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INTRODUCT ION

The behaviour of a liquid at fow pressures continues to be a subject of dis~
cussion as regards the water-hamer analysis of a pipeline fransporting the

liquid. Experiments on natural liquids have shown (9) that at pressures suffi-
ciently less than the saturation pressure of dissolved gas, so-called cavitation
nuclei grow fto small gas bubbles as a result of gas diffusion. The lowest pressure
that can be attained is equal fo the vapour pressure of the liquid, or somewhat
less because of the presence of surface tension. Further increase of the volume

of the liquid-bubble mixture does not change the pressure but only increases

the vapour content, a phenomenon known as cavitation of the liquid.

In a pipeline two types of transient cavitation can be distinguished. The void
fraction (the ratio between the volume of vapour and gas, and total volume) depends
on the magnitude of the velocity gradient in a pipe section in which cavitation
occurs, and can increase to values comparable to unity for large velocity gradients,
or can only attain values much less than unity for small velocity gradients owing
to a friction gradient or a small inclination of the pipeline. The former type is
known as column separation, generally displays a free-surface flow, and occurs
focally in tThe pipeline ((1), (13) and (15)). The latter type, referred to as
cavitating flow herein, is of the bubbly flow type, and can extend over distances

comparable to the length of the pipeline ((7), (10), (5), (17) and (11)).

The examination of the phenomenon of water hammer together with transient cavitation
is in an advanced state, but some doubts still exist as to secondary effects, such
as the release of dissolved gas, on the maximum pressures and the duration of cavi-
tation, Swaffield (15), for insfance, consideres column separation behind a closing
valve in a relatively short pipe, and observes a longer duration of the first column
separation than predicted by classical methods without taking into account the
influence of released gas. A similar result is obtained by Brown (3) for cavitation
in a long pipeline following pump failure. In this case the computed maximum pres-
sures are considerably less than the experimental values, Both authors obtain better
agreement with observations by assuming that at discrete cavities a certain amount
of dissolved gas is released from the {iquid during low pressures, On the other hand,
Baltzer (1), and Weyler, Streeter and Larsen (18) observe a shorter duration of the
first column separation following sudden valve closure; subsequent pressures are
lower than predicted. The results obtained by Dijkman and Vreugdenhil (5), and the
writer (10) and (11)), showing that gas release causes damping of pressure waves

following cavitating flow, point in the same direction,




The purpose of this report is to present some applications of a mathematical
mode!, which describes the fransient flow in pipelines, taking into account
column separation and cavitating flow, It is shown that The aforementioned
discrepancies between theory and experiments, and between observations by

various authors can be explained by Introducing the influence of gas release

not only at column separations but also in the remaining part of the pipeline.
Since the interpretation of the physical process and application of the mathe-
matical model to cavitating flow have already been published ((7), (10) and (17)}),
emphasis is placed on the numerical methods adopted, and on application of the
mode! to column separation. Additional information to these topics is given in

(11,

OUTLINE OF THE MATHEMATICAL MODEL

The mathematical mode! is based on a one-dimensional approach to the flow of the
{iquid-vapour-gas mixture. Generally speaking, heat transfer processes related
to the cavities are fast processes in comparison with the time scale of pressure
changes ((6) and (11)), Therefore, the vapour pressure and gas temperature in the
cavities can be assumed to be constant. The gravity term owing to tThe density
gradient of the fluid along the pipeline is disregarded, so that in the mode!
gravity waves do not occur. The resulting error in the pressures is of the

order of magnitude of p‘gD (in which oy = lfquid density, g = gravitafional con-
stant, and D = diameter of the pipe), which, in general, is smal !l when compared
with the water-hammer pressures. The momentum of the gas and vapour phases is
disregarded with respect to the momentum of the liquid phase.

Conservation taws.- Applying the law of conservation of mass to the liquid yields

3 3 [
=T Ju—a)p, dA + o= J (1-a)p u dA = 0 (n

A A
in which a = local void fraction, i.e. dependent on the position in the cross-
section, on coordinate x along the pipeline and on time T, u = liquid velocity,

and A = area of cross-section of the pipe., The law of conservation of monentum,

applied in the direction of the axis of the pipeline, ylelds
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in which p = absolute pressure in the top of the cross-section of the pipe,
¢ = angle of inclination of the pipeline, and X = friction parameter. Introducing

the void=-fraction
o = J o dA (3)
A

and the usual equations of state of the liquid phase and the wall of a pipe with

circular cross-section,

do, e
dA  _ A
'a-F-)- = mn (5)
D
in which KI = modulus of compressibility of the liquid, E = modulus of elasticity

of pipe wall material, w = thickness of the wall of the pipe, and m = coefficient
accounting for anchorage system of pipeline, and disregarding some minor contribu-

tions, changes Egs. 1 and 2 to

%(1—3)(1«»——-‘3—2—) +%;<1—E)(1+ sz)u=o (6)
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in which a = wave celerity in the absence of released gas or vapour,
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1
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Egs. 6 and 7 are in the so-called conservation form, which is suitable for the
numerical computation of wave propagation. Shock conditions, which are the
equivalents of Egs. 6 and 7 for discontinuities in velocity and pressure, are

derived in the Appendix. They read

agy 8] Q=) | 10 —Pm I = af0m) | 1e Py |y (9)
19 P19
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in which 3y = shock-wave celerity, and A indicates the change in a variable when
the shock wave is crossed. !t is also shown in the Appendix, that at shock waves

energy dissipation takes place.

Cavitating Flow.-Apart from column separation, the cavities will be present in the
form of bubbles suspended in the liquid, which is connected with fthe small void
fraction (a<<1). Adopting the ideal-gas law and disregarding surface tension yields

for the dynamic equilibrium of a spherical bubble
4 .3
(p~p,) = mR™ = Np kT (1
in which p, = vapour pressure of the liquid, R = bubble radius, Nb = quantity of
gas in the bubble, k = universal gas constant, and T = absolufe temperature. Assuming
a constant number, n, of bubbles (or cavitation nuclel) per running metre of the
pipe and locally equal size of the bubbles, the average void-fraction becomes

R (12)

o =

)>i O_:s
(S RN

When the pressure is significantly higher than the vapour pressure, the bubblie
sizes, and hence the void fraction, can reduce so much that the free-gas content
may be disregarded. In this case Eqs. 6 and 7 reduce to the usual water-hammer
equations, Therefore, Eqs. 6 and 7 are applied in regions of the pipeline where
cavitating flow occurs as well as in regions with higher pressures., The influence
of gas content and surface tension on the wave celerity and the genesis of cavi-

tation is discussed in (7), (10) and (11).

The quantity of gas, Nb’ in a bubble is time dependent owing to the release or

re-solution of gas. A general expression describing this process is

N
2=y (p - p) BF [R (n, T um} (13)

dt

in which y = proportionality constant in the refationship between gas pressure

and equilibrium concentration of the dissolved gas, which relationship is known

as Henry's law, Pg ~ saturation pressure of the liquid, B = diffusion coefficient

T = dummy variable in integration with respect to ftime (v < 1), and U = velocity of
the bubble with respect to the surrounding liquid. Function F, in which the his-

tory of the bubble is represented, can be determined from the solution of the dif-




fision equation for the dissolved gas (11), A useful approximation, which applies

provided |dR/dt} << U and UR/B >> 1, was given by Boussinesg (2), l.e.

Fnod ROE) v2a U(H) R(D) (14)

Column Separation.-Since a column separation can be conceived of as a local

phenomenon, the usual assumption is made that it is governed by the continuity

equation only,

dv

C = -
'aff"‘— A (UCZ UC1) (15)

in which VC = volume of column separation, and u = |iquid velocities on

cl,2
either side of the column separation., The ideal-gas law yields

(pC - pv) VC = NCkT (16)
in which pc = pressure at column separation, and NC = quantity of released gas

at column separation. Gas release or re-solution at the column separation is

represented by

dNC dNb
7 e T an

in which n. = number of bubbles which together form the column separation

(n_z 1), and dNb/d+ is given by Eg., 13, in which p = Per

NUMERICAL METHODS

Wave Egquations,- The equations of continuity and momentum, Eqs. 6 and 7,
fogether with the equations of state, Eqs. 11, 12 and 13, form a nonlinear
hyperbolic system of second order. Such a system could, in principle, be
solved using fthe method of integration along characteristics, This method,
however, meets with considerable difficulties because of the pressure
dependence of the wave celerity, which makes intersection of characteristics
of the same kind possible. In simpie cases the resulting discontinuifies or
shock waves can be fitted in the continuous solution, but in more general

cases this method is hardly applicable ((7), (8)).

A second possibility as regards the solution of the wave equations is an

approximation based on a finite~difference methcd, Since the problem is essen-
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tiatly nonlinear owing to the marked pressure dependence of the celerity for
pressures close to the vapour pressure, the finite-difference approximation
adopted should contain numerical viscosity, which suppresses nonlineair insta-
bility and spreads a developing shock wave over a number of mesh points (12},
Therefore, well-known finite-difference schemes like the leap-frog scheme and the
impliciet scheme proposed by Streeter (14) are not applicable in this case. Finite-
difference schemes which do contain numerical viscosity are, for instance, the lLax
scheme and the Lax-Wendroff scheme, which emanate from the application of numerical

methods to gas dynamics (12).

The continuity and momentum equations (Egs. 6 and 7, are in conservation form

0y 99y,

5T Tax  93i (18)
in which q\}.i (j = 1,2,3 and i = 1,2) are functions of the pressure, velocity
and void fraction. The Lax scheme, applied to Eq. 18, ylelds (see Fig. 1)

1
g,: {x + Ax, T + AT) = » [q LAx o+ 2 Ax, 1)+ g, (x,T) ]+
1i 4 2 1i 4 11 ’ (19)

At 3 AT
- —Z;-[QZi (x + 28x, ) - Ay (x,?§]+ ~§v[q3i (x + 28x,1) + dg; (x;f{

in which Ax = mesh size, and At = time step. The numerical viscosity is

introduced by the first fterm on the right-hand side of Eq. 19.

i
¢ i t+25t
|
—F——®—— __é__'—— O Lax scheme
t 1 i
|
! % } t Oand. Lax-Wendroft
X=-24X X X+2AX% two-step scheme

Fig. 1. Llax and Lax-Wendroff finite-difference schemes.

Unfortunately, the Lax scheme causes considerable damping of waves, owing to its
first-order accuracy. This would lead to too oW values for the maximum pressures.
Second~order accuracy can be obtained by adding a second step to Eg. 19, according

to (see Fig, 1)
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At
U (x, t + 2at1) = 9 (x,t) - Z;—[qu (x + Ax, T + Af) - Gpi (x = Ax,
t o+ ATJ + AT [q33 (x + Ax, T + At) + A= (x = Ax, T + AT)} (20)

Egs. 19 and 20 together are known as the Lax-Wendroff ftwo-step scheme, The
numerical damping caused by this scheme is acceptable, provided a sufficient
number of mesh points is chosen (11). The Lax-Wendroff scheme can be shown to
be consistent with the differential equation, Eq. 18, and to be linearly stable,

provided

(21)

D1>
X+
fin
[+1]

+

=

and

0 (22)

T

Test runs carried out with the Lax-Wendroff scheme showed that his scheme yields
satisfactory results in cases where the nenlinearity does not exeed certain bounds.
However, in cases where the pressure dropped to vapour pressure, for instance,

the essential nonlinearity of the problem caused oscillations, and instability of
the computation, A possibility of suppressing this instabiiity is to apply more
numerical viscosity. On the other hand, as little viscosity as possible should be
intfroduced, in order to avoid undesired wave damping. Therefore, numerical
viscosity has been added by applying a smoothening operator in those mesh points

in which a parameter, 81, characterizing the osillation in variable 9 exceeds

a prescribed value er. The parameter 9, is given by (see Fig., 2)

1 1
= q1;(x+2Ax,+)-q1i(x,+>+ Vi qji(x—ZAx,f)

8. 0,1 = 2 (23)
i
in which A = reference interval of variable Q4 (x,t). The smocothened values

a&i of variable q,, are obtained from
1
a;; GoHr z a8 Gob), Jel] s e,
Ay 061 - (24)

ap, (x,1), leil <8,
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Fig. 2. Paramefer 8, in smoothening operator.

8, can be so chosen, that long waves {(when compared with the mesh size) are
only stightly influenced by the smoothening procedure (11}, In the computations
carried out the values er = 0,01 and 0.05 were used., Viiegenthart (16) applied
Eq. 23 in all mesh points (er = 0).

Column Separation. = Column separation is explicifly taken into account at mesh

points where it can be expected to occur. Secondary column separations are dis-

regarded, and are implicitly treated by the cavitating flow approach. Integration of

the equations for column separation, Egs. 15 and 16, could be carried out by using a

simple explicit finite-difference scheme. Analysing such a scheme shows, however,
that for small amounts (NC) of free gas, time steps are required which are con-
siderably less than that given by Eq. 21, Instead, an integration method has been
chosen in which the velocities Uy and U, are eliminated by applying the com-
patibility equations for the characteristic directions following from Eqs. 6 and

7 (1), (1)),

(25)

1|
w

5] +

ct Pyay (pc - pv)

and

Uop = 55 (pC - pv) = B2 (26)
2

in which a],2 = pressure dependent (because of free-gas content) wave celerities

in adjacent mesh points on either side of the column separation, and B1’2 =

approximately constant functions of computed variables in adjacent mesh points

(Fig. 3). If the cavity is formed behind a closed valve, for instance, the

guantities 1/a] and B} in Eq. 25 (or 1/a2 and B2 in Eq. 26) are put equal To

' zero,




Fig. 3. Infegration of the continuity equation for a cavity.

Eliminating velocities Uy and Uops and pressure P. from Egs. 15,16,25 and 26, and

integrating over a time step 2At (assuming Nc to be constant), yields

V ($+241) = V () + 2A1(B,~B,)A +
c c 1 72

1 1
1 c 1 2
NE— In |~ (27
(E} + gé)NCkT + D!(B1_BZ)VC (t

The last term in this implicit finite~-difference scheme can be seen as a cor-
rection to a simple first-order explicit scheme, Eq. 27 makes larger time steps
possible without leading fo instability, Moreover, this scheme always yields
positive values of the cavity volume, VC(T + 2AT). This property facilitates
calculation of the collapse of a column separation, A small cavity is then left,

owing fo its free-gas content.

It was found from test computations that no smoothening should be carried out in

grid points adjacent fo a column separation,

Gas Release.- The equations decribing gas release or re-solution, Egqs. 13 and 17,
were integrated at all points of the numerical mesh by using anexplicit finite-

difference technique (11),
APPLICATION TO BALTZER'S EXPERIMENTS
The simulation of column separation starting from classical water~hammer theory

and the intfroduction of vapour pockets at suitable locations does not always yield

satisfactory results., Swaffield (15) obtained the correct duration of column
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separation, which was longer than predicted by standard methods, by assuming

gas release at the column separation. Apparently, the shorter than predicted
duration of column separation observed by Baltzer (1), for instance, requires

a different explanation.

Using the methods developed in this report, some calculations were carried out
for the model pipeline described by Baltzer. Column separation is generated in
+he author's pipeline (length = 136 m, diamefer = 0.0254 m, a, = 1360 m/s) by

a sudden valve closure downstream, The resulting positive pressure wave is
reflected upstream and causes column separation at the valve when it is re-
flected at that location. In his mathematical model, Baltzer assumes free-sur-—
face flow in the column separation cavity, and applied the usual water-hammer
equations in the remaining part of the pipe. Fig. 4a shows a comparison, as
regards the pressures at column separation, between Baltzer's theoretical re-
sults and the results of the method described herein, assuming no gas release.
The mesh size was Ax = 2.72 m, the time step At = 0,002 s.

The agreement is satisfactory, indicating that the numerical method is reliable,
Gas release was assumed to occur in the computations related to Fig. 4b. The
assumed numbers of bubbles per unit volume (nb/A) were of the same order of
magnitude as that obtained from previous experiments on cavitating flow ((10)
and (11)), which amounted to about 105 bubbles/m}. These experiments were also
used to estimate the refative bubble velocity U from the growth of the bubbles
during cavitation (10), or from the total amount of released gas (11), The
estimates pointed to rather low values, i.e. less than some centimefres per
second. In the present computations U = 0,01 m/s was assumed. Two values of
the number of bubbles Ne which together form the column separation were con—
sidered (nc = 1 and Ne = 1000). The saturation pressure was taken equal to the
atmospheric pressure: Py = 105 N/mz. Furthermore, ykT = 0,017 and B = 2 x 10_9 2

(air-water at 293 K) were assumed.

Computations No. 1 and 2 (in which twice the number of bubbles, Ny» of compu-
tation No. 1 was assumed) in Fig. 4b show that gas release in the cavitating flow
region of the pipe causes a considerable decrease of the duration of the subse-~
quent column separations and, connected with this, a decrease of the maximum
pressures following column separation, This result can be explained as follows:
gas release causes dilatation of the fiuid column in the cavitating flow region,
which dilatation can take place freely owing fo the low pressure in the adjacent
column sepérafion cavity. Consequentiy, the volume of this cavity is less Than
that in the case without gas release, and the separation cavity collapses af an
earlier instant. In the next section it is shown that a shock wave is then

generated (the pressure rises in Fig. 4b), which starts fo propagate in the up-
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Fig. 4.» Simulation of Baltzer's experiments and computation;
pressures at column separation, a, disregarding gas

refease, b. Including gas release.

stream direction. Owing to the small void fraction in the pipe, the shock cele-
rity is only slightly less than the celerity a. Therefore the durations of the
pressure peaks in Figs. 4a and 4b are the same. The maximum pressure following
the first column separation is proportional to the liquid velocity at the in-

stant of collapse. This velocity is less in Fig, 4b than in Fig. 4a, since less

time is available for acceleration of the liguid column,

The above explanation of the damping phenomenon is based on the consideration of
momentum. In the next section it is supplemented by examining the energy balance

of the system.

If much gas is assumed to be released at the column separation (computation No. 3,
n. = 1000 instead of 1), the pressure at column separation remains higher than
that in the cavitating flow region., Consequently, the fluid column shows less

ditatation, and the column separation volume is less diminished, Therefore, the
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instant of collapse is delayed (the third peak occurs at t= 3,7 s), Fig. 4b

shows, however, that the cavitation process is not very sensitive fo variations

in the amount of released gas at column separation.

—————— computation without gas release
computation D ng=25 m, ne=1
—v——— computation@ ny=25 m’, n,= 1000

2:15‘— _——— observed maximum cavity volume
V, () ———
// \\
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/
0005
0 0
Pe-Pv
N /m,)z 00+ 200
100+ S - 100
T 0 T T T o
] 1 2 —» t{s) 3

Fig. 5. Simulation of Baltzer's experiments: volume of cavity,
pressure at column separation, and void fraction adjacent

to column separation,

The preceding reasoning is further elucidated in Fig., 5, in which the volume
of the column separation Vc' the void fraction E; in the adjacent part of

the cavitating flow region, and the pressure p_ at column separation are
shown as functions of time. ! is seen that gas release decreases the volume
of the separation, and that in computation No. 1 the void fraction EE is
greater, the pressure Pe at separation is less, and the separation volume VC
is less than the corresponding variable in computation No. 3. Experimental
values of the column separation volumes could be estimated by using Baltzer's
wave height measurements, The maximum volumes are found to compare reasonably

well with the theoretical values.

Fig. 6 shows a comparison between the pressures at column separation, as ob-

served by Baltzer, and results of computation No. 1. Baltzer reports that his
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the influence of gas release,
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experiments No. 25 and No. 34 were carried out under the same laboratory
conditions. The agreement achieved is good, which is, however, partly due to

the choice of the gas-release parameters.
ENERGY BALANCE FOR HORIZONTAL PIPE

I+ may be surprising that the release of dissolved gas can account for a
considerable damping of pressure peaks following column separation. The mechanism
causing the damping should be part of the mathematical model discussed, but the
numerical results do not reveal ifs origin. Even the question can be raised wether
+he damping could be caused by numerical damping effects coupled with the gas
release. In principle This is not impossible, since the decrease of the wave
celerity owing to gas release reduces the so-called Courant number, aht/sx, of

the numerical computation, which could increase the numerical damping ((11), (12)).

In order to make this point clear a hydrodynamic energy balance is sef up for
column separation in a pipe, closed at one end and connected o a constant-pressure
reservoir (p = pr) at the other end, see Fig. 7. For the sake of convenience a
horizontal pipe is considered (Baltzer's pipe was an inclined one). The energy
balance concerns the whole pipe, during the time interval befween two successive
pressure peaks (+1—TO, see Fig, 7}, AT t = To and T = Tl the liquid velocities are
equal to zero, so that only elastic (potential) energy is present at these instants.
In the time interval *o <t < T1 work is done at the constant-pressure end, elastic
energy is converted into kinetic energy and vice versa, and energy is dissipated by
shock waves and wall friction. The energy balance then expresses that the difference
in elastic energies at 1 = To and T = T], increased by the work at the constant-

pressure end in the interval considered equals the dissipaTion.

Specifically, the following confributions to the energy balance are considered below:
I elastic energy of the liquid and the wall of the pipe
I, elastic energy of The free gas
I1l. work done at The constant-pressure end {x = |) of fthe pipe
V. dissipation caused by shock waves
V. dissipation caused by wall friction
Two cases are considered:
1. Influence of free gas only (terms I, il, Il and IV)
2. Influence of wall friction only (terms [, 11l and V)
This separation facilitates the determination of the terms. Nevertheless it is not
possible to accurately determine all fterms in the energy balance; only approximate

results are obtained.
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Fig. 7. Pipe and x,t-diagram,

. Elastic Energy of the Liquid and the Wall of the Pipe. - The work done on

a liquid column in an elastic pipe amounts to

°
W= - J PA ds (28)

|
s
e}
in which S1 T S, =
T = T]. Variable s satisfies

increase in the length of the liquidcolumn from t+ = T, To

(29)

[=8
1]

!

Q]
hel
_D
sl)

Consequently

P~ - p
! 2 ! (30

in which V, = volume of the pipe (= 1A), p_ = p(+_ ), and = p(f,).
o} o Py 1
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1. Elastic Energy of the Free Gas. - Eq. 28 can also be applied in this case,

The ideal gas law

(p = p,)sA = constant = ny Nb KT! (31
gives
g—g - ———E—‘-—-Z— (32)
(p - pv)

in which u = nbkaT/A. Egs. 11 and 12 yield for this quantity

u o= Er (p. - p,) (33)

in which subscript r refers to reservoir poressure.

The release of dissolved gas is taken into account by assuming that during

the drop of the pressure from p = Py to a certain (low) cavitation pressure

P = Py the amount of free gas remains constant (u = uo), and that his amount
increases to u = My > Hy during column separation, after which it is compressed
from p = Py o p = Pye An estimate of Py is given later. Egs. 28 and 32 then
yield (pV << Py and p1)

Po p1
PRI L LS
A PP, P - P,
X Py
(34)
p p
ZV] v In 8 -y ln—-—-_—Lv-»
o X Py P,< Py

Itl. Work Done at the Constant-Pressure End of the Pipe. - Since in this case

P = Pp Eq. 28 gives

w]H = - prA (s1 - so) (35)

Sy 7 S, is determined by the elasticity of the liquid, the wall of the pipe, and

the free gas (Egs. 29 and 32). Hence

2 (36)

and




+ome = =) (37)

1V, Dissipation Caused by Shock Waves., = In the Appendix it is shown that the
occurrence of shock waves is attended with dissipation of hydrodynamic energy.

In the time interval TO <t < f} two shock waves which atfribute appreciably

to the total dissipation, can be discerned,

AT t = TO a rarefaction wave starts to travel from the constant-pressure end,
This wave is positively reflected at the closed end, which causes column
separation, and another rarefaction wave travelling backwards, see Fig. 8. In
furn, this wave is negatively reflected at the constant-pressure end, so that

a compression wave results, Since a low pressure is present in front of this
wave, and consequently a low celerity, the wave will sfeepen rapidly and develop
info a shock wave, The continued reflection of this wave causes alternately rare~
faction and compression waves, but attenuation of these waves prevents the

development of new shock waves (10),

The second shock wave is generated at the moment the column separation cavity
is closed. The resulting sudden pressure rise, which then starts to propagate

towards the reservoir, can be conveived of as a shock wave.

cavity / — e characteristic

shock wave

approximated
shock path

Fig. 8. x,T-diagram related to the first shock wave.
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In order to determine the dissipation caused by the shock waves, the following

simplifying assumptions are made:

- wall

friction is absent (case 1 mentioned)

- the amount of free gas Is constant, and is uniformly distributed along the

pipe; since gas release at column separation was found to be relatively unim-

portant,

it is not considered separately

- liquid velocities are negligible when compared with wave velocities.

The rarefaction wave starting at x =0 at the instant the cavity opens, is

given by (cf. the dam-break wave problem, (13))

%T = a(p)

in which t' = time, 1' =

the Appendix,

P
L

1
82 aj U?

0 at the instant fhe cavity opens., Applying Eq., 22 from

2 (38)

gives the void fraction o as a function of time and position along tThe pipe.

Eq. A21 then gives the pressure,.

The fluld vejocity, u(pv), behind fhe rarefraction wave, which is equal tfo the

opening velocity of the cavity,

p

r
u(pv) = u(pr) - j

Py
or, using Egs. AZ1 and AZ2

ulp) = 4

u(pv) = 5

J P,

in which u(pr) =

is given by

d

pla(p)

p \

r
|\
a

o u
LI W T (39)
(p = py, + up)?
| P =Py * )

undisturbed fluid velocity in front of the wave, Restricting

+the analysis to cases where a vapour cavity really develops, 1.e. fTo cases

where
u(pv) >0

and integrating Eq. 39, yields

(406)

T =1 i< ulpr)

Hp 048y
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which forms an upper llm;T for the free gas content By A numerlca! example:
assuming P- " P, = 105 N/m (atmospheric pressure),p' = 1000 kg/m » 8y = 1000 m/s,
and u(pr) =1 m/s one obtains py < 11,7 N/m »Ora. < 1,17 x 10 -4 (Eq. 33).

The dissipation caused by the first-mentioned shock wave, which develops after
reflection of the rarefaction wave, is estimated by applying Eq. A26. The total

energy loss, le1, related to this shock wave then is

1
W = 7~A (py - pv) e dx (41)
_ x(pv)
in which agp = void fraction just in front of the shock wave, x(pv) = value of
X where Eéh = 1, and P, = pressure behind shock wave.

Assuming Py = Prs Eq. 41 simplifies to

1 —
le 1 7-A (pr - pv) %gp dx (42)
x(pv)
‘The shock path, t' = féh(x), follows from
dt!
sh 1 §
= - - and ' (}) = (43)
dx ap sh a(pr)

The shock celerity, I is given by Eq. A29. Further simplification is obtained
by assuming a constant acp (denoted by ao), which is, rather arbitrarily, put
equal to the shock celerity at x = 1/2, t' = 31/2a] (point marked 'A' in Fig. 8).
This gives, together with Eq. 38

1 1 801y
— +
al a? 3l p)
o !

On integration of Eqgs. 43, time +éh is tThen found as a function of x, and Egq. 38
gives Egh as a function of x, Evaluating the integral in Eq. 42, and disregarding
some minor contributions, yields for the energy loss related to the first shock

wave

(44)

The pressure Py appearing in Eq. 34 relates to the low pressures at which most
of the free gas is released, |t is estimated by averaging the lowest pressures

occurring along the pipe, i.e.

P P
In —ee = L J In —-;~fF;7—7jdx
Pe TPy 1 plx, TL,x

X

(45)
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in which subscript | = 0 or 1, and p[x,Téh(x)] = pressure just in front of the

shock wave. This pressure is determined by Egs. 41, 42, 43 and Eqg. A21, After

some calculation, Eq. 45 yields

P P
In o=t = I (2 —=) +
x v o Hy

(46)

Nf

a
o
The energy loss, WIV 22 caused by the second shock wave is given by an expression

similar fo Eq. 41,

|
i _
W!V 5 %7 A J (p] pv) ey dx (47)
o
in which Py = peak pressure following column separation. The void fraction Esh

results from the pressure distribution in front of the pressure rise,

p=p,*= (.= p) (48)

S (49)
X

. L
WIV 5 5 Py Vi . in ” (50)
r 1
V., Dissipation Caused by Wall Friction. - As an approximation, the dissipation

by wall friction is estimated starting from the rigid-column assumption during
separation. The work done on the wall by friction is then given by
TI
W, = J mDhru dt 51
t

o
in which t = wal! shear stress,

t =50, ulul (52)

in which contributions caused by the unsteadiness of the flow are disregarded.
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Assuming a linear velocity course from u = Uy fou = ~u, yields
T1—|/a[ , UOS .
u“luldt = —Z——-(T1 - fo -5 (53)
t +1/a '
o |

Rigid-cotumn theory gives: du/dt = ~(p_ = p )/p |, or
Pr v |

+, -t —-ZJ-: 2u p‘i (54)
1 ° g °p. P,
Substituting these equations into Eq. 51 yields (p, << P.)
0 2, 4 : 0 2 " 4
LA 2% To | | o
Wy~ ™ 575" P (55)
r r
Since
py =P P, ~ P
1 r. U < o) r
03 e} o8
the energy loss caused by wall friction is approximated by
o z Py P Py = P
LA | 1 1 r.4 o) r.4
WV ~ 'Zl-—D-V[ ._,....p = _——p 5 )y ———Wp = ) (56)
r P Il
Eq. 54 is replaced by
p[' Py 7P Py 7 P 21 ! Py ™ P
f]"fo’:""‘-‘( 3 + 3 )+—a'—='5—‘———5-'—-“ (57
Pe 247 1% Lo r

The Energy Balance. - The energy balance reads in the case where only the

influence of free gas is considered
W o+ W o+ W = W + W (58)

In The case where only wall friction is considered, terms le * le 2 must

be replaced by WV.

Substituting the expressions obtained for the contributions to the energy
balance yields an equation in which Py is the only unknown, provided the

amounts of free gas, represented by My and Wy, are known.
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Comparing the orders of magnitude of the terms in Eq. 58, it is found that
generally the free-gas terms (those containing u on the left-hand side,

u < 10 N/m2 in most practical cases) are small with respect to those on the
right-hand side. This means that usually the damping effect of free gas is
caused mainly by dissipation at shock waves, and that changes in elastic
energy (W‘[) and storage capacity (part of W!ll) of the free gas are of minor
importance. This also explains the relatively small influence of gas release
at the column separation cavity, Furthermore, the damping caused by wall fric-
tion turns out to predominate at high pressures pg and Py (large velocities),

whereas at lower pressures the damping caused by shock waves Is more important,

After the peak pressure p, has been determined from Eq, 58, this pressure can be
seen as a starting value of a next column separation. Replacing in Eq. 58 Po by
P> and adjusting u-values, makes the computation of a following peak pressure
possible. Thus a complete sequence of pressure peaks can be determined.

An Example., - Fig. 9 shows some results obtained from the energy balance,

Eq. 58. The assumed data of the pipe are

length 200 m

diameter 0.10m

A 0 or 0,02

a 1000 m/s

o 1000 kg/m3

Pr " P, 105 N/m2 (atmospheric pressure)

The magnitude of the first pressure peak is 6 x 105 N/m2 in all cases. The gas
release parameters chosen are those of the preceding section., The grid size,
Ax, in The numerica! computations, fthe results of which are also shown in Fig., 9,

was 4,00 m, the time step + = 0.004 s.

Fig. 9a shows a comparison between the theoretical pressure peaks and those com-
puted numerically in the case where wall friction and gas release are disregarded.

Numerical damping of any significance is not found.

Gas release is considered in Fig. 9b, The quantities of released gas appearing
in the energy balance were adopted from the numerical computation concerned,
i.e. Hy o= 0.003, wy = 0.4, Uy = 0.75 N/mz. Although the agreement between energy
balance and numerical computation is not complete, it can be concluded That the
damping found in numerical computations including gas release has a physical
origin, viz. dissipation caused by shock waves., Apparently, the contribution of

numerical damping is small,
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In Fig. 9¢c the results of the energy balance point to a weak damping in  the

case where only wall friction is assumed fo occur,

1 2

: =+ - — numerical computation

Fig. 9. Theoretical and computed damping of pressure peaks following
column separation, a. no wall friction, no gas release, b.

damping caused by gas release only, c. by wall friction only.

SUMMARY AND CONCLUS!IONS

A mathematical model has been considered in which the influence of gas release
on transient cavitating flow and column separation in pipelines is taken into
account. A reliable numerical mefthod has been developed for the computation

of the wave propagation and cavitation phenomena following pump failure, valve
closure, efc. Good agreement has been obtained with available experimental

results concerning column separation.

Including gas release in the theory has no great influence in cases where only
cavitating flow occurs, whereas the influence is considerable in cases where column
separation together with cavitating flow occurs. Gas release in the cavitating flow
region adjacent to a column separation cavity, which region will occur if the waves
are steep (e.9., sudden valve closure), diminishes the duration of the subsequent
column separations and the maximum pressures following column separation. The

related energy loss can be attributed fo dissipation caused by shock waves pro-
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pagating in the bubble mixture. Gas release at the separation cavity has a different
effect: the duration of column separation increases, and the pressures increase siight
The former process is sensitive to the amount of gas released, whereas the latter is

not.

If the valve closes, or the pump decelerates, slowly with respect to the wave
travel time of a disturbance in the pipeline, the liquid column will behave as

a rigid column during the first column separation, and no cavitating flow region
will be generated. This means that gas release then takes place mainly at the
column separation, so that the duration of column separation increases somewhat,
and no additional damping (besides damping caused by friction) of the pressure
peaks following separation is found. Swaffield (15) considered such a case. The
more favorable situation in which this damping does take place, will occur if
the valve cliosure or pump shut down is relatively fast, like, e.g., in the

experiment carried out by Balfzer (1),

Since gas release depends on a number of parameters about which fittle is known
(e.g., numbers of bubbles Ny and Nes and relative bubble velocities), the
quantitative prediction of the amount of gas being released in an arbitrary
case, and its influence on the maximum pressures following column separation,

requires further experimentation, probably on prototype scale.
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APPENDIX

Shock Waves. - Before considering shock waves, some attention is devoted to
continuous waves. The laws of conservation of mass and momentum for one-

dimensional waves in an isothermal filuid are

ap
oD _
5F- * 5w (P W) =P (A1)
and
3 3 2 ~
T (pf u) + 5;—(pf U=+ p) = Q (A2)

in which pg = density of the fluid, P = production of mass, and Q = production
of momentum. As regards the equation of state, it is assumed that the density
depends on the pressure only,
The equation of motion, obtained by multiplying Eq. Al by u and subtracting from
Eq. A2, can be written

p ;
%%.+ 3|12, J ap' . l_.(Q - Pu) (A4)
ax |2 (p! P
pelph) f

The characteristic directions, which represent the velocity of propagation of a

small disturbance, are given by

v -uzra (A5)

The compatibility conditions along the characteristics are

o
vl
(a9

|
!

:pf“=(a1u>P:Q (A6)

[,
a
=+
L]
-+

Next, discontinuous waves or shock waves propagating in the same fluid are
considered, A possible change in temperature of the fluid crossing the shock
wave is assumed to be so small, that its influence on the fluid properties may

be disregarded,
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The derivation of shock conditions is simplified by attaching the coordinate
system to the shock wave, so that a steady-state situation results. There=-

fore, a new fluid velocity is introduced according fo

-u (A7)

Vo= agy,
The law of conservation of mass then gives (Fig. A1)

v, = P éx (A8)

Pe2 V2 7 Pe1 Yy

in which subscripts 1 and 2 refer to conditions in front of and behind the
shock wave, respectively. Since the shock is conceived of as a discontinuity,
+the width 8x of the region considered can be taken as infinitesimal, so that

production terms, in this case P 6x, vanish. Eq. A8 then changes o

v, =0 (A9)

Pe2 Vo T Ps1 Yy

The law of conservation of momentum gives, again omitting the production term

2 2
[pfz Vot pz] - [pﬂ Vit * Pwilz 0 (ATO)

Fig. Al. Notation for shock wave, a.fixed coordinate system, b.

coordinate system attached to shock wave.

b
The loss, WSh

follows from an energy balance,

, of hydrodynamical energy per unit mass crossing the shock wave
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p
o v Wh s i—p v3 + Dy Vy = P v ? 'd(l—-) +
£2 V2 "sn TP V2 P PV T Pip V2 Pty

P
L Vo e py v, - v 1 ptati | = 0
Z %1 1Y T Pt o

The first terms in brackets represent the transport of kinetic energy, the
second the work done by the pressure, and the third the fransport of elastic
energy (elastic energy =—f p'ds; considering a unit mass gives spg = 1, and

ds = d(1/p.)). Integrating the latter Terms by parts, and using Eq. A9, yields
f g &g

P p
2 1
* 1.2 dp' 1|1 .2 dp' 1
Wn [7 Vo * J pf(p’) } [7'V1 * J pf(p') }_ 0 (ATD
Eqs. A9, A10 and All are the equivalents for discontinuous waves of Egs. Al, A2

A4 for continuous waves, However, in Eq. A1l the dissipation term W:h had to

be inftroduced in order to avoid incompatibility of the equations. EGs. A9 and A10

give
Peo Py — P Peqy Po T P
v? = —iz-—éL—f3~L~— and vg = —il-—él—trl——— (A12)
Pr1 P2 T P11 P12 Pr2 T P11
Substituting these results into Eq. All gives for the energy loss
P2
X dp' 1.1 1 ~
Wep, = I pf(P') + (pH + B?Ed(pz Py) (A13)

P
The last term in +h;s equation can be seen as an approximation of the integral
according to the trapezium rule. Consequently, th behaves as (pz-pi)3 when P5>7Py
tends to zero. This result shows that, apart from possible contributions of pro-
duction terms, there is no energy loss in the case of continuous waves, If the

wave is discontinuous, however, in general dissipation does take place.

Since any change in the hydrodynamical energy of the fluid crossing a shock wave

must be a decrease (Second Law of thermodynamics), the condition

Weos0 (A14)

sh
must be satisfied. From £q. A13 it then follows that the shock is a compression
shock (p2 > p1) if
¢ 1 | da
— (—) > 0 or, using Eq. A5, ——= + = > 0 (A15)

dp2 Pt Dfa dp
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whereas it is a rarefaction shock (p2 < p1) if

2

d 1 1 da
—5 (—) < 0 or — + =—=< 0 (A16)
dp Py e dp

Disregarding production terms in Eq. A6, the compatibility condition along a
characteristic in negative x-~direction is du/dp = 1/pfa, so that along This

characteristic

Q.
[o)]

1 d
¥ + 5 HB.(U + a) (A17)

l

Q.

According to Eg. A5 the celerity of a small disturbance in positive x-direction
is equal to (u + a), In view of Eq. 17, condition A15 therefore also expresses
that a compression wave steepens, and a rarefaction wave flattens, during ifs
propagation, Consequently, only a compression wave can then develop into a
shock wave. Condition A16 expresses the same for a rarefaction wave, Thus it is
found that the energy condition, Eq. Al14, is equivalent with the condition for

the formation of a shock wave.

The celerity of a shock wave is found from Egqs. A7 and Al12,

(A18)

When Py T Py tends to zero (and consequently U, = U, and Pen ~ pf1), the

celerity of infinitesimal waves, given by Eq. A5, is found again.

Application to the Bubble Mixture. - Comparing Egs. 6 and A1, and Egs., 7 and

A2 shows that in fthis case

=p (1= P (1 =) (A19)
e

Ot

in which P is the (constant) liquid density at zero pressure. In Eg. A19 The

density 09 of the gas is disregarded, which is justified provided
Epg < (1 -0)p, (A20)

Assuming a constant amount of free gas per unit mass of the fiuid, the relation

between the void fraction, o, and pressure is given by
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q = X (A21)

which reduces to Egs. 11 and 12 if a << 1, This somewhat restricting assumption
is not made here.
The celerity of a small disturbance, resulting from Eqs. A5, A19 and A21 is

given by

.2 (A22)
U

p -
. sz P, * ¥ o,
sh P=P, 4P
P -
| (A23)
1 (P TPty Pp =Py m ¥
+—2- — + -
Py by P Po = Py Py
etz Ltz

x _u |1 P2TR PRy P2 7 Py
o, 127, 7, ZF, = My ¥
1 2 v 1 v

(A24)

+

12 [P27P ]

6

which shows that only compression shocks (p2 > p1) are possible in this case. The
last term in Eq. A24 does not vanish when the free-gas content, u, tends to zero.
It represents the theoretical possibility of shock formation caused by convective
effects, and is completely negligible., The remaining expression is essentially
that derived by Campbell and Pitcher (4) for the entropy increase (multiplied by
temperature) across a shock wave. These authors also show that the increase in
temperature of a mass of fluid crossing a shock wave is negliglibly small.

In cases where p, <<p, the energy loss becomes large, and can then be approximated
1 2 9 9

by

W oo tu P2 TPy
sh Zp[pl"pv

it

(A25)

The volume of the unit mass is equal to 1/(1 - E})p| in front of the shock, The

energy loss W;h per unit volume of the fluid in front of the shock then amounts to
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(see Eq. A21)

e _
W= gy (py = py) (A26)

Egs. A18, A19 and A21 give for the shock celerity ach

Do = Py _ 1 -4 o,
L 2 e 2 LT B S B (A27)
(a_ - u)? 5 ? T-5 a” H
P1%%sn 1 P19 P19
and
Py, — P 1~ a oo
1 2 (1 2]y 2ot .12, (A28)
Y 77 T, 5 T
P lagy = Uy 0, 0,3

For small void fractions and (p2 - p1) <<pla% these expressions can be approximated

by
o,a,
! 5 = - ! 7 ! = * ; 2 (A29)

pl(aSh - u1) p](ash - UZ) P2,
Egs. A6 and A8 yleld

(Pgp = 0gq)Bgy = P U 7 Pgy Uy (A30)
Using this result, Egs. A6 and A9 give

(p u, =~ p,, Uda_, = (p u2 + p,) = (p u2 + ) (A31)

2 "2 7 Pf1 T17%n f2 42 7 P2 191 PPy

Eqs. 9 and 10 are obtained by substituting Eg. A19 into the latter two relation-

ships.

Example of Energy Loss Caused by & Shock Wave.- In order fo illustrate the results

obtained in the preceding sections, fthe following situation is considered: a horizor
tal pipe containing liquid and vapour at rest is closed at one end (x = 0) and con-
nected to a constant-pressure reservoir at the other end (x = I, p = pr); the valve
at x = | is closed, see Fig. A2, At t = O this valve is opened instantaneously. As
regards the position of the vapour void two cases are considered,

a. fthe vapour is concentrated in a single cavity at x = 0 (Fig, AZa)

b. tThe same volume of vapour is uniformly distributed along the pipe (Fig. AZb)
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Fig. A2. Pipe containing void, a. local cavity, b. disfributed cavity.

For the sake of convenience the elasticity of the Iiquid and the pipe wall is dis-
regarded (a‘ + «) as long as vapour is present in the pipe. The vapour pressure
and vapour density are put equal to zero; the volume, Vv’ of vapour is relatively

smal | (Vv <<V'). No free gas Is present. The two cases are discussed briefly.

Case a.

Rigid-column theory gives

2
. du _ d’s
P = -0 A| TN dfz

P p Pl
U= -t and s = - LR Tz = - %-—i— u2
ol 2ol r

AT the instant (¥ = t_ ) of cavity closure, s is equal to -VV/A, and

v
— L
\ p!

The water-hammer pressure (pa) following column separation is

Py =P, 3 lul
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Case b.
When the valve is opened a shock wave starts to propagate in negative x-direction.

Since in This case p, = P.» Py = 0, up = 0 and

Vv
DIH"V!—), p=0
Pe =
o, » p>0
Eqs. A13 and Al4 yield
Fo L P
sh 2, |
N
sh VV pl
v.p v, P
r
“b=’<“”"]‘*"*"/“vv/v;’\/v—‘;£2‘\’%5"
/1 - Vv/V; v 7 [
in which U, = " Uy T fiquid velocity behind the shock wave. The shock wave

arrives at x = 0 at t = ¥,
v
T =)w._.\_’_p_L
b ash V§ pr

At this moment the liquid velocity is equal to u,_ in the whole pipe, while all

b
voids have vanished, Consequently, a water-hammer pressure

P, = o3 lul
results,

Since |ub| is found fo be equal to iua]//f; +he water-hammer pressure in case b

is also lower by a factor v2. Also the duration of cavitation in case b Is shorter
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by this factor (+, = 1. /V2).
The total energy loss in case b is
x 1

(Vl - VV) p! WSh = §-VV pr
In both cases the work done during cavitation at x = | is equal fo var' This
means that the energy loss must be equal to the difference in kinetic energies
at the moment cavitation ceases to exist. This difference is

1 1 2 1 2 2

ol p] u” V. - 5P Uy v = —Z—A(ua - ub)p‘ v

J ]

Substiftuting the obtained results for Uy and Uy shows tThis to be frue indeed.

After the first pressure peak, in both cases column separation occurs at x = 0;

the situation with distributed voids does not repeat itself spontaneously.

Fig, A3 presents a diagram of the pressure courses at x = 0 in cases a and b,

plot) r

'

et |
b s e e ek

S M S |
At |

time
R

Fig. A3. Pressures at the closed end in cases a and b.
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NOTATION

area of cross-section of the pipe

wave celerity

constant in compatibility equation
diameter of the pipe

modulus of elasticity of the pipe wall material
function in gas-release relationship
gravitational constant

indices

moduius of compressibility

universal gas constant

length of the pipe

quantity of released gas

number of bubbles

production of mass

absolute pressure

production of momentum

variable in conservation law

smoothened variable

bubble radius

absolute temperature

displacement

time varijable

bubble velocity with respect to the surrounding liquid
liquid velocity

fiquid velocity with respect to shock wave
volume

thickness of the wall of the pipe

work or energy

energy loss per unit mass

coordinate along the axis of the pipeline
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n

0
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local void-fraction
cross—-section averaged void-fraction
diffusion coefficient

proportional ity constant in Henry's law

increase of a variable across a shock wave

mesh size, time step

parameter in smoothening operator
friction parameter

free-gas content = Ny Nb kT/A
density

dummy variable, wall shear stress

angle of inclination of the pipeline

bubble

column separation

fluid

fiquid

reference value, reservoir pressure
saturation (dissolved gas)

shock wave

vapour







