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PLADE: A Plane-Based Descriptor for Point Cloud
Registration With Small Overlap

Songlin Chen, Liangliang Nan , Renbo Xia, Jibin Zhao, and Peter Wonka

Abstract— Traditional point cloud registration methods require
large overlap between scans, which imposes strict constraints
on data acquisition. To facilitate registration, users have to
carefully position scanners to ensure sufficient overlap. In this
article, we propose to use high-level structural information (i.e.,
plane/line features and their interrelationship) for registration,
which is capable of registering point clouds with small over-
lap, allowing more freedom in data acquisition. We design
a novel plane-/line-based descriptor dedicated to establishing
structure-level correspondences between point clouds. Based
on this descriptor, we propose a simple but effective regis-
tration algorithm. We also provide a data set of real-world
scenes containing a larger number of scans with a wide range
of overlap. Experiments and comparisons with state-of-the-
art methods on various data sets reveal that our method is
superior to existing techniques. Though the proposed algorithm
outperforms state-of-the-art methods on the most challenging
data set, the point cloud registration problem is still far from
being solved, leaving significant room for improvement and
future work.

Index Terms— Data set, descriptor, point cloud, registration,
scanning.

I. INTRODUCTION

THE proliferation of acquisition devices (e.g., laser scan-
ners and depth cameras) enables us to quickly obtain a

massive volume of 3-D point clouds of indoor and outdoor
environments. The obtained point clouds have many appli-
cations in computer vision and computer graphics, including
navigation and virtual/augmented reality. The nature of the
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scanning process typically results in a set of randomly oriented
point clouds captured from different viewpoints, waiting to
be registered. Although the registration problem has been
extensively studied in the last decades, it still remains an open
problem due to three main reasons.

First, existing methods assume sufficient overlap between
point clouds, which imposes restrictions on the scanning
process, i.e., the user has to strategically position or move the
scanner to ensure proper overlap between scans, making data
acquisition a challenging task [1], [2]. In realistic scanning
conditions, it is quite common that scans with insufficient
overlap are obtained. This issue becomes vital when a scene
is simultaneously scanned by multiple scanners and users.
Another important scenario is when one wants to obtain
complete scans of a scene, the user may apply a static laser
scanner to capture the major part of the scene and a mobile
scanner to complete the occluded regions. Scanning in such
a fashion typically leads to a global point cloud and a set of
local point clouds capturing local regions of the scene. These
scans often have a too small overlap for traditional registration
methods to succeed.

Second, traditional registration methods focus on estab-
lishing correspondences between point clouds using local
salient features. However, man-made scenes, such as building
interiors and exteriors comprising mainly planar structures, are
common in the real world [3], for which sufficient descriptive
local features cannot be extracted for registration [4].

Third, developing reliable point cloud registration
approaches brings up significant challenges in evaluation
tasks that involve capturing massive data sets and providing
ground-truth registrations. Unfortunately, very limited data
sets are available and are typically created for specific
environments (e.g., urban scenes) by using a single type of
scanner (e.g., high-range laser scanners) [5], [6]) and typically
have only a few scan pairs. The lack of diverse data sets (e.g.,
different environments and acquired using different sensors)
and accurate ground-truth has caused various point cloud
registration techniques to be poorly and unfairly evaluated
[7], [8]. In fact, existing techniques can only be evaluated
against small carefully crafted data sets.

In this article, we address the problem of registering point
clouds with small overlap captured from real-world scenes.
Since sufficient overlap and descriptive features cannot be
guaranteed, our approach relies on high-level structures of the
scene for registration. Specifically, man-made environments
typically consist of a planar structure; thus, we represent
the main structures of the scene as a collection of planes.

0196-2892 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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These planar structures along with their interrelations reveal
high-level global characteristics of the scene and we believe
that they provide sufficient information for registration. While
there exists a fair amount of previous work using plane-/line-
based features, the robustness of existing plane-based methods
is still not satisfactory [9]–[14]. Our work proposes a plane-
/line-based descriptor to establish structure-level correspon-
dences between point clouds, with which robust registration
can be effectively achieved.

In addition to the simple but effective registration algorithm,
we provide a benchmark data set scanned from a set of indoor
and outdoor scenes with varying overlapping ratios, comple-
menting existing data sets. As for evaluation, the performance
of a registration method can be simply measured by the
percentage of the successfully registered scans. Though exper-
iments demonstrate that our method significantly outperforms
the state of the art, a large portion of point clouds still remains
unregistered. This indicates that the registration problem is far
from being solved, allowing significant room for improvement.
In summary, our main contributions include the following.

1) A novel plane-/line-based descriptor dedicated to estab-
lishing structure-level correspondences between point
clouds.

2) A robust and fast point cloud registration algorithm
using the plane-/line-based descriptor, which signifi-
cantly outperforms the state of the art.

3) A benchmark data set for evaluating point cloud registra-
tion algorithms. Our data set contains scans with varying
overlap, posing interesting challenges for research in
point cloud registration.

II. RELATED WORK

Point cloud registration methods can be roughly classified
into two categories: coarse registration and fine registration.
Fine registration algorithms aim to improve a given initial
coarse registration. Such algorithms include iterative clos-
est point (ICP) [15] and its variants [16]–[19]. In contrast,
the inputs to the coarse registration algorithms are point
clouds with unknown orientations. Thus, coarse registration is
considered more challenging and has been receiving increasing
attention in the past years. Our method falls into the coarse reg-
istration category. Therefore, in this section, we mainly discuss
recent work on coarse registration, in particular, algorithms on
local descriptor-based registration, global feature-based regis-
tration, and registration without overlap. For a comprehensive
review of general point cloud registration algorithms, please
refer to the survey by Maiseli et al. [8].

A. Local Descriptor-Based Registration

Algorithms in this category are most popular in point cloud
registration. These algorithms focus on using/defining local
salient point features (i.e., transformation invariant descriptors)
to establish pointwise correspondences between subsets (i.e.,
sets of key points) of the two-point clouds [20]–[30]. The typ-
ical procedure is to first extract key points and compute their
descriptors and then establish sparse correspondences between
the key points based on the descriptors. After that, various

strategies have been developed to eliminate false correspon-
dences. Commonly used techniques include geometric hash-
ing [31] and random sample consensus (RANSAC) [32], [33].
Other schemes are also developed for obtaining good cor-
respondences. For example, Gelfand et al. [21] exploit a
branch-and-bound algorithm to find the optimal set of cor-
respondences. Based on the fact that certain ratios defined on
a planar congruent set remain invariant under rigid transfor-
mations, Mellado et al. [24] proposes to extract all sets of
coplanar 4-points to register point clouds with certain levels
of noises and outliers. With initial correspondences computed
using the fast point feature histogram (FPFH) feature [26],
Zhou et al. [34] propose an optimization framework that simul-
taneously suppresses spurious correspondences. These meth-
ods demonstrated satisfactory performance on point clouds of
general surfaces. However, they require sufficient overlap and
are usually slow in processing large point clouds (e.g., scans
of buildings).

B. Global Feature-Based Registration

Compared to local features, global features cover larger
scales of the point clouds and thus are more descriptive. The
most widely used global feature is the plane feature that can be
reliably and efficiently extracted from point clouds, especially
for man-made scenes. These methods first segment the point
clouds into planar patches and then search for correspondences
at the patch level using various strategies [10]–[13], [35].

Similar to local descriptors, various global shape descriptors
have been developed for point cloud registration, such as the
Hough transform descriptor, the spherical entropy image [36],
and the viewpoint descriptor [14]. By considering the layout
of indoor scenes, Lee et al. [37] propose to jointly estimate
the layout and registration for indoor scene reconstruction.

Even higher-level features have also been studied in point
cloud registration. Thapa et al. [38] propose a semantic
feature-based method for registration of building scans. Their
method starts with a semantic segmentation (achieved by using
simple heuristics) of building scans. Then, correspondences
are obtained by matching segments of the same semantic type
and same pattern (topological relation with other features).
Due to the difficulties in semantic segmentation, it remains
unclear how to extend this method to register scans of general
scenes/objects.

C. Registration Without Overlap

When overlap between scans is low, registration algorithms
seek help from additional information provided by the point
clouds [4], [39], [40]. Yan et al. [4] propose to register building
scans without overlap. The inputs to their system are scans
capturing multiple rooms of a large building and/or scans
capturing both the interior and exterior of a building. In their
problem setting, the overlap between scans becomes extremely
small or sometimes does not exist. The authors rely on portals
(e.g., windows and doors) extracted from the point clouds to
establish potential correspondences between scans. The global
registration of the scans is then obtained by selecting a valid
set of correspondences via a combinatorial optimization.
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In recent years, researchers have also studied the prob-
lems of registering/assembling object pieces [41]–[44].
Huang et al. [43] assemble fractured object pieces based on
roughness analysis and patch-based features defined on frac-
tured surfaces. Then, object pieces are registered by pairwise
matching validated via penetration and consistency checks.
Based on the fact that certain objects demonstrate continuous
sharp feature curves, Huang et al. [44] align distinct object
parts by enforcing the continuity of the sharp feature curves.
This method relies heavily on the rich geometric features of
the objects. Thus, it may not be scaled to practical scans of
general scenes.

Our approach falls in global feature-based registration.
We aim at registering featureless scans of real-world scenes
that demonstrate unpredictable levels of overlap. We introduce
a novel global descriptor that captures high-level structure
information (i.e., the interrelationship of the major planes) of
the scenes for registration.

III. OUR APPROACH

Our registration method is based on the traditional
hypothesize-and-evaluate strategy. Specifically, the hypothesis
is obtained by matching our novel plane-/line-based descriptor,
followed by removing the redundant matchings in the transfor-
mation space. Finally, the optimal registration is identified by
evaluating the matching scores of the candidate registrations.
In the following, we first describe our plane-based descriptor.
We then detail our registration algorithm.

A. Structure-Level Descriptor

A large portion of the traditional point cloud registration
methods look into salient features and rely on a local geo-
metric descriptor to establish correspondences between point
clouds. Since sufficient overlaps and descriptive features may
not be guaranteed, we rely on a high-level representation
of the scene to achieve robust registration. We observe that
man-made environments typically consist of planar structures;
thus, we represent the main structure of the scene as a
collection of planes. These planar structures along with their
interrelations reveal high-level global characteristics of the
scene, providing promising information for registration [9].
Specifically, we propose a structure-level descriptor defined on
planes and lines extracted from the point clouds, from which
a unique rigid registration transformation can be established
between two descriptors.

1) Plane/Line Extraction: There exist a few approaches
to extract basic geometric primitives (e.g., planes and lines)
from point clouds [45]–[47]. As has been demonstrated that
the RANSAC-based plane detection method is robust to
noise and outliers and has been successfully applied to other
tasks [48], we choose to utilize an efficient implementation
of the RANSAC algorithm by Schnabel et al. [45] to extract
planar segments from the point clouds. Fig. 1(b) shows an
example of the extracted planar segments.

Given the planar segments, we then extract lines for each
planar segment. Specifically, we first detect boundary points
by looking into the distribution of the planar points within their

Fig. 1. Line extraction. (a) Input point cloud. (b) Extracted planar segments
(in different colors) and boundary points (in red). (c) Extracted line segments
(in red).

Fig. 2. Structure-level descriptor. (a) Descriptor defined on two pairs of
planes. Line L1 is the intersection of planes P1 and P2; L2 is the intersection
of planes P3 and P4. (b) Descriptor defined on a line segment L2 and two
planes P1 and P2.

neighborhood. We use an angle criterion to determine if a point
is lying on the boundary of a planar segment. Fig. 1(a) (inset)
illustrates our angle criterion (we choose the angle threshold
θ to be π/2). Similar to plane extraction, we use a RANSAC
strategy to extract line segments from the boundary points
[see Fig. 1(c)]. Alternative methods, such as [49], can also
be applied to extract the lines segments directly from point
clouds.

2) Defining the Descriptor: Given a certain amount of
planes abstracting the main structure of the scene, at least
three nonparallel planes are required to establish rigid trans-
formations between two point clouds. To avoid ambiguities
(i.e., a corner of three planes can be matched to multiple
similar corners) and obtain a unique transformation, we look
into quadruplets of nonparallel planes.

We first compute pairwise intersections of the supporting
planes of the extracted planar segments, resulting in a set
of lines. To cope with near coplanar planes, we discard
a line Li if dist(Li , c) > r , where c and r denote the
center and radius of the bounding sphere of the point cloud.
Fig. 2(a) illustrates the primitives (i.e., four planes) on which
our plane-based descriptor is defined. Specifically, the plane-
based descriptor is an 8-D vector consisting of the following
entries.

1) d: The distance between the two lines L1 and L2.
2) � (L1, L2): The angle between L1 and L2.
3) � (P1, P2) and � (P3, P4): Angles introduced by the two

pairs of planes.
4) � (L1, P3), � (L1, P4), � (L2, P1), and � (L2, P2): The

angles between the intersecting lines of two planes and
the other planes.

Note that we choose the acute angle for each pair of primi-
tives. To ensure descriptiveness, our plane-based registration
descriptor is defined depending on the relative magnitudes of

Authorized licensed use limited to: TU Delft Library. Downloaded on October 26,2020 at 11:02:01 UTC from IEEE Xplore.  Restrictions apply. 
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the angles between primitives

d8 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dist(L1, L2)
� (L1, L2)
� (P1, P2)
� (P3, P4)

min( � (L1, P3), � (L1, P4))
max( � (L1, P3), � (L1, P4))
min( � (L2, P1), � (L2, P2))
max( � (L2, P1), � (L2, P2))

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

if � (P1, P2) < � (P3, P4). Otherwise, we change the order of
the planes and then define the descriptor. Here, min(∗, ∗) and
max(∗, ∗) indicate the smaller and greater value of two angles,
respectively.

The above-mentioned plane-based registration descriptor is
defined purely on two pairs of nonparallel planes, with which
a unique rigid registration transformation can be established
between two descriptors. In the very unlikely cases (in partic-
ular when the overlap between the point cloud pair is small),
less than two pairs of nonparallel planes can be found. The
point cloud shown in Fig. 1 is such an example, where only
two parallel horizontal planes and two parallel vertical planes
are extracted. Thus, no quadruplet of nonparallel planes exists
to uniquely define a rigid transformation. In such a case,
we seek help from additional line features of the scene. Thus,
in addition to the 8-D plane-based descriptor, we also define
another type of registration descriptor on a smaller number of
geometric primitives, i.e., a pair of nonparallel planes and a
line segment. Similarly, the plane-/line-based descriptor is a
6-D vector defined as

d6 =

⎡
⎢⎢⎢⎢⎢⎢⎣

dist(L1, L2)
� (L1, L2)
� (P1, P2)
� (L1, P3)

min( � (L2, P1), � (L2, P2))
max( � (L2, P1), � (L2, P2))

⎤
⎥⎥⎥⎥⎥⎥⎦

. (2)

B. Registration

With the structure-level registration descriptor, we are now
able to compute transformations between two point clouds.
Since our descriptor characterizes the interrelation between
nonparallel planes/lines, we can establish a unique rigid trans-
formation using a descriptor dL from a point cloud L and its
best-matched descriptor dG from the other point cloud G.

We enumerate all plane/line combinations to collect a set
of descriptors in both L and G, namely, DG = D8

G ∪ D6
G and

DL = D8
L ∪ D6

L, where D8∗ = {d8∗} and D6∗ = {d6∗} denote the
8-D and 6-D descriptors, respectively.

1) Descriptor Matching: To efficiently find the best matches
of descriptor pairs, we build a KD-tree for the descriptors DG
and we query the most similar descriptor for each descriptor
in DL. The distance of a descriptor pair is computed as the
Euclidean distance of the two descriptors. To compare a 6-D
descriptor against an 8-D descriptor, we simply exclude the
two extra dimensions from the 8-D descriptor vector. By doing
this, the 8-D descriptor vector is degraded to 6-D. Thus,

Fig. 3. Visualization of the computed translations and rotations from the
best-matched descriptor pairs of two point clouds. Each point in (a) represents
a translation and each point in (b) represents a rotation (denoted by the three
angles w.r.t. the axes). Note that minor jittering has been added to reveal the
duplicated transformations.

Fig. 4. Penetration tests for two planar segments. (a) and (b) do not have
penetration. (c) Example of penetration.

the Euclidean distance between them can be computed using
the corresponding entries.

2) Transformation Redundancy: Since our registration
descriptor mainly encodes the geometric information of the
planes, simply enumerating all combinations of the planes
results in duplicated transformations. Fig. 3 visualizes the
computed translations and rotations from the best-matched
descriptor pairs of two point clouds. We can see that a large
portion of the transformations is duplicated. This can be
observed from a large number of points but fewer clusters
in the visualization.

Given a large number of transformations computed from
the best-matched descriptor pairs, our final goal is to choose
the best transformation that can register the two point clouds.
To achieve this goal, we have to evaluate the confidence
of each transformation. Here, the confidence of the trans-
formation is typically measured by the number of matched
points. Precisely measuring the number of matched points
requires querying the nearest neighbor for every point in one
point cloud. Performing such queries on small numbers of
transformations is affordable. However, the large portion of
duplicated transformations hinders us from efficiently obtain-
ing the optimal transformation. To this end, we first remove the
redundancy in the transformations and we keep only the most
representative ones. Using a KD-tree structure, we search for
the neighbors Ti of each transformation ti within a radius r .
We simply replace ti ∪ Ti with their mass center. In our
implementation, we chose rt = 0.001 · rL for translations and
rr = 2◦ for rotations, where rL denotes the radius of the
bounding sphere of the point cloud L. After the redundancy
being removed, the number of transformations is significantly
reduced. Then, we perform penetration tests to further reduce
infeasible transformations. To do so, we look into the point
distribution of two planar segments (see Fig. 4). Penetration is
considered occurring only if the points of each planar segment
lie on both sides of the supporting plane of the other planar
segment.

3) Identifying Optimal Registration: Intuitively, the optimal
registration transforms the point cloud L in a way such that
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the most number of points can be matched to the points in the
point cloud G. This is true for most cases, especially for objects
with curved surfaces. However, when dealing with man-made
scenes that typically comprise planar regions, the transforma-
tion receiving most matched points does not always suggest
the optimal registration. This is obvious because one planar
segment (a set of points lying in a plane) can be matched
with any other planar segments. In this work, we measure the
confidence of a registration transformation (i.e., a translation
denoted by t and a rotation denoted by r) by combining two
criteria

conf(t, r) = wplane · Rplane + wpoints · Rpoints (3)

where Rplane and Rpoints denote the ratio of the matched planes
and the ratio of the matched points, respectively. The two
weights wplane and wpoints are empirically chosen to be 0.2 and
0.8, respectively. By computing the registration confidence
for each transformation, the one with the highest registration
confidence is considered as the optimal coarse registration.

IV. BENCHMARK DATA SET

To evaluate our method and, more importantly, to provide
a more practical benchmark data set complementing existing
data sets, we create a new data set RESSO1 targeting both
indoor and outdoor scenes.

A. Data Collection

Our data acquisition involves two different types of com-
mercial scanners: a high-range static laser scanner (Leica
ScanStation C10, with an effective operating range of 100 m)
and a handheld scanner (FARO Freestyle X, operating range
3 m). These two scanners have significantly different operating
ranges, accuracy, and resolutions, posing sufficient challenges
to registration algorithms.

We scanned 187 point clouds in total for 15 different
environments (ten indoor scenes and five outdoor scenes).
Each indoor scene is captured by a few global point clouds
using the static laser scanner and optionally multiple local
point clouds using the handheld scanner. The global point
clouds capture the majority of each indoor scene, and the local
point clouds are intended to capture local regions of the scene,
especially the regions that are occluded in the global point
clouds. This further adds to the challenges for registration.
Due to larger sizes, the outdoor scenes are mainly captured
using the long-range static laser scanner.

We scanned the scenes without adding additional clutter for
augmenting naturally occurring features, and we tried to create
some overlap, but not an excessive amount. Also, the fact that
the point clouds stem from different scanners is a possible
challenge for some feature extractors.

B. Overlap Between Scans

Real-world scans typically have unpredictable varying over-
lap ratios, which is challenging to registration algorithms.
We choose to quantify the overlap of two-point clouds by

1RESSO: Real-world Scans with Small Overlap.

measuring the percentage of points that have the closest
corresponding point (in another scan of the pair) closer than
a threshold ε. Considering noises in the input point clouds
and the unavoidable errors in the registration, we compute
the ε-overlap for each scan pair at a discrete set of ε values.
We depict these discrete ε-overlap values in a curve, so as to
intuitively reveal the overlap between scans. Fig. 5 demon-
strates the ε-overlap curves for a few point cloud pairs from
RESSO and other data sets. From the ε curves, we can see
that RESSO has less but a wider range of overlap. Thus, our
new data set is a more challenging and useful complement to
existing data sets.

C. Ground-Truth Registration

Given the challenges in the registration problem itself and
a large number of scans, we obtain ground-truth registrations
using a combination of automatic approaches and manual
registration. Specifically, we run our registration algorithm on
the point clouds of each scene, and we record the transfor-
mation matrices of the successfully registered point clouds
by visual inspection and fine tuning of the registration using
ICP [15]. For those failed to be registered in the automatic
phase, we manually registered them as initialization to ICP.

V. RESULTS AND DISCUSSION

We implemented our method in C++ using the Point
Cloud Library [51]. In our current implementation, we mainly
focus on local registration (i.e., pairs of the scans), leaving
global registration (i.e., simultaneously registering all scans
in a scene) as future work. Experiments on various data sets
demonstrated that our method significantly outperforms state-
of-the-art registration techniques.

A. Evaluation Method

Our work focuses on coarse registration, but, in practice,
fine registration might be used as a postprocess. One possible
evaluation method would be to evaluate the combination of
coarse and fine registration algorithms. We opt for a more
direct evaluation, where we separately evaluate the impact of
coarse registration and fine registration results by comparing
the transformed scans to their ground truth. While there
are many fine registration methods, we use ICP [15] as a
popular representative. Specifically, we consider a registration
successful if the registered scan is close enough to the ground
truth, that is

dist(sr , sg) > dt (4)

where dist(sr , sg) measures the average point distance between
a registered scan sr and the ground-truth sg . To choose an
appropriate value for the threshold dt , we take into con-
sideration that our coarse registration result is provided as
initialization to a fine registration method. We conducted
multiple experiments, and we present the one on all the
point cloud pairs in Fig. 9. We introduced a sequence (i.e.,
ten) of random perturbation transformations (starting from the
ground-truth transformation) such that the mean distance of all

Authorized licensed use limited to: TU Delft Library. Downloaded on October 26,2020 at 11:02:01 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 5. Overlap of point cloud pairs. (Top Row) Scan pairs from RESSO. (Bottom Row) Scan pairs from existing data sets, i.e., (g) ETH [50], (h) DS2-L [13],
(i) TLS-ZEB [14], (j) and (k) Robotic 3-D scan repository [5], and (l) DS1-H [6]. The corresponding ε-overlap curve is shown below each scan pair.

TABLE I

SUCCESS RATE (%) OF ICP [15] ON A SEQUENCE OF POINT CLOUD PAIRS WITH INCREASING PERTURBATION LEVELS

the corresponding points was increased at a constant interval of
5 cm. Then, we ran the ICP algorithm of [15] on all the point
cloud pairs in each sequence to test if ICP could converge.
We recorded the success rate for each sequence, and the result
is demonstrated in Table I. This experiment showed that ICP
converged when the mean distance was smaller than 20 cm for
indoor scenes and 25 cm for outdoor scenes. Based on these
experiments, we conservatively set dt to 10 cm for indoor
scenes and 20 cm for outdoor scenes.

B. Registration Results

Figs. 6 and 7 visualize the registration results of the
proposed method on ten indoor scenes and five outdoor
scenes from our data set RESSO, respectively. Due to the
descriptive plane-based descriptor, our registration method
managed to register all these scan pairs. Though the indoor
scene in Fig. 6(j) and the outdoor scene in Fig. 7(d) partially
consist of curved surfaces, planar structures still dominate and
our method successfully registered these point clouds. The
outdoor scene shown in Fig. 7(a) contains many trees. The
planar regions still provide sufficient information for a reliable
registration. Besides RESSO, we also tested our registration

method on point clouds from publicly available data sets and
related works. The visual results are shown in Fig. 8.

Our method is capable of registering scans with a small
overlap. Figs. 6–8 show the registration results of all point
clouds for each scene; thus, it is difficult to observe the
overlaps between scans. In Fig. 9, we demonstrate a few pairs
of scans from our results shown in Figs. 6 and 7.

C. Initialization to Fine Registration

To test if our coarse registration results can be further
improved by a fine registration method, we ran the ICP
algorithm of [15] on all the point cloud pairs shown in Fig. 9
and recorded the registration error before and after the ICP
step. The result is reported in Table II. We can see that the
ICP step significantly reduced the registration error compared
to that of the coarse registration, indicating that our coarse
registration results provided good initialization to the ICP
algorithm.

D. Robustness to Plane Detection

Our plane-based descriptor is designed to capture the
global structure of a scene, allowing us to reliably establish
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Fig. 6. Registration results of the indoor scenes from RESSO. The ceilings have been removed to better reveal the building interiors. The number below
each subfigure indicates the total scans in each scene. (a) N = 14. (b) N = 20. (c) N = 20. (d) N = 16. (e) N = 15. (f) N = 11. (g) N = 10. (h) N = 15.
(i) N = 5. (j) N = 9.

Fig. 7. Registration results of the outdoor scenes from RESSO. The number below each subfigure indicates the total scans in each scene. (a) N = 12.
(b) N = 6. (c) N = 5. (d) N = 3. (e) N = 26.

Fig. 8. Registration results of our method on various data sets. (a) Bremen [52]. (b) DS1-H [6]. (c) DS2-L [13]. (d) DS3-V [13]. (e) ETH [50]. (f) TLS-
ZEB [14]. (g) and (h) Robotic 3-D scan repository [5]. The ceilings in (b), (c), and (f) have been removed to better reveal the building interiors.

TABLE II

REGISTRATION ERRORS BEFORE AND AFTER APPLYING THE FINE
REGISTRATION METHOD OF [15] ON THE CLOUD

PAIRS SHOWN IN FIG. 9

structure-level correspondences between two point clouds.
Since a few descriptive planes are adequate in depicting the
main structure of the scene, it is not necessary (nor possible) to
obtain a complete set of planes accurately extracted from the

point clouds. To evaluate this, we repeatedly ran our method
on the scene shown in Fig. 6(a) by incrementally removing
planes. Specifically, we remove 10% of the extracted planes at
each iteration until our algorithm breaks down. Fig. 10 reports
how our method behaves by gradually dropping planes. Such a
test confirms that a few dominant planes can provide adequate
information for point cloud registration, allowing our method
to achieve satisfactory registration results as long as certain
descriptive planes (i.e., a small portion of planes) are present.

E. Robustness to Noise

In order to evaluate the impact of noisy surfaces, we added
the Gaussian noise to a pair of point clouds from Fig. 6(a)
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Fig. 9. Pairs of point clouds registered by our method, intended to reveal the overlaps between scans. (First Two Columns) Input scan pairs. (Right Column)
Registration results.

with increasing noise levels, i.e., standard deviations (σ ) 15,
30, 45, and 60 cm, respectively. Though the noise levels are
quite high, we were still able to extract planes with sufficient
quality at three noise levels. Fig. 11 shows the registration
result at noise level σ = 45 cm. However, when the noise
level reached 60 cm, where the smaller point cloud (in green)
were completely contaminated by the noise (note how difficult
to recognize the chairs in the scene), our RANSAC-based
plane extraction algorithm failed to detect sufficient planes to

establish reliable correspondences for the registration. Such a
test indicates that our method is robust to noise as long as the
major representative planes can be extracted.

F. Comparison

We compared our method against various point cloud regis-
tration methods, including local descriptor-based approaches
and plane-based approaches. Tables III and IV report the
performance of our method and the competing methods on
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TABLE III

COMPARISON WITH A FEW LOCAL DESCRIPTOR-BASED METHODS AND SUPER4PCS [24]. THE PERFORMANCE HERE IS
MEASURED BY THE PERCENTAGE (%) OF THE SCANS THAT WERE SUCCESSFULLY REGISTERED IN EACH SCENE

TABLE IV

COMPARISON WITH A FEW PLANE-BASED REGISTRATION METHODS ON RESSO. THE RATE IS MEASURED BY THE

PERCENTAGE (%) OF THE TOTAL REGISTRATIONS EACH METHOD SUCCEEDED

Fig. 10. Registration by gradually dropping planes on the scene shown
in Fig. 6(a). Planes with smaller numbers of points are dropped first.

Fig. 11. Registration of two point clouds with Gaussian noise (standard
deviation σ = 45 cm).

some of the scan pairs from scenes shown in Figs. 6 and 7. The
performance is measured in terms of the percentage of success-
fully registered point clouds. From Table III, we can see that
Super4PCS [24] failed in registering most of the point cloud
pairs from the indoor scenes. Other local descriptor-based
registration methods managed to register only a small portion
of the scans. Such poor performance is mainly due to the small
overlap and the absence of local geometric features in the
point clouds. As expected, the performance of these techniques
improves when the scans have significantly larger overlap, e.g.,
the indoor scene shown in Fig. 6(j) and the outdoor scenes
shown in Fig. 7. Besides, the scenes in Figs. 6(j) and 7(a) con-
tain some curved structures, adding descriptive local geometric

features for registration. The large overlapping ratio and the
geometric features bring the performance improvements.

We also compared our method against various state-of-
the-art plane-based registration methods. Due to that source
code of the completing methods is not available, we ask
the authors to run their algorithms on a few scan pairs
randomly chosen from RESSO. These scan pairs demonstrate
a wide range of overlapping ratios. Table IV summarizes the
comparison. Among these methods, the “RANSAC-based”
approach is quite similar to our method, except that we
replace our descriptor-based correspondence search with a
RANSAC-based correspondence search. From all these com-
parisons, we can conclude that planes are effective features
for registering scans of real-world scenes. Based on the
novel plane based, our method significantly outperforms the
competing methods in terms of the percentage of successfully
registered scans.

G. Running Times

Table V gives the running times of our method and the
competing methods on the scenes shown in Figs. 6 and 7. The
Super4PCS algorithm [24] requires to explore sufficient sets
of coplanar 4-points, thus becomes more expensive for scans
of large scenes. The method by Zhou et al. [34] demonstrates
higher efficiency than the Super4PCS technique because its
optimization process involves neither correspondence updates
nor closest-point queries. Compared to these techniques, our
method takes advantage of the plane-based descriptor so that
structure-level correspondences between scans can be very
efficiently established via nearest neighbor search. Thus, it has
better efficiency than most of the competing methods, in par-
ticular for larger scenes. Note that the input point clouds were
downsampled to enable the competing algorithms to generate
their results within an acceptable time frame.
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TABLE V

EXECUTION TIMES (IN SECONDS) OF OUR METHOD AND SOME COMPETING METHODS ON THE SCENES SHOWN IN FIGS. 6 AND 7. THE EXECUTION
TIMES WERE MEASURED ON A LAPTOP WITH A DUAL-CORE 2.4 GHz INTEL CORE I3-4000M CPU

H. Limitations

Our plane-based descriptor is dedicated to registering point
clouds of scenes that at least partially consist of planar struc-
tures. Thus, the proposed descriptor is especially suitable for
registering scans of man-made environments. The descriptor
will probably not be successful for scans of vegetation and
scans of individual objects that consist of curved surfaces.

Another limitation of our current implementation is that the
confidence metric defined in (3) can only handle the majority
of the tested point clouds in our benchmark data sets. It still
remains a challenge to develop a reliable confidence metric
that works for all scenarios.

VI. CONCLUSION

In this article, we discussed several challenges of the
point cloud registration problem. To address these challenges,
we presented a simple but effective method for registering
practical and feature-poor scans with a small overlap in
arbitrary initial poses. Our method is based on a high-level
descriptor that reveals structural characteristics of the scenes,
leading to superior registration performance.

Despite the excellent performance of the proposed registra-
tion algorithm, we demonstrated that the point cloud regis-
tration problem is far from being solved, leaving significant
room for improvement and future work. We also provide the
community a new challenging benchmark data set that is large
and challenging enough to ensure that registration algorithms
are fairly evaluated and compared, in the hope that experts in
related fields seize such research opportunities and push the
state of the art in point cloud registration forward.
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