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Summary
The application of reliability analysis in geotechnical engineering is relatively new compared to the other
sections of civil engineering such as structural engineering and hydraulic engineering. However, due
to its increases use in recent years, reliability analysis is planned to be included extensively in the
upcoming Eurocode 7 (EN 1997). This research aims to compare the accuracy and efficiency between
the applications of 22 selected reliability methods in 9 selected geotechnical engineering problems with
various number of independent variables and modes of failure. The accuracy of the reliability methods
are determined based on the Probability of Failure (Pf ) errors, while the efficiency is based on the
number of realizations (N ) each method needs. The Monte Carlo Simulation is found to be the most
accurate method despite its shortcomings in efficiency (ranked as the least efficient). Moreover, the
FOSM method is found to be the most efficient despite its serious shortcoming in accuracy where it is
also ranked as themost inaccurate. However, putting both accuracy and efficiency into account, the AK-
MCS 0 order is proven to be the best method when applied to the discussed geotechnical engineering
problems. The research also points out the necessity to perform multiple reliability methods for each
geotechnical engineering problem.
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1
Introduction

1.1. Background
The European standard (i.e. code of practice) for design of geotechnical structures, Eurocode 7 (EN
1997), is currently undergoing a revision. Since the Eurocodes are reliability-based, the second gen-
eration of Eurocodes (including EN 1997) will include significantly more explicit reliability elements
compared to the first generation. This additional graduation topic has been defined to support the work
of the task group who is responsible in facilitating the use of reliability-based methods in geotechnical
engineering for the Eurocodes revision.

1.2. Problem Analysis
Reliability analysis is needed in geotechnical engineering to deal with the uncertainties it possesses.
This is especially true since geotechnical engineers deal with little-known data regarding natural soil
properties (among others). In the past, deterministic analysis with uniformly-assigned material prop-
erties are normally applied to solve numerous geotechnical engineering problems. However, the soil
properties is functions of a statistical distributions, rather than some fixed values which are constant
throughout the layers. The deterministic approach also leads to a single factor of safety, ignoring the
uncertainty and variability within the soil properties. Therefore, reliability analysis gives a more mean-
ingful definition of stability: i.e. reliability, the probability that failure will not occur (Hicks et al. 2002 [15]).

Geotechnical engineering problems normally deal with many uncertainties and multiple modes of
failure. However, reliability analysis application in geotechnical engineering is relatively new compared
to other fields of engineering despite the methods have been developing significantly in the last few
decades. Moreover, the uses of these methods in geotechnical engineering are increasing remarkably
in recent years. Thus comparison regarding their applications are relatively limited. This research aims
to compare the accuracy and efficiency between 22 selected reliability methods in their applications to
9 selected geotechnical engineering problems.

1.3. Research Objective
The main objectives of this research are:

• To carry out (full probabilistic) reliability analysis on various geotechnical engineering problems
with numerous modes of failure, material distributions, and number of independent variables.

• To benchmark the performance of different reliability methods.
• Recommend the most suitable reliability method for given type of problems.

1.4. Research Method
Multiple problems in Geotechnical Engineering such as slope stability, foundation stability, and con-
solidation problem are simulated in this research by using several reliability methods. The reliability
methods used in this reports and their abbreviations throughout the report are:

1



1.4. Research Method 2

• Monte Carlo Simulation (MCS)
• First Order Reliability Method (FORM)
• Second Order Reliability Method (SORM)
• First Order Second Moment (FOSM)
• Subset simulation (SS)
• Directional Sampling (DS)
• Adaptive Directional Sampling (ADS)
• Important Sampling (IS)
• Adaptive Importance Sampling (AIS)
• Latin Hypercube Sampling (LHS)
• Active Learning Kriging-based Monte Carlo Simulation (AK-MCS)
• Numerical Integration (NI)
• Numerical Bisection (NB)

The above-mentioned reliability methods are carried byDeltares’ Probabilistic Toolkit software (PTK),
Python open source’s OpenTurns (OT), and Python-based script (DIY).

1.4.1. Deltares’ Probabilistic Toolkit
The Probabilistic Toolkit (PTK) is a software developed by Deltares to analyze the effects of uncertainty
to any model. These models range from python scripts to geotechnical and hydrodinamical Deltares
and non-Deltares applicaation. One of the main feature of PTK is its ability to compute the probability
of undesired events (probability of failure), thus providing the reliability of a model. Therefore, PTK
provides some of the reliability methods performed in this research. Reliability methods performed by
PTK in this research are MCS (PTK), FORM (PTK), DS (PTK), IS (PTK), LHS (PTK), NI (PTK), and NB
(PTK). More details regarding PTK can be found in [7].

1.4.2. OpenTURNS
OpenTURNS (OT) is an open source initiative for the treatment of uncertainties, risks, and statistics. It
is funded by Airbus Group, EDF Research and Development, IMACS, ONERA, and Phimeca Engineer-
ing. OpenTURNS provides open source C++/Python scipts related to data analysis, probabilistic and
reliability modeling, meta modeling, calibration, and functional modeling. This research utilize its relia-
bility modeling features. Reliability methods performed by OT in this research are MCS (OT), FORM
(OT), SORM (OT), SS (OT), DS (OT), IS (OT), LHS (OT), and ADS (OT). More details regarding OT
can be found in [1].

1.4.3. Do-it-yourself Script (DIY)
Some of the reliability methods are performed by python-based scripts which were based on numerous
references mentioned in section 2. Reliability methods performed by python-based DIY scripts in this
research are MCS (DIY), FORM (DIY), FOSM (DIY), SS (DIY), DS (DIY), IS (DIY), AIS (DIY), and
AK-MCS with 0 and 1 order (AK-MCS 0 and AK-MCS 1).



2
Theoretical Background

Reliability analysis is an analysis in calculating how much the probability of an unwanted event to occur.
An unwanted event in this research is the failure of a geotechnical structure. Failure is evaluated
through a limit state function (or also known as a performance function), normally written as g(X),
where X is the random variables vector which has their own distributions. The limit state function is
defined in such a way that a failure occurs when g(X) < 0. The failure probability (Pf ) is determined by
calculating the cumulative distribution function of g(X) < 0. Mathematically, probability of failure can
be written as equation (2.1) where fX(X) is the joint probability density function of g(X).

Pf =

∫
g(X)<0

fX(X) dX (2.1)

Moreover, since Pf is normally a really small number, it is also a very common way to express
the reliability by a reliability index (β). The reliability index is defined as the inverse of the cumulative
standard normal distribution function of Pf , as can be written in equation (2.2).

β = −Φ−1(Pf ) (2.2)

This research implements several reliability methods to determine Pf from the limit state function
of several cases, and compare the results. The theoretical background of each reliability method is
discussed in the following section.

2.1. Reliability methods levels
Reliability methods could be divided into 4 levels, however this report only involving Level II and Level
III methods. The brief description of the levels are as follows (Schweckendiek 2006 [25]).

2.1.1. Level I Methods
Level I method is also known as semi-probabilistic method. It is usually applied in design codes for
the verification of structures, and requires previous knowledge about the basic random variables. This
research does not involve Level 1 method.

2.1.2. Level II Methods (fully probabilistic with approximations
Level II methods take all the probabilistic properties of the random variables into account. However,
they include approximations that at the same time could also be severe limitations for their use in
specific problems. The examples of level II reliability methods are:

• First Order Reliability Method (FORM)
• Second Order Reliability Method (SORM)
• First Order Second Moment (FOSM)

3



2.2. Monte Carlo Simulation (MCS) 4

2.1.3. Level III Methods (fully probabilistic)
Level III methods are characterized as fully probabilistic and exact methods (no simplifying assumptions
are implied). The accuracy of these methods can usually be controlled by parameters like the variance
of the resulting failure probability or step sizes which also have an impact on the calculation time. The
example of level III reliability methods are:

• Monte Carlo Simulation (MCS)
• Subset Simulation (SS)
• Directional Sampling (DS)
• Adaptive Directional Sampling (ADS)
• Important Sampling (IS)
• Adaptive Importance Sampling (AIS)
• Latin Hypercube Sampling (LHS)
• Active Learning Kriging-based Monte Carlo Simulation (AK-MCS)
• Numerical Integration (NI)
• Numerical Bisection (NB)

2.1.4. Level IV Methods
Level IV methods include more aspects into consideration (e.g. economical aspect). This report does
not include level IV methods into application.

2.2. Monte Carlo Simulation (MCS)
A normal Monte Carlo Simulation (MCS), also known as ”Crude Monte Carlo”, is a sampling-based
simulation that obtain results by using repeated random realizations on the limit state function. The
underlying concept is to use randomness to solve problems that might be deterministic in principle [27].
Each realization will give a failure (g(X) < 0) or a success (g(X) ≥ 0). Thus the Pf is calculated by a
straightforward method as shown in equation (2.3).

Pf =
Nfailure

N
(2.3)

where Nfailure is the total number of failure realizations and N is the total number of realizations.
The MCS method is often considered as the most robust method since it put ”all possibilities” into ac-
count, however, this leads to a time-consuming simulation and not very efficient to be applied in com-
puter. Therefore, it is considered as inefficient and expensive. Other reliability methods are developed
mainly to tackle this problem.

2.3. First Order Reliability Method (FORM).
The FORM method searches the design point directly by estimating the shortest distance (β) between
the origin to the standardized limit state function g(u) in the Standard Normal Space. A straightforward
depiction of FORM can be seen in Figure 2.1. FORM tries to recreate the limit state function g(u) with
a linear line L(u) (thus it is called ”first-order”) by using Taylor series approximation. Furthermore, the
closest distance between L(u) and the origin is then measured and is defined as β.



2.4. Second Order Reliability Method (SORM). 5

Figure 2.1: FORM and SORM reliability method (Chang 2015 [5]).

For the OpenTurn’s FORM approach, the original Hasofer-Lind method is implemented in determin-
ing the shortest distance (β). Another FORM method implemented in this research is the Rackwitz-
Fiesler iterative algorithm (FORM (DIY)) (Rackwitz et al. 1978 [24]). Although Figure 2.1 only shows
a problem with 2 independent variables, FORM procedure and algorithm can also be implemented
to a limit state function with more than 2 variables. Moreover, it is very difficult (if not impossible) to
depict a FORM problem with more than 2 independent variables. However, the basic idea and mathe-
matical implementation remains the same. Moreover, in this research, the starting point of the FORM
method is set from the independent variables’ mean values (or the origin of the standard normal space)

The main advantages of FORM is that it takes much less computational effort compared to a Monte
Carlo Simulation. However, the main disadvantage is in its inaccuracy in estimating a really complex
limit state function, especially when it has more than 1 design point (or more than 1 mode of failure).

2.4. Second Order Reliability Method (SORM).
The main idea is similar to FORM, however, SORM recreate the limit state function g(u) with a curved
line (thus it is called ”second-order”) by using a further truncation of the Taylor series approximation.
A straight-forward scheme of SORM can also be observed in Figure 2.1. The main advantage is the
limit state function can be more accurately recreated since it is imitated by a curved line, as opposed
to FORM’s linear approach. Moreover, OpenTurns’ SORM that is performed in this research is using
Breitung method (OpenTURNS 2021 [20]).

2.5. First Order Second Moment (FOSM).
Similar to FORM method, SORM is based on the first order Taylor series approximation of a perfor-
mance function that is linearized at the mean values of the random variables by only using the second
moment statistics (mean and variance) of the random variables. Therefore it is called first order ”sec-
ond moment”. However, the main disadvantages of FOSM are it does not consider the information
regarding the distribution of the independent variables and gives significant error in the truncation if the
limit state function is non-linear. Despite many improvement of FOSM in recent years, a more detailed
explanation of FOSM can be seen in the original FOSM formulation proposed by Cornell (Cornell 1967
[6]).

2.6. Subset Simulation (SS)
The basic idea of Subset Simulation method is to express the failure probability as a product of larger
conditional failure probabilities by introducing intermediate failure events. With a proper choice of the
conditional events, the conditional failure probabilities can be made sufficiently large so that they can
be estimated by means of simulation with a small number of samples (Au 2001 [4]).
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In simpler terms, subset simulation divide the parameter space within the problem domain into a
several required simulation steps, and perform a Metropolis-based [2] Markov Chain Monte Carlo for
each step to determine the domain of the next step. The probability of failure can be defined as [4]:

Pf = P (Fi) Π
m−1
i=1 P (Fi+1|Fi) (2.4)

Where m is the total number of required step until the failure event of interest has been reached.
To compute Pf on equation 2.4, one needs to compute the probability of P (F1), {P (Fi+1|Fi) : i =
1, ...,m− 1}.. P (F1) can be readily estimated by MCS as [4]:

P (F1) ≈ P̃1 =
1

N

N∑
k=1

IF1
(θk) (2.5)

Where {θk : k = 1, ..., N} are independent and identically distributed samples according to PDF.
Moreover, by applying Metropolis-based Markov Chain Monte Carlo, P (Fi+1|Fi) can be defined as [4]:

P (Fi+1|Fi) ≈ P̃i+1 =
1

N

N∑
k=1

IFi+1(θ
(i)
k ) (2.6)

Finally, combining Equation 2.4, 2.5, and 2.6, the failure probability estimator is:

P̃F = Πm
i=1P̃i (2.7)

More detailed explanations of subset simulation method can be found in (Au 2001) [4].

2.7. Directional Sampling (DS)
Directional simulation reduces the dimension of the limit state probability integral by identifying a set of
directions for integration, integrating either in closed-form or by approximation in those directions, and
estimating the probability as a weighted average of the directional integrals. Most existing methods
identify these directions by a set of points distributed on the unit hypersphere. The accuracy of the
directional simulation depends on how the points are identified. When the limit state is highly nonlinear,
or the inherent failure probability is small, a very large number of points may be required, and the
method can become inefficient (Nie et al. 2000 [16]). The directional simulation method involves
generating uniformly distributed direction vectors and performing a one-dimensional integration along
each direction (Nie et al. 2000 [16]). A brief depiction of directional sampling is displayed in figure 2.2.

Figure 2.2: Spherical segments approximation of a limit state G(u)=0 by directional sampling (Nie et al. 2000 [16])

More details about directional sampling can be found in (Nie et al. 2000 [16]) and ( Merchelrs et al.
2018 [18]).
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2.8. Adaptive Directional Sampling (ADS)
Adaptive directional sampling is an improvement of directional sampling. The algorithm in ADS is based
on a directional simulation scheme in which the most important directions are sampled more exact by
means of a response surface approach (Grooteman 2010 [13]). The improvement is aimed to efficiently
determine the optimal β-sphere that is excluded from the sampling domain, and drastically reduce the
required number of simulations compared to the crude Monte Carlo method (Grooteman 2008 [12]).
More detailed explanation regarding ADS can be found in (Grooteman 2010 [13]), (Grooteman 2008
[12]) and (OpenTurns 2021 [22]).

2.9. Importance Sampling (IS)
Importance Sampling is a technique to improve the Monte Carlo method for probability integration
(Melchers 1989 [17]). The difference compared to the normal Monte Carlo method is that the real-
ization are selected in a smarter way, preferably in the area on the edge of failure and non failure
(Probabilistic Toolkit 2021 [8]). The main idea of Importance Sampling is choose a distribution which
”encourages” the important results, which are the samples that lead to failure (hence it is called ”impor-
tance” sampling). Furthermore, this new ”biased” distribution will be weighted to correct the bias, as
opposed to the Normal Monte Carlo where each realization weight the same. A general depiction of
Importance Sampling can be observed in figure 2.3.

Figure 2.3: A general depiction of Importance Sampling Method with two-variable problem (after Melchers 1989 [17]).

In Probabilistic Toolkit Software, each realization (u) is translated to importance sampling realization
(uimp) in the standard normal space. The translation for each variable is separately supported as
equation 2.8.

uimp,var = fvar · uvar + svar (2.8)

A correction is applied in the calculation of failure to incorporate the translation by giving a realization
a weight, which is calculated as equation 2.9 (the multiplication with fvar is performed to compensate
for the dimensionality).

wvar =
fvar · Φ(uimp,var)

Φ(uvar)
(2.9)

and

Wrealization = Πvariableswvar (2.10)

where:
fvar : variance factor per variable.
svar : variance shift per variable.
Φ : the standard normal probability density function.
wvar : the weight factor per variable per realization.
Wrealization : the weight factor of the realization.
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Therefore, corresponding to equation 2.3, the probability of failure for Importance Sampling is de-
fined in equation 2.11.

Pf =

∑
failing realizations W∑

all realizations W
(2.11)

Further explanation about Importance Sampling can be found in (Melchers 1989 [17]).

2.10. Adaptive Importance Sampling (AIS)
An adaptive importance sampling methodology is proposed to compute the multidimensional integrals
encountered in reliability analysis. It is based on an improved Markov simulation algorithm (Metropo-
lis et al. 1953 [2]). In the proposed methodology, samples are simulated as the states of a Markov
chain and are distributed asymptotically according to the optimal importance sampling density. These
Markov chain samples are then used to construct a kernel sampling density to provide a good approx-
imation to the optimal importance sampling density. The Markov chain samples populate the region
of higher probability density in the failure region and so the kernel sampling density approximates the
optimal importance sampling density for a large variety of shapes of the failure region (hence it is called
”adaptive” importance sampling). An elaborated explanation of the method can be found in (Au 1999
[3]).

2.11. Latin Hypercube Sampling (LHS)
Latin Hypercube Sampling is a sampling method that enables better cover of the domain of the input
variables variations due to a stratified sampling strategy. The sampling procedure is based on dividing
the range of each variable into several intervals of equal probability. The sampling is undertaken as
the followings (OpenTurns 2021 [21]):

• Step 1: The range of each input variable is stratified into isoprobabilistic cells.
• Step 2: A cell is uniformly chosen among all the available cells.
• Step 3: The random number is obtained by inverting the Cumulative Density Function locally in
the chosen cell.

• Step 4: All the cells having a common strate with the previous cell are put apart from the list of
available cells.

The probability of failure (Pf ) is estimated by:

PN
f,LHS =

1

N
ΣN

i=11(g(Xi,d)≤0) (2.12)

Where the sample of {Xi, i = 1, ..., N} is obtained as described previously. Further explanation
regarding LHS can be seen in (Helton et al. 2002 [14]).

2.12. Active Learning Kriging-based Monte Carlo Simulation (AK-
MCS)

AK-MCS is one of a Kriging-based metamodelling method. Metamodelling (surrogate modelling) relies
in constructing models that acts as surrogates of complex problem (Teixeira et al. 2021 [26]). In their
most fundamental form, metamodels are easily understood as black-box functions that relate an input
variable x to an output Y (x), allowing cheap evaluation of Y (x) at any input value x, as can be seen in
Figure 2.4 (Teixeira et al. 2021 [26]).
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Figure 2.4: Generic description of a metamodel as a black-box function defined on a support ED (experiment design) [26]
.

In this research, the applied AK-MCS method is after (Echard et al. 2011 [10]). It consists of an
active-learning reliability method combining Kriging and Monte Carlo Simulation. Kriging is based on
the idea that the performance functionG(x) is seen as the realization of a stochastic field g(x). However,
instead of approximating the limit state in the whole space and therefore making expensive evaluations
of limit stateG for points with very weak densities of probabilities, here it is preferred to focus on aMonte
Carlo population. AK-MCS classifies a Monte Carlo population of NMC points without evaluating NMC

times the performance function. To avoid the evaluations, Kriging is used for its exact interpolation
characteristic and for its interesting proprieties in active learning methods. Moreover, this research ap-
plies AK-MCS with simple kriging (0 order, AK-MCS 0) and universal kriging with linear basis function
(1 order, AK-MCS 1). Furthermore, the maximum realization number for each simulation is set to 100
for both AK-MCS 0 and AK-MCS 1.

Due to its complex nature, a more detailed explanation regarding the implemented AK-MCS can be
obtained from (Echard et al. 2011 [10]).

2.13. Numerical Integration (NI)
It is the most time consuming, but most exact way to calculate the failure probability. A step size,
minimum, and maximum values of the input variables are needed for the evaluation. The minimum and
maximum value for which the integration will run, are defined in the u-space. The numerical integration
will fill up the left over space between these values and -8 and 8 by additional cells, so the whole
integration domain will be covered always (Probabilistic Toolkit 2021 [8]). An example of numerical
integration can be observed in Figure 2.5, which is made based on a simple slope stability with 2
modes of failure as discussed in section 3.4.

Figure 2.5: A numerical integration application on a simple slope stability problem.

Due to the method’s nature, the method is currently suitable for a problem with 2 independent
variables (applied using Probabilistic Toolkit software) and is not including in the ranking system (section
4). Therefore, the method is only applied to the simple slope stability problem which is discussed in
section 3.4.
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2.14. Numerical Bisection (NB)
Numerical bisection is similar to numerical integration, however, the integration cells are generated by
bisection of the complete domain. As soon as an integration cell has same qualitative results (fail, not
fail, not counting) on its corner points, we assume that all values inside the cell would deliver the same
qualitative result and no points will be calculated within the call nor on its sides. As long as cells exist
with different qualitative results, the cell will be split and new corner points will be calculated. This
process ends when the cells, which don’t have a similar result, represent a probability lower than an
accepted allowed difference in the reliability (Probabilistic Toolkit 2021 [8]). An example of numerical
bisection application can be seen in Figure 2.6, where it is applied to a simple slope stability with 2
modes of failure as discussed in section 3.4.

Figure 2.6: A numerical bisection application on a simple slope stability problem.

Due to the same reasoning as numerical integration, numerical bisection is only applied to the simple
slope stability problem discussed in section 3.4 and is not included in the ranking system of section 4.

2.15. Convergence Criterion
Convergence criterion (among others) is needed to determine when to stop the reliability analysis pro-
cess. It determines the desired level of accuracy. The convergence criterion is reached when the
probability of failure Pf variation coefficient (COV) reaches a certain limit. For example, the COV of
the MCS method is defined as equation 2.13

COV =

Pf < 1
2

σp

Pf
= z

√
1−Pf

NPf

Pf ≥ 1
2

σp

1−Pf
= z

√
Pf

N(1−Pf )

(2.13)

where:

σp : standard deviation of Pf .
z : quantile of the standard normal distribution corresponding with confidence level

(z = 1 PTK).
N : The total number of realizations

The other sampling-based method follows similar rules in determining convergence criterion (de-
pending on the COV of Pf ), where more detailed explanation can be seen on each method’s fore-
mentioned references. In this research, a minimum convergence of 0.1 is chosen. Therefore, for each
method (especially for sampling-based methods), the reliability analysis process is stopped when the
current step obtained reliability COV reach 0.1 (or the determined maximum N is reached). When this
convergence is not obtained, then the minimum sample/ step will be increased.

However for gradient-based reliability method like FORM, convergence is reached when the differ-
ence between ui (the point at the last ith iteration) is close enough to the predicted value of upred
(where both ui and upred are from standard normal space). In this research, this difference is limited
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to 10−2 for PTK methods, and 10−3 to OT and DIY methods.

An example of convergence history can be observed in figure 2.7, which is taken from a Monte
Carlo Simulation of a geotechnical engineering problem.

Figure 2.7: N vs β and Pf (Monte Carlo Simulation).

Based on Figure 2.7, it can be observed that β and Pf value fluctuate (and converging) through-
out the increasing number of realization N . Moreover, the convergence of the Pf COV can also be
displayed as in Figure 2.8.

Figure 2.8: Pf COV of an MCS example.

It can be observed from Figure 2.8 that after N > 0.05 x 106, the Pf COV reaches values lower than
0.1. Moreover, after approximately N > 0.7 x 106, Pf COV is reaching a constant value. Therefore, the
analysis will be concluded once the Pf COV has reach the tolerated value (0.1). However, for MCS
(OT) and MCS (DIY), the simulation will be performed untilN reaches approximately 106 (like displayed
in Figure 2.8) since it will be used as references. Consequently, for Monte Carlo Analysis (and other
sampling-based methods), a sufficient value of N (or step) is needed to get the required convergence
criterion (Pf COV = 0.1).



3
Case Analysis

This section will discuss the types of problem analyzed in this research. The results will be discussed
in Section 4.

3.1. Geotechnical engineering problem to be analyzed
Geotechnical Safety Network (GEOSNet) is an international open collaborative platform that serves to
promote, coordinate, and support activities relating to geotechnical safety (GEOSNet 2021 [11]). This
research analyze 9 different geotechnical engineering problems with various modes of failure (MoF)
and number of independent variables, 8 of which are taken from GEOSNet reliability benchmarking
examples (GEOSNet 2021 [19]). The details regarding the problems could be found in Appendix B.
These geotechnical engineering problems can be summarized into table 3.1.

Table 3.1: Geotechnical engineering problems to be analyzed in this research.

Problems No. of No. of Pf β
Mode of Failure variables references references

A Simple Slope Stability 2 2 2.44E-02 1.97
GEOSNet EX1 1 6 5.73E-02 1.58
GEOSNet EX2 2 9 6.39E-02 1.52
GEOSNet EX3 3 4 0.18E-02 2.91
GEOSNet EX4 1 5 0.39E-02 2.66
GEOSNet EX5 1 7 9.44E-02 1.32
GEOSNet EX7 1 4 2.63E-02 1.94
GEOSNet EX8 3 12 8.17E-02 1.39
GEOSNet EX9 1 9 0.08E-02 3.17

Due to high uncertainties and data inconsistencies, MCS (OT) Pf value will be used as the reference
for the simple slope stability, GEOSNet example 5, 7, and 8 problems. Moreover, the rest of the problem
use GEOSNet’s MCS result. Both GEOSNet and OpenTurn’s MCS reference results are obtained with
N = 106.

3.2. Model Fluctuations
In sampling-based methods, it is almost impossible to obtain the exact same result for each simula-
tion (unlike gradient-based method i.e. FORM). Sometimes the convergence criterion is not achieved
when the maximum step/realization has been surpassed (like in the case of AK-MCS 0 order in this re-
search). In that case, the resulting β of Pf values might differ considerably from the reference (or MCS)
result. In this research, the particular problem often happens in the application of directional sampling
(DS) and AK-MCS 0 order. Thus for these methods and the rest of the sampling-based methods, the

12
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simulations are performed 100 times therefore the obtained average β (or Pf ) is more depended on
realizations where the convergence criterion is achieved. These additional simulations are only applied
to the sampling-based methods other than MCS (LHS, IS, DS, SS, ADS, AIS, and both AK-MCS).

The different β values obtained from 100 simulations of directional sampling and 0 order AK-MCS
can be seen in Figure 3.1 and 3.2. For Figure 3.2, each simulation has a different realizations number
(N ) depending on whether it reaches convergence (or not) before themaximum realization number/step
is achieved. Moreover, each simulation in Figure 3.1 is based on a maximum N of 100.

Figure 3.1: Different β value for each realization in AK-MCS 0.

Figure 3.2: Different β value for each realization in DS.

It can be observed from Figure 3.1 and 3.2 that for the same problems, sample-based reliability
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methods could vary between each realization. These differences could be considerably noticeable
despite the average of the realizations are considerably similar. This can be seen in Figure 3.2 where
one of the realization gives a β value of more than 1.9 despite the β average is 1.53. Therefore, one
must avoid performing only 1 simulation when dealing with a sampling-based method (note that each
simulation has its own N value) since it could give a false sense of accuracy.

3.3. A problem with 1 mode of failure
The first example discussed here is the 1st exercise of the GEOSNet example. The example simulates
a simple infinite slope with six independent random variables. The problem can be depicted in Figure
3.3.

Figure 3.3: Example 1 scheme. (Source: GEOSNet, www.geoengineer.org).

The performance function for the problem is formulated in equation (3.1) below.

P =
[γ(H − h) + h(γsat − γw)]cosθtanϕ

[γ(H − h) + hγsat]sinθ
− 1 (3.1)

where:
γ = γw(Gs + 0.2e)/(1 + e) (3.2)

and
γsat = γw(Gs + e)/(1 + e) (3.3)

with:

H = depth of soil above bedrock
h = U x H, height of groundwater table above bedrock
U = a factor of groundwater level determination
γ and γsat = moist unit weight and saturated unit weight of the surficial soil, respectively
γw = unit weight of water (9.81 kN/m3)
ϕ = effective stress internal friction angle
θ = slope inclination

The moist and saturated soil unit weights are not independent, because they are related to the spe-
cific gravity of the soil solids (Gs) and the void ratio (e). The uncertainties in γ and γsat are characterized
by modeling Gs and e as two independent uniform random variables. There are six independent ran-
dom variables in this problem (H,U, ϕ, θ, e, and Gs). The distribution of the independent variables are
displayed in table 3.2.
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Table 3.2: GEOSNet Example 1 Result Comparison (GEOSNet result by Jianye Ching and Yi-Hung Hsieh).

Variable Distribution Statistics Units
H Uniform [ 2, 8 ] m
U Uniform [ 0, 1 ] -
ϕ Lognormal µ = 35, COV = 8% deg.
θ Lognormal µ = 20, COV = 5% deg.
Gs Uniform [ 2.5, 2.7 ] -
e Uniform [ 0.3, 0.6 ] -

Furthermore, it can be seen from the performance function that there is only one mode of failure in
this problem. The reliability index (β), probability of failure (Pf ), number of realizations (N ), Pf error,
and absolute β error from each method is compared in Table 3.3 (β reference = 1.578 and Pf reference
= 0.0573).

Table 3.3: GEOSNet example 1 results comparison with Pf reference = 0.0573 based on GEOSNet MCS result with N=106 by
Jianye Ching and Yi-Hung Hsieh [23].

Methods β Pf N Abs. β error Pf error
FORM (PTK) 1.427 0.0768 42 9.57% 34.0%
LHS (PTK) 1.578 0.0573 10001 0.00% 0.0%
MCS (PTK) 1.574 0.0578 163120 0.25% 0.9%
IS (PTK) 1.570 0.0583 37312 0.51% 1.7%
DS (PTK) 1.574 0.0577 40955 0.25% 0.7%
FORM (OT) 1.426 0.0770 144 9.66% 34.4%
SORM (OT) 1.544 0.0613 252 2.18% 7.0%
MCS (OT) 1.573 0.0579 1000000 0.31% 1.0%
SS (OT) 1.574 0.0578 20000 0.24% 0.8%
DS (OT) 1.551 0.0605 522.5 1.74% 5.6%
IS (OT) 1.562 0.0592 514.41 1.03% 3.3%
LHS (OT) 1.570 0.0582 6486.47 0.53% 1.7%
ADS (OT) 1.524 0.0638 39950.3 3.43% 11.3%
FORM (DIY) 1.426 0.0769 71 9.62% 34.2%
FOSM (DIY) 1.397 0.0812 13 11.46% 41.7%
MCS (DIY) 1.575 0.0576 900000 0.19% 0.6%
SS (DIY) 1.576 0.0575 4905 0.11% 0.3%
DS (DIY) 1.578 0.0573 369.2 0.01% -0.1%
IS (DIY) 1.541 0.0617 286.5 2.35% 7.6%
AIS (DIY) 1.574 0.0577 907.8 0.24% 0.7%
AKMCS-0 1.584 0.0566 51 0.38% -1.2%
AKMCS-1 1.532 0.0627 29 2.90% 9.5%

It can be seen from Table 3.3 that for the GEOSNet example 1 problem (with a simple performance
function and only has one mode of failure), the most accurate reliability method is LHS (PTK) with Pf

error of 0.0%, which mean it is giving the exact same Pf value as GEOSNet MCS’ despite of only using
10001 realizations (N ). Moreover, it can also be seen from Table 3.3 that FOSM (DIY) requires the
least N while also giving the least accurate Pf value.

The result (β and Pf ) of each method can be compared together into a single graph ofN vs β (since
Pf values are normally small, therefore it is more convenient to present it as β value, as will then be
displayed in the result graphs of this report). A lower required N means a more efficient method, and a
closer beta to the point of reference means a more accurate method. GEOSNet’s Monte Carlo Result
will be used as a reference, as the Monte Carlo Simulation used 106 realizations and is considered
as the most robust/accurate result (in spite of the efficiency disadvantages). The comparison can be
observed in Figure 3.4.
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Figure 3.4: N vs Beta comparison of GEOSNet Example 1.

It can be observed that all of the results are close to the reference line, with the largest β deviation
(FOSM (DIY) result) is less than 0.5 (or Pf error of 41.7%).

3.4. A problem with more than 1 mode of failure
In this example, a simple slope stability with two undrained layers is analyzed (Figure 3.5. The two
layers have independent stochastic soil strength parameters su,1 and su,2 with all other variables are
deterministic.

Figure 3.5: A simple slope stability problem with 2 independent stochastic variables.

The following deterministic parameters were used:
Slope heights : 4m
Slope inclination : 1:2 (26.57 deg.)
Layer thickness : 4m ; 4m
Unit weight : 16 kN/m3

By using Bishop’s limit equilibrium method, the 2 modes of failure (either a deep or a shallow slip
circle) can be found as a critical slip circle with the lowest factor of safety FS. The FS is depending on
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just the relative undrained shear strength of the 2 layers. The limit state function gsys(X) can thus be
formulated as the combination of the component limit state functions gs(X) and gd(X) for shallow and
deep failure modes respectively.

gs(X) = FSs − 1 (3.4)

gd(X) = FSd − 1 (3.5)

with:

FSs = cs1.su,1 (3.6)

FSd = cd1.su,1 + cd2.su,2 (3.7)

Therefore:

gsys(X) = min(gs, gd) (3.8)

Where Xi is the stochastic variable corresponding to the undrained shear strength su for layer i.
Using a limit equilibrium software with Bishop’s method, the coefficient of the performance function
above are calibrated as the following.

cs1 = 0.004072890235
cd1 = 0.000554854
cd2 = 0.002397665

Moreover, the independent variable distribution are displayed in Table 3.4.

Table 3.4: Parameter distribution of the simple slope stability problem.

Variable Distribution Statistics Units
su,1 Lognormal µ = 21.8, σ = 6.0 kN/m2

su,2 Lognormal µ = 30.4, σ = 6.0 kN/m2

The limit state function can be plotted like in Figure 3.6.
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Figure 3.6: Limit state function of a slope stability problem with 2 mode of failulres.

From Figure 3.6, it can be seen that the limit state function at gsys(X) = 0 is consisted of 2 lines that
are combined together. These lines represent the failure of shallow and deep sliding surface. These
lines can be plotted separately as displayed in Figure 3.7 and 3.8 for shallow and deep sliding surfaces
respectively.

Figure 3.7: Limit state function of the shallow slip surface.



3.4. A problem with more than 1 mode of failure 19

Figure 3.8: Limit state function of the deep slip surface.

The distance of the design points from the origin of the standard normal space as displayed in Figure
3.7 and 3.8 are certainly different between each other (βshallow = 1.97 and βdeep = 3.00). Therefore,
there are 2 possibilities of design point in gsys(X) = 0, as displayed in Figure 3.9).

Figure 3.9: Two possibilities of β for gsys(X) = 0.

This multiple design points can also be observed when analyzed using Monte Carlo Simulation
(Figure 3.10).
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Figure 3.10: Two possible design points as observed from MCS (PTK) result.

Judging by the definition of reliability index (the shortest distance from the origin to the limit state
function in a standard normal space), clearly the correct reliability index of gsys(X) should be β = 1.97,
or the shortest distance between the origin to the limit state function of the shallow slip in standard
normal space. However, when evaluated in a combined limit state function gsys(X), FORM (OT and or
DIY version) gives a reliability index β = 3.00, which is clearly overestimating the reliability of gsys(X).
Similarly, this also happens with the SORM (OT) method due to their similar approach in determining
the reliability index (SORM (OT) gives β = 3.04). Despite a slightly more accurate re-creation of a
design point in a limit state function’s curve, SORM (OT) method still unable to detect the closest design
point when the function has more than 1 design point.

Consequently, for a function with a multiple mode of failures (thus having multiple design points),
it is advised to model each mode of failure separately (as applied in PTK analysis), and then analyze
the reliability index of each design point. Furthermore, the system reliability can be estimated based
on each of its design point’s reliability, as defined in equation 3.9.

βsys ≈ Φ−1[Φ(βshallow) + Φ(βdeep)] = 1.97 (3.9)

This problem can be avoided by using other reliability methods (e.g. sampling-based methods).
The application of other reliability methods is presented and compared in Figure 3.11.
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Figure 3.11: Result comparison of a simple slope stability problem with 2 design points.

Figure 3.11 shows that gradient-based reliability methods such as FORM (OT and DIY) and SORM
(OT) method gives β = 3.00, while the sampling-based reliability methods approximately give β = 1.97
(which is the correct β value). Moreover, despite being a gradient-based reliability method, FORM (PTK)
accurately predicts the correct β value by analyzing each mode of failure separately. Furthermore, if
each design point is evaluated separately as displayed in Figure 3.7 and 3.8, all methods except for
FOSM (DIY) give the same result as displayed in Figure 3.12 (for shallow slip surface) and Figure 3.13
(for deep slip surface).
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Figure 3.12: Result comparison of the shallow mode of failure.

Figure 3.13: Result comparison of the deep mode of failure.



3.5. Analysis Results 23

It can be observed from Figure 3.12 and 3.13 that all of the reliability methods (except FOSM) give
the same result. Therefore in this case, it can be concluded that a gradient-based reliability method (in
this case is FORM) could be misleading for a function with more than 1 failure of mode (or more than
1 design point). However, this problem can be avoided if the problem’s modes of failure are evaluated
separately.

Moreover, this problem can also be avoided by applying different initial/ starting point. Normally
FORM starts from the mean values of each parameter or origin of the standard normal space (as
shown in Figure 3.9). Therefore in this case, if the starting point is moved higher (constant X1 and
higher X2), the obtained β value would be 1.98 (similar to the result displayed in Equation 3.9). This
can be briefly explained by Figure 3.14.

Figure 3.14: Two possible different FORM β values with different starting points.

3.5. Analysis Results
The results of multiple reliability analysis methods on a slope stability problem and GEOSNet examples
are presented from Figure 3.15 to Figure 3.23 (note that Figure 3.11 and 3.4 are included again as
Figure 3.15 and 3.16 respectively for practical purpose). The gradient-based methods applied are the
basic type as discussed in Section 2.3, therefore their shortcomings in problems with multiple modes
of failure can be better acknowledged (except for FORM (PTK) where each mode of failure is analyzed
separately in each problem). Moreover, every sampling-basedmethod for each problem in the following
results is based on averaged result of 100 simulations (as mentioned in Section 3.2).



3.5. Analysis Results 24

Figure 3.15: Result comparison of the slope stability problem (note that this graph is identical as Figure 3.11).
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Figure 3.16: Result comparison of the GEOSNet example 1 (note that this graph is identical with Figure 3.4)

Figure 3.17: Result comparison of the GEOSNet example 2
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Figure 3.18: Result comparison of the GEOSNet example 3

Figure 3.19: Result comparison of the GEOSNet example 4
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Figure 3.20: Result comparison of the GEOSNet example 5

Figure 3.21: Result comparison of the GEOSNet example 7
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Figure 3.22: Result comparison of the GEOSNet example 8

Figure 3.23: Result comparison of the GEOSNet example 9



4
Discussion

This section will discuss the results found in Chapter 3.

4.1. Result Summary
Based on Figure 3.15 to Figure 3.23 in Section 3.5, the following points can be observed.

The basic gradient-based reliability method such as FORM (OT), FORM (DIY), SORM (OT), and
FOSM (DIY) failed to identify β (the closest design point to the standard space origin) in the simple
slope stability and GEOSNet EX2 problems, which have more than 1 mode of failure/ design point (as
can be seen in Figure 3.15 and 3.17). However, with the same problems, FORM (PTK) had a closer
prediction of β (as can be observed in Figure 3.15 and 3.17 respectively) due to separate analysis
of each mode of failure. Therefore, these gradient-based methods (except for FORM (PTK)) tend to
overestimate β value (as discussed in Section 3.4 and shown in Figure 3.15 and 3.17). However, all
of these gradient-based methods successfully identified the correct β values in GEOSNet EX3 and
EX8 (Figure 3.18 and 3.22 respectively). Therefore under specific conditions, gradient-based methods
could still accurately determine the correct β value. The rest of the reliability methods successfully de-
termined the correct β values (with some variation in accuracy and efficiency) despite needing higher
N values, especially with the sampling-based reliability methods.

FOSM (DIY) method often fails to determine the correct β values, even for problems with only 1
mode of failure (Figure 3.19, 3.21, and 3.23). Moreover, sampling-based methods often give accurate
estimation of β values (Figure 3.15 to 3.23), however they need much more computational effort (higher
N ), especially when they are averaged to avoid result fluctuations (as shown in Section 3.2). Since
PTK analyzed each mode of failure/ design point separately, it further increased the computational ef-
fort. This can be observed in Figure 3.18 (EX3 with 3 MoF) where the required N from PTK in MCS
(PTK) and DS (PTK) exceed the required N = 106 of MCS (OT), also in Figure 3.15 to Figure 3.23
where FORM (PTK) needs higher N than the rest of the gradient-based methods.

The results of the reliability methods from each problem can be presented as its Pf errors (differ-
ences) from GEOSNet’s Monte Carlo Analysis probability of failure (Pf ). Therefore, the smaller the
Pf differences (Pf errors), the more accurate the reliability method is with the corresponding problem.
Moreover, the less realization (N ) it needs, the more efficient the method is. The Pf errors are sum-
marized in Table 4.1 and the N of each cases is summarized in Table 4.3. For practical purpose, the
absolute β error of each method in each problem will also be displayed in Table 4.2. However, the
complete Pf and β results can be found in Table A.1 and Table A.2 in the Appendix (A). The relation
between Pf and β can be defined by equation 2.2.

Due to the high uncertainties in the model and incomplete data, the attempt to re-create the same
performance function used in the GEOSNet reports was unsuccessful (as can be seen from Figure
3.20 to 3.22). Therefore, problems from GEOSNet Example 5, 7, and 8 will use the MCS (OT) Pf and

29
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β with N=106 as references.

Table 4.1: Probability of failure (Pf ) errors for each method and problem (GEOSNet EX5, EX7, and EX8 use MCS (OT) Pf as
reference while the rest are based on GEOSNet’s MCS result with N = 106).

Problems: Slope EX1 EX2 EX3 EX4 EX5 EX7 EX8 EX9
No. of DP: (2) (1) (2) (3) (1) (1) (1) (3) (1)
Pf reference: 0.0246 0.0573 0.0639 0.0018 0.0039 0.0944 0.0263 0.0817 0.0007
β reference: 1.97 1.58 1.52 2.91 2.66 1.32 1.94 1.39 3.17
FORM (PTK) -0.1% 34.0% 33.3% -0.2% 7.4% 11.2% 5.7% 0.5% -2.9%
LHS (PTK) -5.8% 0.000% -11.0% -0.3% 2.6% -0.4% -1.1% 0.5% -3.3%
MCS (PTK) 0.7% 0.9% 0.2% 0.0% 1.3% -0.2% -5.7% -5.8% -2.1%
IS (PTK) -4.2% 1.7% 2.3% 0.1% -5.4% 0.4% -0.8% -4.4% -10.8%
DS (PTK) -0.1% 0.7% 7.8% -0.1% 6.9% -0.5% 0.0% 3.4% -14.0%
FORM (OT) -94.5% 34.4% -74.9% -4.8% 5.2% 11.5% 6.0% 0.5% -2.8%
SORM (OT) -95.1% 7.0% -82.6% 0.3% 0.8% 3.2% -0.3% -0.2% -1.2%
MCS (OT) 0.0% 1.0% -0.2% 4.5% 0.6% 0.0% 0.0% 0.0% -3.6%
SS (OT) -0.8% 0.8% 0.4% -8.4% 0.9% -1.0% 0.7% -0.1% -4.3%
DS (OT) 4.9% 5.6% 1.8% 45.4% 3.7% 2.0% 8.1% -1.2% 0.8%
IS (OT) -11.5% 3.3% -6.1% 1.6% 5.3% 1.4% 0.3% 5.3% -5.5%
LHS (OT) -0.6% 1.7% 0.6% 1.7% 2.1% -0.4% 0.3% -0.3% -2.8%
ADS (OT) 2.1% 11.3% 9.9% 7.5% 2.0% 12.8% 9.3% -11.0% -5.7%
FORM (DIY) -94.5% 34.2% -74.5% -3.3% 7.3% 11.5% 6.0% 0.2% -2.8%
FOSM (DIY) -61.1% 41.7% -87.5% -100% 1942% -13.0% 294.7% 30.2% 8642%
MCS (DIY) -0.7% 0.6% 1.3% 0.8% 4.2% -0.2% 0.7% -0.8% -1.0%
SS (DIY) -4.3% 0.3% 0.1% -6.6% -1.4% -1.5% 3.1% 0.3% -9.5%
DS (DIY) 1.0% -0.1% 1.1% -13.9% 259% -1.2% 280.3% -3.3% -23.0%
IS (DIY) -6.9% 7.6% 4.1% -5.6% 3.7% -2.6% 1.9% 1.6% -2.1%
AIS (DIY) -0.4% 0.7% -0.3% -8.6% 6.3% -4.5% -0.6% -9.0% -11.5%
AKMCS-0 -0.7% -1.2% 2.3% -0.1% 2.2% -0.7% -1.6% -1.1% 0.9%
AKMCS-1 -2.5% 9.5% 30.2% 7.0% 56.4% -1.4% -2.0% -1.1% -3.9%
NI (PTK) -2.6% - - - - - - - -
NB (PTK) -0.5% - - - - - - - -
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Table 4.2: Reliability index (β) absolute errors for each method and problem (GEOSNet EX5, EX7, and EX8 use MCS (OT) β
as reference while the rest are based on GEOSNet’s MCS result with N = 106).

Problems: Slope EX1 EX2 EX3 EX4 EX5 EX7 EX8 EX9
No. of DP: (2) (1) (2) (3) (1) (1) (1) (3) (1)
Pf reference: 0.0246 0.0573 0.0639 0.0018 0.0039 0.0944 0.0263 0.0817 0.0007
β reference: 1.97 1.58 1.52 2.91 2.66 1.32 1.94 1.39 3.17
FORM (PTK) 0.01% 9.57% 10.05% 0.75% 0.90% 4.88% 1.46% 0.25% 0.32%
LHS (PTK) 1.53% 0.00% 3.74% 1.43% 0.53% 0.45% 0.09% 0.25% 0.32%
MCS (PTK) 0.01% 0.25% 0.20% 0.11% 0.15% 0.45% 1.12% 2.62% 0.32%
IS (PTK) 1.02% 0.51% 0.85% 0.06% 0.60% 0.31% 0.09% 1.90% 1.26%
DS (PTK) 0.01% 0.25% 2.82% 0.40% 0.90% 0.45% 0.09% 0.97% 1.58%
FORM (OT) 52.35% 9.66% 40.71% 0.63% 0.77% 4.73% 1.30% 0.18% 0.41%
SORM (OT) 54.21% 2.18% 50.14% 0.07% 0.22% 1.37% 0.07% 0.09% 0.26%
MCS (OT) 0.00% 0.31% 0.06% 0.37% 0.20% 0.00% 0.00% 0.00% 0.48%
SS (OT) 0.20% 0.24% 0.13% 1.04% 0.20% 0.43% 0.14% 0.04% 0.61%
DS (OT) 1.04% 1.74% 0.62% 3.99% 0.59% 0.86% 1.74% 0.48% 0.08%
IS (OT) 2.61% 1.03% 2.07% 0.07% 0.78% 0.58% 0.08% 2.02% 0.66%
LHS (OT) 0.13% 0.53% 0.22% 0.08% 0.39% 0.18% 0.06% 0.10% 0.41%
ADS (OT) 0.46% 3.43% 3.20% 0.67% 0.38% 5.23% 2.00% 4.44% 0.68%
FORM (DIY) 52.38% 9.62% 40.27% 0.46% 1.02% 4.73% 1.30% 0.08% 0.41%
FOSM (DIY) 19.06% 11.46% 58.29% 87.73% 47.17% 5.86% 34.98% 10.61% 52.38%
MCS (DIY) 0.16% 0.19% 0.45% 0.02% 0.65% 0.07% 0.16% 0.32% 0.24%
SS (DIY) 0.95% 0.11% 0.03% 0.84% 0.05% 0.63% 0.67% 0.11% 1.06%
DS (DIY) 0.22% 0.01% 0.38% 1.70% 17.51% 0.52% 33.88% 1.30% 2.52%
IS (DIY) 1.54% 2.35% 1.37% 0.72% 0.59% 1.11% 0.41% 0.63% 0.34%
AIS (DIY) 0.09% 0.24% 0.08% 1.06% 0.90% 1.97% 0.13% 3.63% 1.26%
AKMCS-0 0.15% 0.38% 0.78% 0.11% 0.41% 0.28% 0.35% 0.42% 0.06%
AKMCS-1 0.54% 2.90% 9.14% 0.63% 5.92% 0.59% 0.45% 0.44% 0.51%
NI (PTK) 0.52%
NB (PTK) 0.01%
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Table 4.3: The number of realization N for each problem’s reliability methods.

Problems: Slope EX1 EX2 EX3 EX4 EX5 EX7 EX8 EX9
No. of DP: (2) (1) (2) (3) (1) (1) (1) (3) (1)
Pf reference: 0.0246 0.0573 0.0639 0.0018 0.0039 0.0944 0.0263 0.0817 0.0007
β reference: 1.97 1.58 1.52 2.91 2.66 1.32 1.94 1.39 3.17
FORM (PTK) 36 42 110 104 42 40 35 364 70
LHS (PTK) 1001 10001 2002 30030 10001 400001 100001 30003 200001
MCS (PTK) 1E+05 2E+05 1E+05 3E+06 1E+05 1E+04 2E+04 2E+04 1E+05
IS (PTK) 2880 37312 195814 200848 105968 40016 100016 43872 189200
DS (PTK) 5E+03 4E+04 8E+04 1E+06 6E+04 4E+04 5E+04 2E+05 6E+04
FORM (OT) 157 144 198 215 157 158 152 694 218
SORM (OT) 179 252 415 272 253 314 215 1089 452
MCS (OT) 1E+06 1E+06 1E+06 1E+06 1E+06 1E+06 1E+06 1E+06 1E+06
SS (OT) 20000 20000 20000 30000 30000 20000 20000 20000 40000
DS (OT) 239 523 863 4966 9094 240 1380 649 57341
IS (OT) 38218 514 3450 622 599 471 470 1153 805
LHS (OT) 16118 6486 5839 218704 100317 3870 14811 4519 549733
ADS (OT) 39998 39950 39815 39996 39992 39920 39992 35614 39871
FORM (DIY) 22 71 211 36 43 41 31 66 91
FOSM (DIY) 5 13 19 9 11 15 9 25 19
MCS (DIY) 9E+05 9E+05 9E+05 9E+05 9E+05 9E+05 9E+05 9E+05 9E+05
SS (DIY) 4905 4905 4905 7228 7228 4905 4905 4905 9552
DS (DIY) 329 369 384 400 60659 328 2596 344 330
IS (DIY) 1061 287 2061 373 362 230 246 246 479
AIS (DIY) 447 908 2698 2034 1631 1686 634 3532 2756
AKMCS-0 21 51 100 82 62 34 56 56 88
AKMCS-1 28 29 92 91 64 38 100 43 100
NI (PTK) 40001 - - - - - - - -
NB (PTK) 42369 - - - - - - - -

The required N values displayed in Table 4.3 for the sampling-based methods are based on the av-
erage of N from 100 simulations. These additional simulations are only applied to the sampling-based
methods other than MCS (LHS, IS, DS, SS, ADS, AIS, and both AK-MCS).

Moreover, Table 4.1 can also be presented as a graph based on Pf errors and the number of
independent variable throughout different β, as displayed in Figure 4.1 and 4.3 below. Furthermore,
the range of the results are displayed in Figure 4.2 and Figure 4.4 for Pf errors throughout different
β and number of independent variables respectively. Due to the extreme differences in FOSM (DIY),
Figure 4.2 and Figure 4.4 display the range by including and excluding FOSM (DIY) result.
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Figure 4.1: β differences throughout different β values (*SS = Slope stability problem).

Figure 4.2: The range of β differences throughout different β values.
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Figure 4.3: β differences throughout different no. of independent variables (*SS = Slope stability problem).

Figure 4.4: The range of β differences throughout different no. of independent variables.
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It can be observed from Figure 4.1 and 4.3 that generally the problems with more than 1 mode of
failure or design points (DP) have considerably higher Pf errors compared to the problems with 1 DP.
It can also be observed that FOSM (DIY) and DS (DIY) has the highest Pf errors (more than 100%
in some examples. For practicality purpose, Figure 4.1 and 4.3 only display differences within 100%
range, therefore any error higher than 100% is displayed at the border of the graphs. It is worth men-
tioning that for β value of 2.64 (EX4) and 3.19 (EX9) with number of independent variables of 5 & 9,
FOSM(DIY) Pf errors reach a staggering value of 1942% and 8642% respectively.

Figure 4.2 and 4.4 show the ranges of all the Pf differences from each reliability method. Since
FOSM (DIY) errors are extremely high and could be considered as outliers, Figure 4.2 and 4.4 also
include the error ranges without FOSM (DIY).

Moreover, despite there is a tendency for FOSM (DIY) to get higher Pf errors with higher β (or lower
Pf ) and higher number of independent variables, there is no clear indication for the rest of the reliability
methods to follow the same pattern based on 4.1 and 4.4, or Table 4.1. More examples with different
β references and varying number of independent variables are needed to correctly correlate between
β and Pf errors or between number of independent variables and Pf errors.

4.2. Rankings
To further compare the reliability index β and Pf errors between each method, a ranking system will
be implemented. Within each problem, the methods will be ranked according to it’s absolute Pf errors,
where the higher the absolute Pf error means the higher the rank (the lower rank is the better). For ex-
ample, based on Table 4.1, LHS (PTK) obtained the most accurate result for GEOSNet EX1, therefore
it is ranked as the 1st in term accuracy. Similarly, FOSM (DIY) is ranked as the least accurate (22nd)
for the same problem since it has the highest Pf error (Table 4.1). The same principle is also applied
according to the number of required N in each method. Since numerical integration (NI) and numerical
bisection (NB) are only applied in the slope stability problem, these methods will be excluded in the
ranking system.

The ranks based on each method’s absolute Pf errors (accuracy) are presented in Table 4.4 and
the ranks for the required N (efficiency) are presented in Table 4.5.



4.2. Rankings 36

Table 4.4: The rank of each method based on its absolute Pf errors (the lower the rank the better).

Problems: Slope EX1 EX2 EX3 EX4 EX5 EX7 EX8 EX9
No. of DP: (2) (1) (2) (3) (1) (1) (1) (3) (1)
Pf reference: 0.0246 0.0573 0.0639 0.0018 0.0039 0.0944 0.0263 0.0817 0.0007
β reference: 1.97 1.58 1.52 2.91 2.66 1.32 1.94 1.39 3.17
FORM (PTK) 3 19 18 5 19 18 16 7 10
LHS (PTK) 16 1 16 7 9 6 10 7 11
MCS (PTK) 7 8 2 1 4 3 15 19 6
IS (PTK) 13 12 11 3 15 4 9 17 18
DS (PTK) 2 5 14 2 17 7 2 16 20
FORM (OT) 20 21 20 13 13 20 18 9 7
SORM (OT) 22 15 21 6 2 16 4 4 4
MCS (OT) 1 9 3 12 1 1 1 1 12
SS (OT) 9 7 5 18 3 9 7 2 14
DS (OT) 15 14 9 21 11 14 19 13 1
IS (OT) 18 13 13 9 14 11 5 18 15
LHS (OT) 5 11 6 10 7 5 3 5 8
ADS (OT) 11 18 15 17 6 21 20 21 16
FORM (DIY) 21 20 19 11 18 19 17 3 9
FOSM (DIY) 19 22 22 22 22 22 22 22 22
MCS (DIY) 8 4 8 8 12 2 8 10 3
SS (DIY) 14 3 1 15 5 13 14 6 17
DS (DIY) 10 2 7 20 21 10 21 15 21
IS (DIY) 17 16 12 14 10 15 12 14 5
AIS (DIY) 4 6 4 19 16 17 6 20 19
AKMCS-0 6 10 10 4 8 8 11 11 2
AKMCS-1 12 17 17 16 20 12 13 12 13
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Table 4.5: The rank of each method based on its N (the lower the better).

Problems: Slope EX1 EX2 EX3 EX4 EX5 EX7 EX8 EX9
No. of DP: (2) (1) (2) (3) (1) (1) (1) (3) (1)
Pf reference: 0.0246 0.0573 0.0639 0.0018 0.0039 0.0944 0.0263 0.0817 0.0007
β reference: 1.97 1.58 1.52 2.91 2.66 1.32 1.94 1.39 3.17
FORM (PTK) 5 3 4 5 2 4 3 7 2
LHS (PTK) 11 15 10 15 13 20 19 17 19
MCS (PTK) 20 20 19 22 19 15 15 16 17
IS (PTK) 13 17 20 17 20 18 20 19 18
DS (PTK) 15 19 18 21 16 19 18 20 16
FORM (OT) 6 6 5 6 6 6 6 9 6
SORM (OT) 7 7 8 7 7 9 7 10 8
MCS (OT) 22 22 22 20 22 22 22 22 22
SS (OT) 17 16 16 14 14 16 16 15 14
DS (OT) 8 11 9 12 12 8 11 8 15
IS (OT) 18 10 13 10 9 11 9 11 10
LHS (OT) 16 14 15 18 18 13 14 13 20
ADS (OT) 19 18 17 16 15 17 17 18 13
FORM (DIY) 3 5 6 2 3 5 2 4 4
FOSM (DIY) 1 1 1 1 1 1 1 1 1
MCS (DIY) 21 21 21 19 21 21 21 21 21
SS (DIY) 14 13 14 13 11 14 13 14 12
DS (DIY) 9 9 7 9 17 10 12 6 7
IS (DIY) 12 8 11 8 8 7 8 5 9
AIS (DIY) 10 12 12 11 10 12 10 12 11
AKMCS-0 2 4 3 3 4 2 4 3 3
AKMCS-1 4 2 2 4 5 3 5 2 5

The ranks (based on absolute Pf errors and N values) of each method can be further summed,
therefore the final rank will be based on the total sum (the lower the total sum is, the higher the final
rank is). For example, the total Pf error ranks of FORM (PTK) is (21 + 19 + 17 + ... + 11 = ). This can
be presented in Table 4.6.
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Table 4.6: The cummulative ranks based on Pf errors and N values (the lower the better).

Method Tot. Pf error rank Tot. N value rank Tot. rank Final rank
(a) (b) (c = a+b) (d)

FORM (PTK) 115 35 150 2
LHS (PTK) 83 139 222 16
MCS (PTK) 65 163 228 17
IS (PTK) 102 162 264 21
DS (PTK) 85 162 247 19
FORM (OT) 141 56 197 7
SORM (OT) 94 70 164 3
MCS (OT) 41 196 237 18
SS (OT) 74 138 212 13
DS (OT) 117 94 211 11
IS (OT) 116 101 217 15
LHS (OT) 60 141 201 8
ADS (OT) 145 150 295 22
FORM (DIY) 137 34 171 5
FOSM (DIY) 195 9 204 9
MCS (DIY) 63 187 250 20
SS (DIY) 88 118 206 10
DS (DIY) 127 86 213 14
IS (DIY) 115 76 191 6
AIS (DIY) 111 100 211 11
AKMCS-0 70 28 98 1
AKMCS-1 132 32 164 3

Finally, the best reliability methods according to the Pf errors, N , and total performance (Pf errors
+ N values) are presented in Table 4.7

Table 4.7: The final ranks (the lower the better).

Ranks Pf error ranks N value rank Final ranks
1 MCS (OT) FOSM (DIY) AK-MCS 0
2 LHS (OT) AK-MCS 0 FORM (PTK)
3 MCS (DIY) AK-MCS 1 SORM (OT)
4 MCS (PTK) FORM (DIY) AK-MCS 1
5 AK-MCS 0 FORM (PTK) FORM (DIY)
6 SS (OT) FORM (OT) IS (DIY)
7 LHS (PTK) SORM (OT) FORM (OT)
8 DS (PTK) IS (DIY) LHS (OT)
9 SS (DIY) DS (DIY) FOSM (DIY)
10 SORM (OT) DS (OT) SS (DIY)
11 IS (PTK) AIS (DIY) AIS (DIY)
12 AIS (DIY) IS (OT) DS (OT)
13 FORM (PTK) SS (DIY) SS (OT)
14 IS (DIY) SS (OT) DS (DIY)
15 IS (OT) LHS (PTK) IS (OT)
16 DS (OT) LHS (OT) LHS (PTK)
17 DS (DIY) ADS (OT) MCS (PTK)
18 AK-MCS 1 DS (PTK) MCS (OT)
19 FORM (DIY) IS (PTK) DS (PTK)
20 FORM (OT) MCS (PTK) MCS (DIY)
21 ADS (OT) MCS (DIY) IS (PTK)
22 FOSM (DIY) MCS (OT) ADS (OT)
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It can be observed from Table 4.6 that DS (OT) and AIS (DIY) obtained the same final rank of 11.
However, AIS (DIY) has less score in Pf error rank (111) compared to DS (OT) Pf error score (117).
Therefore, in Table 4.7, AIS (DIY) is assigned the higher final rank (11) compared to DS (OT) final rank
(12).



5
Conclusion and Reflection

5.1. Conclusions
Based on the things discussed in Chapter 3 and 4, the following things can be concluded:

• It can be observed from Table 4.7 that MCS (OT) with N=106 is ranked as the most accurate
method despite its shortcoming in efficiency where it is also ranked as the most inefficient method
at the same time. However, the accuracy rank is highly influenced by its Pf use as the reference
for GEOSNet example 5, 7, and 9. Moreover, its inaccuracy is highly influence by its N value
which was kept constant at 106.

• Furthermore, Monte Carlo Simulation methods are ranked as the most inefficient methods in this
research since Table 4.7 shows that all of the 3 MCS methods are positioned at the bottom 3 in
the efficiency ranking. This is due to the fact that MCS (OT) and MCS (DIY) are having fixed N
numbers of 106 and 9x105 respectively. However, MCS (PTK)’s number of N is obtained after
reaching the determined convergence value (COV = 0.1) therefore its N values are lower than
MCS (OT) and MCS (DIY). It can be concluded that Monte Carlo Simulation is the most inefficient
method in this research.

• It can also be observed from Table 4.7 that the FOSM (DIY) method obtained the most efficient
method despite it is also ranked as the least accurate method at the same time. It is also shown
in Table 4.1 and Figure 4.2 that FOSM (DIY) accuracy further decreases for β value larger than
2 (or Pf value lower than 2.275%). Therefore, FOSM (DIY) is the most inaccurate method in this
research.

• Combining the accuracy and efficiency, AK-MCS 0 is ranked as the best reliability method in this
research. It is ranked 5th in term of accuracy and 2nd in term of efficiency.

• Gradient-based reliability methods such as FORM (OT), FORM (DIY), SORM (OT), and FOSM
(DIY) failed to identify the correct design point for the simple slope stability and GEOSNet EX2
problems (which have more than 1 mode of failure), as can be seen in Table 4.1, Figure 3.15, and
3.17. However, FORM (PTK) accurately predicts the correct β value by analyzing each mode of
failure separately.

• However in some cases, the gradient-based reliability methods could still accurately determine
the correct β values for problems with more than 1 mode of failure. This can be observed in in
GEOSNet EX3 and EX8 (Figure 3.18 and 3.22 respectively). Therefore, it is recommended to
perform at least 1 sampling-based reliability method for confirmation purpose when one performs
a gradient-based reliability method.

• Except for FOSM (DIY), Figure 4.1, Figure 4.2, and Table 4.1 show that the higher the problem’s
β value (or lower Pf value) does not necessarily give a wider range of Pf errors.

• Figure 4.4 and Table 4.1 show that the increase in number of independent variable does not
necessarily give a wider range of Pf errors.

• Although SORM (OT) and FORM (DIY), and FORM (OT) method obtained relatively high final
ranks based on 4.7 (final rank of 3, 5, and 7 respectively ), they must be implemented very
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carefully due to their limitation in correctly identifying the Pf of problems with more than 1 design
points (as can be seen in Table 4.1).

• For problems with multiple modes of failure (multiple design points), analyzing and implementing
reliability analysis for each mode of failure is strongly recommended when implementing FORM
method (as discussed in Section 3.4). However, this takes more computational efforts despite it
is still much less than the sampling-based methods’ computational efforts. This can be seen in
FORM (PTK) cases based on Table 4.3.

• Based on Table 4.1 and 4.7, it can be observed that sampling-based reliability methods (where the
Pf , β, and N results are averaged from 100 simulations except for Monte Carlo Simulation) have
higher accuracy compared to the gradient-based methods. However, gradient-based methods
have higher efficiency.

• Sampling-based methods tend to fluctuate between simulations, therefore it is recommended to
perform multiple simulations and get the average β, Pf , and N values (as shown in Section 3.2).

• The accuracy and efficiency of the reliability analysis results are dependant on convergence crite-
ria, where a higher accuracy criteria (lower COV threshold and Pf errors) needs higher N values
(as shown in Section 2.15).

• Based on Table 4.1 and Figure 4.1, it can be seen that every reliability method has a different
accuracy and efficiency for each problem. Therefore, it is highly recommended to take at least
more than 1 type of reliability method for each problem to give a better prediction of the problem’s
β value.

5.2. Reflection
The following are limitations and considerations that could have further improved the research:

• More up-to-date reliability methods may give more accurate β estimate compared to this research,
e.g. improved FORMmethod that could differentiatemultiple design points for problemswithmore
than 1 design point (e.g. Der Kiureghian et al. 1998 [9]).

• Despite this research is only limited to the 9 selected problems, geotechnical engineering has a
very wide range of problem types with far more complex performance functions and design points
(including FEM-based models). Therefore, the result of this research only limited to the discussed
problems.

• FEM-based application is widely used in geotechnical engineering practice. Unfortunately, this
research does not include FEM-based problem into consideration due to time limitation.
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A
The results of β and Pf

This section complete the results as mentioned in Section 4.1.

Table A.1: Reliability index (β) of each problem.

Problems: Slope EX1 EX2 EX3 EX4 EX5 EX7 EX8 EX9
No. of DP: (2) (1) (2) (3) (1) (1) (1) (3) (1)

Pf reference: 0.0246 0.0573 0.0639 0.0018 0.0039 0.0944 0.0263 0.0817 0.0007
β reference: 1.97 1.58 1.52 2.91 2.66 1.32 1.94 1.39 3.17

FORM (PTK) 1.9700 1.4270 1.3700 2.9300 2.6400 1.2500 1.9100 1.3900 3.1800
LHS (PTK) 2.0000 1.5780 1.5800 2.9500 2.6500 1.3200 1.9400 1.3900 3.1800
MCS (PTK) 1.9700 1.5740 1.5200 2.9114 2.6600 1.3200 1.9600 1.4300 3.1800
IS (PTK) 1.9900 1.5700 1.5100 2.9100 2.6800 1.3100 1.9400 1.4200 3.2100
DS (PTK) 1.9700 1.5740 1.4800 2.9200 2.6400 1.3200 1.9400 1.3800 3.2200
FORM (OT) 3.0011 1.4256 2.1430 2.9266 2.6435 1.2519 1.9130 1.3910 3.1829
SORM (OT) 3.0376 1.5437 2.2866 2.9103 2.6580 1.2961 1.9396 1.3948 3.1782
MCS (OT) 1.9698 1.5731 1.5239 2.8975 2.6586 1.3141 1.9382 1.3935 3.1853
SS (OT) 1.9737 1.5742 1.5211 2.9385 2.6586 1.3197 1.9354 1.3940 3.1892
DS (OT) 1.9494 1.5506 1.5135 2.7923 2.6482 1.3028 1.9045 1.4003 3.1725
IS (OT) 2.0212 1.5617 1.5545 2.9062 2.6432 1.3065 1.9368 1.3654 3.1910
LHS (OT) 1.9725 1.5697 1.5196 2.9060 2.6536 1.3165 1.9371 1.3950 3.1830
ADS (OT) 1.9608 1.5238 1.4743 2.8887 2.6538 1.2454 1.8995 1.4555 3.1917
FORM (DIY) 3.0017 1.4261 2.1364 2.9217 2.6367 1.2519 1.9130 1.3924 3.1830
FOSM (DIY) 2.3453 1.3972 2.4108 5.4597 1.4074 1.3911 1.2602 1.2456 1.5097
MCS (DIY) 1.9729 1.5751 1.5161 2.9087 2.6468 1.3150 1.9352 1.3979 3.1777
SS (DIY) 1.9887 1.5763 1.5225 2.9326 2.6654 1.3224 1.9252 1.3920 3.2036
DS (DIY) 1.9655 1.5782 1.5172 2.9576 2.1975 1.3209 1.2815 1.4117 3.2498
IS (DIY) 2.0002 1.5409 1.5021 2.9292 2.6483 1.3287 1.9302 1.3848 3.1808
AIS (DIY) 1.9717 1.5742 1.5242 2.9391 2.6400 1.3399 1.9408 1.4441 3.2099
AKMCS-0 1.9728 1.5840 1.5111 2.9114 2.6532 1.3178 1.9450 1.3994 3.1720
AKMCS-1 1.9806 1.5322 1.3839 2.8899 2.5064 1.3218 1.9470 1.3996 3.1861
NI (PTK) 1.9800 - - - - - - - -
NB (PTK) 1.9700 - - - - - - - -
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Table A.2: Probability of failure (Pf ) of each problem.

Problems: Slope EX1 EX2 EX3 EX4 EX5 EX7 EX8 EX9
No. of DP: (2) (1) (2) (3) (1) (1) (1) (3) (1)

Pf reference: 0.0246 0.0573 0.0639 0.0018 0.0039 0.0944 0.0263 0.0817 0.0007
β reference: 1.97 1.58 1.52 2.91 2.66 1.32 1.94 1.39 3.17

FORM (PTK) 0.0244 0.0768 0.0852 0.0017 0.0042 0.1050 0.0278 0.0821 0.0007
LHS (PTK) 0.0230 0.0573 0.0569 0.0016 0.0040 0.0940 0.0260 0.0821 0.0007
MCS (PTK) 0.0246 0.0578 0.0640 0.0018 0.0040 0.0942 0.0248 0.0770 0.0007
IS (PTK) 0.0234 0.0583 0.0654 0.0018 0.0037 0.0948 0.0261 0.0781 0.0007
DS (PTK) 0.0244 0.0577 0.0689 0.0018 0.0042 0.0939 0.0263 0.0845 0.0006
FORM (OT) 0.0013 0.0770 0.0161 0.0017 0.0041 0.1053 0.0279 0.0821 0.0007
SORM (OT) 0.0012 0.0613 0.0111 0.0018 0.0039 0.0975 0.0262 0.0815 0.0007
MCS (OT) 0.0244 0.0579 0.0638 0.0019 0.0039 0.0944 0.0263 0.0817 0.0007
SS (OT) 0.0242 0.0578 0.0641 0.0016 0.0039 0.0935 0.0265 0.0817 0.0007
DS (OT) 0.0256 0.0605 0.0651 0.0026 0.0040 0.0963 0.0284 0.0807 0.0008
IS (OT) 0.0216 0.0592 0.0600 0.0018 0.0041 0.0957 0.0264 0.0861 0.0007
LHS (OT) 0.0243 0.0582 0.0643 0.0018 0.0040 0.0940 0.0264 0.0815 0.0007
ADS (OT) 0.0249 0.0638 0.0702 0.0019 0.0040 0.1065 0.0287 0.0728 0.0007
FORM (DIY) 0.0013 0.0769 0.0163 0.0017 0.0042 0.1053 0.0279 0.0819 0.0007
FOSM (DIY) 0.0095 0.0812 0.0080 0.0000 0.0796 0.0821 0.1038 0.1064 0.0656
MCS (DIY) 0.0243 0.0576 0.0647 0.0018 0.0041 0.0943 0.0265 0.0811 0.0007
SS (DIY) 0.0234 0.0575 0.0639 0.0017 0.0038 0.0930 0.0271 0.0820 0.0007
DS (DIY) 0.0247 0.0573 0.0646 0.0016 0.0140 0.0933 0.1000 0.0790 0.0006
IS (DIY) 0.0227 0.0617 0.0665 0.0017 0.0040 0.0920 0.0268 0.0831 0.0007
AIS (DIY) 0.0243 0.0577 0.0637 0.0016 0.0041 0.0901 0.0261 0.0744 0.0007
AKMCS-0 0.0243 0.0566 0.0654 0.0018 0.0040 0.0938 0.0259 0.0808 0.0008
AKMCS-1 0.0238 0.0627 0.0832 0.0019 0.0061 0.0931 0.0258 0.0808 0.0007
NI (PTK) 0.0238 - - - - - - - -
NB (PTK) 0.0243 - - - - - - - -

A Microsoft Excel file of the table (and all results) is available in: click here or https://bit.ly/32Hu65v
or by an email request to rayyan8818@gmail.com.

https://bit.ly/32Hu65v
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geotechnical safety network 

 
TASK GROUP 3 – RELIABILITY BENCHMARKING 
 
Example No. 1 
Author(s) KK Phoon 
Date 11 April 2008 (ver. 1) 
  
Brief 
description 

Infinite slope problem with 6 independent random variables. 
 
The purpose is to show that “independent” variables must be carefully 
selected so that they do not violate physics, e.g. height of water table 
and soil unit weights shown below. 

Figure  
 

H 

h 

sat 

 

 

SOIL 

ROCK 

 
 

Performance 
function 

    
  

1
sinhhH

tancoshhH
P

sat

wsat 



  

H = depth of soil above bedrock 
h = height of groundwater table above bedrock 
 and sat = moist unit weight and saturated unit weight of the surficial 
soil, respectively 
w = unit weight of water (9.81 kN/m3) 
 = effective stress friction angle 
 = slope inclination 
 
Note that the height of the groundwater table (h) can not exceed the 
depth of surficial soil (H) and can not be negative.  Hence, it is 
modeled by h = HU, in which U = standard uniform variable.  The 
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moist and saturated soil unit weights are not independent, because 
they are related to the specific gravity of the soil solids (Gs) and the 
void ratio (e).  The uncertainties in  and sat are characterized by 
modeling Gs and e as two independent uniform random variables.  
There are six independent random variables in this problem (H, U, , 
, e, and Gs) 
 

Inputs  

Variable Description Distribution Statistics 

H Depth of soil 
above bedrock 

Uniform [2,8] m 

h = HU Height of water 
table 

U is uniform [0, 1] 

 Effective stress 
friction angle 

Lognormal mean = 35o 
cov = 8% 

 Slope 
inclination 

Lognormal mean = 20o 
cov = 5% 

 Moist unit 
weight of soil 

* * 

sat Saturated unit 
weight of soil 

** ** 

w Unit weight of 
water 

Deterministic 9.81 kN/m3 

*  = w (Gs +0.2e)/(1+e) (assume degree of saturation = 20% for 
“moist”). 
** sat = w (Gs + e)/(1+e) (degree of saturation = 100%). 
Assume specific gravity of solids = Gs = uniformly distributed [2.5, 
2.7] and void ratio = e = uniformly distributed [0.3, 0.6]. 
 

Solution 
methods 

FORM, SORM, simulation using MATLAB 

Results 
(optional) 

Deterministic (based on origin of standard normal space): 
H = 5 m, h = 2.5 m,  = 35o,  = 20o, Gs = 2.6, e = 0.45 (sat = 20.6 
kN/m3,  = 18.2 kN/m3) 
 

    
  

43.1
sinhhH

tancoshhH
FS

sat

wsat 



  

 
Probabilistic (based on distributions): 
 
 FORM 

(EXCEL) 
FORM SORM Simulation 

(n = 106) 

 1.426 1.426 1.544 1.579 

pf 0.0769 0.0769 0.0613 0.0572 
% error in 
pf 

34.4 34.4 7.2 - 

 

Code URL 
(optional) 

http://jyching.twbbs.org/reliability_benchmark/Pfun_case1.m 
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References 
(optional) 

Phoon K. K. (2008).  Reliability-Based Design in Geotechnical 
Engineering: Computations and Applications, Chapter 1, Taylor & 
Francis, London. 

Reviewers By Jianye Ching and Yi-Hung Hsieh 
 

Solution method FOSM FORM(1) SORM(2) MCS 
 

Subsim(3) 

  1.083 1.426 1.544 1.578 1.571 

FP  0.1394 0.0769 0.0614 0.0573 0.0581(4) 

% error in pf 143.28 34.21 7.16 - 1.40 

# of evaluation of 
P function 
(optional) 

13 57 112 106 2800 

Estimator cov 
(optional)  

- - - 0.41% 10.68%(5) 

 
(1) Gradient Projection algorithm is taken 
(2) Algorithm by Der Kiureghian and Stefano (1991) is taken 
(3) 1000 samples taken in each stage 
(4) average of 100 runs of Subsim 
(5) cov estimated from 100 runs of Subsim 
 
 
By Kieu Le T.C. & Honjo Y., using Subset MCMC simulation in 
Fortran 
 
Solution method Nt = 100 Nt = 50 
pf 0.02~0.1741 0.0199~0.1754 
COV(pf) 0~0.87 0.02~0.98 
Log(mean pf)/Log(pf_True*) 0.61~1.37 0.61~1.37 

* pf_True is chosen as pf obtained by simulation with Nt = 106 (KK 
Phoon) 
  
The optimum input for Nt, Ns & Nf: 
Nt = 50 ~ 100 
Nf/Nt = 0.02~0.05 
Ns/Nt = 0.02~0.04 
 

 

B.1. GEOSNet problems performance functions and distributions 49



 1

 

geotechnical safety network 

 
TASK GROUP 3 – RELIABILITY BENCHMARKING 
 
Example No. 2 
Author(s) Jianye Ching and Yi-Chu Chen 
Date 15 April 2008 (ver. 1) 
  
Brief 
description 

A consolidation problem with 8 independent random variables, 
modified from the example in P.372 in Ang and Tang (1984). 
 
The purpose of this benchmark example is to examine the robustness 
of each reliability method for problems with non-differentiable 
performance functions. 

Figure 
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allowS = allowable settlement 

H = thickness of the clay layer 
claye = initial void ratio of the clay layer 
'
p = average pre-consolidation stress of the clay 
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'
0 = average overburden stress of clay before construction 
' = average overburden stress of clay after construction 

rC = re-compression index 

cC = compression index 

where 

   '
0 0.5 1

2
sand sand clay

sat w sat w

H
           

' '
0 q       ' '

0p OCR       r cC C  

w = unit weight of water (9.81 kN/m3) 

The moist soil unit weight   and saturated soil unit weight sat  are 

not independent, because they are related to the specific gravity of the 
soil solids ( sG ) and the void ratio ( e ): 

1

sand sand
sand s
sat w sand

G e

e
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
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clay clay
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G e
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0.2
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sand sand
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
 

where a degree of saturation = 20% is assumed for “moist”. 
There are nine independent random variables in this problem 

(q ,H , claye , sande , clay
sG , sand

sG ,OCR , cC  and  ) 

Inputs  

 
 

Solution 
methods 
(optional) 

FOSM, FORM, SORM, MCS, Subsim 

Variable Description Distribution Statistics 

allowS  Allowable settlement Deterministic 0.05 m 

q  Surcharge pressure Lognormal Mean = 20 kN/m2 
cov = 20% 

H  Thickness of clay Gaussian mean = 4 m 
cov = 10% 

claye  Initial void ratio of 
clay 

Lognormal mean = 1.2 
cov = 15% 

sande  Void ratio of sand Lognormal mean = 0.8 
cov = 15% 

clay
sG  Specific gravity of 

clay solids 
Uniform [2.5, 2.7] 

sand
sG  Specific gravity of 

sand solids 
Uniform [2.5, 2.7] 

OCR  Over-consolidation 
ratio of clay 

Uniform [1.5, 2.5] 

cC  Compression index Lognormal mean = 0.4 
cov = 25% 

  
r cC C   Uniform [0.1, 0.2] 

B.1. GEOSNet problems performance functions and distributions 51



 3

Results 
(optional) 

Deterministic (based on mean values): 

q = 20 kN/m2, H  = 4m, claye  = 1.2, sande  =0.8, clay
sG  = 2.6,  sand

sG  = 

2.6, OCR  = 2, cC  =0.4,   = 0.15 

 


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'
0

'

10log
1 


rclayallow C

e

H
SFS  = 2.0935 (2.1873) 

 
Probabilistic (based on distributions): 
 

 

(1) Gradient Projection algorithm is taken 
(2) There are two solutions by FORM, the frequency of the real 
solution is 21%, the frequency of the fake solution is 79% 
(3) Algorithm by Der Kiureghian and Stefano (1991) is taken 
(4) 1000 samples taken in each stage 
(5) average of 100 runs of Subsim 
(6) cov estimated from 100 runs of Subsim 

Code URL 
(optional) 

Matlab code for the performance function can be download via 
http://jyching.twbbs.org/reliability_benchmark/Pfun_case2.m 

References 
(optional) 

1. Ang, A. H.-S. and Tang, W.H. (1984). Probability Concepts in 
Engineering Planning and Design. Volume II: Decision, Risk and 
Reliability. 
2. Der Kiureghian, A. and Stefano, M.D. (1991). Efficient algorithm 
for second-order reliability analysis. ASCE Journal of Engineering 
Mechanics, 117(12), 2904-2923.  

Reviewers Kok-Kwang Phoon 
 
 FORM 

(EXCEL) 
FORM SORM Simulation 

(n = 106) 

 1.432 
2.187* 

1.451** 
2.088 

1.565 
2.223 

1.524 

pf 0.0761 
0.0144 
 

0.0734 
0.0184 

0.0588 
0.0131 

0.0638 

% error 
in pf 

19.3 
-77.4 

15.1 
-71.2 

-7.8 
-79.5 

- 

*wrong answer occurs more frequently in SOLVER 
**correct answer occurs in MATLAB using origin as initial point 

Solution method FOSM FORM(1) SORM(3) MCS 
 

Subsim(4) 

  2.935 1.431 
2.149(2) 

1.547 
2.287 

1.523 1.527 

FP  1.67e-3 7.62e-2 
1.58e-2 

6.09e-2 
1.11e-2 

6.39e-2 6.34e-2(5) 

% error in pf -97.39 19.25 
-75.27 

-4.69 
-82.63 

- -0.78 

# of evaluation of P 
function (optional) 

19 152 261 106 1900 

Estimator cov 
(optional)  

n/a n/a n/a 0.4% 10.2%(6) 
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geotechnical safety network 

 
TASK GROUP 3 – RELIABILITY BENCHMARKING 
 
Example No. 3 
Author(s) Jianye Ching & Yi-Hung Hsieh 
Date 16 September 2011 (ver. 2) 
  
Brief 
description 

A retaining wall problem with 4 independent random variables. We 
consider three performance functions including sliding, overturning 
and bearing capacity. 
 
The purpose of this benchmark example is to examine the robustness 
of each reliability method for problems with multiple failure modes. 

Figure  

 
Performance 
function 

   

  
1 2 1

1

sin tan cos

min sin

a W R a

u W R a

R O

P W W P

P q L W W P

M M

    

 

        
     

   

 

aP = active force 

1 = friction angle between the backfill and the back of the wall 

2 = friction angle between the foundation soil and base of the wall 

1 = friction angle of the backfill soil 

2 = friction angle of the foundation soil 

WW + RW = the weight of the retaining wall 

B = top width of the retaining wall 
L = bottom width of the retaining wall 
 = slope of the backfill soil 

1   

 1sinaP    

 1cosaP    



H

B

WW

aP

3/H

1

1 1

' 0

',

c

 


 

2  

2

2 2

' 0

',

c

 


 uq

L

RW

  
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uq = bearing capacity of foundation soil 

H = height of the retaining wall 
 = back angle of the retaining wall 

RM = resisting moment 

OM = overturning moment 

where 
23.58WW B H   (unit weight of the retaining wall: 23.58kN/m3) 

 23.58 / 2RW L B H     

 1tan ( )L B H    

1 1

2

3
    2 2

2

3
    2

1
2

1
HKP aa    

 

   
   
   

2
1

2

1 1 12
1

1

cos

sin sin
cos cos 1

cos cos

aK
 

   
  

   




   
   

    

 

2

1

2
u iq LN F      2tan12   qNN   










2
45tan 22tan 2

eNq  

 
2

21iF     (Fi from Hanna and Meyerhof (1981)) 

where   is the inclination angle of the total foundation loading: 

     1
1 1tan cos sina a W RP P W W          

     1

1 2
sin

2 3 3
R W R a

B
M W W B L B P B L B 

   
             

   

 1cos
3

O a

H
M P      

2 LL L e    
2

L

L
e x      

 1sin
R O

W R a

M M
x
W W P  




  
 

There are four independent random variables in this problem 
( 1 , 2 , 1 , 2 ) 
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Inputs  

 
Solution 
methods 

MCS 

Results 
(optional) 

Deterministic (based on mean values): 

1 = 19 kN/m3, 2  = 17 kN/m3, 1  = 35o, 2  =35o 

    1 1 2 1sin tan cosa W R aFS P W W P            

=2.9425>1.5 (ok) 

  2 1sinu W R aFS q L W W P      =6.7214>3 (ok) 

3 R OFS M M = 8.6919>2.5 (ok) 

 4 / 6 LFS L e =2.3662 <L(ok) 

 
Probabilistic (based on distributions): 

 

Code URL 
(optional) 

Matlab code for the performance function can be download via 
http://140.112.12.21/issmge/reliability_benchmark/Pfun_case3.zip 

References 
(optional) 

1. Hanna, A.M. and Meyerhof, G.G. (1981). Experimental evaluation 
of bearing capacity of footings subjected to inclined loads. Canadian 
Geotechnical Journal, 18(4), 599-603. 

Reviewers Kok-Kwang Phoon 
 

Variable Description Distribution Statistics 

B  Top width of the 
wall 

Deterministic 2.5 m 

H  Height of the wall Deterministic 4 m 

L  Bottom width of the 
wall 

Deterministic 3.5 m 

  Slope of the backfill 
soil 

Deterministic 5o 

1  Unit weight of 
backfill soil 

Gaussian mean = 19 kN/m3 

cov = 10% 

2  Unit weight of 
foundation soil 

Gaussian mean = 17 kN/m3 

cov = 10% 

1  Friction angle of 
backfill soil 

Gaussian  mean = 35o 
cov = 10% 
(truncated at  , 
i.e.: PDF = 0 
when 1 < ) 

2  Friction angle of 
foundation soil 

Gaussian mean = 35o 
cov = 10% 

Solution method MCS 

  2.9083 

FP  0.0018 

% error in pf - 

# of evaluation of P 
function (optional) 

106 

Estimator cov 
(optional)  

2.35% 
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geotechnical safety network 

 
TASK GROUP 3 – RELIABILITY BENCHMARKING 
 
Example No. 4 
Author(s) KK Phoon 
Date 25 April 2008 (ver. 1) 
  
Brief 
description 

Footing problem subjected to inclined loading with 5 independent 
random variables. 
 
The purpose is to show that load variables can be both favourable and 
unfavourable in the same problem.  The vertical load is unfavourable 
in the usual load context and favourable in the bearing capacity 
inclination factor. 

Figure  
 

Performance 
function 

P = (0.5 B * N s i r) B2 – V 
 

Nq = exp( tan ) tan
2
(45

o
 + /2) 

N = 2 (Nq + 1) tan  
 
’ = sat - w = 20.3 – 9.81 = 10.5 kN/m3 

* (kN/m3) =  = 17.7 h > B 
 = ’ + ( - ’)h/B = 10.5 + 7.2h/B B > h > 0 
 
s = 1 -  0.4 (B/L) = 0.6 

5.2

i
V

H
1 








   

 
Rigidity index, Ir =  G / (’a tan ) 
 
Reduced rigidity index, Irr =  Ir / (1 + Ir ) 

V H 

Sand: , G 
 = 17.7 kN/m3 B = 3 m h 

sat = 20.3 kN/m3 
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  =  0.00025 (45 - )(’a / 100 kPa) (Note:   in degrees) 
’a (kPa) = 0.5B = 26.55 h > B/2 
 = h +  (0.5B-h)’ = 7.2h + 5.25B B/2 > h > 0 
 

Irc  =  0.5 exp[(3.30 - 0.45 B/L) cot(45
o
 - /2)] 

 
Irr > Irc  General shear failure 

Irr < Irc  Local/punching shear failure 
 
r = exp{[(-4.4 + 0.6 B/L) tan ] + Irr  <  Irc 

   [(3.07 sin )(log10 2Irr)/(1 + sin )]} 
 = 1 otherwise 
 
h = depth of groundwater table below ground surface 
 and sat = moist unit weight and saturated unit weight of sand, 
respectively 
w = unit weight of water (9.81 kN/m3) 
 = effective stress friction angle of sand 
G = shear modulus of sand 
V = vertical dead load 
H = horizontal live load 
 
There are five independent random variables in this problem (h, , G, 
V, H) 
 

Inputs  

Variable Description Distribution Statistics 

h Depth of water 
table 

Lognormal mean = 2 m 
cov = 50%  

 Effective stress 
friction angle 

Lognormal mean = 35o 
cov = 8% 

G Shear modulus Lognormal mean = 20 MPa 
cov = 50%  

V Vertical dead 
load 

Normal mean = 1500 kN 
cov = 5% 

H Horizontal live 
load 

Extreme 
Type I 

mean = 150 kN 
cov = 20%  

B Footing width Deterministic 3 m 
 Moist unit 

weight of soil 
Deterministic 17.7 kN/m3 

sat Saturated unit 
weight of soil 

Deterministic 20.3 kN/m3 

w Unit weight of 
water 

Deterministic 9.81 kN/m3 

 = w (Gs +0.2e)/(1+e) (assume degree of saturation = 20% for 
“moist”) = 17.7 kN/m3 
sat = w (Gs + e)/(1+e) (degree of saturation = 100%) = 20.3 kN/m3 
Assume specific gravity of solids = Gs = 2.6 and void ratio = e = 0.5 
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Solution 
methods 

FORM, SORM, simulation using MATLAB 

Results 
(optional) 

Deterministic (based on origin of standard normal space): 
h = 1.8 m,  = 35o, G = 18 MPa, V = 1500 kN, H = 155 kN 
 
FS = (0.5 B * N s i r) B2/V = 2.87 
 
Probabilistic (based on distributions): 
 
 FORM 

(EXCEL) 
FORM SORM Simulation 

(n = 106) 

 2.612 2.593 2.653 2.664 

pf 0.0045 0.0048 0.0040 0.0039 
% error in 
pf 

15.4 23.1 2.56 - 

 

Code URL 
(optional) 

http://jyching.twbbs.org/reliability_benchmark/Pfun_case4.m 

References 
(optional) 

 

Reviewers Jianye Ching and Yi-Hung Hsieh  
 

Solution method FOSM FORM(1) SORM(2) MCS 
 

Subsim(3) 

  1.365 2.454 2.514 2.5121 2.5241 

FP  0.0861 0.0071 0.0060 0.0060 0.0058(4) 

% error in pf 13.35 18.33 0 - -3.3 
# of evaluation of P 
function (optional) 

11 176 217 106 2800 

Estimator cov 
(optional)  

n/a n/a n/a 1.29% 28.98%(5) 

 

(1) Gradient Projection algorithm is taken 
(2) Algorithm by Der Kiureghian and Stefano (1991) is taken 
(3) 1000 samples taken in each stage 
(4) average of 100 runs of Subsim 
(5) cov estimated from 100 runs of Subsim 
 
Der Kiureghian, A. and Stefano, M.D. (1991). Efficient algorithm for 
second-order reliability analysis. ASCE Journal of Engineering 
Mechanics, 117(12), 2904-2923. 
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geotechnical safety network 

 
TASK GROUP 3 – RELIABILITY BENCHMARKING 
 
Example No. 5 
Author(s) T.C. Kieu Le & Y. Honjo 
Date November 27, 2008 
  
Brief 
description 

The procedure McDeva based on the combination of Design Value 
Method, and using Subset Markov Chain Monte Carlo Simulation 
(Subset MCMC), has been used to determine partial factors for a 
gravity retaining wall under sliding failure mode.  
The optimum combination of some parameters inputted into Subset 
Subset MCMC is also proposed. 

Figure 

 
 

Performance 
function 

P R S   
 
Where: 

     
 '

22 ' 2 ' '1 1
tan 45 tan tan

2 2 2 cos
o s

s c f bs

B w
R l h B w B w h B w q


    



    
                

 

 
'

2 ' 21
tan tan 45 cos

2 2

fo
fS B w h w


  

 
          

 

 

Fill soil behind the wall and soil beneath the wall are sand. 
Properties of sand beneath the wall: internal friction angle '

s , unit 

weight '
s  

Properties of fill behind the wall: internal friction angle '
f , unit 
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weight '
f  

q: surcharged load behind the wall 
Groundwater level is at depth below the base of the wall 
Thickness of retaining wall is w.  

Inputs  

 

Variable Description Distribution Statistics 

'f  
(kN/m3) 

Unit weight of fill sand above 
the wall 

Lognormal 
Mean = 20 
COV = 0.05 


’s 

(kN/m3)

 
Unit weight of sand beneath 
the wall 

Lognormal 
Mean = 19 
COV = 0.05 


c  

(kN/m3)

 
Unit weight of the wall 

 
Lognormal 

Mean = 25 
COV = 0.05 

tan'f

 
Tangent of internal friction 
angle of fill sand 
 

Lognormal 
Mean = 0.781 
COV = 0.27 

tan's

Tangent of internal friction 
angle of sand beneath the 
wall 
 

Lognormal 
Mean = 0.675 
COV = 0.26 

tan'bs
Tangent of friction angle 
between the wall and sand 
beneath 

Lognormal 
Mean = 0.577 
COV = 0.24 

 
q  

(kN/m2) 

 
Surcharge load 

 
Lognormal 

 
Mean = 15 
COV = 0.3 

 
w (m) 

 
Thickness of the wall 

 
Deterministic 

 
0.4 

 
B (m) 

 
Width of wall base 

 
Deterministic 

 
2.0 


 

 
Inclination angle of fill 
behind the wall 

 
 

Deterministic 

 
 
20 

 
h (m) 

 
 

Deterministic 
 
6.35 

 
l (m) 

 
 

Deterministic 
 
0.75 

Solution 
methods 
(optional) 

* McDeva (Markov Chain Monte Carlo simulation based on Design 
Value Method) 
Performance function has the form of P(X) = R(X) - S(X) 
The resistance component R(X) and the load component S(X) which 
are combinations of basic variables Xi, (i = 1,…, n) are also random 
variables. 
Step 1: Define PDF's and probabilistic parameters of basic variables 

Xi (i = 1,…, n) 
Step 2: Carry out Subset MCMC in Nrun times to obtain the failure 

probability pf , its standard deviation and the location of the 
design points.  
If one can group candidate design points to several groups, it 
may suggest there are several failure modes, and therefore 
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several design points. 
Step 3: Among Nrun design points obtained in the previous step, one 

should choose the best estimated design points  * *
1 ,..., nA X X . 

Step 4: From  * *
1 ,..., nA X X , the corresponding estimated design point 

in two dimensional co-ordinate (R,S), i.e. (R*,S*), may also be 
obtained. Then the sensitivity factors (R and S) and load 
and resistance factors (R and S) may be calculated. 

 
Verification of the Robustness of McDeva by Ordinary Monte 
Carlo (OMC) and obtain the optimum combination of Nt, Ns and 
Nf 
Where:  
- The total samples generated for each subset: Nt 
- The number of seeds used for generating a subset: Ns 
- The minimum number of samples falling in the failure region so 

that the Subset MCMC algorithm will be satisfied and stopped 
(cut-off criteria): Nf 

McDeva has been carried out with different combination of Nt, Ns, and 
Nf as follows: 

 Nt     = 50, 100, 150 
 Ns/Nt = 0.02, 0.04, 0.10, 0.20, 0.50 
 Nf/Nt  = 0.02, 0.05, 0.10, 0.20, 0.30, 0.40, 0.50 

Results 
(optional) 

* Probability of failure (Pf) and reliability index  

 McDeva OMC 

 2.70 2.76 
Probability of failure (pf) 0.2510-2 0.2910-2 
COV(pf) 1.4  

 
* Load and resistance factors 

 

McDeva(1) OMC(2) 

Normal Lognormal Normal Lognormal 

R S R S R S R S 

 -0.54 0.84 -0.54 0.84 -0.50 0.87 -0.50 0.87 

 0.63 1.71 0.64 1.79 0.65 1.76 0.65 1.86 

(1) 1000 runs of Subset MCMC 

(2) 1,000,000 samples taken in each stage 

* Optimum combination of Nt, Ns, and Nf:  
Nt = 50 to 150, Ns/Nt = 0.1 to 0.2, Nf/Nt = 0.1 to 0.2 

Code URL 
(optional) 

 

References 
(optional) 

Kieu Le, T.C. (2008). Code Calibration Procedure Based on Monte 
Carlo Simulation for Geotechnical Design. PhD Thesis, Gifu 
University, Japan 

Reviewers Jianye Ching 
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* Gradient Projection algorithm is taken 
** Algorithm by Der Kiureghian and Stefano (1991) is taken 
*** 1000 samples taken in each stage 
**** average of 100 runs of Subsim 
***** cov estimated from 100 runs of Subsim 
 
Der Kiureghian, A. and Stefano, M.D. (1991). Efficient algorithm for 
second-order reliability analysis. ASCE Journal of Engineering 
Mechanics, 117(12), 2904-2923. 

 

Solution method FOSM FORM* SORM** MCS Subsim*** 

 0.9428 0.9555 0.9812 0.9978 0.9943 

pf 0.1729 0.1697 0.1633 0.1592 0.1600**** 

% error in pf 8.61 6.60 2.58 - 0.5025 
# of evaluation 
of P function 
(optional) 

15 120 191 106 1000 

Estimator 
cov(optional) 

- - - 0.23% 7.21%***** 
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geotechnical safety network 

 
TASK GROUP 3 – RELIABILITY BENCHMARKING 
 
Example No. 7 
Author(s) C. Cherubini & G. Vessia 
Date 24/11/2008 
  
Brief 
description 

The equilibrium of a sliding wedge stabilized by means of an 
anchorage is investigated in terms: 
1)Factor of safety:  
 

         
 

cos tan sin tan cos

sin

W T T
FS

W

      


    
          (1) 

       
   

cos tan sin tan

sin cos

W T
FS

W T

    

  
  


 
                                 (2) 

 
2)Probability of failure by means of reliability approaches: 
 

           cos tan sin tan cos sinP W T T W               (3) 

 
2)LRFD applied to limit state design: 
 

           cos tan sin tan cos sin 0W T T W             (4) 

 
The purpose is to evaluate how much variability of geotechnical 
design variables affects the stability estimation carried out by means 
of deterministic approach and the partial factor approach applied to 
the limit state design.  

Figure 

 













W 


 
Performance 
function 

           cos tan sin tan cos sinP W T T W            
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where weighwedgeW  t is computed as follow: 

 






2

tan
2

tan

2

























HHH
BH

AW  

 
slopesurfacesliding  

slopefacerock  
weightunit  

massrockofanglefrictionernalint  
pullanchorageT   

heightslopeH   
widthwedgeB   
areawedgeA   

Inputs Variable   Distribution       Variation        Min        Max 
   type                   coefficient      value      value ____________________________________________________________________ 

 [°]   Normal                  10% 
 [°]   Uniform                         5        10 
 [°]   Lognormal        30, 40, 50% 
 [kN/m3]  Normal                   2% 
T [kN]                                Constant                 - 
H[m]                                   Constant                  - 
B[m]                                   Constant                  - 
 

Variable   Mean          Standard            Characteristic 
                              value               deviation                value 

 [°]                   40                       4                        38 
 [°]                   7.5                      -                         7.5 
 [°]      35                      10.5                   29.8 
 [kN/m3]     23                       0.5                    22.8 
H[m]              5     10     15 
B[m]            5.1  10.2   15.2 
 

Solution 
methods 
(optional) 

First Order Reliability Method (FORM), Second Order Reliability 
Method (SORM) and Monte Carlo Simulation Adaptive sampling 
(ASAM) implemented in COMREL code (1997). 
 

Results 
(optional) 

 
1) Safety factor FS+ versus reliability index (FORM) for different 

coefficients of variation of rock mass internal friction angle 
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2) Reliability index (FORM) versus anchorage pull for:   
CV=30% 

 
 

 
CV=40% 

 
 
 
 
 
 
 
 
CV=50% 
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3) Reliability index (MCS) versus anchorage pull for: CV=30, 
40, 50% and H=5m (continuous line); H=10m (dotted line); 
H=15m (dashed line). 

 

 
 

4) LRFD positive difference calculated according to Italian 
Combination2 for global equilibrium condition (see Eq. 4)  
versus reliability index for slope height H=5m and CV=30%, 
40% and 50%. 
 

 
 

Code URL 
(optional) 

 

References 
(optional) 

COMREL 1997. Reliability Consulting Programs RCP GmbH, Munchen, Germany. 

Reviewers  
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Example 

No. 

 

Authors(s) Dianqing Li., Xiaosong Tang 

Date January 23, 2009 

Brief 

description 

For the concrete dam shown in Fig. 1, three different failure modes may occur 

as follows (Novak et al. 2001): sliding (failure mode 1), overstress at upstream 

heel (failure mode 2), and overstress at downstream toe (failure mode 3). For 

illustrative purpose, only the normal operation is considered herein. With the 

identified failure modes, performance functions can be formulated for each 

stability mode as follows. 

Figure 

423.0 m (maximum water level)

418.0 m (normal water level)

353.0 m (sediment level)
354.0 m (tailwater level)

▽

▽

▽

▽

▽ 338.0 m 

1 : 0.75

5.0 m line of pressure relief drains

9.0 m

Q

406.0 m ▽

60.0 m

 
Figure 1. Main cross-section of concrete dam 

Performance 
function 

( )( )2
1 s w2499 0.375 30 27.5 2.5 'h x s xg Q H H H H fγ α γ= + + − − − +  

( )2 2 2 2
w s n  60 ' 0.5 0.5 tan (45 / 2)x n nc H H Hγ γ θ− − − −                  (1) 

3 3 2
2 s85.7225 0.0003 0.9168 0.0003 0.0102t h s x xg H H H Hσ γ α= + − − + − +  

3 2
n0.9168 0.0003 tan (45 / 2) 0.0592 10.381x x n nH H H Qα γ θ− − − + −   (2) 

3 3 2
3 s2.4225 0.0003 0.0832 0.0003 0.0227c n s x xg H H H Hσ γ α= + − − + − −  

3 2
n  0.0832 0.0003 tan (45 / 2) 0.0258 4.9644x x n nH H H Qα γ θ+ − − + −  (3) 

Inputs 

 
Table 1. Summary statistics of basic random variables in the dam stability model 

Variable Description Mean Standard 
deviation COV Distribution 
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Hs (m) Water level for 
upstream face 80.00 4.80 0.06 Normal 

Hx (m) Water level for 
downstream face 16.00 0.96 0.06 Normal 

Hn (m) Sediment depth 15.00 2.25 0.15 Normal 

γh(kN/m3) Unit weight of dam 
concrete 24 0.72 0.03 Normal 

γn(kN/m3) Submerged unit 
weight of sediment 12 0.60 0.05 Normal 

θn (0) 
Angle of shearing 

resistance of 
sediment 

15 1.50 0.10 Extreme type I

α 
Reduction coefficient 

of uplift pressure 0.40 0.10 0.25 Lognormal 

c′(kN/m2) Cohesion 62 21.70 0.35 Lognormal 
f′ Friction coefficient 1.00 0.30 0.30 Lognormal 

σc(kN/m2) 
Maximum allowable 
compressive stress of 

dam concrete 
9000 1800 0.20 Lognormal 

σt(kN/m2) 
Maximum allowable 
tension stress of dam 

concrete 
1000 250 0.25 Lognormal 

Q (kN) Vertical live load 350 122.50 0.35 Extreme type I 

Solution 
methods 

The system reliability analyses are performed using the following system 

reliability methods: the first order multinormal (FOMN) (Hohenbichler and 

Rackwitz 1983), Cornell’s bound (Cornell 1967), Ditlevsen’s bound (Ditlevsen 

1979), Adaptive importance sampling (AIS) (Melchers 1989), Radius-based 

importance sampling (ISAMF) (Harbitz 1986), and Monte Carlo simulation 

(MCS). 

Results 

 
Table 2. System reliability indexes of concrete dam using different methods 

Solution 
method 

FOMN Cornell’s 
bound 

Ditlevsen’s 
bound 

AIS 
(confidence 
level=0.95) 

ISAMF 
(n=104) 

MCS 
(n=106)

β 2.186 2.172~2.308 2.185 2.177 2.197 2.188 
Pf 0.0144 0.0105~0.01

49 
0.0144 0.0147 0.0140 0.0143

% error in Pf 0.7 -26.6~4.2 0.7 2.8 -2.1 -  

References 

Cornell, C. A. Bounds on the reliability of structural systems. Journal of 

Structural Division, 1967, 93(1): 171-200. 

Ditlevsen, O. (1979). Narrow reliability bounds for structural systems. Journal 

of Structural Mechanics, 7(4): 453-472. 

Harbitz, A. (1986). An efficient sampling method for probability of failure 

calculation, Structural Safety, 3: 109-115. 
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Hohenbichler, H., Rackwitz, R. (1983). First-order concepts in system 

reliability. Structural Safety, 1: 177-188. 

Melchers, R. E. (1989). Importance sampling in structural systems. Structural 

Safety, 6(1): 3-10. 

Novak, P., Moffat, A. L. B., Nalluri, C., et al. (2001). Hydraulic Structures, 

third edition. Taylor & Francis Group.   

  
 

B.1. GEOSNet problems performance functions and distributions 69



 1

 

geotechnical safety network 

 
TASK GROUP 3 – RELIABILITY BENCHMARKING 
 
Example No. 9 
Author(s) Timo Schweckendiek  

(Deltares & Delft University of Technology, NL) 
Date 30 August 2010 (ver. 1) 
  
Brief 
description 

Piping (under-seepage) problem using the (revised) Sellmeijer model.  
 
The purpose of this benchmark example is to compare the performance 
of reliability methods for and internal erosion problem. Furthermore, 
the relative contribution of each random variable to the total 
uncertainty is illustrated by means of importance factors (FORM).  

Figure  

 
 

Performance 
function 

 
( 0.3 )p c bP m H h h d     

 
Where 
 

   1 2 3
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cH  critical head difference [m] 

p   effective vol. weight of submerged sand grains [kN/m3] 

w  volumetric weight of water [kN/m3] 

  bedding angle of sand grains [o] 
  White’s coefficient [-] 
RD  relative density [-] 

mRD  reference value relative density (=0.725) [-] 

k permeability of the aquifer [m/s] 

70d  70-percentile grain distribution (piping-sensitive layer) [m] 

70m
d  reference value of 70d  (=2.08 e-4) [m] 

D thickness of the sand layer [m] 
L seepage length [m] 
mp model (uncertainty) factor piping [-] 
h water level, at entry point [m+REF] 
hb phreatic level at exit point [m+REF] 
d thickness of the blanket layer 

 
The performance function is based on the revised Sellmeijer model for 
piping (internal erosion, under-seepage), see Knoeff et al. (2009), as it 
is currently used in the Netherlands. The original Sellmeijer model is 
described in Sellmeijer (1988). Note that this performance function 
only considers piping. Often, piping is considered in combination with 
uplift (of the blanket layer). Together, these mechanisms form can be 
characterized as a parallel system (i.e., uplift AND piping have to 
occur for system failure). 
 

Inputs  
Variable Description Distribution Statistics 

(m=mean) 

p   vol. weight grains Deterministic 17 kN/m3 

w  vol. weight water Deterministic 9.81 kN/m3 

  bedding angle* Deterministic 37 deg 

  White constant* Deterministic 0.25 

RD  relative density Normal m=0.7, cov=10% 

mRD  reference value RD* Deterministic 0.725 

k permeability aquifer Lognormal m=1e-5m/s, cov=1  

70d  70-percentile g.s.d. Lognormal m=2e-4m, cov=15%  

70m
d  reference value d70* Deterministic 2.08e-4 m 

D thickness aquifer Normal m=15.0m, cov=10% 

L seepage length Normal m=25.0m, cov=5% 

mp model factor piping Lognormal m=1.0, cov=12% 

h water level entry point Gumbel a=1.839, b=0.152 

hb phreat. level exit point Normal m=-1.0m, s=0.1m 

d thickn. blanket layer Lognormal m=3.0m, cov=30% 

* Note that the uncertainty of the calibrated model parameters is all 
included in the model factor mp. 
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The standard deviations and variation coefficients of most variables are 
based on default values used in the FLORIS project (Van der Most & 
Wehrung, 2005). 
 

Solution 
methods 
(optional) 

FORM (Excel): based on Low & Tang (2007); SORM, MCS, IS, DS, 
Subsim: using FERUM v4.0, see Sudret & Der Kiureghian, (2000). 
 
The m-file Pfun_case9.m works with PROLIB and produces 
virtually the same results as FERUM 

Results 
(optional) 

 
Method  pf error in pf 

FORM (EXCEL) 3.19 7.2e-4 -4.4% 
FORM (n = 106) 3.19 7.2e-4 -4.4% 
SORM (n = 106+54 = 160) 3.18 7.5e-4 -0.5% 
Simulation (MCS) 
(n = 106) 

3.17 7.5e-4 0.0% 
(cov(pf)=3.7%) 

Importance Sampling1 (IS) 
(n = 5*103) 

3.19 7.1e-4 -5.3% 
(cov(pf)=3.7%) 

Directional Sampling (DS) 
(n = 106, 105 directions) 

3.19 7.2e-4 -3.7% 

Subset Simulation (Subsim)2 

(n = 2*104) 
3.19 7.1e-4 -5.1% 

n = number of performance function evaluations 
1 importance sampling around design point by FORM 
2 Subsim: 5000 samples per stage 

 
Importance factors (obtained with FORM Excel): 
Variable Xi i i

 
RD  0.11 0.01 
k -0.81 0.66 

70d  0.17 0.03 

D -0.05 0.00 
L 0.12 0.02 
mp 0.35 0.12 
h -0.30 0.09 
hb 0.12 0.01 
d 0.24 0.06 

 
The importance factors clearly reveal that the problem is dominated by 
the uncertainty in de permeability of the aquifer. Besides the model 
factor, the water level and the thickness of the blanket layer, the 
remaining uncertainties are practically irrelevant. 

All tested reliability methods give answers within roughly 5% 
error with respect to the result obtained by MCS. Remarkably, the 
FORM result is very close to MCS, too. The performance function is 
linear in most of the important random variables except for k, the most 
important one. Thus, the low number of required performance function 
evaluations makes FORM attractive for this type of problem. Note that 
obtaining the right answer with Subsim requires either prior knowledge 

D; 0%

k; 66%

L; 2%

d70; 3%

h; 0%

q; 0%

RD; 1%

h; 9%

hb; 1%

d; 6%

mp; 12%
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of the problem or trial and error (and thus prior knowledge of the pf) or 
very generally robust settings (so far not found by the author). 

Code URL 
(optional) 

http://jyching.twbbs.org/reliability_benchmark/Pfun_case9.m 

References 
(optional) 

Knoeff, H., Sellmeijer, J.B., Lopez, J. & Luijendijk, S. (2009). 
Hervalidatie Piping (SBW HP1 + HP1.2, in Dutch), Deltares 
report 1200187-015-GEO-0004. 

Low, B.K. & Wilson H. Tang (2007). Efficient spreadsheet algorithm 
for first-order reliability method. Journal of Engineering 
Mechanics, ASCE, Vol. 133, No. 12, 1378-1387. 

Sellmeijer, J.B. (1988). On the mechanism of piping under impervious 
structures. PhD thesis. Delft University of Technology. 

Sudret, B. & Der Kiureghian, A. (2000). Stochastic Finite Element 
Methods and Reliability, A State-of-the-Art Report, Report No. 
UCB/SEMM-2000/08, Department of Civil and Environmental 
Engineering, University of California, Berkeley. 

Van der Most, H. & Wehrung, M. (2005). Dealing with Uncertainty in 
Flood Risk Assessment of Dike Rings in the Netherlands. Natural 
Hazards 2005 (36), p. 191-206. 

 
Reviewers Jianye Ching 
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B.2. GEOSNet example 9 correction
The performance function of GEOSNet example 9 needs some revisions as the following:

F1 = η(
γs
γw

− 1)tanθ (B.1)

F2 =
d70m

3

√
νkL
g

(
d70
d70m

)0.4 (B.2)

F3 = 0.91(D/L)
0.28

(D/L)0.28−1
+0.04 (B.3)

Hc,p = F1F2F3L (B.4)

with:
ν : dynamic viscosity of water at 10 deg. (1.33x10−6 Pa.s)
γs : volumetric weight of sand grains (=26.5 kN/m3)
γw : volumetric weight of water (=10 kN/m3)
θ : bedding angle (deg.)
D : thickness of the aquifer (m)
η : drag factor coefficient
d70 : 70%-fractile of the grain size distribution (m)
d70m : reference value for d70 (m)
g : gravitational constant (=9.81 m/s2)
k : permeability of the aquifer (m/s)
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