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Abstract Polish coastal zone is thought to be one of the most exposed to sea level rise in

Europe. With mean sea levels expected to increase between 28 and 98 cm by the end of the

century, and storms increasing in severity, accurate estimates of the consequences of those

phenomena are needed. Recent advances in quality and availability of spatial data in

Poland made possible the reassessment of previous estimates of inundation caused by sea

level rise. Up-to-date, detailed information on land use, population and buildings was used

here to calculate their exposure to floods at a broad range of scenarios. Inclusion of a high-

resolution digital elevation model contributed to a further improvement in estimates. The

results revealed that even by using a static ‘‘bathtub fill’’ approach, the amount of exposed

land, population or assets is significantly smaller than indicated in previous assessments. In

the perspective of the twenty-first century, direct damages caused by sea level rise will be

small and adaptation costs will not be significant. However, the increase in the frequency

of storm surges could elevate the risk to the population and economy, but cost-effective

flood protection measures would be able to mitigate the risk. The exposure of different

kinds of assets and sectors of the economy varies to a large extent, though the structural

breakdown of potential losses is remarkably stable between scenarios.
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1 Introduction

Storms surges are an important factor shaping the Polish coast. Short-term water level

variations caused by them significantly alter the coast in the non-tidal Baltic Sea, where

extreme water levels depend largely on the volume of water flowing in from the North Sea.

Several large coastal floods occurred in late nineteenth and early twentieth century, with a

few calmer decades thereafter. More recently, however, storms have been on the rise: the

number of surges exceeding the warning level of approximately 70 cm above mean sea

level (MSL) soared from about two per year in the 1950s to six per year in 2000s (Wiś-

niewski and Wolski 2009). Usually these events are too short to cause damages inland.

However, during a storm surge in January 1983 water levels exceeded 1.3 m above MSL

along the most of the coast, affecting many locations, particularly in the eastern part. In the
_Zuławy region, a total of 50 km2 of land was flooded and almost 1300 people were

evacuated (Bednarczyk et al. 2006). Wiśniewski and Wolski (2009) estimated that a

100-year coastal flood could be as high as 1.95 m above average in Kołobrzeg, while a

1000-year flood might reach 2.5 m; the highest value actually recorded was 2.22 m in

1872.

Long-lasting storm surges, even though relatively insignificant at the coast, can cause a

flood dozens of kilometres inland, on the low-lying parts of Odra and Vistula fluvial plains.

In those estuaries, water levels could even be higher than at the coast; this happens when

large volumes of water flow in from the sea due to the northerly winds (Wiśniewski and

Kowalewska-Kalkowska 2007). The highest recorded water level in Szczecin, located

almost 70 km inland, was 1.54 m above average during a storm surge in 1913 (Richter

et al. 2012). The most recent storm surge resulting in a large inflow of seawater into the

river network occurred in 2009, causing losses of several million euro in locations all over

the coast, mainly in the eastern part (KZGW 2011). Across the whole region, flood

defences protect the lowest areas, particularly around river mouths and coastal lakes, while

the rest of the coast is protected by nature.

At a longer timescale, the contemporary sea level rise (SLR) triggered by the changing

climate is also a threat to coastal areas. It is generally considered (Church et al. 2013;

Hunter 2010; Wróblewski 1994) that the increase in mean sea level will directly translate

into higher storm surge maxima. It is therefore necessary to assess the number of persons

and value of assets which could be at stake. In Poland, comprehensive research on coastal

flood risk considering sea level rise was originally spawned by IPCC’s first assessment

report released in 1990. Rotnicki and Borówka (1991) used 1:25,000 topographic maps to

calculate the area threatened by rising waters along with a quantification of assets affected,

such as land use, infrastructure, settlements and their population. According to an

expanded version of that study (Rotnicki et al. 1995), a 2.5-m SLR would impact 2700 km2

of land, including 93 km2 of settlements, 374 km of railways, 906 km of roads and

297,000 people. Based on the results of Rotnicki’s and Borówka’s (1991) study, Pluijm

et al. (1992) calculated the monetary value of land and structures exposed to sea level rise.

The results indicated that a 1-m rise of mean sea levels would result in a loss of assets

worth 24 % of 1990 gross domestic product (GDP). This study was later updated with

newer economic data by Zeidler (1997), whose results were in turn reused by Pruszak and

Zawadzka (2005, 2008) and cited in several global assessments of sea level rise (e.g.

Nicholls and Mimura 1998; Nicholls and Klein 2005). In effect, published assessments of

the effects of sea level rise are limited to delimitations of hazard zones made in late 1980s

(the earliest version of the study by Rotnicki and Borówka was published in 1989) and
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socio-economic data from the early 1990s. Poland was included in studies on global and

European flood risk based on DIVA model—most recently by Hinkel et al. (2014)—though

only Hinkel et al. (2010) and Bosello et al. (2012) included a breakdown of impacts by

country. All of these studies used only low-resolution data and were characterized by a

high degree of generalization. For instance, only a most recent analysis (Mokrech et al.

2015) included flood defences in the calculation of flood hazard in Europe and only using

assumptions of protection levels. Still, no information on country-level impacts was

provided.

More recently, due to the obligations imposed by the European Union’s ‘‘flood direc-

tive’’ (EU 2007), the national government ordered preparation of flood risk maps for

selected regions of Poland. They were published in 2013 by the National Water Man-

agement Authority (KZGW 2015). Their main advantage is the use of up-to-date, detailed

and high-resolution data, including lidar-derived digital elevation models (DEMs), aerial

photography, land surveys and administrative registers. However, the main focus has been

put on river floods, while only parts of the coast were investigated. Moreover, no sea level

rise impacts were assessed, while the analysis of storm surges was limited only to one or

two scenarios, depending on location. Finally, the results of flood risk calculations are

provided only as a graphical representation on maps, and the only aggregate statistics

provided are the estimates of exposed inhabitants per settlement. The total value of

exposed assets was not disclosed.

In the light of the above, there is clearly a need for a high-resolution assessment of

possible social and economic impacts of storm surges and inundation of land caused by sea

level rise in Poland. This is particularly important as the existing studies all indicated that

very severe consequences for the population and economy might occur in the twenty-first

century. In this paper, we aim to provide more precise estimates of exposure of land,

population and assets at a broad range of scenarios, using the up-to-date and detailed

cartographic materials, which have become available only recently. Most importantly, the

digital elevation model used here includes the majority of flood defences in the area, which

were missing in other studies. The main aim is to provide a dataset, which could be used to

various, frequently changing, projections of climate, population and economic growth.

Furthermore, we analyse the data in the context of IPCC projections, as well as discuss the

adaptation measures.

2 Materials and methods

2.1 Regional setting

The Baltic Sea is a non-tidal, semi-enclosed and shallow body of brackish water. Exchange

of water through the Danish Straits is the primary regulator of water levels in the basin,

causing dangerous surges primarily at its southern and eastern coasts (Ekman 2009; Wolski

et al. 2014). Poland has a 500-km-long, diversified coastline. At various locations along the

coast, there are sections of cliffs totalling ca. 18 % of entire coastline length (Tomczak

1995). Apart from an alluvial section in the Puck Lagoon (less than 3 % of the total), the

remainder is a spit- and barrier-type coast, with dunes ranging in height from less than 2 up

to 49 m. Behind the dunes, coastal plains with occasional depressions (down to -1.8 m

MSL) are usually observed.
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Tide gauge in Świnoujście, at mouth of Odra Estuary in the Baltic Coast, has one of the

longest instrumental records in the world (Permanent Service for Mean Sea Level 2015),

and during 1811–2006, a trend of 0.4 mm per year was observed here, accelerating to

1.0 mm per year during 1947–2006 (Wiśniewski et al. 2011). This rate rises moving

eastward: Kołobrzeg (central part of the Polish coast) recorded an increase of 0.5 mm

during 1901–2006 and 1.4 mm during 1947–2006, while in Gdańsk (eastern coast),

1.6 mm increase was observed during 1886–2006 and 2.5 mm during 1947–2006. The

difference is largely due to uneven isostatic movement of the crust. Global mean sea level

has risen by 21 cm between 1880 and 2009 (Church and White 2011), or 1.6 mm per year.

Also, satellite altimetry reveals that the rise in water levels is mostly uniform in the

southern Baltic Sea. It amounted to 3.2 mm per year between 1992 and 2016, a pace very

similar to the world ocean average, which was 2.9 mm per year during 1992–2016 (NOAA

2016).

Although as much as 7 % of world population lives within 20 km from the coast

(Kummu et al. 2016), the Polish Baltic Sea coast itself is not densely inhabited: only 2.8 %

of Poles reside in municipalities with direct access to the sea. Excluding the large Tricity

agglomeration (Gdańsk, Sopot, Gdynia), the population density in this area is a mere 90

persons per km2 which is quite low when compared to the national average of 123 (CSO

2015). However, the coast is by far the most popular vacation destination in Poland. Thirty-

five percentage of all overnight stays in accommodation establishments during July–Au-

gust 2013 occurred in 55 municipalities considered by Eurostat as coastal regions (CSO

2015). That corresponds to an average of 71 tourists per 100 residents during the summer.

The economies of many coastal resorts are completely dependent on this short holiday

season (Łonyszyn and Terefenko 2014). Any damages to infrastructure and buildings could

therefore dampen the economic prospects of those localities.

The study area, as referred to hereafter, includes all municipalities, not necessarily

bordering the Baltic Sea, in which there is some land laying no more than 5 m above mean

sea level. There are 86 such municipalities, including 22 that further divide into a town and

a rural area. That sums up to 108 basic administrative units with a combined population of

2.4 million (at 2011 census according to CSO 2015). Figure 1 outlines the study area

within the Polish coastal zone.

2.2 Data sources

Two main sources of data were used in this study: the topographic objects database

containing information on land use as well as buildings, and a digital elevation model

(DEM). Both were derived from national cartographic repository (CODGiK 2014, 2016),

which include recent output of large-scale mapping projects. Statistical data on demo-

graphic and economic indicators have also been collected.

2.2.1 Digital elevation models

Quality of flood hazard analyses depends mainly on detailed information on the terrain in

question. Here, a digital elevation model created through airborne laser scanning tech-

nology (lidar) was used. DEMs obtained using this method are commonly applied to

coastal flood hazard analyses because of their accuracy (Webster 2010). In recent years, the

national government launched a large measurement campaign specifically to provide data

for flood hazard mapping, which was carried out in the coastal areas between 2010 and

2013 (mainly in 2011). The density of scanning was usually 4 points per m2, except for
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urban agglomerations, where the density was 12 points per m2. The final dataset in raster

format has a spatial resolution of 1 m, which is fine enough to include flood defences and

most of other small topographic features that can have a profound impact on flood hazard

analyses. Average vertical error of the dataset is nominally less than 20 cm in areas with

scanning density of 4 pts/m2 and less than 10 cm in areas scanned with 12 pts/m2

(CODGiK 2014). Yet, the DEM has some other imperfections. A large low-lying area,

which in reality is protected by higher terrain or flood defence structures, can be marked as

potentially flooded if a minor error in the data creates a ‘‘gate’’ for floodwater. Also, some

of the hydraulic structures used to manage river flow and maritime transport, such as locks,

sluices and weirs, are mostly not present in the DEM.

A very small area located in the western part of the coastal zone is not covered by the

detailed lidar DEM. The gap was filled with a different DEM, which was created on the

basis of aerial photographs. It has a spatial resolution of 40 m and a vertical accuracy of

about 1.5 m. These are much worse values than for the lidar DEM, but it had to be used

only for less than 0.1 % of the exposed area, so it has a negligible impact on the results.

2.2.2 Topographic objects database

The primary source of information on land use and buildings used here is the topographic

objects database, the digital successor of analogue topographic maps, created and main-

tained by Poland’s surveyor general (CODGiK 2016). It consists of almost 300 types of

objects with a vectorized representation of their geometry and additional qualitative and

quantitative descriptors. Accuracy of the database in terms of location and minimum size

of objects approaches a 1:10,000 topographic map. This is enough to represent the natural

and socio-economic environment down to a single parcel, road and building. The current

structure of the database was implemented in 2011 (Law 2011/279/1642), and its content

was updated during 2012–2013. The database used here corresponds to the state of

Fig. 1 Study area (all municipalities with some land lying below ?5 m MSL) and the Polish coastal zone.
The inner map presents elevation values
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January–July 2013, depending on location. Quantitative information on the objects, such as

their area, is expected not to deviate from real values more than ±20 %.

Data on buildings include their area, functional characteristic and, in most cases, the

number of storeys. In case the latter is missing, the building was assumed to have only one

storey. Roads are represented in the database as a linear object, but for each section, their

width is given, so that they could be transformed into a surface. Only paved roads were

included in the calculation. Railway and tramlines were transformed into polygons

according to the gauge of the tracks. Roads and tracks located on bridges or similar above-

ground structures were excluded.

2.3 Calculation of flood hazard

2.3.1 Inundation

Flood hazard analysis involves calculation of the inundation extent and other hydrological

parameters of the flooding, such as water depth. To calculate the flood zone, a ‘‘bathtub

fill’’ approach was applied for this study (Bates and De Roo 2000; Poulter and Halpin

2008). It is assumed that the sea at a certain scenario will cover all land lying below the

assumed water level, as long as there is a direct connection with the source of flood. For the

analysis of inundation caused by sea level rise, that is an accurate description. However,

for storm surges it is a straightforward simplification. The method does not take into

account the kinematics of the flow or sedimentation processes and considers flooding as an

instantaneous process. The temporal change in water levels is also an important factor

determining the inundation extent. Unfortunately, the data required to include time in such

a calculation were not available to the authors. In effect, the storm surge scenarios con-

stitute a description of the worst-case event (Apel et al. 2009; Breilh et al. 2013). The

biggest advantage of the chosen method is a possibility of a direct comparison of achieved

results with previous studies performed in the Baltic coast. The possibility of directly

implementing the method in the geographical information systems is also useful. On the

other hand, dynamic effects such as erosion and sedimentation were not included.

The resolution of the DEM is fine enough to include flood defences; therefore, isolated

locations, i.e. having no direct connection with the sea, lying below the water level at a

given scenario were considered protected by the surrounding high terrain. These areas were

discarded to create the final flood zone using a four-side rule, which means that no water

flow was allowed in diagonal directions (Poulter and Halpin 2008). Naturally, dikes and

other structures could fail and flood the hinterland, but that aspect was not considered in

this article. Also, the situation when water floods the land behind structures through

culverts was not analysed. Protection from flood defences such as dikes, banks and other

earthworks, as well as sluices and weirs is included in the calculation.

The GIS analysis itself was performed using the ArGIS 10 software. Raster datasets

with information on elevation (CODGiK 2014) were combined to generate a complete grid

of the study area. The grid was then reclassified into two distinct classes: above and below

the analysed sea level. The result was a two-coloured map showing the land and the

inundation. The latter class was transformed into a vector polygon, and its connection with

the sea was investigated by selecting only those polygons that are intersecting with the

water at normal level. The resulting polygons were clipped with a mask representing Polish

borders in order to delimit the final area at country level. Further analysis included

intersections between inundated area for each water level and different layers representing

buildings, land types, etc. extracted from the topographic objects database (CODGiK 2016)
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as well as grouping the results into different systematic classes according to administrative

divisions.

2.3.2 SLR and storm surge scenarios

Sea level rise and storm surges were analysed in intervals of 5 cm, providing scenarios of

5, 10, 15, etc., cm up to 5 m above mean sea level. In this way, the exposure of population

and assets at different elevations could be assessed in detail. The 5-m value was chosen as

the rounded value of the maximum possible SLR indicated in the literature (1.4–2 m in

Rahmstorf 2007; Pfeffer et al. 2008) together with a 1000-year coastal flood (about ?2.5 m

MSL according to Wolski et al. 2014). Mean sea level along the Polish coast varies

slightly, with 1947–2006 average in Gdańsk being 7 cm higher than in Świnoujście

(Wiśniewski and Wolski 2009). As a minor simplification, the 500 cm ‘‘baseline’’ level of

all Polish tide gauges was used here as MSL, which corresponds to about ?0.10 m in the

European Vertical Reference System EVRS-2007 (Urbański 2012).

The results are also juxtaposed here with future sea level rise scenarios included in the

latest IPCC report (Church et al. 2013). Three scenarios are considered: the medium

projection for RCP4.5 and the lowest and highest of the projections (lower bound of

RCP2.6 and upper bound of RCP8.5). In those scenarios, water levels rise gradually to 28,

53 and 98 cm SLR by 2100 relative to 1986–2005 levels. However, Polish coast is subject

to the glacial isostatic adjustment, which causes a yearly uplift by about 0.4–0.5 mm

(Peltier et al. 2015). Increase in water levels is also uneven regardless of the movement of

the coast; satellite-measured SLR trend during 1992–2015 was between 4.2 and 4.3 mm

per year in the Baltic along the Polish coast; only in the far western part, it was slightly

higher, up to 4.5 mm per year (NOAA 2016). These two effects translate to a difference of

only a few centimetres in a perspective of a century. Bigger spatial differences in SLR can

be caused by ground subsidence, which is a very local factor; no large-scale data are

available on this matter. Therefore, IPCC scenarios were applied in the analysis without

modifications.

For the analysis of coastal floods, the return periods of storm surges were calculated.

They vary along the coast and lagoons; therefore, the return periods were calculated from

annual maximum water levels recorded at eight gauges during 1948–2007. To each station

(5 coastal, 1 in the Szczecin Lagoon and two on Odra river), the nearest basic adminis-

trative units were assigned. Water level data from Wiśniewski and Wolski (2009) were

used and fitted to Gumbel probability distribution; details on the methodology can be found

in Paprotny (2014).

2.4 Calculation of flood risk

Flood risk is a combination of three elements, as follows:

• Hazard, i.e. factor that can cause adverse effects, in our case sea level rise and coastal

floods (see previous section);

• Exposure, i.e. the inventory of elements that could potentially be affected by the

hazard;

• Vulnerability, i.e. the propensity of exposed elements to be adversely affected by the

hazard event (Kron 2005; Cardona et al. 2012).
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In this section, we present the methodology to calculate exposure and vulnerability in

order to obtain an estimate of risk caused by sea level rise and coastal floods in context of

SLR.

2.4.1 Calculation of exposure

Following Hallegatte’s (2012) framework on investigating impact of SLR on economic

growth, we analyse exposure to the following elements:

• Permanent losses of natural capital: market value of land, including an estimate of the

area of protected habitats,

• Permanent loss of physical capital: gross replacement cost of immovable and movable

fixed assets,

• Permanent loss of social capital: number of inhabitants.

Value of aforementioned assets was calculated here using 2011 data, the latest year for

which complete statistics required here were available. The primary source was the online

databases of the Central Statistical Office of Poland (CSO 2015). Values of land under

different types of use are an estimate of their 2011 market price. Average sale price

calculations made by CSO were used for arable land, meadows and pastures. Value of

forests was taken from estimates of the State Forests, the manager of the vast majority of

Polish woods (Ministry of Treasury 2012). Their calculations include both the value of

land parcels and the trees covering them. Value of areas covered by buildings, transport

infrastructure or non-built-up areas ready for construction was estimated using the relation

between the sale price of those types of land use and the sale price of arable land in

Germany in 2011 (Statistisches Bundesamt 2015). For other types of land use, numbers

were assigned based on governmental regulations on estimation of real estate value (Law

2004/207/2109). As a result, woodlands or bushes are assumed to be worth equal to poor-

quality arable land. Orchards were assigned the same value as arable land, while waste-

lands and other unutilized land were considered as equal to poor-quality meadows. Loss of

inland surface water was not taken into consideration. Summary of land values is presented

in Table 1. Agricultural build-up areas do not form a separate category in the topographic

database; it was assumed that build-up areas adjacent to arable land and permanent crops

fall into this category.

Table 1 Estimated commercial
value of land in 2011 per hectare,
in Zloty (the polish national cur-
rency, PLN)

4.12 PLN = €1

Land use Value (PLN per ha)

Built-up: services 4,294,000

Built-up: housing (dense urban) 2,802,000

Built-up: housing (scattered urban) 1,896,000

Transport areas, non-built-up areas 559,000

Built-up: agricultural 453,000

Built-up: industrial 444,000

Forests 37,976

Arable land, orchards 20,004

Woodlands and bushes 16,401

Meadows and pastures 14,259

Wastelands and other lands 12,337
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Information on buildings was compiled from several sources in order to calculate their

value relative to their area (Table 2). Value of housing is the average construction cost of

new houses as calculated by CSO. Stock of movable assets is difficult to estimate, and no

national statistics in this matter are available. However, the ratio between household

durable goods’ value and GDP is reported to differ only slightly between countries and

throughout modern history (Piketty and Zucman 2014). It was therefore assumed that the

total value in this category in Poland constitutes 35 % of GDP, which is the average ratio

in four countries (Canada, Germany, UK and USA) for which data are provided by Piketty

and Zucman (2014). GDP and housing area statistics from CSO were used in order to

obtain the amount of movable assets per m2 in 2011.

Commercial buildings were divided into three branches (industry, services and agri-

culture), and for each type, its value was calculated using the following formula:

V ¼ F � Ls

L� As

ð1Þ

where V is the value of a building per area in PLN, F is the value of fixed assets in Poland,

Ls is the corresponding land use area in the study area, L is the corresponding land use area

in Poland, and As is the total building area in the study area. Fixed assets estimates were

obtained from Eurostat (2015). Land use data for Poland is from CSO (2015), while for the

study area, the corresponding types of land use from the topographic database were used.

Finally, building area was extracted from the topographic database, taking into account the

multiple storeys several buildings contain.

2.4.2 Calculation of vulnerability

Assumptions on vulnerability of land and assets are presented in Table 3. In case of rising

average water levels, land and immovable fixed assets (i.e. buildings and structures) are

covered permanently by water and therefore lost completely. Movable fixed assets, which

include machine tools, household goods, vehicles or livestock, can be evacuated from the

endangered area given the gradual nature of SLR. Therefore, no losses in this category are

Table 2 Value of fixed assets per area in 2011 and damage functions

Type of building or structure Value of fixed assets Damage function

Immovable
(PLN per m2)

Movable
(PLN per m2)

Y—damage (%),
D—water depth (m)

Housing 3858 604 Y1 ¼ Dþ 18:77 �
ffiffiffiffi

D
p

Y2 ¼ 4:83 � Dþ 20:69 �
ffiffiffiffi

D
p

Industry 2057 1712 Y ¼ 27 �
ffiffiffiffi

D
p

Services 2678 923 Market services: Y ¼ 27 �
ffiffiffiffi

D
p

Non-market services: Y ¼ 30 �
ffiffiffiffi

D
p

Agriculture 393 166 Y ¼ 27 �
ffiffiffiffi

D
p

Transport infrastructure 436 – Y ¼ 100
3

For housing, Y1 is damage to immovable assets and Y2 is damage to movable assets
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assumed. In case of coastal floods, no losses are assumed for land, as water covers it only

temporarily. Some productivity of land may be lost and consequently its market value

could decrease; however, this aspect was not analysed here. Damage to crops is not

analysed too, as they are not considered fixed assets, similarly to stocks of produced goods.

Losses of fixed assets are calculated using damage functions, which relate losses to water

depths (Apel et al. 2009).

Damage functions, which relate water depth to the relative loss of assets, were applied

from Emschergenossenschaft/Hydrotec (2004), who created them using HOWAS database

of flood losses (Merz et al. 2004). They were selected for this study, because there are no

corresponding functions created from Polish empirical data. Additionally, they are similar

to damage curves created as a combination of various European methodologies by Hui-

zinga (2007) and suggested for use in countries without national damage functions. The

only exception is the damage function for transportation, which is a constant value rather

than a damage function. As can be noticed in Table 2, the equations differ for immovable

and movable housing assets, while for commercial activity, they are combined. Finally, the

value of transport infrastructure was taken from official risk calculations, according to the

Polish government’s methodology (Law 2013/104). Total value of losses for a building can

be described as:

R ¼ A� V � Y Dð Þ ð2Þ

where R is the total loss for a building in PLN, A is the building area (including all

storeys), V is the total value of the building per area, and Y(D) is the appropriate damage

function for water depth D (averaged within the building’s contour).

Additionally, the number of people affected by sea level rise and coastal floods was

estimated. Population data from the 2011 census (CSO 2015) provide information down to

settlement level. By combining these data with housing area from the topographic objects

database, it was possible to further disaggregate the data and obtain the average number of

persons per housing area in settlements and towns. All persons living in a residential

building even partially covered by water were assumed as being affected by the event.

Similarly, the amount of tourism traffic potentially lost was estimated by disaggregating

the number of tourists and nights spent in establishments (at basic administrative unit-

level) using the size of appropriate categories of buildings. For the purpose of this study,

‘‘tourists’’ refer only to persons staying overnight in collective accommodation, excluding

persons in camping sites.

Table 3 Vulnerability assumptions for sea level rise and storm floods

Asset Losses caused by…

Sea level rise Coastal flood

Land 100 % Nil

Immovable fixed assets 100 % Relative to water depth and type of asset

Movable fixed assets Nil Relative to water depth and type of asset
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2.5 Adaptation measures

Currently existing flood defences will be put under pressure from rising sea levels. In this

section, we outline the methodology to estimate costs of adaptation to the that phenomena.

We look at the most popular means of protection, namely dikes. We estimate the length of

flood defences using GIS as follows. Firstly, continuous flood zones that contain any

buildings are selected. Then, those zones are intersected with a layer representing water at

normal conditions (including channels and streams). The length of the intersection lines

between the layers was considered as the dike length required for full protection. Because

only flood zones with buildings are considered here, some land and pieces of infrastructure

will remain unprotected. However, these flood zones are very numerous, yet very small,

and would therefore seriously overestimate of the required investments in flood defences.

Dikes have a high marginal cost, which varies enormously depending on location

(Jonkman et al. 2013). Average investment in 1 km of dikes was 1.39 million PLN

(€337,000) in 2011, according to official statistics (CSO 2015). This value was used as the

‘‘fixed’’ investment value per km, adding 0.7 % for each centimetre of dike crest level, a

value used for cost optimization of flood defences in the Netherlands (Eijgenraam 2006).

Using annual sea level rise projections, yearly cost of raising the flood defences could be

calculated. It is assumed that an upgrade or new construction will be built overnight with a

50-cm safety margin and will be serve without further upgrades until the year 2100.

A different approach was used for analysing the adaptation to increased storm surge

heights. Protection standards of dikes are often chosen arbitrarily. However, it is possible

to calculate a flood defence standard in a given location that would be optimal from an

economic point of view. In this approach (Van Dantzig 1956; Eijgenraam 2006), invest-

ments in flood defences are added to flood damages during the same given period of time.

The sum of the two elements reaches a minimum at a certain dike crest elevation; this level

constitutes the optimal flood protection. It can be expected that the optimum will shift due

to sea level rise. Investments were calculated for each water level as described in the

previous paragraph. Risk to assets for each protection standard and SLR scenario was

obtained using the following procedure. Firstly, a Monte Carlo simulation was used to

estimate the annual losses due to coastal floods Di:

Di ¼
1

85

X

2100

t¼2016

Fwðt;iÞ �
Pt

P2011

þ Twðt;iÞ ð3Þ

where t denotes the year (2016–2100), i is the iteration in the Monte Carlo simulation,

Fw(t, i) is the value of buildings, and Tw(t, i) is the value of transportation infrastructure

affected at water level w(t, i). The latter is a sum of the random storm surge (sampled from

the Gumbel distribution) and cumulative sea level rise up to year t at a given scenario.

Additionally, the population size P in year t relative to year 2011 was used to approximate

the change in value of buildings. The procedure was repeated for each administrative unit

10,000 times and averaged. For each assumed protection level, the values of Fw(t, i) and

Tw(t, i) were set to zero if water level w(t,i) was below the dike height. 2011 prices and GDP

were kept constant, therefore assuming that the construction cost of dikes and wealth

relative to income will not change in the future, as it is very uncertain how those elements

will develop.

Additionally, the number of affected inhabitants per year was obtained similarly to (3):
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Ei ¼
1

85

X

2100

t¼2016

Pwðt;iÞ �
Pt

P2011

ð4Þ

where Pw(t) is the number of affected inhabitants under water level w(t,i) in our baseline

calculations for 2011. Future population numbers were derived using official projections

from CSO (2015) up to year 2050, with an extrapolation of the trend to up to 2100. Those

projections are at county level, with rural/urban breakdowns, and thus have far lower

resolution than the settlement data used in the baseline calculations. However, no other

local-scale demographic forecasts are available; it is therefore assumed that the population

in the flood hazard zones will change at the same rate as the population outside them.

3 Results

In this section, the consequences of coastal floods and sea level rise are presented. It should

be noted that whenever statistics of inundated area are mentioned in the next sections, they

do not include land covered by water under normal conditions. Also, all monetary values

are in the Polish national currency, Zloty (denoted PLN), in 2011 prices. The exchange rate

in 2011 was 4.12 PLN = €1. Firstly, we present the common socio-economic character-

istics of the flood zones for both sea level rise and coastal floods (Sect. 3.1). The estimate

of economic losses, which differentiates between the two phenomena, is presented in

Sects. 3.2 and 3.3. This is followed by an analysis of the temporal dimension of losses

(Sect. 3.4) and adaptation measures (Sect. 3.5). Finally, detailed results, as well as data

underlying the figures, can be found in the Supplement.

3.1 General results

Water inundates the study area at a different pace depending on the analysed scenario. The

flooded area encompasses 342 km2 at ?0.5 m MSL, 1662 km2 at 1.5 m up to a maximum

of 3323 km2 at 5 m (Fig. 2a). The area at risk grows most dynamically between ?0.3 and

?1.6 m MSL with an average of almost 13 km2 for every cm of water level rise. The

highest growth of 371 km2 is recorded between ?1.2 and ?1.3 m MSL scenarios

(Fig. 2b). Besides that, two other peaks at intervals of 0.8–0.9 and 0.9–1.0 m are observed,

Fig. 2 Left Cumulative numbers of exposed land, inhabitants and buildings by water level. Right
increments of exposed land, inhabitants and buildings by 10-cm intervals ending with the water level given
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covering 132 and 212 km2, respectively. In the ?1.5-m MSL scenario, the flooded area

already reaches half the size of the ?5-m hazard zone, which indicates a significant

slowdown in the growth dynamic of the flood zone at higher water levels. Up until the very

last scenario, it increases by 3–5 km2 per cm on average.

The number of affected buildings and inhabitants does not follow the aforementioned

tendencies. Urban areas as well as other dense inhabited areas are either protected or

generally not located at high-flood-risk zones. This results in an insignificant number of

endangered buildings and people up to ?1 m MSL. Crossing this barrier, in the range from

?1.0 to ?2.5 m MSL, the number of both inhabitants and buildings in the hazard zones

soars (Fig. 2b). For buildings, the rate of increase in hazard peaks in the 1.2–1.3 m interval

and significantly slows thereafter. Increase in the number of persons affected reaches

maximum in the 1.7- to 1.8-m interval and eases only above ?3 m MSL.

As can be seen in Figs. 3 and 4, flood hazard in the Polish coastal zone concentrates in

the Vistula and Odra rivers’ mouths. These estuarine regions encompass approximately

75 % of the total flooded area at all scenarios. In the area spread between those two regions

along 300 km of coastline, the flood zones cluster around numerous coastal lakes. Other

locations are generally well protected by dunes and cliffs. It should be noted that some

Fig. 3 Percentage of exposed area by water level and town/municipality
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areas can also become surrounded by water without being directly flooded, e.g. the Hel Spit

could be severed from mainland at a water level of ?2.4 m MSL, for instance.

3.1.1 Population

Inhabitants residing in rural municipalities or rural parts of rural–urban municipalities are

disproportionately exposed to rising water levels. Those units contain 87 % of land area in

the region, but only 18 % of its population. Yet, 51 % of inhabitants within ?1 m MSL

hazard zone live in rural areas. More persons are at risk in urban municipalities than in the

rural type only above ?1.7 m MSL. At ?5 m MSL, the proportional of rural inhabitants at

risk is still higher (26 %) than the regional average. The population in main urban centres

comes at risk in larger numbers only above ?2 m MSL. Gdańsk, located in the Vistula

estuary, comprises more than a fifth of inhabitants at risk in scenarios above ?2.5 m MSL.

Two other urban municipalities in the Tricity are to a vast extent less exposed, with almost

no inhabitants in the flood zone below that value. Świnoujście comes second, with

exposure soaring above ?1.5 m MSL, putting the city’s contribution to affected inhabi-

tants at 10 % of regional total.

Fig. 4 Percentage of exposed inhabitants by water level and town/municipality
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3.1.2 Land

The structure of land in the hazard zones is similar to the general composition of land use

both in the region and country. Figure 5 presents the land use divided by five major groups.

Barren land, the smallest group representing mainly beaches and dunes, covers more than

5 % of the total flooded area only up to ?0.2 m MSL. This proportion decreases to 0.7 %

by ?5 m MSL. Grasslands, which are mostly swampy meadows and pastures, constitute

more than 85 % of the total area at water levels below ?0.2 m MSL. It remains the biggest

land use group at risk until ?1.25 m MSL, when croplands come forward. The latter

constitute around 43 % of all hazards zones above ?1.25 m MSL. Natural vegetation

represented by woodlands and bushes contribute to about 11–16 % of land at risk, except

for areas below the ?0.4 m MSL. That is less than half of their share in the region (32 %).

Finally, artificial surface category is very diversified, as it comprises areas covered by

buildings, infrastructure, landfills and similar human-made structures. Its share slowly

increases from around 1 to 6 % by ?5 m MSL. In general, industrial areas are more

exposed than services, especially industrial installations and utilities. Agricultural build-up

areas are slightly more at risk than single-family residential zones located further away

from croplands. Multi-family residential areas are among the least exposed, with only

1.2 % potentially at risk at ?1.5 m MSL (single-family—5.8 %).

It can be added that national parks, landscape parks, natural reserves and Natura 2000

areas also cover a substantial part of the region and are disproportionately exposed: 45 %

of their land area is below ?5 m MSL. It is caused by the specifics of protected land, which

consists predominantly of low-lying wetlands, grasslands and forests. In total, 52 % of land

in the ?1 m MSL zone is under some form of protection, including 77 % of grasslands and

90 % of forests.

3.1.3 Buildings and infrastructure

The topographic objects database used for this analysis distinguishes 22 categories of

buildings. Figure 6 compares the exposure of selected groups of buildings. Below ?0.7 m

MSL, farmhouses are the main type of buildings in the hazard zone, followed by single-

family houses. The latter are the biggest group at risk by floor area for virtually every other

scenario. Multi-family houses grow in number quickly above ?1.2 m MSL, but it is not

until ?2.5 m that their floor area exceeds that of farmhouses. This illustrates how areas

Fig. 5 Exposed area by major groups of land use classes: total area (left) and percentage breakdown (right)
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outside urban centres, where single-family houses and farmhouses dominate, are vastly

more at risk than densely populated urban areas. The proportion of inhabitants living in

exposed single-family residences is almost 90 % at ?1 m MSL and decreases at more

extreme scenarios, before converging with houses containing two and more flats at ?4.1 m

MSL. Healthcare buildings are at the beginning among the least endangered group, with

barely 2 % located within the ?2 m MSL hazard zone. This percentage, however,

increases vastly thereafter, and buildings used for health services end up as one of the most

exposed groups. Other assets disproportionately at risk include warehouses and other

storage facilities as well as industrial buildings. On the other end of the scale, schools and

trade/services buildings are among the least exposed in both number and floor area.

Tourism is unlikely to be much affected directly. Virtually no tourist traffic (measured

both by the number of nights spend or number of visitors) is endangered below ?0.9 m

MSL, near the upper range of SLR projections up to 2100. Tourist accommodation other

than hotels is safe at low water levels, but ultimately becomes the most exposed in all

scenarios above ?1.45 m MSL. In case of hotels, the percentage is lower, 48 % compared

to 68 % for other accommodation establishments, though it still comes at second place in

the 5-m hazard zone. In total, 62 % of tourist nights in the region during 2011 were spent in

buildings lying below ?5 m MSL.

Many buildings in the hazard zones have substantial intangible value. Buildings used

for religious practices (mainly catholic churches) are among the least endangered of all 22

categories of buildings analysed. Almost 4400 buildings in the region (1 % of the total) are

included in the national heritage sites’ list. Below ?2.4 m MSL, the fraction under threat is

narrowly smaller than buildings in overall, but for higher levels, the opposite is true.

Museums and libraries are slightly less likely to be in the hazard zone below ?1.7 m MSL.

However, at ?5 m MSL, 47 % of them are at risk; only tourist accommodation buildings

have a larger fraction in danger.

Transport infrastructure is generally more exposed than buildings. Paved roads are the

most exposed type up to ?2.3 m MSL; above that value tracks come first, while airstrips

are of least concern in all scenarios. For roads, the magnitude of exposure decreases with

the increase in its importance. Motorways can only be flooded by water levels rising above

?2.6 m MSL. Meanwhile, 5 % of expressways could be affected in the ?2.5 m MSL

hazard zone, followed by national and regional roads (both 12 %), county roads (15 %),

municipal roads (16 %), local and private roads (19 %) and company-owned roads (39 %).

Fig. 6 Exposed buildings as a percentage of all buildings in the category in the study area
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Finally, 18 % of railways are exposed at ?2.5 m MSL, albeit the figure is somewhat

exaggerated due to the numerous sidings located in ports.

3.2 Economic impact of sea level rise

Sea level rise causes total loss of land and immovable assets in the affected area. At the

lower end of IPCC’s SLR projections (?0.3 m MSL), potential losses are estimated to

amount to 1.1 bln PLN (0.07 % of 2011 GDP), while on the higher end (?1 m MSL), they

soar to 9.6 bln PLN (0.63 %), as indicated in Fig. 7a. Total value of assets in the ?5 m

MSL zone is 160 bln PLN (10.5 % of 2011 GDP). Notwithstanding, the structure of assets

at risk does not change significantly with rising water levels. Figure 7c presents the

breakdown by economic activity for SLR. Assets used for agricultural and forestal pro-

duction dominate at water levels below ?0.9 m MSL, as low-lying grasslands, arable land

and forests near estuaries and coastal lakes would be flooded first. At higher elevations,

housing dominates as the main exposed asset, with the proportion reaching 40 % at

?0.9 m MSL and gradually rising to a maximum of 53 %. Industrial assets fluctuate

around 10 %, while the percentage associated with the services sector soars to slightly

above 20 % at ?1.8 m MSL and maintains that level for the remaining scenarios. In

agriculture, land is the main source of losses. For other economic activities, losses are

predominantly to buildings, with those used for storage worth most up to ?1.3 m MSL; for

Fig. 7 Potential losses due to sea level rise: cumulative total values (a) and structural breakdown by
activity (c). Potential losses due to coastal floods: cumulative total values (b) and structural breakdown by
activity (d)
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manufacturing and utilities between ?1.3 m and ?2.4 m MSL; and tourist accommodation

above that value. In total, land and buildings are almost equal in value up to ?0.85 m

MSL, when the losses associated with the latter increase sharply. Buildings constitute more

than 60 % of losses at water levels above ?1.45 m MSL and more than 70 % above

?2.4 m MSL, before peaking at 74 %. The percentage of potential losses connected with

infrastructure slowly increases with the water level, but generally stays around 10 %.

3.3 Economic impact of coastal floods

Coastal floods have a different impact on assets than sea level rise. As noticed in Table 3,

losses of fixed assets depend on damage curves, while no land is lost permanently.

Therefore, economic losses due to coastal floods exhibit a rather exponential behaviour

(Fig. 7b, d). By contrast, damages caused by SLR resemble more a logarithmic curve. The

total losses are estimated at 1.4 bln PLN (0.09 % of 2011 GDP) for a 1-m surge and 16.6

bln PLN (1.1 %) for a 2.5-m surge, provided that it occurs in the entire coastal zone

(Fig. 7b). The breakdown of those losses by economic sectors is even more stable at

various water levels than in case of SLR (Fig. 7d). Apart from water levels below the

uncertainty range, where merely a few buildings or roads could be affected, housing

dominates at around 40 % of all losses. Industry comprises around 20 % of total, while the

services sector hovers up a growing fraction from less than 10 % (below ?1 m MSL) to

23 % (?5 m MSL). Assets in the agricultural sector are worth little and therefore are

responsible for only a small percentage of losses (only 4 % at 1 m, 2 % at 3 m). Infras-

tructure contributes significantly at low water levels (more than half of losses below

?0.5 m MSL), but less so for other scenarios; the percentage value drops below 30 % at

?1.25 m and below 20 % at ?1.9 m, ultimately reaching 7 % at ?5 m MSL.

Additional feature of coastal floods that is different than SLR is its recurring character.

In Fig. 8, we present number of affected inhabitants and assets, where surge heights have

been recalculated as return periods. Those return periods were combined with different

SLR scenarios. It can be clearly seen that even small values of sea level rise decrease

significantly the return periods of coastal floods. A total of 100,000 persons are in the

hazard zone of a 500-year coastal flood, but with a 30-cm SLR (at lower end of IPCC

projections), it becomes a 90-year event. The return period further decreases to 30 years

with a 50-cm SLR and as little as 2.5 years with a 1-m SLR; at 2 m, SLR itself would

Fig. 8 Population (left) and assets (right) exposed to coastal flood by return period and sea level rise (SLR)
scenario
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affect that number of people. Even a 10,000-year event becomes only a 50-year event at

the upper range of IPCC projections. Potential economic losses also increase signifi-

cantly—a 100-year event could cause 6 bln PLN (0.4 % of 2011 GDP) of damages under

current conditions, but 19 bln PLN (1.2 %) with 1 m SLR.

3.4 Temporal dimension of losses

Previous sections looked at the total potential losses due to SLR and coastal floods at

various scenarios, based on the distribution of land, population and assets in 2011. In this

section, we analyse how those losses would be distributed over time according to IPCC sea

level rise projections, and what would be the effect of future demographic evolution.

Sea level rise scenarios from the IPCC range from ?0.28 (low) through ?0.53 (med-

ium) to ?0.98 m (high) increase in global MSL by 2100. In Fig. 9a, the average yearly loss

of assets (land, buildings, infrastructure) per decade is presented. It is assumed that value of

assets will be constant relative to GDP. For comparison, annual expenditure on coastal

protection (1) and flood defence (2) is provided (2004–2014 average; CSO 2015). The

former corresponds to a mere 38 million PLN, but the lowest of the IPCC projections does

not cause damage higher than that. In the medium scenario, damages exceed those costs so

only in the 2050 s. In the most severe projection, damage from SLR increases sharply in

the end of the century, to about 0.03 % of GDP per year, which equals about half of the

yearly central government expenditure on disaster relief in Poland (2004–2014 average;

CSO 2015).

Adding demographic evolution to the picture (Fig. 9b) shows that those values could

change. The graph presents demographic evolution from 1960 to 2100 by hazard zone,

using data by basic administrative unit for 1960–1988 from Eurostat (2015) and

1999–2014 from CSO (2015), together with future projections. Until recently, the popu-

lation in the coastal zone increased faster than the national total. However, CSO (2015)

projects that the population in the hazard zone corresponding to the low and medium

scenarios will decrease substantially by the end of the century. Meanwhile, the population

within the reach of the high scenario of SLR will increase in the medium term, decreasing

slightly towards year 2100. Additionally, the population currently endangered by ?1 m

MSL is 49 % urban, but this value will drop to 39 % by 2050. This is due to urban sprawl,

i.e. the migration of wealthier people from cities to the surrounding rural municipalities,

Fig. 9 Left potential losses due to inundation from sea level rise (annual averages by decade) with a
comparison to average expenditure on (1) coastal protection (2) flood defences (2004–2014; CSO 2015).
Right estimated population change by hazard zone (water level in m) relative to 2011 census data
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particularly around the Tricity. It should be noted that we assume here that the population

in an administrative unit will change by the same factor both in ‘‘endangered’’ and ‘‘safe’’

zones. It is difficult to conclude whether the population is likely to relocate towards more

flood-prone areas. However, 3 % of buildings located below ?1 m MSL were under

construction at the time of the last update of the topographic objects database, slightly

more than the percentage for the entire study area.

3.5 Adaptation

Adaptation to inundation caused by SLR could be done by raising flood defences. Full

protection can be cost-effective, as indicated in Fig. 10a. At ?0.5 m MSL, investing 83

million PLN saves almost 1.5 bln PLN of damages (almost 0.1 % of GDP), though loss of

land worth 267 million PLN still occurs. By ?1 m MSL, investments rise to 1.9 bln PLN,

but 7.3 bln PLN (0.5 % of GDP) is spared. Annualized, the costs of flood defences and loss

of land are small. In Fig. 10b, they are compared with annual coastal protection expen-

diture (grey line), and until the 2080s, the adaptation costs are smaller. Also, even the costs

in the 2090s in the high scenario of SLR are a quarter of current yearly investments on

dikes (relative to GDP), and only 7 % of annual disaster relief spending in Poland. Full

protection at ?1 m MSL would require 654 km of new/upgraded dikes (Fig. 10c), of

which about a third in the area of responsibility of the maritime administration and the rest

around inland waters maintained by water management authorities. This proportion mostly

Fig. 10 Investments in defences against sea level rise, remaining damages (losses) and savings (a),
annualized investments plus remaining losses for SLR scenarios; 1—annual coastal protection expenditure
(b), length of flood defences and its costs needed for full protection (c), expected damages (2016–2100 total)
and investments in flood defences (d)
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holds for other water levels, while the length of defences for coastal flood protection

increases to 1000 km at ?1.2 m and 2000 km at ?1.8 m MSL. Still, the defences could be

more streamlined, also by enclosing some smaller channels and building pumping stations.

At least a tenth of the dikes can be replaced with around 20 stations, saving investment

costs, though increasing maintenance costs.

In Fig. 10d, the investments and expected losses during 2016–2100 are presented.

Under current conditions, the economically optimal flood defence protection level for the

entire coast is ?2.06 m MSL (excluding the safety margin). When SLR is taken into

account, the protection level increases to ?2.35 m MSL in case of low SLR and ?2.81 m

MSL in the highest scenario. The cost estimate is also a higher: 0.79 % of GDP in the

highest scenario instead of 0.62 % (both figures including about 0.05 % of GDP in

damages over 85 years). Those costs could be optimized further, if instead of one pro-

tection standard for the entire coast, we make this calculation at the level of basic

administrative units. Under present climate, the adaptation costs and losses amount to

0.39 % of GDP, and with SLR, they increase to 0.49–0.67 %. However, this calculation

does not include potential loss of life to coastal floods, as it is not possible to assign an

economic value to this factor. Nevertheless, the described protection levels reduce the

expected number of affected inhabitants to 80–120 per year.

4 Discussion

4.1 Uncertainties

As with all studies on SLR and coastal floods, also the results presented in the previous

section have their limitations; there are also several sources of uncertainty. Many of those

are described in Sect. 2. The most crucial is the accuracy of the representation of the

terrain and flood defence structures. The effects of the DEM’s nominal accuracy (20 cm in

most of the area) are presented in Fig. 11. The uncertainty is large around ?1 m MSL, but

still improved compared to some other, similar studies.

The data used to derive the exposure of assets also carry some uncertainty. Actual

damage depends largely on buildings’ construction characteristics and type of preparations

made before the flood (Apel et al. 2009). Additionally, the equations used here were

developed in Germany, since there is no methodology based on Polish empirical data. For

the sake of illustration, in Fig. 12 we compare the results of coastal flood damage esti-

mation using Polish government methodology (Law 2013/104), generic damage functions

for European countries from Huizinga (2007) and a Dutch methodology made by Rijk-

swaterstaat (Kok et al. 2004). Some large discrepancies could be observed, even though it

is partially a result of a different classification of assets in those methods.

We also use a simplification commonly applied in both to local and global studies that

SLR is the only influence of climate change on extreme water levels (Xu and Huang 2013;

Hinkel et al. 2014; Muis et al. 2015). Yet, recent modelling studies indicate that changes in

wind regime will mostly cause a further increase in storm surge maxima, also in the Baltic

(Gräwe and Burchard 2012; Vousdoukas et al. 2016). Furthermore, some dynamic effects

of the sea level rise were omitted. Erosion and sedimentation could substantially change

the level of hazard. In the context of flood hazard, the important information is whether

erosion will destroy the barriers separating the inland from seawater. We did not analyse

those aspects for a number of reasons. For one thing, in previous studies (e.g. Zeidler 1997;
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Bosello et al. 2012), the issue was investigated as a separate problem than flooding, i.e.

changes in topography were not included in the delimitation of hazard zones. Thus, a

‘‘static’’ approach gives us comparability with the results of those previous studies,

especially since the focus of the paper is on inundation caused by sea level rise and coastal

floods. Additionally, there is substantial variation along the Polish coast of erosion and

sedimentation rates, and their impact on local morphology is still being investigated (Deng

et al. 2014; Furmańczyk et al. 2014). Furthermore, the aforementioned studies considered

Fig. 11 Uncertainty in delimitation of the area affected by sea level rise, with comparison to two previous
studies

Fig. 12 Comparison of potential damage estimates from a 1- and 2-m storm surge using three alternate
methodologies from the Polish government (Law 2013/104), JRC Joint Research Center (Huizinga 2007)
and RWS Rijkswaterstaat (Kok et al. 2004)
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coastal erosion as a much smaller source of losses than inundation of land by sea level rise

and, foremost, coastal floods.

Similarly, the increase in groundwater levels caused by SLR is not analysed here,

though this may result in inundation of low-lying areas otherwise fully protected from

seawater. This aspect has not yet been properly investigated (Rotzoll and Fletcher 2013),

especially in relation to the Polish coast. Salt intrusion is yet another issue, though the

previous studies (Pluijm et al. 1992; Zeidler 1997; Bosello et al. 2012) considered potential

damages to be minimal, and this aspect does not influence the level of flood hazard.

Another concern is the use of only eight tide gauges for the calculation of return periods

the analysis of flood protection. In the open coast is not a large concern, as the difference

between gauges in the 100-year return period is only 12 cm, but inaccuracies occur in the

Vistula and Odra rivers mouths as well as the coastal lagoons. Furthermore, the ‘‘bathtub

fill’’ method exaggerates storm surge hazard. An actual overtopping of flood defences

would mostly cause inundation of a much smaller area than indicated here, since the peak

of the surge lasts only a short period of time. Breilh et al. (2013) estimates that the static

method performs well for areas located no more than 3 km from the coast or estuary. In our

case, around a third of the flood zone is within that limit for most scenarios (35 % for

?0.5 m, 31 % for ?1.5 m, 33 % for ?2.5 m MSL). However, the proportion of exposed

buildings in the 3-km zone increases from 8 % for ?0.5 m to 39 % for ?1.5 m and 53 %

for ?2.5 m MSL.

4.2 Comparison with previous studies

Our results can be contrasted with two studies that analysed impacts of sea level rise

specifically on the Polish coast. Table 4 provides such a comparison, together with the

estimated uncertainty of the results of this study (i.e. ±20 cm accuracy of the DEM and

±20 % accuracy of assets value and population). Even taking the maximum values from

our results, there is a substantial difference in estimates of exposure of inhabitants and

assets. The primary reason is methodological: flood zones in Rotnicki and Borówka (1991)

were delimitated without taking into account numerous barriers between the sea and low-

lying areas, which was not possible at the resolution of their source material. Rotnicki et al.

(1995) provided results for only one hazard zone of ?2.5 m MSL apart from identifying

assets lying below sea level. According to the authors, the 2.5-m contour represents the

water level of a 100-year storm surge (1.5 m) superimposed on top of 1 m SLR. As

presented in Table 4, the flooded area calculated by Rotnicki et al. is about 18 % larger

than our results indicate. The difference increases when analysing the number of exposed

inhabitants. Rotnicki et al. put it at almost 300,000 persons, while in this study, it is nearly

50 % lower. It should be noted that study refers to demographic situation in the late 1980s,

but the Polish population numbers barely changed since then. Such a big difference can be

explained by the fact that densely populated areas are mostly well protected by flood

defences, which were not taken into account in that study.

A complementary study called VA’92 (Ziedler 1997) provides data for three flood

zones, namely ?0.3, 1 and 2.5 m MSL and for two time periods: 1995 and 2025. As given

in Table 4, the inundated area is six times larger at ?0.3 m MSL in VA’92 compared to

this study, but the difference decreases with higher water levels, converging at ?2.5 m

MSL. Number of inhabitants at risk is substantially lower than in VA’92, while the value

of assets is even more so. At the time of that study, Polish population was forecasted to

increase in the future, hence the big difference for the 2025 scenario; currently, the pop-

ulation is expected to decrease. Particularly striking is the difference in relative economic
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losses, estimated at 0.6 % of GDP, while VA’92 study gives an extremely high value of

35 % for 1995, forecasted to decrease to 15 % by 2025. That study also looked at adap-

tation and estimated that very large investments will be needed: Table 4 compares the cost

of providing full protection by building and upgrading dikes. Zeidler’s study does not give

all information, but notes that 350 km of defences would be necessary to protect the Odra

estuary against 30 cm SLR, and 604 km for 1 m SLR and at least the same amount for the
_Zuławy area; in the latter scenario, Pluijm et al. (1992) gave a value of 699 km. In our

analysis, the figures are 10 and 654 km, respectively, for the entire coast. This is because

we include in the delimitation of hazard zones the majority of existing defences, in contrast

to the other study which omitted most of them.

More recently, an analysis of impacts of SLR in Europe using DIVA model was carried

out by Bosello et al. (2012). For a comparable scenario (?0.95 m MSL), it gave an

estimate of inundated area that is four time higher than in this study. Yet, it has put the

value of inundated land at only 0.03 % GDP in contrast to our estimate of 0.15 %, though

the former figure refers to the projected economic situation in 2085 instead of the current

situation. That study also expects that rising waters will cause the GDP to drop by 0.046 %,

Table 4 Impacts of sea level rise in Poland: comparison of results from this analysis with VA’92 study as
reported by Zeidler (1997) and a study by Rotnicki et al. (1995)

Category Water
level
(m)

This study Zeidler (1997) Rotnicki et al.
(1995)

Reference period 2011 1995 2025 ca. 1990

Flooded area (km2) 0.30 155.2 (16.4–341.8) 845.1 845.1 –

1.00 885.0 (541.3–1,093.4) 1727.7 1727.7 –

2.50 2278.4 (2178.4–2376.5) 2203.3 2203.3 2696.7

Persons affected 0.30 1777 (0–3362) 40,860 64,600 –

1.00 19,966 (4245–33,432) 146,040 230,600 –

2.50 167,503 (112,497–230,672) 234,840 371,600 297,135

Value of assets at risk
(bln PLN at 2011
prices)

0.30 1.1 (0.1–2.2) 47.8 78.1 –

1.00 9.6 (2.5–15.9) 223.2 366.7 –

2.50 80.9 (55.3–107.6) 366.7 574.0 –

Value of assets at risk (%
GDP)

0.30 0.1 % (0.0–0.1 %) 7.5 % 3.1 % –

1.00 0.6 % (0.2–1.0 %) 35.0 % 14.6 % –

2.50 5.2 % (3.6–6.9 %) 57.5 % 22.9 % –

Railway lines (without
sidings) affected (km)

0.30 2.4 (1.4–3.1) 35 35 –

1.00 25.5 (7.7–28.6) 180 180 –

2.50 160 (138–185) 219 219 347

Cost of dikes for full
protection (bln PLN at
2011 prices)

0.30 0.02 (0.003 to -0.1) 15.9 27.9 –

1.00 1.9 (0.7–3.7) 28.7 62.1 –

2.50 10.2 (7.6–13.1) – – –

Cost of dikes for full
protection (% GDP)

0.30 0.001 % (0–0.007 %) 2.5 % 1.1 % –

1.00 0.1 % (0.05–0.2 %) 4.4 % 2.5 % –

2.50 0.7 % (0.5–0.9 %) – – –

Cost of dikes in Zeidler’s study was calculated using its earlier iteration (Pluijm et al. 1992)
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which is in line with our estimate of a 0.041 % loss in commercial fixed assets. Meanwhile,

Hinkel et al. (2010) estimated the expected number of inhabitants affected by coastal

floods (without adaptation, but including demographic developments) as 30,000–60,000

per year in 2100 assuming a modest sea level rise of 35–45 cm. For comparable water

levels, we estimate the expectation at about 29,000–35,000 persons.

In order to further assess the impacts of quality of data on our results, we have juxta-

posed them with official flood hazard maps (KZGW 2015). Those studies were prepared

for selected parts of the coast, utilizing two-dimensional hydrodynamic modelling and

locally collected data, such as detailed surveys on flood protection structures and admin-

istrative registers and databases. They mostly cover a single 500-year flood scenario, which

translates into water levels of 1.7–3.0 m above MSL depending on location. Most of those

maps present very similar flood zones, with the main exception being the _Zuławy Wiślane

area, which is protected by a more elaborate flood defence system of pumps, sluices and

weirs. Table 5 presents estimates of inhabitants exposed to coastal floods in the main

coastal cities in Poland. Scenario A denotes our approximation of the KZGW’s storm surge

scenarios. In the KZGW maps, water level is spatially variable, because a hydrodynamic

model was applied to calculate the effects of surges. The results show that the difference

between our results and the official maps is mostly small, though in every case, our

estimates of the number of inhabitants exposed are higher. However, part of the difference

could be the effect of different sources of demographic data used in both studies. KZGW

used detailed data from the population register instead of disaggregated estimates that are

used here. In Table 5, we also include the number of exposed inhabitants using our

calculations of return periods (B). They are mostly lower than KZGW scenario, which is

probably caused by inclusion of a larger number of water level observations and different

Table 5 Impacts of coastal floods in selected major coastal cities

City Population in 2011
(‘000s)

Water level (m) Exposed population (‘000s)

A B This study (A) This study (B) KZGW maps

Szczecin 410.1 1.85 1.63 2.5 1.7 1.8

1.60 0.99 1.6 1.1 1.3

Police 34.0 1.75 1.63 0.2 0.2 0.1

Świnoujście 41.5 2.60 1.93 15.4 7.7 14.1

2.30 1.21 11.2 4.2 9.6

Kołobrzeg 47.1 2.00 1.98 0.7 0.6 0.3

Ustka 16.4 2.60 1.85 1.2 0.5 0.8

Gdynia 249.1 2.35 1.96 0.2 Nil 0.0

Sopot 38.7 2.50 1.96 1.3 Nil 0.2

Gdańsk 460.3 2.50 1.96 38.4 14.7 34.7

2.10 1.20 22.3 7.0 20.0

Elbląg 124.7 1.40 1.96 2.0 3.0 0.7

Water level in the table is (A) an approximation of KZGW’s 100- or 500-years flood scenarios and (B) our
calculation of 100- or 500-year coastal flood
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methodology of return period calculations in that study. In effect, our estimate of the

number of affected inhabitants for a comparable return period is lower.

5 Conclusions

In this paper, we have undertaken a broad analysis of potential impacts of inundation

caused by sea level rise and coastal floods in the Polish coastal zone. Its aim was to

increase the accuracy and level of detail of country-wide risk estimates, covering both

population and economics, compared to currently available studies. This was made pos-

sible by recent developments in the national stock of spatial data. The most important

findings of the study are:

• Impacts of SLR, as well as adaptation costs to SLR, will be much smaller than

indicated in previous studies. 1 m SLR would affect directly 20,000 inhabitants and 9.6

bln PLN of assets (0.6 % of GDP), while the cost of increasing flood defences for full

protection of the population would be 1.9 bln PLN.

• Annualized, adaptation costs and remaining losses would be equivalent of a fraction of

average coastal protection budget (about 0.0025 % of GDP); only in the highest IPCC

projection, the budget would have to be more than doubled by the 2080s.

• Coastal floods will increase substantially in frequency due to sea level rise. Half-meter

SLR will double the number of inhabitants and assets in the 100-year flood zone, while

1 m SLR will more than triple it. Economically optimal flood defences would cost

0.39 % of GDP at current climate conditions, and 0.49–0.67 % of GDP within SLR

scenarios indicated by IPCC.

• Rural population would be proportionately much more exposed than inhabitants in

urban areas. Assets used in agricultural production are the most exposed category

within the range of IPPC projections of SLR. For higher SLR values and coastal floods,

housing comprises the biggest percentage of assets at risk, at about 40 %.

• SLR will have very limited direct impact on the regionally important tourist industry.

However, the beaches and natural reserves which draw the visitors are among the most

vulnerable: more than half of the land in the ?1 m MSL hazard zone is under some

kind of environmental protection.

But again, one should bear in mind that several simplifications have been used in this

study and more research is required, especially on coastal flood scenarios, damage curves,

future climate, population and economic projections. More advanced modelling techniques

that take into account dynamics of storm surges and coastal processes (erosion and sedi-

mentation) are yet to be used in the Polish coastal zone.
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