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Abstract Due to the softening behaviour of quasi-
brittle materials, in particular the localisation of ini-
tially diffused cracking, convergence problems are
often found using an iterative procedure, such as the
Newton–Raphson method. This is why a new non-
iterative procedure is adopted in this paper, which
is inspired by the sequentially linear approach (SLA)
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However, several important differences between the
present approach and the SLA are presented. In the
present model, multi-linear material laws are adopted
such that non-linearities occur only due to changes in
loading/unloading states. An incremental solution is
obtained until non-convergence occurs, upon which a
secant approach is used in a corresponding step. The
update of the stiffness in the secant approach is based
on information obtained from the previous incremental
solution. This method is applied to: (i) softening mate-
rials, within the scope of the discrete crack approach,
and to (ii) hardening materials. As a consequence, con-
versely to the smeared crack approach adopted in the
SLA, no mesh size sensitivity problems are obtained and
there is no need to adjust material parameters. Several
numerical examples are shown in order to illustrate the
proposed formulation.

Keywords NIEM · Fracture · Non-iterative
procedure · Sequentially linear analysis

1 Introduction

The use of iterative procedures for the nonlinear analy-
sis of structures, namely the Newton–Raphson method
and the Arc Length algorithm, often lead to conver-
gence difficulties. The numerical simulation of the
softening behaviour of quasi-brittle materials, such
as concrete and masonry, associated to the localisa-
tion of microcracking into stress-free cracks, is still
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challenging. Moreover, apart from fracture, reinforced
concrete exhibits several other nonlinearities such as
concrete crushing, the bond-slip between concrete and
reinforcement and plastic behaviour of steel reinforce-
ment, which imply the use of many iterations and a large
number of steps, thus a considerable amount of time.

In this paper, two new non-iterative procedures are
presented for the numerical analysis of concrete struc-
tures. These are incremental methods which, whenever
critical bifurcation points are found, make use, on that
particular load step, of a total/secant approach inspired
by the Sequentially Linear Approach from Rots and
co-workers (Rots 2001). In this manner, it is possible
to analyse reinforced concrete structures until failure,
keeping the advantages of an incremental procedure, in
which material memory is kept, and the efficiency of
the total analysis to overcome convergence difficulties.
The paper is organised as follows: in the next section a
small literature review on non-iterative methods is first
presented. Next, the adopted non-iterative procedures
are introduced. The numerical examples are presented
in Sect. 3.

2 Non-iterative procedures

It is generally assumed that the use of iterative proce-
dures (Crisfield 1984), such as the Newton–Raphson
method with or without the coupling to an arc-length
method, are unwieldy and, in some cases, unable to
provide a converged solution. As a consequence, other
methods have been developed which: (i) either com-
pletely avoid iterations (Yamada et al. 1968; Rots et al.
2008; Xing and Zhang 2009) or (ii) minimise their use
(Oliver et al. 2008).

The sequentially linear approach (SLA) was devel-
oped by Rots (2001) and is an event-by-event strategy. It

is a secant stiffness based method that does not require
iterations and that has been successfully applied within
the scope of the smeared crack approach. In the work
presented by Graça-e-Costa (2005), Graça-e-Costa and
Alfaiate (2006), this procedure was extended to the dis-
crete crack approach, using strong embedded discon-
tinuities to model concrete beams both internally and
externally reinforced. These beams were first loaded
until a certain level of prescribed damage was attained,
repaired and strengthened with externally bonded steel
plates glued with epoxy, and reloaded until complete
failure of the specimen occurred.

In the work previously referred to, good numeri-
cal results were obtained concerning both load dis-
placement curves and crack prediction. In the SLA,
the update of the secant stiffness gives rise to a “saw-
tooth” stress-strain envelope, leading to deviations of
the dissipated energy with respect to a standard smeared
crack approach. Furthermore, with this first non-reg-
ularised version of the SLA, the consistency condi-
tion is often violated since an increase of damage may
occur on material points which no longer stay on the
limit surface. In order to obtain objective results with
respect to the mesh, as well as to overcome the lack
of consistency, the material law was converted into a
“saw-tooth” stress-strain law, which provides the cor-
rect energy dissipation (Rots et al. 2008) (see Fig. 1).

This method has been successfully applied to
masonry structures (Rots 2001; Rots et al. 2008), rein-
forced concrete beams (Graça-e-Costa 2005; Graça-e-
Costa and Alfaiate 2006), composite beams (Billington
2009), concrete beams exhibiting shear failure (Slobbe
et al. 2012), structures composed by extremely brit-
tle materials, such as glass (Invernizzi et al. 2011), and
concrete in general, providing good results in problems
which are difficult to solve due to non-convergence
problems.

Fig. 1 Regularised
saw-tooth softening
envelopes in the SLA (Rots
et al. 2008). a Linear, b
exponential
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In the present paper, two innovative approaches are
proposed. Conversely to the SLA, multi-linear material
laws are adopted such that all material non-linearities
are exclusively due to changes in loading/unloading
states.

First, a non-iterative incremental solution is obtained
until non-convergence occurs, upon which a total
approach is used in the corresponding step only. The
stiffness update in the total approach is based accord-
ing to: (i) the SLA, or (ii) the information obtained from
the previous incremental solution.

The first method is called the automatic method and
the second method is called the non-iterative energy
based method (NIEM). The two methods are applied
to both: (i) softening materials, within the scope of the
discrete crack approach, and to (ii) hardening materi-
als. As a consequence, and conversely to the smeared
approach adopted in the SLA, no mesh size sensitivity
is obtained and there is no need to adjust the material
parameters and/or the material law.

2.1 Solution control

In the incremental approach, it is necessary to control
the solution on a bifurcation path as illustrated in Fig. 2
for a uniaxial traction-jump law. Apart from the stan-
dard load and displacement controls, several methods
are available such as the enforcement of a monotonic
opening of a notch, which has also been experimentally
used. In the present study and whenever no experimen-
tal evidence is known, the method used to choose the
load path is based on the energy release control method
(Gutiérrez 2004; Verhoosel et al. 2009).
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Fig. 2 Possible traction-jump paths

This method was proposed in order to create a con-
straint in the arc-length algorithm: for a body under
a load increment, the corresponding stress-strain evo-
lution of the material point follows the path which
gives rise to the largest energy release. Upon using an
incremental approach, the second order variation of the
energy release in the whole structure (bulk and discon-
tinuities), �G, is given by;

�G =
∫

�

�εT �σd� +
∫

�d

�wT �td�d , (1)

where � is the bulk and �d stands for all discontinu-
ities, ε and σ are the strains and the stresses in the bulk,
respectively, and w and t are the jump displacements
and the tractions, respectively, at the discontinuities.

In the new procedures, the global second order varia-
tion of energy consumption in the current step, obtained
at structural level, is designated: (i) G A for a positive
load increment and (ii) G B for a negative load incre-
ment. Consider material point C represented in Fig. 2.
Assume that, for a positive load increment, this mate-
rial point follows path number 1. In this case, the global
variation of energy consumption increases by a cer-
tain amount corresponding to the triangle shown in the
figure, which is added to variable G A. Conversely, a
negative load increment would give rise to unloading
path number 4, without any additional dissipation of
energy. As a consequence, variable G B , in which the
variation of energy consumption is accumulated for a
negative load step, remains unchanged. In other mate-
rial points the opposite may occur: no energy consump-
tion is accumulated in G A for a positive load step (path
number 4), whereas additional variation of energy is
added to variable G B for a negative load step, corre-
sponding to path number 1 in Fig. 2. Thus, at struc-
tural level, and upon two possible opposite solution
directions, one is chosen which leads to the maximum
value of �G obtained in the whole structure, i.e., to
max(G A, G B).

Incrementally, since multilinear constitutive rela-
tions are adopted, a critical load factor (λcri t ) is first
evaluated in a trial step, in order to reach the nearest
material point connecting two linear branches on the
envelope (for instance, point B in Fig. 2).

�Ptrue, j = λcri t�Ptr ial, j (2)

and the material stiffness is updated.
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2.2 Critical bifurcation points

When bifurcation points are reached on the material law
two possibilities occur: increase of damage or unload-
ing. In Fig. 2, a 1D representation of the constitutive
law is shown, in which four paths on the traction-dis-
placement curve are displayed: path 1 corresponds to
the increase of damage, paths 2 and 3 are unacceptable
since they violate the material law, and path 4 corre-
sponds to secant unloading.

Whenever a material point undergoes unloading,
memory is kept until it reloads back to the envelope.
When the current state is unloading this point is not crit-
ical except for preventing overlapping of crack faces at
crack closure; when reloading occurs, the load factor is
estimated, similarly to what is done for all points that
remain on the envelope.

Generalising, let w and dw be the total and incre-
mental displacement jump vector, respectively, and ε

and dε the total and incremental strain tensor, respec-
tively. Since linearised constitutive laws are adopted,
non-convergence can only occur for cases in which the
material point lies on the envelope:

(i) the tangent stiffness corresponds to the envelope
stiffness and w · dw < 0 (or ε · dε < 0), where
‘·’ is the internal product—case 3 in Fig. 2, or;

(ii) the tangent stiffness corresponds to the unload-
ing stiffness and w·dw > 0 (or ε·dε > 0)—case
2 in Fig. 2. Non-convergence occurs when these
two cases happen repeatedly, one after the other.

2.2.1 Automatic method

In the automatic method, whenever a critical bifur-
cation point is reached, after which it is impossible
to incrementally determine the effective path, a total
method is adopted in which the secant material stiff-
ness is adopted. This secant stiffness is then reduced
by a predefined factor as done in the SLA. In Fig. 3,
the automatic switch is illustrated in 1D: upon comple-
tion of valid step number 3, in step number 4 a criti-
cal bifurcation point is reached. A change to the total
formulation is performed and a secant stiffness matrix
is defined, according to the previous equilibrium state
(point 3 in Fig. 3):

K j = t j

w j
(3)

where step 3 corresponds to step j . In the following step
the secant stiffness is reduced, using the standard SLA.

Fig. 3 1D example of the automatic method

Instead of incremental step 4, step j + 1 is obtained
using the secant stiffness which is updated according
to a stress reduction:

tred = t j − ft0

NSL
(4)

where ft0 is the tensile strength and NSL is the pre-
defined number of SLA reduction steps. This total step
would correspond to step 5 if it was obtained incremen-
tally.

In general, similarly to the SLA, several integra-
tion points will exhibit a traction decrease due to this
approach and will remain below the envelope, since
only one will reach the envelope surface under critical
load factor λcri t (see Fig. 3). The next step is performed
similarly to the SLA, in which usually only one of the
points will become critical and reaches the envelope
on point k. All other points will remain on the cur-
rent secant path. In the following step the incremental
approach is recovered using the tangent stiffness matrix
D. This algorithm is effective because it tends to follow
the real envelope and circumvents critical bifurcation
points using a total approach. Moreover, the use of an
incremental procedure leads to less computation time
than a pure total procedure such as the SLA.

Note that the secant stiffness is always adopted in
the total approach, which has a direct correspondence
to damage behaviour under softening. In elastoplas-
tic materials it is also possible to enforce the correct
unloading path using the same total approach; in this
case, the secant stiffness is only adopted to reach new
equilibrium positions on either: (i) the loading surface
or (ii) the unloading surface.
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Fig. 4 Flowchart for the
automatic method. (*) All
integration points follow
valid paths in global loading
situation, adopt positive
load increment. (†) All
integration points follow
valid paths in global
unloading situation, adopt
negative load increment

For a more comprehensive explanation, a flowchart
of the procedure is presented in Fig. 4. First, a positive
load increment �P+

tr ial is imposed; next, after evalua-
tion of the dissipated energies G A and G B , either G A >

G B and the incremental load sign is kept, or G B > G A

and the sign of the load increment is reversed. If at least
one inadmissible path is obtained, then impose a null
step and switch to total; otherwise, apply critical load
step factor λmin , update the material law and proceed
to the next step.

2.2.2 Non-iterative energy based method

The automatic method is an effective tool for numeri-
cal non-linear analysis. Furthermore, it overcomes the

need to modify both material parameters and material
law in order to approximate the correct fracture energy
consumption. However, the stepwise decrease of the
secant stiffness must be defined a priori, without a clear
meaning. In order to avoid this situation a new method
is introduced, which allows for switching between the
incremental and the total approach without imposing a
predefined number of reductions of the secant stiffness.

Assume first that a valid incremental step is per-
formed. In this case, all material points lying on the
envelope will evolve either along the envelope or
unload. Thus, after the true step, it is possible to identify
the new updated secant stiffness for each point. This is
the main idea behind the NIEM: when critical bifur-
cation points are found, switch to the total approach
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Fig. 5 1D example of the NIEM

and let all material points evolve on the secant stiffness
which would emerge from a valid (virtual) incremental
step, keeping fixed the secant stiffness of the critical
bifurcations points. In this way, the total solution is
expected to better approximate the consistency condi-
tion. The illustration of this procedure from step j to
j + 1 is shown in Fig. 5 for a non-critical point. Point
k and the corresponding secant stiffness K j+1 is esti-
mated according to the trial step j :

K j+1 = t j+1

w j + �wtr ial, j
(5)

Thus, in step j a null step is enforced and only eval-
uation of the new secant stiffness is performed, which
will be used in step j + 1 using a total approach. The
following steps are incremental, following the current
secant until point k is reached, after which the path on
the material envelope is followed again.

An explanative flowchart for this method, is pre-
sented in Fig. 6. As will be demonstrated later, this
method leads to smaller deviations from the mate-
rial law than the previous automatic method since it
is based on model prediction instead of a predefined
update.

3 Structural examples

In this section, numerical examples are used to illustrate
the capabilities of the proposed procedures: (i) a plain
concrete double-cantilever test with severe snap-backs
due to high brittleness; (ii) a single edge notched beam;

(iii) a three point bending beam; (iv) a masonry panel;
(v) a concrete dam and (vi) a reinforced concrete beam
under monotonic loading. In the first case, it is shown
that a proper choice of solution control is essential to
capture all bifurcation points, whereas in the second
and third, it is demonstrated the viability of adopting
linearised softening diagrams. In the latter cases, the
new methodology is applied to structures with criti-
cal bifurcation points, in which localisation of initially
severe distributed cracking is difficult to capture with
conventional iterative methods.

3.1 Double cantilever beam

In this section a double cantilever beam test is pre-
sented (see Fig. 7), using an extremely small value
of the fracture energy (G F = 0.001 N/ mm). The goal
of this test is to demonstrate that the energy control
method described in Sect. 2.1 seems to be the only effi-
cient solution control criterion in the presence of sharp
snap-backs. The test is simple, giving rise to a vertical
mode-I crack at the symmetry line. The crack is mod-
elled by 8 interface elements, with a tensile strength
value ft0 = 3.0 N/ mm2. A bi-linear softening envelope
was used.

The use of small fracture energy causes a fast energy
release, as observed in brittle materials such as glass.
Each interface first opens and afterwards closes, after
dissipating energy, before the next one starts devel-
oping, upon which it reopens. It is clear that in this
case load or displacement control procedures cannot
be adopted. Moreover, even the monotonic opening of
the crack tip (or any other point along the crack) does
not occur.

In Fig. 8 the load-CMOD curves are presented both
with:

(i) the incremental approach (24 steps), in which
the energy control method introduced in 2.1 is
adopted; and;

(ii) the total approach (80 steps).

In the first case, in which the loading is clearly non-
monotonic, no critical bifurcation points are found,
whereas in the latter case, which also proves to be ade-
quate, small differences can be found due to fracture
energy underestimation, inherent to this approach since
no correction of the material parameters is performed.
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Fig. 6 Flowchart for the
NIEM. (*) All integration
points follow valid paths in
global loading situation,
adopt positive load
increment. (†) All
integration points follow
valid paths in global
unloading situation, adopt
negative load increment

Fig. 7 Double cantilever
beam: structural scheme and
finite element mesh (1 mm
width, dimensions in mm)
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Fig. 8 Double-cantilever beam: load-CMOD curves

3.2 Single edge notched beam

The single edged notched beam model is a common
benchmark test in numerical modelling and it is based
on the experimental work of Schlangen (1993). It has
been used for the assessment of the role of mode-II
fracture even though the author concluded that the frac-
ture mechanism is mode-I dominated. The latter occurs
even if the global mechanism is a combination of mode-
I and mode-II fracture since cracking occurs perpen-
dicularly to the maximum tensile stress in the beam,
associated with parallel displacements between the
crack faces. This way, mode-I behaviour was adopted
with isotropic softening (this aspect is commentated in
Alfaiate et al. 2002)

This test consists of a beam with two supports cre-
ating a cantilever and a double supported span with a
notch from which the major crack emerges.

The beam is composed of normal weight concrete
with 8 mm maximum aggregate size and has global
measures of 400 × 100 × 100 mm3 and a 5 × 20 ×
100 mm3 notch located at the top, as shown in Fig. 9.

The material parameters are: Young’s modulus
E = 35,000 N/ mm2; Poisson’s coefficient ν= 0.15;
tensile strength ft0 = 3.0 N/ mm2 and fracture energy

Fig. 9 Single-edge notched beam: structural scheme, load and
boundary conditions (100 mm width, dimensions in mm)

G F = 0.1 N/ mm. A bi-linear softening envelope was
used with a transition point between the two stiff-
ness branches defined by w1= 0.0267 mm and ft1 =
1.0 N/ mm2. The limit jump value is wult = 0.12 mm.

The load control procedure consists in monotoni-
cally increasing the relative sliding displacement of the
notch (crack mouth slide displacement—CMSD). This
ensures that no critical bifurcation points are found,
allowing, once again, the use of a purely incremen-
tal analysis. In this way it is possible to validate the
use of linearised curves associated to the incremental
approach.

The finite element mesh is presented in Fig. 10. Two
analysis were made using an incremental approach and
a total approach based on the SLA with modified mate-
rial properties as defined in Rots et al. (2008), here
adapted to a bi-linear envelope.

The resulting load-CMSD curve from both formu-
lations is close to the experimental result, presenting
a similar peak load and pre and post-peak stiffness
(Fig. 11). As expected, the incremental curve is smooth
although only 58 steps are needed to complete the anal-
ysis. In the case of the SLA, the curve is not smooth,
but follows the incremental solution, with points above
and below, corresponding to the fracture energy com-
pensation method used on the SLA. In this case, 216
steps are necessary.

Fig. 10 Single-edge
notched beam: finite
element mesh
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Fig. 11 Single-edge notched beam: load-CMSD curves

Both deformed shape and major crack are shown
in Fig. 12. In order to evaluate the accuracy of
both approaches, the obtained traction-jump envelope
curves at the notch are plotted in Figs. 13 and 14. In the
incremental case, the original envelope is perfectly cap-
tured and the dots represent each step. For simplicity,
only the steps where the adopted integration point was
critical (change in tangent stiffness) are represented.

The saw-tooth shape of the SLA is a consequence
of the procedure, and the use of mesh regularisa-
tion proves to overcome mesh dependencies. However
the obtained value of fracture energy is overestimated
(G F = 0.1098 N/ mm) which corresponds to an increase
of 9.8 %.

3.3 Galvez’s notched beam

Another test for which results can be obtained incre-
mentally is the Galvez’s notched beam (Galvez et al.
1998), which consisted in the experimental character-
isation of the mixed mode fracture for notched beams.
The model is a three point bending notched concrete
beam with a cantilever span that has a 64◦ linear path
prescribed crack. The beam has the mechanical prop-
erties shown in Fig. 15.

Fig. 13 Single-edge notched beam: traction-jump envelope
(MPa-mm) at the major crack tip using the incremental approach

Fig. 14 Single-edge notched beam: saw-tooth traction-jump
envelope (MPa-mm) at the major crack tip using the SLA

 = 38400 N/mm2

ν = 0.20
E

  = 3.0 N/mmf t0
2

  = 0.0688 N/mmGF notch

prescribed crack

262.5 75.0 150.0

150.0

150.0
37.5

64°

Fig. 15 Galvez’s beam: structural scheme, load and boundary
conditions (50 mm width, dimensions in mm)

The finite element model is an unstructured mesh,
composed of 1,217 elements, with a linear behav-
iour law for concrete under compression, since failure
is governed by mode-I cracking. The adopted mode
I softening law is bi-linear (w1 = 0.0183 mm and ft1

= 1.0 N/ mm2, wult = 0.0826 mm), whereas the shear
stiffness drops to zero when softening occurs.

The solution control adopted consists in monotoni-
cally increasing the crack mouth opening displacement

Fig. 12 Single-edge
notched beam: deformed
shape at CMSD = 0.1 mm
(displacements amplified
100 times)
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Fig. 16 Galvez’s beam: load-CMOD curves

(CMOD). The two approaches used lead to good results
when comparing the load-CMOD curves with the
experimental results obtained by Galvez (Fig. 16). In
both cases, the peak load and the softening branch lay
inside the experimental envelope. An additional curve
is represented in Fig. 16 which was obtained by Dias-
da-Costa et al. (2009). In this case, an iterative pro-
cedure was adopted, using the arc-length method, and
cracking was simulated using the discrete strong dis-
continuity approach (DSDA).

The results using the incremental approach are
obtained with 78 steps and the total approach with 241
steps). In Fig. 17, the deformed mesh obtained with the
incremental approach is presented. A similar result was
obtained with the SLA.

It is not possible to make a direct comparison among
the non-iterative solutions and the iterative solution,
since the non-iterative solutions are obtained after run-
ning the program once, whereas each iterative solu-
tion needs several runs of the program, with calibration
of the step sizes, testing of different arc length con-
straints and so forth, often taking an enormous amount
of time before an optimised converged solution can

be obtained. Nevertheless, comparison between this
optimised iterative solution and the non-iterative solu-
tions is the following: the iterative solution took 117 s
whereas the incremental solution took 39 s and the SLA
solution took 106 s.

3.4 Historical masonry wall test

A test campaign to evaluate the seismic risk of old
masonry buildings is currently being developed at the
Instituto Superior Técnico in Lisbon. The Severes pro-
ject has several objectives, but for the scope of the pres-
ent paper, a single type of test will be analysed which
consists of a diagonal load solicitation on masonry
walls (Fig. 18). Properties, geometry and loading path
can be found in Milosevic et al. (2010) and Gago et al.
(2011). These walls were built in accordance to the
standard procedures of the eighteenth century, using
roughly cut stone (limestone) and hydraulic or air lime
mortar. The cited report presents two different tests,
one with hydraulic mortar and one with air lime mor-
tar. On the present numerical analysis, only the tests
with hydraulic mortar are simulated.

The material is homogenised using equivalent prop-
erties obtained from a parametric study which led to the
adopted Young’s modulus E = 1,700 MPa. To model
compression in the bulk a multi-linear envelope was
used, with elastic behaviour until 1.85 MPa stress and
with a limit stress of 4.00 MPa, followed by an yield-
ing horizontal branch, the used Poisson’s coefficient
value is 0.20 and the tensile strength ft0 = 0.25 N/ mm2.
The following parameters were also estimated: cohe-
sion for mode II, c0 = 0.05 MPa; normal stiffness
for closed discontinuities, kn = 1010 N/mm3; Fracture
energy G F = 0.10 N/ mm. A bi-linear softening law
was adopted (w1 = 0.32 mm and ft1 = 0.083 N/ mm2,

wult = 1.44 mm).

Fig. 17 Galvez’s beam:
deformed shape at CMOD =
0.5 mm (displacements
amplified 100 times)
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Fig. 18 Severes diagonal
test: a illustration of the test.
b Finite element mesh.
(700 mm width, dimensions
in mm)

metallic shoe

12001200

(a) (b)

Fig. 19 Severes diagonal test: deformed finite element mesh and
crack pattern using the automatic method

In this highly non-linear model, several cracks open
at the same time as other cracks unload, giving rise to
many critical bifurcation points. Thus, this is an excel-
lent example to test the proposed methods.

Two models are computed. In the first one non-pre-
scribed embedded discontinuities are used (see results
in Figs. 19 and 20). In this case the panel tends to exhibit
a natural lateral expansion that leads to vertical crack
formation. The load-displacement curves are close to
the experimental curve, with 650 steps for the total

Fig. 20 Severes diagonal test: load-displacement curves for the
panel without prescribed cracks

approach to reach a 3.5 mm displacement at the control
point, 702 steps for the NIEM (65 total steps—9.3 %)
and 614 (103 total steps—14.7 %) for the automatic
method.

In this example, the result obtained with the auto-
matic method presents the largest deviation from the
experimental result. This is due to two main reasons:
(i) a large number of total steps is used and (ii) con-
versely to the SLA, no regularisation of the material
parameters is adopted in the total approach. The best
approximation of the experimental result is obtained
with the NIEM.

In some cases, a major crack developed across the
height of the specimen. In order to evaluate the signifi-
cance of this crack pattern, a second model was tested,
with a prescribed crack defined according to the major
crack identified in one of the tests (see Fig. 21). The use
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Fig. 21 Severes diagonal
test: photographs at failure
on experimental tests
(courtesy of the Severes
Project)

prescribed crack

Fig. 22 Severes diagonal test: finite element mesh with pre-
scribed crack

of a prescribed crack allows for a specific predefinition
but new cracks can also form in the remaining elements
of the bulk (see Fig. 22). In this second model, the load
displacement curves do not show significant changes
from the curves obtained with the first model since,
apart from a perfect definition of the major crack, the

Fig. 23 Severes diagonal test: load-displacement curves for the
panel with prescribed crack

remaining cracks are similar in both cases (Figs. 23,
24).

The three methods prove to overcome numerical dif-
ficulties and approximately depict the final deformed
state of the two tested wall panels, built with hydraulic
mortar.

3.5 Prenotched concrete dam

Another example for the proposed methods is the pre-
notched concrete dam, experimentally and numerically
tested by Barpi and Valente (2000). The study is based
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Fig. 24 Severes diagonal test: deformed finite element mesh and
crack pattern using NIEM and a prescribed crack

on an experimental test of a dam, with the correspond-
ing structural scheme depicted in Fig. 25.

The material parameters are adopted from Barpi and
Valente (2000): Young’s modulus E =35, 700 N/ mm2;
Poisson’s coefficient ν = 0.1; dead-weight ρ =
2,400 kg/m3; tensile strength ft0 = 3.6 N/ mm2 and
fracture energy G F = 0.184 N/ mm. Additionally, the
constitutive law for the discontinuities is assumed to
follow a multilinear law using 10 branches based on
the exponential softening function where the shear

Fig. 25 Prenotched gravity dam model: structural scheme
(30 cm width, dimensions in cm)

stiffness gradually drops to zero (Dias-da-Costa et al.
2010).

The FE mesh is composed of 1848 bilinear elements
as shown in Fig. 26.

Two load stages are applied to the structure: the
dead load is first applied using an incremental approach
since no bifurcation points will emerge; afterwards
the water pressure in front of the dam is gradually
increased. On the second loading case, the three meth-
ods are used by enforcing the monotonic increase of
the relative CMOD. The load-CMOD curves are pre-
sented in Fig. 27. It is concluded that all numerically
obtained results are similar. Since these formulations
are not mixed-mode, differences can be found on the
descending post-peak branch. This is why numerically,
the load decays faster than experimentally. However

Fig. 26 Prenotched gravity
dam model: FE mesh
composed of 1,848
elements

notch
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Fig. 27 Prenotched gravity dam model: load-CMOD curves

these results are similar to those obtained by Barpi and
Valente (2000) and Dias-da-Costa et al. (2010).

The deformed mesh is equivalent on the three formu-
lations, with a major crack developing from the notch
with a slight downward inclination (Fig. 28).

The obtained elemental traction-jump envelopes
clearly prove that the use of the NIEM leads to more
consistent results, since the material’s envelope is fol-
lowed almost completely (compare Figs. 29, 30, 31).
The SLA diagrams have the implicit tendency to con-
centrate teeth at the beginning of the envelope thus
presenting increased accuracy for stresses near the
peak load, whereas the opposite occurs for the lower
secant stiffness zones. The use of the automatic method
leads to better results than the SLA; however, on
critical bifurcation points, the transition to the total
approach causes significant deviations from the enve-
lope, leading to reduced fracture energy consumption.
The NIEM almost eliminates these deviations on total
steps, because there is a much smoother transition due
to the secant stiffness update. In this case, the faster
method is the automatic method with 542 steps, fol-
lowed by the SLA with 580 steps and by the NIEM
with 720 steps. Regarding the accuracy of the results

Fig. 28 Prenotched gravity dam model: deformed mesh when
CMOD = 0.35 mm (displacements amplified 500 times)

presented in Figs. 29, 30, 31, the mean value of frac-
ture energy consumption was +14.80 % with the SLA,
−8.2 % with the automatic method and−1.4 % with the
NIEM. In this example, the number of transitions to the
total approach is very small using both the automatic
method (6 steps—1.11 %) and the NIEM (15—1.83 %).

In this model, the comparison between the optimised
iterative solution and the non-iterative solutions is the
following: the iterative solution took 198 s whereas the
automatic solution took 128 s, the NIEM took 171 s and
the SLA took 155 s.

3.6 Reinforced concrete beam

As an example of application to reinforced concrete, a
test on a moderately reinforced concrete beam is pre-

(a) (b)

Fig. 29 Prenotched gravity dam: traction-jump envelope (MPa-mm) using the total approach. a Integration point at the most opened
crack, b integration point at the middle of the full crack

123123



A non-iterative approach for the modelling 295

Fig. 30 Prenotched gravity
dam: traction-jump
envelope (MPa-mm), using
the automatic method. a
Integration point at the most
opened crack, b integration
point at the middle of the
full crack (a) (b)

Fig. 31 Prenotched gravity
dam: traction-jump
envelope (MPa-mm), using
the NIEM. a Integration
point at the most opened
crack, b integration point at
the middle of the full crack

(a) (b)

Fig. 32 Beam tested by
Burns and Seiss (1962),
Lowes (1999) (dimensions
in mm)

457.2

2Ø25

508.0

203.3

3 657.2

sented. This numerical test is compared to a numerical
analysis presented by Lowes (1999), obtained with the
Newton–Raphson method and the arc-length path fol-
lowing technique. In this test a smeared crack approach
was adopted, in which the tensile steel reinforcement
was bonded to concrete by means of interfaces under
mode-II fracture.

This beam was experimentally also by Burns and
Seiss (1962) whose results are a benchmark for several
numerical models. This is a simply supported beam,
loaded at mid-span (Fig. 32), with tensile reinforce-
ment and no stirrups.

In this type of structures several nonlinearities occur,
namely: (i) concrete softening under tensile stress, (ii)
hardening of the steel reinforcement, (iii) bond-slip
between concrete and steel; and (iv) concrete crush-
ing under compression. First, generalised distributed
cracking is found until localisation starts to occur, in
which some cracks continue developing and others tend
to close. This localisation is extremely difficult to cap-
ture with iterative methods, which often lead to non-
convergence.

The material characteristics used in the tests are pre-
sented on Table 1. It is noticed that the adopted value

Table 1 Burns and Seiss beam test: material properties

Material properties Concrete Steel

Young’s modulus (MPa) 24,115 203,255

Poisson’s coefficient 0.175 0.30

Tensile strength (MPa) 2.41 309.36

Compressive strength (MPa) 33.21 309.36

Fracture energy (N/mm) 0.26 N/A

for the fracture energy is significantly higher than usual
(Lowes 1999).

Symmetry conditions are enforced to decrease the
problem size (Fig. 33). The finite element mesh is com-
posed of 360 bilinear elements for concrete with elas-
toplastic behaviour under compression and embedded
discontinuities with bilinear softening laws under ten-
sion (Alfaiate and Sluys 2002; Alfaiate et al. 2003). For
the reinforcement, 36 truss elements are used super-
imposed on the concrete mesh using 36 mode-II zero
thickness interface elements obeying the MC90 bond-
slip law (CEB 1991). The eventual development of
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Fig. 33 Burns and Seiss
beam test: finite element
mesh

P

Fig. 34 Burns and Seiss beam test: load-displacement curves

cracking at mid-span is simulated with 10 interface ele-
ments at the symmetry line.

In Fig. 34, the load-displacement curves are pre-
sented. The difference to the experimental curve, also
detected in Lowes (1999), seems to be a result of the
inaccuracy of the material values, namely the excessive
fracture energy.

In Fig. 35 the deformed mesh and embedded dis-
continuity crack pattern obtained with the NIEM are
presented. Similar results were obtained for the other
two used methods.

In this test yielding of the bond-slip between rein-
forcement and concrete was not detected; furthermore,

Table 2 Burns and Seiss beam: normal finite element mesh,
parameter results using the three methods

Parameter Method

SLA Automatic NIEM

Steps (N◦) 347 247 331

Total steps (N◦) 347 25 22

Total steps (%) 100 10 7

Max load (N) 80,178 78,153 82,068

Crack load (N) 25,736 21,369 23,887

Yield load (N) 79,410 77,140 78,720

Cracking (mm) 0.177 0.192 0.180

Mean Gf (%) 113.03 77.65 96.20

the most compressed concrete element did not reach
the compressive strength (Table 2).

Concrete initial cracking and yielding of the steel
bars are depicted on the load-displacement chart. In
terms of cracking, it is relevant to compare the obtained
traction-jump history at the tip of the widest crack, with
the theoretical material envelope (Figs. 36, 37, 38).

Using the SLA a larger deviation is obtained. In
the automatic method a smaller underestimation of the
fracture energy is obtained, caused by the transitions
to the total approach. The NIEM provides an envelope

Fig. 35 Burns and Seiss
beam test: deformed mesh
and crack pattern using the
NIEM for a mid-span
displacement of 10mm
(displacements magnified
10 times, crack openings
magnified 20 times)
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Fig. 36 Burns and Seiss beam test: normal finite element
mesh, traction-jump envelope (MPa-mm) using the SLA (G F =
0.2963 N/mm: 113.9 %)

Fig. 37 Burns and Seiss beam test: traction-jump
envelope (MPa-mm) using the automatic method
(G F = 0.2133 N/mm—82.0 %)

Fig. 38 Burns and Seiss beam test: traction-jump (MPa-mm)
envelope using the NIEM (G F = 0.2555 N/mm—98.3 %)

very close to the theoretical one, due to much smaller
deviations from the correct material law.

4 Conclusions

Two innovative methods were presented which pro-
vide a powerful tool to the numerical simulation of
complex nonlinear structures. These methods combine
incremental and total approaches, thus taking advan-
tage of the accuracy of incremental approaches with the

effectiveness of total approaches, in order to overcome
convergence problems at critical bifurcation points for
incremental-iterative methods.

These formulations are non-iterative and do not
require a fictitious adjustment of the constitutive law,
since the use of total steps on the whole analysis is not
significant to lead to an important underestimation of
the fracture energy. In fact, the theoretical versus com-
puted energy consumption ratio is adequate in one case
and almost equal to one in the second case, with mean
values of 83 % for the automatic method and 99 % for
the NIEM.

The following main conclusions can be drawn from
the three presented examples:

(i) the use of an energy consumption criterion
seems an adequate solution control technique,
allowing the use of incremental approaches on
models with sharp snap-backs;

(ii) both the load-displacement curves and crack pat-
terns obtained agree very well with experimental
observation;

(iii) the NIEM shows a better approximation of the
material laws when compared to the automatic
method with an acceptable increase in comput-
ing time.

Finally it can be stated that the introduced formulations,
although non-iterative, adequately follow an incremen-
tal approach and, as such, can be used with cyclic load-
ing since material memory is kept during the analysis.
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