Reliability Benchmarking of Eurocode 7 Design Examples

CIE5050-09: Additional Thesis Project 2021 Muhammad Rayyan

Reliability Benchmarking of Eurocode 7 Design Examples

by

Muhammad Rayyan

5032334

Supervisor:Dr. ir. A.P. (Bram) van den Eijnden
Dr. ir. Timo SchweckendiekInstitution:Delft University of Technology (TU Delft)Track:Geo-EngineeringProject Duration:September, 2021 - December, 2021

Cover Image: Tangguh LNG project, Indonesia (2019)

Summary

The application of reliability analysis in geotechnical engineering is relatively new compared to the other sections of civil engineering such as structural engineering and hydraulic engineering. However, due to its increases use in recent years, reliability analysis is planned to be included extensively in the upcoming Eurocode 7 (EN 1997). This research aims to compare the accuracy and efficiency between the applications of 22 selected reliability methods in 9 selected geotechnical engineering problems with various number of independent variables and modes of failure. The accuracy of the reliability methods are determined based on the Probability of Failure (P_f) errors, while the efficiency is based on the number of realizations (N) each method needs. The Monte Carlo Simulation is found to be the most accurate method despite its shortcomings in efficiency (ranked as the least efficient). Moreover, the FOSM method is found to be the most efficient despite its serious shortcoming in accuracy where it is also ranked as the most inaccurate. However, putting both accuracy and efficiency into account, the AK-MCS 0 order is proven to be the best method when applied to the discussed geotechnical engineering problems. The research also points out the necessity to perform multiple reliability methods for each geotechnical engineering problem.

Preface

This report is the final product of an additional thesis project in Geo-Engineering track at Delft University of Technology (TU Delft) in the Netherlands. Since I am enjoying Python programming in geotechnical engineering very much, I am very grateful when the offer for this topic came up. Moreover, the opportunity also allowed me to further study the reliability application in geotechnical engineering problems, which is relatively new in practice. I hope this additional thesis project would give a contribution for those who are seeking to learn or further understand reliability analysis in the field of geotechnical engineering.

Furthermore, I would like to express my gratitude to everyone who has helped in overcoming daily problems regarding the project, especially to Mr. Bram van den Eijnden and Mr. Timo Schweckendiek who directly guided me throughout the entire process, I really learnt a lot from you.

Last but not least, I would like to extend my gratitude for my wife Rosi and my family for all of the love and support, and my employer PT PP (Persero) Tbk. for all of the support and opportunity.

Muhammad Rayyan Delft, December 2021

Contents

Su	immary i
Pre	eface ii
No	omenclature v
Lis	st of Figures vii
Lis	st of Tables viii
1	Introduction 1
	1.1 Background
2	Theoretical Background32.1 Reliability methods levels32.1.1 Level I Methods.32.1.2 Level II Methods (fully probabilistic with approximations32.1.3 Level III Methods (fully probabilistic)42.1.4 Level IV Methods42.2 Monte Carlo Simulation (MCS)42.3 First Order Reliability Method (FORM)42.4 Second Order Reliability Method (SORM)52.5 First Order Second Moment (FOSM)52.6 Subset Simulation (SS)52.7 Directional Sampling (DS)62.8 Adaptive Directional Sampling (ADS)72.9 Importance Sampling (IS)82.11 Latin Hypercube Sampling (LHS)82.12 Active Learning Kriging-based Monte Carlo Simulation (AK-MCS)82.13 Numerical Integration (NI)92.14 Numerical Bisection (NB)102.15 Convergence Criterion10
3	Case Analysis123.1 Geotechnical engineering problem to be analyzed123.2 Model Fluctuations123.3 A problem with 1 mode of failure143.4 A problem with more than 1 mode of failure163.5 Analysis Results23
4	Discussion 29 4.1 Result Summary 29 4.2 Rankings 35

5	Conclusion and Reflection 5.1 Conclusions. 5.2 Reflection	40 40 41
Re	eferences	43
Α	The results of eta and P_f	44
в	GEOSNet Example problems B.1 GEOSNet problems performance functions and distributions B.2 GEOSNet example 9 correction	46 46 74

Nomenclature

Abbreviations

Abbreviation	Definition
ADS	Adaptive Directional Sampling
AIS	Adaptive Importance Sampling
AK- MCS	Active Learning Kriging-based Monte Carlo Simulation
AK-MCS 0	AK-MCS 0 order (simple kriging)
AK-MCS 1	AK-MCS 1 order (universal kriging)
COV	Coefficient of Variation (variant coefficient)
DIY	Do-it-yourself (manual)
DS	Directional Sampling
FORM	First Order Reliability Method
FOSM	First Order Second Moment
FS	Factor of Safety
FS_d	Factor of Safety of the deep failure mode
	(slope stability problem)
FS_s	Factor of Safety of the shallow failure mode
GEOSNet	Geotechnical Safety Network
IS	Importance Sampling
LHS	Latin Hypercube Sampling
MCS	Monte Carlo Simulation
NI	Numerical Integration
NB	Numerical Bisection
OT	OpenTURNS
РТК	Probabilistic Toolkit
SORM	Second Order Reliability Method
SS	Subset Simulation

Symbols

Symbol	Definition	Unit
β	reliability index	[-]
β_{deep}	reliability index of the deep failure (slope stability problem)	[-]
$\beta_{shallow}$	reliability index of the shallow failure (slope stability problem)	[-]
β_{sys}	reliability index of the problem (slope stability problem)	[-]
γ	moist unit weight of the surficial soil (GEOSNet EX1)	[kN/m ³]
$gamma_{sat}$	saturated unit weight of the surficial soil (GEOSNet EX1)	[kN/m ³]
Φ	the standard normal probability density function	[-]
ϕ	effective stress internal friction angle (GEOSNet EX1)	[deg.]

Symbol	Definition	Unit
σ_p	the standard deviation of P_f	[-]
θ	slope inclination (GEOSNet EX1)	[deg.]
$c_{d1}(X)$	deep failure coefficient of layer 1 (slope stability prob-	[-]
$c_{d2}(X)$	deep failure coefficient of layer 2 (slope stability prob- lem)	[-]
$c_{s1}(X)$	shallow failure coefficient of layer 1 (slope stability problem)	[-]
e	void ratio of soil (GEOSNet EX1)	[-]
$f_{-}(X)$	Joint probability density function of X	[-]
$\int x(2\mathbf{r}) f$	variance factor per variable (Importance Sampling)	[_]
$\int var$	performance function / limit state function of u	[_]
g(u)	performance function / limit state function of X	
$g(\Lambda)$	specific gravity of soil (GEOSNet EX1)	[-]
G_s	limit state function of the deep failure mode (alone	[-]
$g_d(\Lambda)$	stability problem)	[-]
$g_s(X)$	limit state function of the shallow failure mode (slope	[-]
(17)	stability problem)	
$g_{sys}(X)$	limit state function (slope stability problem)	[-]
H	depth of soil above bedrock (GEOSNet EX1)	[m]
h	height of groundwater above bedrock (GEOSNet EX1)	[m]
Ι	Indicator function. 0 for failure and 1 for non-failure	[-]
L(u)	Linear line as the approximation of $q(u)$	[-]
$\frac{D(\alpha)}{N}$	number of realizations	[_]
N _c	number of failure realizations	[_]
P_{a}	probability of failure	[] [] or [%]
I_f D^N	Latin Hypercube's probability of failure	[-] Or [%]
f,LHS	Latin Typercube's probability of latine	[-] UI [/0] [kN/m ²]
$s_{u,1}$	ity problem)	[KIN/111-]
$s_{u,2}$	undrained shear strength of layer 2 soil (slope stabil-	[kN/m ²]
	ity problem)	
s_{var}	variance shift per variable (Importance Sampling)	[-]
u	random standardized variables vector	[-]
u	each realization in standard normal space (Impor- tance Sampling)	[-]
u_{imp}	Importance Sampling realization (Importance Sam-	[-]
X	pling) random variables vector	[-]

List of Figures

2.1	FORM and SORM reliability method (Chang 2015 [5]).	5
2.2	Spherical segments approximation of a limit state G(u)=0 by directional sampling (Nie et al. 2000 [16])	6
2.3	A general depiction of Importance Sampling Method with two-variable problem (after Melchers 1989 [17])	7
2.4	Generic description of a metamodel as a black-box function defined on a support ED	
	(experiment design) [26]	9
2.5	A numerical integration application on a simple slope stability problem	9
2.6	A numerical bisection application on a simple slope stability problem.	10
2.7	N vs β and Pf (Monte Carlo Simulation).	11
2.8	P_f COV of an MCS example.	11
3.1	Different β value for each realization in AK-MCS 0	13
3.2	Different β value for each realization in DS	13
3.3	Example 1 scheme. (Source: GEOSNet, www.geoengineer.org).	14
3.4	N vs Beta comparison of GEOSNet Example 1	16
3.5	A simple slope stability problem with 2 independent stochastic variables	16
3.6	Limit state function of a slope stability problem with 2 mode of failulres.	18
3.7	Limit state function of the shallow slip surface.	18
3.8	Limit state function of the deep slip surface.	19
3.9	I we possibilities of β for $g_{sys}(X) = 0$.	19
3.10	Iwo possible design points as observed from MCS (PTK) result.	20
3.11	Result comparison of a simple slope stability problem with 2 design points.	21
3.12	Result comparison of the shallow mode of failure.	22
3.13	Result comparison of the deep mode of failure.	22
3.14	Two possible different FORM β values with different starting points	23
5.15	Figure 3 11)	24
3 16	Result comparison of the CEOSNet example 1 (note that this graph is identical with	24
5.10	Figure 3.4)	25
3 17	Result comparison of the GEOSNet example 2	25
3 18	Result comparison of the GEOSNet example 3	26
3.19	Result comparison of the GEOSNet example 4	26
3.20	Result comparison of the GEOSNet example 5	27
3.21	Result comparison of the GEOSNet example 7	27
3.22	Result comparison of the GEOSNet example 8	28
3.23	Result comparison of the GEOSNet example 9	28
4.1	β differences throughout different β values (*SS = Slope stability problem).	33
4.2	The range of β differences throughout different β values.	33
4.3	β differences throughout different no. of independent variables (*SS = Slope stability problem).	34
4.4	The range of β differences throughout different no. of independent variables.	34

List of Tables

3.1	Geotechnical engineering problems to be analyzed in this research.	12
3.2	GEOSNet Example 1 Result Comparison (GEOSNet result by Jianye Ching and Yi-Hung Hsieh).	15
3.3	GEOSNet example 1 results comparison with P_f reference = 0.0573 based on GEOSNet MCS result with $N=10^6$ by Jianve Ching and Yi-Hung Hsieh [23].	15
3.4	Parameter distribution of the simple slope stability problem.	17
4.1	Probability of failure (P_f) errors for each method and problem (GEOSNet EX5, EX7, and	
	EX8 use MCS (OT) P_f as reference while the rest are based on GEOSNet's MCS result with $N = 10^6$).	30
4.2	Reliability index (β) absolute errors for each method and problem (GEOSNet EX5, EX7,	
	and EX8 use MCS (OT) β as reference while the rest are based on GEOSNet's MCS result with $N = 10^6$).	31
4.3	The number of realization N for each problem's reliability methods.	32
4.4	The rank of each method based on its absolute P_f errors (the lower the rank the better).	36
4.5	The rank of each method based on its N (the lower the better).	37
4.6	The cummulative ranks based on P_f errors and N values (the lower the better).	38
4.7	The final ranks (the lower the better)	38
A.1	Reliability index (β) of each problem.	44
A.2	Probability of failure (P_f) of each problem.	45

Introduction

1.1. Background

The European standard (i.e. code of practice) for design of geotechnical structures, Eurocode 7 (EN 1997), is currently undergoing a revision. Since the Eurocodes are reliability-based, the second generation of Eurocodes (including EN 1997) will include significantly more explicit reliability elements compared to the first generation. This additional graduation topic has been defined to support the work of the task group who is responsible in facilitating the use of reliability-based methods in geotechnical engineering for the Eurocodes revision.

1.2. Problem Analysis

Reliability analysis is needed in geotechnical engineering to deal with the uncertainties it possesses. This is especially true since geotechnical engineers deal with little-known data regarding natural soil properties (among others). In the past, deterministic analysis with uniformly-assigned material properties are normally applied to solve numerous geotechnical engineering problems. However, the soil properties is functions of a statistical distributions, rather than some fixed values which are constant throughout the layers. The deterministic approach also leads to a single factor of safety, ignoring the uncertainty and variability within the soil properties. Therefore, reliability analysis gives a more meaningful definition of stability: i.e. reliability, the probability that failure will not occur (Hicks et al. 2002 [15]).

Geotechnical engineering problems normally deal with many uncertainties and multiple modes of failure. However, reliability analysis application in geotechnical engineering is relatively new compared to other fields of engineering despite the methods have been developing significantly in the last few decades. Moreover, the uses of these methods in geotechnical engineering are increasing remarkably in recent years. Thus comparison regarding their applications are relatively limited. This research aims to compare the accuracy and efficiency between 22 selected reliability methods in their applications to 9 selected geotechnical engineering problems.

1.3. Research Objective

The main objectives of this research are:

- To carry out (full probabilistic) reliability analysis on various geotechnical engineering problems with numerous modes of failure, material distributions, and number of independent variables.
- To benchmark the performance of different reliability methods.
- Recommend the most suitable reliability method for given type of problems.

1.4. Research Method

Multiple problems in Geotechnical Engineering such as slope stability, foundation stability, and consolidation problem are simulated in this research by using several reliability methods. The reliability methods used in this reports and their abbreviations throughout the report are:

- Monte Carlo Simulation (MCS)
- First Order Reliability Method (FORM)
- Second Order Reliability Method (SORM)
- First Order Second Moment (FOSM)
- Subset simulation (SS)
- Directional Sampling (DS)
- Adaptive Directional Sampling (ADS)
- Important Sampling (IS)
- Adaptive Importance Sampling (AIS)
- Latin Hypercube Sampling (LHS)
- Active Learning Kriging-based Monte Carlo Simulation (AK-MCS)
- Numerical Integration (NI)
- Numerical Bisection (NB)

The above-mentioned reliability methods are carried by Deltares' Probabilistic Toolkit software (PTK), Python open source's OpenTurns (OT), and Python-based script (DIY).

1.4.1. Deltares' Probabilistic Toolkit

The Probabilistic Toolkit (PTK) is a software developed by Deltares to analyze the effects of uncertainty to any model. These models range from python scripts to geotechnical and hydrodinamical Deltares and non-Deltares applicaation. One of the main feature of PTK is its ability to compute the probability of undesired events (probability of failure), thus providing the reliability of a model. Therefore, PTK provides some of the reliability methods performed in this research. Reliability methods performed by PTK in this research are MCS (PTK), FORM (PTK), DS (PTK), IS (PTK), LHS (PTK), NI (PTK), and NB (PTK). More details regarding PTK can be found in [7].

1.4.2. OpenTURNS

OpenTURNS (OT) is an open source initiative for the treatment of uncertainties, risks, and statistics. It is funded by Airbus Group, EDF Research and Development, IMACS, ONERA, and Phimeca Engineering. OpenTURNS provides open source C++/Python scipts related to data analysis, probabilistic and reliability modeling, meta modeling, calibration, and functional modeling. This research utilize its reliability modeling features. Reliability methods performed by OT in this research are MCS (OT), FORM (OT), SORM (OT), SS (OT), DS (OT), IS (OT), LHS (OT), and ADS (OT). More details regarding OT can be found in [1].

1.4.3. Do-it-yourself Script (DIY)

Some of the reliability methods are performed by python-based scripts which were based on numerous references mentioned in section 2. Reliability methods performed by python-based DIY scripts in this research are MCS (DIY), FORM (DIY), FOSM (DIY), SS (DIY), DS (DIY), IS (DIY), AIS (DIY), and AK-MCS with 0 and 1 order (AK-MCS 0 and AK-MCS 1).

 \sum

Theoretical Background

Reliability analysis is an analysis in calculating how much the probability of an unwanted event to occur. An unwanted event in this research is the failure of a geotechnical structure. Failure is evaluated through a limit state function (or also known as a performance function), normally written as g(X), where X is the random variables vector which has their own distributions. The limit state function is defined in such a way that a failure occurs when g(X) < 0. The failure probability (P_f) is determined by calculating the cumulative distribution function of g(X) < 0. Mathematically, probability of failure can be written as equation (2.1) where $f_X(X)$ is the joint probability density function of g(X).

$$P_f = \int_{g(X) < 0} f_X(X) \, dX \tag{2.1}$$

Moreover, since P_f is normally a really small number, it is also a very common way to express the reliability by a reliability index (β). The reliability index is defined as the inverse of the cumulative standard normal distribution function of P_f , as can be written in equation (2.2).

$$\beta = -\Phi^{-1}(P_f) \tag{2.2}$$

This research implements several reliability methods to determine P_f from the limit state function of several cases, and compare the results. The theoretical background of each reliability method is discussed in the following section.

2.1. Reliability methods levels

Reliability methods could be divided into 4 levels, however this report only involving Level II and Level III methods. The brief description of the levels are as follows (Schweckendiek 2006 [25]).

2.1.1. Level I Methods

Level I method is also known as semi-probabilistic method. It is usually applied in design codes for the verification of structures, and requires previous knowledge about the basic random variables. This research does not involve Level 1 method.

2.1.2. Level II Methods (fully probabilistic with approximations

Level II methods take all the probabilistic properties of the random variables into account. However, they include approximations that at the same time could also be severe limitations for their use in specific problems. The examples of level II reliability methods are:

- · First Order Reliability Method (FORM)
- Second Order Reliability Method (SORM)
- First Order Second Moment (FOSM)

2.1.3. Level III Methods (fully probabilistic)

Level III methods are characterized as fully probabilistic and exact methods (no simplifying assumptions are implied). The accuracy of these methods can usually be controlled by parameters like the variance of the resulting failure probability or step sizes which also have an impact on the calculation time. The example of level III reliability methods are:

- Monte Carlo Simulation (MCS)
- Subset Simulation (SS)
- Directional Sampling (DS)
- Adaptive Directional Sampling (ADS)
- Important Sampling (IS)
- Adaptive Importance Sampling (AIS)
- Latin Hypercube Sampling (LHS)
- Active Learning Kriging-based Monte Carlo Simulation (AK-MCS)
- Numerical Integration (NI)
- Numerical Bisection (NB)

2.1.4. Level IV Methods

Level IV methods include more aspects into consideration (e.g. economical aspect). This report does not include level IV methods into application.

2.2. Monte Carlo Simulation (MCS)

A normal Monte Carlo Simulation (MCS), also known as "Crude Monte Carlo", is a sampling-based simulation that obtain results by using repeated random realizations on the limit state function. The underlying concept is to use randomness to solve problems that might be deterministic in principle [27]. Each realization will give a failure (g(X) < 0) or a success ($g(X) \ge 0$). Thus the P_f is calculated by a straightforward method as shown in equation (2.3).

$$P_f = \frac{N_{failure}}{N} \tag{2.3}$$

where $N_{failure}$ is the total number of failure realizations and N is the total number of realizations. The MCS method is often considered as the most robust method since it put "all possibilities" into account, however, this leads to a time-consuming simulation and not very efficient to be applied in computer. Therefore, it is considered as inefficient and expensive. Other reliability methods are developed mainly to tackle this problem.

2.3. First Order Reliability Method (FORM).

The FORM method searches the design point directly by estimating the shortest distance (β) between the origin to the standardized limit state function g(u) in the Standard Normal Space. A straightforward depiction of FORM can be seen in Figure 2.1. FORM tries to recreate the limit state function g(u) with a linear line L(u) (thus it is called "first-order") by using Taylor series approximation. Furthermore, the closest distance between L(u) and the origin is then measured and is defined as β .

Figure 2.1: FORM and SORM reliability method (Chang 2015 [5]).

For the OpenTurn's FORM approach, the original Hasofer-Lind method is implemented in determining the shortest distance (β). Another FORM method implemented in this research is the Rackwitz-Fiesler iterative algorithm (FORM (DIY)) (Rackwitz et al. 1978 [24]). Although Figure 2.1 only shows a problem with 2 independent variables, FORM procedure and algorithm can also be implemented to a limit state function with more than 2 variables. Moreover, it is very difficult (if not impossible) to depict a FORM problem with more than 2 independent variables. However, the basic idea and mathematical implementation remains the same. Moreover, in this research, the starting point of the FORM method is set from the independent variables' mean values (or the origin of the standard normal space)

The main advantages of FORM is that it takes much less computational effort compared to a Monte Carlo Simulation. However, the main disadvantage is in its inaccuracy in estimating a really complex limit state function, especially when it has more than 1 design point (or more than 1 mode of failure).

2.4. Second Order Reliability Method (SORM).

The main idea is similar to FORM, however, SORM recreate the limit state function g(u) with a curved line (thus it is called "second-order") by using a further truncation of the Taylor series approximation. A straight-forward scheme of SORM can also be observed in Figure 2.1. The main advantage is the limit state function can be more accurately recreated since it is imitated by a curved line, as opposed to FORM's linear approach. Moreover, OpenTurns' SORM that is performed in this research is using Breitung method (OpenTURNS 2021 [20]).

2.5. First Order Second Moment (FOSM).

Similar to FORM method, SORM is based on the first order Taylor series approximation of a performance function that is linearized at the mean values of the random variables by only using the second moment statistics (mean and variance) of the random variables. Therefore it is called first order "second moment". However, the main disadvantages of FOSM are it does not consider the information regarding the distribution of the independent variables and gives significant error in the truncation if the limit state function is non-linear. Despite many improvement of FOSM in recent years, a more detailed explanation of FOSM can be seen in the original FOSM formulation proposed by Cornell (Cornell 1967 [6]).

2.6. Subset Simulation (SS)

The basic idea of Subset Simulation method is to express the failure probability as a product of larger conditional failure probabilities by introducing intermediate failure events. With a proper choice of the conditional events, the conditional failure probabilities can be made sufficiently large so that they can be estimated by means of simulation with a small number of samples (Au 2001 [4]).

In simpler terms, subset simulation divide the parameter space within the problem domain into a several required simulation steps, and perform a Metropolis-based [2] Markov Chain Monte Carlo for each step to determine the domain of the next step. The probability of failure can be defined as [4]:

$$P_f = P(F_i) \prod_{i=1}^{m-1} P(F_{i+1}|F_i)$$
(2.4)

Where m is the total number of required step until the failure event of interest has been reached. To compute P_f on equation 2.4, one needs to compute the probability of $P(F_1)$, $\{P(F_{i+1}|F_i) : i = 1, ..., m-1\}$.. $P(F_1)$ can be readily estimated by MCS as [4]:

$$P(F_1) \approx \widetilde{P_1} = \frac{1}{N} \sum_{k=1}^{N} I_{F_1}(\theta_k)$$
(2.5)

Where $\{\theta_k : k = 1, ..., N\}$ are independent and identically distributed samples according to PDF. Moreover, by applying Metropolis-based Markov Chain Monte Carlo, $P(F_{i+1}|F_i)$ can be defined as [4]:

$$P(F_{i+1}|F_i) \approx \widetilde{P_{i+1}} = \frac{1}{N} \sum_{k=1}^{N} I_{F_i+1}(\theta_k^{(i)})$$
(2.6)

Finally, combining Equation 2.4, 2.5, and 2.6, the failure probability estimator is:

$$\widetilde{P_F} = \prod_{i=1}^m \widetilde{P_i} \tag{2.7}$$

More detailed explanations of subset simulation method can be found in (Au 2001) [4].

2.7. Directional Sampling (DS)

Directional simulation reduces the dimension of the limit state probability integral by identifying a set of directions for integration, integrating either in closed-form or by approximation in those directions, and estimating the probability as a weighted average of the directional integrals. Most existing methods identify these directions by a set of points distributed on the unit hypersphere. The accuracy of the directional simulation depends on how the points are identified. When the limit state is highly nonlinear, or the inherent failure probability is small, a very large number of points may be required, and the method can become inefficient (Nie et al. 2000 [16]). The directional simulation method involves generating uniformly distributed direction vectors and performing a one-dimensional integration along each direction (Nie et al. 2000 [16]). A brief depiction of directional sampling is displayed in figure 2.2.

Figure 2.2: Spherical segments approximation of a limit state G(u)=0 by directional sampling (Nie et al. 2000 [16])

More details about directional sampling can be found in (Nie et al. 2000 [16]) and (Merchelrs et al. 2018 [18]).

2.8. Adaptive Directional Sampling (ADS)

Adaptive directional sampling is an improvement of directional sampling. The algorithm in ADS is based on a directional simulation scheme in which the most important directions are sampled more exact by means of a response surface approach (Grooteman 2010 [13]). The improvement is aimed to efficiently determine the optimal β -sphere that is excluded from the sampling domain, and drastically reduce the required number of simulations compared to the crude Monte Carlo method (Grooteman 2008 [12]). More detailed explanation regarding ADS can be found in (Grooteman 2010 [13]), (Grooteman 2008 [12]) and (OpenTurns 2021 [22]).

2.9. Importance Sampling (IS)

Importance Sampling is a technique to improve the Monte Carlo method for probability integration (Melchers 1989 [17]). The difference compared to the normal Monte Carlo method is that the realization are selected in a smarter way, preferably in the area on the edge of failure and non failure (Probabilistic Toolkit 2021 [8]). The main idea of Importance Sampling is choose a distribution which "encourages" the important results, which are the samples that lead to failure (hence it is called "importance" sampling). Furthermore, this new "biased" distribution will be weighted to correct the bias, as opposed to the Normal Monte Carlo where each realization weight the same. A general depiction of Importance Sampling can be observed in figure 2.3.

Figure 2.3: A general depiction of Importance Sampling Method with two-variable problem (after Melchers 1989 [17]).

In Probabilistic Toolkit Software, each realization (u) is translated to importance sampling realization (u_{imp}) in the standard normal space. The translation for each variable is separately supported as equation 2.8.

$$u_{imp,var} = f_{var} \cdot u_{var} + s_{var} \tag{2.8}$$

A correction is applied in the calculation of failure to incorporate the translation by giving a realization a weight, which is calculated as equation 2.9 (the multiplication with f_{var} is performed to compensate for the dimensionality).

$$w_{var} = \frac{f_{var} \cdot \Phi(u_{imp,var})}{\Phi(u_{var})}$$
(2.9)

and

$$W_{realization} = \Pi_{variables} w_{var} \tag{2.10}$$

: variance factor per variable.
: variance shift per variable.
: the standard normal probability density function.
: the weight factor per variable per realization.
: the weight factor of the realization.

Therefore, corresponding to equation 2.3, the probability of failure for Importance Sampling is defined in equation 2.11.

$$P_{f} = \frac{\sum_{failing \ realizations} W}{\sum_{all \ realizations} W}$$
(2.11)

Further explanation about Importance Sampling can be found in (Melchers 1989 [17]).

2.10. Adaptive Importance Sampling (AIS)

An adaptive importance sampling methodology is proposed to compute the multidimensional integrals encountered in reliability analysis. It is based on an improved Markov simulation algorithm (Metropolis et al. 1953 [2]). In the proposed methodology, samples are simulated as the states of a Markov chain and are distributed asymptotically according to the optimal importance sampling density. These Markov chain samples are then used to construct a kernel sampling density to provide a good approximation to the optimal importance sampling density. The Markov chain samples populate the region of higher probability density in the failure region and so the kernel sampling density approximates the optimal importance sampling density for a large variety of shapes of the failure region (hence it is called "adaptive" importance sampling). An elaborated explanation of the method can be found in (Au 1999 [3]).

2.11. Latin Hypercube Sampling (LHS)

Latin Hypercube Sampling is a sampling method that enables better cover of the domain of the input variables variations due to a stratified sampling strategy. The sampling procedure is based on dividing the range of each variable into several intervals of equal probability. The sampling is undertaken as the followings (OpenTurns 2021 [21]):

- Step 1: The range of each input variable is stratified into isoprobabilistic cells.
- Step 2: A cell is uniformly chosen among all the available cells.
- Step 3: The random number is obtained by inverting the Cumulative Density Function locally in the chosen cell.
- Step 4: All the cells having a common strate with the previous cell are put apart from the list of available cells.

The probability of failure (P_f) is estimated by:

$$P_{f,LHS}^{N} = \frac{1}{N} \sum_{i=1}^{N} \mathbb{1}_{(g(X^{i},d) \le 0)}$$
(2.12)

Where the sample of $\{X^i, i = 1, ..., N\}$ is obtained as described previously. Further explanation regarding LHS can be seen in (Helton et al. 2002 [14]).

2.12. Active Learning Kriging-based Monte Carlo Simulation (AK-MCS)

AK-MCS is one of a Kriging-based metamodelling method. Metamodelling (surrogate modelling) relies in constructing models that acts as surrogates of complex problem (Teixeira et al. 2021 [26]). In their most fundamental form, metamodels are easily understood as black-box functions that relate an input variable x to an output Y(x), allowing cheap evaluation of Y(x) at any input value x, as can be seen in Figure 2.4 (Teixeira et al. 2021 [26]).

$$[x_{ED}, Y_{ED} = g(x_{ED})], x_{ED} \subseteq x \cdots \rightarrow (Metamodel \\ G(x)) \xrightarrow{Output} Y(x) \approx g(x)$$

Figure 2.4: Generic description of a metamodel as a black-box function defined on a support ED (experiment design) [26]

In this research, the applied AK-MCS method is after (Echard et al. 2011 [10]). It consists of an active-learning reliability method combining Kriging and Monte Carlo Simulation. Kriging is based on the idea that the performance function G(x) is seen as the realization of a stochastic field g(x). However, instead of approximating the limit state in the whole space and therefore making expensive evaluations of limit state *G* for points with very weak densities of probabilities, here it is preferred to focus on a Monte Carlo population. AK-MCS classifies a Monte Carlo population of N_{MC} points without evaluating N_{MC} times the performance function. To avoid the evaluations, Kriging is used for its exact interpolation characteristic and for its interesting proprieties in active learning methods. Moreover, this research applies AK-MCS with simple kriging (0 order, AK-MCS 0) and universal kriging with linear basis function (1 order, AK-MCS 1). Furthermore, the maximum realization number for each simulation is set to 100 for both AK-MCS 0 and AK-MCS 1.

Due to its complex nature, a more detailed explanation regarding the implemented AK-MCS can be obtained from (Echard et al. 2011 [10]).

2.13. Numerical Integration (NI)

It is the most time consuming, but most exact way to calculate the failure probability. A step size, minimum, and maximum values of the input variables are needed for the evaluation. The minimum and maximum value for which the integration will run, are defined in the u-space. The numerical integration will fill up the left over space between these values and -8 and 8 by additional cells, so the whole integration domain will be covered always (Probabilistic Toolkit 2021 [8]). An example of numerical integration can be observed in Figure 2.5, which is made based on a simple slope stability with 2 modes of failure as discussed in section 3.4.

Figure 2.5: A numerical integration application on a simple slope stability problem.

Due to the method's nature, the method is currently suitable for a problem with 2 independent variables (applied using Probabilistic Toolkit software) and is not including in the ranking system (section 4). Therefore, the method is only applied to the simple slope stability problem which is discussed in section 3.4.

2.14. Numerical Bisection (NB)

Numerical bisection is similar to numerical integration, however, the integration cells are generated by bisection of the complete domain. As soon as an integration cell has same qualitative results (fail, not fail, not counting) on its corner points, we assume that all values inside the cell would deliver the same qualitative result and no points will be calculated within the call nor on its sides. As long as cells exist with different qualitative results, the cell will be split and new corner points will be calculated. This process ends when the cells, which don't have a similar result, represent a probability lower than an accepted allowed difference in the reliability (Probabilistic Toolkit 2021 [8]). An example of numerical bisection application can be seen in Figure 2.6, where it is applied to a simple slope stability with 2 modes of failure as discussed in section 3.4.

Figure 2.6: A numerical bisection application on a simple slope stability problem.

Due to the same reasoning as numerical integration, numerical bisection is only applied to the simple slope stability problem discussed in section 3.4 and is not included in the ranking system of section 4.

2.15. Convergence Criterion

Convergence criterion (among others) is needed to determine when to stop the reliability analysis process. It determines the desired level of accuracy. The convergence criterion is reached when the probability of failure P_f variation coefficient (COV) reaches a certain limit. For example, the COV of the MCS method is defined as equation 2.13

$$COV = \begin{cases} P_f < \frac{1}{2} & \frac{\sigma_p}{P_f} = z\sqrt{\frac{1-P_f}{NP_f}} \\ P_f \ge \frac{1}{2} & \frac{\sigma_p}{1-P_f} = z\sqrt{\frac{P_f}{N(1-P_f)}} \end{cases}$$
(2.13)

where:

- σ_p : standard deviation of P_f .
- z : quantile of the standard normal distribution corresponding with confidence level
 - (z = 1 PTK).
- N : The total number of realizations

The other sampling-based method follows similar rules in determining convergence criterion (depending on the COV of P_f), where more detailed explanation can be seen on each method's forementioned references. In this research, a minimum convergence of 0.1 is chosen. Therefore, for each method (especially for sampling-based methods), the reliability analysis process is stopped when the current step obtained reliability COV reach 0.1 (or the determined maximum N is reached). When this convergence is not obtained, then the minimum sample/ step will be increased.

However for gradient-based reliability method like FORM, convergence is reached when the difference between u_i (the point at the last *i*th iteration) is close enough to the predicted value of $u_p red$ (where both u_i and $u_p red$ are from standard normal space). In this research, this difference is limited to 10^{-2} for PTK methods, and 10^{-3} to OT and DIY methods.

An example of convergence history can be observed in figure 2.7, which is taken from a Monte Carlo Simulation of a geotechnical engineering problem.

Figure 2.7: N vs β and Pf (Monte Carlo Simulation).

Based on Figure 2.7, it can be observed that β and P_f value fluctuate (and converging) throughout the increasing number of realization N. Moreover, the convergence of the P_f COV can also be displayed as in Figure 2.8.

Figure 2.8: P_f COV of an MCS example.

It can be observed from Figure 2.8 that after N > 0.05×10^6 , the P_f COV reaches values lower than 0.1. Moreover, after approximately N > 0.7×10^6 , P_f COV is reaching a constant value. Therefore, the analysis will be concluded once the P_f COV has reach the tolerated value (0.1). However, for MCS (OT) and MCS (DIY), the simulation will be performed until N reaches approximately 10^6 (like displayed in Figure 2.8) since it will be used as references. Consequently, for Monte Carlo Analysis (and other sampling-based methods), a sufficient value of N (or step) is needed to get the required convergence criterion (P_f COV = 0.1).

3

Case Analysis

This section will discuss the types of problem analyzed in this research. The results will be discussed in Section 4.

3.1. Geotechnical engineering problem to be analyzed

Geotechnical Safety Network (GEOSNet) is an international open collaborative platform that serves to promote, coordinate, and support activities relating to geotechnical safety (GEOSNet 2021 [11]). This research analyze 9 different geotechnical engineering problems with various modes of failure (MoF) and number of independent variables, 8 of which are taken from GEOSNet reliability benchmarking examples (GEOSNet 2021 [19]). The details regarding the problems could be found in Appendix B. These geotechnical engineering problems can be summarized into table 3.1.

Problems	No. of	No. of	P_f	β
	Mode of Failure	variables	references	references
A Simple Slope Stability	2	2	2.44E-02	1.97
GEOSNet EX1	1	6	5.73E-02	1.58
GEOSNet EX2	2	9	6.39E-02	1.52
GEOSNet EX3	3	4	0.18E-02	2.91
GEOSNet EX4	1	5	0.39E-02	2.66
GEOSNet EX5	1	7	9.44E-02	1.32
GEOSNet EX7	1	4	2.63E-02	1.94
GEOSNet EX8	3	12	8.17E-02	1.39
GEOSNet EX9	1	9	0.08E-02	3.17

 Table 3.1: Geotechnical engineering problems to be analyzed in this research.

Due to high uncertainties and data inconsistencies, MCS (OT) P_f value will be used as the reference for the simple slope stability, GEOSNet example 5, 7, and 8 problems. Moreover, the rest of the problem use GEOSNet's MCS result. Both GEOSNet and OpenTurn's MCS reference results are obtained with $N = 10^6$.

3.2. Model Fluctuations

In sampling-based methods, it is almost impossible to obtain the exact same result for each simulation (unlike gradient-based method i.e. FORM). Sometimes the convergence criterion is not achieved when the maximum step/realization has been surpassed (like in the case of AK-MCS 0 order in this research). In that case, the resulting β of P_f values might differ considerably from the reference (or MCS) result. In this research, the particular problem often happens in the application of directional sampling (DS) and AK-MCS 0 order. Thus for these methods and the rest of the sampling-based methods, the simulations are performed 100 times therefore the obtained average β (or P_f) is more depended on realizations where the convergence criterion is achieved. These additional simulations are only applied to the sampling-based methods other than MCS (LHS, IS, DS, SS, ADS, AIS, and both AK-MCS).

The different β values obtained from 100 simulations of directional sampling and 0 order AK-MCS can be seen in Figure 3.1 and 3.2. For Figure 3.2, each simulation has a different realizations number (N) depending on whether it reaches convergence (or not) before the maximum realization number/step is achieved. Moreover, each simulation in Figure 3.1 is based on a maximum N of 100.

Figure 3.1: Different β value for each realization in AK-MCS 0.

Figure 3.2: Different β value for each realization in DS.

It can be observed from Figure 3.1 and 3.2 that for the same problems, sample-based reliability

methods could vary between each realization. These differences could be considerably noticeable despite the average of the realizations are considerably similar. This can be seen in Figure 3.2 where one of the realization gives a β value of more than 1.9 despite the β average is 1.53. Therefore, one must avoid performing only 1 simulation when dealing with a sampling-based method (note that each simulation has its own *N* value) since it could give a false sense of accuracy.

3.3. A problem with 1 mode of failure

The first example discussed here is the 1st exercise of the GEOSNet example. The example simulates a simple infinite slope with six independent random variables. The problem can be depicted in Figure 3.3.

Figure 3.3: Example 1 scheme. (Source: GEOSNet, www.geoengineer.org).

The performance function for the problem is formulated in equation (3.1) below.

$$P = \frac{[\gamma(H-h) + h(\gamma_{sat} - \gamma_w)]cos\theta tan\phi}{[\gamma(H-h) + h\gamma_{sat}]sin\theta} - 1$$
(3.1)

where:

with:

$$\gamma = \gamma_w (G_s + 0.2e)/(1+e)$$
 (3.2)

and

$$\gamma_{sat} = \gamma_w (G_s + e) / (1 + e) \tag{3.3}$$

H	= depth of soil above bedrock
h	= $U \times H$, height of groundwater table above bedrock
U	= a factor of groundwater level determination
γ and γ_{sat}	= moist unit weight and saturated unit weight of the surficial soil, respectively
γ_w	= unit weight of water (9.81 kN/m^3)
ϕ	= effective stress internal friction angle
θ	= slope inclination

The moist and saturated soil unit weights are not independent, because they are related to the specific gravity of the soil solids (G_s) and the void ratio (e). The uncertainties in γ and γ_{sat} are characterized by modeling G_s and e as two independent uniform random variables. There are six independent random variables in this problem (H, U, ϕ, θ, e , and G_s). The distribution of the independent variables are displayed in table 3.2.

Variable	Distribution	Statistics	Units
H	Uniform	[2,8]	m
U	Uniform	[0,1]	-
ϕ	Lognormal	μ = 35, COV = 8%	deg.
θ	Lognormal	μ = 20, COV = 5%	deg.
G_s	Uniform	[2.5, 2.7]	-
e	Uniform	[0.3, 0.6]	-

Table 3.2: GEOSNet Example 1 Result Comparison (GEOSNet result by Jianye Ching and Yi-Hung Hsieh).

Furthermore, it can be seen from the performance function that there is only one mode of failure in this problem. The reliability index (β), probability of failure (Pf), number of realizations (N), P_f error, and absolute β error from each method is compared in Table 3.3 (β reference = 1.578 and P_f reference = 0.0573).

Table 3.3: GEOSNet example 1 results comparison with P_f reference = 0.0573 based on GEOSNet MCS result with $N=10^6$ byJianye Ching and Yi-Hung Hsieh [23].

Methods	β	P_f	N	Abs. β error	P_f error
FORM (PTK)	1.427	0.0768	42	9.57%	34.0%
LHS (PTK)	1.578	0.0573	10001	0.00%	0.0%
MCS (PTK)	1.574	0.0578	163120	0.25%	0.9%
IS (PTK)	1.570	0.0583	37312	0.51%	1.7%
DS (PTK)	1.574	0.0577	40955	0.25%	0.7%
FORM (OT)	1.426	0.0770	144	9.66%	34.4%
SORM (OT)	1.544	0.0613	252	2.18%	7.0%
MCS (OT)	1.573	0.0579	1000000	0.31%	1.0%
SS (OT)	1.574	0.0578	20000	0.24%	0.8%
DS (OT)	1.551	0.0605	522.5	1.74%	5.6%
IS (OT)	1.562	0.0592	514.41	1.03%	3.3%
LHS (OT)	1.570	0.0582	6486.47	0.53%	1.7%
ADS (OT)	1.524	0.0638	39950.3	3.43%	11.3%
FORM (DIY)	1.426	0.0769	71	9.62%	34.2%
FOSM (DIY)	1.397	0.0812	13	11.46%	41.7%
MCS (DIY)	1.575	0.0576	900000	0.19%	0.6%
SS (DIY)	1.576	0.0575	4905	0.11%	0.3%
DS (DIY)	1.578	0.0573	369.2	0.01%	-0.1%
IS (DIY)	1.541	0.0617	286.5	2.35%	7.6%
AIS (DIY)	1.574	0.0577	907.8	0.24%	0.7%
AKMCS-0	1.584	0.0566	51	0.38%	-1.2%
AKMCS-1	1.532	0.0627	29	2.90%	9.5%

It can be seen from Table 3.3 that for the GEOSNet example 1 problem (with a simple performance function and only has one mode of failure), the most accurate reliability method is LHS (PTK) with P_f error of 0.0%, which mean it is giving the exact same P_f value as GEOSNet MCS' despite of only using 10001 realizations (*N*). Moreover, it can also be seen from Table 3.3 that FOSM (DIY) requires the least *N* while also giving the least accurate P_f value.

The result (β and P_f) of each method can be compared together into a single graph of N vs β (since P_f values are normally small, therefore it is more convenient to present it as β value, as will then be displayed in the result graphs of this report). A lower required N means a more efficient method, and a closer beta to the point of reference means a more accurate method. GEOSNet's Monte Carlo Result will be used as a reference, as the Monte Carlo Simulation used 10^6 realizations and is considered as the most robust/accurate result (in spite of the efficiency disadvantages). The comparison can be observed in Figure 3.4.

Figure 3.4: N vs Beta comparison of GEOSNet Example 1.

It can be observed that all of the results are close to the reference line, with the largest β deviation (FOSM (DIY) result) is less than 0.5 (or P_f error of 41.7%).

3.4. A problem with more than 1 mode of failure

In this example, a simple slope stability with two undrained layers is analyzed (Figure 3.5. The two layers have independent stochastic soil strength parameters $s_{u,1}$ and $s_{u,2}$ with all other variables are deterministic.

Figure 3.5: A simple slope stability problem with 2 independent stochastic variables.

The following deterministic parameters were used:

Slope heights	:4m
Slope inclination	: 1:2 (26.57 deg.)
Layer thickness	:4m;4m
Unit weight	:16 kN/m ³

By using Bishop's limit equilibrium method, the 2 modes of failure (either a deep or a shallow slip circle) can be found as a critical slip circle with the lowest factor of safety FS. The FS is depending on

just the relative undrained shear strength of the 2 layers. The limit state function $g_{sys}(\mathbf{X})$ can thus be formulated as the combination of the component limit state functions $g_s(\mathbf{X})$ and $g_d(\mathbf{X})$ for shallow and deep failure modes respectively.

$$g_s(\mathbf{X}) = FS_s - 1 \tag{3.4}$$

$$g_d(\mathbf{X}) = FS_d - 1 \tag{3.5}$$

with:

$$FS_s = c_{s1}.s_{u,1}$$
 (3.6)

$$FS_d = c_{d1}.s_{u,1} + c_{d2}.s_{u,2} \tag{3.7}$$

Therefore:

$$g_{sys}(\mathbf{X}) = min(g_s, g_d) \tag{3.8}$$

Where X_i is the stochastic variable corresponding to the undrained shear strength s_u for layer *i*. Using a limit equilibrium software with Bishop's method, the coefficient of the performance function above are calibrated as the following.

 c_{s1} = 0.004072890235

 c_{d1} = 0.000554854

 c_{d2} = 0.002397665

Moreover, the independent variable distribution are displayed in Table 3.4.

Table 3.4: Parameter distribution of the simple slope stability problem.

Variable	Distribution	Statistics	Units
$s_{u,1}$	Lognormal	μ = 21.8, σ = 6.0	kN/m ²
$s_{u,2}$	Lognormal	μ = 30.4, σ = 6.0	kN/m ²

The limit state function can be plotted like in Figure 3.6.

Figure 3.6: Limit state function of a slope stability problem with 2 mode of failulres.

From Figure 3.6, it can be seen that the limit state function at $g_{sys}(X) = 0$ is consisted of 2 lines that are combined together. These lines represent the failure of shallow and deep sliding surface. These lines can be plotted separately as displayed in Figure 3.7 and 3.8 for shallow and deep sliding surfaces respectively.

Figure 3.7: Limit state function of the shallow slip surface.

Figure 3.8: Limit state function of the deep slip surface.

The distance of the design points from the origin of the standard normal space as displayed in Figure 3.7 and 3.8 are certainly different between each other ($\beta_{shallow} = 1.97$ and $\beta_{deep} = 3.00$). Therefore, there are 2 possibilities of design point in $g_{sys}(X) = 0$, as displayed in Figure 3.9).

Figure 3.9: Two possibilities of β for $g_{sys}(X) = 0$.

This multiple design points can also be observed when analyzed using Monte Carlo Simulation (Figure 3.10).

Figure 3.10: Two possible design points as observed from MCS (PTK) result.

Judging by the definition of reliability index (the shortest distance from the origin to the limit state function in a standard normal space), clearly the correct reliability index of $g_{sys}(X)$ should be $\beta = 1.97$, or the shortest distance between the origin to the limit state function of the shallow slip in standard normal space. However, when evaluated in a combined limit state function $g_{sys}(X)$, FORM (OT and or DIY version) gives a reliability index $\beta = 3.00$, which is clearly overestimating the reliability of $g_{sys}(X)$. Similarly, this also happens with the SORM (OT) method due to their similar approach in determining the reliability index (SORM (OT) gives $\beta = 3.04$). Despite a slightly more accurate re-creation of a design point in a limit state function's curve, SORM (OT) method still unable to detect the closest design point when the function has more than 1 design point.

Consequently, for a function with a multiple mode of failures (thus having multiple design points), it is advised to model each mode of failure separately (as applied in PTK analysis), and then analyze the reliability index of each design point. Furthermore, the system reliability can be estimated based on each of its design point's reliability, as defined in equation 3.9.

$$\beta_{sus} \approx \Phi^{-1} [\Phi(\beta_{shallow}) + \Phi(\beta_{deep})] = 1.97$$
(3.9)

This problem can be avoided by using other reliability methods (e.g. sampling-based methods). The application of other reliability methods is presented and compared in Figure 3.11.

Figure 3.11: Result comparison of a simple slope stability problem with 2 design points.

Figure 3.11 shows that gradient-based reliability methods such as FORM (OT and DIY) and SORM (OT) method gives β = 3.00, while the sampling-based reliability methods approximately give β = 1.97 (which is the correct β value). Moreover, despite being a gradient-based reliability method, FORM (PTK) accurately predicts the correct β value by analyzing each mode of failure separately. Furthermore, if each design point is evaluated separately as displayed in Figure 3.7 and 3.8, all methods except for FOSM (DIY) give the same result as displayed in Figure 3.12 (for shallow slip surface) and Figure 3.13 (for deep slip surface).

Figure 3.12: Result comparison of the shallow mode of failure.

Figure 3.13: Result comparison of the deep mode of failure.

It can be observed from Figure 3.12 and 3.13 that all of the reliability methods (except FOSM) give the same result. Therefore in this case, it can be concluded that a gradient-based reliability method (in this case is FORM) could be misleading for a function with more than 1 failure of mode (or more than 1 design point). However, this problem can be avoided if the problem's modes of failure are evaluated separately.

Moreover, this problem can also be avoided by applying different initial/ starting point. Normally FORM starts from the mean values of each parameter or origin of the standard normal space (as shown in Figure 3.9). Therefore in this case, if the starting point is moved higher (constant X_1 and higher X_2), the obtained β value would be 1.98 (similar to the result displayed in Equation 3.9). This can be briefly explained by Figure 3.14.

Figure 3.14: Two possible different FORM β values with different starting points.

3.5. Analysis Results

The results of multiple reliability analysis methods on a slope stability problem and GEOSNet examples are presented from Figure 3.15 to Figure 3.23 (note that Figure 3.11 and 3.4 are included again as Figure 3.15 and 3.16 respectively for practical purpose). The gradient-based methods applied are the basic type as discussed in Section 2.3, therefore their shortcomings in problems with multiple modes of failure can be better acknowledged (except for FORM (PTK) where each mode of failure is analyzed separately in each problem). Moreover, every sampling-based method for each problem in the following results is based on averaged result of 100 simulations (as mentioned in Section 3.2).

Figure 3.15: Result comparison of the slope stability problem (note that this graph is identical as Figure 3.11).

Figure 3.16: Result comparison of the GEOSNet example 1 (note that this graph is identical with Figure 3.4)

Figure 3.17: Result comparison of the GEOSNet example 2

Figure 3.18: Result comparison of the GEOSNet example 3

Figure 3.19: Result comparison of the GEOSNet example 4

Figure 3.20: Result comparison of the GEOSNet example 5

Figure 3.21: Result comparison of the GEOSNet example 7

Figure 3.22: Result comparison of the GEOSNet example 8

Figure 3.23: Result comparison of the GEOSNet example 9

Discussion

This section will discuss the results found in Chapter 3.

4.1. Result Summary

Based on Figure 3.15 to Figure 3.23 in Section 3.5, the following points can be observed.

The basic gradient-based reliability method such as FORM (OT), FORM (DIY), SORM (OT), and FOSM (DIY) failed to identify β (the closest design point to the standard space origin) in the simple slope stability and GEOSNet EX2 problems, which have more than 1 mode of failure/ design point (as can be seen in Figure 3.15 and 3.17). However, with the same problems, FORM (PTK) had a closer prediction of β (as can be observed in Figure 3.15 and 3.17 respectively) due to separate analysis of each mode of failure. Therefore, these gradient-based methods (except for FORM (PTK)) tend to overestimate β value (as discussed in Section 3.4 and shown in Figure 3.15 and 3.17). However, all of these gradient-based methods successfully identified the correct β values in GEOSNet EX3 and EX8 (Figure 3.18 and 3.22 respectively). Therefore under specific conditions, gradient-based methods could still accurately determine the correct β value. The rest of the reliability methods successfully determined the correct β values (with some variation in accuracy and efficiency) despite needing higher *N* values, especially with the sampling-based reliability methods.

FOSM (DIY) method often fails to determine the correct β values, even for problems with only 1 mode of failure (Figure 3.19, 3.21, and 3.23). Moreover, sampling-based methods often give accurate estimation of β values (Figure 3.15 to 3.23), however they need much more computational effort (higher N), especially when they are averaged to avoid result fluctuations (as shown in Section 3.2). Since PTK analyzed each mode of failure/ design point separately, it further increased the computational effort. This can be observed in Figure 3.18 (EX3 with 3 MoF) where the required N from PTK in MCS (PTK) and DS (PTK) exceed the required $N = 10^6$ of MCS (OT), also in Figure 3.15 to Figure 3.23 where FORM (PTK) needs higher N than the rest of the gradient-based methods.

The results of the reliability methods from each problem can be presented as its P_f errors (differences) from GEOSNet's Monte Carlo Analysis probability of failure (P_f). Therefore, the smaller the P_f differences (P_f errors), the more accurate the reliability method is with the corresponding problem. Moreover, the less realization (N) it needs, the more efficient the method is. The P_f errors are summarized in Table 4.1 and the N of each cases is summarized in Table 4.3. For practical purpose, the absolute β error of each method in each problem will also be displayed in Table 4.2. However, the complete P_f and β results can be found in Table A.1 and Table A.2 in the Appendix (A). The relation between P_f and β can be defined by equation 2.2.

Due to the high uncertainties in the model and incomplete data, the attempt to re-create the same performance function used in the GEOSNet reports was unsuccessful (as can be seen from Figure 3.20 to 3.22). Therefore, problems from GEOSNet Example 5, 7, and 8 will use the MCS (OT) P_f and

 β with $N\text{=}10^6$ as references.

Problems:	Slope	EX1	EX2	EX3	EX4	EX5	EX7	EX8	EX9
No. of DP:	(2)	(1)	(2)	(3)	(1)	(1)	(1)	(3)	(1)
P_f reference:	0.0246	0.0573	0.0639	0.0018	0.0039	0.0944	0.0263	0.0817	0.0007
β reference:	1.97	1.58	1.52	2.91	2.66	1.32	1.94	1.39	3.17
FORM (PTK)	-0.1%	34.0%	33.3%	-0.2%	7.4%	11.2%	5.7%	0.5%	-2.9%
LHS (PTK)	-5.8%	0.000%	-11.0%	-0.3%	2.6%	-0.4%	-1.1%	0.5%	-3.3%
MCS (PTK)	0.7%	0.9%	0.2%	0.0%	1.3%	-0.2%	-5.7%	-5.8%	-2.1%
IS (PTK)	-4.2%	1.7%	2.3%	0.1%	-5.4%	0.4%	-0.8%	-4.4%	-10.8%
DS (PTK)	-0.1%	0.7%	7.8%	-0.1%	6.9%	-0.5%	0.0%	3.4%	-14.0%
FORM (OT)	-94.5%	34.4%	-74.9%	-4.8%	5.2%	11.5%	6.0%	0.5%	-2.8%
SORM (OT)	-95.1%	7.0%	-82.6%	0.3%	0.8%	3.2%	-0.3%	-0.2%	-1.2%
MCS (OT)	0.0%	1.0%	-0.2%	4.5%	0.6%	0.0%	0.0%	0.0%	-3.6%
SS (OT)	-0.8%	0.8%	0.4%	-8.4%	0.9%	-1.0%	0.7%	-0.1%	-4.3%
DS (OT)	4.9%	5.6%	1.8%	45.4%	3.7%	2.0%	8.1%	-1.2%	0.8%
IS (OT)	-11.5%	3.3%	-6.1%	1.6%	5.3%	1.4%	0.3%	5.3%	-5.5%
LHS (OT)	-0.6%	1.7%	0.6%	1.7%	2.1%	-0.4%	0.3%	-0.3%	-2.8%
ADS (OT)	2.1%	11.3%	9.9%	7.5%	2.0%	12.8%	9.3%	-11.0%	-5.7%
FORM (DIY)	-94.5%	34.2%	-74.5%	-3.3%	7.3%	11.5%	6.0%	0.2%	-2.8%
FOSM (DIY)	-61.1%	41.7%	-87.5%	-100%	1942%	-13.0%	294.7%	30.2%	8642%
MCS (DIY)	-0.7%	0.6%	1.3%	0.8%	4.2%	-0.2%	0.7%	-0.8%	-1.0%
SS (DIY)	-4.3%	0.3%	0.1%	-6.6%	-1.4%	-1.5%	3.1%	0.3%	-9.5%
DS (DIY)	1.0%	-0.1%	1.1%	-13.9%	259%	-1.2%	280.3%	-3.3%	-23.0%
IS (DIY)	-6.9%	7.6%	4.1%	-5.6%	3.7%	-2.6%	1.9%	1.6%	-2.1%
AIS (DIY)	-0.4%	0.7%	-0.3%	-8.6%	6.3%	-4.5%	-0.6%	-9.0%	-11.5%
AKMCS-0	-0.7%	-1.2%	2.3%	-0.1%	2.2%	-0.7%	-1.6%	-1.1%	0.9%
AKMCS-1	-2.5%	9.5%	30.2%	7.0%	56.4%	-1.4%	-2.0%	-1.1%	-3.9%
NI (PTK)	-2.6%	-	-	-	-		-	-	
NB (PTK)	-0.5%	-	-	-	-	-	-	-	-

Table 4.1: Probability of failure (P_f) errors for each method and problem (GEOSNet EX5, EX7, and EX8 use MCS (OT) P_f as
reference while the rest are based on GEOSNet's MCS result with $N = 10^6$).

Problems:	Slope	EX1	EX2	EX3	EX4	EX5	EX7	EX8	EX9
No. of DP:	(2)	(1)	(2)	(3)	(1)	(1)	(1)	(3)	(1)
P_f reference:	0.0246	0.0573	0.0639	0.0018	0.0039	0.0944	0.0263	0.0817	0.0007
β reference:	1.97	1.58	1.52	2.91	2.66	1.32	1.94	1.39	3.17
FORM (PTK)	0.01%	9.57%	10.05%	0.75%	0.90%	4.88%	1.46%	0.25%	0.32%
LHS (PTK)	1.53%	0.00%	3.74%	1.43%	0.53%	0.45%	0.09%	0.25%	0.32%
MCS (PTK)	0.01%	0.25%	0.20%	0.11%	0.15%	0.45%	1.12%	2.62%	0.32%
IS (PTK)	1.02%	0.51%	0.85%	0.06%	0.60%	0.31%	0.09%	1.90%	1.26%
DS (PTK)	0.01%	0.25%	2.82%	0.40%	0.90%	0.45%	0.09%	0.97%	1.58%
FORM (OT)	52.35%	9.66%	40.71%	0.63%	0.77%	4.73%	1.30%	0.18%	0.41%
SORM (OT)	54.21%	2.18%	50.14%	0.07%	0.22%	1.37%	0.07%	0.09%	0.26%
MCS (OT)	0.00%	0.31%	0.06%	0.37%	0.20%	0.00%	0.00%	0.00%	0.48%
SS (OT)	0.20%	0.24%	0.13%	1.04%	0.20%	0.43%	0.14%	0.04%	0.61%
DS (OT)	1.04%	1.74%	0.62%	3.99%	0.59%	0.86%	1.74%	0.48%	0.08%
IS (OT)	2.61%	1.03%	2.07%	0.07%	0.78%	0.58%	0.08%	2.02%	0.66%
LHS (OT)	0.13%	0.53%	0.22%	0.08%	0.39%	0.18%	0.06%	0.10%	0.41%
ADS (OT)	0.46%	3.43%	3.20%	0.67%	0.38%	5.23%	2.00%	4.44%	0.68%
FORM (DIY)	52.38%	9.62%	40.27%	0.46%	1.02%	4.73%	1.30%	0.08%	0.41%
FOSM (DIY)	19.06%	11.46%	58.29%	87.73%	47.17%	5.86%	34.98%	10.61%	52.38%
MCS (DIY)	0.16%	0.19%	0.45%	0.02%	0.65%	0.07%	0.16%	0.32%	0.24%
SS (DIY)	0.95%	0.11%	0.03%	0.84%	0.05%	0.63%	0.67%	0.11%	1.06%
DS (DIY)	0.22%	0.01%	0.38%	1.70%	17.51%	0.52%	33.88%	1.30%	2.52%
IS (DIY)	1.54%	2.35%	1.37%	0.72%	0.59%	1.11%	0.41%	0.63%	0.34%
AIS (DIY)	0.09%	0.24%	0.08%	1.06%	0.90%	1.97%	0.13%	3.63%	1.26%
AKMCS-0	0.15%	0.38%	0.78%	0.11%	0.41%	0.28%	0.35%	0.42%	0.06%
AKMCS-1	0.54%	2.90%	9.14%	0.63%	5.92%	0.59%	0.45%	0.44%	0.51%
NI (PTK)	0.52%								
NB (PTK)	0.01%								

Table 4.2: Reliability index (β) absolute errors for each method and problem (GEOSNet EX5, EX7, and EX8 use MCS (OT) β as reference while the rest are based on GEOSNet's MCS result with $N = 10^6$).

Problems:	Slope	FX1	FX2	FX3	FX4	EX5	FX7	FX8	FX9
No. of DP:	(2)	(1)	(2)	(3)	(1)	(1)	(1)	(3)	(1)
P_f reference:	0.0246	0.0573	0.0639	0.0018	0.0039	0.0944	0.0263	0.0817	0.0007
β reference:	1.97	1.58	1.52	2.91	2.66	1.32	1.94	1.39	3.17
FORM (PTK)	36	42	110	104	42	40	35	364	70
LHS (PTK)	1001	10001	2002	30030	10001	400001	100001	30003	200001
MCS (PTK)	1E+05	2E+05	1E+05	3E+06	1E+05	1E+04	2E+04	2E+04	1E+05
IS (PTK)	2880	37312	195814	200848	105968	40016	100016	43872	189200
DS (PTK)	5E+03	4E+04	8E+04	1E+06	6E+04	4E+04	5E+04	2E+05	6E+04
FORM (OT)	157	144	198	215	157	158	152	694	218
SORM (OT)	179	252	415	272	253	314	215	1089	452
MCS (OT)	1E+06								
SS (OT)	20000	20000	20000	30000	30000	20000	20000	20000	40000
DS (OT)	239	523	863	4966	9094	240	1380	649	57341
IS (OT)	38218	514	3450	622	599	471	470	1153	805
LHS (OT)	16118	6486	5839	218704	100317	3870	14811	4519	549733
ADS (OT)	39998	39950	39815	39996	39992	39920	39992	35614	39871
FORM (DIY)	22	71	211	36	43	41	31	66	91
FOSM (DIY)	5	13	19	9	11	15	9	25	19
MCS (DIY)	9E+05								
SS (DIY)	4905	4905	4905	7228	7228	4905	4905	4905	9552
DS (DIY)	329	369	384	400	60659	328	2596	344	330
IS (DIY)	1061	287	2061	373	362	230	246	246	479
AIS (DIY)	447	908	2698	2034	1631	1686	634	3532	2756
AKMCS-0	21	51	100	82	62	34	56	56	88
AKMCS-1	28	29	92	91	64	38	100	43	100
NI (PTK)	40001	-	-	-	-	-	-	-	
NB (PTK)	42369	-	-	-	-	-	-	-	-

Table 4.3: The number of realization N for each problem's reliability methods.

The required N values displayed in Table 4.3 for the sampling-based methods are based on the average of N from 100 simulations. These additional simulations are only applied to the sampling-based methods other than MCS (LHS, IS, DS, SS, ADS, AIS, and both AK-MCS).

Moreover, Table 4.1 can also be presented as a graph based on P_f errors and the number of independent variable throughout different β , as displayed in Figure 4.1 and 4.3 below. Furthermore, the range of the results are displayed in Figure 4.2 and Figure 4.4 for P_f errors throughout different β and number of independent variables respectively. Due to the extreme differences in FOSM (DIY), Figure 4.2 and Figure 4.4 display the range by including and excluding FOSM (DIY) result.

Figure 4.1: β differences throughout different β values (*SS = Slope stability problem).

P_f differences throughout different no. of ind. variables

Figure 4.2: The range of β differences throughout different β values.

Figure 4.3: β differences throughout different no. of independent variables (*SS = Slope stability problem).

Figure 4.4: The range of β differences throughout different no. of independent variables.

It can be observed from Figure 4.1 and 4.3 that generally the problems with more than 1 mode of failure or design points (DP) have considerably higher P_f errors compared to the problems with 1 DP. It can also be observed that FOSM (DIY) and DS (DIY) has the highest P_f errors (more than 100% in some examples. For practicality purpose, Figure 4.1 and 4.3 only display differences within 100% range, therefore any error higher than 100% is displayed at the border of the graphs. It is worth mentioning that for β value of 2.64 (EX4) and 3.19 (EX9) with number of independent variables of 5 & 9, FOSM(DIY) P_f errors reach a staggering value of 1942% and 8642% respectively.

Figure 4.2 and 4.4 show the ranges of all the P_f differences from each reliability method. Since FOSM (DIY) errors are extremely high and could be considered as outliers, Figure 4.2 and 4.4 also include the error ranges without FOSM (DIY).

Moreover, despite there is a tendency for FOSM (DIY) to get higher P_f errors with higher β (or lower P_f) and higher number of independent variables, there is no clear indication for the rest of the reliability methods to follow the same pattern based on 4.1 and 4.4, or Table 4.1. More examples with different β references and varying number of independent variables are needed to correctly correlate between β and P_f errors or between number of independent variables and P_f errors.

4.2. Rankings

To further compare the reliability index β and P_f errors between each method, a ranking system will be implemented. Within each problem, the methods will be ranked according to it's absolute P_f errors, where the higher the absolute P_f error means the higher the rank (the lower rank is the better). For example, based on Table 4.1, LHS (PTK) obtained the most accurate result for GEOSNet EX1, therefore it is ranked as the 1st in term accuracy. Similarly, FOSM (DIY) is ranked as the least accurate (22nd) for the same problem since it has the highest P_f error (Table 4.1). The same principle is also applied according to the number of required N in each method. Since numerical integration (NI) and numerical bisection (NB) are only applied in the slope stability problem, these methods will be excluded in the ranking system.

The ranks based on each method's absolute P_f errors (accuracy) are presented in Table 4.4 and the ranks for the required N (efficiency) are presented in Table 4.5.

Baskland			БУО	EVO			E V7	БУО	EVO
Problems:	Siope	EX1 (1)	EX2 (2)	EX3	EX4	EX5	EX/	EX8 (2)	EX9
NO. OI DP.	(2)	(1)	(2)	(3)	(1)	(1)	(1)	(3)	(1)
P_f reference:	0.0246	0.0573	0.0639	0.0018	0.0039	0.0944	0.0263	0.0817	0.0007
β reference:	1.97	1.58	1.52	2.91	2.66	1.32	1.94	1.39	3.17
FORM (PTK)	3	19	18	5	19	18	16	7	10
LHS (PTK)	16	1	16	7	9	6	10	7	11
MCS (PTK)	7	8	2	1	4	3	15	19	6
IS (PTK)	13	12	11	3	15	4	9	17	18
DS (PTK)	2	5	14	2	17	7	2	16	20
FORM (OT)	20	21	20	13	13	20	18	9	7
SORM (OT)	22	15	21	6	2	16	4	4	4
MCS (OT)	1	9	3	12	1	1	1	1	12
SS (OT)	9	7	5	18	3	9	7	2	14
DS (OT)	15	14	9	21	11	14	19	13	1
IS (OT)	18	13	13	9	14	11	5	18	15
LHS (OT)	5	11	6	10	7	5	3	5	8
ADS (OT)	11	18	15	17	6	21	20	21	16
FORM (DIY)	21	20	19	11	18	19	17	3	9
FOSM (DIY)	19	22	22	22	22	22	22	22	22
MCS (DIY)	8	4	8	8	12	2	8	10	3
SS (DIY)	14	3	1	15	5	13	14	6	17
DS (DIY)	10	2	7	20	21	10	21	15	21
IS (DIY)	17	16	12	14	10	15	12	14	5
AIS (DIY)	4	6	4	19	16	17	6	20	19
AKMCS-0	6	10	10	4	8	8	11	11	2
AKMCS-1	12	17	17	16	20	12	13	12	13

Table 4.4: The rank of each method based on its absolute P_f errors (the lower the rank the better).

Problems:	Slope	EX1	EX2	EX3	EX4	EX5	EX7	EX8	EX9
No. of DP:	(2)	(1)	(2)	(3)	(1)	(1)	(1)	(3)	(1)
P_f reference:	0.0246	0.0573	0.0639	0.0018	0.0039	0.0944	0.0263	0.0817	0.0007
β reference:	1.97	1.58	1.52	2.91	2.66	1.32	1.94	1.39	3.17
FORM (PTK)	5	3	4	5	2	4	3	7	2
LHS (PTK)	11	15	10	15	13	20	19	17	19
MCS (PTK)	20	20	19	22	19	15	15	16	17
IS (PTK)	13	17	20	17	20	18	20	19	18
DS (PTK)	15	19	18	21	16	19	18	20	16
FORM (OT)	6	6	5	6	6	6	6	9	6
SORM (OT)	7	7	8	7	7	9	7	10	8
MCS (OT)	22	22	22	20	22	22	22	22	22
SS (OT)	17	16	16	14	14	16	16	15	14
DS (OT)	8	11	9	12	12	8	11	8	15
IS (OT)	18	10	13	10	9	11	9	11	10
LHS (OT)	16	14	15	18	18	13	14	13	20
ADS (OT)	19	18	17	16	15	17	17	18	13
FORM (DIY)	3	5	6	2	3	5	2	4	4
FOSM (DIY)	1	1	1	1	1	1	1	1	1
MCS (DIY)	21	21	21	19	21	21	21	21	21
SS (DIY)	14	13	14	13	11	14	13	14	12
DS (DIY)	9	9	7	9	17	10	12	6	7
IS (DIY)	12	8	11	8	8	7	8	5	9
AIS (DIY)	10	12	12	11	10	12	10	12	11
AKMCS-0	2	4	3	3	4	2	4	3	3
AKMCS-1	4	2	2	4	5	3	5	2	5

Table 4.5: The rank of each method based on its N (the lower the better).

The ranks (based on absolute P_f errors and N values) of each method can be further summed, therefore the final rank will be based on the total sum (the lower the total sum is, the higher the final rank is). For example, the total P_f error ranks of FORM (PTK) is (21 + 19 + 17 + ... + 11 =). This can be presented in Table 4.6.

Method	Tot. P_f error rank	Tot. N value rank	Tot. rank	Final rank
	(a)	(b)	(c = a+b)	(d)
FORM (PTK)	115	35	150	2
LHS (PTK)	83	139	222	16
MCS (PTK)	65	163	228	17
IS (PTK)	102	162	264	21
DS (PTK)	85	162	247	19
FORM (OT)	141	56	197	7
SORM (OT)	94	70	164	3
MCS (OT)	41	196	237	18
SS (OT)	74	138	212	13
DS (OT)	117	94	211	11
IS (OT)	116	101	217	15
LHS (OT)	60	141	201	8
ADS (OT)	145	150	295	22
FORM (DIY)	137	34	171	5
FOSM (DIY)	195	9	204	9
MCS (DIY)	63	187	250	20
SS (DIY)	88	118	206	10
DS (DIY)	127	86	213	14
IS (DIY)	115	76	191	6
AIS (DIY)	111	100	211	11
AKMCS-0	70	28	98	1
AKMCS-1	132	32	164	3

Table 4.6: The cummulative ranks based on P_f errors and N values (the lower the better
--

Finally, the best reliability methods according to the P_f errors, N, and total performance (P_f errors + N values) are presented in Table 4.7

Table 4.7: The final ranks (the lower the better).

Ranks	P_f error ranks	N value rank	Final ranks
1	MCS (OT)	FOSM (DIY)	AK-MCS 0
2	LHS (OT)	AK-MCS 0	FORM (PTK)
3	MCS (DIY)	AK-MCS 1	SORM (OT)
4	MCS (PTK)	FORM (DIY)	AK-MCS 1
5	AK-MCS 0	FORM (PTK)	FORM (DIY)
6	SS (OT)	FORM (OT)	IS (DIY)
7	LHS (PTK)	SORM (OT)	FORM (OT)
8	DS (PTK)	IS (DIY)	LHS (OT)
9	SS (DIY)	DS (DIY)	FOSM (DIY)
10	SORM (OT)	DS (OT)	SS (DIY)
11	IS (PTK)	AIS (DIY)	AIS (DIY)
12	AIS (DIY)	IS (OT)	DS (OT)
13	FORM (PTK)	SS (DIY)	SS (OT)
14	IS (DIY)	SS (OT)	DS (DIY)
15	IS (OT)	LHS (PTK)	IS (OT)
16	DS (OT)	LHS (OT)	LHS (PTK)
17	DS (DIY)	ADS (OT)	MCS (PTK)
18	AK-MCS 1	DS (PTK)	MCS (OT)
19	FORM (DIY)	IS (PTK)	DS (PTK)
20	FORM (OT)	MCS (PTK)	MCS (DIY)
21	ADS (OT)	MCS (DIY)	IS (PTK)
22	FOSM (DIY)	MCS (OT)	ADS (OT)

It can be observed from Table 4.6 that DS (OT) and AIS (DIY) obtained the same final rank of 11. However, AIS (DIY) has less score in P_f error rank (111) compared to DS (OT) P_f error score (117). Therefore, in Table 4.7, AIS (DIY) is assigned the higher final rank (11) compared to DS (OT) final rank (12).

5

Conclusion and Reflection

5.1. Conclusions

Based on the things discussed in Chapter 3 and 4, the following things can be concluded:

- It can be observed from Table 4.7 that MCS (OT) with $N=10^6$ is ranked as the most accurate method despite its shortcoming in efficiency where it is also ranked as the most inefficient method at the same time. However, the accuracy rank is highly influenced by its P_f use as the reference for GEOSNet example 5, 7, and 9. Moreover, its inaccuracy is highly influence by its N value which was kept constant at 10^6 .
- Furthermore, Monte Carlo Simulation methods are ranked as the most inefficient methods in this research since Table 4.7 shows that all of the 3 MCS methods are positioned at the bottom 3 in the efficiency ranking. This is due to the fact that MCS (OT) and MCS (DIY) are having fixed N numbers of 10^6 and $9x10^5$ respectively. However, MCS (PTK)'s number of N is obtained after reaching the determined convergence value (COV = 0.1) therefore its N values are lower than MCS (OT) and MCS (DIY). It can be concluded that Monte Carlo Simulation is the most inefficient method in this research.
- It can also be observed from Table 4.7 that the FOSM (DIY) method obtained the most efficient method despite it is also ranked as the least accurate method at the same time. It is also shown in Table 4.1 and Figure 4.2 that FOSM (DIY) accuracy further decreases for β value larger than 2 (or P_f value lower than 2.275%). Therefore, FOSM (DIY) is the most inaccurate method in this research.
- Combining the accuracy and efficiency, AK-MCS 0 is ranked as the best reliability method in this
 research. It is ranked 5th in term of accuracy and 2nd in term of efficiency.
- Gradient-based reliability methods such as FORM (OT), FORM (DIY), SORM (OT), and FOSM (DIY) failed to identify the correct design point for the simple slope stability and GEOSNet EX2 problems (which have more than 1 mode of failure), as can be seen in Table 4.1, Figure 3.15, and 3.17. However, FORM (PTK) accurately predicts the correct β value by analyzing each mode of failure separately.
- However in some cases, the gradient-based reliability methods could still accurately determine the correct β values for problems with more than 1 mode of failure. This can be observed in in GEOSNet EX3 and EX8 (Figure 3.18 and 3.22 respectively). Therefore, it is recommended to perform at least 1 sampling-based reliability method for confirmation purpose when one performs a gradient-based reliability method.
- Except for FOSM (DIY), Figure 4.1, Figure 4.2, and Table 4.1 show that the higher the problem's β value (or lower P_f value) does not necessarily give a wider range of P_f errors.
- Figure 4.4 and Table 4.1 show that the increase in number of independent variable does not necessarily give a wider range of *P*_f errors.
- Although SORM (OT) and FORM (DIY), and FORM (OT) method obtained relatively high final ranks based on 4.7 (final rank of 3, 5, and 7 respectively), they must be implemented very

carefully due to their limitation in correctly identifying the P_f of problems with more than 1 design points (as can be seen in Table 4.1).

- For problems with multiple modes of failure (multiple design points), analyzing and implementing reliability analysis for each mode of failure is strongly recommended when implementing FORM method (as discussed in Section 3.4). However, this takes more computational efforts despite it is still much less than the sampling-based methods' computational efforts. This can be seen in FORM (PTK) cases based on Table 4.3.
- Based on Table 4.1 and 4.7, it can be observed that sampling-based reliability methods (where the P_f , β , and N results are averaged from 100 simulations except for Monte Carlo Simulation) have higher accuracy compared to the gradient-based methods. However, gradient-based methods have higher efficiency.
- Sampling-based methods tend to fluctuate between simulations, therefore it is recommended to perform multiple simulations and get the average *β*, *P_f*, and *N* values (as shown in Section 3.2).
- The accuracy and efficiency of the reliability analysis results are dependent on convergence criteria, where a higher accuracy criteria (lower COV threshold and P_f errors) needs higher N values (as shown in Section 2.15).
- Based on Table 4.1 and Figure 4.1, it can be seen that every reliability method has a different accuracy and efficiency for each problem. Therefore, it is highly recommended to take at least more than 1 type of reliability method for each problem to give a better prediction of the problem's β value.

5.2. Reflection

The following are limitations and considerations that could have further improved the research:

- More up-to-date reliability methods may give more accurate β estimate compared to this research, e.g. improved FORM method that could differentiate multiple design points for problems with more than 1 design point (e.g. Der Kiureghian et al. 1998 [9]).
- Despite this research is only limited to the 9 selected problems, geotechnical engineering has a
 very wide range of problem types with far more complex performance functions and design points
 (including FEM-based models). Therefore, the result of this research only limited to the discussed
 problems.
- FEM-based application is widely used in geotechnical engineering practice. Unfortunately, this research does not include FEM-based problem into consideration due to time limitation.

References

- [1] Anne Dutfoy et al. OpenTURNS. URL: https://openturns.github.io/www/.
- [2] Nicholas Metropolis et al. "Equation of State Calculations by Fast Computing Machines". In: *The Journal of Chemical Physics* 21 (1953), Issue 6.
- S. K. Au and J.L. Beck. "A new adaptive importance sampling scheme for reliability calculations". In: *Structural Safety* 21 (1999), pp. 135–158.
- [4] Siu-Kui Au and James L. Beck. "Estimation of small failure probabilities in high dimensions by subset simulation". In: *Probabilistic Engineering Mechanics* 16 (2001), pp. 263–277.
- Kuang-Hua Chang. e-Design, Computer-Aided Engineering Design. -. Elsevier, 2015. ISBN: 978-0-12-382038-9.
- [6] C. A. Cornell. "Bounds on the reliability of structural systems". In: *Journal of the structural division, ASCE* 93(1) (1967), pp. 171–200.
- [7] Deltares. Probabilistic Toolkit (PTK). URL: https://www.deltares.nl/en/software/probabil istic-toolkit-ptk/.
- [8] Deltares. *Probabilistic Toolkit Software User Manual Guide*. Version: 2.0, SVN Revision: 00. Deltares, 2021.
- [9] Dakessian T. Der Kiureghian A. "Multiple design points in first and second-order reliability". In: *Structural Safety* 20 (1998), pp. 37–49.
- [10] B. Echard, N. Gayton, and M. Lemaire. "AK-MCS: An active learning reliability method combining Kriging and Monte Carlo Simulation". In: *Structural Safety* 33 (2011), pp. 145–154.
- [11] Geoengineer.org. Geotechnical Safety network. URL: https://www.geoengineer.org/geosnet /.
- [12] Frank Grooteman. "Adaptive radial-based importance sampling method for structural reliability." In: Structural Safety 30 (2008).
- [13] Frank Grooteman. "An adaptive directional importance sampling method for structural reliability". In: *Probabilistic Engineering Mechanics* 26 (2011), pp. 134–141.
- [14] J. Helton and F.J. Davis. "Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems". In: SAND 2001-0417 (2002).
- [15] Michael A. Hicks and Kristinah Samy. "Influence of heterogeneity on undrained clay slope stability". In: *Quarterly Journal of Engineering Geology and Hydrogeology* 35 (2008), pp. 41–49.
- [16] *BruceR.EllingwoodJinsuoNie.* "Directional methods for structural reliability analysis". In: *Structural Safety* 22 (2000), pp. 233–249.
- [17] R. E. Melchers. "Importance Sampling in Structural Systems". In: Structural Safety 6: 3-10 (1989).
- [18] R. E. Melchers and A. T. Beck. Structural Reliability Analysis and Prediction. Chichester John Wiley & Sons, 2018.
- [19] Geotechnical Safety network. Reliability Benchmarking. URL: http://140.112.12.21/issmge/ tc304.htm.
- [20] OpenTURNS. OpenTURNS' SORM application. URL: https://openturns.github.io/opent urns/latest/auto_reliability_sensitivity/reliability/plot_estimate_probability_ form.html.
- [21] OpenTurns.github.io. Latin Hypercube Simulation. URL: https://openturns.github.io/opent urns/latest/theory/reliability_sensitivity/lhs_simulation.html.

- [22] OpenTurns.github.io. Use the Adaptive Directional Stratification Algorithm. URL: https://open turns.github.io/openturns/latest/auto_reliability_sensitivity/reliability/plot_ estimate_probability_adaptive_directional_sampling.
- [23] KK Phoon. "GEOSNet Reliability Benchmarking Example 1". In: (2008).
- [24] Rüdiger Rackwitz and Bernd Flessler. "Structural reliability under combined random load sequences". In: Computers & Structures vol. 9 iss. 5 9.5 (1978), pp. 489–494. DOI: 10.1016/0045– 7949(78)90046-9.
- [25] Timo Schweckendiek. "Structural reliability applied to deep excavations. Coupling reliability methods with finite elements." In: *TU Delft MSc Thesis* (2006).
- [26] Rui Teixeira, Maria Nogal, and Alan O'Connor. "Adaptive approaches in metamodel-based reliability analysis: A review". In: *Structural Safety* 89 (2021).
- [27] Wikipedia. Monte Carlo Method. URL: https://en.wikipedia.org/wiki/Monte_Carlo_method.

The results of β and P_f

This section complete the results as mentioned in Section 4.1.

Problems:	Slope	EX1	EX2	EX3	EX4	EX5	EX7	EX8	EX9
No. of DP:	(2)	(1)	(2)	(3)	(1)	(1)	(1)	(3)	(1)
P_f reference:	0.0246	0.0573	0.0639	0.0018	0.0039	0.0944	0.0263	0.0817	0.0007
β reference:	1.97	1.58	1.52	2.91	2.66	1.32	1.94	1.39	3.17
FORM (PTK)	1.9700	1.4270	1.3700	2.9300	2.6400	1.2500	1.9100	1.3900	3.1800
LHS (PTK)	2.0000	1.5780	1.5800	2.9500	2.6500	1.3200	1.9400	1.3900	3.1800
MCS (PTK)	1.9700	1.5740	1.5200	2.9114	2.6600	1.3200	1.9600	1.4300	3.1800
IS (PTK)	1.9900	1.5700	1.5100	2.9100	2.6800	1.3100	1.9400	1.4200	3.2100
DS (PTK)	1.9700	1.5740	1.4800	2.9200	2.6400	1.3200	1.9400	1.3800	3.2200
FORM (OT)	3.0011	1.4256	2.1430	2.9266	2.6435	1.2519	1.9130	1.3910	3.1829
SORM (OT)	3.0376	1.5437	2.2866	2.9103	2.6580	1.2961	1.9396	1.3948	3.1782
MCS (OT)	1.9698	1.5731	1.5239	2.8975	2.6586	1.3141	1.9382	1.3935	3.1853
SS (OT)	1.9737	1.5742	1.5211	2.9385	2.6586	1.3197	1.9354	1.3940	3.1892
DS (OT)	1.9494	1.5506	1.5135	2.7923	2.6482	1.3028	1.9045	1.4003	3.1725
IS (OT)	2.0212	1.5617	1.5545	2.9062	2.6432	1.3065	1.9368	1.3654	3.1910
LHS (OT)	1.9725	1.5697	1.5196	2.9060	2.6536	1.3165	1.9371	1.3950	3.1830
ADS (OT)	1.9608	1.5238	1.4743	2.8887	2.6538	1.2454	1.8995	1.4555	3.1917
FORM (DIY)	3.0017	1.4261	2.1364	2.9217	2.6367	1.2519	1.9130	1.3924	3.1830
FOSM (DIY)	2.3453	1.3972	2.4108	5.4597	1.4074	1.3911	1.2602	1.2456	1.5097
MCS (DIY)	1.9729	1.5751	1.5161	2.9087	2.6468	1.3150	1.9352	1.3979	3.1777
SS (DIY)	1.9887	1.5763	1.5225	2.9326	2.6654	1.3224	1.9252	1.3920	3.2036
DS (DIY)	1.9655	1.5782	1.5172	2.9576	2.1975	1.3209	1.2815	1.4117	3.2498
IS (DIY)	2.0002	1.5409	1.5021	2.9292	2.6483	1.3287	1.9302	1.3848	3.1808
AIS (DIY)	1.9717	1.5742	1.5242	2.9391	2.6400	1.3399	1.9408	1.4441	3.2099
AKMCS-0	1.9728	1.5840	1.5111	2.9114	2.6532	1.3178	1.9450	1.3994	3.1720
AKMCS-1	1.9806	1.5322	1.3839	2.8899	2.5064	1.3218	1.9470	1.3996	3.1861
NI (PTK)	1.9800	-		-		-	-	-	-
NB (PTK)	1.9700	-	-	-	-	-	-	-	-

Table A.1: Reliability index (β) of each problem.

Problems:	Slope	EX1	EX2	EX3	EX4	EX5	EX7	EX8	EX9
No. of DP:	(2)	(1)	(2)	(3)	(1)	(1)	(1)	(3)	(1)
P_f reference:	0.0246	0.0573	0.0639	0.0018	0.0039	0.0944	0.0263	0.0817	0.0007
β reference:	1.97	1.58	1.52	2.91	2.66	1.32	1.94	1.39	3.17
FORM (PTK)	0.0244	0.0768	0.0852	0.0017	0.0042	0.1050	0.0278	0.0821	0.0007
LHS (PTK)	0.0230	0.0573	0.0569	0.0016	0.0040	0.0940	0.0260	0.0821	0.0007
MCS (PTK)	0.0246	0.0578	0.0640	0.0018	0.0040	0.0942	0.0248	0.0770	0.0007
IS (PTK)	0.0234	0.0583	0.0654	0.0018	0.0037	0.0948	0.0261	0.0781	0.0007
DS (PTK)	0.0244	0.0577	0.0689	0.0018	0.0042	0.0939	0.0263	0.0845	0.0006
FORM (OT)	0.0013	0.0770	0.0161	0.0017	0.0041	0.1053	0.0279	0.0821	0.0007
SORM (OT)	0.0012	0.0613	0.0111	0.0018	0.0039	0.0975	0.0262	0.0815	0.0007
MCS (OT)	0.0244	0.0579	0.0638	0.0019	0.0039	0.0944	0.0263	0.0817	0.0007
SS (OT)	0.0242	0.0578	0.0641	0.0016	0.0039	0.0935	0.0265	0.0817	0.0007
DS (OT)	0.0256	0.0605	0.0651	0.0026	0.0040	0.0963	0.0284	0.0807	0.0008
IS (OT)	0.0216	0.0592	0.0600	0.0018	0.0041	0.0957	0.0264	0.0861	0.0007
LHS (OT)	0.0243	0.0582	0.0643	0.0018	0.0040	0.0940	0.0264	0.0815	0.0007
ADS (OT)	0.0249	0.0638	0.0702	0.0019	0.0040	0.1065	0.0287	0.0728	0.0007
FORM (DIY)	0.0013	0.0769	0.0163	0.0017	0.0042	0.1053	0.0279	0.0819	0.0007
FOSM (DIY)	0.0095	0.0812	0.0080	0.0000	0.0796	0.0821	0.1038	0.1064	0.0656
MCS (DIY)	0.0243	0.0576	0.0647	0.0018	0.0041	0.0943	0.0265	0.0811	0.0007
SS (DIY)	0.0234	0.0575	0.0639	0.0017	0.0038	0.0930	0.0271	0.0820	0.0007
DS (DIY)	0.0247	0.0573	0.0646	0.0016	0.0140	0.0933	0.1000	0.0790	0.0006
IS (DIY)	0.0227	0.0617	0.0665	0.0017	0.0040	0.0920	0.0268	0.0831	0.0007
AIS (DIY)	0.0243	0.0577	0.0637	0.0016	0.0041	0.0901	0.0261	0.0744	0.0007
AKMCS-0	0.0243	0.0566	0.0654	0.0018	0.0040	0.0938	0.0259	0.0808	0.0008
AKMCS-1	0.0238	0.0627	0.0832	0.0019	0.0061	0.0931	0.0258	0.0808	0.0007
NI (PTK)	0.0238	-	-	-	-	-	-		-
NB (PTK)	0.0243	-	-	-	-	-	-	-	-

Table A.2: Probability of failure (P_f) of each problem.

A Microsoft Excel file of the table (and all results) is available in: **click here** or https://bit.ly/32Hu65v or by an email request to rayyan8818@gmail.com.

GEOSNet Example problems

B.1. GEOSNet problems performance functions and distributions

TASK GROUP 3 - RELIABILITY BENCHMARKING

Example No.	1
Author(s)	KK Phoon
Date	11 April 2008 (ver. 1)
Brief description	Infinite slope problem with 6 independent random variables.
p	The purpose is to show that "independent" variables must be carefully
	selected so that they do not violate physics, e.g. height of water table
	and soil unit weights shown below.
Figure	
	γ SOIL θ γ γ γ _{Sat} ROCK
	h
Performance function	$P = \frac{\left[\gamma(H-h) + h(\gamma_{sat} - \gamma_w)\right]\cos\theta \tan\phi}{\left[\gamma(H-h) + h\gamma_{sat}\right]\sin\theta} - 1$
	$\begin{split} H &= \text{depth of soil above bedrock} \\ h &= \text{height of groundwater table above bedrock} \\ \gamma \text{ and } \gamma_{\text{sat}} &= \text{moist unit weight and saturated unit weight of the surficial} \\ \text{soil, respectively} \\ \gamma_w &= \text{unit weight of water (9.81 kN/m^3)} \\ \phi &= \text{effective stress friction angle} \\ \theta &= \text{slope inclination} \end{split}$
	Note that the height of the groundwater table (h) can not exceed the depth of surficial soil (H) and can not be negative. Hence, it is modeled by $h = H \times U$, in which $U =$ standard uniform variable. The

	moist and saturated soil unit weights are not independent, because they are related to the specific gravity of the soil solids (G _s) and the void ratio (e). The uncertainties in γ and γ_{sat} are characterized by modeling G _s and e as two independent uniform random variables. There are six independent random variables in this problem (H, U, ϕ , β , e, and G _s)										
Inputs											
	Variable	Description	n I	Distribut	ion	Statistics					
	Н	Depth of s	oil U	J niform		[2,8] m					
		above bed	rock								
	$h = H \times U$	Height of v	water U	J is unif	orm	[0, 1]					
		table									
	φ	Effective s	tress I	lognorn	nal	$mean = 35^{\circ}$					
		friction an	gle			cov = 8%					
	θ	Slope	I	lognorn	nal	mean = 20°					
		inclination	l			cov = 5%					
	γ	γ Moist unit * *									
		weight of s	soil								
	γsat	Saturated	unit *	*		**					
	weight of soil										
	γw	Unit weigh	t of L	Determin	nistic	9.81 kN/m ³					
	* $\gamma = \gamma_w (G_s + 0.2e)/(1+e)$ (assume degree of saturation = 20% for										
	"moist").										
	** $\gamma_{sat} = \gamma_w (G_s + e)/(1+e)$ (degree of saturation = 100%).										
	Assume speci	ific gravity o	of solids =	$G_s = ur$	iformly di	stributed [2.5,					
	2.7] and void	ratio = $e = u$	uniformly	distribu	ted [0.3, 0	.6].					
~											
Solution	FORM, SOR	M, simulatio	on using N	IATLA	В						
methods											
Results	Deterministic	(based on c	rigin of st	andard	normal spa	ice):					
(optional)	H = 5 m, h =	$2.5 \text{ m}, \phi = 3$	$5^{\circ}, \theta = 20$	$G_{s} = 2$	2.6, e = 0.4	$-5 (\gamma_{sat} = 20.6)$					
	kN/m^3 , $\gamma = 18$	3.2 kN/m³)									
	Г (1								
	$FS = \frac{[\gamma(H-I)]}{[\gamma(H-I)]}$	$h) + h(\gamma_{sat} - \gamma)$	$(w) \cos \theta t$	$\frac{\tan \phi}{1} = 1$	43						
	[γ	$(H-h)+h\gamma$	$\int_{\text{sat}}]\sin \theta$	1	. 10						
	_		-								
	Probabilistic	(based on d	istribution	is):							
				<i>,</i>							
		FORM	FORM	S	ORM	Simulation					
		(EXCEL)				$(n = 10^6)$					
	β	1.426	1.426	1.	544	1.579					
	pf	0.0769	0.0769	0.	0613	0.0572					
	% error in	34.4	34.4	7.	2	-					
	pf										
Code URL	http://ivching	.twbbs.org/r	eliability	benchm	ark/Pfun	case1.m					
(optional)											

References	Phoon K K (2008) Reliabi	ility - Rased	Desion in	Geotech	nical			
(ontional)	Engineering Com	nutations	and Annlia	rations Ch	anter 1 T	Taylor &			
(optional)	Francis, London.								
Reviewers	By Jianye Ching and Yi-Hung Hsieh								
	, , ,		0						
	Solution method	FOSM	FORM ⁽¹⁾	SORM ⁽²⁾	MCS	Subsim ⁽³⁾			
	β	1.083	1.426	1.544	1.578	1.571			
	P_F	0.1394	0.0769	0.0614	0.0573	0.0581 ⁽⁴⁾			
	% error in p _f	143.28	34.21	7.16	-	1.40			
	# of evaluation of P function (optional)	13	57	112	106	2800			
	Estimator cov (optional)			-	0.41%	10.68% ⁽⁵⁾			
	 ⁽²⁾ Algorithm by Der Kiureghian and Stefano (1991) is taken ⁽³⁾ 1000 samples taken in each stage ⁽⁴⁾ average of 100 runs of Subsim ⁽⁵⁾ cov estimated from 100 runs of Subsim By Kieu Le T.C. & Honjo Y., using Subset MCMC simulation in Fortran 								
	Solution method $Nt = 100$ $Nt = 50$								
	pf			2~0.1741	0.0199	0.0199~0.1754			
	COV(p _f)	0~0	.87	0.02~0	0.02~0.98				
	$Log(mean p_f)/Log(p_{f_True}^*) = 0.61 - 1.37 = 0.61 - 1.37$								
	* p_{f_True} is chosen as p_f obtained by simulation with $Nt = 10^6$ (KK Phoon)								
	The optimum inpu Nt = 50 ~ 100 Nf/Nt = 0.02~0.05 Ns/Nt = 0.02~0.04	t for Nt, N	ls & Nf:						

TASK GROUP 3 - RELIABILITY BENCHMARKING

Example No.	2									
Author(s)	Jianye Ching and Yi-Chu Chen									
Date	15 April 2008 (ver. 1)									
Brief	A consolidation problem with 8 independent random variables,									
description	modified from the example in P.372 in Ang and Tang (1984).									
	The purpose of this benchmark example is to examine the robustness									
	of each reliability method for problems with non-differentiable									
	performance functions.									
Figure	Surcharge pressure q									
	\uparrow_{05}									
	1 Sand									
	H Clay									
	803									
Performance										
function	$P = S_{p} - \frac{H}{1 + c} \left[C_{p} \log_{10} \left(\frac{\sigma_{p}}{c} \right) + C_{p} \log_{10} \left(\frac{\sigma}{c} \right) \right] \text{if } \sigma > \sigma'$									
Tunction	$1 + e^{clay} \wedge \left[\begin{array}{c} c_r \log_{10} \\ \sigma_0 \end{array} \right] + \begin{array}{c} c_c \log_{10} \\ \sigma_p \end{array} \right] if 0 > 0_p$									
	$P = S_{allow} - \frac{H}{C_a \log_{10}} \times C_a \log_{10} \left(\frac{\sigma}{C_a} \right) \qquad \text{if } \sigma' < \sigma'_a$									
	$1 + e^{clay} \qquad r \qquad C_{10} \left(\sigma_0 \right)$									
	S — allowable settlement									
	S_{allow} – anowable settlement									
	H = thickness of the clay layer									
	e^{cuay} = initial void ratio of the clay layer									
	$\sigma_p =$ average pre-consolidation stress of the clay									

	$\sigma_0^{'}$ = average overburden stress of clay before construction								
	σ' = average	ge overburden stress of	clay after construc	ction					
	$C_r = \text{re-con}$	mpression index							
	$C_c = \text{comp}$	ression index							
	where								
	$\sigma_0^{\prime} = 0.5\gamma^{s_0}$	$^{and} + 1(\gamma_{sat}^{sand} - \gamma_{w}) + \frac{H}{2}(\gamma_{sat}^{sand} - \gamma_{w})$	$\gamma_{sat}^{clay} - \gamma_w \Big)$						
	$\sigma' = \sigma'_0 + q$ $\sigma'_p = OCR \cdot \sigma'_0$ $C_r = \alpha C_c$								
	$\gamma_w = \text{unit } w$	veight of water (9.81 kN	I/m ³)						
	The moist soil unit weight γ and saturated soil unit weight γ^{sat} are								
	not independent, because they are related to the specific gravity of the								
	soil solids (G_s) and the void ratio (e) :								
	$\chi^{sand} - \chi \frac{G_s^{sand} + e^{sand}}{Q_s^{clay} - \chi} \frac{G_s^{clay} + e^{clay}}{Q_s^{clay} - \chi}$								
	$\gamma_{sat} = \gamma_w \frac{1}{1 + e^{sand}} \qquad \gamma_{sat} = \gamma_w \frac{1}{1 + e^{clay}}$								
	- and and								
	$\gamma^{sand} = \gamma_w \frac{G_s^{sand} + 0.2e^{sand}}{\sigma_s^{sand}}$								
	$1 + e^{sama}$								
	There are nine independent random variables in this problem								
	$(q, H, e^{clay}, e^{sand}, G^{clay}, G^{sand}, OCR, C, and \alpha)$								
Inputs									
	Variable	Description	Distribution	Statistics					
	S_{allow}	Allowable settlement	Deterministic	0.05 m					
	q	Surcharge pressure	Lognormal	$Mean = 20 \text{ kN/m}^2$ $cov = 20\%$					
	Н	Thickness of clay	Gaussian	mean = 4 m					
	,		- ·	cov = 10%					
	e^{clay}	Initial void ratio of	Lognormal	mean = 1.2					
	esand	Void ratio of sand	Lognormal	mean = 0.8					
	C		8	cov = 15%					
	G_s^{clay}	Specific gravity of clay solids	Uniform	[2.5, 2.7]					
	G_{s}^{sand}	Specific gravity of sand solids	Uniform	[2.5, 2.7]					
	OCR	Over-consolidation	Uniform	[1.5, 2.5]					
	С	Compression index	Lognormal	mean = 0.4					
	Cc	1	8	cov = 25%					
	α	$\alpha = C_r / C_c$	Uniform	[0.1, 0.2]					
Solution	FOSM, FC	ORM, SORM, MCS, Sul	osim						
methods									
(ontional)									

Results	Deterministic (based on mean values):									
(optional)	$q = 20 \text{ kN/m}^2$, $H = 4\text{m}$, $e^{clay} = 1.2$, $e^{sand} = 0.8$, $G_s^{clay} = 2.6$, $G_s^{sand} = 0.8$									
	$\frac{1}{2.6.0CR} =$	= 2. C = 0.4.	$\alpha =$	0.15		,	. 3			
	$FS = S_{allow} \left/ \left(\frac{H}{1 + e^{clay}} \times C_r \log_{10} \left(\frac{\sigma}{\sigma_0} \right) \right) = 2.0935 \ (2.1873)$									
	Probabilistic (based on distributions):									
	Solution me	thod FO	SM	FORM ⁽¹⁾	SORM ⁽³⁾	MCS	Subsim ⁽⁴⁾			
	β	2.9	35	1.431 2.149 ⁽²⁾	1.547 2.287	1.523	1.527			
	P_F	1.6	57e-3	7.62e-2 1.58e-2	6.09e-2 1.11e-2	6.39e-2	6.34e-2 ⁽⁵⁾			
	% error in p	-97	7.39	19.25 -75.27	-4.69 -82.63	-	-0.78			
	# of evaluati function (op	on of P 19 tional)		152	261	106	1900			
	Estimator cov n/a n/a n/a 0.4% 10.2% ⁽⁶⁾									
Code URL (optional) References (optional)	 ⁽¹⁾ Gradient Projection algorithm is taken ⁽²⁾ There are two solutions by FORM, the frequency of the real solution is 21%, the frequency of the fake solution is 79% ⁽³⁾ Algorithm by Der Kiureghian and Stefano (1991) is taken ⁽⁴⁾ 1000 samples taken in each stage ⁽⁵⁾ average of 100 runs of Subsim ⁽⁶⁾ cov estimated from 100 runs of Subsim Matlab code for the performance function can be download via http://jyching.twbbs.org/reliability_benchmark/Pfun_case2.m 1. Ang, A. HS. and Tang, W.H. (1984). Probability Concepts in Engineering Planning and Design. Volume II: Decision, Risk and Reliability. 									
	2. Der Kiureghian, A. and Stefano, M.D. (1991). Efficient algorithm for second-order reliability analysis. ASCE Journal of Engineering									
	Mechanics,	117(12), 290	04-292	23.		0	e			
Reviewers	Kok-Kwang Phoon									
		FORM	FO	RM	SORM	Sin	nulation			
		(EXCEL)				(n =	$= 10^{6}$)			
	β	1.432	1.4	51**	1.565	1.5	24			
	na	2.18/*	2.0	88 734	2.223	0.0	638			
	Pt	0.0144	0.0	184	0.0388	0.0	038			
	% error	193	15	1	-78	-				
	in p _f	-77.4	-71	.2	-79.5					
	*wrong ans	wer occurs n	nore f	requently	in SOLVE	R				
	**correct a	nswer occurs	in M	ATLAB u	sing origir	n as initia	al point			

Example No.	3						
Author(s)	Jianye Ching & Yi-Hung Hsieh						
Date	16 September 2011 (ver. 2)						
Brief description	A retaining wall problem with 4 independent random variables. We consider three performance functions including sliding, overturning						
	and bearing capacity.						
	The purpose of this benchmark example is to examine the robustness of each reliability method for problems with multiple failure modes.						
Figure							
	$H \xrightarrow{B} \alpha / k / k$ $H \xrightarrow{P_{a} \sin(\delta_{1} + \beta)} c_{1}' = 0$ $H \xrightarrow{W_{W}} H / 3^{a} \cos(\delta_{1} + \theta)$ $K \xrightarrow{Q_{a}} W_{R}$ $K \xrightarrow{Q_{a}} C_{2}' = 0$ $K \xrightarrow{Q_{a}} C_{2}' = 0$ $K \xrightarrow{Q_{a}} C_{2}' = 0$						
Performance	$\left(\left[P_{a}\sin(\delta_{1}+\theta)+W_{W}+W_{R}\right]\tan\delta_{2}-P_{a}\cos(\delta_{1}+\theta)\right)$						
function	$P = \min \left[\begin{array}{c} a & \overline{L} & W + W + P \sin(\delta + \theta) \end{array} \right]$						
	$r = \min \qquad q_u L - (w_w + w_R + r_a \sin(o_1 + \theta))$						
	$\left(\qquad M_R - M_O \right)$						
	P_a = active force						
	δ_{l} = friction angle between the backfill and the back of the wall						
	δ_2 = friction angle between the foundation soil and base of the wall						
	ϕ_{l} = friction angle of the backfill soil						
	ϕ_2 = friction angle of the foundation soil						
	$W_W + W_R$ = the weight of the retaining wall						
	B = top width of the retaining wall						
	L = bottom width of the retaining wall						
	α = slope of the backfill soil						

TASK GROUP 3 - RELIABILITY BENCHMARKING

$$\begin{aligned} q_u &= \text{bearing capacity of foundation soil} \\ H &= \text{height of the retaining wall} \\ \theta &= \text{back angle of the retaining wall} \\ M_R &= \text{resisting moment} \\ M_O &= \text{overturning moment} \\ \text{where} \\ W_{W} &= 23.58 \cdot B \cdot H \text{ (unit weight of the retaining wall: 23.58kN/m^3)} \\ W_R &= 23.58 \cdot (L-B) \cdot H/2 \\ \theta &= \tan^{-1}[(L-B)/H] \\ \delta_1 &= \frac{2}{3}\phi_1 \quad \delta_2 &= \frac{2}{3}\phi_2 \quad P_a &= \frac{1}{2}K_a\gamma_1 H^2 \\ K_a &= \frac{\cos^2(\phi_1 - \theta)}{\cos^2(\theta)\cos(\delta_1 + \theta) \cdot \left[1 + \sqrt{\frac{\sin(\delta_1 + \phi_1) \cdot \sin(\phi_1 - \alpha)}{\cos(\delta_1 + \theta) \cdot \cos(\theta - \alpha)}}\right]^2} \\ q_u &= \frac{1}{2}\gamma_2 \overline{L}N_\gamma F_{\gamma_1} \quad N_\gamma &= 2(N_q + 1)\tan\phi_2 \quad N_q &= e^{\pi \tan\phi_2}\tan^2\left(45 + \frac{\phi_2}{2}\right) \\ F_{\gamma_1} &= (1 - \beta/\phi_2)^2 \quad (F_{\gamma_1} \text{ from Hanna and Meyerhof (1981))} \\ \text{where } \beta \text{ is the inclination angle of the total foundation loading:} \\ \beta &= \tan^{-1}(P_a\cos(\delta_1 + \theta)/(P_a\sin(\delta_1 + \theta) + W_W + W_R)) \\ M_R &= W_W \cdot \frac{B}{2} + W_R \cdot \left(B + \frac{1}{3}(L-B)\right) + P_a\sin(\delta_1 + \theta) \cdot \left(B + \frac{2}{3}(L-B)\right) \\ M_O &= P_a\cos(\delta_1 + \theta) \cdot \frac{H}{3} \\ \overline{L} &= L - 2e_L \quad e_L = \left|\overline{x} - \frac{L}{2}\right| \qquad \overline{x} = \frac{M_R - M_O}{W_W + W_R + P_a\sin(\delta_1 + \theta)} \\ \text{There are four independent random variables in this problem } (\gamma_1, \gamma_2, \phi, \phi_2) \end{aligned}$$

Inputs								
	Variable	Description	Distribution	Statistics				
	В	Top width of the	Deterministic	2.5 m				
		wall						
	H	Height of the wall	Deterministic	4 m				
	L	Bottom width of the	Deterministic	3.5 m				
	a	Wall Slope of the backfill	Deterministic	5°				
	u	soil	Deterministie	5				
	γ_1	Unit weight of	Gaussian	mean = 19 kN/m^3				
	· 1	backfill soil		cov = 10%				
	γ_2	Unit weight of	Gaussian	$mean = 17 \text{ kN/m}^3$				
		foundation soil		cov = 10%				
	ϕ_1	Friction angle of	Gaussian	$mean = 35^{\circ}$				
		backfill soil		cov = 10%				
				$(\text{truncated at } \alpha, $				
				when $\phi < \alpha$				
	1	Friction angle of	Gaussian	$max_{1} = 25^{\circ}$				
	φ_2	foundation soil	Gaussiali	cov = 10%				
Solution	MCS	100000000000000						
methods								
Results	Determinis	stic (based on mean val	lues):					
(optional)	$\gamma_1 = 19 \text{ kN}$	$\gamma_{m^{3}}, \gamma_{2} = 17 \text{ kN/m^{3}},$	$\phi_1 = 35^{\circ}, \phi_2 =$	35°				
	$FS_{\cdot} = \{ [P]$	$\sin(\delta_1 + \theta) + W_{w} + W_{v}$	$\tan \delta_{a}$ /P cos($\delta_{\cdot} + \theta$				
	-2.0425 > 1	(1) W K		1)				
	-2.9423 > 1	$\frac{1}{W} + W + D = \frac{1}{2}$	(0)) = (7214)2	(-1-)				
	$FS_2 = q_u L / (W_W + W_R + P_a \sin(\delta_1 + \theta)) = 6.7214 > 3 \text{ (ok)}$							
	$FS_3 = M_R / M_o = 8.6919 > 2.5 \text{ (ok)}$							
	$FS_4 = (L/6)/e_L = 2.3662 < L(ok)$							
	Probabilistic (based on distributions):							
	Solution m	ethod MCS						
	ß	2.9083						
	P_F	0.0018						
	% error in	1 p _f -						
	# of evaluat	tion of P 10°						
	Estimator cov 2.35%							
	(optional)							
Code URL	Matlab coo	le for the performance	function can be	download via				
(optional)	<u>http://140.</u>	112.12.21/issmge/relia	bility benchmar	k/Ptun_case3.zip				
(optional)	1. Hanna, J	A.M. and Meyerhof, G	.G. (1981). Expe	erimental evaluation				
(optional)	Geotechnie	capacity of footings su cal Journal 18(4) 500.	-603	eu ioaus. Canadian				
Reviewers	Kok-Kwar	ig Phoon						
	Kok-Kwalig I libbli							

TASK GROUP 3 - RELIABILITY BENCHMARKING

Example No.	4						
Author(s)	KK Phoon						
Date	25 April 2008 (ver. 1)						
Brief	Footing problem subjected to inclined loading with 5 independent						
description	random variables.						
-							
	The purpose is to show that load variables can be both favourable and						
	in the yourable in the same problem. The vertical load is unlavourable						
	in the usual load context and lavourable in the bearing capacity						
Figure	inclination factor.						
rigure							
	V H						
	h Sand: ϕ , G						
	$B = 3 m \qquad \gamma = 17.7 \text{ kN/m}^3$						
	$\gamma_{\text{sat}} = 20.3 \text{ kN/m}^3$						
Performance	$P = (0.5 B \gamma^* N_{\gamma} \zeta_{\gamma s} \zeta_{\gamma i} \zeta_{\gamma r}) B^2 - V$						
function							
	$N_a = \exp(\pi \tan \phi) \tan^2(45^\circ + \phi/2)$						
	$N_{\rm v} = 2 (N_{\rm c} + 1) \tan \phi$						
	$\gamma' = \gamma_{sat} - \gamma_w = 20.3 - 9.81 = 10.5 \text{ kN/m}^3$						
	$v^* (kN/m^3) = v = 17.7$ $h > B$						
	$= \gamma' + (\gamma - \gamma')h/B = 10.5 + 7.2h/B$ $B > h > 0$						
	$\zeta_{\gamma s} = 1 - 0.4 (B/L) = 0.6$						
	$(H)^{2.5}$						
	$\zeta_{\gamma i} = \left 1 - \frac{11}{N} \right $						
	Rividity index $L = G / (\sigma'_{\alpha} \tan \phi)$						
	$(0 a \min \psi)$						
	Reduced rigidity index, $I_{rr} = I_r / (1 + I_r \Delta)$						

	$\Delta = 0.0002$	$5 (45 - \phi)(\sigma'_a / 100)$	kPa) (Note: ϕ in	degrees)					
	σ' _a (kPa)	$= 0.5 B\gamma = 26.55$		h > B/2					
		$=$ h γ + (0.5B-h) γ '	= 7.2h + 5.25B	B/2 > h > 0					
	$I_{\rm rc} = 0.5 {\rm exp}$	$I_{rc} = 0.5 \exp[(3.30 - 0.45 \text{ B/L}) \cot(45^{\circ} - \phi/2)]$							
	$I_{rr} > I_{rc} \Rightarrow$	General shear fai	ilure						
	$I_{rr} < I_{rc} \Rightarrow$	Local/punching	shear failure						
	$\zeta_{\gamma r} = \exp\{[($	φ]+	$I_{rr} < I_{rc}$						
	[(3.07	$\sin \phi$)(log ₁₀ 2I _{rr})/(1							
	= 1			otherwise					
	h = depth of	groundwater table	face						
	γ and γ_{sat} = moist unit weight and saturated unit weight of sand,								
	respectively	6		6 ,					
	$\gamma_w = unit we$	ight of water (9.81	kN/m ³)						
	$\phi = \text{effective}$	stress friction angl	e of sand						
	G = shear modulus of sand V = vertical deed load								
	v = vertical dead load H = horizontal live load								
	There are fiv	ve independent rand	lom variables in t	this problem (h, ϕ , G,					
	V, H)								
Inputs									
Inputs	Variable	Description	Distribution	Statistics					
Inputs	Variable h	Description Depth of water	Distribution Lognormal	Statistics mean = 2 m					
Inputs	Variable h	Description Depth of water table	Distribution Lognormal	Statistics mean = 2 m cov = 50%					
Inputs	Variable h ¢	Description Depth of water table Effective stress	Distribution Lognormal Lognormal	Statistics mean = 2 m cov = 50% mean = 35°					
Inputs	Variable h ¢	Description Depth of water table Effective stress friction angle	Distribution Lognormal Lognormal	Statisticsmean = 2 m $cov = 50\%$ mean = 35° $cov = 8\%$ 20 MB					
Inputs	Variable h ¢ G	Description Depth of water table Effective stress friction angle Shear modulus	Distribution Lognormal Lognormal Lognormal	Statisticsmean = 2 m $cov = 50\%$ mean = 35° $cov = 8\%$ mean = 20 MPa $cov = 50\%$					
Inputs	Variable h ¢ G V	Description Depth of water table Effective stress friction angle Shear modulus Vertical dead	Distribution Lognormal Lognormal Lognormal Normal	Statisticsmean = 2 m $cov = 50\%$ mean = 35° $cov = 8\%$ mean = 20 MPa $cov = 50\%$ mean = 1500 kN					
Inputs	Variable h ¢ G V	Description Depth of water table Effective stress friction angle Shear modulus Vertical dead load	Distribution Lognormal Lognormal Lognormal Normal	Statisticsmean = 2 m $cov = 50\%$ mean = 35° $cov = 8\%$ mean = 20 MPa $cov = 50\%$ mean = 1500 kN $cov = 5\%$					
Inputs	Variable h ¢ G V H	Description Depth of water table Effective stress friction angle Shear modulus Vertical dead load Horizontal live	Distribution Lognormal Lognormal Lognormal Normal Extreme	Statistics mean = 2 m cov = 50% mean = 35° cov = 8% mean = 20 MPa cov = 50% mean = 1500 kN cov = 5% mean = 150 kN					
Inputs	Variable h ¢ G V H	Description Depth of water table Effective stress friction angle Shear modulus Vertical dead load Horizontal live load Execting width	Distribution Lognormal Lognormal Lognormal Normal Extreme Type I Deterministic	Statistics mean = 2 m $cov = 50\%$ mean = 35° $cov = 8\%$ mean = 20 MPa $cov = 50\%$ mean = 150 kN $cov = 20\%$ 3 m					
Inputs	Variable h ¢ G V H B	Description Depth of water table Effective stress friction angle Shear modulus Vertical dead load Horizontal live load Footing width Moist unit	Distribution Lognormal Lognormal Lognormal Normal Extreme Type I Deterministic Deterministic	Statistics mean = 2 m $cov = 50\%$ mean = 35° $cov = 8\%$ mean = 20 MPa $cov = 50\%$ mean = 1500 kN $cov = 20\%$ 3 m 17.7 kN/m^3					
Inputs	Variable h φ G V H B γ	Description Depth of water table Effective stress friction angle Shear modulus Vertical dead load Horizontal live load Footing width Moist unit weight of soil	Distribution Lognormal Lognormal Lognormal Normal Extreme Type I Deterministic Deterministic	Statistics mean = 2 m $cov = 50\%$ mean = 35° $cov = 8\%$ mean = 20 MPa $cov = 50\%$ mean = 1500 kN $cov = 5\%$ mean = 150 kN $cov = 20\%$ 3 m 17.7 kN/m ³					
Inputs	Variable h φ G V H B γ γsat	Description Depth of water table Effective stress friction angle Shear modulus Vertical dead load Horizontal live load Footing width Moist unit weight of soil Saturated unit	Distribution Lognormal Lognormal Lognormal Normal Extreme Type I Deterministic Deterministic	Statistics mean = 2 m $cov = 50\%$ mean = 35° $cov = 8\%$ mean = 20 MPa $cov = 50\%$ mean = 1500 kN $cov = 5\%$ mean = 150 kN $cov = 20\%$ 3 m 17.7 kN/m ³ 20.3 kN/m ³					
Inputs	Variable h φ G V H B γ γ _{sat}	Description Depth of water table Effective stress friction angle Shear modulus Vertical dead load Horizontal live load Footing width Moist unit weight of soil Saturated unit weight of soil	Distribution Lognormal Lognormal Lognormal Normal Extreme Type I Deterministic Deterministic	Statistics mean = 2 m $cov = 50\%$ mean = 35° $cov = 8\%$ mean = 20 MPa $cov = 50\%$ mean = 1500 kN $cov = 5\%$ mean = 150 kN $cov = 20\%$ 3 m 17.7 kN/m ³ 20.3 kN/m ³					
Inputs	Variable h φ G V H B γ γ _{sat} γ w	Description Depth of water table Effective stress friction angle Shear modulus Vertical dead load Horizontal live load Footing width Moist unit weight of soil Saturated unit weight of soil Unit weight of water	Distribution Lognormal Lognormal Lognormal Normal Extreme Type I Deterministic Deterministic Deterministic	Statistics mean = 2 m cov = 50% mean = 35° cov = 8% mean = 20 MPa cov = 50% mean = 1500 kN cov = 5% mean = 150 kN cov = 20% 3 m 17.7 kN/m ³ 20.3 kN/m ³ 9.81 kN/m ³					
Inputs	Variable h ϕ G V H B γ γ_{sat} γ_w	Description Depth of water table Effective stress friction angle Shear modulus Vertical dead load Horizontal live load Footing width Moist unit weight of soil Saturated unit weight of soil Unit weight of water	Distribution Lognormal Lognormal Lognormal Normal Extreme Type I Deterministic Deterministic Deterministic	Statistics mean = 2 m $cov = 50\%$ mean = 35° $cov = 8\%$ mean = 20 MPa $cov = 50\%$ mean = 1500 kN $cov = 20\%$ 3 m 17.7 kN/m ³ 20.3 kN/m ³ 9.81 kN/m ³					
Inputs	Variable h ϕ G V H B γ γ_{sat} γ_w $\gamma = \gamma_w (G_s + 0)^w$	Description Depth of water table Effective stress friction angle Shear modulus Vertical dead load Horizontal live load Footing width Moist unit weight of soil Saturated unit weight of soil Unit weight of water 0.2e)/(1+e) (assume 7.7 kN/m ³	Distribution Lognormal Lognormal Lognormal Normal Extreme Type I Deterministic Deterministic Deterministic	Statistics mean = 2 m cov = 50% mean = 35° cov = 8% mean = 20 MPa cov = 50% mean = 1500 kN cov = 5% mean = 150 kN cov = 20% 3 m 17.7 kN/m ³ 20.3 kN/m ³ 9.81 kN/m ³ tion = 20% for					
Inputs	Variableh ϕ GVHB γ γ_{sat} γ_w $\gamma = \gamma_w (G_s + 0)^{-1}$ $\gamma_{sat} = \gamma_w (G_s - 1)^{-1}$	Description Depth of water table Effective stress friction angle Shear modulus Vertical dead load Horizontal live load Footing width Moist unit weight of soil Saturated unit weight of soil Unit weight of water D.2e)/(1+e) (assume 7.7 kN/m ³ + e)/(1+e) (degree of	Distribution Lognormal Lognormal Lognormal Normal Extreme Type I Deterministic Deterministic Deterministic conterministic Deterministic	Statistics mean = 2 m $cov = 50\%$ mean = 35° $cov = 8\%$ mean = 20 MPa $cov = 50\%$ mean = 1500 kN $cov = 5\%$ mean = 150 kN $cov = 20\%$ 3 m 17.7 kN/m ³ 20.3 kN/m ³ 9.81 kN/m ³ tion = 20% for 0%) = 20.3 kN/m ³					
Inputs	Variableh ϕ GVHB γ γ sat γw $\overline{\gamma} = \gamma_w (G_s + G_s + $	Description Depth of water table Effective stress friction angle Shear modulus Vertical dead load Horizontal live load Footing width Moist unit weight of soil Saturated unit weight of soil Unit weight of water 2.2e)/(1+e) (assume 7.7 kN/m ³ + e)/(1+e) (degree of cific gravity of soils	Distribution Lognormal Lognormal Lognormal Normal Extreme Type I Deterministic Deterministic	Statistics mean = 2 m $cov = 50\%$ mean = 35° $cov = 8\%$ mean = 20 MPa $cov = 50\%$ mean = 1500 kN $cov = 5\%$ mean = 150 kN $cov = 20\%$ 3 m 17.7 kN/m ³ 20.3 kN/m ³ 9.81 kN/m ³ tion = 20% for 0%) = 20.3 kN/m ³ void ratio = e = 0.5					

Solution	FORM SORM simulation using MATLAB									
methods	i oldii, solt									
Results	Deterministic	c (based	l on c	origin	n of standa	rd normal	spa	ce):		
(optional)	h = 1.8 m, φ =	= 35°, (G = 1	8 MI	Pa, V = 15	00 kN, H	= 15	5 kN		
	$FS = (0.5 B \gamma)$	* Ν _γ ζ _γ	_s ζ _{γi} ζ	_{γr}) Ε	$B^2/V = 2.87$	7				
	Probabilistic	(based	on d	istrił	outions):					
		FOR	м	FO	RM	SORM		Sim	ulation	
		(EXC	EL)	10		SORM		(n =	$= 10^{6}$)	
	β	2.612) !	2.5	93	2.653		2.66	54	
	pf	0.004	5	0.0	048	0.0040		0.00)39	
	% error in	15.4	2		1	2.56		-		
	pf									
Code URL	http://jyching	http://jyching.twbbs.org/reliability_benchmark/Pfun_case4.m								
(optional)										
References										
(optional) Reviewers	Lionya China and Vi Uyna Haish									
Keviewei s	Jianye Ching	anu 1	I-IIUI	g m	SICII					
	Solution met	hod	FOS	SM	FORM ⁽¹⁾	SORM ⁽²⁾	MC	CS	Subsim ⁽³⁾	
	β		1.36	5	2.454	2.514	2.5	121	2.5241	
	P_{F}		0.08	61	0.0071	0.0060	0.0	060	0.0058(4)	
	% error in p _f		13.3	5	18.33	0	-		-3.3	
	# of evaluation	on of P	11		176	217	106		2800	
	Function (opt	n/a	n/a	1.2	0%	28 080/(5)				
	(optional)							20.9070		
	⁽¹⁾ Gradient Projection algorithm is taken									
	⁽²⁾ Algorithm	by Dei	Kiui	eghi	an and Ste	efano (199	1) is	take	n	
	$^{(4)}$ average of	100 m	en in	each Sub	i stage					
	$^{(5)}$ cov estima	ted fro	m 100	3u0) mr	sin is of Subsi	m				
	cov cstillia			Jul	15 51 5405					
	Der Kiureghi	an, A.	and S	tefa	no, M.D. (1991). Eff	icie	nt alg	orithm for	
	second-order	reliabi	lity a	naly	sis. ASCE	Journal o	f Eng	ginee	ring	
	Mechanics, 1	17(12)	, 2904	4-29	23.					

TASK GROUP 3 - RELIABILITY BENCHMARKING

Example No.	5					
Author(s)	T.C. Kieu Le & Y. Honjo					
Date	November 27, 2008					
Brief	The procedure McDeva based on the combination of Design Value					
description	Method, and using Subset Markov Chain Monte Carlo Simulation					
-	(Subset MCMC), has been used to determine partial factors for a					
	gravity retaining wall under sliding failure mode.					
	The optimum combination of some parameters inputted into Subset					
	Subset MCMC is also proposed.					
Figure	Subset MICHIC IS also proposed.					
rigure	Surcharge q					
	$\alpha = 20^{\circ}$					
	w					
	6m h Fill					
	$\mathbb{X}_{1=0.75\text{m}}$					
	1 = 0.75 m $1 = 0.4 m$					
	Sand					
Performance	P = R - S					
function						
	Where:					
	$R = \frac{1}{2}l^{2}\gamma_{s}^{'}\tan^{2}\left(45^{o} + \frac{\phi_{s}^{'}}{2}\right) + \left\{\left(h+B\right)w\gamma_{c} + \left[\left(B-w\right)h + \frac{1}{2}\left(B-w\right)^{2}\tan\alpha\right]\gamma_{f}^{'} + q\frac{\left(B-w\right)}{\cos\alpha}\right\}\tan\phi_{bs}^{'}\right\}$					
	$= \frac{1}{2} \left[\left(\frac{1}{2} \right)^2 \right]^2 + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right)^2 \right)^2 + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right)^2 \right)^2 \right]^2 + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right)^2 \right)^2 + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right)^2 + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right)^2 \right)^2 + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right)^2 + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right)^2 + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right)^2 + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right)^2 + \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right)^2 + \frac{1}{2} \left(\frac{1}{2}$					
	$\int \frac{3}{2} \left[\left(\frac{b}{a} - w \right) \tan \alpha + n + w \right] \gamma_f \tan \left(\frac{43}{2} - \frac{2}{2} \right) \cos \alpha$					
	Fill soil behind the wall and soil beneath the wall are sand.					
	Properties of sand beneath the wall: internal friction angle ϕ' , unit					
	weight w'					
	Properties of fill behind the wall: internal friction angle ϕ_f , unit					

	weight γ_f							
	q: surcharge	ed load behind the wall						
	Groundwat Thickness of	er level is at depth below the	e base of the v	vall				
Inputs								
	Variable	Description	Distribution	Statistics				
	γ_f (kN/m ³)	Unit weight of fill sand above the wall	Lognormal	Mean = 20 COV = 0.05				
	γ'_{s} (kN/m ³)	Unit weight of sand beneath the wall	Lognormal	Mean = 19 COV = 0.05				
	$\frac{\gamma_c}{(kN/m^3)}$	Unit weight of the wall	Lognormal	Mean = 25 COV = 0.05				
	tan ¢' _f	Tangent of internal friction angle of fill sand	Lognormal	Mean = 0.781 COV = 0.27				
	tan¢'s	Tangent of internal friction angle of sand beneath the wall	Lognormal	Mean = 0.675 COV = 0.26				
	$tan\phi'_{bs}$	Tangent of friction angle between the wall and sand beneath	Lognormal	Mean = 0.577 COV = 0.24				
	q (kN/m ²)	Surcharge load	Lognormal	Mean = 15 COV = 0.3				
	w (m)	Thickness of the wall	Deterministic	0.4				
	B (m)	Width of wall base	Deterministic	2.0				
	α (°)	Inclination angle of fill behind the wall	Deterministic	20				
	h (m)		Deterministic	6.35				
	1 (m)		Deterministic	0.75				
Solution	* McDeva	(Markov Chain Monte Carl	o simulation b	based on Design				
methods (optional)	Value Meth Performanc	od) e function has the form of <i>I</i>	$P(\mathbf{X}) = R(\mathbf{X})$ -	S(X)				
	The resistan	the component $R(\mathbf{X})$ and the	e load compon	the set $S(\mathbf{X})$ which				
	variables.	ations of basic variables A_i ,	(l - 1,, n) a					
	Step 1: De	fine PDF's and probabilisti	c parameters	of basic variables				
	X _i Sten 2: Ca	(i = 1,, n) rrv out Subset MCMC in	N _{run} times to	obtain the failure				
	pro	obability p_f , its standard de	eviation and the	he location of the				
	de	sign points.		1				
	lf ma	one can group candidate de ay suggest there are severa	sign points to al failure mod	several groups, it les, and therefore				

	Step 3	several design points. Step 3: Among N_{run} design points obtained in the previous step, one should choose the best estimated design points $A(X_1^*,,X_n^*)$. Step 4: From $A(X_1^*,,X_n^*)$ the corresponding estimated design point								
	Step 4	4: From	$A(X_1^*,$	$,X_n^*$, the	e corres	ponding	g estima	ted desig	gn point	
		in two obtain and re	o dimen ned. The esistance	sional co en the se e factors	o-ordina ensitivit (γ _R and	te (R,S), y factor γ_S) may	i.e. (R^*) s $(\alpha_R a$ be calc	(S^*) , may nd α_S) a ulated.	also be and load	
	Verifi Carlo N _f Where	ication o (OMC) e:	f the Ro and ob	obustnes tain the	ss of Ma optimu	Deva b m coml	y Ordin Dination	nary Mo 1 of <i>Nt</i> , <i>N</i>	nte V _s and	
	 The total samples generated for each subset: N_t The number of seeds used for generating a subset: N_s The minimum number of samples falling in the failure region so that the Subset MCMC algorithm will be satisfied and stopped 									
	(<i>cut-off criteria</i>): N_f McDeva has been carried out with different combination of N_i , N_s , and N_f as follows:									
		N_s/N_t N_t/N_t	= 0.02, = 0.02,	0.04, 0.1 0.05, 0.1	0, 0.20, 0, 0.20	0.50 , 0.30, 0	.40, 0.5	0		
Results	* Pro	bability	of failu	re (P _f) a	nd relia	bility ir	ıdex β			
(optional)]	McDeva	1	OMC			
	β			-	2.70		2.76			
	Prob	ability of	f failure	(p_f)	0.25×10) ⁻²	0.29×10 ⁻²			
		(p_j)			1.7				_	
	* Loa	d and re	esistanc	e factors	6					
			McD	eva ⁽¹⁾			ON	AC ⁽²⁾	<u> </u>	
	-	Nor	mal	Logn	ormal	Nor	mal	Logn	ormal	
		R	S	R	S	R	S	R	S	
	α	-0.54	0.84	-0.54	0.84	-0.50	0.87	-0.50	0.87	
	γ	0.63	1.71	0.64	1.79	0.65	1.76	0.65	1.86	
	(1) 100 (2) 1,00 * Opt $N_t = 5$	0 runs o 00,000 sa imum c 0 to 150	f Subset amples t ombinat , $N_s/N_t =$	MCMC aken in c tion of N 0.1 to 0	each sta M, Ns, an .2, N _f /N	ge nd N_f : t = 0.1 to	0.2			
Code URL										
(optional)	1									
Defendence	Viere 1		(2000)	Cale	alih	ion D.	a a da	Daacd	· M	
References	Kieu I	Le, T.C.	(2008).	. Code (or Geot	Calibrat echnica	ion Prod	cedure . m PhI	Based of	n Monte	
References (optional)	Kieu Carlo Unive	Le, T.C. <i>Simulc</i> rsity, Jap	(2008). <i>ution fo</i> pan	. Code (or Geot	Calibrat echnica	ion Proo l Desig	<i>cedure</i> m. PhI	Based of D Thesi	<i>n Monte</i> s, Gifu	

	Solution method	FOSM	FORM*	SORM**	MCS	Subsim***
	β	0.9428	0.9555	0.9812	0.9978	0.9943
	p_f	0.1729	0.1697	0.1633	0.1592	0.1600****
	% error in p_f	8.61	6.60	2.58	-	0.5025
	# of evaluation of P function (optional)	15	120	191	106	1000
	Estimator cov(optional)	-	-	-	0.23%	7.21%****
	 [*] Gradient Projection algorithm is taken ^{**} Algorithm by Der Kiureghian and Stefano (1991) is taken ^{***} 1000 samples taken in each stage ^{****} average of 100 runs of Subsim ^{*****} cov estimated from 100 runs of Subsim Der Kiureghian, A. and Stefano, M.D. (1991). Efficient algorithm for second-order reliability analysis. ASCE Journal of Engineering Mechanics, 117(12), 2904-2923. 					

TASK GROUP 3 - RELIABILITY BENCHMARKING

Example No.	7
Author(s)	C. Cherubini & G. Vessia
Date	24/11/2008
Brief	The equilibrium of a sliding wedge stabilized by means of an
description	anchorage is investigated in terms:
accomption	1)Factor of safety
	1)1 detor of surety.
	$W_{aaa}(\alpha) \tan(\alpha) + T_{aaa}(\alpha + \beta) \tan(\alpha) + T_{aaa}(\alpha + \beta)$
	$FS^{+} = \frac{\psi \cos(\alpha) \tan(\psi) + I \sin(\alpha + \beta) \tan(\psi) + I \cos(\alpha + \beta)}{(1)}$
	$W\sin(\alpha)$
	$W\cos(\alpha)\tan(\varphi) + T\sin(\alpha + \beta)\tan(\varphi)$
	$FS^{-} = \frac{(\gamma) (\gamma) (\gamma) (\gamma)}{W_{sim}(\alpha) - T_{soc}(\alpha + \beta)} $ (2)
	$W \sin(\alpha) - I \cos(\alpha + \beta)$
	2)Probability of failure by means of reliability approaches:
	$P = W\cos(\alpha)\tan(\varphi) + T\sin(\alpha + \beta)\tan(\varphi) + T\cos(\alpha + \beta) - W\sin(\alpha) $ (3)
	2)LRFD applied to limit state design:
	$W\cos(\alpha)\tan(\alpha) + T\sin(\alpha + \beta)\tan(\alpha) + T\cos(\alpha + \beta) - W\sin(\alpha) > 0$ (4)
	$ \begin{array}{c} (1) \\ (2) \\ (1) \\ (2) $
	The nurness is to evaluate how much variability of geotechnical
	design variables offects the stability estimation comised out hy means
	of deterministic emprosch and the partial factor emprosch amilial to
	of deterministic approach and the partial factor approach applied to
F *	the limit state design.
Figure	
	B
	β
	W A ϕ
	Η Η Γ
	β 90-β
	α
Deufermen	
reriormance	$P = W \cos(\alpha) \tan(\varphi) + T \sin(\alpha + \beta) \tan(\varphi) + T \cos(\alpha + \beta) - W \sin(\alpha)$
function	

	where $W = wedge$	weigh t is comp	uted as follow	v:	
	$W = A \cdot \gamma = \frac{H \cdot B}{2} \gamma$	$=\frac{H\left(H\tan\left(\frac{\pi}{2}-\right)\right)}{H}$	$\left(\frac{\alpha}{2}\right) - H \tan(\beta)$	$\left(\frac{1}{\gamma}\right)$	
	$\alpha = sliding \ surface$ $\beta = rock \ face \ slope$ $\gamma = unit \ weight$ $\phi = int \ ernal \ friction$ $T = anchorage \ pull$ $H = slope \ height$ $B = wedge \ width$ $A = wedge \ area$	slope ? 1 angle of rock	mass		
Inputs	Variable	Distribution type	Variation coefficient	Min value	Max value
	α[°] β[°] φ[°] γ[kN/m ³] T[kN] H[m] B[m]	Normal Uniform Lognormal Normal Constant Constant Constant	10% 30, 40, 50% 2% - -	5	10
	Variable	Mean	Standard	Charact	teristic
	$ \begin{array}{l} \pmb{\alpha} \begin{bmatrix} 0 \\ \beta \end{bmatrix} \\ \pmb{\beta} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \\ \pmb{\gamma} \begin{bmatrix} kN/m^3 \end{bmatrix} \\ \pmb{H}[m] \\ \pmb{B}[m] \end{array} $	40 7.5 35 23 5 10 15 5.1 10.2 15.2	4 - 10.5 0.5	38 7.5 29.8 22.8	
Solution methods (optional)	First Order Reliabi Method (SORM) a (ASAM) implemen	lity Method (Fo nd Monte Carlo nted in COMRI	ORM), Secon o Simulation EL code (199'	d Orden Adaptiv 7).	r Reliability ze sampling
Results (optional)	1) Safety facto coefficients	or FS ⁺ versus re s of variation of	eliability inde frock mass in	x (FOR ternal f	M) for different riction angle
	5 4 3 2 2 1 1 0	H=5m; C H=5m; C H=5m; C	Vf=30% Vf=40% Vf=50%		
	0.5	1 1.5 2 Re	2.5 3 3.5 liability Index	4 4	1.5 5

	$H_{s}\left(m ight)$	Water le upstrear	vel for n face	80.00	4.80	0.06	Normal		
	$H_{x}\left(m ight)$	Water le downstrea	vel for am face	16.00	0.96	0.06	Normal		
	$H_{n}(m)$	Sedimen	t depth	15.00	2.25	0.15	Normal		
	$\gamma_h(kN/m^3)$	Unit weigh conci	t of dam	24	0.72	0.03	Normal		
	$\gamma_n(kN/m^3)$	Submerg weight of s	ed unit sediment	12	0.60	0.05	Normal		
	$\theta_n(^0)$	resistan sedim	ice of ient	15	1.50	0.10	Extreme typ	pe I	
	α	Reduction c of uplift p	oefficient pressure	0.40	0.10	0.25	Lognorma	al	
	$c'(kN/m^2)$	Cohes	sion	62	21.70	0.35	Lognorma	al	
	f	Friction co	efficient	1.00	0.30	0.30	Lognorm	al	
	$\sigma_{c}(kN/m^{2})$	Maximum a compressive dam cor	allowable e stress of	9000	1800	0.20	Lognorma	al	
	$\sigma_t(kN/m^2)$	Maximum a tension stre	allowable ss of dam	1000	250	0.25	Lognorma	al	
	Q (kN)	Vertical li	ve load	350	122.50	0.35	Extreme typ	be I	
	The system	reliability	analyses	s are p	erformed	using the	following	system	
	reliability n	nethods: th	e first or	der mu	ıltinormal	(FOMN) (Hohenbich	ler and	
Solution	Rackwitz 1983), Cornell's bound (Cornell 1967), Ditlevsen's bound (Ditlevsen								
methods	1979), Adaptive importance sampling (AIS) (Melchers 1989), Radius-based								
	importance sampling (ISAME) (Harbitz 1086) and Monte Carlo simulation								
	importance sampling (ISAWIF) (Harbitz 1980), and Monte Carlo simula						lulation		
	(MCS).								
	Table 2. System reliability indexes of concrete dam using different methods								
	Solution method	FOMN	Cornell bound	's D	itlevsen's bound	AIS (confidence level=0.95)	$\begin{array}{c} \text{ISAMF} \\ \text{(n=10^4)} \\ \end{array}$	MCS (n=10 ⁶)	
Results	β	2.186	2.172~2.3	308	2.185	2.177	2.197	2.188	
	$P_{\rm f}$	0.0144	0.0105~0	0.01	0.0144	0.0147	0.0140	0.0143	
	% error in P	f 0.7	-26.6~4	.2	0.7	2.8	-2.1	-	
	Cornell, C.	A. Bound	ls on the	reliab	ility of st	ructural sy	stems. Jou	irnal of	
	Structural Division, 1967, 93(1): 171-200.								
	Ditlevsen, O. (1979). Narrow reliability bounds for structural systems. Journal								
References	of Strue	of Structural Mechanics, 7(4): 453-472.							
	Harbitz, A. (1986). An efficient sampling method for probability of failure								
	Harbitz, A.	(1986). A	n efficien	nt samp	oling meth	od for pro	bability of	failure	

Hohenbichler, H., Rackwitz, R. (1983). First-order concepts in system
reliability. Structural Safety, 1: 177-188.
Melchers, R. E. (1989). Importance sampling in structural systems. Structural
Safety, 6(1): 3-10.
Novak, P., Moffat, A. L. B., Nalluri, C., et al. (2001). Hydraulic Structures,
third edition. Taylor & Francis Group.

TASK GROUP 3 - RELIABILITY BENCHMARKING

Example No.	9
Author(s)	Timo Schweckendiek
	(Deltares & Delft University of Technology, NL)
Date	30 August 2010 (ver. 1)
Brief	Piping (under-seepage) problem using the (revised) Sellmeijer model.
description	
, î	The purpose of this benchmark example is to compare the performance
	of reliability methods for and internal erosion problem. Furthermore,
	the relative contribution of each random variable to the total
	uncertainty is illustrated by means of importance factors (FORM).
Figure	
U	dike / levee
	h
	exit point
	entree point
	(e.g., foreland) phreatic level
	blanket layer (Ysat)
	aquifer (d_{70} , k, D, θ)
Performance	
function	$P = m_p H_c - (h - h_b - 0.3d)$
	Where
	$\frac{1}{L} = F_1 F_2 F_3$
	ν' (PD) ^{0.35}
	$F_1 = \frac{T_p}{T_p} \left\{ \eta \tan(\theta) \right\} \left \frac{RD}{RD} \right $
	$\gamma_w \sim (KD_m)$
	$d_{70} \left(d_{1} \right)^{0.4}$
	$F_2 = \frac{\gamma_{0_m}}{\sqrt{L_T}} \left[\frac{\alpha_{70}}{d} \right]$
	$\sqrt[n]{\kappa L} \left(a_{70_m} \right)$
	$\left(D\right)^{\frac{0.28}{(D)^{0.28}}+0.04}$
	$F_3 = 0.91 \left \frac{D}{L} \right \left \frac{D}{L} \right ^{-1}$

	H_c crit	tical head difference [1	n]			
	γ'_p eff	ective vol. weight of s	ubmerged sand g	grains [kN/m ³]		
	γ_{w} volumetric weight of water [kN/m ³]					
	θ bec	bedding angle of sand grains [°]				
	η WI	White's coefficient [-]				
	RD rela	elative density [-]				
	RD_m ref	erence value relative d	lensity $(=0.725)$	[-]		
	$\begin{array}{c} k & \text{per} \\ d_{70} & 70 \end{array}$	meability of the aquif -percentile grain distri	er [m/s] bution (piping-se	ensitive layer) [m]		
	d_{70} ref	Therefore value of d_{70} (=	2.08 e ⁻⁴) [m]			
	D thi	ckness of the sand laye	er [m]			
	L see	page length [m]				
	m _p mo	odel (uncertainty) facto	or piping [-]			
	h wa	ter level, at entry poin	t [m+REF]			
	h _b phi	reatic level at exit poin	it [m+REF]			
	a thi	ckness of the blanket I	ayer			
	The perform	nance function is base	d on the revised	Sellmeijer model for		
	piping (inte	rnal erosion, under-see	epage), see Knoe	eff et al. (2009), as it		
	is currently	used in the Netherland	ls. The original S	Sellmeijer model is		
	described in	n Sellmeijer (1988). No	ote that this perfo	ormance function		
	only consid	ers piping. Often, pipi	ng is considered	in combination with		
	uplift (of th	e blanket layer). Toget	ther, these mecha	anisms form can be		
	characterized as a parallel system (i.e., uplift AND piping have to					
	occur for system failure).					
Innuts						
	Variable	Description	Distribution	Statistics		
	Variable	Description	Distribution	Statistics (m=mean)		
	Variable γ'_p	Description vol. weight grains	Distribution Deterministic	Statistics (m=mean) 17 kN/m ³		
	Variable γ'_p γ_w	Description vol. weight grains vol. weight water	Distribution Deterministic Deterministic	Statistics (m=mean) 17 kN/m ³ 9.81 kN/m ³		
	Variable γ'_p γ_w θ	Description vol. weight grains vol. weight water bedding angle*	Distribution Deterministic Deterministic Deterministic	Statistics (m=mean)17 kN/m³9.81 kN/m³37 deg		
	Variable γ'_p γ_w θ η	Description vol. weight grains vol. weight water bedding angle* White constant*	Distribution Deterministic Deterministic Deterministic Deterministic	Statistics (m=mean) 17 kN/m³ 9.81 kN/m³ 37 deg 0.25		
	Variable γ'_p γ_w θ η RD	Description vol. weight grains vol. weight water bedding angle* White constant* relative density	Distribution Deterministic Deterministic Deterministic Normal	Statistics (m=mean) 17 kN/m³ 9.81 kN/m³ 37 deg 0.25 m=0.7, cov=10%		
	Variable γ'_p γ_w θ η RD RD_m	Description vol. weight grains vol. weight water bedding angle* White constant* relative density reference value RD*	Distribution Deterministic Deterministic Deterministic Normal Deterministic	Statistics (m=mean) 17 kN/m ³ 9.81 kN/m ³ 37 deg 0.25 m=0.7, cov=10% 0.725		
	Variable γ'_p γ_w θ η RD RD_m k	Description vol. weight grains vol. weight water bedding angle* White constant* relative density reference value RD* permeability aquifer	Distribution Deterministic Deterministic Deterministic Normal Deterministic Lognormal	Statistics (m=mean) 17 kN/m³ 9.81 kN/m³ 37 deg 0.25 m=0.7, cov=10% 0.725 m=1e-5m/s, cov=1		
	Variable γ'_p γ_w θ η RD_m k d_{70}	Description vol. weight grains vol. weight water bedding angle* White constant* relative density reference value RD* permeability aquifer 70-percentile g.s.d.	Deterministic Deterministic Deterministic Deterministic Normal Deterministic Lognormal Lognormal	Statistics (m=mean) 17 kN/m³ 9.81 kN/m³ 37 deg 0.25 m=0.7, cov=10% 0.725 m=1e-5m/s, cov=1 m=2e-4m, cov=15%		
	γ'_p γ'_w θ η RD_m k d_{70} d_{70_m}	Description vol. weight grains vol. weight water bedding angle* White constant* relative density reference value RD* permeability aquifer 70-percentile g.s.d. reference value d ₇₀ *	Distribution Deterministic Deterministic Deterministic Deterministic Normal Deterministic Lognormal Deterministic	Statistics (m=mean) 17 kN/m³ 9.81 kN/m³ 37 deg 0.25 m=0.7, cov=10% 0.725 m=1e-5m/s, cov=1 m=2e-4m, cov=15% 2.08e-4 m		
	Variable γ'_p γ_w θ η RD_m k d_{70} d_{70_m} D	Description vol. weight grains vol. weight water bedding angle* White constant* relative density reference value RD* permeability aquifer 70-percentile g.s.d. reference value d ₇₀ * thickness aquifer	Distribution Deterministic Deterministic Deterministic Deterministic Normal Deterministic Lognormal Lognormal Deterministic Normal	Statistics (m=mean) 17 kN/m³ 9.81 kN/m³ 37 deg 0.25 m=0.7, cov=10% 0.725 m=1e-5m/s, cov=1 m=2e-4m, cov=15% 2.08e-4 m m=15.0m, cov=10%		
	Variable γ'_p γ_w θ η RD_m k d_{70} d_{70_m} DL	Description vol. weight grains vol. weight water bedding angle* White constant* relative density reference value RD* permeability aquifer 70-percentile g.s.d. reference value d ₇₀ * thickness aquifer seepage length	Distribution Deterministic Deterministic Deterministic Deterministic Normal Deterministic Lognormal Lognormal Deterministic Normal Normal Normal	Statistics (m=mean) 17 kN/m³ 9.81 kN/m³ 37 deg 0.25 m=0.7, cov=10% 0.725 m=1e-5m/s, cov=1 m=2e-4m, cov=15% 2.08e-4 m m=15.0m, cov=10% m=25.0m, cov=5%		
	Variable γ'_p γ_w θ η RD_m k d_{70} d_{70_m} D L m_p	Description vol. weight grains vol. weight water bedding angle* White constant* relative density reference value RD* permeability aquifer 70-percentile g.s.d. reference value d ₇₀ * thickness aquifer scepage length model factor piping	Distribution Deterministic Deterministic Deterministic Deterministic Normal Deterministic Lognormal Lognormal Deterministic Normal Normal Lognormal Lognormal	Statistics (m=mean) 17 kN/m³ 9.81 kN/m³ 37 deg 0.25 m=0.7, cov=10% 0.725 m=1e-5m/s, cov=1 m=2e-4m, cov=15% 2.08e-4 m m=15.0m, cov=10% m=25.0m, cov=5% m=1.0, cov=12%		
	Variable γ'_p γ_w θ η RD_m k d_{70} d_{70_m} DL m_p h	Description vol. weight grains vol. weight water bedding angle* White constant* relative density reference value RD* permeability aquifer 70-percentile g.s.d. reference value d ₇₀ * thickness aquifer seepage length model factor piping water level entry point	Distribution Deterministic Deterministic Deterministic Deterministic Normal Deterministic Lognormal Lognormal Deterministic Normal Normal Lognormal Gumbel	Statistics (m=mean) 17 kN/m³ 9.81 kN/m³ 37 deg 0.25 m=0.7, cov=10% 0.725 m=1e-5m/s, cov=1 m=2e-4m, cov=15% 2.08e-4 m m=15.0m, cov=10% m=25.0m, cov=5% m=1.0, cov=12% a=1.839, b=0.152		
	Variable γ'_p γ_w θ η RD_m k d_{70} d_{70_m} DL m_p hh_b	Description vol. weight grains vol. weight water bedding angle* White constant* relative density reference value RD* permeability aquifer 70-percentile g.s.d. reference value d ₇₀ * thickness aquifer seepage length model factor piping water level entry point phreat. level exit point	Distribution Deterministic Deterministic Deterministic Deterministic Normal Deterministic Lognormal Lognormal Deterministic Normal Normal Lognormal Gumbel Normal	Statistics (m=mean) 17 kN/m³ 9.81 kN/m³ 37 deg 0.25 m=0.7, cov=10% 0.725 m=1e-5m/s, cov=1 m=2e-4m, cov=15% 2.08e-4 m m=15.0m, cov=10% m=25.0m, cov=5% m=1.0, cov=12% a=1.839, b=0.152 m=-1.0m, s=0.1m		
	Variable γ'_p γ_w θ η RD_m k d_{70} d_{70_m} DL m_p hh_bd	Description vol. weight grains vol. weight water bedding angle* White constant* relative density reference value RD* permeability aquifer 70-percentile g.s.d. reference value d70* thickness aquifer seepage length model factor piping water level entry point phreat. level exit point thickn. blanket layer	Distribution Deterministic Deterministic Deterministic Deterministic Normal Deterministic Lognormal Lognormal Normal Normal Lognormal Gumbel Normal Lognormal Lognormal Lognormal	Statistics (m=mean) 17 kN/m³ 9.81 kN/m³ 37 deg 0.25 m=0.7, cov=10% 0.725 m=1e-5m/s, cov=1 m=2e-4m, cov=15% 2.08e-4 m m=15.0m, cov=10% m=25.0m, cov=5% m=1.0, cov=12% a=1.839, b=0.152 m=-1.0m, s=0.1m m=3.0m, cov=30%		
	Variable γ'_p γ_w θ η RD_m k d_{70} d_{70_m} DL m_p hh_bd* Note that	Description vol. weight grains vol. weight water bedding angle* White constant* relative density reference value RD* permeability aquifer 70-percentile g.s.d. reference value d70* thickness aquifer seepage length model factor piping water level entry point phreat. level exit point thickn. blanket layer the uncertainty of the	Distribution Deterministic Deterministic Deterministic Deterministic Normal Deterministic Lognormal Lognormal Deterministic Normal Lognormal Gumbel Normal Lognormal Lognormal Calibrated model	Statistics (m=mean) 17 kN/m³ 9.81 kN/m³ 37 deg 0.25 m=0.7, cov=10% 0.725 m=1e-5m/s, cov=1 m=2e-4m, cov=15% 2.08e-4 m m=15.0m, cov=10% m=25.0m, cov=5% m=1.0, cov=12% a=1.839, b=0.152 m=1.0m, s=0.1m m=3.0m, cov=30% parameters is all		

	The standard deviations and variation coefficients of most variables are based on default values used in the FLORIS project (Van der Most & Wehrung, 2005).					
Solution methods (optional)	FORM (Excel): based on Low & Tang (2007); SORM, MCS, IS, DS, Subsim: using FERUM v4.0, see Sudret & Der Kiureghian, (2000). The m-file Pfun_case9.m works with PROLIB and produces					
Descrite	virtually the s	anie res	uits as i	ERUM		
(antional)	Mathad			0		· · · · · · · · · · · · · · · · · · ·
(optional)	Method FORM			β	pf	error in pf
	FORM (EXC	EL)		3.19	7.2e-4	-4.4%
	FORM $(n = 1)$	06)		3.19	7.2e-4	-4.4%
	SORM $(n = 1)$	06+54 =	160)	3.18	7.5e-4	-0.5%
	Simulation (N	ICS)		3.17	7.5e-4	0.0%
	$(n = 10^{\circ})$					$(cov(p_f)=3.7\%)$
	Importance Sa	ampling ¹	(IS)	3.19	7.1e-4	-5.3%
	$(n = 5*10^3)$					$(cov(p_f)=3.7\%)$
	Directional Sa $(n = 10^6, 10^5 \text{ cm})$	ampling direction	(DS) s)	3.19	7.2e-4	-3.7%
	Subset Simula $(n = 2*10^4)$	ation (Su	lbsim) ²	3.19	7.1e-4	-5.1%
	n = number of the second sec	performa	nce func	tion eval	uations	
	¹ importance same	ling arour	nd design	point by	FORM	
	Importance fac	tors (obt	ained w	ith FOR	M Excel):	ov0%
	RD	0.11	0.01		⊔ mp; 12	%
	k	-0.81	0.61		🗖 d; 6% -	
	d_{70}	0.17	0.03		hb; 1%	
	D	-0.05	0.00		⊔ n; 9%	
	L	0.12	0.02		RD; 1%-	
	mp	0.35	0.12		0%-//	■ k; 66%
	h	-0.30	0.09	- L	0% -/	
	h _b	0.12	0.01	□ c	170; 3% -	
	d	0.24	0.06		□ L; 2% ┘	
	The importance the uncertainty factor, the wate remaining unce All tested error with resp FORM result is linear in most o important one. evaluations ma	e factors in de pe er level a ertainties l reliabil ect to the s very clo of the im Thus, th kes FOR	clearly rmeabil nd the t are pra ity mether result ose to M portant e low m	reveal the ity of the hickness ctically nods give obtained ICS, too random umber o ctive for	hat the prob e aquifer. E s of the blan irrelevant. e answers v l by MCS. I b. The perfo variables e f required p r this type o	blem is dominated by Besides the model nket layer, the within roughly 5% Remarkably, the rmance function is xcept for <i>k</i> , the most performance function of problem. Note that

	of the problem or trial and error (and thus prior knowledge of the p_f) or very generally robust settings (so for not found by the author)
	very generally robust settings (so rai not round by the author).
Code URL	http://jyching.twbbs.org/reliability_benchmark/Pfun_case9.m
(optional)	
References	Knoeff, H., Sellmeijer, J.B., Lopez, J. & Luijendijk, S. (2009).
(optional)	Hervalidatie Piping (SBW HP1 + HP1.2, in Dutch), Deltares
	report 1200187-015-GEO-0004.
	Low, B.K. & Wilson H. Tang (2007). Efficient spreadsheet algorithm
	for first-order reliability method. Journal of Engineering
	Mechanics, ASCE, Vol. 133, No. 12, 1378-1387.
	Sellmeijer, J.B. (1988). On the mechanism of piping under impervious
	structures. PhD thesis. Delft University of Technology.
	Sudret, B. & Der Kiureghian, A. (2000). Stochastic Finite Element
	Methods and Reliability, A State-of-the-Art Report, Report No.
	UCB/SEMM-2000/08, Department of Civil and Environmental
	Engineering, University of California, Berkeley.
	Van der Most, H. & Wehrung, M. (2005). Dealing with Uncertainty in
	Flood Risk Assessment of Dike Rings in the Netherlands. Natural
	Hazards 2005 (36), p. 191-206.
Reviewers	Jianye Ching

B.2. GEOSNet example 9 correction

The performance function of GEOSNet example 9 needs some revisions as the following:

$$F_1 = \eta (\frac{\gamma_s}{\gamma_w} - 1) tan\theta \tag{B.1}$$

$$F_2 = \frac{d_{70m}}{\sqrt[3]{\frac{\nu kL}{g}}} (\frac{d_{70}}{d_{70m}})^{0.4}$$
(B.2)

$$F_3 = 0.91(D/L)^{\frac{0.28}{(D/L)^{0.28-1}} + 0.04}$$
(B.3)

$$H_{c,p} = F_1 F_2 F_3 L \tag{B.4}$$

with:

 ν : dynamic viscosity of water at 10 deg. (1.33x10⁻⁶ Pa.s)

$$\gamma_s$$
 : volumetric weight of sand grains (=26.5 kN/ m^3)

 γ_w : volumetric weight of water (=10 kN/m³)

 θ : bedding angle (deg.)

D : thickness of the aquifer (m)

 η : drag factor coefficient

- d_{70} : 70%-fractile of the grain size distribution (m)
- d_{70m} : reference value for d_{70} (m)
- g : gravitational constant (=9.81 m/ s^2)
- *k* : permeability of the aquifer (m/s)