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Abstract—Remote sensing datasets are great 

resources to map habitat types. In this study, 3D habitat maps 
were generated using high-resolution multispectral imagery and 
a LiDAR-derived digital surface model (DSM). Two study areas 
in the United Kingdom (UK) were selected to investigate the 
potential of the developed models in habitat classification. The 
overall classification accuracies for the two study areas were high 
(91% and 82%), indicating the satisfactory performance of the 
developed approach for habitat mapping in the study areas. 
Overall, it was observed that a synergy of high-resolution multi-
spectral imagery and LiDAR data could provide reliable 3D 
information on habitat types. 
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I. INTRODUCTION  

Human activities and climatic change cause pressure on 
global biodiversity [1]. Effective strategies should be 
developed to mitigate serious habitat loss and further 
biodiversity extinction [2]. Accurate identification of land 
cover and land use types is prerequisite for habitat studies. 
Direct and indirect multi-temporal information on the extent 
of habitat types, regeneration landscapes, and land cover 
dynamics is required for various conservation planning 
activities. Progress toward habitat protection goals has been 
made by satellite imagery and monitoring techniques at  

different spatial and temporal scales [3]. It has been well 
argued that remote sensing is a cost-effective tool to 
contribute to frequent natural habitat mapping over large 
areas [4, 5]. Various remote sensing datasets, ranging from 
multi-spectral and hyper-spectral imagery to Radar and 
LiDAR products can be employed in this regard. Remotely-
sensed data help discriminate different vegetation types 
(forests, grasslands, and wetlands) and landscape structures 
[4, 6-8]. Machine learning methods have been widely 
employed to map habitat types for different areas. Kwong et 
al., [4] developed a multi-stage approach, which integrates 
remote sensing images, a GIS database and post-
classification rules, to facilitate productive mapping of 
various habitat types in heterogeneous landscapes,. Adamo et 
al., [6] proposed a multi-disciplinary approach to grassland 
ecosystem classification, supported by expert ecologists as 
well as remote sensing experts. Using ecological coral habitat 
mapping and empirical modeling, Roelfsema et al. [5] 
documented the composition of shallow coastal reefs based 
on remote sensing data. 

Although the above-mentioned studies have provided 
valuable information in the field of habitat mapping, using 
three-dimensional data and producing three-dimensional 
habitat maps has rarely been addressed. The main objective 
of the current research is to produce 3D habitat maps using a 

combination of high-resolution multispectral imagery and a 
LiDAR-derived digital surface model (DSM). An object-
based Random Forest (RF) classifier was used to map habitat 
types of two case studies in the UK.  

II. METHOD AND MATERIALS 

A. Study area and data sets 

Two study areas in northern England, including Colt Crag 
Reservoir, Northumberland, and Grassholme Reservoir, 
north Pennines AONB area, were selected to investigate the 
potential of the developed models for producing 3D habitat 
maps (See Fig. 1). These Reservoirs have high biodiversity 
of benthic habitats.  

In this study, the Worldview-2 multi-spectral satellite 
images were employed to separate different habitat classes. 
The images have a spatial resolution of 2m and contain the 
spectral bands of visible range, near-infrared, and shortwave 
infrared, which are well-suited to discriminate different 
habitat types. Furthermore, LiDAR data were used to increase 
the classification accuracy and generate 3D maps. In this 
study, the LiDAR products, such as Digital Elevation Model 
(DEM) and Digital Surface Model (DSM), with a spatial 
resolution of 1m, provided by the  UK Environment Agency 
(available through 
https://environment.data.gov.uk/DefraDataDownload/?Mod
e=survey) were utilized (see Fig. 1).  

Moreover, several global positioning system (GPS) point 
samples were collected for each habitat types during field 
surveys. All the field samples were randomly split into two 
sets of training (50%) and testing (50%). The training set was 
used for training the machine learning classifier and the testing 
set was used for the statistically assessment of the accuracy of 
the results.  

B. Methodology 

Fig. 2 presents a flowchart of the proposed method to 
produce 3D habitat maps. More detail of each step of the 
proposed method is briefly elaborated in next paragraphs.  

The geometric, radiometric, and orthorectification 
accuracies of Worldview-2 images were first investigated to 
assure they are suitable for the remote sensing model. 
Furthermore, exciting clouds were removed from images using 
a cloud-masking algorithm. Using a pan-sharpening method, 
the multispectral optical image was further sharpened to its pan 
image from 2 m to 0.5 m. 
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Fig. 1. The study areas and their remote sensing datasets used; (a) the location of Colt Crag Reservoi, and (b) Grassholme Reservoir in England and 
corresponding Worldview-2 images and Lidar datasets.  

 

To ingest the multi-spectral images and DSM into the 
classification process, they were first mosaiced, co-registered, 
and layer-stacked. Also noteworthy is the fact that ArcGIS and 
several open-source software packages are employed for 
processing input data. 

In cases where high spatial resolution images are available, 
object-based classification is often preferred to pixels-based 
classification [9]. Thus, object-based image analysis was led in 
this study to produce accurate habitat maps. The 
multiresolution segmentation algorithm was used to segment 
the multi-spectral images because it considers both the local 
and global characteristics of the imagery ad usually results in 
suitable segments [10, 11]. The eCognition software package 
was used to perform the segmentation, which includes 
hundreds of valuable toolboxes that can be applied to improve 
the classification accuracy compared to normally used 
software packages, like ArcGIS.  

In order to improve the mapping accuracy, spectral and 
elevation features should be incorporated into the 
classification algorithm. Further, since this study employed 
object-based image analysis, multiple spatial and textural 
features were also included in the classification process to 
enhance accuracy.  

In more detail, the Blue, Green, Red, and Near Infrared 
channels were used as main optical spectral bands in the 
classification process. Ratio of these spectral bands (e.g., 𝐵𝑙𝑢𝑒𝐵𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠  , 

𝐺𝑟𝑒𝑒𝑛𝐵𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠  , 
𝑅𝑒𝑑𝐵𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠  , 

𝐼𝑛𝑓𝑟𝑎𝑟𝑒𝑑𝐵𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠 ), and some 

popular spectral indices derived from them like Normalized 

Difference Water Index= 
Green−NIRGreen+NIR, Normalized Difference 

Vegetation Index= 
NIR−RedNIR+Red were also stacked to main spectral 

bands to get better classification results. The main elevation 
(i.e., DEM and DSM) and elevation-derived features like 
Slope and Aspect were also employed as input beside of the 
spectral features. Moreover, texture features extracted form 
the Gray Level Co-occurrence Matrix (GLCM) and spatial 
features (e.g., Shape, Size, etc) are also used as inputs of 
proposed process.  

Random Forest (RF) machine learning algorithms were 
used in this study to classify the input data. There are several 
decision trees in RF, and each of these includes nodes that are 
responsible for dividing the pixels into groups containing the 
most homogenous pixels. The process continues until each 
node represents a habitat class. Half of the field samples were 
used to train the RF algorithm. 

The accuracy of the produced habitat maps is evaluated 
using two different methods. First, high-resolution imagery 
(e.g., those provided by ArcGIS and Google Earth) was 
analyzed to determine if the classes visually corresponded to 
natural landscapes. In the following step, we analyzed the 
confusion matrix derived from the test data (i.e., 50% of field 
samples) in order to measure the classification accuracy. 

In the final step, the generated 2D-habitat map and LiDAR 
DSM were combined to produce the 3D maps of the study 
area. This step was implemented in ArcScene.  
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Fig. 2: The proposed model to produce 3D habitat maps using a combination of high resolution multi-spectral and LiDAR data. 

 

III. RESULTS AND DISSCUSSION 

Figure 3 shows the 2D and 3D classified habitat maps, 
achieved by the object-based RF classifier, which was 
ingested by a fusion of multi-spectral and LiDAR features. 
The most efficient features (except the spatial features) were 
ingested into the classification process. The 3D maps are 
obtained by combining the final classified habitat maps and 

LiDAR DSM data in ArcScene. A comparison analysis 
between resulted habitat maps and high-resolution multi-
spectral images was done to evaluate accuracy of the result 
maps. It was concluded that the identified areas were in 
acceptable agreement with the reality. This confirmed the 
application of the proposed method in habitat mapping and 
discriminating habitat types.  

 

Fig. 3: (a) Worldview-2 multispectral satellite images; (b) 2D-habitat maps, and (c) 3D-habitat maps resulting from the proposed method for Grassholme and 
Colt Crag reservoirs. 

The classification accuracies were also statistically 
assessed using the testing set (i.e., 50% of field samples) and 
analyzing the confusion matrices. The overall classification 
accuracies for Colt Crag Reservoir and Grassholme 
Reservoir areas were 91% and 82%, respectively, indicating 

the high performance of the used remote sensing approach 
for habitat mapping in the study areas. The producer and user 
accuracies for each habitat classes in the Colt Crag and 
Grassholme areas are also illustrated in Figure 4. The 
individual accuracies were considerably high for most of the 
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habitat classes. According to the accuracy assessment results 
of the Colt Crag area, the Bare ground, Buildings, 
Coniferous woodland, Quarry, and Water classes were 
correctly classified in the final map without any 
misclassifications. This is because these classes have 
different spectral responses in satellite imagery. The 
accuracies of the Arable, Semi-improved acid grassland, 
Broadleaved woodland, and Wet Modified Bog were also 
considerably high. In contrast, some classes showed 
relatively low accuracy levels, e.g., Marsh/Marshy grassland 
class (25% producer accuracy). The reason could be the 
misclassification of marshlands as Semi-improved 
grassland. In contrast, the same class was identified with a 
higher accuracy (80%) in the Grassholme Reservoir area 
because there was no Semi-improved grassland class in this 
study area. 

The main reason for the misclassification of some of the 
habitat classes was because they might have similar physical 
and spectral characteristics, and, thus, their spectral 
information could be allocated to a wrong class by a machine 
learning classifier. This can particularly rise to a challenge in 
differentiating habitat subclasses. LiDAR data, on the other 
hand, are essential for discriminating the habitat types with 
similar spectral responses but different elevations. For 
instance, LiDAR data are beneficial in discriminating the 
scrubs from woodlands. However, the relatively low 
accuracy in separating scrub from other woodlands was 
rooted in the relatively low resolution of the LiDAR data 
(i.e., 1 m).  

 

Figure 4. Producer and user accuracies for (a) the Colt Crag Reservoir, and (b) the Grassholme Reservoir. 

IV. CONCLUSION 
In this study, Worldview-2 imageries and LiDAR-

derived DSM were used to map habitat types in two different 
case studies in UK using object-based Random Forest 
classification method. The results showed high classification 
accuracies for the habitat classes in the two study areas, 
indicating great potential of the proposed remote sensing 
approach in this paper. The results also indicated that a 
synergy of high-resolution multi-spectral imagery and 
LiDAR data could provide reliable 3D information on 
habitat types. LiDAR data are effective for discriminating 
the habitat types with similar spectral responses but different 
elevations. 
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