

... + pn = 1, this weighted sum can be used. However, this only holds if the random variable,
denoted by vij, has a finite number of outcomes. The probability distribution Pv(t) depends
on the time t, while for different time intervals the expected speed can differ severely. For
example, during rush hour the expected speed can be lower than during hours outside the
rush hour.

3-2-3 Travel Time

The travel time between node i and node j, denoted by τij, is dependent on the expected
driving speed. Therefore, the travel time can change based on the time of day. The travel
time is the drive time between the two charging stations and thus represents the time spent
from leaving node i and arriving at node j. This travel time is given by:

τij = dij
v̄ij

. (3-3)

3-2-4 Energy Consumption

Based on the expected driving speed, the energy consumption for the propulsive power de-
mand of an edge should be calculated. The expected driving speed is used because the energy
consumption differs for different driving speeds, as discussed in Section 2-1. The energy con-
sumption of an edge is denoted by eij [kWh], based on the expected driving speed the share
of energy consumption for the propulsive power demand is equal to:

eij = dij ∗ Bv, (3-4)

This energy consumption is based on the expected driving speed. Therefore the energy con-
sumption per edge can be different based on the time. Next to the propulsive power demand,
there is also energy consumption because the cabin climate has to be regulated, the battery is
actively heated or cooled, and an auxiliary load is present. All of these energy consumption’s
are present while driving. Therefore the energy consumption has to be multiplied by the
travel time, described in Eq. (3-3). The total energy consumption between node i and node
j is given by:

eij = dij ∗ Bv + τij ∗ (B0 + Bc + Bb), (3-5)

3-3 Node Cost

Next to the edge cost, there is also the node cost. This is the cost that is incurred at a node
in the network. For the node cost, essential factors are the waiting time, the charging time
and the charging cost, which will be discussed in the following.
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3-3-1 Charging Time

Each node in the network represents a decision point. For example, a decision regarding the
amount of energy charged in the current node and to which node is travelled next has to be
taken. The amount of energy to be charged depends on the arrival energy at node i, which
is given by e. To arrive at the next node j, the energy of departure at node i, denoted by e′,
has to be higher than eij such that the EV does not run out of battery. This would cause
the travel cost to increase severely since one would need to be towed to the nearest CS. The
energy to be charged is linked to a certain charging time at a CS, denoted by τi.
If the arrival energy is sufficient to reach the next CS at node j, it is an option to refrain
from charging. The departure time at node i is then equal to the arrival time. However, if
charging takes place, a charging penalty time, denoted by tp, has to be added. This penalty
is present because the EV has to leave the road it is currently driving on, set up the charging
process and get back on the road again. Therefore, the charging time τi is defined as

τi =
{

0, if ∆e = 0,

τi + tp, otherwise.
(3-6)

3-3-2 Waiting Time

Because the charging infrastructure is limited, waiting times at charging stations can be
present. This could be the case, especially during hours when many people want to charge
their EV. Unfortunately, this waiting time is not known. Therefore, a probability distribution
can model the waiting time at a CS. Based on a probability distribution Pw(t), which is
dependent on the time of the day, t, the expected waiting time, denoted by w̄i, at node i is
given by

w̄i = E{wi(t)}, (3-7)

where the expected value is calculated by:

E{wi(t)} =
m∑

i=1
wipi ∈ Pw(t) = w1p1 + w2p2 + ... + wmpm. (3-8)

This expected waiting time is incurred before the charging takes place. However, if no charging
occurs, there is also no waiting time incurred.

3-3-3 Charging Cost

Finally, the energy that is charged is not cost-free. A dynamical pricing model is used for
the energy costs, denoted by cp(t), representing different energy prices based on the time of
day and day in the week. This cost is based on the time of arrival at CS at node i and the
amount of energy that is charged and is given by:

ce = cp(t) ∗ ∆e. (3-9)
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3-4 Conclusions

In this chapter, the model for the road network and charging infrastructure has been discussed.
This model describes the costs incurred for an EV during the route. These costs consist of
the edge cost and the node cost. The edge cost gives the cost required to travel from node i
to node j. This cost depends on the expected driving speed, the energy consumption, which
also depends on the driving speed, the required energy consumption for the cabin climate
control and the required energy for the cooling or heating of the battery. The travel time
between two nodes depends on the edge distance and the expected driving speed.

The cost incurred at a node is given by the charging time, depending on the amount of energy
charged, the battery temperature at arrival, the SoC at arrival and the charging power that
the CS can deliver. Other costs incurred at a node are given by the waiting time and the
price for the charging event.

Now that the edge cost and node cost are clearly defined, we can elaborate on the used
methodology to find an optimal policy for the EV in a network. The used methodology is
explained in the next chapter.
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Chapter 4

Stochastic Dynamic Programming

In this chapter, the used methodology of SDP will be discussed in detail. It will be elaborated
on how the travel costs of an EV can be minimised using SDP. A simplification to improve
the computation time of the method while having the same optimal policy, as a result, will
be discussed. First, a general explanation of SDP will be given, followed by a more tailored
method for the optimisation problem of the route guidance of an EV on long-haul trips.

4-1 An Introduction to Stochastic Dynamic Programming

DP can be used for problems in many settings. These problems often consist of optimisation
problems that evolve over time. The problems range from the control of heating systems
to managing entire economics. Examples of similar optimisation problems are scheduling
problems, selling assets, investing money in portfolios, purchasing new equipment, forecast
problems, or simply playing a game of backgammon. All these problems have in common:
they involve making decisions, then observing information, after which more decisions are
taken, and so on. Such problems are known as sequential decision problems. These problems
might be straightforward to formulate, however solving them is another matter.

This is where DP comes into play. With DP, problems are broken down into smaller sub-
problems using recursive equations that depend on a state variable to find the optimal solu-
tions to the sub-problems iteratively—ultimately leading to the overall optimal solution.

With DP problems, specific control actions generate a sequence of states from a discrete-time
dynamic system [1]. If the system evolves over a finite number of N steps, the problem is
said to be a finite horizon problem. The state and control at time k are denoted by xk and
uk respectively.

For stochastic finite horizon optimal control problems the evolution of state xk is influenced
by a random disturbance wk, which is characterised by a probability distribution Pk(·|xk, uk)
that may depend explicitly on xk and uk, but not on values of prior disturbances wk−1, ..., w0.
The states of the system evolve according to the following equation:
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Figure 4-1: Illustration of an N-stage stochastic optimal control problem [1]

xk+1 = fk(xk, uk, wk), k = 0, 1, ..., N − 1, (4-1)

where k is the time index, xk is the state of the system, an element of some space, uk is the
selected control variable at k from some given set Uk(xk), wk is a random disturbance, fk is
a function of (xk, uk, wk) that describes the mechanism by which the state is updated from
time k to time k+1 and N is the horizon or number of times control is applied.

The stochastic finite horizon optimal control problem involves a cost function that is additive
in the sense that the cost incurred at time k, denoted by gk(xk, uk, wk), accumulates over
time. The cost incurred at time k is referred to as the stage cost. An illustration of how the
stage cost, starting from state xk under control variable uk, develops for a N -stage stochastic
optimal control problem is shown in Figure 4-1.

An important difference with deterministic DP is that the optimisation for SDP does not
optimise over control sequences but rather over policies. These policies consist of a sequence
of functions, where µk maps states xk into controls uk = µk(xk), and also satisfies the control
constraints, such that µk(xk) ∈ Uk(xk). In the presence of stochastic uncertainty, policies can
result in improved cost since they allow choices of controls uk that incorporate knowledge
of the state xk. Suppose there is no knowledge present on the effect of the disturbance on
the state xk. In that case, the controller cannot adapt appropriately to unexpected values
of the state, which can adversely affect the cost. This is a fundamental difference between
deterministic and stochastic optimal control problems.

Evaluating various quantities such as cost function values for stochastic problems involves
forming expected values, which is another important distinction between deterministic and
stochastic optimal control problems. With an initial state x0 and policy π = {µ0, ..., µN−1},
the future states xk are defined through the following system equation:

xk+1 = fk(xk, µk(xk), wk), k = 0, 1, ..., N − 1. (4-2)

Thus, for given functions gk, k = 0, 1, ..., N − 1, the expected cost of π starting at x0 is:

Jπ(x0) = E
{

gN(xN) +
N−1∑
k=0

gk(xk, µk(xk), wk)
}

, (4-3)

where E{·} represents the expected value operator over all the random variables wk and xk.
An optimal policy π∗ is one that minimises the expected cost, given in Eq. (4-3), i.e.:
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Jπ∗(x0) = min
π∈Π

Jπ(x0), (4-4)

where Π is the set of all admissible policies. The optimal cost depends on x0 and is denoted
by J∗(x0), given by:

J∗(x0) = min
π∈Π

Jπ(x0). (4-5)

The function in Eq. (4-5) can be seen as a function that assigns the optimal cost J∗(x0) to
each initial state, such that J∗(x0) can be seen as the optimal cost function. The optimal
policy for SDP problems can then found by starting with:

J∗
N(xN) = gN(xN), (4-6)

where gN(xN) is a terminal cost incurred at the end of the process. For k = 0, ..., N − 1, let:

J∗
k (xk) = min

uk∈Uk(xk)
E

{
gk(xk, uk, wk) + J∗

k+1

(
fk(xk, uk, wk)

)}
. (4-7)

Then, if u∗
k = µ∗

k(xk) minimises the right side of Eq. (4-7) for each xk and k, the policy
π∗ = {µ0, ..., µ∗

N−1} is optimal.

4-2 Stochastic Dynamic Programming Formulation

In the following, it will be discussed how our problem is formulated as an SDP problem. This
will involve describing the state variables, the control variables, state transition functions and
other vital parts of the methodology.

4-2-1 State Variables

As described, xk is the state of the system. In our case, this system is the EV. The physical
system is characterised by a set of parameters called the state variables. The state of the
system can influence the possible control decisions. The set of all possible states at time k
is called the state space, and denoted by Sk. In our research, it is assumed that the state
variable is defined as follows:

xk = (i, ek, tk, Tk), (4-8)

where i is the CS, ek is the SoC, tk is the time and Tk is the battery temperature. The system’s
state influences the control decision set presented during the optimisation—for example, the
amount of energy that the EV can charge at a CS.
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4-2-2 Control Variables

As stated in Section 4-1, during the optimisation, an optimal policy is sought such that the
expected costs with the initial state, denoted by x0, are minimised. This optimal policy is
a function of the state xk. For this optimisation problem, the control actions consist of (i)
which charging station should be travelled to next (ii) the amount of energy to be charged
(iii) the amount of cooling or heating of the battery during the driving. Hence, the control
action is given by:

uk = (j, ∆ek, qk), (4-9)

where j is the next node, qk is the heating or cooling rate between node i and node j, and
∆ek is the amount of energy to be charged. The amount of energy to be charged is given by:

∆ek = e′
k − ek, (4-10)

where e′
k is the departure energy. Upon arrival at each node, whether charging takes place

or not, a decision has to be taken as to which node to travel next. This decision depends on
the state xk. Take the network given in Figure 4-2 as an example, where an optimal policy
is sought between origin o and destination d. It is straightforward to see the fact that at the
origin o only one decision is optimal regarding which node to travel next to since the only
node which can be travelled next to is node 1. However, upon arrival at node 1, the EV can
either travel to node 2 or node 3, respectively. This decision is dependent on state xk, while
this state can influence the associated cost to travel to node 2 and node 3, which makes one
node favourable, in terms of cost, to travel to the next over the other node.
A node is said to be reachable, meaning one can travel from the current node to the node in
question, if the edge between the two nodes is contained in set A, given by:

(i, j) ∈ A. (4-11)

The nodes that can be reached from node i are contained in set N + and satisfy the condition
given in Eq. (4-11). Therefore the possible set of nodes to travel next to, denoted by Uj(xk),
when in node i is given by:

Uj(xk) = {j ∈ N +}. (4-12)

Next to deciding to which node to travel next to also a decision has to be made regarding the
amount of energy that is charged at node i. Therefore a charging control decision set, Ue(xk),
is presented. This charging control decision set is dependent on state xk, while it describes
the amount of energy to be charged, which is dependent on the arrival energy. The charging
control decision set is equal to:

Ue(xk) = {0 ≤ ∆ek ≤ ec − ek}. (4-13)

In Eq. (4-13), it can be seen that the minimum of the charging control decision set is equal to
zero. This is a particular case where no charging takes place. In the case that charging does
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Figure 4-2: Example network to illustrate control variable j.

take place, the amount of charged energy depends on the state xk. The maximum amount of
energy to be charged is the battery capacity, denoted by ec, minus the arrival energy, which
means that the charging process can go to a maximum of 100% SoC.

Finally, there is a control variable that controls the heating or cooling of the battery. As
stated in Section 3-3, the battery temperature influences the charging time. Therefore, it is
desired that the battery temperature upon arrival at a CS is higher or equal to Tmin and lower
or equal to Tmax, for safety reasons. The control variable qk, which controls the cooling or
heating rate of the battery is chosen from the set Uq(xk) which is dependent on the predicted
battery temperature upon arrival at the next charging station, denoted by Tp,k+1. This control
variable should be contained in the set, qk ∈ Uq(xk), given by:

Uq(xk) =


Qheat, if Tp,k+1 < Tmin,

0, if Tmin ≤ Tp,k+1 ≤ Tmax,

Qcool, if Tp,k+1 > Tmax,

(4-14)

where Qheat and Qcool are variables that can be optimised and Tmin and Tmax are temperature
values that can be set for the optimal charging of the battery as well as the safety for the
EV drivers respectively. The predicted temperature of the battery upon arrival of the next
charging station can be calculated using Eq. (2-10) described in Section 2-3.

4-2-3 Random Disturbances

There are two random disturbances present that influences the system’s dynamics. The first
disturbance influences the waiting time at a CS, while this waiting time is not known until
arrival at the CS. The disturbance on the waiting time at stage k is denoted by ww,k and
is dependent on the arrival time at the CS. The second disturbance influences the driving
speed between two nodes. The driving speed between nodes is random, while this depends on
multiple factors, such as the weather, traffic density and possible accidents. The disturbance
in the driving speed, on the edge between node i and node j respectively, is denoted by wv,ij.
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There is a given collection of probability distributions Pww,k = {Pw1, ..., Pwm}, corresponding
to m possible distributions describing the probability for the disturbance ww,k to occur. In a
distribution, the probability for a certain disturbance to take place is described. The arrival
time at a certain CS, determines which probability distribution will be used to describe
the set of disturbances ww,k. Therefore, this is described by the conditional probability
Pww,k(ww,k|xk).

For the disturbance on the driving speed, also a given set of probability distributions Pwv,ij =
{Pv1, ..., Pvn}, corresponding to n possible distributions is present. The probability distribu-
tion for the distribution on the travel speed depends on the state, the control action, and the
waiting time disturbance, and is defined by Pwv,ij(wv,ij|xk, uk, ww,k).

As can be seen, the probability distribution of the travel speed can be affected by a control
input. However, the evolution of the component ww,k cannot be affected by control, except
indirectly through xk. Since the random disturbance ww,k influences the arrival state of our
system, we have to include this random event in our state. Therefore, the augmented state
of our system is given as:

x̃k = (xk, ww,k). (4-15)

4-2-4 State Transition Function

Based on the current state, the control policy and the random disturbances, the evolution of
the main state component xk is defined in the following way:

xk+1 = fk(xk, uk, ww,k, wv,ij), (4-16)

where fk(·) is a non-linear function obtained from Algorithm 1.

Algorithm 1 function fk(xk, uk, ww,k, wv,ij)
1: τi = fc(e′

k, ek, Tk) ▷ Charging time
2: τij = dij/(v̄ij + wv,ij) ▷ Driving time
3: eij = dij ∗ fe(v̄ij + wv,ij) + τij ∗ (B0 + Bc + Bb) ▷ Energy consumption

4: if ∆ek ! = 0 then
5: τi = τi + tp

6: ek+1 = e′
k − eij ▷ Arrival energy

7: Tk+1 = fT(eij, Bc, τij, Tk, Tambient) ▷ Arrival battery temperature
8: tk+1 = tk + ww,k + τi + τij ▷ Arrival time
9: xk+1 = (j, ek+1, tk+1, Tk+1) ▷ Next state

return xk+1

The first line in Algorithm 1, calculates the charging time, denoted by τi, which is dependent
on the energy e′

k, when leaving the charging station, the energy when arriving at the charging
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station denoted by e and the battery temperature upon arrival at charging station i, denoted
by Tk. The driving time between the two charging stations is calculated in the second line.
This is done by dividing the distance dij between the two charging stations by the expected
driving speed, which is disturbed by the driving speed disturbance. The required energy to
travel between charging station i and j is given by eij.
In line 5, a charging penalty, tp, is added if charging takes place. This penalty is present
because the EV has to leave the road it is currently driving on, set up the charging process
and get back on the road again. One can then calculate the energy level upon arrival at the
next charging station with line 6. The temperature upon arrival at the next charging station
is calculated by function fT(eij, Bc, τij, Tk, Tambient). The arguments of this function include
the required energy to travel from charging station i to charging station j, the required time
to travel between these two charging stations, the energy required for the cooling or heating
of the battery, the battery temperature upon arrival at charging station i and the ambient
temperature. Moreover, the arrival time at the next station will be updated according to line
8. This concludes the calculation of the next state xk+1, given by Algorithm 1.

4-2-5 Stage Cost

The stochastic optimal control problem is finite since the system evolves over a N finite
number of stages, which are the nodes within the network. At each stage, a stage cost
gk(xk, uk, ww,k, wv,ij) is incurred. The stage cost gk(·), consists of the cost for the charging
and the cost for time, defined as:

gk(xk, uk, ww,k, wv,ij) = cp(tk) ∗ ∆ek + α
(
ww,k + τi + dij

(v̄ij + wv,ij)
)
, (4-17)

the cost for the charging process is given by the charging price at the arrival of the CS, given
by cp(tk), multiplied with the amount of energy that is charged, denoted by ∆ek. Moreover,
parameter α can change the relative importance of the charging cost to the time cost. The
influence and appliance of this parameter will be discussed in Chapter 6. The time cost is
given by the total amount of time spent between arriving at node i to arriving at node j. The
stage cost depends on both the disturbance on the driving speed wv,ij, and the disturbance
concerning the waiting time ww,k.
In the stage cost function, α can be used to set different navigation modes; α has an influence
on the relative impact of the charging cost and the elapsed time. The charging cost is given
by the first term in Eq. (4-17), which describes the cost for the charging process, given by:

ccharging = cp(tk) ∗ ∆ek, (4-18)

where ccharging stands for the charging cost. The second term of Eq. (4-17), gives the cost for
the elapsed time. The elapsed time is the time required to travel from the current charging
station to the next charging process at the next CS, measured from the moment of arrival at
the current charging station. This time cost is given by:

ctime = ww,k + τi + dij
(v̄ij + wv,ij)

. (4-19)
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Such that the stage cost is given by:

gk = ccharging + α ∗ ctime. (4-20)

4-2-6 Recursive Value Iteration

Now that the stage cost and evolution of the main state component is defined, the optimal
cost-to-go at a specific stage k and the augmented state (xk, ww,k) is defined as follows:

(4-21)J∗
k (xk, ww,k) =


min

uk∈Uk(xk,ww,k)
E

wv,ij

{
gk(xk, uk, ww,k, wv,ij)

+
∑m

w=1 pw J∗
k+1

(
fk(xk, uk, ww,k, wv,ij), w

)∣∣∣ww,k
}

, if k < N,

min
uk∈Uk(xk,ww,k)

E
wv,ij

{
gk(xk, uk, ww,k, wv,ij)

∣∣∣ww,k
}

, if k = N.

Where pw is the probability that the next disturbance ww,k+1 is selected according to proba-
bility distribution Pww,k .

4-2-7 Uncontrollable State Components

It is possible to see ww,k as a disturbance, but there is a difference: ww,k is observed before
we apply control uk, while wv,ij occurs after applying uk. Therefore, ww,k is an uncontrollable
state component. Which means that we can simplify our method by averaging out the uncon-
trollable component ww,k and we execute the DP algorithm over the controllable component
xk. To do so, let J∗

k (xk, ww,k) denote the optimal cost-to-go at stage k and state (xk, ww,k),
and define:

Ĵk(xk) = E
ww,k

{
J∗

k (xk, ww,k)|xk
}

. (4-22)

We will derive a DP algorithm that generates Ĵk(xk), starting with

Ĵk(xk) = E
ww,k

{
min

uk∈Uk(xk,ww,k)
E

wv,ij,xk+1,ww,k+1

{
gk(xk, uk, ww,k, wv,ij)

+ J∗
k+1(xk+1, ww,k+1)|xk, uk, ww,k

}∣∣∣xk

}
,

(4-23)

which can be rewritten as:

Ĵk(xk) = E
ww,k

{
min

uk∈Uk(xk,ww,k)
E

wv,ij,xk+1

{
gk(xk, uk, ww,k, wv,ij)

+ E
ww,k

{
J∗

k+1(xk+1, ww,k+1)|xk+1
}

|xk, uk, ww,k
}∣∣∣xk

}
,

(4-24)
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and finally:

Ĵk(xk) = E
ww,k

{
min

uk∈Uk(xk)
E

wv,ij

{
gk(xk, uk, ww,k, wv,ij)

+ Ĵk+1
(
fk(xk, uk, ww,k, wv,ij)

)}∣∣∣xk

}
.

(4-25)

The advantage of this equivalent DP algorithm is that is executed over a significantly reduced
state space [1]. For example, if xk takes n possible values and ww,k takes m possible values,
then DP is executed over n states instead of nm states.

4-3 Conclusions

In this chapter, the methodology of SDP has been introduced and discussed. It is well known
that DP offers a good framework for sequential decision problems [20]. Therefore, SDP is well
suited to find the optimal policy in a road network where travel speeds and charging station
availability are stochastic for an EV. The control actions for our problem will consist of (i)
the next node to travel to (ii) the amount of charging that takes place (iii) the amount of
cooling or heating of the battery is applied.

A simplification is suggested in Section 4-2-7, with respect to the uncontrollable state com-
ponent ww,k, the waiting time. With the presence of an uncontrollable state component,
the DP algorithm can be simplified considerably and executed over the state’s controllable
components.

In the next chapter, the proposed method will be verified, the simplification will be validated,
and parameter sensitivity analyses will be performed.
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Chapter 5

Parameter Sensitivity Studies

This chapter will discuss the verification of the proposed method and parameter sensitivity
analyses. The sensitivity analyses are executed to test the influence of specific parameters
on the proposed method. The verification of the proposed method is executed to check the
validity of the proposed method. First, the simulation setup will be discussed, followed by
the verification and sensitivity analyses.

5-1 Simulation Setup

In this section, the simulation setup used during the case studies will be discussed. First,
the networks used for the case studies will be described. Then, it will be discussed how the
random disturbances are modelled, followed by elaborating on the battery thermal model
specifics.

5-1-1 Case Networks

There will be three networks on which the case studies are performed. The topology of these
networks are adapted from [15] and are given in Figure 5-1, accompanied by their number
of nodes and links. As shown in the figure, the network is a directed network. The arrows
are pointing from node to node represent in which direction the car can travel. Moreover, as
can be seen in Figure 5-1, there is a difference between the networks. The first and second
networks have the same amount of links; however, the number of nodes, representing either
a single CS or a cluster of CSs, is different. The second and third networks do not have the
same amount of links but do have the same amount of nodes. For each of the networks, the
first node, denoted by node 1, is the origin node o and the last node is the destination node
d, which is node 10 in the first case and node 12 in the second and third case.
At the beginning of each simulation, the distance of the links in the network is randomly dis-
tributed between [100km, 120km]. Therefore, the distance between the origin and destination
nodes lies between 500-600 kilometres, which causes the fact that the EV will have to charge
at least once, and the trip is considered a long-haul trip.
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Figure 5-1: Three networks [15].

Table 5-1: Division of the day.

Time Interval Peak Intermediate Base
00:00-06:59 X
07:00-09:59 X
10:00-14:59 X
15:00-18:59 X
19:00-23:59 X

5-1-2 Random Disturbances

A set of probability distributions is present for the travel speed between the nodes. This set
is denoted by Pwv,k . For the creation of the travel speed distributions, a difference is made
between peak-hours, intermediate-hours, and base-hours. To be more specific, a day is split
up into time intervals assigned to the specific mean travel speed group. The division of the
daytime is given in Table 5-1.

For each of the peak-hours, intermediate-hours, and base-hours a different probability dis-
tribution is present. Intuitively, one can understand that during peak hours, the chance
of running into a traffic jam is more significant than during base hours. This is since the
traffic density is, in general, higher during peak-hours, which increases the probability of ac-
cidents happening and a higher probability of a lower average driving speed. The probability
distributions are normally distributed, which can be described by N(µ, σ2), where µ is the
mean and σ2 is the variance. Without loss of generality, let us assume that the peak-hours,
intermediate-hours, and base-hours can be described by:

N(µ, σ2) =


N(µ = 60, σ2 = 5), Peak,

N(µ = 80, σ2 = 3), Intermediate,

N(µ = 100, σ2 = 1), Base.

(5-1)

The distributions in Eq. (5-1), describe the probability for a particular mean travel speed to
occur. During the peak-, and intermediate hours there is a higher variance present, meaning
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Figure 5-2: Realisations of the Probability Density Function (PDF) of the different mean travel
speed groups.

that there is a bigger chance of having a mean travel speed that varies from the mean of the
distribution, shown in Figure 5-2.

As discussed in Section 3-2, the propulsive energy consumption on a link lij depends on the
mean travel speed, which gives a specific energy consumption B per kilometre. In this base
case study, the relation between energy consumption per driven kilometre and the mean travel
speed, presented in Figure 2-1 is used. The available charging power of each CS is set to be
equal to 50 kW, there is no spatial or temporal dependency of this charging power. This
means that the available charging power in each node, representing a CS, is the same. The
charging price, denoted by cp, depends on energy demand, hence the time of the day. The
charging price is given by:

cp(tk) =


0.42 (EUR/kW), if tk ∈ tpeak,

0.40 (EUR/kW), if tk ∈ tintermediate,

0.35 (EUR/kW), if tk ∈ tbase,

(5-2)

where tpeak, tintermediate, and tbase represent the set of all time intervals belonging to the
corresponding group and t is the arrival time at the CS. It is assumed that the charging price
is fixed during the charging period. This charging price is determined based upon the arrival
time of the EV at a CS.

As described in Section 3-3, at each node, if charging takes place, a waiting time is incurred.
One can imagine that this waiting time depends on the demand for charging at a specific time.
Therefore, similar to the mean travel speed, a division during the day is made, separating the
expected waiting times. This separation is made based on [6] and [25], who have researched the
usage of fast charger behaviour of EV drivers in Norway and The Netherlands, respectively.
A result from [25], is presented in Figure 5-3 showing the distribution of fast charge events
throughout the day in The Netherlands. Based on these studies, a differentiation is made
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Figure 5-3: Distribution of fast charger events throughout the day in The Netherlands [25].

Table 5-2: Division of the day accompanied with belonging waiting time group.

Time Interval Peak Intermediate Base
00:00-06:59 X
07:00-09:59 X
10:00-14:59 X
15:00-18:59 X
19:00-23:59 X

between peak-, intermediate-, and base hours with respect to the charging demand. The
result is shown in Table 5-2.

The waiting times are described with a half-normal distribution to avoid negative waiting
times. The half-normal distribution is a normal distribution that is folded about the origin,
that is obtained by left-truncating N(0, σ2) below zero [11]. The probability distribution for
the peak-, intermediate-, and base waiting time groups can be described by:

N(µ, σ2) =


N(µ = 0, σ2 = 0.75), Base,

N(µ = 0, σ2 = 1.50), Intermediate,

N(µ = 0, σ2 = 3.00), Peak.

(5-3)

The corresponding half-normal probability distributions to Eq. (5-3) are shown in Figure 5-4.
The waiting time at a CS is expressed in minutes, and obviously, the waiting time cannot
become negative.

5-1-3 Battery Thermal Model Specifics

As discussed in Section 3-3, the battery temperature is important for the charging efficiency.
The lower optimal battery temperature is assumed to be equal to 25 ◦C. For safety reasons,
as discussed in Section 2-3, the maximum battery temperature is assumed at a temperature
of 35 ◦C [16]. This implies that the EV will have optimal charging if the battery temperature
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Figure 5-4: Realisations of PDF of the different waiting time groups.

remains between 25 ◦C and 35 ◦C. While the maximum battery temperature is a strict con-
straint, the battery temperature is allowed to be lower than the minimum optimal battery
temperature of 25 ◦C.

For the battery thermal heating and cooling, multiple assumptions are made. It is assumed
that a maximum heating rate of 7 kW can be present for thermal heating. It is also assumed
that the efficiency from electric power to heat is equal to 100 %, since heat losses can be
captured and used to heat the battery. The resistive battery heat losses are assumed to be
equal to 4 % of the propulsive wheel power. This passive heat heats the battery while driving.
Therefore Qin in Eq. (2-10) is given by:

Qin = 0.04B + Qh, (5-4)

where Qh is the heating rate from an external source. Furthermore, it is assumed that the
battery can be cooled with the HVAC system at a maximum rate of 5 kW. The efficiency of
the electric power to cooling power is assumed to be equal to 80 %. The battery is assumed
to be only passively cooled by convection since the radiation cooling is negligible. Therefore
Qout in Eq. (2-10) is given by:

Qout = hA(T − Tambient) + Qc, (5-5)

where Qc is the cooling rate from an external source. The parameters describing the set
from which the cooling and heating rate can be chosen and the mechanism for this cooling or
heating are shown in Table 5-3.

Important battery parameters, such as the number of modules, the battery weight and specific
heat, are given in Table 5-4.
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Table 5-3: Cooling and heating mechanisms.

Heating/Cooling mechanism Rate Efficiency
High Voltage Coolant Heater 0-7(kW) 100 %

HVAC 0-5(kW) 80 %

Table 5-4: Battery parameters.

Parameter Value Description
ec 65 kWh Battery capacity of the EV
nm 12 (−) Number of modules in the battery pack
nc 6 (−) Number of cells per module
mb 450 (kg) Battery mass
Cp 1100 (J/kg/K) Specific heat capacity of the battery
A 0.28 (m2) Battery module surface area
h 4 (W/m2/K) Natural heat convection constant

Now that all essential parameters and probability distributions are known, the algorithm
verification and sensitivity analyses can be conducted. First, we will examine the algorithm’s
sensitivity concerning the charging granularity.

5-2 Verification and Sensitivity Analyses

In this section, the verification of the method and the sensitivity analyses will be performed
and discussed. The goal of the verification is to see whether the proposed method works. The
sensitivity analyses are performed to test the influence of multiple parameters and test the
method’s robustness. First, the simplification will be verified, after which the sensitivity and
influence of multiple parameters will be investigated.

5-2-1 Verification of Simplification

In Section 4-2-7, a simplification is made regarding the uncontrollable state component ww,k,
which is the waiting time disturbance. This uncontrollable state component can be averaged
out such that the DP algorithm is executed over a significantly reduced state space. With
the simplification the DP algorithm is executed over the state space of xk rather than over
the state space of xk and ww,k.

Therefore, in this section, the validity of the simplification will be verified. In order to do so,
100 simulations of network 1 will be held, both for the method with simplification and the
method without simplification. All parameters will be the same for both methods, and the
only difference is the made simplification. To show the validity of the simplification, three
simulations will be discussed to a profound extent. In these three simulations, the found
optimal policies of the method without simplification and the method with simplification will
be compared. If the simplification is valid, we expect to see no difference between the optimal
policies found by the method without simplification and the method with simplification.
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Figure 5-5: First result of the optimal policies of one simulation for the method with simplification
(cyan) and the method without simplification (red) for network 1.

Figure 5-6: Second result of the optimal policies of one simulation for the method with simpli-
fication (cyan) and the method without simplification (red) for network 1.

Figure 5-7: Third result of the optimal policies of one simulation for the method with simplifi-
cation (cyan) and the method without simplification (red) for network 1.
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Table 5-5: Mean running time of 100 simulations of the method without simplification an the
method with simplification.

Method Without simplification With simplification
Running time [s] 46.7 0.180

In Figure 5-5, Figure 5-6, and Figure 5-7 the results of three simulations with the optimal
policies found by the method without simplification, given by the red line, and by the method
with simplification, given by the cyan line are shown. In these figures, it can be seen that the
optimal policy found by the method without simplification and the method with simplification
are the same. While the found path is the same for both methods and also the location and
the amount of charge is the same. The difference, however, is present in the running time of
the algorithm. For the first simulation, the method without simplification needs 43.8 seconds
to find the optimal solution and the method with simplification needs only 0.156 seconds to
find the optimal solution. A vast difference is present because with the simplification, the
algorithm is only executed over the state space of xk and not the state space of xk and ww,k.

Therefore, it is safe to say that the method with simplification can find the same optimal policy
as the method without simplification. The fact that with the simplification, the algorithm is
only executed over the controllable components makes this method much faster in terms of
running time while finding the same policy as the method without simplification. In order
to show the difference in running time for both the methods in Table 5-5 the mean running
times for both methods for 100 simulations are shown.

To conclude, we have shown that the suggested simplification is valid. It gives the same
optimal policy but with a much lower running time. Therefore, only the method with simpli-
fication will be used in the remaining simulations.

5-2-2 Sensitivity to Charging Granularity

We will start by investigating the sensitivity of the proposed method with respect to the
charging granularity. The charging granularity has an influence on the charging decision
control set Ue(xk). This charging decision control set holds all possible charging amounts
for a given state xk. The charging granularity influences how big this set is going to be. A
high granularity means that there are a lot of possible charging amounts. If the charging
granularity becomes lower, the number of possible charging amounts decreases. The charging
granularity is determined with the parameter δe, and at state xk. If the arrival energy is equal
to ek, then the first possibility for the amount of charging besides from 0, which corresponds
to no charging, is given by:

∆ek = δe, (5-6)

the second option for the amount of charging is given by:

∆ek = 2δe, (5-7)
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Table 5-6: Parameters for simulations of the charging granularity.

Parameter i [-] e0 [kWh] t0 [hr] T0 [◦C] Tambient [◦C]
Value Node 1 65 Ω → [0, 20] 20 20

and so on. However, if the amount of charging is bigger than the amount of charging that
can be accepted before reaching a full battery capacity, given by:

∆ek > ec − ek, (5-8)

then this amount of charge will not be accepted to the charging control decision set Ue(xk).
Therefore, the amount of charge required to reach a full battery capacity is always present
in the charging control decision set, even if this is not a multiplier of δe. In terms of δe the
charging decision control set can be expressed as:

Ue(xk) = [0, δe, 2δe, ..., ec − ek]. (5-9)

One can understand that the bigger δe is, the smaller the charging control decision set Ue(xk)
will be. To investigate the influence of the charging granularity on the performance of the
proposed method, each network that is presented in Figure 5-1 will be simulated 100 times. In
each simulation, the link distances will remain the same. However, the charging granularity
will be changed. Each simulation represents the optimisation of the expected costs for each
presented charging granularity. The parameter δe that will be tested, which determines the
charging granularity’s, is given by:

δe = [5.0, 7.5, ..., 20.0] ∗ (ec/100) (kWh), (5-10)

representing 5.0 %, ..., 20 % of the battery capacity, which in this simulation setup is equal
to 65 kWh. The smallest δe is equal to 5.0 per cent, which means that the EV has to charge
at least 3.25 kWh if it decides to go for charging. Lower charges are assumed to be unlikely
and therefore not incorporated. The bigger δe becomes, the lower the charging granularity
becomes as well, the highest charging granularity is achieved for δe = 5.0.

It is to be expected that the algorithm’s running time will decrease if the charging granularity
decreases. This is because the size of state space Sk will grow if the charging granularity
becomes bigger. More states have to be checked to generate the optimal policy. The question,
however, is how the expected costs will change with the decrease of the charging granularity.
In each simulation, the same initial state is used. Parameters that determine the initial state
are the starting node, the initial SoC, initial battery temperature and time of departure. The
parameters of the starting state and the ambient temperature used during the optimisation
are summarised in Table 5-6. The initial state x0 is given by:

x0 = {i, e0, t0, T0}. (5-11)

In Figure 5-8a, the results with respect to the run time versus the parameter δe are shown.
The figure shows the mean run times of 100 simulations. As expected, we can see that the
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(a) Run time. (b) Cost.

Figure 5-8: Influence of charging granularity on run time and cost.

run time decreases if the charging granularity decreases. This holds for each of the three
networks, while the running time is different for each network. The run time comes closer to
each other if the charging granularity increases.

In Figure 5-9, the run time decrease compared to the previous run time per increase in
parameter δe is shown for all three cases. It can be seen that there is a certain non-linear
trend present that is independent of the cases, while this holds for each of the three cases.
This non-linear trend is given by the run time decrease combined with a charging granularity
decrease. Furthermore, it can be seen in Figure 5-9, that the biggest decrease in run time is
achieved when the parameter δe is changed from 5.0 % to 7.5 %. As the charging granularity
decreases, the run time decrease also decreases. Meaning that if the parameter δe keeps on
getting bigger, the run time will at a certain point stay unchanged. This can be explained
by the charging control set reaching a minimum size at a certain point. This minimum size
of the charging set is equal to:

Ue(xk) = [0, ec − ek], (5-12)

which is given by the minimum charged energy and maximum charged energy. This minimum
size of the set is reached if Eq. (5-8) holds, and no other amount of charges are accepted to
the charging control decision set. The larger δe becomes, more often will Eq. (5-8) hold and
therefore the minimum size set described in Eq. (5-12) will occur more. Therefore the run
time decreases if δe becomes bigger.

In Figure 5-8b, the mean expected cost calculated according to Eq. (4-25) for 100 simulations
for each parameter δe for each of the three cases is shown. In the figure, we can see that there
is an increase in the mean of the expected costs with the decrease of the charging granularity.
This can be explained because a more appropriate energy level for the EV at departure at a
CS can be chosen with a higher granularity. Because there are more options for the amount of
charge that is chosen, resulting in an optimal policy where there is no unnecessary charging,
i.e., charging more energy than required to reach the destination, that takes place.

Looking at the results presented in Figure 5-8, we can conclude that the charging granularity
influences the outcome of the expected cost and the running time. In the figure, it can be seen

J. den Daas Master of Science Thesis



5-2 Verification and Sensitivity Analyses 39

Figure 5-9: Percentile run time decrease compared to the parameter δe before.

that the mean outcome of the expected cost moves up if the charging granularity decreases.
This is the price to pay for a faster running time of the algorithm.

5-2-3 Sensitivity to Charging Time Penalty

If the EV charges at a CS, a charging penalty, denoted by tp, is added to the charging time.
This charging penalty is present to capture the time required to leave the main road, to drive
towards the CS, the setting up of the charging process and getting back on the main road.
The charging time, including charging penalty, is given by:

τi =
{

0, if ∆ek = 0,

τi + tp, otherwise.
(5-13)

In the base case, it is assumed that the charging penalty is the same for the whole network.
However, one can imagine that if a CS is not close to the main road, the charging penalty
could be higher compared to a CS close to the main road. We will investigate the sensitivity of
the proposed method to this charging penalty. It can be expected that if the charging penalty
increases, the amount of charging occasions decreases. In order to test this, 100 simulations
will be executed in which the charging penalty will be changed. In each simulation, the
following charging penalties will be used:

tp = [0, 2.5, ..., 20.0] (min). (5-14)

The link distances are randomly distributed between [100, 120] km in each simulation. The
initial state, the charging granularity and the ambient temperature used in these simulations
are described in Table 5-7.
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Table 5-7: Parameters for simulations of the charging time penalty sensitivity.

Parameter i [-] e0 [kWh] t0 [hr] T0 [◦C] Tambient [◦C] δe [%]
Value Node 1 65 Ω → [0, 20] 20 20 5.0

(a) Number of stops. (b) Average charged energy.

Figure 5-10: Number of stops and average charged energy for each simulated charging penalty.

In Figure 5-10a, the results for 100 simulations for each of the three cases with respect to
the number of stops are shown. In this figure, we can see that the number of stops, as
expected, decreases if the charging penalty increases. The same decreasing trend can be seen
in Figure 5-10a for each of the three cases. The fact that the number of stops decreases if the
charging penalty increases is logical. It becomes more expensive to charge since the charging
penalty becomes higher. Therefore, at some point, it is more profitable to charge longer,
which also gives more costs than to charge multiple times.

In Figure 5-10b, the results of the average energy that is charged per stop for each of the
charging penalty is shown. A logical result of the fact that there are fewer stops for higher
charging penalties is that more energy will be charged per stop. This can be seen in the
figure, while a trend opposite to the number of stops is present for the average amount of
charged energy per stop.

It can be concluded that the charging penalty has the desired influence on the proposed
method. A high charging penalty is undesirable because it gives higher costs. However, a
high charging penalty can not always be avoided, for example, if CS’s are situated far from
the main road.

5-2-4 Influence of the Battery Temperature and Ambient Temperature

The battery temperature is of importance for the expected cost. A battery temperature
above 35 ◦C is not allowed due to safety reasons. The charging time will increase severely if
the battery temperature is much below 25 ◦C at the start of the charging process. The ambient
temperature influences the energy consumption for the cabin climate control. Therefore, it
is interesting to test the sensitivity of the expected cost of the algorithm with respect to the
battery temperature and the ambient temperature.
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Table 5-8: Parameters for simulations of the temperature’s influence.

Parameter i [-] e0 [kWh] t0 [hr] δe [%]
Value Node 1 65 Ω → [0, 20] 5.0

In this thesis, we assume that two essential parameters influence the battery temperature: the
initial battery temperature and the ambient temperature. The initial battery temperature is
the battery temperature at the start of the route. This initial battery temperature can vary
because the battery temperature can adapt to the ambient temperature, in case the EV is
not used for a long time, and the battery is not charged for a while. However, the battery
temperature can also be higher than the ambient temperature if the EV has just been used
before the start of the route. The ambient temperature influences the energy consumed by
the cabin climate control. For very low and very high temperatures, there is more energy
consumed by the cabin climate control, and this has an impact on the amount of energy that
has to be charged en route, which can influence the travel cost.

In order to test the influence of the initial battery temperature and ambient temperature on
the expected cost for the EV, we will vary the ambient temperature between two extreme
cases. These extreme cases are −20 ◦C and 40 ◦C. The set containing all of the ambient
temperatures is given by:

Tambient = [−20, −10, 0, 10, 20, 30, 40] ◦C. (5-15)

In each simulation, next to changing the ambient temperature, the initial battery temperature
will be altered as well. This initial battery temperatures are given by:

T = [0, 5, 10, 15, 20, 25, 30, 35, 40] ◦C, (5-16)

corresponding to a range of different possible initial battery temperatures. Next to the initial
battery temperature, several other parameters describe the initial state of the system, given
in Table 5-8. Here the initial battery temperature is left out since this is changed in each
simulation.

Lastly, at the beginning of each simulation, the link distances are randomly distributed be-
tween [100,120] km. Now we can test the influence of the ambient temperature and the initial
battery temperature on the expected cost of the route, which also influences the optimal
route. While the expected cost is partly route-dependent, it might be beneficial to drive
another route in terms of expected cost. It can be expected that very high, and respectively
very low initial battery temperatures have higher costs than initial battery temperatures that
are close to the desired range of 25 ◦C to 35 ◦C. This is because the battery has to be heated
or cooled relatively very much with these initial battery temperatures, and more energy is
consumed due to the cabin climate control.

In Figure 5-11a, Figure 5-11b, and Figure 5-11c the results for network 1, network 2 and
network 3 are shown. The figures show a contour plot with the initial battery temperature,
ambient temperature and the expected cost, given by the colour. In the figures, we can
see a relation between the expected cost, the initial battery temperature and the ambient
temperature. This relation is present for each of the three cases.
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(a) Network 1. (b) Network 2. (c) Network 3.

Figure 5-11: Initial battery temperature and ambient temperature influence on the expected
cost for the different networks.

First, looking at the influence of the ambient temperature, shown on the Y-axis of the figures,
we can see that for each of the three cases, the highest expected costs are achieved for −20 ◦C.
This can be explained due to the high energy consumption for the cabin climate control,
causing the EV to charge more energy during the route, increasing the expected cost. For
higher ambient temperatures, less energy is consumed due to cabin climate control. Therefore,
it can be seen that the expected costs are lower for higher temperatures. However, higher
temperatures also cause the fact that the battery has to be cooled more. Therefore, the
optimal ambient temperature is 20 ◦C.

The influence of the initial battery temperature shown on the X-axis shows a relationship
between the expected cost and the initial battery temperature since the expected costs are
higher for higher and lower initial battery temperatures. This can be explained because the
battery has to be cooled or heated significantly more for these initial battery temperatures.
Therefore, initial battery temperatures close to 20 ◦C give the optimal expected cost.

It can be concluded that there is a relation between the ambient temperature, the initial
battery temperature and the expected cost. The ambient temperature and initial battery
temperature influence the expected cost. This can cause the EV to spend more energy on
the cooling or heating of the battery while driving, which in turn causes the fact that longer
or possibly also more charging events have to take place. This impacts the amount of energy
that has to be charged in total, but also on the arrival time of the EV, which both contribute
to the expected cost of an EV.

5-2-5 Trade-off between Charging Cost and Journey Time

In this section, we will investigate the influence of parameter α. This α parameter is used in
the stage cost and can be used in order to create a trade-off between the charging cost and
the journey time. As explained in Section 4-2-5, this stage cost is given by:

gk = ccharging + α ∗ ctime. (5-17)

By making α arbitrary large or small, a trade-off can be made between the charging cost or
elapsed time. These different preferences can be referred to as an Economical route preference
or the Fastest route preference. The Economical route preference minimises the charging
cost, and the fastest route preference minimises the elapsed time. In this section, it will be
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Table 5-9: Parameters for each simulation for the trade-off between charging cost and journey
time.

Parameter i [-] e0 [kWh] t0 [hr] T0 [◦C] Tambient [◦C] δe [%] tp [min]
Value Node 1 65 Ω → [0, 20] 20 20 5.0 5

investigated how this α parameter influences the solution and how this α must be chosen to
find the economical or fastest route.

In order to test the influence of α, 100 simulations will be held. In each simulation, the
parameter α will be changed. Other parameters, such as the initial battery temperature,
the ambient temperature and the link distances, will be the same during a simulation. The
link distances are randomly distributed between [100, 120] kilometres for each simulation. In
Table 5-9, the used parameters for this simulations can be found.

The set describing the parameter α in each simulation is given by:

α = 10β, (5-18)

where β = [−5, −4, ..., 5]. The results of the simulations are shown in Figure 5-12, where
Figure 5-12a shows the influence of α on the total travel time from origin to destination. In
this figure, the travel time is normalised such that the influence of parameter α between the
three cases can easily be compared. In the figure, it is clear that a trend is present for each
of the three cases. For α ≤ 10−3, the total travel time remains unchanged, meaning that for
these values of α, the economical route will be found. The same holds for α ≥ 102, where the
total travel time also stabilises on a lower value compared to smaller values of α, meaning
that these represent the fastest route.

This trend can be confirmed if we look at the total charging cost, shown in Figure 5-12b.
Again, the total charging cost is normalised for ease of comparison in this figure. The figure
shows that an opposite effect to the total travel time is present with the influence of parameter
α. For values α ≤ 10−3, the total charging cost remains unchanged, where these costs rep-
resent the minimum total charging cost. Which was the desired outcome for the Economical
route. For values α ≥ 102, the total charging cost stabilises for the highest possible cost of
the total charging cost. This cost is present for the fastest route, where the least travel time
is achieved at a higher charging cost.

From Figure 5-12, it can be concluded that a different preference of route can be achieved by
using the parameter α. Next to the economical and fastest route, a mixed route between the
two can also be achieved for 10−3 < α < 102. This Mixed route preference generates a route
that does not minimise the total drive time or the total charging cost. Resulting in a mixed
route in which the travel time and charging cost are equally important, and a route will be
found in which these two costs are balanced. The different preferences for the routes with the
accompanying value of α are shown in Table 5-10.
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(a) Normalised drive time in hours. (b) Normalised charging costs in Euro.

Figure 5-12: Normalised drive time and normalised charging costs for different values of α.

Table 5-10: Route preference with accompanied value of α.

Route preference Value of α

Economical α ≤ 10−3

Mixed 10−2 < α < 101

Fastest α ≥ 102

5-3 Conclusions

In this chapter, it is verified that the proposed method functions for our problem and the sim-
plification is valid. It was shown that the suggested simplification worked without influencing
the outcome. Also, the influence and sensitivity of multiple parameters have been tested.
Starting with the charging granularity, it can be seen that it influences both the run time
and the expected cost of the method. How smaller the charging granularity how faster the
proposed method will find a solution. However, this speed advantage comes with the price of
a less accurate solution.

Then the algorithm was used for different ambient temperatures and different initial battery
temperatures. The algorithm still functions with extreme conditions, such as −20 ◦C and
40 ◦C ambient temperature, as well as very high and low initial battery temperatures. Al-
though, the expected cost raises if more extreme temperatures are reached. In the tested
temperatures, it was shown that the optimal ambient temperature is 20 ◦C and the optimal
initial battery temperature is 20 ◦C.

It was verified that the charging penalty has the desired influence. Since a high charging
penalty is undesirable, it was shown that the number of charge events decreases for higher
charging penalties. The higher charging penalties influence the charging cost, making it more
appealing to have fewer charging events but a higher amount of charged energy.

Lastly, the influence of the parameter α was tested, which sets the trade-off between the opti-
mal cost versus time. It became clear that it is possible to set a preference for an Economical
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route, which minimises the charging cost, a Mixed route that minimises the charging cost and
the time cost, and the Fastest route, which minimises the time cost. The exact values of α
to achieve this preference are found and stated.

Now that the proposed method is verified and its robustness to multiple parameters is shown,
we can start with the case studies.
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Chapter 6

Case Studies and Results

In this chapter, four case studies are performed. First, a case study will be conducted to test
the performance of the proposed method compared with the conventional navigation systems
for EVs. After which, a case study is performed to investigate the possibility of optimising
the driving speed below the maximum allowed driving speed to improve travel costs. Then a
case study is performed to optimise the charging platform selection to see how the travel costs
can be optimised when there is a choice between charging platforms. Lastly, a case study is
performed to investigate the influence of uncertainty on travel costs. These case studies are
performed to investigate how the proposed method can be used to optimise the travel costs
of an EV and to create new insights on how to optimise the travel costs of an EV.

6-1 Case study A - Comparison with Min Algorithm

In this section, the proposed method will be compared to a Min algorithm [5], which uses
a strategy always to minimise the expected travel time and charging time. First, the sim-
ulation setup will be described. Then the Min algorithm will be explained, after which the
performance between the proposed method and the Min algorithm will be compared.

6-1-1 Simulation Setup of Case Study A

For the simulation setup, to test the performance of the algorithm compared to the Min
algorithm, the same simulation setup as in Section 5-1 will be used. This simulation setup
has reasonable assumptions to test the performance of the two algorithms. Both algorithms
should find an optimal policy with this simulation setup. Therefore the difference between
the two algorithms can become visible using the simulation setup described in Section 5-1.

Again for each of the three networks, 100 simulations will be run. The link distances are
randomly distributed between 100 and 120 kilometres in each simulation. Then in each
simulation, both the proposed method and the Min algorithm are used to find an optimal
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Table 6-1: Parameters for each comparison with Min simulation.

Parameter i [-] e0 [kWh] t0 [hr] T0 [◦C] Tambient [◦C] δe [%] tp [min]
Value Node 1 65 Ω → [0, 20] 20 20 10.0 5

policy. In order to generate more insights in the proposed method, the parameter α in Eq. (4-
17) will be set on the three possible preferences: economical, mixed and fastest.

Next to α, other parameters, such as the initial battery temperature, are important. These
parameters are given in Table 6-1.

6-1-2 Min Algorithm

Conventional navigation systems of EVs consists of algorithms that minimise the expected
driving and charging time. However, in this travel time, there is no expected waiting time
included. Therefore, simply the route with the shortest expected travel time between CSs is
selected, disregarding the fact that there might be a waiting time when arriving upon a CS.
This waiting time influences the total charging time, which influences the departure time at
a CS. As explained, the expected driving speed, and thus the expected travel time, between
two nodes depends on the departure time. Therefore, not considering the waiting time can
lead to situations where a less favourable driving speed is expected.

Moreover, the strategy regarding the charging process is mostly relatively simple for conven-
tional navigation systems. The policy is typically to charge at the closest CS when a SoC of
20 % or lower is reached. When the EV decides to charge, the departure SoC is always set to
be equal to 80 %, independent of how long the route will continue.

The Min algorithm will also use SDP with the time-dependent stochastic model of the driving
speed. The Min algorithm will not include the possibility of waiting time. Regarding the
charging strategy of the Min algorithm, to prevent an extensive extra amount of energy from
being charged to reach the destination, the Min algorithm includes the possibility to charge
the expected energy consumption plus 15 % SoC at the last nodes before the destination.
This is included to prevent the Min algorithm from charging up to 80 % SoC if, for example,
a much lower SoC is required to reach the destination. This would give results that are not
comparable to the proposed method because this may result in much longer charging times
than required. Hence, the strategy used in the Min algorithm can be summarised as follows:

• Minimise the expected driving and charging time using SDP,

• Disregard possible waiting times,

• Charge at a node if SoC<20 %,

• Charge up to 80 % SoC for k < N ,

• Charge ēij + 15 % SoC or up to 80 % SoC for k = N .

In order to compare the results of the Min algorithm with the proposed method, in the results,
the waiting times from the selected optimal policy for the Min algorithm will be included.
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In the remainder of this section, the results of the Min algorithm compared to the proposed
method will be presented and discussed.

6-1-3 Results of Case Study A

The journey time of an EV is built up by the waiting time, the charging time and the driving
time. For each of the three cases, we will discuss the results of the mean value for the waiting
time, charging time, driving time, journey time and the charging cost.

In Table 6-2, Table 6-3, and Table 6-4, the results of a 100 simulations for network 1,2, and 3
respectively, are shown. If we look at the results presented in the tables, it can be seen that the
Min algorithm expects the lowest waiting time compared to the other algorithm with different
parameterisation. Followed by the Fastest preference, for which the waiting time is slightly
higher than for the Min algorithm. The Mixed and Economical preferences have considerable
higher waiting times. The waiting time of the Economical preference is the highest. This
could be expected since this algorithm optimises the charging cost. Therefore, higher waiting
times at a CS will be accepted if the charging cost is the lowest at the respective CS. The
Mixed preference has a waiting time that is slightly lower than the Economical preference and
higher than the Fastest preference. Also, this could be expected since the Mixed preference
has a mixed objective for the charging and time costs. Interesting is the difference between
the results of the Fastest preference and the Min algorithm. Since the waiting time of the
Min algorithm is lower than the Fastest preference, even though the Min algorithm does not
consider the waiting time in its cost function. However, the Fastest preference accepts more
waiting time can be explained when we analyse the resulting charging time and the driving
time of the two algorithms.

The charging time of the different algorithms shows a somewhat similar trend as the waiting
time. The charging time of the Economical preference is the highest, which can be explained
because the objective is to minimise the charging cost. The longer charging time can, for
example, be the result of a longer charging event with a lower charging price. As explained,
charging to higher SoCs has the disadvantage of a non-linear increase in the charging time.
The Mixed preference and the Fastest preference have a comparable charging time. Again
interesting to see is the fact that the Min algorithm has the lowest charging time of all of the
algorithms.

The results of the higher waiting time and charging time of the Fastest preference compared
to the Min algorithm can be explained with the driving time. As can be seen in the tables,
the driving time for the Fastest preference is significantly lower than the other algorithms.
This can be explained by the expected driving speed, and therefore the driving time, between
two CSs, which depends on the departure time at a CS. It can be concluded that the Fastest
preference optimises this departure time, in case it goes for charging, such that the lowest
expected driving time is achieved. This also means that the Fastest preference can decide to
break up a bigger charging event, where for example, the battery is recharged from 20 % to
80 %, in two smaller charging events, such that the optimal departure time at each CS can
be achieved and thus the optimal journey time is reached.

Moreover, the Economical preference achieves the lowest charging cost. This explains the as-
sociated higher waiting time and driving time of this algorithm. What could also be expected
is that the charging cost of the Mixed preference lies between the Economical and Fastest
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Table 6-2: Results of the waiting time, charging time, driving time and journey time in minutes
and charging cost in euros, for different algorithms for 100 simulations of network 1.

Algorithm Waiting
time [min]

Charging
time [min]

Driving
time [min]

Journey
time [min]

Charging
cost [EUR]

Economical 4.00 76.52 412.16 492.68 19.04
Mixed 3.81 73.54 404.30 481.65 19.45
Fastest 3.03 73.42 398.45 474.90 20.28

Min 2.36 70.45 407.19 480.00 20.31

Table 6-3: Results of the waiting time, charging time, driving time and journey time in minutes
and charging cost in euros, for different algorithms for 100 simulations of network 2.

Algorithm Waiting
time [min]

Charging
time [min]

Driving
time [min]

Journey
time [min]

Charging
cost [EUR]

Economical 3.78 80.31 408.35 492.44 18.98
Mixed 3.61 74.61 398.99 477.21 19.66
Fastest 2.93 74.75 395.12 472.80 20.52

Min 2.30 71.91 400.81 475.02 20.33

preferences. Therefore, the Mixed preference results in more waiting, charging, and driving
time compared to the Fastest preference. The charging cost of the Min algorithm and the
Fastest preference is comparable and the highest of all algorithms. This can be explained
because these algorithms minimise the time cost and accept higher charging costs to achieve
lower time costs.

In order to show the difference between the optimal policies, i.e., the optimal route created
by the proposed method and the Min algorithm, we will elaborate on some simulations of
the networks. The difference between the policies will be shown and highlighted in these
simulations. Since the most significant differences are achieved between the Fastest and Min
algorithm, these two algorithms will be compared in the following.

We start with a simulation of network 1, for which the optimal policies for the two algorithms
are shown in Figure 6-1. In this figure, the solid cyan coloured line represents the optimal
policy created by the Fastest preference and the dashed red coloured line represents the
optimal policy created by the Min algorithm. If the optimal policy includes charging at a
particular node, the amount of charging is shown next to the node with the corresponding

Table 6-4: Results of the waiting time, charging time, driving time and journey time in minutes
and charging cost in euros, for different algorithms for 100 simulations of network 3.

Algorithm Waiting
time [min]

Charging
time [min]

Driving
time [min]

Journey
time [min]

Charging
cost [EUR]

Economical 3.58 77.79 401.54 482.92 18.64
Mixed 3.41 73.49 391.21 468.11 19.21
Fastest 2.64 73.42 386.14 462.20 19.94

Min 2.12 72.25 394.02 468.39 20.32
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Figure 6-1: Optimal policies created by Fastest preference (cyan) and Min algorithm (red), with
accompanied amount of charged energy, for one simulation of network 1.

Table 6-5: Detailed results of the waiting time, charging time, driving time and the journey time
in minutes of one simulation of network 1.

Algorithm Waiting
time [min]

Charging
time [min]

Driving
time [min]

Journey
time [min]

Fastest 1.20 51.84 319.20 372.24
Min 1.20 58.98 322.20 382.38

colour for the algorithm. It can be seen in Figure 6-1 that the optimal policy for the two
algorithms is different. The chosen route, the amount of energy to be charged, and where
this energy is charged are different.

The detailed parts of the optimal policy for this simulation are shown in Table 6-5, here we
can see that the expected waiting time is the same for both policies. The most significant
difference is achieved in the charging and driving times. These two are influencing each other.
As described before, the departure time at a CS is essential for the expected driving speed,
and thus driving time, between two CSs. Therefore, the Fastest preference decides to have a
charging event at a different CS compared to the Min algorithm, such that a more favourable
expected driving speed is achieved in another segment. Also, the amount of charged energy
is slightly different such that the charging time for the Fastest preference is lower than for
the Min algorithm. The choice of the CS and the amount of energy to be charged contribute
to a lower journey time for the Fastest preference than the Min algorithm.

In Figure 6-2, a simulation is shown for network 2 where the advantage of splitting up a single
charge event into two charging events is elaborated. In this simulation, the optimal policy of
the Fastest and Min algorithm is substantially different. The Min algorithm uses only one
very long charging event, while the Fastest preference uses two charging events to achieve the
most favourable expected driving time.

In Table 6-6, the detailed results of the simulation presented in Figure 6-2 are shown. In this
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Figure 6-2: Optimal policies created by Fastest preference (cyan) and Min algorithm (red), with
accompanied amount of charged energy, for one simulation of network 2.

Table 6-6: Detailed results of the waiting time, charging time, driving time and the journey time
in minutes of one simulation of network 2.

Algorithm Waiting
time [min]

Charging
time [min]

Driving
time [min]

Journey
time [min]

Fastest 3.60 55.20 422.40 481.2
Min 2.40 59.76 433.14 495.3

table, we can see that the journey time of the Fastest preference is significantly lower than
the Min algorithm. This difference is achieved by using two charging events instead of one.
Although more waiting and charging time is incurred, this is compensated by the driving time
such that a more optimal journey time is achieved. The amount of charged energy is nearly
the same. However, the charging penalty is incurred twice by using two charging events.
Therefore, the charging time of the Fastest preference is higher than the Min algorithm even
though the amount of total energy-charged is nearly the same.

In Figure 6-3, a very interesting simulation is shown for network 3. In this figure, it can be
seen that for the Fastest and Min algorithm, the same optimal route is selected. However,
the Fastest preference has chosen to undertake two charging events instead of one, favouring
the journey time.

In Table 6-7, the detailed results for the simulation presented in Figure 6-3 are shown. This
table shows that because the Fastest preference undergoes two charging events, a higher
waiting and charging time is present for the Fastest preference compared to the Min algorithm.
However, by optimising the departure time at the CSs, the driving time for the Fastest
preference is lower than the Min algorithm. Therefore, the optimal policy created by the
Fastest preference, which consists of two charge events, has a significant lower journey time
than the Min algorithm.
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Figure 6-3: Optimal policies created by Fastest preference (cyan) and Min algorithm (red), with
accompanied amount of charged energy, for one simulation of network 3.

Table 6-7: Detailed results of the waiting time, charging time, driving time and the journey time
in minutes of one simulation of network 3.

Algorithm Waiting
time [min]

Charging
time [min]

Driving
time [min]

Journey
time [min]

Fastest 4.80 55.20 459.24 519.24
Min 2.40 56.64 487.26 546.30
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6-1-4 Conclusions of Case Study A

In this section, the proposed method has been compared with the conventional method for
routing systems of EVs. This conventional method, referred to as the Min algorithm, consists
of a method where only the expected driving time between CSs is considered. Waiting times
are not considered, and the EV always charges up to the same SoC. Based on the results,
it can be concluded that the proposed method in this thesis achieves a better performance
than this conventional method. The Fastest preference of the proposed method achieves a
significant lower journey time than the Min algorithm.

From elaborated simulations, it can be seen that the optimal policy created by the proposed
method often prefers to split up a single charging event into multiple charging events. In this
way, the proposed method can optimise both the charging cost and the departure time at
CSs. The optimisation of this departure time at CSs incorporates the expected driving speed
to find the optimal driving time.

6-2 Case study B - Speed optimisation

In this case study, in addition to the route and the amount of charging, we will look into the
possibility of optimising the EV’s driving speed. This can be seen as speed advice for the EV
driver, which can have advantages for travel costs. With ICEV, it is conventional to drive the
maximum allowable speed, while the refuelling process of ICEV is not impacted substantially
by the energy consumption. However, multiple advantages can be achieved with driving at a
slower speed than allowed with EVs.

The driving speed impacts the battery energy consumption, which impacts the amount of
energy that has to be charged and thus the charging time and the charging cost. The driving
speed also has an impact on the battery thermal heating. Therefore, driving slower than the
speed limit can impact the rate at which the battery is heated by passive heat. This again
influences the amount of cooling of the battery that is required, which has an impact on the
battery energy consumption, the amount of energy to be charged and the charging time.

The downside of driving slower than the allowable speed, or the current driving speed of
the traffic, is that the driving time between two CSs will increase. Therefore, the energy
consumption for the cabin climate control increases since this depends on the ambient air
temperature and the driving time.

As discussed, there are advantages and disadvantages of adopting a slower driving speed than
the highway speed limit. How advantageous it is to adopt a lower driving speed and thus
accept more driving time will be discussed in this section.

6-2-1 Simulation Setup of Case Study B

For the simulation setup, almost the same simulation setup as in Section 5-1 will be used.
However, if we look at Figure 2-1, it can be seen that the energy consumption for the propulsive
power demand increases especially for speeds higher than 100 (km/h). This results from the
increased resistance, e.g., the air resistance. At speeds lower than 100 (km/h), the propulsive
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Table 6-8: Parameters for each speed optimisation simulation.

Parameter i [-] e0 [kWh] t0 [hr] T0 [◦C] δe [%] tp [min]
Value Node 1 65 Ω → [0, 20] 20 10.0 5

energy consumption shows relatively small differences. Therefore, in this simulation setup,
the maximum speed will be changed. For the maximum speeds that will be simulated, The
Netherlands will be used as an example, where the maximum speed on highways varies be-
tween 100-130 (km/h). This simulation setup will use the same distribution for the expected
speed for all possible time intervals during the day. This means that there is no difference
in the expected driving speed during rush hours and non-rush hours. The maximum speeds
that will be simulated are given by:

Vmax,ij = [100, 110, 120, 130] (km/h). (6-1)

The maximum speed will be varied to investigate if there are certain maximum speeds for
which it becomes interesting to drive a lower speed than the maximum speed. Next to driving
speed, the ambient temperature also influences the energy consumption during the driving.
The reason is that the ambient temperature determines how much energy is spent on the cabin
climate control. The cabin climate control is present during the driving time. Therefore, the
driving speed indirectly influences the amount of energy spent on the cabin climate control
since the driving speed influences the driving time. The adaption of a lower driving speed
also depends on the ambient temperature. While, for example, the energy consumption saved
by driving at a slower speed might not compensate for the extra energy spent on cabin
climate control due to the extra drive time. Therefore, the Speed Optimization (SPO) will
be conducted for different ambient temperatures, given by:

Tambient = [−20, 0, 20] ◦C. (6-2)

Since we have seen that the results are not dependent on the network presented in Section 5-1,
only network 1 will be used. This network will be simulated 50 times. The link distances are
randomly distributed between 100-120 kilometres in each simulation. Also, in each simulation,
the proposed method will create an optimal policy. The SPO is then used to optimise the
driving speed for the path found with the proposed method. The SPO thus does not optimise
the path, only the driving speed and optionally the amount of energy charged and the place
where the charging event takes place. We are particularly interested in whether the SPO can
have a positive influence on the journey time. Therefore, only the Fastest preference will be
used, with α > 102. Other parameters, such as the initial battery temperature, are given in
Table 6-8.

The fact that the speed is also optimised and the next node is already determined by the
optimal path created by the proposed method means that the control decision of the proposed
method changes. We have to incorporate the advised speed in the control decision set, and
we can leave out the choice of which node to travel next; this is given by:

uk = (∆ek, qk, va,ij), (6-3)

Master of Science Thesis J. den Daas



56 Case Studies and Results

where va,ij denotes the advised speed between CS i and CS j. This advised speed is chosen
from a set given by:

va,ij ∈ Uva,ij(xk), (6-4)

this set depends on the state xk, while the maximum advised speed is equal to the expected
driving speed. Therefore the set Uva,ij(xk) is given by:

Uva,ij(xk) = {80 ≤ δva,ij ≤ Vmax,ij} (km/h), (6-5)

where 80 (km/h) means that this is the minimum driving speed and δva,ij determines the
granularity of this set. This minimum driving speed is used for safety reasons, while one can
imagine that it is not safe to drive very slow on a highway. The maximum advised driving
speed is given by Vmax,ij, which is the maximum driving speed between CS i and CS j and is
changed in each simulation. For this case study, the granularity will be equal to 10 (km/h).
Now that the simulation setup is explained, we can discuss the results.

6-2-2 Results of Case Study B

In this section, we will discuss the results of the SPO of the EV compared to the proposed
method without SPO. We start with an ambient temperature of -20 ◦C. As can be seen
in Figure 2-2, for this ambient temperature the energy consumption for the cabin climate
control is the highest. Therefore decreasing the driving speed has a side effect of more energy
consumption due to cabin climate control. Because the driving time increases and therefore
also the required time to control the cabin climate. In Figure 6-4a, the mean journey time of
100 simulations for both the proposed method without SPO and the proposed method with
SPO is shown. In the figure, it can be seen that the journey time generally decreases if the
maximum speed increases. Also, it can be seen that the proposed method with SPO cannot
optimise the driving speed such that a lower journey time is achieved. This can be concluded
since the mean journey time for both methods is the same. The found journey time of the
method without SPO represents an upper limit for the journey time, and therefore, if SPO
is present, this can only positively influence the journey time.

In Figure 6-4b, the average driving speed during the journey of 100 simulations is shown.
The driving speed of the method without SPO is the upper limit, while this method always
uses the maximum allowable driving speed. It can, however, be seen that the method with
SPO also decides to use the maximum allowable driving speed. It is, therefore, not optimal
to adopt a lower driving speed with an ambient temperature of −20 ◦C. This would increase
the driving time and therefore also the energy consumption due to cabin climate control. The
increase in energy consumption for cabin climate control is too high compared to the decrease
in energy savings due to the propulsive power demand.

In Figure 6-5a, the mean journey times of 100 simulations with different maximum speeds at
0 ◦C ambient temperature is shown for the method with SPO and without SPO. In this figure,
it can be seen that it is beneficial to lower the driving speed below the maximum allowable
driving speed for this ambient temperature. This can be seen due to the results shown in
Figure 6-5a, where the journey time for the method with SPO is lower for speeds equal to
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(a) Mean journey times. (b) Average driving speeds.

Figure 6-4: Mean journey times and average driving speeds for different maximum speeds at an
ambient temperature of −20 ◦C.

and higher than 110 (km/h). For a maximum speed of 100 (km/h), the journey time cannot
be lowered by driving at a slower speed than the maximum allowable driving speed. This can
be explained with Figure 2-1, where it can be seen that for speeds between 50 (km/h) and
100 (km/h) the energy consumption is almost similar. Therefore, it only becomes attractive
to lower the driving speed for maximum speeds above 100 (km/h).

In Figure 6-5b, the results of the average driving speed during the journey of 100 simulations
is shown. In this figure, it becomes clear that SPO is interesting for maximum speeds of
110 (km/h) and higher. For a maximum speed of 110 (km/h), the average driving speed of
the SPO method is only slightly lower. However, looking at Figure 6-5a the gained advantage
in journey time is present. This could, for example, be the case because, with a lower average
speed, one less charging event is required to reach the destination. The EV, in that case, can
charge upon arrival at the destination.

Looking at the average of the total energy that is charged during the journey of the 100
simulations, in Figure 6-5c, we can see that the total energy that is charged with SPO is lower
than for the method without SPO. This is because lower energy consumption is achieved by
adapting to a lower driving speed than the maximum allowable driving speed. Less energy has
to be charged in total resulting in a slower charging time. If the decrease in charging time is
higher than the increase in driving time, the journey time can be lowered by adopting a lower
driving speed. In Figure 6-5d, the number of charging events for different maximum driving
speeds for the method with SPO and the method without SPO is shown. In this figure, it
can be seen that for the method with SPO, the number of charging events is generally lower
than the number of charging events for the method without SPO. This, however, does not
hold for a maximum speed of 100 (km/h).

In Figure 6-6, a bar chart is presented, which shows the charging time decrease versus the
driving time increase for the different maximum allowable driving speeds at an ambient tem-
perature of 0 ◦C. This figure clarifies the advantage of adapting to a lower driving speed.
If the decrease in charging time is more significant than the increase in driving time, speed
adaption is profitable in terms of journey time decrease.

In Figure 6-7a, the result for the journey time of 100 simulations for the method with SPO and
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(a) Mean journey times. (b) Average driving speeds.

(c) Total charged energy. (d) Number of charging events.

Figure 6-5: Mean journey time, average driving speeds, total charged energy and the number of
charging events for different maximum speeds at an ambient temperature of 0 ◦C.

Figure 6-6: Average charging time decrease versus the average driving time increase with an
ambient temperature of 0 ◦C.
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(a) Mean journey times. (b) Average driving speeds.

(c) Total charged energy. (d) Number of charging events.

Figure 6-7: Mean journey time, average driving speeds, total charged energy and the number of
charging events for different maximum speeds at an ambient temperature of 20 ◦C.

the method without SPO at an ambient temperature of 20 ◦C is shown. In this figure, it can
be seen that the journey time decreases, for both the method with SPO and for the method
without SPO, if the maximum allowable driving speed increases. However, the method with
SPO can find an optimal policy that yields a lower journey time for all of the maximum
allowable driving speeds. At an ambient temperature of 20 ◦C, the energy consumption for
the cabin climate control is the lowest. Therefore, lowering the driving speed can possibly
have the highest impact on the journey time with this ambient temperature compared to
higher or lower ambient temperatures.

In Figure 6-7b, the average driving speed for each of the maximum speeds with an ambient
temperature of 20 ◦C for the method with SPO and the method without SPO is shown. In
this figure, it can be seen that the most considerable driving speed adaption takes place for
a maximum allowable driving speed of 130 (km/h). Where the average driving speed for
110 (km/h) and 120 (km/h) is only slightly lower than the maximum allowable driving speed,
this still results in a decrease in journey time. For a maximum allowable driving speed of
100 (km/h), the method with SPO does not decide to adapt to a lower driving speed. An
adaption of a lower driving speed will not result in a higher decrease in charging time than
the increase in driving time for a maximum allowable driving speed of 100 (km/h).

In Figure 6-7c, the mean of the total charged energy during a journey for 100 simulations at
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Figure 6-8: Average charging time decrease versus the average driving time increase with an
ambient temperature of 20 ◦C.

an ambient temperature of 20 ◦C is shown. In this figure, it can be seen that the total charged
energy increases with the increase in the maximum allowable driving speed, which was to be
expected. However, the method with SPO can reduce the driving speed to achieve less total
energy to be charged for all maximum driving speeds, resulting in a lower journey time for
the method with SPO for all allowable maximum driving speeds.

In Figure 6-7d, the number of charging events for different maximum allowable driving speeds
at an ambient temperature of 20 ◦C for the method without SPO and the method with SPO
is shown. In this figure, we can see that, in general, the number of charging events increases if
the maximum allowable driving speed increases as well. However, for the method with SPO
at a maximum allowable driving speed of 130 (km/h), the number of charging events becomes
larger than two, which means that in some cases with 130 (km/h) as maximum allowable
driving speed, at least three charging events are required. With a maximum allowable driving
speed of 130 (km/h), the method with SPO can lower the number of charging events to a
maximum of two events. This is the result of SPO.

In Figure 6-8, a bar chart is presented, which shows the charging time decrease versus the
driving time increase for the different maximum allowable driving speeds at an ambient tem-
perature of 20 ◦C. This figure clarifies the advantage of adapting to a lower driving speed.
If the decrease in charging time is more significant than the increase in driving time, speed
adaption is profitable in terms of total journey time decrease. The most significant difference
is achieved for a maximum allowable driving speed of 110 (km/h).

6-2-3 Conclusions of Case Study B

In this section, the advantage of optimising the driving speed has been investigated. Adapting
to a lower driving speed can have multiple advantages. For example, driving slower generally
means less energy consumption is required for the propulsive power demand. Therefore,
driving slower has the advantage of less energy being consumed due to the propulsive power
demand and possibly less charging time is required to reach the destination. However, by
decreasing the driving speed, there is also an increase in the driving time. During the driving
time, cabin climate control is applied to assure a pleasant cabin climate for the passengers of
an EV. This means that with an increased driving time, also the energy consumption for the
cabin climate control increases. The rate of cabin climate control depends on the ambient
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temperature. Therefore, the SPO has been tested for various ambient temperatures, varying
from −20 ◦C up to 20 ◦C.

The results have shown that it can be advantageous to optimise the driving speed. While
adopting a lower driving speed can possibly lower the overall journey time. This, however,
depends on the ambient temperature. The decrease in charging time has to compensate for
the increase in driving time. However, the decrease in charging time depends on the energy
that is saved by adopting a lower driving speed. The charging time is not decreasing for very
low ambient temperatures since large proportions of energy are spent on the cabin climate
control. Therefore, for an ambient temperature of −20 ◦C, it has no positive effect to adapt
a lower driving speed than the maximum allowable driving speed. For ambient temperatures
of 0 ◦C and 20 ◦C, it does have a positive effect to adapt a lower driving speed in some
parts of the journey. This is, however, also dependent on the maximum allowable driving
speed. While for a maximum allowable driving speed of 100 (km/h), it has no positive effect
to adapt a lower driving speed. This relates to the fact that for speeds between 50 (km/h)
and 100 (km/h) the difference in energy consumption due to the propulsive power demand is
limited. Therefore, only for maximum allowable driving speeds of 110 (km/h) and higher it
is profitable, in terms of journey time, to adapt to a lower driving speed.

A side effect of optimising the driving speed is that less energy is charged in total. This can
influence the total charging cost. Therefore, optimising the driving speed affects the journey
time and possibly decreases the charging cost. Even though decreasing the charging cost is
not included in the preference of the Fastest route.

6-3 Case study C - Charging Platform Selection

In the simulation setup in Section 5-1, it is assumed that at each node, there is only one
CS present and that this CS delivers only one charging power, namely 50 kW. In reality,
however, some chargers can give a much higher charging power, such as 350 kW provided by
the Ionity charging network. Also, there is a possibility that multiple chargers are present at
a particular location with different charging powers and different charging prices.

The charging power influences the length of the charging process. Therefore, it is desirable
to optimise the choice of the type of charger to use. Also, the maximum effective charging
power depends on the SoC, which means that higher charging power is not always faster. For
example, Figure 2-3 depicts the charging profile of a Nissan Altra. In this figure, it can be seen
that for higher SoCs, the maximum effective charging power decreases. For example, at a SoC
of 80 %, a maximum charging power of approximately 26 kW can be reached. However, at a
SoC of 20 %, approximately a maximum charging power of 48 kW can be reached. Therefore,
for higher SoC, it is not advantageous to use a supercharger, which can charge with a charging
power of 300 kW, instead of a fast charger, which can charge with a charging power of 50 kW.

In this section, it will be investigated how the presence of multiple choices for a charger can
influence the travel cost. The question is whether it is always beneficial to use the charger
that gives the highest charging power to reach the destination with the minimum journey
time. Alternatively, is it, for example, cheaper to use a combination of lower charging power
and a higher charging power during a trip while achieving the same charging time. First, it
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Table 6-9: Different types of chargers with their accompanied charging power present in each
node.

Charger Type Charging Power [kW] Electricity Price Multiplier [-]
Super Charger 150 2.0
Fast Charger 50 1.0

will be explained how the simulation setup to test this is constructed. Then the results will
be presented.

6-3-1 Simulation Setup of Case Study C

For the simulation setup, almost the same simulation setup as in Section 5-1 will be used.
However, a few minor changes will be important for this case study. These will be elaborated
on in this section.
Instead of assuming that there is only one kind of charger present in each node, there will be
multiple choices of chargers at each node. This can be interpreted in multiple ways. First,
one can see this as a single CS, in a node, with multiple kinds of chargers. The second way
to see this is that a node represents multiple CSs, where each CS has its specific charger with
different charging power and price. This, however, only is a matter of perception. For this
simulation setup, it is assumed that multiple chargers are present in each node. The type
of chargers that are present in a node is given in Table 6-9, wherein the second column, the
charging power for the specific charger type can be seen.
Moreover, in Section 5-1, it is assumed that for different time intervals namely tpeak, tintermediate
and tbase different electricity prices are present. These are given by:

cp(tk) =


0.42 (EUR/kW), if tk ∈ tpeak,

0.40 (EUR/kW), if tk ∈ tintermediate,

0.35 (EUR/kW), if tk ∈ tbase,

(6-6)

However, the electricity prices in Eq. (6-6) are on the basis that only one charger is present
with 50 kW charging power. In this simulation setup, it is assumed that for the usage of a
different charger, a different price is present. Therefore, the price given in Eq. (6-6) is mul-
tiplied with a particular factor for each specific charger. In Table 6-9, the specific electricity
price multiplier for each charger can be seen in the third column.
Since the ambient temperature influences the energy consumption during driving, this can
influence the number of charging events and the amount of energy charged. The ambient
temperature thus also influences the charger selection. Therefore, the experiment will be
conducted for different ambient temperatures, given by:

Tambient = [−20, 0, 20] ◦C. (6-7)

In order to gain more insight, the Economical, Mixed and Fastest route preference will be used
in the simulations. Next to α, other parameters are of interest for the simulations, such as
the initial battery temperature and the ambient temperature, which are given in Table 6-10.
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Table 6-10: Parameters for each CS selection simulation.

Parameter i [-] e0 [kWh] t0 [hr] T0 [◦C] δe [%] tp [min]
Value Node 1 65 Ω → [0, 20] 20 10.0 5

Table 6-11: Results of the waiting time, charging time, driving time and journey time in minutes
and charging cost in euros, for different algorithms for 100 simulations of network 1 with CS
selection with an ambient temperature of 20 ◦C.

Algorithm Waiting
time [min]

Charging
time [min]

Driving
time [min]

Journey
time [min]

Charging
cost [EUR]

Economical 2.81 80.53 412.59 495.93 13.98
Mixed 2.89 55.64 393.02 451.55 23.67
Fastest 2.90 45.41 394.34 442.65 29.30

6-3-2 Results of Case Study C

In Table 6-11, the mean waiting time, charging time, driving time, journey time and the
charging cost for 100 simulations of network 1 are given for the Economical, Mixed and
Fastest route preferences with an ambient temperature of 20 ◦C. This table shows that the
journey time of the Economical route preference, as expected, is the highest. This is because
this preference optimises the charging cost. Therefore, the charging cost is the lowest for
the Economical route preference. On the other hand, the Fastest preference has the highest
charging cost. This is the result of the preference of the algorithm, while it will optimise
the time cost and the incurred charging costs are not of importance. It is, therefore, not
surprising that the Fastest route preference finds the lowest journey time of all the algorithm
preferences. Not surprisingly, the Mixed route preference has a journey time between the
Economical and Fastest route preferences. The same holds for the charging cost.

In Figure 6-9, for each of the algorithms, the percentage of the type of charger that is used in
the optimal policy is shown for an ambient temperature of 20 ◦C. The figure shows that the
Economical route preference only uses the fast charger and never uses the supercharger. This
was expected because the supercharger is twice as expensive as the fast charger. Therefore,
the Economical route preference will always choose the cheapest charger, no matter how much
extra time is incurred by making this choice. The Mixed route preference uses both the fast
charger and the supercharger, but mostly the supercharger. Interesting to see is that the
Fastest route preference does not solely use the supercharger. In fact, in some cases, the
Fastest route preference uses both the fast charger and supercharger in an optimal policy.
For example, this may happen when a charge event has to be undertaken at high SoC. In this
case, the fast charger can give the same charging power as the supercharger and therefore,
the Fastest route preference can use the fast charger without gaining more charging time than
with the supercharger.

In Table 6-12, the mean waiting time, charging time, driving time, journey time and the
charging cost for 100 simulations of network 1 are given for the Economical, Mixed and
Fastest route preferences with an ambient temperature of 0 ◦C. In this table, the influence
of the ambient temperature can be seen. Compared with Table 6-11, it can be seen that the
charging time is much higher compared to the charging time for an ambient temperature of
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Figure 6-9: Percentage of type of charger that is used by the preference setting of the algorithm
for 100 simulations of network 1 with an ambient temperature of 20 ◦C.

Table 6-12: Results of the waiting time, charging time, driving time and journey time in minutes
and charging cost in euros, for different algorithms for 100 simulations of network 1 with CS
selection with an ambient temperature of 0 ◦C.

Algorithm Waiting
time [min]

Charging
time [min]

Driving
time [min]

Journey
time [min]

Charging
cost [EUR]

Economical 3.91 106.97 415.01 525.88 18.96
Mixed 3.91 79.73 390.18 473.83 29.43
Fastest 3.95 59.48 396.03 459.46 39.06

20 ◦C. The reason behind it is that the ambient temperature influences the energy consumed
due to the cabin climate control. The energy consumed due to this cabin climate control is
higher for 0 ◦C ambient temperature than for 20 ◦C ambient temperature. Therefore, more
energy has to be charged to reach the destination. This results in the charging time to
increases severely with an ambient temperature of 0 ◦C compared to an ambient temperature
of 20 ◦C.

In general, the same results as for the ambient temperature of 20 ◦C ambient temperature hold.
The Fastest route preference can find the lowest journey time, with the highest charging cost.
The Mixed route preference has a journey time between the Fastest and Economical route
preference, the same holds for the charging cost. However, the Economical route preference
has the lowest charging cost and the highest journey time.

In Figure 6-10, for each of the algorithm preferences, the percentage of the type of charger
that is used in the optimal policy for an ambient temperature of 0 ◦C is shown. If this outcome
is compared to the results shown in Figure 6-9, the influence of the ambient temperature con-
cerning the charger selection can be seen. The Economical route preference, as expected, only
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Figure 6-10: Percentage of type of charger that is used by the preference setting of the algorithm
for 100 simulations of network 1 with an ambient temperature of 0 ◦C.

uses the fast charger since this yields the lowest charging cost. The Mixed route preference
uses a mixed charger selection between the fast charger and the supercharger. There is still
a preference for the supercharger. However, the fast charger now has a higher percentage of
usage compared to an ambient temperature of 20 ◦C. This can be explained because more
charging is required with an ambient temperature of 0 ◦C. However, the driving time is not
increasing. This means that the charging time and cost are increasing, but the driving time
is not. The objective of the Mixed route preference is to minimise the combination of the
charging cost and the time cost. The charging cost will rise in a high proportion if the same
percentage of super chargers is used as in Figure 6-9. Therefore, the Mixed route preference
with an ambient temperature of 0 ◦C decides to use the fast charger more often.

The results in Figure 6-10 also show that for the Fastest route preference, the share of fast
charger usage at an ambient temperature of 0 ◦C stays relatively the same compared to the
results for an ambient temperature of 20 ◦C. It is, therefore, not always optimal to only use
superchargers. This can, of course, be dependent on the SoC, while at higher SoCs, a higher
charging power does not mean that this charging power can be used efficiently. Therefore,
charging at high SoCs with superchargers does not speed up the charging process but does
increase the charging cost.

In Table 6-13, the mean waiting time, charging time, driving time, journey time and the
charging cost for 100 simulations of network 1 are given for the Economical, Mixed and Fastest
route preferences with an ambient temperature of −20 ◦C. In this table, it can be seen that
an ambient temperature of −20 ◦C has an even more significant impact on the travel cost.
The charging time is higher because more energy is consumed for the cabin climate control,
influencing the charging cost. More charging events are required, resulting in more waiting
time. The general results are in line with the results for an ambient temperature of 20 ◦C
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Table 6-13: Results of the waiting time, charging time, driving time and journey time in minutes
and charging cost in euros, for different algorithms for 100 simulations of network 1 with CS
selection with an ambient temperature of −20 ◦C.

Algorithm Waiting
time [min]

Charging
time [min]

Driving
time [min]

Journey
time [min]

Charging
cost [EUR]

Economical 4.16 133.93 410.21 548.31 23.89
Mixed 4.24 97.26 387.77 489.27 37.61
Fastest 4.46 74.84 390.91 470.21 49.89

and 0 ◦C.

If we look at the percentages of the type of charger that is used in the optimal policy for
different preferences and an ambient temperature of −20 ◦C, it can be seen that a similar
trend is present as for the ambient temperature of 0 ◦C. For the Economical route preference,
the fast charger is solely used to minimise the charging cost. The Mixed route preference
shows a mixed preference between the fast charger and the supercharger. However, with an
overall preference for the supercharger. If the percentage of the Mixed route preference is
compared to an ambient temperature of 20 ◦C, it can be seen that the share of fast charger
usage is higher. This, again, has to do with the fact that the charging time and charging
cost increase while the driving time remains the same. Therefore, the fast charger has to be
chosen to balance the time cost and the charging cost more often.

For the Fastest route preference, it can be seen that the share of fast charger usage compared
to the results shown in Figure 6-9 for an ambient temperature of 20 ◦C has become lower.
Using the fast charger more frequently to achieve the lowest journey time with a lower ambient
temperature becomes more interesting. This is most likely the result of the fact that more
energy consumption takes place due to cabin climate control. This leads to more energy to
be charged and possibly more charging events. These charging events most likely occur for
high SoCs, and therefore, the fast charger can be used instead of the supercharger.

6-3-3 Conclusions of Case Study C

In this section, the influence of different chargers that can be present in a CS is investigated.
In general, chargers with higher charging power are more expensive to use. However, the
charging time can be reduced significantly due to the higher charging power. This has its
restrictions, though, while for higher SoCs, a higher charging power does not necessarily
lead to lower charging times. Therefore, this section investigated the different algorithm
preferences, namely: Economical, Mixed and Fastest, which chargers the preference would
use in their optimal policy. To test this, it was assumed that two chargers were present
in each node; a fast charger and a supercharger. The fast charger can deliver a charging
power of 50 kW, while the supercharger can deliver a charging power of 150 kW. However,
the supercharger is twice as expensive as the fast charger. Since the ambient temperature
has a significant influence on the energy consumption, and therefore also the charging events,
the simulations were executed for different ambient temperatures, ranging from −20 ◦C up to
20 ◦C.

The results were partly predictable. For example, the Economical route preference only uses
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Figure 6-11: Percentage of type of charger that is used by the preference setting of the algorithm
for 100 simulations of network 1 with an ambient temperature of −20 ◦C.

the fast charger, resulting in the lowest charging cost. That the charging time of the Econom-
ical route preference is much higher than the Mixed, and the Fastest route preference is not
essential for the Economical route preference. Not surprisingly, the Mixed route preference
uses a mixed charger preference, having a clear preference for the supercharger. However, the
relative usage of the fast charger and the supercharger depends on the ambient temperature.
While for lower ambient temperatures than 20 ◦C, the share of fast charger usage increases
compared to an ambient temperature of 20 ◦C. Due to the lower ambient temperatures, the
energy consumption for the cabin climate control increases. Therefore, the charging time
and cost increase while the driving time remains the same. This results in more fast charger
usage because the objective of the Mixed route preference is to balance the time cost and the
charging cost.

Interesting are the results for the Fastest route preference. From the results, it can be seen
that the Fastest route preference sometimes prefers the fast charger, while most likely, the
charge events take place for high SoCs where the fast charger and the supercharger will result
in the same charging time. However, using a supercharger gives much higher charging costs.

6-4 Case study D - Uncertainty

Due to the uncertainties in the driving speed and the waiting times, we calculate the expected
value of the cost function. Furthermore, it was also assumed that the charging power at a
CS could consistently deliver the stated charging power, which was, for example, 50 kW.
However, this is an assumption, while in reality, there can be local grid capacity limitations
causing the charging power delivered by the CS to be lowered than expected.
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Figure 6-12: Network with motorway (cyan) and provincial-road (red).

In this case study, it will be investigated to which extent a certain faster path with higher
uncertainty is favoured above a slower path with lower uncertainty. This can be seen as
comparing a motorway with a provincial road where the average speed is higher than on
the provincial road. However, the motorway is typically more sensitive to disruptions. In
the following, the simulation setup will be discussed, followed by the results and conclusions
drawn from the results.

6-4-1 Simulation Setup of Case Study D

The simulation setup will differ from the simulation setup described in Section 5-1. The
biggest differences are present in the network, the probability distribution of the driving
speed and the way the charging time is calculated. In the following, these changes will be
discussed.

For this case study, a new network will be used. This network represents two possibilities:
taking the motorway or using provincial roads to reach the destination from the origin. The
network is given in Figure 6-12, here the cyan line represents the motorway, and the red line
represents the provincial roads. The link distances in the network will all be equal to 120
km. In this way, the distance using the motorway from origin to destination is equal to the
distance using the provincial roads from origin to destination. Moreover, it is assumed that
the EV can only charge at nodes 3, 5, 7 for the provincial roads and nodes 4, 6, 8 for the
motorway.

There are two essential differences between the motorway and the provincial roads. These are
the average driving speed and the charging power that the CSs can deliver. For the driving
speed, it is assumed that the motorway has an average driving speed of 90 (km/h); however,
there is a high standard deviation attached to this average driving speed. This standard
deviation will be increased during the simulations. The standard deviations for the motorway
that will be used are given by:
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σ2
v,MW = [10, 15, 20] (km/h). (6-8)

Therefore, there are three probability distributions that will be simulated one by one for the
average driving speed on the motorway, which can be described by:

Nv,MW(µ, σ2) = N

(
µ = 90, σ2 = σ2

v,MW

)
, (6-9)

for σ2
v,MW ∈ Eq. (6-8).

Having a higher standard deviation means higher uncertainties attached to the expected
driving speed on the motorway. This could, for example, mean that there is a chance of
having a really low average driving speed, resulting in a very high driving time. For the
average driving speed on the provincial roads, it is assumed that the mean average driving
speed is equal to 80 (km/h), with a very low standard deviation attached to it, which means
that the uncertainties on the provincial roads are lower. However, in general, the driving time
using provincial roads will be higher than the motorways due to the difference in the mean
speed. The probability distribution for the provincial-roads can be described as follows:

Nv,PR(µ, σ2) = N(µ = 80, σ2 = 1). (6-10)

The second difference between the motorway and the provincial roads is the power that can be
delivered at a CS and the waiting time that can be present. This case study assumes that CSs
at motorways will have a higher maximum charging power available. However, the chance of
local grid limitations and higher waiting times at CSs on motorways is higher compared to the
provincial roads. Therefore, the high standard deviation of the available charging power will
manifest both the limitations on the grid level and the possible waiting times. Lower available
charging power results in a higher charging time. This symbolises local grid limitations or
high waiting times, increasing the charging time. To model this in the simulations, it is
assumed that a mean charging power of 100 kW is available on the motorways. The standard
deviation of the probability distribution of the available charging power will be altered during
the simulations. The standard deviations of the available charging power are given by:

σ2
pcs,MW = [25, 30, 35, 40, 45, 50] kW. (6-11)

The probability distributions that will be simulated one by one, describing the available power
at the CS on motorways, can be described as follows:

Npcs,MW (µ, σ2) = N

(
µ = 100, σ2 = σ2

pcs,MW

)
, (6-12)

for σ2
pcs,MW ∈ Eq. (6-11).

The high standard deviations present in the available charging power at CSs on the motor-
ways mean a big distribution on the possible charging times that can occur. It is assumed
that negative charging powers cannot occur. Therefore, negative parts of the probability dis-
tributions are assumed to be equal to zero. The available charging power is lower than on the
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Table 6-14: Parameters for each uncertainty simulation.

Parameter i [-] e0 [kWh] t0 [hr] T0 [◦C] δe [%] tp [min]
Value Node 1 65 Ω → [0, 20] 20 5.0 5

motorways for the provincial roads. However, the standard deviation in this available charg-
ing power is assumed to be much lower. This means that the chance of local grid limitations
or waiting times at CSs on provincial roads is minimal. Therefore, it is assumed that the
probability distribution describing the available charging power at CSs on provincial-roads is
given by:

Npcs,PR(µ, σ2) = N(µ = 50, σ2 = 1). (6-13)

The charging time is not a deterministic value anymore. The expected charging time depends
on the probability distribution for the charging power, for either the provincial-road or the
motorway. Therefore, the charging time is given by:

τi = ∆ek
E{Pcs}

, (6-14)

where E{Pcs} is the expected charging power of a realisation from the present charging power
probability distribution given in Eq. (6-12) and Eq. (6-13). In other words, to summarise
the case study, the provincial road represents a slower route with lower uncertainty. The
motorway represents a fast route but with higher uncertainty. In this case study, we will
investigate with how much uncertainty the route with low uncertainty will be preferred over
the route with high uncertainty. Other important parameters, such as the initial battery
temperature, are given in Table 6-14.

In the simulations, the Fastest route preference of α will be used. Since we have seen that
the ambient temperature has a big influence on the energy consumption of the EV and with
this on the optimal policy that is created. The simulations will be held for various ambient
temperatures, which are given by:

Tambient = [−20, 0, 20] ◦C. (6-15)

For each ambient temperature, 100 simulations are run. In the remainder of this section, the
results of the simulations will be discussed. After which, conclusions from the results will be
presented.

6-4-2 Results of Case Study D

In Figure 6-13, the mean of the expected costs, with respect to the standard deviation of the
charging power, of the provincial-road and the motorway, with different standard deviations of
the driving speed at an ambient temperature of 20 ◦C are shown. As can be seen in the figure,
the expected cost of the provincial road remains the same while the standard deviation of the
charging power of the motorway increases. This was expected since the standard deviation of
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Figure 6-13: Results of the expected costs of the provincial-roads and the motorway, with
different standard deviations of the driving speed for an ambient temperature of 20 ◦C.

the charging power on the motorway has no effect on the charging power at the CSs on the
provincial road. The expected costs of the motorway are increasing with the increase of the
standard deviation of the charging power; this is the result of much higher charging times due
to local grid limitations or lower charging powers. If the standard deviation of the driving
speed also increases, the motorway’s expected costs are increased. This can result from much
higher driving times or the possibility of running out of energy due to higher driving speeds
than expected.

At the moment, the expected costs of the motorway cross the line of the expected costs of
the provincial road, then it becomes favourable to choose the provincial road instead of the
motorway. In Figure 6-13, it can be seen that this point differs for the present standard
deviation of the driving speed. In Table 6-15, the different cross over points for the different
driving speed standard deviations is shown. It can be seen that the cross over point decreases
if the driving speed standard deviation increases.

In Figure 6-14, the mean of the expected costs, with respect to the standard deviation of the
charging power, of the provincial-road and the motorway, with different standard deviations
of the driving speed at an ambient temperature of 0 ◦C are shown. Compared with the case
for an ambient temperature of 20 ◦C, it can be seen that for an ambient temperature of 0 ◦C,
the expected costs for the provincial-road is higher. This can be explained due to the energy
consumption associated with cabin climate control. As explained in Section 5-2-4, this energy
consumption is higher for certain ambient temperatures. Resulting in higher expected costs.
The mean driving speed on the provincial road is lower than on the motorway, therefore
compared to the motorway, the driving time on the provincial road is higher. This results in
higher energy consumption, due to the cabin climate control, on the provincial road compared
to the motorway. This causes the fact that compared to an ambient temperature of 20 ◦C, the
expected costs for the provincial-road have risen substantially. This fact causes the cross over
points to shift as well, which means it becomes only favourable for higher charging standard
deviations to use to provincial-road instead of the motorway.
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Figure 6-14: Results of the expected costs of the provincial-roads (PR) and the motorway (MW),
with different standard deviations of the driving speed for an ambient temperature of 0 ◦C.

In Table 6-15, the cross over points for an ambient temperature of 0 ◦C are shown. Comparing
Table 6-15 and Table 6-15, it is clear that the ambient temperature has a big influence. Since
the cross over points are a lot closer to each other right now. This results from the expected
cost of the provincial road that has increased. While at the same time, for high charging
standard deviation, the expected costs for the different standard deviations in the driving
speed are closer to each other. Therefore the cross over points are closer to each other as well
as higher compared to the cross over point in Table 6-15. Meaning that much uncertainty on
the motorway is required before the provincial road is preferred over the motorway.

In Figure 6-15, the mean of the expected costs, with respect to the standard deviation of the
charging power, of the provincial-road and the motorway, with different standard deviations
of the driving speed at an ambient temperature of −20 ◦C are shown. Again, in this figure,
it can be seen that the expected costs for the provincial-road have become higher compared
to the results presented in Figure 6-13 and Figure 6-14. This results from even more energy
consumption for the cabin climate control due to the lower ambient temperature. The effect
on the higher energy consumption due to the cabin climate control can also be seen in the
expected costs for the motorway for all of the three driving speed standard deviations. How-
ever, because the speed is higher on the motorway, the higher energy consumption has less
effect on the expected costs.

In Table 6-15, the cross over points for an ambient temperature of −20 ◦C are shown. If these
cross over points are compared to the cross over points for an ambient temperature of 0 ◦C,
shown in Table 6-15, it can be seen that the cross over points have moved up a bit more.
However, the difference is minimal. The biggest difference is present if the cross over points
are compared to an ambient temperature of 20 ◦C.
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Figure 6-15: Results of the expected costs of the provincial-roads (PR) and the motorway (MW),
with different standard deviations of the driving speed for an ambient temperature of −20 ◦C.

Table 6-15: Cross over point, in terms of the charging standard deviation, when the provincial-
road is preferred over the motorway at an ambient temperature of 20 ◦C, 0 ◦C and −20 ◦C.

Driving speed standard deviation Cross over point [kW]
20 ◦C 0 ◦C −20 ◦C

σ2
v,MW = 10 46.0 48.0 49.0

σ2
v,MW = 15 42.5 47.5 48.5

σ2
v,MW = 20 34.0 46.0 47.0
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6-4-3 Conclusions of Case Study D

The nature of our problem includes uncertainties. However, in previous case studies, the
uncertainty was not altered, and there is no insight, this far, how this uncertainty influences
the optimal policy. The question is how high the uncertainty can become before a fast
route with high uncertainty is not favoured over a slower route with lower uncertainty. The
uncertainty can cause the EV to have a much higher driving time than expected or arrive at
a CS while the available charging power is much lower than expected.

Therefore, in this case study, the amount of uncertainty required to favour a more reliable
but slower route over a faster route with more uncertainty is investigated. This amount of
uncertainty is obtained for various ambient temperatures, while we have seen in previous case
studies that the ambient temperature significantly influences energy consumption. Therefore,
different ambient temperatures can have different optimal policies as a result.

The results show that a substantial amount of uncertainty in the fast route is required before
the slower route with low uncertainties is favoured as the optimal solution. The probabilities
of having a higher driving time or very high charging times become relevant only at these
higher standard deviations.

The ambient temperature significantly influences the amount of charging standard deviation
that has to take place to favour the slower route with low uncertainties above the faster route
with high uncertainties. This is a result of the fact that on the slower route, the driving time,
and therefore the amount of time that cabin climate control takes place, is higher than on the
faster route. This impacts the expected costs of the route on the provincial-road, because it
causes these expected costs to become higher. The effect of the ambient temperature is also
visible on the route on the motorway. However, this impact is not as significant as on the
provincial-road route. The ambient temperature has relatively more impact on the provincial
road than on the motorway. It is increasing the expected cost for the provincial road more
than the expected cost for the motorway. This causes the cross-over points, where choosing
the provincial road above the motorway becomes favourable, to shift to higher values for low
ambient temperatures.

6-5 Conclusions

In this chapter, the proposed method has been used to investigate possibilities to reduce the
travel costs of EVs by conducting four case studies.

In the first case study, the proposed method was compared with the conventional way to
optimise the travel costs of EVs. From the results, it became clear that the proposed method,
with the Fastest route preference, performs better in finding a route with a lower journey
time. This does not necessarily mean that the proposed method has lower waiting times,
charging times, and charging costs. In general, it was seen that the proposed method suggests
optimal policies with higher waiting times and comparable charging times. The improvement
in journey time was achieved by a much lower driving time. This driving time depends on
the departure time at a CS, which the proposed method can optimise. The Economical route
preference can find a route that has a much lower charging cost than the conventional EV
navigation systems. This is, however, at the expense of a much higher journey time.
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In the second case study, the possibility of optimising the driving speed was explored. Low-
ering the driving speed has several advantages, as well as disadvantages. The advantage
of lowering the driving speed is that the energy consumption for the propulsive power will
also decrease. However, this does not hold anymore for certain speeds, or the difference is
relatively small. Also, by lowering the driving speed, the battery heats itself less due to
less energy losses. This can cause the fact that less energy has to be spent on heating the
battery. Lower energy consumption means that, in potential, less energy has to be charged
at a CS, which means lower charging times, which can benefit the travel cost. However, by
lowering the driving speed, the driving time increases. With the increase of the driving time,
the energy spent on the cabin climate control increases, nullifying the energy savings due
to lower driving speed. From the results, it is shown that for an ambient temperature of
0 ◦C and 20 ◦C, the journey time can be decreased if the driving speed is lowered below the
maximum allowable driving speed. This only holds if the maximum allowable driving speed
is 110 (km/h) or higher, with a maximum of 130 (km/h).

In the third case study, the possibility of selecting a charger with different quantities at a
CS was investigated. The different chargers offer different charging powers. However, for
higher charging powers, more charging costs are present. In the case study, a fast charger
with 50 kW charging power and a supercharger with 150 kW charging power was used. The
supercharger was set to be twice as expensive as the fast charger. The results showed that
using the supercharger is not always faster, even for the Fastest route preference. This has to
do with the fact that the SoC can limit the maximum effective charging power. Therefore, it
also depends on the SoC which charger type is optimal.

The fourth case study investigated the amount of uncertainty required to favour a slow route
with low uncertainty over a fast route with high uncertainty. The uncertainty present in, e.g.,
the driving speed causes a significant deviation of the actual driving time from the correspond-
ing expected value. The fourth case study measured how high this uncertainty has to become
before a solution with high reliability is preferred over a solution with high uncertainties.
From the results, it became clear that this also depends on the ambient temperature, while
the ambient temperature influences the energy consumed due to the cabin climate control. In
general, it can be concluded that a relatively high uncertainty is required to favour the slower
and more reliable route above the fast and uncertain route.

Master of Science Thesis J. den Daas



76 Case Studies and Results

J. den Daas Master of Science Thesis



Chapter 7

Conclusions and Discussion

In this thesis, SDP is used to optimise the travel cost of an EV on long-haul trips when
there exists uncertainty in waiting time and driving speed. SDP offers a good methodology
to optimise the policy for EVs moving through a network with stochastic travel costs present.
In the thesis, a simplification is used to improve the computation time of the SDP algorithm
while having the same optimal policy as a result. In four extensive simulation-based case
studies, the possibility of optimising the travel cost of an EV using the proposed method
have been investigated. In this chapter, the research questions are answered, conclusions are
drawn, and recommendations for future research are given.

7-1 Conclusions

The main research question of the thesis is:

How can the travel cost of an Electric Vehicle on long haul trips, with historical charging
occupancy information and historical average road network travel speeds, be minimised?

To answer the main research question, the two sub-questions will be answered first:

1. What factors influence the travel costs of the Electric Vehicle on long-haul trips?
Many aspects influence the travel costs of an EV on long-haul trips. First, there is the
edge cost, which consists of the driving time and the energy consumption. The driving
time is dependent on the driving speed and the link distance. The driving speed is
modelled using a probabilistic approach in this thesis. By modelling the driving speed
in a probabilistic way, the chance of disturbances in the traffic is incorporated in the
probabilistic model.
The energy consumption of an EV is also an important component. Several factors
influence this energy consumption.
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(a) The driving speed and driving distance. In general it holds that the higher the
driving speed, the higher the energy consumption due to the propulsive power
demand. Also, the longer a driving segment, the more energy has to be used to
travel this segment.

(b) Active cooling or heating of the battery. The battery temperature is important for
safety and charging efficiency. The battery temperature cannot become too high
while driving since this could impose danger to the passengers. Furthermore, the
battery temperature is of importance during the charging process. Low battery
temperatures negatively influence the charging efficiency and should therefore be
avoided upon arrival at a charging station.

(c) The ambient temperature. Due to the fact that the cabin climate has to be pleasant
for the passengers. There is cooling or heating required for the cabin based on the
ambient temperature. This energy consumption due to the cabin climate control
can significantly influence the overall energy consumption while driving.

(d) The base auxiliary load. A certain amount of energy is required for all of the
electronics on board of an EV. The longer the driving time, the more energy is
spent on the auxiliary load.

The node cost significantly influences the total travel cost of an EV, while the node cost
consists of the waiting time, the charging time, and the charging cost. In this thesis,
the waiting times at a CS have been modelled using a time-dependent stochastic model.
The waiting times can influence the travel cost, due to that EVs cannot start directly
with charging upon arrival at a CS. Therefore, waiting times can influence travel costs
without achieving any advantage.
The charging time has a very substantial impact on the travel cost. First, the EV will
have to leave the main road to enter the CS. This CS could be next to the main road
or, possibly the EV has to drive a substantial amount of time to reach the CS. After the
charging process, the EV has to enter the main road again. Therefore, if an EV decides
to have a charging event, travel costs are already incurred without having gained any
SoC. Then, there is the charging event itself. The charging time is dependent on the
amount of energy to be charged, the available charging power, the SoC, and the battery
temperature. The amount of energy influences the charging time; however if the same
amount of energy is charged, this does not necessarily imply that the same amount of
charging time is incurred. The SoC can limit the maximum effective charging power
that can be achieved. While the battery temperature below certain temperatures can
negatively affect the charging time as well. Another factor that influences the charging
time is the charging power. In general, higher charging power gives faster charging
times; however, the SoC can limit this charging power.
Lastly, there is the charging cost. This corresponds to the cost to be paid for the
received service and energy. The charging cost is dependent on the type of charger that
is used. Higher charging power chargers can be more expensive than lower charging
power chargers and the amount of energy that is charged, while mostly there is a price
to pay per kW. A time-dependent charging price model was used in this thesis to capture
price dynamics during the day.
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2. How can Stochastic Dynamic Programming be used in order to optimise the travel costs
of an Electric Vehicle?
In the first case study, the proposed method was compared to one of the conventional
methods for the route guidance of EVs. This case study showed that the proposed
method can decrease the travel cost compared to the conventional method. A lower
journey time can be achieved if one prefers the Fastest route. However, a more eco-
nomical route, saving charging cost, can be achieved than the conventional method by
using an Economical route preference.
In the second case study, the possibility of optimising the driving speed below the
maximum allowable driving speed was exploited. The results showed promising insights.
It was observed in some situations that a lower journey time can be achieved if a lower
driving speed than the maximum allowable driving speed is adapted. The driving speed
influences energy consumption, and by adapting to a lower driving speed, the energy
consumption can be reduced. This relates to the fact that by finding a good combination
of the driving speed and the arrival time, either the charging time decreases or fewer
charging events are required. If the decrease in charging time is bigger than the increase
in driving time, it is profitable to adapt to a lower driving speed. From the results,
it is also became clear that adapting to a lower driving speed is only appealing for
certain ambient temperatures. There is high energy consumption for very low ambient
temperatures due to the cabin climate control. Hence, it may not be appealing to lower
the driving speed since energy consumption would only increase instead of decrease.
In the third case study, the model incorporated the possibility of choosing between two
types of chargers: a super charger with a very high charging power and high charging
cost and a fast charger with medium charging power and lower charging cost. The fact
that the effective charging power depends on both the temperature and the SoC results
in the fact that the super charger is not always the faster in terms of charging time.
This is also what was seen in the result. It was observed that for the Fastest route
preference, the fast charger was used in some cases. This means that, in some cases, it
is at least as fast to use the fast charger instead of the super charger.
In the fourth case, the sensitivity to uncertainty in the driving speed and the charging
events has been investigated. Dealing with uncertainties is important for EVs, while it
can be devastating for an EV if a CS has very high waiting times or can not deliver
the expected charging power. This can possibly have a high impact on the travel costs
of the EV and the choices that are made at the start of the journey. Therefore, it was
investigated how high the uncertainties have to become to favour a more reliable but
slower route over a faster route with high uncertainties.

Now that both the sub-questions are answered, the main research question of this thesis can
be addressed. It is not simple to formulate a concrete answer on how the travel costs of an
EV can be minimised. In the research, it became clear that many aspects influence the travel
costs of an EV. Prominent in the first place is the energy consumption of an EV. The energy
consumption determines all aspects of the EV, the amount of energy to be charged, the place
to charge, and even the type of charger to use. It is, therefore, essential to be able to model
the energy consumption of an EV with high precision. However, this is difficult while the
energy consumption consists of many parts, such as the energy consumption for the cooling
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and heating of the battery, the energy consumption due to the cabin climate control and the
energy consumption due to the propulsive power demand.

From the results, it became clear that to optimise the journey time, it is in some cases
faster to split up a big charging event into two smaller charging events. Conventional route
guidance methods for EVs use a charging strategy that does not allow these smaller charging
events. However, it has multiple advantages. For example, in low range SoC, the battery
can be charged with a higher power, while in contrast, high SoC results in a reduced power
to charge the battery. Therefore, it can be advantageous to have multiple charging events
in low SoC ranges instead of a big charge event covering both low SoC ranges and high
SoC ranges. This positively affects the charging time, even though the charging penalty is
incurred multiple times instead of once. Another advantage is the possibility to optimise the
departure time at a CS. The departure time at a CS influences the expected driving speed in
the following segments. For example, by having two small charging events, the EV can have
its first charging event at a CS such that when it leaves the CS, there is a low possibility of
congestion, and when the EV has passed the segment with a high chance of congestion, the
second small charging event can be held.

Moreover, from the case studies, multiple conclusions can be drawn. Since the energy con-
sumption of EVs is very determinative for the travel cost, the possibility of adopting a lower
driving speed than the maximum allowable driving speed showed promising results. By low-
ering the driving speed, in the right ambient conditions, energy can be saved such that a
faster journey time can be achieved.

Also, the selection of the charger type has shown interesting results. Since the super charger
delivers a much higher charging power, one would easily assume that this also gives the fastest
charging time. Therefore, a person who has the Fastest route preference might be tempted
to always use the super charger instead of the fast charger. The result, however, showed that
also for the Fastest route preference, in some situations, using the fast charger rather than
the super charger may be a better option. While in some cases, due to the SoC, the fast
charger is at least as fast as the super charger. Hence, it may result in an equal charging time
as the super charger, while paying less for the charge, as the super charger is generally more
expensive than the fast charger.

In general, electric driving will need a change of mindset for people. Letting go of the old
habits and beliefs that have been created using ICEV. The travel costs of EVs can be reduced
using the right insights, compared to conventional methods to optimise the routes of EVs, it
is, however, a very delicate problem.
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7-2 Future Work

Although this thesis showed some promising results, there are some suggestions for future
work:

More detailed energy consumption model

The proposed method includes all aspects of the energy consumption related to an EV.
Nonetheless, the used energy consumption models use, for example, the average driving speed
of the EV to calculate the energy consumption required for the propulsive power. However,
during the acceleration phases of driving with an EV, the energy consumption due to propul-
sive power demand can be higher than the energy consumption assumed for the average
driving speed. Since the energy consumption is of very high importance for the travel cost
of the EV, it would be interesting to use more detailed energy consumption models. For
example, instead of using a fixed energy consumption based on the ambient temperature, a
more sophisticated model that could incorporate how many persons there are in the car or
likewise can be used for the cabin climate control.

More detailed battery thermal model

To model the battery temperature, a lumped capacity model was used. Although this model
is quite accurate, some assumptions were made modelling the battery temperature. For
example, it was assumed that the battery could be seen as a single mass with a uniform
temperature distribution. Nonetheless, the battery consists of various components, each
having its own mass with a non-uniform temperature distribution. Incorporating a more
detailed battery thermal model could improve the model’s performance.

Realistic charging station characteristics

Numerous CS characteristics are of importance. For the simulations, probabilistic waiting
times have been used. Because there is very limited to no data available on the waiting times
at CSs, these probabilities are just a mere estimation. For the model’s accuracy, it would be
desirable to have more realistic waiting time probabilities. Also, the available charging power
in the model, except for case study D, was assumed to be a fixed value. However, it would be
interesting to incorporate a realistic prediction of the charging power received, which can have
a spatial and time dependency, since this is very important to calculate the expected charging
time. In the simulations, also, it was assumed that there were no spatial dependencies, for
example, for the charging price. Although this does not influence the working of the model, it
does influence the model’s outcome. To create a more realistic outcome, spatial dependencies
could be added to the model.

Real-time traffic information

In the simulations, probabilistic models are used for the driving speed. It would be interesting
to include the possibility of real-time traffic information to influence the probabilistic distri-
butions of the driving speed. This would increase the accuracy of the model and give more
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realistic outcomes. Also, this would open up the option of re-optimising during the driving,
which is favourable for long-haul trips.

More realistic traffic networks

During the simulations, fictional traffic networks were used. To increase the model’s accuracy,
more realistic traffic networks should be used. For example, altitude differences in segments
could be included and the length of segments. However, the inclusion of realistic networks is
not problematic with the model.
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Glossary

List of Acronyms

EV Electric Vehicle
SoC State of Charge
ITS Intelligent Transportation Systems
CS Charging Station
PDF Probability Density Function
DP Dynamic Programming
ICEV Internal Combustion Engine Vehicles
SDP Stochastic Dynamic Programming
HVAC Heat, Ventilation and Air Conditioning
SPO Speed Optimization
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