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Abstract

In this report we study Markov processes on compact and connected Riemannian manifolds.
We define a random walk on such manifolds and give a direct proof of the invariance principle.
This principle says that under some conditions on the jumping distributions (i.e. the distri-
butions of single steps), the random walk converges to Brownian motion when space is scaled
by 1

N , time by N2 and N tends to infinity (which has been shown with more general methods
in [10] and [2]). To prove this, we show convergence of the generators on the set of smooth
functions and we apply the Trotter-Kurtz theorem (as is done in [2], in a rather sketchy way
and in a slightly different setting). We also show convergence of the corresponding Dirichlet
forms. Then we show that the conditions on the jumping distributions are satisfied if they
are compactly supported and have mean 0 and a covariance matrix which is invariant under
orthogonal transformations.
Next, we define random grids on a Riemannian manifold and we define random walks on them.
We show that their Dirichlet forms converge to the Dirichlet form of Brownian motion, using
the results above. We also prove a result that is a bit weaker than convergence of the generators
in this case.
Finally, these grids allow us to define the Symmetric Exclusion Process (SEP) on a manifold.
Using the convergence results above, we follow a line of proof of [18] to show that the hydro-
dynamic limit of the SEP satisfies the heat equation. Some details still need to be filled in,
but we believe that this method will allow us to study interacting particle systems and their
hydrodynamic limits on Riemannian manifolds.
Before all of this we start with an introduction to Markov processes, their semigroups and gen-
erators. In particular we focus on time-reversible (or symmetric) processes and the Dirichlet
form with its properties. We also give an introduction to Riemannian manifolds and related
notions.
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It concludes five years of my life in which I have been introduced to mathematics by numerous
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1 Introduction

In this report we study Markov processes on compact and connected Riemannian manifolds.
In Rn, there are a lot of well-known results about Markov processes. Two of them are the so-
called invariance principle and the fact that hydrodynamic limits of certain interacting particle
systems are given by the heat equation. In this report we deal with the question whether these
results can be generalized to spaces that are only locally like Rn, i.e. to manifolds. Section 2
and 3 and the appendix contain background material. Section 4, 5 and 6 contain our own
research. In this section we will introduce the invariance principle and hydrodynamic limits in
Rn, motivate why they are relevant and speak about our aims and results in the context of a
manifold. We will also give an overview of the content of all sections.

1.1 The invariance principle

The invariance principle in Rn
Let µ be a distribution on Rn with mean vector 0 and with the identity matrix as covariance
matrix. We define a random walk X in Rn as follows. The process starts at some initial point,
say 0. Every time the process waits for an exponential time with parameter 1 and then jumps
by adding a vector that is drawn from µ (all independently). The resulting process is a Markov
process. Now suppose that for every N ∈ N we obtain a scaled process XN as follows.

• Space is scaled by a factor 1
N , i.e. at every jump we add 1

N times the random vector.

• Time is scaled by a factor N2, i.e. the rate of the exponential distributions is N2.

The invariance principle (or Donsker’s theorem) states that, as N goes to infinity, the processes
XN converge in distribution in the path space to Brownian motion. In particular, XN

t converges
to the normal N(0, tI) distribution, where tI is t times the identity matrix. This is a version of
the central limit theorem.
To understand intuitively why these scales are the right ones, consider the same situation in R.
Then µ has mean 0 and variance 1. Suppose that we scale space by a factor 1

N . Then the jumps
have variance 1

N2 . Now scale time by a factor N2, so the exponential distributions have rate
N2. Then in the time interval [0, 1] we expect around N2 jumps. This means that the variance

at time 1 is about N2

N2 = 1. Since Brownian motion at time 1 has a N(0, 1) distribution, this is
the variance that we want. These are heuristics, but they can be made precise. If we scale time
by a larger factor than O(N2), the variance goes to infinity as N grows. If we scale time by a
factor of o(N2), the variance goes to 0, so the limiting process will be identically 0.

Motivation
There are multiple reasons why such a result is important to obtain, also in the context of a
manifold. First of all, this kind of approximation must be possible for any sensible definition
of Brownian motion. In other words, if this does not hold, one should start wondering whether
the definition of Brownian motion that is used is a good one. The reason is that the jumping
process formalizes the idea of a combination of a lot of very small and independent movements,
which is the main motivation and intuition behind Brownian motion (think of the famous pollen
grains in the water of Robert Brown). We want Brownian motion to be the limit (in some sense)
of such processes.
Further, such a result is necessary for simulation. If we simulate Brownian motion by using the
jumping processes described above, we want to be sure that these indeed approximate Brownian
motion in some sense.
The third reason is that Brownian motion is a very important and basic process in the sense that
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a lot of other processes and partial differential equations are related to it or even constructed
with it. Having an approximation result for Brownian motion can therefore be a handy tool for
proving other results, such as the macro behaviour of interacting particle systems (we will see
that the results of section 4 will be used for a result that is a bit different in section 5, which
will be key to our main result in section 6).

Generalization to Riemannian manifolds
We can now ask whether the same result is true in some curved space M . First of all we need
to properly define the processes that are involved. Since we need to walk ’straight’ in a certain
direction, we need to assume that M is a Riemannian manifold. Moreover we need to assume
that it is compact and connected to avoid technical difficulties. All the necessary notions in this
context are defined in section 3. In particular, section 3.3 describes how Brownian motion can
be defined on a manifold. Now we associate to every point p of the manifold a distribution µp
on the tangent space TpM . We define a jumping process X as follows. Every time the process
waits an exponential time with parameter 1, then picks a vector from TpM according to µp and
follows the geodesic in the direction of this vector for time 1 (again, all independently). Now
we can again obtain scaled versions XN as follows.

• Space is scaled by a factor 1
N , i.e. at every jump we follow the geodesic for time 1

N .

• Time is scaled by a factor N2, i.e. the rate of the exponential distributions is N2.

It has been shown in [10] and in [2] that under some restrictions on the jumping distributions
we have the same result as in the Euclidean case: the processes XN converge to Brownian
motion in distribution in the path space. However, [10] uses a rather general method in a much
more general context and [2] defines the process a bit differently (regarding both the current
point and the next jump vector as the current state of the process) and uses a very specific
jumping distribution (the uniform distribution on the unit vectors). Moreover, the proof in [2]
is rather sketchy. We would like to understand more clearly why and under which conditions
the convergence result holds. This is why section 4 is dedicated to give a direct proof in the
situation that was sketched above.

Overview of section 4
We study the convergence from two different perspectives. In section 4.1 we show convergence
of the generators of the processes and we use the Trotter-Kurtz theorem (as described in sec-
tion 2.1). In section 4.2 we show convergence of the Dirichlet forms (in fact, of expressions
that are proper Dirichlet forms when the underlying processes are symmetric). While follow-
ing these proofs, we encounter several constraints that we need on the jumping distributions.
In section 4.3 we discuss which distributions satisfy these constraints and provide examples.
We show that a jumping distribution must be compactly supported and in local coordinates
the mean vector must be 0 and the covariance matrix must be invariant under orthogonal
transformations. In that case the processes converge to Brownian motion that is speeded by a
constant. In particular the compactly supported measures that are invariant under orthogonal
transformations have this property.

1.2 Hydrodynamic limits and grids

Hydrodynamic limit in Rn
Next we turn to a problem that seems different, but will turn out to be very much related. First
we consider Rn again. Let G = Zd be the grid consisting of the points with integer components.
We can define the Symmetric Exclusion Process (SEP) on this grid as follows. First place some
(possibly countably infinite) amount of particles on the grid in such a way that there cannot
be more than one particle in a point. Then each particle jumps after independent exponential
times (independent of the other particles) with the restriction that jumps to already occupied
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points are cancelled. Let ηt denote the (random) configuration of particles at time t. Now we
scale time and space again and obtain ηN for any N ∈ N.

• Space is scaled by a factor 1
N , i.e. we consider the grid GN = 1

NG.

• Time is scaled by a factor N2, i.e. the rate of the exponential distributions is N2.

Instead of looking at the amount of particles, we can study their (rescaled) mass distribution (in
a way that will be made precise later). Suppose now that at time 0 this distribution converges
to an absolutely continuous distribution ρ0dx where 0 ≤ ρ0 ≤ 1. This situation is studied
in [18, Chapter 8]. The author proves that under some restrictions on the jumping distribu-
tion (symmetry, translation invariance and bounded jumps), at every time point t the particle
distribution converges to some absolutely continuous ρtdx. Moreover, t 7→ ρt solves the heat
equation in Rn. The limiting process is called the hydrodynamic limit.

Motivation
The main point of a hydrodynamic limit is that it allows us to move from a micro scale (in-
dividual particles) to a macro scale (densities). For example liquids and gasses, but also heat
can in some way be represented by particles that are moving around (or oscillators exchanging
energy). There are far too many particles to do calculations or simulations with all of them.
Moreover, we are not always interested in individual particles, but rather in properties on a
macro level. For instance the pressure of a gas or how quickly heat spreads through an object.
For this purpose a well known tool is to take the limit of the amount of particles to infinity and
treat it like a continuum, of which the behaviour is usually described by a partial differential
equation. In this way we loose track of individual particles, but we obtain a (deterministic)
description of macroscopic properties. In some sense, this is an infinite dimensional version of
the law of large numbers.
To do all of this, we need a way to describe the behaviour of the particles and their interactions.
First of all, we discretize space by using a grid. We will motivate that shortly. Then we model
the particle motion with the Symmetric Exclusion Process. In the SEP all particles want to
perform random walks. The interaction is given by the fact that there cannot be multiple par-
ticles at the same site (we call this exclusion). This models a repulsive force between particles.
The SEP is interesting because it has interaction, but it is basic enough so that the methods of
section 6 work.

Grid on a manifold
We would like to have the same result on a manifold. However, the first problem we bump on is
how to define a suitable grid on which the particles have to move. In Rn their is a very natural
grid and a very natural way to make the grid finer. On a manifold, there does not seem to be
a natural way to do this. One might consider not to use a grid at all and just make more and
more particles move on the manifold itself. However, this leads to several technical difficulties,
such as properly defining and showing that no piling-up of particles in a finite region occurs.
Moreover, it would not make much sense to define the SEP in this way. Since the probability
of jumping to an occupied spot would be 0 for every particle at every jump, the particles would
be performing independent random walks and the interaction would be lost.
To understand better when a grid is considered a good grid, we need to take into account what
we will use it for. We want to copy the proof from [18, Chapter 8]. We will see (in chapter 6)
that a crucial step in this proof is that the generators of random walks on the grids converge
to the Laplace-Beltrami operator (the generator of Brownian motion) and that the Dirichlet
forms converge to the Dirichlet form of Brownian motion. Therefore this is the property that
we look for when choosing a grid. For certain objects (especially for some nice surfaces) it is
easy to imagine some sort of grid on them. One could think of using for instance triangulations
(as in [17]). However, it is rather hard to make such a grid precise and to calculate what the
correct jumping distributions are to converge to Brownian motion (and triangulations lead to
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a lot of technicalities). Moreover, we would like to have a general approach for every compact
and connected Riemannian manifold.

Random grid
The approach we introduce here is to independently sample a sequence of points from the uni-
form distribution on the manifold (which is possible by compactness). We then define the grid
GN as the first N elements of the sequence (note that this grid is random). Then we define the
jumping rate from a point p to a point q on the grid GN as k(d(p, q)/ε), where k : [0,∞)→ [0,∞)
is a decreasing function that we will call a kernel and ε > 0 is the bandwidth. This idea comes
from papers like [19], where it shown that the graph Laplacian of those grids converges to the
Laplace-Beltrami operator when first N goes to infinity and then ε goes to 0. However, the
authors in [19] assume that the manifold is imbedded in a Euclidean space and they use the
Euclidean distance, which we do not want.

Overview section 5
In section 5.1 we introduce and motivate the random grids and the way in which we define
random walks on them. Then in section 5.2 we prove convergence of the Dirichlet form. Here
we follow the idea of the proof in [3, Section 4], where the convergence of the same object is
studied (under a different name). However, we do not use imbedding in a Euclidean space,
which complicates the proof a lot. Then in section 5.3, we study convergence of the generators
and we obtain a pointwise convergence result. Moreover, in section 5.2 and 5.3, we show that
there exists a fixed sequence in M for which the convergence results hold. In fact, the set of
sequences for which this is true has probability 1 under the product of uniform measures on M .
In these proofs we use the results of section 4.

Overview section 6
Now that we have a grid to work with, we can try to follow the proof of [18]. In section 6.1,
we describe the Symmetric Exclusion Process. Then in section 6.2, we introduce the initial
definitions and assumptions and we explain in more detail that the convergence result we look
for is weak convergence of random trajectories of measures. We also introduce the weak version
of the heat equation, which must be satisfied by the hydrodynamic limit. The aim of section 6.3
is to complete the proof as is done in [18]. Some details are still to be completed, but the main
line of the proof holds and is described in this section.

1.3 Introduction to background theory

Since we deal with a lot of concepts from the theory of Markov processes and corresponding
operators and from Riemannian geometry, section 2 and 3 introduce these topics. The appendix
contains a more general introduction to smooth manifolds.

Markov processes, generators and Dirichlet forms
We study Markov processes mainly through their associated generators and Dirichlet forms.
From these two the generators are most commonly used. However, in some cases the Dirichlet
form can be an easier object to work with. This is why we chose to also use this point of view.
Section 2.1 is about Markov processes, semigroups, generators and in particular symmetric pro-
cesses. In section 2.3 we introduce Dirichlet forms and their relation to Markov processes. To
better understand this somewhat less natural concept, this section is preceded by section 2.2,
in which Dirichlet forms are presented in the discrete context through their connections with
electrical networks.

Smooth manifolds and Riemannian geometry
Section 3 contains an introduction to basic concepts from Riemannian geometry that we will
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use later. In section 3.1 the Riemannian metric is introduced, along with geodesics and the
exponential map. Then section 3.2 deals with connections and curvature. Since we will work
with Brownian motion a lot, section 3.3 describes Brownian motion on a manifold and some
related operators. In all of this we assume that the basic concepts from differential geometry
(such as the tangent space, differential forms and integration on a manifold) are known. The
appendix contains an introduction to these more general topics.
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2 Markov processes and Dirichlet forms

In this report we will study stochastic processes via Dirichlet forms. In the following we will
first recap some definitions and theorems involving Markov processes and their semigroups. We
will zoom in on symmetric Markov processes, since these are the processes that correspond
to Dirichlet forms. Then we will look into the elegant connection between random walks and
electrical circuits in order to better understand the theory of Dirichlet forms and their relation
to Markov processes, which will thereafter be presented.

2.1 Markov processes

We start with some basic theory about Markov processes and their semigroups. Then we will
have a closer look at symmetric processes. These descriptions are based on [14, 16, 23].

2.1.1 Markov processes and semigroups

Markov processes
Let (S,A ) be a measure space and let (Ω,F , {Ft}t∈T ,P) be a filtered probability space. Denote
by bA = {f : S → R|f bounded, A /B-measurable} the space of bounded, measurable, real-
valued functions on S.

Definition 2.1 . Recall that we call a stochastic process X = {Xt}t∈T on Ω that is adapted to
the filtration {Ft}t∈T and takes values in S a Markov process if the following holds:

∀s, t ∈ T with s < t and ∀f ∈ bA : E[f(Xt)|Fs] = E[f(Xt)|Xs] (1)

We will call S the state space of the process. This definition says that when estimating the
future given the past, it suffices to know the state at the present time. This expresses that a
Markov-process is memoryless: how the process behaves at a certain time only depends on the
past through the state at that time.
Write Pµ for the law of the process started from initial distribution µ and denote the corre-
sponding expectation by Eµ. In the case that µ = δx for some x ∈ S we will simply write Px
and Ex.

Strongly continuous semigroup
Now additionally assume that S is a compact metric space. Write C(S) for the continuous,
real-valued functions on S. Also assume that T = [0,∞). For every t ∈ T and f ∈ C(S) define
Stf : S → R by Stf(x) = Ex[f(Xt)]. If Stf ∈ C(S) for every f ∈ C(S), St is an operator on
C(S) and we call X a Feller process. We will assume this from now on. We will also assume
that there exists a right continuous version of the process (i.e. the paths are almost surely right
continuous) and that this is the version that we are working with. Moreover, we will assume
that X is time homogeneous, which means that the process {Xt+s|Xt}s≥0 has the same distri-
bution as the process that starts from the distribution of Xt at time 0. Before we give some
properties of the collection of operators {St, t ≥ 0} that we just defined, we need the following
definition.

Definition 2.2 . A collection of bounded, linear operators {Tt, t ≥ 0} on a Banach space X is
called a strongly continuous semigroup if the following hold:

• T0x = x ∀x ∈ X

• Ts(Ttx) = Ts+tx ∀s, t > 0, x ∈ X

• ||Ttx− x||X → 0 as t ↓ 0 ∀x ∈ X
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This definition requires the semigroup property: first applying Tt and then Ts should be the
same as directly using Ts+t. The strongly continuous part concerns the last requirement: the
semigroup has to be right continuous at 0 with respect to the norm ||·||X (instead of for instance
only pointwise in the case that X is a function space). An important implication is that the
path {Ttx, t ≥ 0} is continuous everywhere for each x (this is easy to prove using the semigroup
property).

Proposition 2.3 . The collection of operators {St, t ≥ 0}, as defined above, is a strongly contin-
uous semigroup on (C(S), || · ||∞). Moreover, it satisfies:

• St1 = 1 ∀t ≥ 0

• f ≥ 0 =⇒ Stf ≥ 0 ∀t ≥ 0, f ∈ Cb(S)

Here 1 denotes the constant 1 function and the inequalities are meant pointwise. With these
extra properties, we say it is a Markov semigroup.

Proof. The linearity is given by the linearity of expectation. Boundedness follows directly from

||Stf ||∞ = ||E·[f(Xt)]||∞ ≤ ||f ||∞. (2)

The property S0f = f ∀f ∈ C(S) and the additional properties that make the semigroup a
Markov semigroup are trivially satisfied. The semigroup property follows from:

Ex[f(Xt+s)] = Ex[Ex[f(Xt+s)|Ft]] = Ex[Ex[f(Xt+s)|Xt]] = Ex[Ssf(Xt)] = StSsf(x).

Here we first used the tower property of conditional expectation, then the Markov property,
then the time homogeneity and the definition of Ss and the last equation is just the definition
of St.
Now only the strong continuity remains. Since, when starting from x, X0 = x a.s., it follows
from right continuity of X that Xt → x a.s. as t ↓ 0. Since f is continuous, f(Xt)→ f(x). Since
f is bounded, we see from the dominated convergence theorem that Exf(Xt)→ f(x) = Exf(X0)
as t ↓ 0, so Stf(x)→ f(x) as t ↓ 0. This ensures pointwise right continuity in 0. To make this
into || · ||∞-convergence, a more advanced argument is needed. [14] directs the reader to section
1 of chapter IX of Yosida (1980).

Note that (2) in particular implies that St is a contraction on C(S).

Remark 2.4 . It is possible to extend this theory to cases where S is only locally compact.
However, it will in general not be possible to use the space of continuous function, so one can
use for instance the space of bounded, continuous functions Cb(S) or all continuous functions
that vanish at infinity C0(S) (f ∈ C0(S) means that it is continuous and for every ε > 0 there
is a compact set K ⊂ S such that |f | < ε on S \K).

Sub-Markov semigroup
The properties above can also be relaxed a bit, this is the following definition.

Definition 2.5 . Let {St, t ≥ 0} be a strongly continuous semigroup on C(S) such that for all
f ∈ C(S) and all t ≥ 0:

0 ≤ f ≤ 1 =⇒ 0 ≤ Stf ≤ 1.

Then we call {St, t ≥ 0} a sub-Markov semigroup.

The idea here is that a Markov process might not have infinite lifetime. For instance if a particle
runs off to infinity in finite time (by accelerating sufficiently fast) or if there is a positive killing
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rate (see example 2.11). This means that ’mass is lost’ with a certain probability along the way.
The corresponding semigroup is then

Stf(x) = Ex(f(Xt)1τ>t),

where τ is the lifetime of X. Since 1τ>t ∈ [0, 1], we see that the semigroup stays positivity
preserving, but even for positive constant functions it might be decreasing. Indeed, we have
St1 = Ex(1τ>t) = Px(τ > t). These properties are captured by the definition. Of course, a
Markov semigroup must also be a sub-Markov semigroup. This is indeed the case. Suppose
{St, t ≥ 0} is a Markov semigroup. If 0 ≤ f ≤ 1, then Stf ≥ 0 by the positivity preserving
property. Since 1− f ≥ 0 we see by the same property that St(1− f) ≥ 0, which implies that
St1 ≥ Stf . In other words: Stf ≤ 1. Further, it is easy to show that a sub-Markov semigroup
with the additional property that it maps 1 to 1 is a Markov semigroup.

Correspondence process and semigroup
There is also a converse to 2.3: every Markov semigroup has a Markov process associated to it.
This is theorem 1.5 in [14]:

Theorem 2.6 . Suppose {St, t ≥ 0} is a Markov semigroup on C(X). Then there exists a unique
Markov process {Xt, t ≥ 0} such that ∀t ≥ 0, x ∈ X, f ∈ C(X):

Stf(x) = Exf(Xt).

We thus have a one-to-one correspondence between Markov semigroups and Markov processes.

Generators and the Hille-Yosida theorem
We will now add another operator to this relation.

Definition 2.7 . Denote

D(L) = {f ∈ C(S) : lim
t↓0

Stf − f
t

exists in C(S)}.

Now define L : D(L)→ C(S) by

f 7→ Lf = lim
t↓0

Stf − f
t

.

We call L the generator of S and D(L) its domain.

The generator can be regarded as the derivative of the semigroup at 0. In this way it prescribes
the behaviour of the semigroup in an infinitesimal time interval. Intuitively, knowing the gen-
erator of a Markov process should be enough to know the whole process. Indeed, at every time
point, the process is memoryless and can be regarded to start again from that point. Since

Lf ≈ S∆tf − f
∆t

=⇒ S∆tf ≈ f + ∆tLf (3)

for ∆t << 1, it might be possible to approximate the semigroup by applying this formula
involving only the generator over very small time intervals:

St+∆tf = S∆t(Stf) ≈ Stf + ∆tLStf,

suggesting
St+∆t ≈ St + ∆tLSt.

We see that St grows proportionally to itself times a ’factor’ L, which leads to the (at this point
formal) expression:

St = eLt.
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In this way the generator determines the semigroup and we have seen that the semigroup
determines the process. These (rather heuristic) arguments turn out to arrive at the right
conclusion. In fact, for a bounded generator L, one can simply define the exponential function
by its series expansion

St = eLt :=

∞∑
n=0

(tL)n

n!

and check that is has the right properties. For unbounded operators this expression does not
necessarily make sense, so a more intricate argument is needed. The Hille-Yosida theorem (the-
orem 2.9 in [14]) gives this argument and ensures us that there is a one-to-one correspondence
between semigroups and their operators:

Theorem 2.8 (Hille-Yosida). The semigroup can be obtained from the following formula, which
makes a one-to-one correspondence with definition 2.7. For f ∈ C(S), t ≥ 0:

Stf = lim
n→∞

(I − t

n
L)−nf.

Note that for real x, we see:

lim
n→∞

(1− t

n
x)−n = lim

n→∞

1

(1 + −tx
n )n

=
1

e−tx
= etx,

so this definition intuitively matches with what we want. We will not give a sketch of the proof
here, but we will introduce an important key to it.

Resolvent

Definition 2.9 . For Markov generator L and λ > 0 define the resolvent R(λ, L) := (λI − L)−1,
where I is the identity operator.

Often, the I is left out and we write (λ−L)−1. This expression can be shown to be well-defined
for Markov generators and it is obviously directly determined by it. Now note that(

I − t

n
L

)−n
=

(
t

n

(n
t
I − L

))−n
=

(
t

n
R
(n
t
, L
))−n

,

so according to the previous theorem, the semigroup is determined by the resolvent of the
generator. Now, since the semigroup determines the generator and the generator determines
the resolvent, we say that they are in a one-to-one-to-one correspondence and the resolvent
captures all information of the generator and semigroup and hence of the underlying Markov
process. We obtain the correspondence diagram from figure 1.

{Xt}t≥0
R(λ,L) =
(λ− L)−1{St}t≥0

Stf(x) = Exf(Xt)

L

{R(λ, L)}λ>0

St = eLt

St = limn( t
n
R(n

t
, L))−n

Figure 1: Correspondence of process, semigroup, generator and resolvent.

To understand why the resolvent contain so much information about the semigroup, we note
that the equation

(λ− L)−1 =

∫ ∞
0

e−λtetLdt =

∫ ∞
0

e−λtStdt
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is valid for λ > 0, so the resolvent can be thought of as the Laplace transform of the semigroup.
Moreover, if St is a contraction, we obtain the following estimate:

||(λ− L)−1||∞ =

∣∣∣∣∣∣∣∣∫ ∞
0

e−λtStfdt

∣∣∣∣∣∣∣∣
∞
≤
∫ ∞

0
e−λt||Stf ||∞dt ≤

∫ ∞
0

e−λt||f ||∞dt =
1

λ
||f ||∞.

This estimate is crucial in the proof of the Hille-Yosida theorem.

Maximum principle
Another key element of the proof is the following concept.

Proposition 2.10 (Maximum principle). Let L be a Markov generator and let f ∈ D(L). Suppose
x ∈ S is such that f(x) ≤ f(y) for all y ∈ S. Then Lf(x) ≥ 0.
This implies that if (I − λL)f = g for some λ ≥ 0, we have

min
x
f(x) ≥ min

x
g(x).

Proof. Note that the minimums exist, since S is compact and f is continuous. The first state-
ment is true since Stf(x) = Exf(Xt) ≥ miny f(y) = f(x) for all t ≥ 0, so

Lf(x) = lim
t↓0

1

t
(Stf(x)− f(x)) ≥ 0.

The second statement follows from the fact that for x such that f(x) = miny f(y), we have
Lf(x) ≥ 0, so

min
y
g(y) ≤ g(x) = (I − λL)f(x) = f(x)− λf(x) ≤ f(x) = min

y
f(y).

Especially the second statement is an important characterisation of candidates for Markov gen-
erators.

Example: continuous time random walks
Now suppose that S is discrete (and hence finite, since we assume compactness) and the process
is a random walk with independent exponential waiting times. In that case we can write the
generator L as

Lf(x) =
∑
y

λPxy(f(y)− f(x)),

where λ is the jump rate and Pxy is the probability that the process jumps from x to y. The
proof of this is a straightforward calculation, where one conditions on the number of jumps that
has occurred up to time t and uses the fact that the probability of more than one jump is O(t2).
The domain of L is just the set of all functions on S (which is the same as C(S)).
Note that in general, speeding time by a constant c is equivalent to multiplying the generator
(or, as we will see later, the Dirichlet form) with that constant. Indeed, denoting the semigroup
that is generated by cL as Sc (for some generator L), we see

Sct = et(cL) = e(tc)L = Stc,

where S is the semigroup generated by L. Evolving for time t under the action of Sc thus
corresponds to evolving for time tc under the action of S. In this way it makes sense that the
jumping rate λ appears as a factor in the generator of the random walk above.
If the space is not discrete the generator takes a similar form:

Lf(x) = λ

∫
(f(y)− f(x))µx(dy).
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Here λ is still the jumping rate and for each x µx is a jumping (probability) distribution on the
state space. The domain is still the set of all continuous functions.

Importance of the domain
The following example shows that the domain of a generator is not just a technicality, but that
it really determines the behaviour of the process. In fact it shows how boundary conditions to
a process can be captured be the choice of the domain.

Example 2.11 . Let X be a process taking values in [0,∞) with generator L = 1
2
∂2

∂x2
and let in

this example C2 = C2[0,∞) denote the twice continuously differentiable functions on [0,∞). In
each of the following cases, X is Brownian motion on (0,∞), but its behaviour at the boundary
0 depends heavily on the domain of L.

• If D(L) = {f ∈ C2 : f(0) = 0}, then X is ended when it reaches 0 (’killing’).

• If D(L) = {f ∈ C2 : f ′(0) = 0}, then X is reflected in 0 (’reflection’).

• If D(L) = {f ∈ C2 : f ′′(0) = 0}, then X stays in 0 forever once it reaches 0 (’holding’).

Trotter-Kurtz
For some properties involving Markov processes it suffices to check things on a smaller set than
the domain: a core.

Definition 2.12 . For a generator L, a subset D of D(L) is called a core if for any (f, Lf) in the
graph of L, there are (fn, Lfn) with fn ∈ D such that (fn, Lfn)→ (f, Lf) as n→∞.

We can now formulate an important theorem that relates the convergence of generators to the
convergence of the corresponding semigroups and processes.

Theorem 2.13 ([11, Thm 19.25], Trotter-Kurtz). Let (Xn)∞n=1, X be Feller processes on a com-
pact space S. Let (Ln, Dn)∞n=1, L be their generators and (Tn)∞n=1, T their Markov semigroups,
respectively. Let D be a core for L. Then the following are equivalent.

• For all f ∈ D there is a sequence (fn)∞n=1 such that fn ∈ Dn, fn → f and Lnfn → Lf .

• Tnt f → Ttf for every continuous f uniformly for t in compact sets.

• If Xn
0 → X0 in distribution, then Xn → X in distribution in D([0,∞), S).

Here D([0,∞), S) denotes the set of all maps [0,∞) → S that are right continuous and have
left limits (so all cadlag maps). It is equipped with the Skorohod metric.

Note that if D ⊂ Dn for all n, we can take fn = f in the first statement. This means that
for showing convergence in distribution in that case, it suffices to show convergence of the
generators on a core.

2.1.2 Symmetric Markov processes

We will now study some definitions and results involving invariant measures and symmetry of
a process, since we will need these when dealing with Dirichlet forms: it will turn out that they
correspond to symmetric processes.

Invariant measures
We begin with a very important notion in the theory of Markov processes. In the following,
when speaking of a measure on S we mean a finite, positive measure on (S,B) where B denotes
the Borel σ−algebra.
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Definition 2.14 . We call a measure µ invariant or stationary for X if∫
Stfdµ =

∫
fdµ ∀f ∈ C(S).

Note that integrals of continuous functions on a compact set with respect to a finite measure
always exist. The intuition is that from any starting point on µ-average nothing happens to f
when the process evolves. The next definition is even stronger.

Symmetric processes

Definition 2.15 . Let X = {Xt, t ≥ 0} be a Markov process on S with semigroup {St, t ≥ 0}.
Let µ be a measure on S. We call X (and its semigroup) symmetric or reversible with respect
to µ if for all f, g ∈ C(S) and for all t ≥ 0:∫

Stfgdµ =

∫
fStgdµ.

We will call a process (and its semigroup) symmetric or reversible if there exists a measure with
respect to which it is symmetric.

The idea behind symmetry is that the distribution of the process started in µ is the same when
running forwards or backwards through time. We now have the following easy observation.

Proposition 2.16 . If X is reversible with respect to µ, it is invariant with respect to µ.

Proof. Simply set g = 1 in the definition of reversibility and use the fact that St1 = 1.

Relation with the generator
We can relate symmetry directly to the generator of a process. In fact it suffices to look at a
core of the generator.

Proposition 2.17 . Let L be the generator of X. Then X is symmetric with respect to µ if and
only if there is a core D ⊂ D(L) such that:

∀f, g ∈ D :

∫
Lfgdµ =

∫
fLgdµ. (4)

Discrete case: detailed balance
Recall that in the case of a random walk in a finite space, we can write the generator L as

Lf(x) =
∑
y

λPxy(f(y)− f(x)),

where λ is the jump rate and Pxy is the probability that a particle at x jumps to y.

Proposition 2.18 (Detailed balance). In this discrete case X is symmetric with respect to µ if
and only if the detailed balance condition holds:

µ(x)Pxy = µ(y)Pyx ∀x, y ∈ S

Proof. In this case S is finite, so D(L) = C(S) = RS . Since the set V of functions for which (4)
holds is a linear space, we see that X is symmetric if and only if V is a linear subspace of C(S)
containing a core. From the definition of the core it becomes clear that it must be dense in
C(S), so any set containing it must also be dense. But the only dense linear subspace is C(S)
itself, so we see that X is symmetric if and only if V = C(S).
Now assume that X is reversible. Then for any two points x1, x2 ∈ S we must have that (4)
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holds for f = 1x1 and g = 1x2 . Filling this in with the generator defined above yields the
detailed balance condition for x1 and x2. On the other hand, if the detailed balance condition
holds, we see that (4) is true for any two indicator functions of points. Since any function
f ∈ C(S) can be written f =

∑
x f(x)1x, it follows from linearity of V that (4) is true for any

two functions on S.

Semigroup on Lp(S, µ)
When there exist an invariant measure µ, it is possible to extend the semigroup to a semigroup
on Lp(S, µ) for any p ≥ 1. To see this, we first show that St is also a contraction on C(S) with
respect to || · ||p, which denotes the norm on Lp(S, µ).

Proposition 2.19 . Let {St, t ≥ 0} be the semigroup on C(S) corresponding to a Markov process
X = {Xt, t ≥ 0} with invariant measure µ. Then St is a contraction with respect to || · ||p for
each t ≥ 0.

Proof. Let t ≥ 0 and p ≥ 1. We see for any x ∈ S and f ∈ C(S) with Jensen’s inequality that

|Stf(x)|p = |Exf(Xt)|p ≤ Ex (|f(Xt)|p) = (St (|f |p)) (x).

Now, using the invariance with respect to µ, we see:

||Stf ||pp =

∫
|Stf |pdµ ≤

∫
St|f |pdµ =

∫
|f |pdµ = ||f ||pp,

which shows that ||Stf ||p ≤ ||f ||p, which is what we wanted to prove.

We are dealing with a compact set and a finite measure, so C(S) ⊂ Lp(S, µ) as a dense subset.
Since St is a contraction on C(S) with respect to || · ||p, we can extend it to all of Lp(S, µ) by
standard arguments. This way {St, t ≥ 0} is a semigroup on Lp(S, µ). Call its generator Lµ. It
can be shown that Lµ naturally extends L: it is the closure of L in Lp(S, µ).
On Lp(S, µ) we still have Stf = E·f(Xt), although as a µ-a.s. statement. We only defined
Stf as an Lp limit of continuous functions so one has to check that this is actually true. This
can be done using standard techniques and we will not do this here. In particular we have
St1A(x) = Px(1A(Xt)) = Px(Xt ∈ A).

Semigroup on L2(S, µ): self-adjoint generator
As a special case of the above, St can be defined on L2(S, µ). This will turn out to be the natural
extension when dealing with symmetric processes, since then the defining property generalizes
to

(Stf, g) = (f, Stg) ∀f, g ∈ L2(S, µ), t ≥ 0,

where (·, ·) denotes the inner product (f, g) =
∫
fgdµ on L2(S, µ). Note that requiring the

relation above for L2 functions is equivalent to requiring it for continuous functions, because of
the construction above. We also see that requiring symmetry with respect to a measure µ in
fact makes St a self-adjoint operator on L2(S, µ).
Because of proposition 2.17, we also see that in the symmetric situation

(Lf, g) = (f, Lg) ∀f, g ∈ D(L), t ≥ 0.

This means that L is a symmetric operator. It is in general not self-adjoint since the domain
of its adjoint is larger. However, this symmetry relation also holds for Lµ and this operator is
self-adjoint. We will from now on denote Lµ as L.

Non-positive generator
In the L2 setting we can say a lot more about the semigroup and its generator. We will mention
only what will be used later.
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Proposition 2.20 . Let X be a µ-symmetric process with semigroup {St, t ≥ 0} and generator L.
Then L is a non-positive operator, i.e. (Lf, f) ≤ 0 for all f ∈ D(L).

Proof. First let f ∈ L2(S, µ) and t ≥ 0. By the semigroup property, µ-symmetry and the fact
that St is an L2-contraction we have:

(Stf, f) = (St/2St/2f, f) = (St/2f, St/2f) = ||St/2f ||2 ≤ ||f ||2 = (f, f).

Now take f ∈ D(L). We see for h ≥ 0:

0 ≥ (Shf, f)− (f, f)

h
=

(
Shf − f

h
, f

)
.

Since f ∈ D(L), we know that limh↓0
Shf−f
h exists in (C(S), || · ||∞) and equals Lf , so also in

L2(S, µ) (µ is finite, so ||f ||pp =
∫
|f |pdµ ≤

∫
||f ||p∞dµ = ||f ||p∞µ(S)). By continuity of (·, f), we

see:

0 ≥ lim
h↓0

(
Shf − f

h
, f

)
=

(
lim
h↓0

Shf − f
h

, f

)
= (Lf, f).

We conclude that (Lf, f) ≤ 0 for all f ∈ D(L).

We showed above that (Stf, f) ≤ (f, f). Note that in fact t 7→ (Stf, f) is decreasing. If 0 ≤ s ≤ t
we see

(Stf, f) = (Ss/2St−sSs/2f, f) = (St−sSs/2f, Ss/2f) ≤ (Ss/2f, Ss/2f) = (Ssf, f).

Reducibility
A final notion that we introduce is the following.

Definition 2.21 . A process is called reducible with respect to the invariant measure µ if there is
a disjoint partition S = A1 ∪A2 such that both Ai have positive µ-measure and if for any i

St1Ai = 1Ai

or, in other words, for any x ∈ Ai

Px(Xt ∈ Ai) = 1 for all t ≥ 0.

If the process is not reducible, we call it irreducible.

Intuitively, X is reducible if there are at least two µ-significant sets from which the process
cannot escape.

2.2 Random walks and electrical networks

So far, we have seen multiple objects that describe a Markov process. In section 2.3, we will
introduce yet another one: Dirichlet forms. To better understand what such a form is and
where it comes from, we will dedicate a few moments to study the rather surprising but quite
natural relation between random walks on graphs and electrical circuits. On the way, we will
also introduce some notions from potential theory. This description is mostly based on [4, 6].
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2.2.1 Potentials and hitting times

Electrical network
We start by defining an electrical network as a connected, undirected graph G = (V,E) where
V is the set of vertices and E is the set of edges. We assume that there cannot be more than
one edge between any two nodes. We define Rxy ∈ (0,∞] to be the resistance between x, y ∈ V
(or of the edge (xy)) and cxy ∈ [0,∞) the corresponding conductance, so cxy = (Rxy)

−1. The
case Rxy = ∞ and cxy = 0 represents vertices that are not joined by an edge. Denote by Ixy
the current from x to y. Note that the resistance and conductance are symmetric (Rxy = Ryx
and cxy = cyx), but the current is antisymmetric (Ixy = −Iyx). We define a potential V on the
graph to be any function v : G → R that maps a point x to its potential vx. This all is just a
mathematical description of an electrical circuit.

Random walk on a graph
On the other hand define a random walk on the graph as the Markov process corresponding to
the generator

Lf(x) =
∑
y∈G

cxy
µx

(f(y)− f(x)),

where µx =
∑

y cxy (we silently assume that these numbers are finite, one can for instance just
assume that the graph is finite). The process jumps from a point x to y at rate proportional to
the conductance of (xy). We denote by Pxy =

cxy
µx

the jump probability. Note that for each x
these sum to 1, so {Pxy, y ∈ G} is a probability vector. In other words, since µx is a normalizing
constant, the process jumps away from x at rate 1. Note that it can (almost surely) only jump
along edges. Indeed if there is no edge between x and y, we have cxy = 0, so the process jumps
from x to y at rate 0.
We can regard µ a measure on G giving mass µx to each singleton set {x}. This way the process
is reversible with respect to µ, as can be check through the detailed balance condition. Indeed
for any x, y ∈ G:

µxPxy = µx
cxy
µx

= cxy = cyx = µy
cyx
µy

= µyPyx.

Now it is easy to see that µ is also invariant:

µx = µx
∑
y

Pxy =
∑
y

µxPxy =
∑
y

µyPyx.

Correspondence
Given the jump probabilities, one can construct an electrical network that corresponds to it
(using the relations above). Since the jump probabilities only depend on the fraction

cxy∑
y cxy

,

they are invariant to scaling of the conductance, whereas the electric network obviously is not.
This implies that there are many circuits that correspond to the same process. However, when
an electric network corresponds to a finite measure µ, one can (by rescaling) obtain a canonical
version of the network: the one that makes µ a probability measure.

We now have a set of parameters on a graph and two different interpretations. Intuitively,
the connection might make sense naturally since a high conductance means that the current
through an edge will be strong and it also means that the jump probability along the edge is
high, so the process will probably jump along the edge a lot of times. We will show that the
connection it not limited to intuition.

Calculating potentials
Now say we pick a point a in the circuit and give it potential 1 and we pick another point b
and give it potential 0. We want to know what the potentials will be in the other points of the
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graph. To calculate these potentials we need two important laws from the theory of electric
circuits:

Ohm’s law: Ixy =
vy − vx
Rxy

= cxy(vy − vx)

Kirchhoff’s first law:
∑
y

Ixy = 0

The first one shows how the current through an edge depends on the conductance/resistance of
the edge and the potentials of the adjacent nodes. The second dictates that the total current
into a node must equal the current that goes out. Combining these two laws shows that

0 =
∑
y

Ixy =
∑
y

cxy(vy − vx) =
∑
y

cxyvy − vx
∑
y

cxy =
∑
y

cxyvy − vxµx,

which implies that

vx =
∑
y

cxy
µx

vy =
∑
y

Pxyvy.

The potential function v that we are looking for should thus satisfy:

va = 1

vb = 0

vx =
∑
y

Pxyvy ∀x /∈ {a, b}
(5)

Before we further study this situation, we take a look at a probabilistic problem.

Calculating hitting probabilities
Consider again the points a and b in our graph. When starting the random walk (as defined
above) from a point x, we would like to know the probability px that the process hits a before
it hits b. To be able to write this down efficiently, define the following stopping times:

τa = inf{t ≥ 0 : Xt = a}
τb = inf{t ≥ 0 : Xt = b}

where {Xt, t ≥ 0} denotes the process. Let P be its underlying measure. We can now write
the desired probability as Px(τa < τb). The law of total probability shows (together with the
memorylessness of the process) that for any x that is not a or b

px = Px(τa < τb) =
∑
y

PxyPy(τa < τb) =
∑
y

Pxypy.

If x is a or b we see directly that px equals 1 resp 0. We conclude that the function p that we
want should satisfy:

pa = 1

pb = 0

px =
∑
y

Pxypy ∀x /∈ {a, b}

Dirichlet problem
As we observe, the function p that we are looking for should satisfy exactly the same equa-
tions as v in the problem before. (5) is a special case of the so-called Dirichlet problem. This
problem looks for a function that has certain fixed values on the boundary of a set (a so-
called Dirichlet boundary condition) and solves a partial differential equation in the interior.
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In the discrete setting of a graph the boundary can be chosen more arbitrarily and the PDE
simplifies to the third condition of (5): equations relating the value in a point to the values in
the points surrounding it. We will call functions that satisfy these equations harmonic functions.

Existence and uniqueness
The first question is if we have uniqueness. To answer this, we use the following (more generally
valid) principle:

Theorem 2.22 (Maximum principle). Every solution to (5) takes on its maximum value on the
boundary.

We will not prove this principle here, but refer to [6] for the proof in a graph context. With
this principle, it is not hard to show uniqueness.

Theorem 2.23 (Uniqueness). There is at most one solution to (5).

Proof. We give a sketch of the proof. Suppose u and v satisfy (5). Then w = u− v can easily
be shown to satisfy (5) with the constraint that it is 0 in a and b. The maximum principle tells
us that w ≤ 0 everywhere. In the same way −w ≤ 0 everywhere. We conclude that w ≡ 0, so
u = v.

The second question is whether there exists a solution at all for this problem. This is not so
easy to answer for the general Dirichlet problem, but in our graph case this is true. See [4], for
instance, for some ways to calculate or approximate the solution.

Correspondence of potentials and expected values at hitting times
So far we have seen that we obtained the same problem in both interpretations of the graph.
Since they have a unique solution, the solution to both problems is equal. This, surprisingly,
means that we can calculate the probability of hitting a before b from x by simply giving a po-
tential 1, b potential 0 and measuring the potential at x. Actually, this idea can be generalized.
Let A be any subset of G and give each node a ∈ A a potential f(a). Then we can, again, ask
ourselves what the potential is going to be in the other nodes. So we want to know f for x /∈ A.
Now define the hitting time

τA = inf{t ≥ 0 : Xt ∈ A}.

One can show in a way similar to above that Exf(XτA) = f(x). Note that in the 0-1 case above,
this reduces to

f(x) = Exf(Xτ ) = f(a)Px(Xτ = a) + f(b)Px(Xτ = b)

= 1 · Px(Xτ = a) + 0 · Px(Xτ = b) = Px(Xτ = a) = Px(τa < τb),

so we still have f(x) = Px(τa < τb).

Remark 2.24 . The theory that is sketched here on graphs can (under certain conditions) be
extended to the general Dirichlet problem. This includes the approach using the maximum
principle to obtain uniqueness. Also the last result holds, which shows the beautiful fact that
the solution of a Dirichlet problem in any interior point can be obtained by letting a suitable
process run from that point until it hits the boundary and averaging over the values at the
hitting time. In the most basic situation the PDE is the Laplace equation, the process is
Brownian motion and the solutions are called harmonic functions in the most basic sense.

2.2.2 Energy dissipation

Energy dissipation: a first Dirichlet form
Instead of only looking at the potential in the points, we can investigate the energy that is
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dissipated in the circuit. When a current flows through a resistor, it will produce warmth. We
will need another formula concerning electric circuits:

Joule’s law: P = U · I

Here P is power, so the amount of energy that is dissipated every second. U is the voltage, so
the difference in potential between the points adjacent to the edge. This shows that the energy
that is dissipated (per second, we will from now on silently assume that that is what we mean
to say) depends on the potential. Since also I = U · c, we obtain as an expression for the energy
dissipation between x and y with potential p:

UxyIxy = UxyUxycxy = cxy(py − px)2.

We have this equation for every pair of nodes (note that non-connected nodes have conductance
0 between them, so no energy is dissipated), so we need to sum over this to get the total
dissipated energy. For any potential function f we write:

D(f) =
1

2

∑
x,y

cxy(f(y)− f(x))2. (6)

We can generalize this a bit to an expression involving two functions:

D(f, g) =
1

2

∑
x,y

cxy(f(y)− f(x))(g(y)− g(x)).

Note that the factor 1
2 in front appears to not count all edges twice. Obviously D(f, f) = D(f)

and we will use this notation interchangeably. This expression is a first example of a Dirichlet
form, the exact definition will follow in the next section. Actually, if we add the condition
that the Dirichlet form of a constant should be 0, it can be shown that any Dirichlet form in
this context can be (uniquely) written in this way. It thus determines the conductances of the
corresponding network.

Dirichlet’s principle: minimizing the energy dissipation
The dissipated energy is always positive, since it is a sum of positive terms (actually strictly
positive, unless the potential is constant). However, for different potentials this energy is gener-
ally different. It would be interesting to know what happens to the energy dissipation if we only
fix the potential in certain points. The answer lies in the following very important theorem.

Theorem 2.25 (Dirichlet’s principle). Let A ⊂ G and for every a ∈ A fix a potential pa. The
harmonic function f that satisfies these boundary values is the unique function that minimizes

{D(f) : f(a) = pa ∀a ∈ A}. (7)

Proof. The proof is based on a variational method. If one writes any other function that
satisfies the given boundary conditions as f + h for some h that is 0 on A, one can show that
D(f, h) = 0. From this we obtain D(f + h) = D(f) + D(h) + 2D(f, h) = D(f) + D(h) > D(f)
unless h ≡ 0.

Heuristic meaning for electrical networks and random walks
Now let us take some time to think about what this means. First of all, nature apparently
wants to minimize the amount of energy that it costs to obey its own laws. This is a very basic
(and beautiful) observation on which several principles in the calculus of variations are based
(for instance the theory concerning the hamiltonian or langrangian function).
To see what this says about potentials and stochastic processes, we have a closer look at (6). It
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is a weighted average of the sum of the squared distances between the potentials in neighbouring
points. Intuitively, this means that the solution to the Dirichlet problem minimizes the distances
between the potentials in neighbouring points and if the edge between two nodes has a high
conductance it has priority over edges with small conductance. This makes sense, since with
the same difference in potential, more energy will be dissipated when the conductance is higher.
In terms of stochastic processes it is harder to find an intuitive meaning of energy. However,
when there is a high conductance between two points, the probability that a particle jumps
between them is higher. As soon as it jumps from one place to another, the expected value
when hitting the boundary will change into the expected value at the point that it jumps to.
Since the probability was high, the expected value was probably already quite close. This also
shows that the expected values in neighbouring points with a high conductance between them
should be closer than when there is a low conductance.
We see that the link between a random walk and the related energy function is not as naturally
clear as with for instance its generator. However, the energy function dictates the whole process
(since, as remarked above, it determines the conductances) and the behaviour of the process
can be obtained by minimizing it.

Remark 2.26 . The energy function above is an example of Dirichlet’s energy. This, more gen-
erally, is a measure of how wildly a function varies. This Dirichlet energy is related to the
general Dirichlet problem in the sense that the solution to the latter minimizes the former.
In the most basic situation when dealing with the Laplace operator, the Dirichlet energy is
D(f) = 1

2

∫
(∇f)2dλ. This will turn out be the Dirichlet form corresponding to Brownian mo-

tion, which might not be so surprising since remark 2.24 already showed the relation between
the Laplace operator and Brownian motion.

2.3 Dirichlet forms

Now that we have seen a lot of the intuition behind it, we study the theory of Dirichlet forms.
This will mostly be based on [1, Chapter 4] although at times we will use [5]. We will first give
the necessary definitions, then we explain how a Dirichlet form corresponds to a semigroup and
finally we will study the given definitions more closely in the context of the semigroup.

2.3.1 Dirichlet forms

Properties of the energy dissipation functional
Let us first have a closer look at the energy expression that we found above. Remember that
this is the general expression for Dirichlet forms (that map constants to 0) in the finite context,
which makes it more interesting than just a specific example.

D(f, g) =
1

2

∑
x,y

cxy(f(y)− f(x))(g(y)− g(x)).

We have already noted and used that D(f) = D(f, f) ≥ 0 for any potential f . It is also clear
that D is symmetric: D(f, g) = D(g, f). Finally note the following, less intuitive property.
Suppose we take any f and define g = 1 ∧ (f ∨ 0) (so every value smaller than 0 is replaced
by 0 and every value larger than 1 is replaced by 1). Let x, y ∈ G. If f(x), f(y) <= 0,
we see |g(y) − g(x)| = |0 − 0| = 0 ≤ |f(y) − f(x)|. Similarly, if f(x), f(y) > 1 we have
|g(y) − g(x)| ≤ |f(y) − f(x)|. In any other situation: if one of the values is larger than 1, the
other is not, so replacing it by 1 brings them closer together. An analogous argument holds if
one of them is smaller than 0. If they are both between 0 and 1 nothing changes. We conclude
that in any situation |g(y)− g(x)| ≤ |f(y)− f(x)|. Since all cxy are positive, this directly shows
that D(g) ≤ D(f). We will come back to this later, but the three properties that we mentioned
here, suggest the following definitions.
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Symmetric forms
Let S be a compact, separable metric space and let µ be a positive Radon measure on S with
full support (i.e. supp(µ) = S). Recall that a Radon measure is a Borel measure that is inner
regular and locally finite. Denote H = L2(S, µ).

Definition 2.27 . Let E : D × D → R be a function where D is some dense, linear subspace of
H. We call (E ,D) a symmetric form on H if

• E(f, g) = E(g, f) ∀f, g ∈ D

• E(f, f) ≥ 0 ∀f ∈ D

• E is linear in each coordinate

We call D(E) := D the domain of E . Often we will write E(f) := E(f, f) for the quadratic form
induced by E .

We can now for α > 0 define Eα on the same domain by Eα(f, g) = E(f, g) + α(f, g), where
(f, g) =

∫
fgdµ is the inner product on H.

Proposition 2.28 . Eα is again a symmetric form on H and it defines a norm on D: ||f ||Eα =

Eα(f)
1
2 . The metrics induced by Eα and Eβ in this way are equivalent for α, β > 0.

Remark 2.29 . The definitions above can be generalized to arbitrary Hilbert spaces, but we will
not need that throughout this report.

We now have the next set of definitions.

Definition 2.30 . Let (E ,D) be a symmetric form on H. We call it

• closed if (D, || · ||E1) is complete

• Markov if for any f ∈ D, g := 1 ∧ (f ∨ 0) ∈ D and E(g) ≤ E(f)

Dirichlet forms
We are now able to define a Dirichlet form.

Definition 2.31 . We define a Dirichlet form to be a closed, Markov, symmetric form (E ,D).
Moreover we say it is

• regular if D ∩ C0(S) is dense in (D, E1) and in (C0(S), || · ||∞)

• local if E(f, g) = 0 whenever f, g have disjoint supports

• conservative if 1 ∈ D and E(1) = 0

• irreducible if it is conservative and E(f) = 0 implies f is constant

These are a lot of definitions. We will explain now how Dirichlet forms relate to Markov
processes via semigroups and then we will try to provide some understanding or intuition behind
the definitions above.
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2.3.2 Correspondence with a semigroup

As the coming two theorems will describe, there is a one-to-one relation between Dirichlet forms
and a certain class of processes, namely the symmetric sub-Markov processes. These theorems
and part of the explanation around them are essentially [1, Theorem 4.5 and 4.6] and part of
the surrounding text.

Dirichlet form corresponding to a semigroup
We first show how to obtain a Dirichlet form from a symmetric semigroup. Note that such a
semigroup is a contraction semigroup, as was shown before.

Theorem 2.32 ([1, Thm 4.5]). Let {St, t ≥ 0} be a µ-symmetric sub-Markov semigroup on L2(S, µ).

Define for f ∈ L2(S, µ) and t > 0:

ϕf (t) =
(f − Stf, f)

t
.

Let

D = {f ∈ L2(S, µ) : lim
t↓0

ϕf (t) <∞}

E(f) := E(f, f) := lim
t↓0

ϕf (t) for f ∈ D

Then (E ,D) is a Dirichlet form. Moreover, if (L,D(L)) is the generator of {St, t ≥ 0}, then
D(L) ⊂ D, D is dense in L2(S, µ) and for f ∈ D(L) and g ∈ D:

E(f, g) = (−Lf, g), (8)

where (f, g) =
∫
fgdµ denotes the inner product on L2(S, µ).

Since D is dense in L2(S, µ) we can in fact say that (E ,D) is a Dirichlet form on L2(S, µ). Note
that it suffices to only have a defining expression for E(f, f). Because of the relation

E(f + g, f + g) = E(f, f) + 2E(f, g) + E(g, g),

which follows from linearity and symmetry of E , we can define E(f, g) using the polarization
identity:

E(f, g) =
1

2
(E(f + g, f + g)− E(f, f)− E(g, g)).

It is also easy to see how (8) and the definition of E are related:

(−Lf, f) = (− lim
t↓0

Stf − f
t

, f) = (lim
t↓0

f − Stf
t

, f) = lim
t↓0

(f − Stf, f)

t
= lim

t↓0
ϕf (t) = E(f, f).

Semigroup corresponding to a Dirichlet form
Conversely, to each Dirichlet form corresponds a symmetric semigroup. This is what the next
theorem says.

Theorem 2.33 ([1, Thm 4.6]). Let (E ,D) be a Dirichlet form on L2(S, µ). Then there exists

a µ-symmetric sub-Markov semigroup {St, t ≥ 0} on L2(S, µ) with generator (L,D(L)) and
resolvent {Uλ = R(L, λ), λ > 0} such that (8) is satisfied and for all f ∈ L2(S, µ) and g in D
and for any α > 0 we have

E(Uαf, g) + α(Uαf, g) = (f, g)
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Proof. We give only a very brief sketch to obtain some idea of the proof. Using (8) and the
definition of the resolvent we would like to have

(f, g) = ((α− L)Uαf, g) = (αUαf, g) + ((−L)(Uαf), g)

= α(Uαf, g) + E(Uαf, g) = Eα(Uαf, g)

Now, given E (which is a closed, symmetric form), one can for each f define Uαf by this relation
and the Riesz representation theorem and check that it satisfies the properties of a resolvent.
From this one can deduce that there is a corresponding semigroup (as in theorem 2.8).

Relation with the generator
These two theorems show a one-to-one correspondence between Dirichlet forms on L2(S, µ) and
µ-symmetric sub-Markov semigroups on that same space. Theorem (2.33) only gives an implicit
description of Uα. However, (8) provides us with a very useful and direct relation between a
generator and its corresponding Dirichlet form. Returning to the case where the process is
Brownian motion and the Dirichlet form is 1

2

∫
(∇f)2dλ, we see

E(f, g) =
1

2

∫
∇f∇gdλ =

1

2

∫
−∆fgdλ =

(
−1

2
∆f, g

)
,

which directly shows that a half times the Laplace operator ∆ is the corresponding generator.
We add these correspondences to the ones in figure 1 and we obtain figure 2.

{Xt}t≥0

{St}t≥0 L

{R(λ, L)}λ>0

E

Stf(x) = Exf(Xt) R(λ,L) =
(λ− L)−1

St = eLt

St = limn( t
n
R(n

t
, L))−n

E(f, g) = (−Lf, g)

E(f) = limt
1
t
(f − Stf, f)

Eα(Rλf, g)
= (f, g)

Figure 2: Correspondence between process, semigroup, generator, resolvent and Dirichlet form.

2.3.3 Meaning of the properties

Now that the Dirichlet form is related to an object that we know something about, we can try
to see what the definitions that were given before mean and why they make sense. (8) will prove
to be a useful tool for this. Let notation be as above: (E ,D) is a Dirichlet form on L2(S, µ).
The corresponding semigroup is {St, t ≥ 0} with underlying Markov process X = {Xt, t ≥ 0}
and generator (L,D(L)). f, g are functions in L2(S, µ).

Meaning of the definition of a symmetric form
First we look at symmetry:

E(f, g) = E(g, f) ⇐⇒ (−Lf, g) = (−Lg, f) ⇐⇒ (Lf, g) = (Lg, f)

⇐⇒ (Lf, g) = (f, Lg) ⇐⇒
∫
Lfgdµ =

∫
fLgdµ.
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This shows that the symmetry of E is directly related to the µ-symmetry of X (see proposi-
tion 2.17). We note here that it is possible to extend this theory to non-symmetric forms and
processes, but this goes beyond the scope of this report.
Now positivity:

E(f, f) ≥ 0 ⇐⇒ (−Lf, f) ≥ 0 ⇐⇒ (Lf, f) ≤ 0.

We see that the positivity of E is equivalent to the non-positivity of the corresponding generator.
This, in turn, comes from the contraction property of the corresponding semigroup on L2(S, µ)
(prop 2.20). Of course positivity is natural in the context of electrical circuits, since energy
dissipation cannot be negative.
Note that (8) clearly implies that E is linear if and only if L is. In this way we translated all
properties of a symmetric form to the corresponding properties of the semigroup or its generator.

The Markov property
Now recall that a Dirichlet form is Markov, which means that if f ∈ D, then also g = 1∧(0∨f) ∈
D and E(g, g) ≤ E(f, f). It can be shown that this property is equivalent to the sub-Markovness
of the semigroup ([5, Theorem 1.4.1]). Since only knowing this fact is not very satisfactory, we
can also look at it in a different way. As we mentioned before (in remark 2.26), the Dirichlet
form (or Dirichlet energy, as we called it then) can be seen as a measure of how wildly a function
varies. The way this is measured depends on the underlying dynamics as the solution to the
corresponding Dirichlet problem minimizes this energy. Nothing can be said in general about
what this measure of variation should look like, but it must measure variation, so if a function
varies less in every way than another function, this measure of variation must be smaller. The
Markov property of the Dirichlet form can be shown to be equivalent to the following: whenever
|v(x) − v(y)| ≤ |u(x) − u(y)| for all x, y and |v(x)| ≤ |u(x)| for all x, we have E(v) ≤ E(u).
Without getting into too much detail, this generally says that whenever the distance between
the function values of any pair of points is smaller (and v is absolutely smaller than u), then E
must be smaller. This intuitively satisfies the idea that a function that varies less wildly should
have a smaller E value.

Closedness
A Dirichlet form should also be closed, which means that its domain D should be closed with
respect to the metric generated by

E1(f, f) = E(f, f) + (f, f) = (−Lf, f) + (f, f).

We note here that it can be shown that there exists an operator B such that B2 = −L (this has
all to do with the fact that −L is a positive, symmetric operator). We will write B =: (−L)1/2.
This square root operator is again symmetric, which means we can write E1 as

((−L)1/2(−L)1/2f, f) + (f, f) = ((−L)1/2f, (−L)1/2f) + (f, f) = ||(−L)1/2f ||2 + ||f ||2.

Using this it is standard to show that D is complete with respect to the metric induced by E1

if and only if (−L)1/2 is closed.

Proposition 2.34 . (E ,D) is closed if and only if (−L)1/2 is closed.

Since L is self-adjoint, so is −L and it can be shown that then also (−L)1/2 is self-adjoint.
This means that (−L)1/2 is closed. With the proposition this means that the closedness of the
Dirichlet form is implied by the closedness of the corresponding generator.

The conservative property
As is clear by now, a Dirichlet form is Markov, so it corresponds to a sub-Markov semigroup.
However, we can impose a condition such that we get a Markov semigroup.
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Proposition 2.35 . If E is conservative, then the corresponding semigroup is Markov.

Proof. Let E be conservative. Then 1 ∈ D and E(1) = 0. We already know that the Markov
property of the Dirichlet form implies that the semigroup is sub-Markov. It thus suffices to
show that St1 = 1. Let f ∈ D. Then we have for any λ ∈ R:

0 ≤ E(1 + λf) = E(1) + 2λE(1, f) + λ2E(f2) = 2E(1, f)λ+ E(f2)λ2.

This is a quadratic equation in λ and its minimum value is −(2E(1,f))2

2λ2
. Since it cannot be

negative, this shows that E(1, f)=0, hence (−L1, f) = 0. Since this is true for any f in the
dense subset D of L2(S, µ), this shows that L1 = 0 (in L2(S, µ)). It can be shown that this
implies that St1 = 1 for all t (heuristically: the generator is 0 for 1, so St is constant for 1).

This means that if E is conservative, there is no loss of mass in the corresponding process (it is
conserved) or, in other words, it has infinite lifetime. In the electric circuit context this says: if
there is no difference in potential between any pair of nodes, then there is no energy dissipation.
This is clearly true, so electrical circuits are conservative.

Irreducibility
The following proposition shows a correspondence between the concepts of irreducibility in
different contexts.

Proposition 2.36 . If E is irreducible, then X is irreducible.

Proof. Suppose X is not irreducible. Then there are disjoint A1, A2 ⊂ S such that S = A1 ∪A2

and for each i: St1Ai = 1Ai for all t ≥ 0. So in particular

L1A1 = lim
t↓0

St1A1 − 1A1

t
= 0,

which implies that E(1A1) = (−L1A1 ,1A1) = 0. Since for each i: µ(Ai) > 0, 1A1 is not
identically 0 or 1 in L2(S, µ), so there is a non-constant function f with E(f) = 0, namely 1A1 .
This shows that E is not irreducible.

This concept intuitively makes sense in the context of electrical circuits. The only way in
which there can be a non-constant potential without energy dissipation is when the differences
in potential are between parts of the circuit that are not connected to each other (meaning
that there is infinite resistance along any path from the one part to the other). So the proof
above basically says the following. Suppose that X is not irreducible. This means that we can
divide the circuit into two parts that are not connected to each other. Then we can give one
of the sets potential 1 in each point and the other set potential 0 in each point without any
energy dissipation (we use here that the circuit is conservative: on each connected part there is
constant potential so no energy dissipation). This means that the energy form is not irreducible.

Regular Dirichlet forms and Hunt processes
In general, the processes corresponding to Dirichlet forms can have unpleasant behaviour, but
there is a particular set of ’nice’ processes corresponding to regular Dirichlet forms. These
processes are called Hunt processes and they are defined as quasi-left-continuous strong Markov
processes with cadlag sample paths. We will not elaborate here on what that means. If the
Dirichlet form is also local, it corresponds to a diffusion process. We summarize these results
in the next theorem.

Theorem 2.37 . If E is regular, X is a Hunt process. If it is also local, X is a diffusion process.

31



3 Introduction to Riemannian geometry

One of the main themes of this report is random walks and Markov processes on Riemannian
manifolds. To be able to study these concepts, we need to introduce some theory about Rieman-
nian manifolds. Appendix A contains a more general introduction to differentiable manifolds.
It starts with the definition of a smooth manifold. Then it shows how each point has a tangent
space associated to it, which is the space of all vectors tangent to the manifold in that point.
Next, it looks at vector fields and discusses differential equations on a manifold. After that it
introduces differential forms in order to integrate on a manifold. We will assume all of this to
be known here.
This section is about Riemannian manifolds, where we can define the length of a path on the
manifold and speak about shortest paths. We will see what ’walking straight ahead’ means in
a space that is not flat like Rn, but that is curved. Then we will define connections to be able
to move between tangent spaces and we will use this to rigorously define curvature. We end
this section with a description of Brownian motion on a manifold and a discussion of the basic
operators that are related to Brownian motion. Everything is based on [21] and [12].

3.1 Riemannian manifolds

Let M be a smooth manifold. We assume throughout all of this report that the manifolds that
we speak of are n-manifolds for some dimension n. We will add some extra structure to it to
make it a Riemannian manifold. This will enable us to talk about the norm of tangent vectors
and, using that, about lengths of paths. This, in turn, will enable us to define what it means
to walk straight forward (locally) on a manifold. However, we first need to treat some theory
involving vector spaces and inner products. In all of this we follow [21].

3.1.1 Inner product spaces

Inner product
Let us begin with the definition of an inner product. Throughout this report we will assume
that the vector spaces we work with have finite dimension, usually denoted by n.

Definition 3.1 . An inner product on a vector space V is a non-zero bilinear function 〈 , 〉 :
V × V → R such that

• 〈v, w〉 = 〈w, v〉 ∀v, w ∈ V (symmetric)

• 〈v, v〉 > 0 ∀v 6= 0 (positive-definite).

Now let v1, .., vn be a basis for V and let v∗1, .., v
∗
n be the corresponding dual basis of V ∗. Then

it is easy to see that we can write

〈 , 〉 =
n∑

i,j=1

gijv
∗
i ⊗ v∗j ,

where
gij = 〈vi, vj〉 .

Denote by (gij) the matrix with elements gij for rows i = 1, .., n and columns j = 1, .., n. Then
the symmetry of 〈 , 〉 implies that (gij) is symmetric.

Given an inner product we can define a map α : V → V ∗ that takes v to (w 7→ 〈v, w〉). α
can be shown to be an isomorphism. If we write α as a matrix with respect to the bases
v1, .., vn and v∗1, .., v

∗
n as defined above, this yields (gij) again. This implies that det(gij) 6= 0.
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The positive definiteness of the inner product implies that (gij) is also positive definite.
We can use α to define an inner product on V ∗. We define for λ, µ ∈ V ∗:

〈λ, µ〉∗ := µ(α−1(λ).

It can be checked that 〈 , 〉∗ is indeed an inner product on V ∗. It turns out that we can write is
as

〈 , 〉∗ =
n∑

i,j=1

gijvi ⊗ vj ,

(through the identification V = V ∗∗) where the gij are such that (gij) = (gij)
−1.

Definition 3.2 . We call a base v1, .., vn for V orthonormal if 〈vi, vj〉 = δij .

The inner product 〈 , 〉∗ can be characterized as the inner product on V ∗ such that v1, .., vn is
orthonormal with respect to 〈 , 〉 if and only if its dual basis v∗1, .., v

∗
n is orthonormal with respect

to 〈 , 〉∗.

Norm
We can use the inner product to define a norm. We define for v ∈ V : ||v|| = 〈v, v〉1/2. This can
be shown to satisfies the norm properties:

• ||av|| = |a| · ||v|| for a ∈ R and v ∈ V

• ||v + w|| ≤ ||v||+ ||w|| (triangle inequality)

• ||v|| ≥ 0 and ||v|| = 0 if and only if v = 0

Moreover, we have the Cauchy-Schwarz Inequality: | 〈v, w〉 | ≤ ||v|| · ||w||. There is equality if
and only if v is a multiple of w or vice versa.

Unitary alternating functions
Finally we briefly study the vector space Ωk(V ) of alternating, linear functions on V k. We will
take k = n, the dimension of V . Then Ωn(V ) has dimension 1. It can be shown that if v1, .., vn
and w1, .., wn are orthonormal bases for V , then

v∗1 ∧ .. ∧ v∗n = ±w∗1 ∧ .. ∧ w∗n.

We call these the unitary elements of Ωn(V ). If u1, .., u2 is any other base for V and we write
ui = αjivj and A = (αij), then it can be shown that

det(A)u∗1 ∧ .. ∧ u∗n = v∗1 ∧ .. ∧ v∗n

Write

〈z1, z2〉 =
n∑

i,j=1

giju
∗
i ∧ u∗j (z1, z2) for z1, z2 ∈ V,

where gij = 〈ui, uj〉. Also denote G = (gij). Then G = ATA, so det(G) = det(A)2(> 0), which
shows that √

det(gij)u
∗
1 ∧ .. ∧ u∗n = v∗1 ∧ .. ∧ v∗n.

Since the unitary elements are ±v∗1 ∧ .. ∧ v∗n, we see that the unitary elements can be written
with respect to u1, .., un as

±
√

det(gij)u
∗
1 ∧ .. ∧ u∗n.

If M is orientable and has orientation µ, we define the unitary element that returns a positive
number when applied to any v1, .., vn ∈ µ to be the positive unitary element.
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3.1.2 Riemannian metric

Riemannian metric
We can now define the important, additional structure on a manifold that we will use here.

Definition 3.3 . Let M be a smooth manifold and TM its tangent bundle. We call a map 〈 , 〉 a
C∞ Riemannian metric for TM if

• for any p ∈M , 〈 , 〉p is an inner product on TpM

• for any two sections s1, s2, the function p 7→ 〈s1(p), s2(p)〉 is C∞.

We can now locally apply the theory of vector spaces described above. Let (x, U) be a coordinate
system for M . Then on U we can write

〈 , 〉 =

n∑
i,j=1

gijdx
i ⊗ dxj .

Then (gij) is symmetric, C∞ and has det(gij) > 0. 〈 , 〉 induces a Riemannian metric 〈 , 〉∗ on
the dual bundle T ∗M and we can write it as

〈 , 〉∗ =

n∑
i,j=1

gij∂i ⊗ ∂j ,

where we identify (TpM)∗∗ with TpM in the usual way. As above, for each p these gij satisfy
(gij)(p) = (gij)

−1(p).
Note that gij = 〈∂i, ∂j〉. Since ∂i and ∂j are smooth sections of TM on U , definition 3.3 tells
us that p 7→ gij(p) = 〈∂i(p), ∂j(p)〉p is a smooth function on U . Using the same argument with

T ∗M yields that gij is also smooth on U .

Change of coordinates
Suppose (x, U) and (y, V ) are coordinate systems around some point p ∈M . Denote the matrix
of the metric in x-coordinates G and in y-coordinates Ĝ. Then we see

ĝij =

〈
∂

∂yi
,
∂

∂yj

〉
=

〈
∂xk

∂yi
∂

∂xk
,
∂xl

∂yj
∂

∂xl

〉
=
∂xk

∂yi
∂xl

∂yj

〈
∂

∂xk
,
∂

∂xl

〉
=
∂xk

∂yi
∂xl

∂yj
gkl

If we denote the Jacobian matrix
(
∂xi

∂yj

)n
i,j=1

by J , we obtain Ĝ = JTGJ . This also shows that

Ĝ−1 = J−1G−1(JT )−1 = J−1G−1(J−1)T .

Raising and lowering indexes
The map α that we described above is a special case of what we call lowering indexes. We can
transform any vector to a covector by mapping v to v[ (v flat) defined by w 7→< v,w >. In
local coordinates (x, U), this means that

v[(w) =
〈
vi∂i, w

j∂j
〉

= viwjgij = gijv
idxj(w), so v[ = gijv

idxj .

If we write v[ = vjdx
j (as usual with covectors), we see that we have lowered the j (hence

the [ notation) and that vj = gijv
i. Since g is invertible, we can also define its inverse map

(sharp) that takes a covector ω = ωidx
i to the vector ω] = gijωi∂j , so the new components are

ωj = gijωi and we say that the index has been raised.
It is possible to generalize these operators to apply them to tensors, although we have to spec-
ify precisely which index should be lowered or raised. For instance, if F : V × V ∗ × V → R
has coefficients Fi

j
k, then we can raise the first coordinate and obtain F ] given by F ijk = gilFl

j
k.
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Norm and curve length
Since we have an inner product on the tangent spaces TpM , this induces a norm on TpM . We
define for v ∈ TpM :

||v|| = 〈v, v〉1/2p .

This gives us a way to define lengths of curves in M .

Definition 3.4 . Let γ : [a, b]→M be C∞. We define the length of γ from a to b as

Lba(γ) =

∫ b

a
||γ′(t)||dt.

If γ is only piecewise C∞ (but still continuous), we define its length as the sum of the lengths
of the smooth parts.

This definition agrees with the usual length of a curve in Rn. Usually a and b are left out of the
notation. We can define the arc-length function s(t) = Lta(γ). For any curve we can shift its
parametrization such that a = 0. Then we say that γ is parametrized by arc length if s(t) = t
for all t ∈ [0, b− a].

Induced metric
Now suppose M is connected. This means that any two points are connected by a smooth
curve. We define for any p, q ∈M :

d(p, q) = inf{L(γ) : γ is a piecewise smooth curve from p to q}.

It can easily be shown that this defines a metric on M . In fact, (M,d) is homeomorphic to M
equipped with its original metric (the one with respect to which it is a manifold), so the metrics
induce the same topology.

3.1.3 Integration

Volume element
If (x, U) is some chart and p ∈ U , we can write the unitary elements of Ωn(TpM) as

±
√

det(gij)(p)dx
1 ∧ .. ∧ dxn(p).

If M is orientable we can define one of them as the positive unitary element and if (x, U) is
orientation preserving, we can write this element on U as

dV =
√

det(gij)dx
1 ∧ .. ∧ dxn.

Definition 3.5 . We call dV the volume element determined by 〈 , 〉 and we call∫
M

dV

the volume of M .

Note that the volume of M might be infinite. It is also possible to construct a volume element
on a non-orientable manifold, but we will not do that here.

Measure theoretic considerations
In the appendix, we define integration of a k-form over a manifold by pulling it back to a subset
of Rn and using the usual interpretation of integration there. However, this is a rather indirect
definition and in a lot of cases it would be nice to view the volume as a measure on the manifold.
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Then we can use all results that we know from measure theory on this manifold. This turns
out to be possible on a Riemannian manifold, as is described in [7, Section 3.4].
Define the Borel σ-algebra B(M) as the smallest σ-algebra containing all open subsets of M .
Further call a set V measurable if for any coordinate system (x, U) x(U ∩ V ) is a Lebesgue
measurable subset of Rn. The measurable sets form a σ-algebra, which we denote by Λ(M). If
V is any open set and (x, U) is a coordinate system, then U ∩ V is also open, so x(U ∩ V ) is
open and hence Lebesgue-measurable. This implies that B(M) ⊂ Λ(M). The following theorem
guarantees us the existence of a canonical measure on M that is defined on Λ(M).

Theorem 3.6 ([7, Thm 3.11]). Let M be any Riemannian manifold. Then there exists a measure

ν on Λ(M) such that in any chart (x, U): dν =
√

detGdλ. Here G and λ are the metric matrix
and Lebesgue measure in (x, U), respectively.

We see from the formula in local coordinates that integration with respect to ν in the theorem is
the same as the integration of the volume element (apart from the fact that for V the orientation
matters, note that we did not assume orientability here). We will therefore simply write ν = V
and treat V as a measure on M . The following proposition gives us some properties of V .

Proposition 3.7 ([7, Thm 3.11]). V satisfies the following properties.

• V is complete.

• V (K) <∞ for any compact K ⊂M .

• V (O) > 0 for any open, non-empty O ⊂M .

• (inner regularity) For any A ∈ Λ(M): V (A) = sup{V (K) : K ⊂ A,K compact}.

• (outer regularity) For any A ∈ Λ(M): V (A) = inf{V (O) : A ⊂ O,O open}.

3.1.4 Geodesics

Shortest curves between two points
We have seen that we can define the distance between two points as the infimum of the lengths
of all piecewise smooth curves from one point to the other. However, there is not always a
piecewise smooth curve from p to q with length d(p, q). As an easy example take M = R2 \ {0}
and p = −q. Every piecewise smooth curve between them has to deviate a bit from the straight
line from −p to p close to 0, but this deviation can be arbitrarily small. So d(p,−p) = 2||p||2,
where || · ||2 denotes the Euclidean norm, but every piecewise smooth curve has a larger length.
It is also possible to have many shortest paths. For example from the north pole to the south
pole of a (perfectly round) globe, there are infinitely many shortest paths (all meridians). We
would like to find shortest curves between points and examine when they exist. To find a curve
that minimizes the length functional L, we have to use the calculus of variations. We will briefly
explain the idea behind this and introduce some related concepts. Then we will get to the results.

Variations
When trying to find the minimum of a smooth function f : R → R, one usually calculates the
derivative and checks for which points it is 0. These points are not necessarily the points where
a minimum is attained, but they are the only candidates. This same kind of strategy can be
used when minimizing over curves. Let γ : [a, b] → M be a smooth curve with γ(a) = p and
γ(b) = q.

Definition 3.8 . A variation of γ is a function α : (−ε, ε)→M for some ε > 0 such that:

• α(0, t) = γ(t)

• there are a = t0 < t1 < .. < tN = b such that α is C∞ on every set (−ε, ε)× [ti−1, ti].
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If, additionally, α(u, a) = p and α(u, b) = q for all u ∈ (−ε, ε), we way that α is a variation of γ
keeping endpoints fixed.

The idea is that for each u ∈ (−ε, ε), the curve t→ α(u, t) is a curve that is very close to α. We
will denote these curves by ᾱ(u). We will consider a curve γ a candidate for a minimal curve
whenever

dL(ᾱ(u))

du
|u=0 = 0,

for all variations α of γ that keep endpoints fixed. Instead of minimizing the length functional,
we can minimize the energy functional E(γ) = 1

2

∫ b
a ||γ

′(t)||2dt. This can be shown to be equiv-
alent as long as we consider curves that are parametrized by a constant plus another constant
times arc length (so curves with constant speed). Since the parametrization of a curve does not
influence its length, this is not a real restriction.

Differential equations for geodesics
Now we skip a lot of calculations and jump right to the result.

Proposition 3.9 . A piecewise C∞ curve γ : [a, b] → M such that d2s
dt2

= 0 is a critical point for

L = Lba if and only if γ is C∞ on [a, b] and satisfies for every coordinate system (x, U) and
k = 1, .., n:

d2γk

dt2
+

n∑
i,j=1

Γkij(γ(t))
dγi

dt

dγj

dt
= 0, (9)

when γ(t) ∈ U . Here

Γkij =

n∑
l=1

gkl[ij, l] =

n∑
l=1

gkl
1

2

(
∂gil
∂xj

+
∂gjl
∂xi
− ∂gij
∂xl

)
and (gij) and (gij) are the coefficients of 〈 , 〉 resp 〈 , 〉∗ with respect to the coordinate system
(x, U).

We will not give a proof here, but it is good to mention that the equations in the proposition
are exactly the Euler-Lagrange equations for the energy functional.

Definition 3.10 . We call the curves from the previous proposition geodesics and we call (9) the
geodesic equations.

Note that any reparametrization of a geodesic also minimizes the length functional (but we do
not call them geodesics).

Local existence
Now we can ask ourselves the question if such geodesics exist. Let us first look at the easiest
example: Rn. Here the matrix (gij) is the identity (and hence constant), so all derivatives of gij

are 0, so Γkij is 0 for any i, j, k. This means that the geodesic equations are reduced to d2γk

dt2
= 0,

so every component of the geodesic should be of the form t 7→ a + bt. This means that the
geodesic is a line in Rn.

Now we give a result for the general case. It is shown in section A.3 how to solve a simple
differential equation on a manifold. The geodesic equations are obviously more complex, but
we can still solve this equation. Since it is a second order differential equation, we expect that
we need an additional initial condition. This turns out to be correct, as we see in the next
proposition.

Proposition 3.11 . Let p in M . Then there is neighbourhood U of p and an ε > 0 such that for
each point q ∈ U and each tangent vector v ∈ TqM such that ||v|| < ε, there exists a unique
geodesic γv : (−2, 2)→M such that γv(0) = q and γ′v(0) = v.
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In particular, this means that there is always a neighbour of a point p such that there is a
unique geodesic through p in that neighbourhood with a specified tangent vector at p.

Global existence
We have now seen some local behaviour (some more will follow when studying the exponential
map). To speak about global properties we introduce the following concept.

Definition 3.12 . We call a Riemannian manifold M geodesically complete if any geodesic γ :
[a, b]→M can be extended to a geodesic R→M .

This is what we would like. That geodesics do not only have nice properties locally, but that
any geodesic can be followed for as long as we wish. The next theorem tells us exactly when
this is the case.

Theorem 3.13 (Hopf-Rinow-De Rahm). Let M be a Riemannian manifold with Riemannian met-
ric 〈 , 〉. Then M is geodesically complete if and only if it is complete with respect to the metric
determined by 〈 , 〉. Moreover, when this is the case, any two points can be joined by a geodesic
of minimal length.

If M is compact with respect to its original metric, then it is also compact with respect to the
metric d induced by 〈 , 〉 (recall that M with its original metric is homeomorphic to (M,d)).
This means it is complete with respect to d, so the results of the theorem hold for any compact
manifold.

3.1.5 Exponential map

Following geodesics
Now that we know that geodesics exist (at least locally), we can follow them. This provides a
natural map from the tangent space at a point to the manifold itself.

Definition 3.14 . Let p ∈ M and v ∈ TpM and suppose that there is a geodesic γ : [0, 1] → M
such that γ(0) = q and γ′(0) = v. Then we define exp(v) := expp(v) := γ(1) and we call it the
exponential of v.

Note that expp(v) is just the point where one ends up after following γ for one unit time. We can

now describe γ as γ(t) = expp(tv). Note that we have d
dt |0 expp(tv) = d

dt |0γ(t) = v, which we are
used to when dealing with exponential maps (the full reason that the map is called exponential
has to do with Lie algebras, so we will not discuss it here). In Rn with the Euclidean metric the
exponential map takes a special form. Suppose p ∈ Rn and v ∈ TpRn = Rn. Geodesics in Rn
are just straight lines. This means that after following the geodesic with tangent vector v at p
for one time unit, one ends up in p+ v. Hence expp(tv) = p+ tv for any t ∈ R. This is a very
special case, since the tangent space can be identified with the space itself (as a vector space).

Some properties
We will study the exponential map more closely, since we will be working with this map later.
The results are basically [21, Thm 9.14-9.18]. The following properties further characterize the
local behaviour of geodesics and the exponential map.

Proposition 3.15 . Let p ∈ M . Then there is a neighbourhood W of p and an ε > 0 such that
the following statements hold.

• Any two points in W are joined by a unique geodesic of length < ε.

• If v(q, q′) denotes the (unique) vector in v ∈ TqM of length < ε such that expq(v) = q′,
then (q, q′) 7→ v(q, q′) is C∞ as a map W ×W → TM .
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• For each q ∈W , expq maps the open ball of radius ε around the origin of TqM diffeomor-
phically onto an open set Uq that contains W .

• For every 0 < c < ε, the geodesics through q are perpendicular to the hypersurfaces
{expq(v) : ||v|| = c}.

• If γ : [0, 1] → M is the geodesic of length < ε between q and q′ and c : [0, 1] → M is
any piecewise smooth curve from q to q′, then L(γ) ≤ L(c). Equality only holds if c is a
reparametrization of γ.

In particular we see that any point has a neighbourhood on which the (uniquely defined)
geodesics are in fact the shortest paths (up to reparametrization).

3.1.6 Normal coordinates

Normal neighbourhood
It will often prove useful to consider a specific coordinate system around a point. To be able to
define these coordinates (following [12]), we first need the following.

Definition 3.16 . Let V be a vector space and v ∈ V . We call a neighbourhood U of v star-shaped
if for any w ∈ U and any λ ∈ [0, 1]: λv + (1− λ)w ∈ U .

This means that for any point of U it should contain the line from that point to v.

Definition 3.17 . We call a neighbourhood U of p normal if it is the diffeomorphic image of a
star-shaped neighbourhood of 0 ∈ TpM under expp.

The following lemma guarantees us that such neighbourhoods exist (by considering star-shaped
subsets of V ).

Lemma 3.18 . Every p ∈M has a neighbourhood U that is the diffeomorphic image of a neigh-
bourhood V of 0 ∈ TpM under expp.

Normal coordinates
Observe that if e1, .., en is an orthonormal basis for TpM , we can make a natural mapping E
of a vector v ∈ TpM to its coordinates with respect to the basis. It is easy to show that this
mapping is a vector space isomorphism (basically because 〈∂i, ∂j〉 = δij).

Definition 3.19 . Let U be a normal neighbourhood of p and let e1, .., en be an orthonormal basis
for TpM with mapping E : TpM → Rn as above. Define

x : M → Rn by x = E ◦ exp−1
p .

Then (x, U) is a coordinate system. We call this system normal coordinates centered at p.

Note that x(p) = 0, so it is natural to call x a coordinate system centered at p. A lot of things
involving the metric and geodesics simplify a lot with respect to this coordinate system.

Proposition 3.20 ([12, Prop 5.11]). Let (x, U) be a normal coordinate system centered at p ∈M .
Then the following assertions hold.

• The geodesic from p in the direction of v = vi∂i is given by the line t 7→ (tv1, .., tvn) with
respect to x (as long as it is in U).

• gij = δij (so G = I) at p

• Any Euclidean ball {p ∈ M :
∑
xi(p)2 < c} contained in U is the diffeomorphic image of

a ball around 0 ∈ TpM under expp.
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• The first partial derivatives of gij and the Christoffel symbols are 0 at p.

Note that geodesics through U that do not visit p generally are not a straight line with respect
to x. Also, the metric matrix and the Christoffel symbols only vanish at p itself, but generally
not on a neighbourhood of p. The latter is only the case when that neighbourhood is isometric
to an open subset of Rn, which is a very strong assumption (see the end of section 3.2).

3.2 Connections and curvature

As we have seen a lot of times now, it is convenient to work with a smooth manifold by using
its tangent vectors. In each point, the tangent vectors form a vector space, so we have many
tools to work with them. However, if we would like to compare vectors that are tangent to
different points, we have an immediate difficulty: they are elements of different vector spaces.
We can also not simply identify the vector spaces with each other. In order to deal with this,
we will introduce connections and parallel transport. Using these important notions, we can
then rigorously define the curvature of a manifold. In all of this section we will follow [12].

3.2.1 Connections

We will discuss connections, derivatives along curves and parallel transport. For each of these,
we first define it in the general setting of a smooth manifold and then we show the properties
corresponding to the natural version in a Riemannian manifold. The main idea is that we would
like to define the derivative of a vector field along a curve. Then we can say that the vectors
are in some way ’constant’ along that curve if the derivative is 0. This will provide us with a
way to compare vectors from different tangent spaces.

Differentiating vector fields
Let us start with the central definition.

Definition 3.21 . Let M be a smooth manifold and let π : E → M be a vector bundle over
M . Denote the set of smooth sections of E by E(M). Then a connection in E is a map
∇ : T (M)× E(M)→ E(M) that maps (X,Y ) to ∇XY in such a way that

• ∇XY is linear over C∞ in X

• ∇XY is linear over R in Y

• (product rule) ∇X(fY ) = f∇XY + (Xf)Y for f ∈ C∞.

We also call ∇XY the covariant derivative of Y in the direction of X.
In particular, if we use the tangent bundle the connection reduces to a map T (M)×T (M)→
T (M) and we call it a linear connection.

The intuition is that in every point p we take the derivative of Y in the direction of the vector
Xp. This suggests that we only need to know Xp and the values Yq for q in some neighbourhood
of p to calculate ∇XY . This turns out to be true.

Lemma 3.22 ([12, Lemma 4.2]). Suppose ∇ is a connection in a bundle E over M . Let X be
a vector field and let Y be a section of E. Then for any point p ∈ M , the value ∇XY |p only
depends on Xp and the values of Y in a neighbourhood of p.

Explanation of the definition
We will now explain the defining properties of a connection more carefully. First of all, since
∇XY |p is a derivative in the direction of Xp, it should depend linearly (over R) on Xp. Since
this can be done in every point and these points do not influence each other, ∇XY should
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depend linearly (over C∞) on X.
Now suppose that Y is multiplied by a C∞ function f . The reasoning above does not work,
since ∇XY |p does not only depend on Yp. Locally in p, Y is multiplied by a constant f(p), so
this should appear in front of ∇XY . However, it also matters how f varies around p, which
gives an extra term. Together this forms the product rule from the definition. In particular, if
f is constant, the extra term vanishes and the expression is reduced to a constant times ∇XY ,
which is a special case of the second requirement. Also, naturally the derivative of the sum
should be the sum of the derivatives. This gives us the full second requirement.
In the following we will assume that we work with the tangent bundle, so a connection is always
a linear connection.

Generalized Christoffel symbols
Suppose (x, U) is some coordinate chart around p and we regard the vector fields X = ∂i and
Y = ∂j on U (so Xp = ∂

∂xi
|p). Let ∇ be a connection. Since ∇XY |p only depends locally on X

and Y , we can calculate its value in p. We can use this to define the coefficients Ckij by

∇∂i∂j = Ckij∂k. (10)

The Ckij can be considered generalized versions of the Christoffel symbols. We will come back
to this shortly.

A connection is fully described by the Ckij . Using just the defining properties, it is easy to
show that

∇XY = (XY k +XiY jCkij)∂k.

It also works the other way around: any choice of smooth functions Ckij locally defines a connec-
tion. By a partition of unity argument, this can be used to define a connection on any manifold.

Levi-Civita connection
We have seen that a variety of connections can be constructed. On a Riemannian manifold
there is a distinguished one, called the Levi-Civita connection. It satisfies some extra proper-
ties, which we will introduce first.

Definition 3.23 . Let ∇ be a (linear) connection on M . We have the following definitions.

• ∇ is called compatible with the metric if for all vector fieldsX,Y, Z : X 〈Y, Z〉 = 〈∇XY,Z〉+
〈Y,∇XZ〉.

• ∇ is called symmetric if ∇XY −∇YX = [X,Y ](:= XY − Y X).

The following important theorem tells us that a connection with such properties uniquely exists.

Theorem 3.24 ([12, Thm 5.4], Fundamental Lemma of Riemannian Geometry). Let M be a Rie-
mannian manifold. Then there is a unique connection that is symmetric and compatible with
the metric. We call this the Levi-Civita connection.

In the case of the Levi-Civita connection, the Ckij are just the Christoffel symbols. In fact, once
uniqueness is shown in the proof of the theorem (using a lot of juggling with equations), one
simply sets Ckij = Γkij and checks that the corresponding connection is symmetric and com-
patible with the metric. In particular, in Rn the Christoffel symbols are 0, so the Levi-Civita
connection is ∇XY = (XY k)∂k. This is also called the Euclidean connection.

Curves
Now that we can take derivatives of vector fields with respect to vector fields, we would like to
define how to do this with respect to curves. We therefore need the following definitions.
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Definition 3.25 . A curve in M is a smooth map γ : I → M for some interval I. A vector field
along a curve γ : I → M is a smooth map V : I → TM such that V (t) ∈ Tγ(t)M . It is called

extendible if there is a vector field Ṽ defined on a neighbourhood of the image of γ such that
V (t) = Ṽ (γ(t)). We denote the set of all vector fields along γ by T (γ).

For any smooth curve γ one can define its velocity vector γ̇ = d
dtγ in each point. This is an

example of a vector field along a curve. The notion of extendibility is necessary to link differ-
entiation along a curve to differentiation with respect to vector fields, as becomes clear in the
following lemma.

Derivative along a curve

Lemma 3.26 ([12, Lemma 4.9]). Let ∇ be a connection on M and let γ : I → M be a curve.
Then there is a unique operator Dt : T (γ)→ T (γ) such that:

• Dt is linear over R.

• (product rule) Dt(fV ) = ḟV + fDtV for f ∈ C∞(I), V ∈ T (γ)

• For any V ∈ T (γ) and any extension Ṽ of V : DtV (t) = ∇γ̇(t)Ṽ .

We call DtV the covariant derivative of V along γ.

Note that we want linearity as a basic property of differentiation. Further, the product rule
looks a lot like the one for connections. The last requirement links the Dt to ∇ in a natural
way. The proof first shows that the value DtV at t0 only depends on V in a neighbourhood of
t0. This allows us to use local coordinates to calculate DtV . Let (x, U) be coordinates around
γ(t0). Then we can write V (t) = V j(t)∂j . The ∂j are extendible, so we can use the defining
properties of DtV to see:

DtV (t0) = Dt(V
j∂j)(t0) = V̇ j(t0)∂j + V j(t0)∇γ̇(t0)∂j

= V̇ j(t0)∂j + V j(t0)∇γ̇i(t0)∂i∂j = V̇ j(t0)∂j + V j(t0)γ̇i(t0)∇∂i∂j
= V̇ j(t0)∂j + V j(t0)γ̇i(t0)Ckij(γ(t0))∂k = (V̇ k(t0) + V j(t0)γ̇i(t0)Ckij(γ(t0)))∂k .(11)

This equation shows uniqueness (since the expression does not depend on D anymore) and it
can be used as a definition to prove existence, but it will also be important later.

Geodesics
We will use derivatives along a curve to give another approach to geodesics. To do this we first
need the following definition.

Definition 3.27 . Let γ be a curve. We define its acceleration (with respect to∇) as the derivative
of its velocity field along itself: Dtγ̇.

We now have an alternative way of speaking about straight lines in a curved space. We can call
a curve straight precisely when its acceleration is 0, then the velocity vector ’stays the same’
along the curve (we will soon make this precise).

Definition 3.28 . We call a curve a geodesic (with respect to ∇) if its acceleration is 0.

Note that this is a more general definition of a geodesic: we have not used the Riemannian
structure. However, we must show that it coincides with our previous definition.

Riemmanian geodesics
Suppose again that we have a Riemannian metric and let ∇ be the Levi-Civita connection.
Then Ckij = Γkij (for any coordinate chart (x, U) around p). Let γ be a smooth curve. Then γ
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is a geodesic if Dtγ̇ ≡ 0. Using (11), this means that for all k and all t0 (and in any coordinate
system):

γ̈k(t0) + γ̇j(t0)γ̇i(t0)Γkij(γ(t0)) = 0.

In other words, γ is a geodesic (for the Levi-Civita connection) if and only if it satisfies the
geodesic equations.

Parallel transport
We have mentioned a few times that we consider a vector field ’constant’ along a curve if the
derivative along the curve is 0. We will formalize this in the following definition.

Definition 3.29 . Let V be a vector field along some curve γ. We say that V is parallel along γ
(with respect to ∇) if DtV = 0. If a vector field V on M is parallel along any curve, we simply
call it parallel.

The following theorem shows an important property.

Theorem 3.30 ([12, Thm 4.11], Parallel translation). Let γ : I → M be a curve and let t0 ∈ I.
For any vector V0 ∈ Tγ(t0)M there exists a unique parallel vector field V along γ such that
V (t0) = V0.

The idea is that V0 is moved along γ while being kept parallel with respect to itself in the
previous positions (which is why we speak of parallel translation). The vector field that
is obtained is called the parallel translate of V0 along γ. We can now define an operator
Pt0t1 : Tγ(t0)M → Tγ(t1)M that maps a vector V0 at γ(t0) to V (t1), where V is the parallel
translate of V0 along γ.

Comparing vectors
We have found a way to transport vectors, while keeping them parallel to the initial vector.
To compare vectors from different tangent spaces, we can simply transport one of them over
a suitable curve to the other vector space and compare the vectors there. In this way we can
obtain another way of interpreting differentiation along a curve.

Proposition 3.31 . Let ∇ be a connection on M and let V be a vector field along a curve γ.
Then the following holds:

DtV (t0) = lim
t→t0

P−1
t0t
− V (t0)

t− t0
.

Now Dt really takes the form of a derivative. The subtraction is well defined since P−1
t0t

is in
the same vector space as V (t0).

The Riemannian situation
When M has a Riemannian metric, there is even extra structure.

Proposition 3.32 . Let M be a Riemannian manifold and ∇ the corresponding Levi-Civita con-
nection. Then the following statements hold.

• If V,W are vector fields along some curve γ, then d
dt 〈V,W 〉 = 〈DtV,W 〉+ 〈V,DtW 〉.

• If V,W are both parallel along γ, then 〈V,W 〉 is constant along γ.

• The parallel translation operator Pt0t1 is an isometry Tγ(t0)M → Tγ(t1)M .

The properties above are actually equivalent to the fact that ∇ is compatible with the metric.
This is all [12, Lemma 5.2].

43



3.2.2 Curvature

Intrinsic and extrinsic curvature
One of the most important differences between a general manifold and Rn is that a manifold
does not have to be flat: it can be curved. However, it is not directly clear how to quantify this
and it is even not so straightforward what curvature means. In fact, one can view curvature
in two ways. Intrinsic curvature is the kind of curvature that can be observed while staying
in the manifold. However, it is also possible to embed a manifold in an ambient manifold and
consider the curvature of the manifold in the ambient manifold. This is extrinsic curvature and
it depends on the ambient space. The intrinsic curvature is an intrinsic property of the manifold
and hence the most important one. However, extrinsic curvature is sometimes more intuitive.
For example, a cylinder is intrinsically flat, but it is curved when it is viewed as a subset of R3,
which we are used to. We will mostly be interested in intrinsic curvature. There are multiple
ways to define and characterize it. We will first define the Riemannian curvature tensor. Then
the Ricci and scalar curvature can be deduced from this. We will follow [12, Chapter 7].

Parallel translation along a closed curve
We have already seen that we can transport a vector along a curve in a parallel way. One can
now wonder what happens if the curve is closed. In other words, what if you come back to
the point where you started? Does that yield the same vector? In Rn, the answer is yes. In a
more general space, however, this is not the case anymore. For example, consider the sphere.
Suppose you start walking from the north pole with a stick pointing south. Once you reach
the equator, walk along it for a quarter of its length. Then walk back to the north pole. If the
stick is kept parallel at all times, it is still pointing to the south. This means that when you
get back at the north pole, the stick has turned 90 degrees. This indicates that the sphere is
curved. The reason is that differentiation in the different directions can not be exchanged.

Curvature endomorphism
More generally in Rn we have ∇X∇Y Z = ∇X(Y Zk∂k) = XY Zk∂k, so

∇X∇Y Z −∇Y∇XZ = (XY Zk − Y XZk)∂k = ([X,Y ]Zk)∂k = ∇[X,Y ]Z.

In a curved space, this does not always hold. Hence the following definition.

Definition 3.33 . The curvature endomorphism is the map R : T (M)×T (M)×T (M)→ T (M)
given by

(X,Y, Z) 7→ R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

We can define its coefficients in local coordinates by writing R(∂i, ∂j)∂k = Rijk
l∂l. These define

a (new) map (which we will also call the curvature endomorphism) R : T (M) × T (M) ×
T (M)×T 1(M)→ R with the following action:

(∂i, ∂j , ∂k,dx
l) 7→ dxl(R(∂i, ∂j)∂k) = dxl(Rijk

l∂l) = Rijk
l.

This means that it is indeed given by R = Rijk
ldxi ⊗ dxj ⊗ xk ⊗ ∂l (where we interpret

∂l = ∂
∂xl
|p ∈ (TpM)∗∗ in each point p). In this way we turned the curvature endomorphism into

a
(

3
1

)
-tensor field.

Curvature tensor
Now we can give the final definition.

Definition 3.34 . Let R denote the just defined tensor field. We define the Riemannian curvature
tensor Rm to be R with the last index lowered. This means that Rm = Rijkldx

i⊗dxj⊗dxk⊗dxl

where Rijkl = glmRijk
m.
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Intrinsic property
We have used some tricks concerning vector spaces to end up with the covariant 4-tensor that
we call the curvature tensor. However, it was worth the effort, since what we ended up with is
an intrinsic property of the manifold. To make this precise, we have the following definition.

Definition 3.35 . Let M,M̃ be Riemannian manifolds with Riemannian metrics g and g̃, re-
spectively. A map φ : M → M̃ is called an isometry if it is a diffeomorphism and φ∗g̃ = g.
ψ : M → M̃ is called a local isometry if every point in p ∈M has a neighbourhood U such that
ψ|U is an isometry U → ψ(U). If such ψ exists, we call M and M̃ locally isometric.

Being locally isometric thus means that the Riemannian structure is locally similar. We can
now think of a property as intrinsic to a manifold if it is invariant under local isometries. This
is what the next lemma says about the curvature tensor.

Lemma 3.36 ([12, Lemma 7.2]). Let M and M̃ be manifolds with corresponding curvature en-

domorphisms and tensors R, R̃,Rm and R̃m respectively. Suppose ϕ : M → M̃ is a local
isometry. Then ϕ∗R̃m = Rm and R̃(ϕ∗X,ϕ∗Y )ϕ∗Z = ϕ∗(R(X,Y )Z).

Flat manifolds
We defined the curvature endomorphism as the difference between two values that should be
equal in Rn. This means that the curvature endomorphism is 0. This implies that the curvature
tensor is also 0. Hence Rn has no curvature, which is what we would like. Actually we will
define flatness in this way.

Definition 3.37 . We call a Riemannian manifold M flat if it is locally isometric to Rn.

This resembles the definition of a manifold. There we require that every point has a neigh-
bourhood that ’looks like’ Rn topologically. Here we require that such a neighbourhood should
also resemble an open set in Rn as to its Riemannian structure. Since the curvature tensor is
invariant under local isometries, we directly see that any flat manifold has curvature 0. In fact,
the reverse is also true.

Theorem 3.38 ([12, Thm 7.3]). Let M be a Riemannian manifold with curvature tensor Rm.
Then M is flat if and only if Rm ≡ 0.

Ricci and scalar curvature
To have a somewhat simpler object to work with, we can derive another way to deal with
curvature from the Riemannian curvature tensor.

Definition 3.39 . The Ricci curvature is a covariant 2-tensor that is defined as the trace of the
curvature endomorphism (considered as a

(
3
1

)
-tensor) on its first and last indexes.

This means that the Ricci tensor is given by R = Rijdx
i ⊗ dxj with Rij = Rkij

k (where Rijk
l

are the coefficients of the curvature endomorphism as before). From this we can derive an even
simpler notion.

Definition 3.40 . The scalar curvature is defined as S = gijRij , where Rij are the coefficients of
the Ricci tensor. It can be obtained by raising the second index of the Ricci tensor and then
taking the trace of the result.

3.3 Brownian motion

In this section we define Brownian motion on a manifold and introduce some basic operators
related to it.
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3.3.1 Laplace-Beltrami operator

Since the generator of Brownian motion in Rn is the Laplace operator, we will define an ana-
logue on a manifold.

Let f be a smooth function Rn → R. Then the Laplace operator applied to f equals

∆f =
n∑
i=1

∂2f

∂(xi)2
=

n∑
i=1

∂

∂xi
∂f

∂xi
= div

(
∂f

∂x1
, ..,

∂f

∂xn

)
= div(∇f).

This suggest that if we can define the divergence and the gradient operator on a manifold, we
have a way to define the Laplace operator.

Gradient
The gradient on a manifold can be defined as follows.

Definition 3.41 . Let f be a smooth function on M . Then the gradient of f is defined as the
smooth vector field ∇f = df ].

This means that for v ∈ TpM : df(v) = 〈∇f, v〉. Note that df(v) = v(f) is the derivative
of f in the direction of v. This number can be obtained as an inner product of v with the
gradient vector, which is the same as in Rn. To obtain a local representation, fix a point p
and some coordinate system (x, U). By setting v = ∂i and writing ∇f = wj∂j , we can express
both sides of df(v) = 〈∇f, v〉 in coordinates. First we see df(v) = df(∂i) = ∂if . Further
〈∇f, ∂i〉 = wj 〈∂j , ∂i〉 = wjgji = wjgij = (Gw)i. This shows that (∂1f, .., ∂nf)T = Gw, so
w = G−1(∂1f, .., ∂nf)T , so wi = gij∂jf . This means that we can write

∇f = gij∂jf∂i.

In the Euclidean case G = I so we get the usual gradient operator back.

Divergence
In the Rn case, gradient and divergence are closely related to each other. This same relation
can be used as a definition of divergence on a Riemannian manifold.

Theorem 3.42 ([7, Thm 3.11]). For any smooth vector field X on a Riemannian manifold M ,
there is a unique smooth function div(X) : M → R such that for any smooth function u on M :∫

M
div(X)u dV = −

∫
M
〈X,∇u〉dV.

We can also express divergence locally. For a smooth vector field X it can be shown that

div(X) =
1√

detG
∂i

(√
detGXi

)
.

Note that in the Euclidean case we have detG = det I = 1 on all of U , so what remains is
div(X) = ∂iX

i, which is what we want. A closer look at the proof of [7, Thm 3.11] reveals that
the factors

√
detG come from changing to the uniform measure in local coordinates and back

to the volume measure.

Laplace-Beltrami operator
We can now define the analogue of the Laplace operator.

Definition 3.43 . Let M be a Riemannian manifold. We define for smooth functions f , the
Laplace-Beltrami operator ∆M as div(∇f).
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In a coordinate system (x, U), this operator is given by:

∆Mf =
1√

detG

∂

∂xj

(√
detGgij

∂f

∂xi

)
.

According to [9, Section 2], this can be rewritten as

∆M = gij∂i∂j − gijΓkij∂k.

It can be shown that the Laplace-Beltrami operator locally equals the following expression ([13,
Section 2.3]):

∆Mf(p) =
n∑
i=1

d2

dt2
f(expp(tvi))

∣∣∣∣
t=0

,

where v1, .., vn is any orthogonal basis of TpM . This definition resembles the expression of the
Laplace operator in Rn very much. Apparently we cannot just define ∆M =

∑
i ∂

2
i , because we

should follow geodesics instead of straight lines in local coordinates.

3.3.2 Heat kernel

Heat equation and heat kernel
Now that we have a Laplace operator, we can formulate the heat equation on a Riemannian
manifold. We say that a function u : [0,∞) ×M → R such that (t, p) 7→ u(t, p) satisfies the
heat equation with initial condition f if the following holds:

d

dt
u(t, p) = ∆Mu(t, p) for all t > 0

lim
t↓0

u(t, ·) = f (locally) uniformly on M.
(12)

Here ∆ is applied to u as a function of p. Of course u must be smooth enough such that
the derivations are well-defined. It can be shown that for each t ≥ 0 there exists a function
pt : M2 → R from which all solutions to the heat equation with given initial conditions can be
built. In particular,

u(t, p) = pt ∗ f(p) =

∫
M
pt(p, q)f(q)V (dq)

satisfies (12). The collection of functions (pt)t≥0 is called a heat kernel. [7] contains an elaborate
introduction to heat kernels and the proof of their existence on Riemannian manifolds. In Rn
the heat kernel equals

pt(x, y) =
1

(4πt)n/2
e−
||x−y||2

4t .

Corresponding stochastic process
Now it is possible to define a process W = (Wt)t≥0 on M such that Wt started from p has
density pt(p, ·) (with respect to V ). It can be shown that

∫
M pt(p, q)V (dq) ≤ 1 for all t, however

there is not always equality. In that case pt(p, ·) is the density of a sub-probability measure,
and W is sub-Markov process. However, it can be shown that there is equality whenever the
curvature of the space is bounded from below. As we will see in lemma 5.3 and 5.4, this is
always the case in a compact manifold. So in our case we get a Markov process. Then we see
that

u(t, p) =

∫
M
pt(p, q)f(q)V (dq) = Epf(Wt) = Stf(p),

where St denotes the semigroup corresponding to W . Denote the generator by L. Now, using
a basic property of semigroups, we obtain

du

dt
(t, ·) =

d

dt
Stf = LStf = Lu(t, ·),
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so d
dtu(t, p) = Lu(t, p) for all p ∈ M and all t > 0. Since u also satisfies (12) this heuristically

suggests that L = ∆M . By a rescaling of time, the same can be done with 1
2∆M . We can define

the corresponding process W to be Brownian motion on M .

3.3.3 Brownian motion

We define Brownian motion on M as the continuous process W = (Wt)t≥0 on M that is gener-
ated by 1

2∆M . It was argued in the previous section why such a process exists. We will briefly
state some important properties.

Distribution at time t
First of all, as we have seen above, the density of the process started from p at time t equals
pt/2(p, ·), where pt is the heat kernel. In Rn, this distribution becomes

pt/2(x, y) =
1

(4π(t/2))n/2
e
− ||x−y||

2

4(t/2) =
1

(2πt)n/2
e−
||x−y||2

2t ,

which is the density of the normal N(x, t) distribution. This corresponds to the definition of
Brownian motion in Rn. In our case

∫
M pt(p, q)V (dq) = 1 at all times (as noted above, since

we assume compactness), so Brownian motion exists for all time. In general, it is possible that
mass gets lost over time (in the case where

∫
M pt(p, q)V (dq) < 1 for some t). This corresponds

to Brownian motion escaping to infinity. As mentioned before, this is only possible when the
curvature is not bounded from below.

Core
We defined the Laplace-Beltrami operator for smooth functions, but its domain as the generator
of Brownian motion might be larger than that. However, the smooth functions on M form a
core for the domain. An elaboration on this can be found in [22]. Multiple times this fact will
allow us to only look at smooth functions.

Dirichlet form
To find the Dirichlet form corresponding to Brownian motion, we first need to know that it is
symmetric. Since the smooth functions form a core for the generator, by proposition 2.17 it
suffices to check that for all smooth f, g:∫

M

1

2
∆MfgdV =

∫
M
f

1

2
∆MgdV. (13)

Now we write out the left hand side. Using the fact that ∇f is a smooth vector field on M and
theorem 3.42, we obtain

1

2

∫
div(∇f)g dV =

1

2

(
−
∫
M
〈∇f,∇g〉dV

)
= −1

2

∫
M
〈∇f,∇g〉 dV.

In the same way, we can show that the right hand side of (13) equals the same expression.
Therefore (13) holds and we conclude that Brownian motion is symmetric with respect to the
volume measure.
To find an expression for the Dirichlet form, we can use the relation with the generator. Since
the smooth functions are in the domain of the generator, they are also in the domain of the
Dirichlet form. We see for smooth functions f and g:

E(f, g) =

(
−1

2
∆Mf, g

)
= −1

2

∫
div(∇f)g dV =

1

2

∫
M
〈∇f,∇g〉 dV.

We thus conclude that for smooth f, g the Dirichlet form corresponding to Brownian motion
equals

E(f, g) =
1

2

∫
M
〈∇f,∇g〉dV.
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Now fix a coordinate system (x, U). ∇ is locally given by ∇f = gik∂if∂k, so we see

〈∇f,∇h〉 =
〈
gik∂if∂k, g

jl∂jh∂l

〉
= gikgjl∂if∂jh 〈∂k, ∂l〉

= gikgjl∂if∂jhgkl =

n∑
i,j=1

∂if∂jh

n∑
l=1

gjl
n∑
k=1

gikgkl

=

n∑
i,j=1

∂if∂jh

n∑
l=1

gjlδil = ∂if∂jhg
ji = ∂if∂jhg

ij .

In the case of Rn, this reduces to
∑n

i=1 ∂if∂ih, so in that case

E(f, f) =
1

2

∫ n∑
i=1

(
∂f

∂xi

)2

dλ,

which is what we want.
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4 The invariance principle on a
Riemannian manifold

Let M be a Riemannian manifold with dimension n. We assume that M is compact. Then we
know that M is complete and hence geodesically complete. Moreover, we assume that M is
connected. In section 4.1, we will first define a simple random walk on M . Then we show that
the generators of these random walks converge to the generator of Brownian motion when the
step size decreases and the step rate increases. This implies that the corresponding processes
converge in distribution in the path space. In section 4.2 we first discuss the existence and
expression of the corresponding Dirichlet forms. Then we show convergence (in a similar way to
the convergence of the generators) and we make a remark on what the convergence of Dirichlet
forms says about the convergence of processes. While showing convergence of the generators
(and of the Dirichlet forms) we discover which assumptions should be made about the stepping
distributions for this result to hold. Section 4.3 is devoted to finding out which distributions
satisfy these assumptions.

4.1 Convergence of the generators

The process
Suppose that M is equipped with a collection of measures {µp, p ∈M} such that µp is a measure
on TpM . For a vector ξ ∈ TpM we denote the geodesic through p with tangent vector ξ at p
by p(·, ξ). We define a random walk XN = {XN

t , t ≥ 0} on M starting from q ∈ M as the
process that has X0 = q and that jumps from p after an exponential time (with parameter 1)
to p(1/N, η) where η ∈ TpM is drawn according to a probability distribution µp. So at each
point, the process waits an exponential time, then picks a tangent vector η according to µp
and then walks for time 1

N along the geodesic through p in the direction of η. This situation
is sketched in figure 3. We assume that the exponential waiting times and the random tangent
vectors are all independent. As we move through this section, we will see which restrictions the
measures µp should satisfy. In particular, we will show (in section 4.3) that we can take µp to
be for instance the uniform distribution on

√
nSpM . Here SpM denotes the set of unit tangent

vectors at p and for a > 0 aSpM denotes SpM multiplied by a (all vectors with norm a). The
associated semigroup on C(M) is

SNt f(p) = Epf(XN
t ).

This semigroup is generated by

LNf(p) =

∫
TpM

f(p(1/N, η))− f(p)µp(dη).

This is where we need independence of the waiting times and the random vectors. Note that
this is just an analogous expression to the generator of a random walk in section 2.1. The
domain is the set of all continuous functions on M .

The Rn case
In the introduction we already described the result in Rn, but we will repeat it here in a way
that is a bit more technical to see that the process described above generalizes it. We have seen
that in Rn the exponential map is just addition if we identify TpRn with Rn itself. So in that
case from a point p the process moves to p+ 1

N η where η is chosen from TpRn = Rn randomly.
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p0

η0
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η1

p2

η2

p3

η3
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M = S2

Figure 3: Left: geodesic random walk on a sphere. Right: Brownian motion on a sphere (source:
https://en.wikipedia.org/wiki/Brownian_motion).

This means that the discrete time jumping process when jumping as described above, can be
denoted by SNm =

∑m
i=1

1
N ηi = 1

N

∑m
i=1 ηi where ηj is drawn from TSj−1Rn = Rn according to

some distribution. Now let {Nt, t ≥ 0} be a Poisson process with rate one and define XN
t = SNt .

Then X makes the same jumps as S, but after independent exponential times. We see that
XN = {XN

t , t ≥ 0} satisfies the description above. Now the invariance principle tells us that
under some restrictions on the jumping distributions XN

tN2 → Bt in distribution as N goes to
infinity. Here B is Brownian motion. We will try to mimic this in the more general setting of
a manifold.

Aim
We would like to show that a rescaled version of the random walk described above converges
to Brownian motion as N goes to infinity (so that the left picture of figure 3 converges to the
right one). In Rn we had to scale time by N2 if space is scaled by N . This turns out to be the
right scaling in the general case as well.
Theorem 2.13 (Trotter-Kurtz) says that for convergence in distribution in D([0,∞),M) (the
space of cadlag maps [0,∞) → M) it suffices to show convergence of the generators on a core
for the limit process. Since C∞(M) is a core for 1

2∆M , it suffices to consider smooth functions.
Considering all of the above, our aim is to show that for any smooth f we have N2LNf → 1

2∆Mf
uniformly on M .

Choosing the right charts
Let f be a fixed smooth function from now on. Since we want the convergence N2LNf → 1

2∆Mf
to be uniform on M , we cannot just consider this problem pointwise. To deal with this, we will
choose specific coordinate charts.
Let (as before) ρ denote the original metric of the manifold and let d denote the metric that is
induced by the Riemannian metric. Recall that these metrics induce the same topology. This
means that we do not cause confusion when we speak about open and closed sets, continuous
maps and compactness without explicitly mentioning the metric. For each p ∈ M , let (xp, Up)
be a coordinate chart for M around p. Up is open with respect to ρ and hence with respect

to d. This means that there is some εp > 0 such that Gp := Bd(p, εp) ⊂ Up. Now define
Op = Bd(p, ε/2). Since M is compact, we can find p1, .., pm such that M ⊂ ∪iOpi . We have the
following easy statement.

51



Lemma 4.1 . Let (gk)
∞
k=1 and g be functions M → R. If gk → g uniformly on each Opi , then

gk → g uniformly on M .

Proof. Let ε > 0. For each i there is an Ni such that for all k ≥ Ni : supOpi
|gk(q)−g(q)| < ε. Set

N = max1≤i≤mNi and let q ∈M . Then there is a j such that q ∈ Opj . Now for all k ≥ N , we
see k ≥ Nj , so |gk(q)−g(q)| ≤ supOpi

|gk(s)−g(s)| < ε. This shows that supM |gk(q)−g(q)| ≤ ε.
Hence gk → g uniformly on M .

Now let j ∈ {1, ..,m} be fixed. Call O := Opj , ε := εpj , x := xpj , G := Gpj and U := Upj (this
situation is shown in figure 4). Because of the lemma, it suffices to show that N2LNf → 1

2∆Mf
uniformly on O.

Technical considerations
To obtain good estimations later, we will need that p(s, η) is still in our coordinate system
(x, U) and even in the set G when |s| ≤ 1

N for N large enough. Since the convergence must be
uniform, how large N must be can not depend on the point p. The following lemma tells us
how to choose such N .

Lemma 4.2 . Suppose that for every p ∈ M there exists a Kp such that ||η|| < Kp for all
η ∈ suppµp. Moreover, suppose that K = supM Kp < ∞. Choose Nε ∈ N such that 1

Nε
< ε

2K .
Then for all p ∈ O and N ≥ Nε we see

∀|s| ≤ 1

N
: p(s, η) ∈ G.

Proof. Let N ≥ Nε and let p ∈ O. The situation of the proof is visually represented in figure 4.
Fix s ∈ (− 1

N ,
1
N ). Without loss of generality assume s > 0. Note that the speed of the geodesic

p(·, η) equals ||η||, so at time s, it has traveled a distance s||η|| from p. This means that there
is a path of length s||η|| from p(s, η) to p, so d(p(s, η), p) ≤ s||η|| ≤ 1

NK ≤ 1
Nε
K < ε/2.

Since p ∈ O, we know d(p, pj) < ε/2. Now the triangle inequality shows that d(pj , p(s, η)) ≤
d(pj , p) + d(p, p(s, η)) < ε/2 + ε/2 = ε. This implies that p(s, η) ∈ Bd(pj , ε) ⊂ G.

U

pj

G

ε

O

ε
2

p

ε
2

pη

Figure 4: The chart (x, U) with closed ball G and open ball O around pj . As is shown in lemma 4.2,
pη = p(t, η) does not leave the ball around p with radius ε/2, as long as |t| ≤ 1/N for N ≥ Nε. The
importance for uniformity is that it does not matter where we choose p (in O).

Note that to do this, we must assume that the support of µp is compact for each p and in some
sense uniformly in p (so K as above exists). If not, the geodesics can go arbitrarily fast, so they
generally do not stay close enough to the starting point.
Assumption 1: µp has compact support for each p ∈M . Moreover

sup
p∈M

sup
η∈suppµp

||η|| <∞.
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We know now that K as in lemma 4.2 exists. We fix an Nε as in the lemma and take N larger
than Nε.

Taylor expansion
Now fix p ∈ O and η ∈ TpM . Write pη for the map R → M that takes t to p(t, η). We can
locally write f ◦ pη = (f ◦ x−1) ◦ (x ◦ pη), which is a composition of smooth maps. This means
that f ◦ pη is just a smooth map R→ R, so we can use a Taylor expansion and obtain

f(p(1/N, η)) = f(p) +
1

N

d(f ◦ pη)
dt

(0) +
1

2N2

d2(f ◦ pη)
d2t

(0) +
1

6N3

d3(f ◦ pη)
d3t

(tN,η,p),

where tN,η,p ∈ (0, 1/N) is a number depending on N , η and p. This gives us

N2LNf(p) = N2

∫
Mp

f(p(1/N, η))− f(p)µp(dη)

= N2

∫
1

N

d(f ◦ pη)
dt

(0) +
1

2N2

d2(f ◦ pη)
d2t

(0) +
1

6N3

d3(f ◦ pη)
d3t

(tN,η,p)µp(dη)

= N

∫
d(f ◦ pη)

dt
(0)µp(dη) +

1

2

∫
d2(f ◦ pη)

dt2
(0)µp(dη) +

1

6N

∫
d3(f ◦ pη)

dt3
(tN,η,p)µp(dη).(14)

We will examine these terms separately.

The first term
Recall that p ∈ O and that O is contained in a coordinate chart (x, U). Since N ≥ Nε, lemma 4.2
guarantees us that p(s, η) stays in the coordinate chart for |s| < 1

N . Writing η =
∑n

i=1 η
i ∂
∂xi
|p,

we see for |s| < 1
N :

d(f ◦ pη)
dt

(s) =
d

dt
[(f ◦ x−1) ◦ (x ◦ pη)](s)

=
n∑
i=1

Di(f ◦ x−1)(x(pη(s))
d(xi ◦ pη)

dt
(s)

=

n∑
i=1

∂f

∂xi
(pη(s))

d(xi ◦ pη)
dt

(s).

Now setting s = 0, this becomes:

n∑
i=1

∂f

∂xi
(p)ηi =

n∑
i=1

ηi
∂

∂xi
|pf = η(f),

since pη(0) = p(0, η) = p and the tangent vector to the geodesic p(·, η) at 0 is η (so the ith

coordinate with respect x is just ηi). Now the first term of (14) becomes:

N

∫
η(f)µp(dη) = N

∫ n∑
i=1

ηi
∂

∂xi
|pfµp(dη) = N

n∑
i=1

∂

∂xi
|pf
∫
ηiµp(dη).

This shows that the first term of (14) vanishes if we make the following assumption.
Assumption 2: For every coordinate chart around any p ∈M :

∫
ηiµp(dη) = 0 for each i.

The second term
Now we want to show that the remaining term equals 1

2∆Mf(p). Similarly to above we see for
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|s| < 1
N (leaving out the arguments to keep things clear):

d2(f ◦ pη)
dt2

=
d

dt

n∑
i=1

∂f

∂xi
d(xi ◦ pη)

dt

=
n∑
i=1

{(
d

dt

∂f

∂xi

)
d(xi ◦ pη)

dt
+
∂f

∂xi

(
d

dt

d(xi ◦ pη)
dt

)}

=
n∑
i=1


n∑
j=1

∂2f

∂xj∂xi
d(xj ◦ pη)

dt

d(xi ◦ pη)
dt

+
∂f

∂xi
d2(xi ◦ pη)

dt2

 .

Since pη is a geodesic, we know that it satisfies the geodesic equations. This shows that for each
i = 1, .., n we have

d2(xi ◦ pη)
dt2

+
n∑

k,l=1

Γikl
d(xk ◦ pη)

dt

d(xl ◦ pη)
dt

= 0.

Using this yields the following expression for the second derivative:

n∑
i=1


n∑
j=1

∂2f

∂xj∂xi
d(xj ◦ pη)

dt

d(xi ◦ pη)
dt

− ∂f

∂xi

n∑
k,l=1

Γikl
d(xk ◦ pη)

dt

d(xl ◦ pη)
dt

 ,

so

d2(f ◦ pη)
dt2

(0) =

n∑
i=1


n∑
j=1

∂2f

∂xj∂xi
(p)ηjηi − ∂f

∂xi
(p)

n∑
k,l=1

Γikl(p)η
kηl

 .

Using linearity of the integral, we obtain the following expression for the second term of (14):

1

2

n∑
i=1


n∑
j=1

∂2f

∂xi∂xj
(p)

∫
ηiηjµp(dη)− ∂f

∂xi
(p)

n∑
k,l=1

Γikl(p)

∫
ηkηlµp(dη)

 .

Note that we also changed the order of the derivatives of f , this can be done since f is smooth.
Now we want the term above to equal

1

2
∆Mf(p) =

1

2

{
gij

∂2f

∂xixj
− gklΓikl

∂f

∂xi

}

=
1

2

n∑
i=1


n∑
j=1

∂2f

∂xi∂xj
(p)gij(p)− ∂f

∂xi
(p)

n∑
k,l=1

Γikl(p)g
kl(p)

 .

This is true if we require the following.
Assumption 3: For any coordinate chart around any p ∈ M :

∫
Mp

ηiηjµp(dη) = gij(p) for all
i, j.

The rest term
If the last term goes to 0 uniformly on O, we have the result. Let N still be larger then Nε.∣∣∣∣ 1

6N

∫
d3(f ◦ pη)

dt3
(tN,η,p)µp(dη)

∣∣∣∣ ≤ 1

6N

∫ ∣∣∣∣d3(f ◦ pη)
dt3

(tN,η,p)

∣∣∣∣µp(dη)

≤ 1

6N
sup

η∈suppµp

∣∣∣∣d3(f ◦ pη)
dt3

(tN,η,p)

∣∣∣∣
Note that we used here that µp is a probability measure. We know that tN,η,p ∈ [0, 1/N ] ⊂
[0, 1/Nε]. This means that the above is smaller than:

1

6N
sup

η∈suppµp
sup

t∈[0,1/Nε]

∣∣∣∣d3(f ◦ pη)
dt3

(t)

∣∣∣∣ ≤ 1

6N
sup

η:||η||≤K
sup

t∈[0,1/Nε]

∣∣∣∣d3(f ◦ pη)
dt3

(t)

∣∣∣∣ .
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Because of the 1/N in front of the equation, we only need to know that the rest is uniformly

bounded to obtain uniform convergence. It thus suffices to show that d3(f◦pη)
dt3

(t) is bounded as
a function of η with ||η|| < K and t ∈ [0, 1/Nε]. Lemma 4.2 shows that p(t, η) stays in G for all
such η and t. We will use this fact multiple times.

We first express d3(f◦pη)
dt3

in local coordinates for |t| ≤ 1/N .

d3(f ◦ pη)
dt3

=
d

dt

d2(f ◦ pη)
dt2

=
d

dt

n∑
i=1


n∑
j=1

∂2f

∂xj∂xi
d(xj ◦ pη)

dt

d(xi ◦ pη)
dt

+
∂f

∂xi
d2(xi ◦ pη)

dt2

 .

(15)
To make notation more compact, we introduce the following notation (and fi, fijk analogously):

fij :=
∂2f

∂xj∂xi
, pik :=

dk(xi ◦ pη)
dtk

.

Combining this with Einstein summation, we can write (15) as

d

dt
(fijp

i
1p
j
1 + fip

i
2) = (fijkp

k
1)pi1p

j
1 + fij(p

i
1p
j
2 + pi2p

j
1) + (fijp

j
1)pi2 + fip

i
3

= fijkp
k
1p
i
1p
j
1 + fij(p

i
1p
j
2 + 2pi2p

j
1) + fip

i
3.

Now, as before, we can deal with second derivatives of geodesics using the geodesic equations:

pi2 = −Γirsp
r
1p
s
1.

We can also calculate the third derivative:

pi3 =
d

dt
pi2 =

d

dt
(−Γirsp

r
1p
s
1) = −

(
d

dt
Γirs

)
pr1p

s
1 − Γirs(p

r
1p
s
2 + pr2p

s
1).

This shows us that d3(f◦pη)
dt3

is a combination of products and sums of the following types of

expressions: fi, fij , fijk, p
i
1, Γirs and d

dtΓ
i
rs. If we can bound all of these on the right domains

(independent of p and η), we are done.

Bounding fi, fij and fijk
First of all, note that f is a smooth function on U . Further, ∂i defines smooth vector field on U .
Since fi = ∂f

∂xi
is obtained by applying ∂i on U to f , it is a smooth function on U . Continuing

in this way, we see that fij and fijk are also smooth functions on U . In particular, they are
smooth functions on G (since it is a subset of U). G is a closed subset of the compact M and
is hence compact itself. This implies that fi, fij and fijk are (for each choice of i, j, k) bounded
on G. Since we evaluate these functions in the points p(s, η) for 0 ≤ s ≤ 1/N , N ≥ Nε and
||µ|| ≤ K, our discussion above shows that we only evaluate them in points of G. This means
that we have found bounds for fi, fij and fijk.

Bounding pi1
We start with a technical lemma.

Lemma 4.3 . Let q ∈M and let (y, V ) be a coordinate chart around q. Let v ∈ TqM and write
v = vi∂i. Then |vi| ≤

√
gii(q)||v||.

Proof. Fix some 1 ≤ i ≤ n. We see in the tangent space at q:〈
v, gij∂j

〉
=
〈
vk∂k, g

ij∂j

〉
= vkgijgkj = vkδik = vi.

Further,

||gij∂j ||2 =
〈
gij∂j , g

ik∂k

〉
= gijgikgjk = gijδij = gii.
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Using the relations above and the Cauchy-Schwarz inequality, we obtain:

|vi| = |
〈
v, gij∂j

〉
| ≤ ||v|| · ||gij∂j || =

√
gii||v||.

Now we can use this to show the following.

Lemma 4.4 . |pi1(t)| =
∣∣∣d(xi◦pη)

dt (t)
∣∣∣ ≤√gii(p(t, η))||η||.

Proof. The first equation is just a change of notation. Using the definitions from section A.2.3,
we see

d(xi ◦ pη)
dt

=

(
pη∗

d

dt

)
(xi) =

dpη

dt
(xi) =

(
dpη

dt

)i
.

This means that d(xi◦pη)
dt is just the ith coordinate with respect to (x, U) of the tangent vector

to pη at time t so at the point p(t, η) ∈M . Using lemma 4.3, we see∣∣∣∣d(xi ◦ pη)
dt

(t)

∣∣∣∣ ≤√gii(p(t, η))

∣∣∣∣∣∣∣∣dpηdt

∣∣∣∣∣∣∣∣ . (16)

Since pη is a geodesic, it has constant speed. Its speed at p is ||η||, so this must be its speed
anywhere else along the trajectory. Hence ||dp

η

dt || = ||η||. Inserting this in (16) yields the
result.

We can now easily obtain a bound for pi1. For 0 ≤ t ≤ 1/N and ||η|| ≤ K, we know p(t, η) stays
in G. gii is a smooth and hence continous function on U , so it is bounded on G (since G is
compact). This means that

√
gii(p(t, η)) is bounded by some Ki for ||η|| ≤ K and 0 ≤ t ≤ 1/N .

Now we see |pi1| ≤
√
gii(p(t, η))

∣∣∣∣∣∣dpηdt

∣∣∣∣∣∣ ≤ KiK.

Bounding Γirs and d
dtΓ

i
rs

Each gij is a smooth function on U . This means that
∂gij
∂xk

is a smooth function on U . This

implies that Γirs is just combination of products and sums of smooth functions, so it is smooth
itself. Now, as before, Γirs is bounded on G. Since we only evaluate it in p(t, η) with 0 ≤ t ≤ 1/N
and ||η|| ≤ K, we only evaluate it in G, so we have bounded Γirs.
Now d

dtΓ
i
rs can be written as

d

dt
Γirs =

∂Γirs
∂xj

d(xj ◦ pη)
dt

= (Γirs)jp
j
1,

with notation as above. Since Γirs is smooth function U → R, this expression can be bounded
in exactly the same way as expressions like fjp

j
1 above.

Conclusion
We have shown that N2LNf → 1

2∆Mf uniformly for smooth f if:

• supp∈M supη∈suppµp ||η|| <∞

•
∫
ηiµp(dη) = 0 and

∫
ηiηjµp(dη) = gij(p) in each coordinate system around p

Note that if we denote the random variable corresponding to µp by ζp, the second requirement

is that (in any coordinate system) Eζip = 0 and Cov(ζip, ζ
j
p) = gij(p). This shows that the mean

vector m of ζp satisfies m = 0 and the covariance matrix Σ satisfies Σ = (gij)(p). In Rn, this

simplifies to Eζip = 0 and Cov(ζip, ζ
j
p) = δij . This is satisfied for instance when µp is the uniform

distribution on a ball with the right radius in Rn. Section 4.3 deals with the question which
measures satisfy the restrictions above. Some examples will be given at the end of that section
as well.
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4.2 Convergence of the Dirichlet forms

Reversibility of the processes
To use the Dirichlet forms, we first need to know that the underlying process is reversible (with
respect to the volume measure). This means that we have to show that for all f, g in a core of
the generator (LNf, g) = (f, LNg), i.e.:∫
M

∫
TpM

(f(p(1/N, η))− f(p))µp(dη)g(p)dV =

∫
M

∫
TpM

(g(p(1/N, η))− g(p))µp(dη)f(p)dV.

Canceling common terms, we obtain that we need the following identity:∫
M

∫
TpM

f(p(1/N, η))µp(dη)g(p)dV =

∫
M

∫
TpM

g(p(1/N, η))µp(dη)f(p)dV.

If we consider Rn with V = λ the Lebesgue measure, this can be shown by manipulating the
left hand side in the following way. First we identify TxRn with Rn and choose a jumping
distribution that does not depend on p. Then the order of integration is switched, to obtain (in
Rn notation, writing the exponential map as summation):∫

Rn

∫
Rn
f(x+ y)µ(dy)g(x)dλ =

∫
Rn

∫
Rn
f(x+ y)g(x)dλµ(dy).

Now we transform the inner integral by translating over y and we use the translation invariance
of the Lebesgue measure. Then we change the integrals back, so we obtain:∫

Rn

∫
Rn
f(x)g(x− y)dλµ(dy) =

∫
Rn

∫
Rn
f(x)g(x− y)µ(dy)dλ.

Now we need that µ is symmetric in the sense that we can transform −y to +y without changing
µ. Doing that, we get:∫

Rn

∫
Rn
f(x)g(x+ y)µ(dy)dλ =

∫
Rn

∫
Rn
g(x+ y)µ(dy)f(x)dλ,

which is what was to be shown.

This seems like a natural proof, so our hope would be to copy it in the manifold case. However,
we come across several difficulties.
First of all, µp is a measure on TpM . This means that the inner integral integrates over a
different vector space for every p. It is therefore not so easy to speak of letting µ not depend
on p, let alone to interchange the integrals.
The next difficulty is that we cannot really perform translation of the integral, since one cannot
just add a fixed vector to some point. The only sensible way would be to use the exponential
map, but then the question is how to define ’the same vector’ everywhere (so we ’translate’ in
the same direction). Of course all of these tangent space are isomorphic as vector spaces, but
there are many possible isomorphisms. Even if this can be done, the question is over which
vector we translate. It must give some sort of inverse of following the exponential map.
The last problem is that we need the volume measure to be translation invariant. It is not
so easy to see what this should mean in a manifold, since it is not clear what we mean with
translation.

Example
Despite all of these problems, it is possible to have reversibility in non-Euclidean spaces. Certain
groups (for example the group of n×n-matrices with determinant 1 or the group of rotations
in Rn) are manifolds that have the concepts that we need above: a jumping measure that does
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not depend on the point, translation and a translation invariant measure (the Haar measure).
For such groups, calculations analogous to the calculations for Rn above can be carried out.

Corresponding Dirichlet forms
If the underlying process is reversible, we need to find out what the Dirichlet form looks like.
To do that, we can use the relation E(f, g) = (−Lf, g), which yields

EN (f, g) = −
∫
M

∫
TpM

(f(p(1/N, η))− f(p))g(p)µp(dη)V (dp).

In the case of Rn, it can be shown that this equals

−
∫
Rn

∫
Rn

(f(x+y)−f(x))g(x)µ(dy)λ(dx) =
1

2

∫
Rn

∫
Rn

(f(x+y)−f(x))(g(x+y)−g(x))µ(dy)λ(dx).

To show the last equality, we need the same kind of properties as for showing reversibility
above, so it is not directly clear if the same holds in the manifold case. However, since the
latter expression is the most natural one, we choose to use the analogue in the manifold case.
Therefore we define:

EN (f, g) :=
1

2

∫
M

∫
TpM

(f(p(1/N, η))− f(p))(g(p(1/N, η))− g(p))µp(dη)V (dp).

We will call it a Dirichlet form, although we should keep in mind that we have not shown the
last identity and that we need reversibility for it to truly be a Dirichlet form. As we said before,
the reason to use this expression is that it seems the most natural expression for a Dirichlet form
in this context. It will turn out that we get the convergence result that we want. Moreover, we
will need the calculations in the general (non-reversible) case in section 5.

Aim
We will now analyze the same situation with the Dirichlet forms as defined above. We assume
assumption 1, 2 and 3 of section 4.1. Recall that the Dirichlet form of Brownian motion is

E(f, g) =
1

2

∫
M
〈∇f,∇g〉dV.

We will leave out the factor 1
2 of both EN and E , so we do not need to write it every time. This

obviously does not change the calculations.

We would like to show that N2EN (f, g)→ E(f, g) for smooth f, g. Note that M is compact, so
V is a finite measure, so all smooth functions are quadratically integrable. Moreover, whenever
EN is actually a Dirichlet form, its domain contains all the smooth functions, since the domain
of the corresponding generator contains all those functions. Because of a polarization argument,
it suffices to show the result for f = g, since then

N2EN (f, g) =
1

2

(
N2EN (f + g, f + g)−N2EN (f, f)−N2EN (g, g)

)
→ 1

2
(E(f + g, f + g)− E(f, f)− E(g, g)) = E(f, g).

This means that we would like to prove that:

N2

∫
M

∫
TpM

(f(p(1/N, η))− f(p))2µp(dη)V (dp)→
∫
M
〈∇f,∇f〉 dV.

The approach and choosing charts
Since V is a finite measure, uniform convergence of functions implies L1 convergence. Because
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of this it suffices to show that N2
∫
TpM

(f(p(1/N, η))− f(p))2µp(dη) converges uniformly on M

to 〈∇f,∇f〉. Now choose charts on M in exactly the same way as in section 4.1. For each
p ∈ M , let (xp, Up) be a coordinate chart for M around p. Up is open with respect to ρ and

hence with respect to d. This means that there is some εp > 0 such that Gp := Bd(p, εp) ⊂ Up.
Now define Op = Bd(p, εp/2). Since M is compact, we can find p1, .., pm such that M ⊂ ∪iOpi .
Again, for uniform convergence it suffices to show uniform convergence on Opj for some j. Now
let j ∈ {1, ..,m} be fixed. Call O := Opj , ε := εpj , x := xpj , G := Gpj and U := Upj . Now it
suffices to show that uniformly on O:

N2

∫
Mp

(f(p(1/N, η))− f(p))2µp(dη)→ 〈∇f,∇f〉 (p) =
∑
ij

∂f

∂xi
(p)

∂f

∂xj
(p)gij(p).

We know, as in the previous section, that there exists a K such that ||η|| < K for all η ∈ suppµp.
This implies (lemma 4.2) that there is some Nε ∈ N such that p(s, η) ∈ G for |s| ≤ 1/N , N ≥ Nε

and ||η|| ≤ K. Fix N ≥ Nε.

Taylor expansion
As in the previous section, we proceed by using a Taylor expansion:

f(p(1/N, η)) = f(p) +
1

N

d(f ◦ pη)
dt

(0) +
1

2N2

d2(f ◦ pη)
dt2

(tN,η,p).

where tN,η,p ∈ (0, 1/N) is a number depending on N , η and p. This shows that

(f(p(1/N, η))− f(p))2 =

(
1

N

d(f ◦ pη)
dt

(0) +
1

2N2

d2(f ◦ pη)
dt2

(tN,η,p)

)2

,

so we obtain

N2

∫
(f(p(1/N, η))− f(p))2µp(dη) =

∫ (
d(f ◦ pη)

dt
(0)

)2

µp(dη)

+
1

N

∫
d(f ◦ pη)

dt
(0)

d2(f ◦ pη)
dt2

(tN,η,p)µp(dη) +
1

4N2

∫ (
d2(f ◦ pη)

dt2
(tN,η,p)

)2

µp(dη).(17)

We will deal with these terms separately.

The first term
We will write the first term in local coordinates for |t| ≤ 1/N . Using the calculations in the
previous section, we see that it equals∫ (

d(f ◦ pη)
dt

(0)

)2

µp(dη) =

∫ ( n∑
i=1

∂f

∂xi
(p)ηi

)2

µp(dη) =

∫ n∑
i,j=1

∂f

∂xi
(p)

∂f

∂xj
(p)ηiηjµp(dη)

=
n∑

i,j=1

∂f

∂xi
(p)

∂f

∂xj
(p)

∫
ηiηjµp(dη) =

n∑
i,j=1

∂f

∂xi
(p)

∂f

∂xj
(p)gij(p).

This is the expression that we want.

The rest terms
Now we have to show that the last two terms of (17) go to 0 uniformly on O. Using lemma 4.3,
we see that for η in suppµp:∣∣∣∣d(f ◦ pη)

dt
(0)

∣∣∣∣ =

∣∣∣∣∣∑
i

∂f

∂xi
(p)ηi

∣∣∣∣∣ ≤∑
i

∣∣∣∣ ∂f∂xi (p)
∣∣∣∣ ∣∣ηi∣∣

≤
∑
i

∣∣∣∣ ∂f∂xi (p)
∣∣∣∣√gii(p)||η|| ≤∑

i

∣∣∣∣ ∂f∂xi (p)
∣∣∣∣√gii(p)K.
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As shown before in the previous section, this term can be bounded uniformly on O (since gii

and ∂f
∂xi

are smooth and hence bounded on G which contains O). Moreover, using notation as
in the previous section, we know:

d2(f ◦ pη)
dt2

= fijp
i
1p
j
1 + fip

i
2.

This shows that d2(f◦pη)
dt2

and hence (d2(f◦pη)
dt2

)2 only contain terms that also occurred in the
previous section. This means that we can uniformly bound the integrals and hence show the
uniform convergence of the rest terms to 0 in exactly the same way as in the previous section.
We will not repeat the analogous calculations here.

Conclusion
We conclude that the Dirichlet forms of the step processes converge for any smooth f to the
Dirichlet form of Brownian motion if the following hold:

• supp∈M supη∈suppµp ||η|| <∞

•
∫
ηiµp(dη) = 0 and

∫
ηiηjµp(dη) = gij(p) in each coordinate system around p.

As mentioned before, section 4.3 will deal with the question which measures satisfy these as-
sumptions and provide some examples.

Remark on convergence of the processes
Since we have already shown the convergence of the generators and used Trotter-Kurtz in sec-
tion 4.1, we already know that the corresponding processes converge (in distribution in the path
space). Moreover, the convergence of the generators implies the convergence of the Dirichlet
forms. The reason that we still showed the convergence of the (formal) Dirichlet forms, is to
study the situation from this different perspective. In this way we can see directly from the
computations how the expression for the Dirichlet form of Brownian motion emerges from a
simple Taylor expansion.
In general, if there is convergence of the Dirichlet forms in a stronger sense, it is possible to
directly deduce convergence in some sense of the corresponding processes. For instance there
is the concept of Mosco convergence. It was introduced by Mosco. He proves in [15, Thm
2.4.1, Cor 2.6.1] that Mosco convergence of the Dirichlet forms implies strong convergence of
the corresponding semigroups. This, in turn, implies weak convergence of the finite dimensional
distributions of the corresponding processes. We believe that with slightly more effort Mosco
convergence can be shown to hold in our situation. In some cases this might be a more suitable
approach, for instance when the convergence of the generator is hard to show. For this reason
it was good to explore the Dirichlet form convergence in this case, although we did not need it
here.

4.3 Stepping distribution

Constraints for a stepping distribution
The question now is which distributions µp on TpM satisfy assumptions 1, 2 and 3 of section 4.1.
From here on we fix p ∈ M and simply write µ for µp. Being compactly supported is a rather
natural constraint, but the other assumptions are harder, especially since they involve local
coordinates. In this section we address the question which distributions satisfy assumptions 2
and 3, i.e. for every coordinate system around p:∫

ηiµ(dη) = 0 ∀i = 1, .., n∫
ηiηjµ(dη) = gij ∀i, j = 1, .., n.

(18)
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To generalize this a bit, suppose µ satisfies the following for some c > 0 for every coordinate
system: ∫

ηiµ(dη) = 0 ∀i = 1, .., n∫
ηiηjµ(dη) = cgij ∀i, j = 1, .., n.

(19)

Following the proof in the previous section, one sees directly that in this case the generators and
Dirichlet forms converge to the generator and Dirichlet form, respectively, of Brownian motion
that is speeded up by a factor c. We will look into this generalized situation and at the end we
will see how to determine c.

Independence of coordinate systems
The following lemma shows that it suffices to check (19) in a single coordinate system. In other
words, whether (19) is satisfied or not does not depend on which coordinates one works with.

Lemma 4.5 . If (19) holds for some c > 0 and for some coordinate system (x, U) around p, then
it holds for the same c for all coordinate systems around p.

Proof. Let (x, U) be a coordinate system around p for which (19) holds with c > 0 and let (y, V )
be any other coordinate system around p. It suffices to show that (19) holds with the same c for
y. Denote the metric matrix with respect to x by g and the one with respect to y by ĝ. For any
η ∈ TpM define η1, .., ηn as the coefficients of η with respect to x, so such that η =

∑
i η
i ∂
∂xi

.

Analogously let η̂1, .., η̂n be such that η =
∑

i η̂
i ∂
∂yi

. Let J = ∂(x1,..,xn)
∂(y1,..,yn)

. If η ∈ TpM , then

η̂j = η(yi) =
∑
i

ηi
∂

∂xi
yi =

∑
i

ηi
∂yj

∂xi
.

This shows that for any j∫
η̂jµ(dη) =

∫ n∑
i=1

ηi
∂yj

∂xi
µ(dη) =

n∑
i=1

∂yj

∂xi

∫
ηiµ(dη) = 0,

since for any i:
∫
ηiµ(dη) = 0. Moreover, for any i, j:

∫
ηiηjµ(dη) = cgij , so for any i, j:∫

η̂iη̂jµ(dη) =

∫ n∑
k=1

ηk
∂yi

∂xk

n∑
l=1

ηl
∂yj

∂xl
µ(dη) =

n∑
k,l=1

∂yi

∂xk
∂yj

∂xl

∫
ηkηlµ(dη)

=
n∑

k,l=1

∂yi

∂xk
∂yj

∂xl
cgkl = c(J−1G−1(J−1)T )ij .

Since J−1G−1(J−1)T = J−1G−1(JT )−1 = (JTGJ)−1 = Ĝ−1, we see that
∫
η̂iη̂jµ(dη) = cĝij .

We conclude that (19) holds for y with the same c.

Othogonal transformations and canonical measures
We now introduce a class of measures.

Definition 4.6 . Let V be an inner product space and let T be a linear map V → V . We call T
an orthogonal transformation if for any u, v ∈ V : 〈Tu, Tv〉 = 〈u, v〉.
We call a measure µ on TpM canonical if for any orthogonal transformation T on TpM and for
any coordinate system:∫

ηiµ(dη) =

∫
(Tη)iµ(dη) and

∫
ηiηjµ(dη) =

∫
(Tη)i(Tη)jµ(dη).
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Remark 4.7 . In the same way as above, one can show that µ has the property above with
respect to some coordinate system if and only if it has the property with respect to ev-
ery coordinate system. Moreover, since −I always satisfies (−I)TG(−I) = G, we see that∫
ηiµ(dη) =

∫
(−η)iµ(dη) =

∫
−ηiµ(dη) = −

∫
ηiµ(dη), so

∫
ηiµ(dη) is 0 for any canonical µ.

In words, µ is canonical if orthogonal transformations do not change the mean vector and the
covariance matrix of the random variable that has distribution µ. Remark 4.7 shows that in fact
the mean vector must be 0. Note that in particular measures that are invariant under orthogonal
transformations are canonical, since then

∫
(Tη)iµ(dη) =

∫
ηi(µ ◦ T−1)(dη) =

∫
ηiµ(dη) and

the other equation follows analogously. However a simple example shows that the converse
is not true. Let M = R and let µ be any non-symmetric distribution on TpM = R with
mean 0. The only orthogonal transformation (apart from the identity) is t 7→ −t. Under this
transformation the mean (which is 0) and the second moment are obviously left invariant, but
µ is not symmetric, so it is not invariant. We will give an example for Rn later.
If (x, U) is some coordinate system around p and G = (gij) is the matrix of the metric in p with
respect to x, we can write a linear transformation T : TpM → TpM as a matrix (which we will
also call T ) with respect to the base ∂

∂x1
, .., ∂

∂xn . We see that

〈Tη, Tξ〉 =
∑
i,j

gij(Tη)i(Tξ)j =
∑
i,j

gij
∑
k

Tikη
k
∑
l

Tjlξ
l =

∑
k,l

∑
i,j

gijTikTjl

 ηkξl.

If T is orthogonal, this must equal

〈η, v〉 =
∑
k,l

gklη
kξl,

so we see that gkl =
∑

i,j gijTikTjl = (T TGT )kl and hence G = T TGT .
Now for a measure µ on TpM and a coordinate system (x, U), define the vector Aµ and the

matrix Bµ by Aiµ =
∫
ηiµ(dη) and Bij

µ =
∫
ηiηjµ(dη). Then it is easy to show the following

lemma.

Lemma 4.8 . Let µ be a measure on TpM . Then the following are equivalent.

(i) µ is canonical.

(ii) For every linear transformation T and every coordinate system (x, U): if G = T TGT ,
then Aµ = TAµ and Bµ = TBµT

T .

Proof. (i)⇔ (ii) because (ii) is just the definition of being canonical written in local coordinates.
Indeed, we already saw that orthogonality or T translates in local coordinates to G = T TGT ,
the other expressions follow in a similar way from the following equations:

Aiµ =

∫
(Tη)iµ(dη) =

∫ ∑
k

Tikη
kµ(dη) =

∑
k

Tik

∫
ηkµ(dη) =

∑
k

TikA
k
µ

Bij
µ =

∫
(Tη)i(Tη)jµ(dη) =

∫ ∑
k

Tikη
k
∑
l

Tjlη
lµ(dη) =

∑
k,l

TikTjl

∫
ηkηlµ(dη) =

∑
k,l

TikTjlB
kl
µ .

Canonical measures are stepping distributions
Now we have the following result.

Proposition 4.9 . Let µ be a probability measure on TpM . Then µ is canonical if and only if it
satisfies (19) for some c > 0.
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Proof. First assume that µ is canonical and let (x, U) be normal coordinates centered at p.
Because of lemma 4.5 it suffices to verify (19) for x, so we need to show that Aµ = 0 and
Bµ = cG−1 = cI for some c > 0.
The fact that Aµ = 0 is just remark 4.7. Now note that since Bµ is symmetric, it can be
diagonalized as TBµT

−1 where T is an orthogonal matrix (in the usual sense). This means
that T T = T−1 and that T TGT = T T IT = T TT = I = G, so lemma 4.8 tells us that the
diagonalization equals TBµT

T = Bµ. This implies that Bµ is a diagonal matrix. Now for i 6= j
let Īij be the n×n-identity matrix with the ith and jth column exchanged. It is easy to see that
(Īij)T Īij = I, so we must also have Bµ = ĪijBµ(Īij)T . The latter is Bµ with the ith and jth

diagonal element exchanged. This shows that these elements must be equal. Hence all diagonal
elements are equal and Bµ = cI for some c ∈ R. Since c = B11

µ =
∫
η1η1µ(dη) ≥ 0, we know

that c ≥ 0. If c = 0, then Bµ = 0, so µ = 0, which is not possible. We conclude that c > 0.
Conversely let (x, U) be a coordinate system with corresponding metric matrix G and assume
that µ satisfies (19) for some c > 0. Let T be such that G = T TGT . Then Aµ = 0 = T0 = TAµ.
We also see: T TGT = G ⇐⇒ G = (T T )−1GT−1 ⇐⇒ G−1 = TG−1T T ⇐⇒ cG−1 =
T (cG−1)T T =⇒ Bµ = TBµT

T (since Bµ = cG−1), so by lemma 4.8 µ is canonical.

Now we know that if the stepping distribution is canonical (and compactly supported, uni-
formly on M), the generators and Dirichlet forms converge to the generator and Dirichlet form,
respectively, of Brownian motion that is speeded up by some factor c > 0 (depending on µ).
The question remains what this c is. The following lemma answers this question.

Lemma 4.10 . Suppose µ satisfies (19) for some c > 0. Then c =
∫
||η||2µ(dη)

n .

Proof. We calculate the following (with respect to some coordinate system (x, U)):∫
||η||2µ(dη) =

∫
〈η, η〉µ(dη) =

∫ 〈∑
i

ηi
∂

∂xi
,
∑
j

ηj
∂

∂xj

〉
µ(dη)

=
∑
i,j

〈
∂

∂xi
,
∂

∂xj

〉∫
ηiηjµ(dη) =

∑
i,j

gijcg
ij = c

∑
i

∑
j

gijg
ji = c

∑
i

1 = cn.

Hence c =
∫
||η||2µ(dη)

n .

The nice part of this lemma is that the expression for c does not involve a coordinate system,
only the norm (and hence inner product) of TpM . In particular we see that c = 1 is equivalent
to
∫
||η||2µ(dη) = n. We summarize our findings in the following result.

Proposition 4.11 . A probability measure µ on TpM satisfies (19) for a certain c > 0 if and only

if it is canonical and c =
∫
||η||2µ(dη)

n . In particular, it satisfies (18) (and, if compactly supported,
hence qualifies as a stepping distribution) if and only if it is canonical and

∫
||η||2µ(dη) = n.

Examples
Now let us look at some examples. By lemma 4.5, it suffices to choose a coordinate system
and construct a distribution that satisfies (18) for that coordinate system. Let (x, U) be any
coordinate system around some point in M with corresponding metric matrix G in that point.
Let X be any random variable in Rn that has mean vector 0 and covariance matrix G−1 (for
instance let X ∼ N(0, G−1)). Now let µ be the distribution of

∑
iX

i ∂
∂xi

. Then by construction∫
ηiµ(dη) = EXi = 0 and

∫
ηiηjµ(dη) = EXiXj = EXiXj − EXiEXj = gij . This means that

the contructed measure satisfies assumptions 2 and 3. However, it is not compactly supported,
so assumption 1 does not hold.
Note that we did not need any of the theory involving canonical measures that we developed
above, so let us consider an example that does need that. Let µ be the uniform distribution
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on
√
nSpM (the vectors with norm

√
n). By definition of such a distribution, it is invariant

under orthogonal transformations (rotations and reflections), so it is a canonical distribution.
Moreover, it is clearly compactly supported (and if µp equals this measure for any p, they are

compactly supported uniformly on M). Since also
∫
||η||2µ(dη) =

∫ √
n

2
µ(dη) = n, we conclude

that the uniform distribution on
√
nSpM can be used as a stepping distribution.

Let us conclude by showing for Rn that the class of canonical probability distributions is strictly
larger than the class of probability distributions that are invariant under orthogonal transfor-
mations, even with the restriction that

∫
||η||2µ(dη) = n. It suffices to find a distribution µ

with mean 0 and covariance matrix I (since then µ satisfies (18) and 4.11 then tells us that µ
is canonical and has

∫
||η||2µ(dη) = n) and an orthogonal T such that µ 6= µ ◦ T−1. Let ν be

the distribution on R given by ν = 1
5δ−2 + 4

5δ1/2. Then, using the natural coordinate system,∫
tν(dt) = 1

5(−2)+ 4
5

1
2 = 0 and

∫
t2µ(dt) = 1

5(−2)2+ 4
5(1

2)2 = 1. Now let µ = ν×..×ν (n times).
Then we directly see that the mean vector is 0 and the covariance matrix is I. However T = −I
is an orthogonal transformation and µ ◦ (−I)−1 equals the product of n times 1

5δ2 + 4
5δ−1/2, so

obviously µ 6= µ ◦ (−I)−1.
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5 Random grid

In the next section we want to study interacting particles systems on a compact and connected
Riemannian manifold M . We will, more specifically, look at a process where particles perform
random walks with the restriction that jumps to already occupied sites are cancelled. Our aim
will be to prove that in the limit when we scale time and space appropriately, the particle
densities behave according to the heat equation. In order to do all of this we need to discretize
the manifold or, in other words, find a natural grid on the manifold. This turns out to be a
challenging problem, because there is no obvious sequence of grids that converges to the manifold
itself. The goal of this section is to find such a grid. What we want in particular is that random
walks on the grids converge to Brownian motion on the manifold. We will propose a grid and
show that we have convergence of the Dirichlet forms and something close to convergence of
the generators. We start out with a random grid, but from this it can be deduced that it works
for a lot of deterministic grids as well.

5.1 Model and motivation

Motivation
In some areas of statistics the following is known and used (see for instance [19]). Suppose we
have a manifold M that is imbedded in Rd for some d and we would like to recover the manifold
from some observations of it, say an i.i.d. sample of uniform random elements of M . To do
this we can describe the observations as a graph with as weight on the edge between any two
points some semi positive kernel with bandwidth ε applied to the Euclidean distance between
those points. Then it can be shown that the graph Laplacian of the graph that is obtained in
this way converges to the Laplace-Beltrami operator on M as the number of observations goes
to infinity and ε goes to 0. This suggests that we could define random walks on random graphs
and that the corresponding generators converge to the generator of Brownian motion.
A main point of concern is the following: we prefer to view the manifold M on its own instead
of imbedded in a Euclidean space. This means that we would like to use the distance that is
induced by the Riemannian metric instead of the Euclidean distance. The latter is more suitable
to purposes in statistics, since there the Riemannian metric on M is not known beforehand.
Also, a lot is known about the behaviour of the Euclidean distance in this type of situation and
not so much about the distance on the manifold. We will try to make things work in M itself.

Model
Let M be a compact and connected Riemannian manifold and let k be some semi positive kernel
[0,∞)→ [0,∞), i.e. k is non-negative and decreasing. Let (Pi)

∞
i=1 be a sequence of iid uniform

random elements of M (the uniform (probability) measure on M exists, because M is compact).
Define

W ε
ij = k(d(Pi, Pj)/ε)

as the conductance from Pi to Pj . Here d is the metric on M that is induced by the Riemannian
metric (so infimum of path lengths). We can use these conductances to define a random walk
on VN = {P1, .., PN} (as we did in section 2.2). Our goal now is to show that as the number
of points N goes to infinity and the bandwidth ε goes to 0, the corresponding generators and
Dirichlet forms converge in some sense to the generator and Dirichlet form of Brownian motion
on M , respectively. As was mentioned before, there are already a lot of results in the case that
M is viewed as a submanifold of Rd, but these results all use the Euclidean distance. We will
try to obtain similar results using the Riemannian distance.

65



5.2 Convergence of the Dirichlet forms

The Dirichlet form
Since we defined the random walk on a finite graph VN = {P1, .., PN}, using the ’conductances’
(W ε

ij)
n
i,j=1 (as in section 2.2), we can directly write down the corresponding Dirichlet form:

EN (f, g) =

N∑
i,j=1

W ε
ij(f(Pj)− f(Pi))(g(Pj)− g(Pi)).

Note that we leave out the factor 1
2 here and in the Dirichlet form of Brownian motion, so we

do not have to write it every time. It clearly does not matter for the calculations. Here f, g
are functions VN → R. The domain of the corresponding generator is the set of all functions
VN → R (as mentioned in section 2.1), so the domain of the Dirichlet form contains all these
functions. This means that we can apply EN to any f, g : VN → R. Whenever we apply such a
Dirichlet form to functions f, g : M → R, we (implicitly) mean that we apply it to f |VN , g|VN .
Using a polarization argument we can restrict to looking at the situation f = g. Since also
f(Pi) = f(Pj) for i = j (and recalling the notation EN (f) = EN (f, f)), we might as well write

EN (f) =
∑
i 6=j

W ε
ij(f(Pj)− f(Pi))

2.

In [3] this same quantity is studied as a so called regularizer, but here the Euclidean distance
is used when defining (W ε

ij). The authors of [3] also assume that the observations are sampled

from some density p on Rd. It is shown in this case that (when rescaled) it converges in
probability to a quantity depending on the bandwidth ε as N → ∞. The resulting expression
then converges (also in a rescaled way) to

∫
Rd ||∇f(x)||2p(x)dx as ε ↓ 0. We know the latter

expression as the Dirichlet form of Brownian motion, weighted by some density p. Our aim is
to show the analogous result by following the proof in [3] without using the imbedding in Rd
and the Euclidean norm. We will take p = 1

V (M) to be the density of the uniform distribution
on M and we will not use p for this anymore to avoid confusing it with points of M .

5.2.1 The first limit: a.s. convergence as N →∞

Estimating deviation from the mean
Let f be a fixed smooth function f : M → R. First of all note that EN is a sum of N(N − 1)
random variables of the form W ε

ij(f(Pj)−f(Pi))
2. They are very similar, but they are obviously

dependent (besides the fact that each random variable occurs twice, since W ε
ij(f(Pj)−f(Pi))

2 =

W ε
ji(f(Pi)− f(Pj))

2). However, we can follow [3] to deal with this and show convergence to the
expectation of a single term. We would like to apply a result from [8] to a rescaled version of
the Dirichlet form. If we define

UN,εf =
1

N(N − 1)
EN (f) =

1

N(N − 1)

∑
i 6=j

W ε
ij(f(Pj)− f(Pi))

2,

it is easy to see that UN,εf satisfies the description of example 5a of [8, page 24-25] with n = N ,

r = 2, g(x, y) = k(d(x, y)/ε)(f(y) − f(x))2 and (X1, .., XN ) = (P1, .., PN ). Note that in the
example, it is assumed that Xk ∈ Rd, which is not the case in our situation. However, the only
thing that is used, is that g(Xi, Xj) is a real-valued random variable. This implies that it is no
problem to take X1, .., Xn from M and g : M ×M → R. Following the example, if we can find
a and b such that a ≤ g(x, y) ≤ b for all x, y we see that UN,εf satisfies equation (5.7):

P(UN,εf − EUN,εf ≥ t) ≤ e−2mt2/(b−a)2 ,

where m is the largest integer that does not exceed n/r. f is smooth and hence bounded on M
(since M is compact). k is also bounded, because it is positive and decreasing on [0,∞). This
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means that we can set b = ||k||∞4||f ||2∞. Since g is non-negative, we can set a = 0. Finally m
equals the largest integer not exceeding N/2. Since this is either N/2 or (N − 1)/2, we can just
pick the smaller one (the one that gives the roughest bound). Inserting these expressions shows
that for any t ≥ 0

P(UN,εf − EUN,εf ≥ t) ≤ e−(N−1)t2/(4||k||∞||f ||2∞)2 .

By applying the same reasoning to −UN,εf , we obtain

P(|UN,εf − EUN,εf | ≥ t) ≤ 2e−(N−1)t2/(4||k||∞||f ||2∞)2 .

Almost sure convergence
To use the estimation, we need the following lemma.

Lemma 5.1 . Let (Zn)∞n=1 be a sequence of random variables. Suppose there is some c > 0 such
that for every t ≥ 0 : P (|Zn| > t) ≤ e−cnt

2
. Then Zn → 0 almost surely.

Proof. The definition of convergence implies that Zn does not converge to 0 if and only if there
is some k ∈ N such that |Zn| > 1

k infinitely often. Writing i.o. for infinitely often, we see

{Zn 6→ 0} = {∃k ∈ N such that |Zn| ≥
1

k
i.o.} = ∪k∈N{|Zn| ≥

1

k
i.o.}.

Since
∑∞

n=1 P(|Zn| ≥ 1
k ) ≤

∑∞
n=1 e−cn(1/k)2 <∞, the Borel-Cantelli lemma says that

P(|Zn| ≥
1

k
i.o.) = 0.

Now we obtain:

P(Zn 6→ 0) = P(∪k∈N{|Zn| ≥
1

k
i.o.}) ≤

∑
k∈N

P(|Zn| ≥
1

k
i.o.) = 0.

This means that P(Zn → 0) = 1, so Zn → 0 almost surely.

Applying this lemma to our situation directly shows that UN,εf −EU
N,ε
f → 0 almost surely asN →

∞. Now, using the fact that for any pair (i, j) with i 6= j the distribution of W ε
ij(f(Pj)−f(Pi))

2

is the same, we see that for any N

EUN,εf =
1

N(N − 1)

∑
i 6=j

EW ε
ij(f(Pj)− f(Pi))

2 = EW ε
ij(f(Pj)− f(Pi))

2,

where i, j are arbitrary such that i 6= j. This means that EUN,εf is constant in N , which

(together with the a.s. convergence result above) implies that UN,εf → EW ε
ij(f(Pj) − f(Pi))

2

almost surely. The expectation equals

aεf := EW ε
ij(f(Pj)− f(Pi))

2 =

∫
M

∫
M
k(d(p, q)/ε)(f(q)− f(p))2V̄ (dq)V̄ (dp) (20)

where V̄ denotes the uniform measure V
V (M) on M .

Interpretation of the limit
Note that (20) is the (formal) Dirichlet form of a random walk on M that jumps from p to a
point on M according to the density k(d(p, ·)). k(d(p, ·)) is generally not a probability density,
but one can interpret it as a probability density times a scaling factor. This factor is its inte-
gral, which exists and is positive since k is non-negative and bounded and M is compact. The
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process jumps according to the probability density with the scaling factor as its jumping rate.
Of course the process must be reversible for this to be a true Dirichlet form.

The convergence of 1
N(N−1)E

N (f) also implies the convergence of 1
N2EN (f). Indeed,

1

N2
EN (f) =

(
1− 1

N

)
1

N(N − 1)
EN (f)→

∫
M

∫
M
k(d(p, q)/ε)(f(q)− f(p))2V̄ (dq)V̄ (dp) a.s.

5.2.2 The second limit: ε ↓ 0

From here we cannot follow the method of [3] anymore, since their calculations are in Rd. We
would like to show that

ε−2−n
∫
M

∫
M
k(d(p, q)/ε)(f(q)− f(p))2V̄ (dq)V̄ (dp)→ Dk

∫
M
< ∇f,∇f > dV (21)

as ε ↓ 0, where Dk is a constant that depends on the kernel (and, of course, on M). Before we
do this, we restrict ourselves to a specific situation.

Choice of kernel k
At this point we introduce a specific kernel, namely k = 1[0,1] (we will show that this can be
generalized later). We denote for p ∈M, r > 0 : Bd(p, r) = {q ∈M : d(p, q) ≤ r}. Then we can
write ∫

M
k(d(u, v)/ε)(f(q)− f(p))2V̄ (dq) =

∫
Bd(p,ε)

(f(q)− f(p))2V̄ (dq). (22)

For this choice of k, we can say more about the random walk that corresponds to the resulting
Dirichlet form. It jumps (with a certain rate) from p to a point that is uniformly chosen from
the open ball around p with radius ε (with respect to d).

Interchanging the limit and the first integral
Rewriting the left hand side of (21), using (22) and writing D = D1[0,1] shows that we want:

ε−2−n
∫
M

∫
BM (p,ε)

(f(q)− f(p))2V̄ (dq)
1

V (M)
V (dp)→ D

∫
M
< ∇f,∇f > dV.

Note that rescaling by V (M) was necessary because the measure V that is used in the Dirichlet
form of Brownian motion is not a probability measure. Now we can multiply by V (M) and we
call C = V (M)D. If we can interchange the first integral and the limit, it suffices to show that

ε−2−n
∫
Bd(p,ε)

(f(q)− f(p))2V̄ (dq)→ C < ∇f,∇f > (p) as ε ↓ 0. (23)

This means that we first need to show that

lim
ε↓0

ε−2−n
∫
M

∫
Bd(p,ε)

(f(q)− f(p))2V̄ (dq)
1

V (M)
V (dp)

=

∫
M

lim
ε↓0

ε−2−n
∫
Bd(p,ε)

(f(q)− f(p))2V̄ (dq)
1

V (M)
V (dp).

We will show that |ε−2−n ∫
Bd(p,ε)(f(q)− f(p))2V̄ (dq)| is bounded by some constant c for ε small

enough. Since we are dealing with the finite measure V , the integral of the constant function
c/V (M) is finite, so then we have bounded the integrand by an integrable function. The rest of
this section will be devoted to showing that the integrands actually converge (and to what). The
dominated convergence theorem then tells us that the integral and the limit can be exchanged.
We start with the following lemmas.
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Lemma 5.2 . Let M be a smooth and compact Riemannian manifold and let f be a smooth
function M → R. Then f is Lipschitz continuous.

Proof. Let M and f be fixed as above. Since M is compact and any locally Lipschitz function
on a compact space is Lipschitz, it suffices to show that f is locally Lipschitz. Let p ∈M . Let
(x, U) be a chart around p. Let G = Bd(p, ε) and O = Bd(p, ε/4) with ε small enough such that
G ⊂ U . Moreover, by prop 3.15, ε can be chosen small enough such that any two points in G
are joined by a unique geodesic with length smaller than some number δ > 0. We claim that f
is Lipschitz on O.
Pick any points q, r ∈ O. Then there is a unique geodesic γ from q to r of length < δ. Since M
is compact, by theorem 3.13 (and the remark after it) it is geodesically complete. This means
that q and r can be joined by a geodesic of minimal length. Since γ is the only geodesic between
q and r of length < δ, it must be the unique minimal geodesic. This means that the length of
the geodesic equals d(q, r). Let η ∈ TqM be the unit tangent vector at q in the direction of γ.
Then q(·, η) is the minimal geodesic from q to r with unit speed (it is γ rescaled to unit speed).
This means that r = q(d(q, r), η) (the geodesic arrives at r after time d(q, r) since it travels at
unit speed and the distance is d(q, r)). Now we can use a Taylor expansion:

f(r) = f(q(d(q, r), η)) = f(q) + d(q, r)
df ◦ qη

dt
(s)

with s ∈ [0, d(p, q)]. This shows that

|f(r)− f(q)| = d(q, r)

∣∣∣∣df ◦ qηdt
(s)

∣∣∣∣ .
Since the length of the geodesic from q to r is d(q, r) ≤ ε/2 (recall that q, r ∈ O), the geodesic
cannot leave G between q and r. This means that it can be shown with exactly the same

methods as in section 4.1 that
∣∣∣df◦qηdt (s)

∣∣∣ is bounded for q ∈ O, s ∈ [0, ε/2] and η such that

||η|| = 1 by some number L. We conclude that for all q, r ∈ O:

|f(r)− f(q)| ≤ Ld(q, r).

This proves that f is locally Lipschitz and hence Lipschitz on M .

Lemma 5.3 . Let M be a smooth and compact Riemannian manifold and let T be a 2-tensor
field on M . Then T is bounded.

Proof. We want to show that there exist a, b ∈ R such that for all v ∈ TM : a 〈v, v〉 ≤ T (v, v) ≤
b 〈v, v〉. Because of the multilinearity of every term, it suffices to show this for every v ∈ TM
with ||v|| = 1, so we need a, b such that for those v: a ≤ T (v, v) ≤ b.
Now we choose charts. For any p ∈M let (xp, Up) be a chart around p. Let Gp ⊂ Up be closed
and let Op ⊂ Gp be open (we have seen before that this can be done). Now let p1, .., pm be
such that Op1 , .., Opm cover M (this can be done since M is compact). If we can find ai, bi such
that for every i: ai ≤ T (v, v) ≤ bi for v in TM |Opi with ||v|| = 1, we can set a = mini ai and
b = maxi bi. So let 1 ≤ j ≤ n be fixed and call O := Opj , G := Gpj and (x, U) := (xpj , Upj ). Let
p ∈ O and v ∈ TpM such that ||v|| = 1. We can write T = Tkldx

k ⊗ dxl and v = vr∂r. Using
lemma 4.3, we see:

|T (v, v)| = |Tkldxk ⊗ dxl(vr∂r, v
s∂s)| = |Tklvkvl| = |Tkl||vk||vl|

≤ |Tkl| ||v||
√
gkk||v||

√
gll = |Tkl|

√
gkk
√
gll.

Since T is smooth, so are it components Tkl. This means that they are continuous and hence
bounded on G (since G is compact). gkk is also smooth and hence continuous for any k. So√
gkk is bounded on G for any k. In particular Tkl and

√
gkk are bounded on O, so T (v, v) is

bounded for v ∈ TM |O. This shows that we can find aj , bj such that aj ≤ |T (v, v)| ≤ bj for all
v ∈ TM |O = TM |Opj , which is what we wanted to show.
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Now we can prove what we would like.

Lemma 5.4 . There is an ε′ > 0 and a C > 0 such that for all 0 < ε < ε′ and for all p ∈M :∣∣∣∣∣ε−2−n
∫
Bd(p,ε)

(f(q)− f(p))2V̄ (dq)

∣∣∣∣∣ < C.

Proof. By lemma 5.2, f is Lipschitz. Call the corresponding Lipschitz constant K. Now we see:∣∣∣∣∣
∫
Bd(p,ε)

(f(q)− f(p))2V̄ (dq)

∣∣∣∣∣ ≤
∫
Bd(p,ε)

(Kd(p, q))2V̄ (dq)

≤
∫
Bd(p,ε)

K2ε2V̄ (dq) =
V (Bd(p, ε))K

2ε2

V (M)
.

Since M is compact and Ricci curvature is a smooth 2-tensor field, lemma 5.3 tells us that
the Ricci curvature on M is bounded from below. This means that there is an L such that
Ric ≥ (n − 1)L. Let ML be the complete, n-dimensional, simply connected manifold with
constant sectional curvature L.1 Then the Bishop-Gromov inequality says that V (Bd(p, ε)) ≤
V (BL(pL, ε)) where p ∈ M and pL ∈ ML are arbitrary and BL denotes a ball with respect to
the Riemannian distance in ML. So fix pL ∈ML. Since BL(pL, ε) is a ball in an n-dimensional
manifold, its volume is V (BL(pL, ε)) = O(εn) (see, for instance, [24, Thm 2.5]). This means
that there is some CL > 0 and ε′ > 0 such that for 0 < ε < ε′: V (BL(pL, ε)) < CLεn. Now we
see for 0 < ε < ε′ and for all p ∈M :∣∣∣∣∣ε−2−n

∫
Bd(p,ε)

(f(q)− f(p))2V̄ (dq)

∣∣∣∣∣ ≤ ε−2−nV (Bd(p, ε))K
2ε2

V (M)
≤ ε−2−nV (BL(pL, ε))K2ε2

V (M)

≤ ε−2−nC
LεnK2ε2

V (M)
=
CLK2

V (M)
.

Integral over tangent space
Now that we know that the limit can be pulled through the first integral, what remains to be
shown is (23). Denote for η ∈ TpM, r > 0 : Bp(η, r) = {ξ ∈ TpM : ||ξ − η|| ≤ r} (not to
be confused with Bρ, which is a ball in M with respect to the original metric ρ). For ε small
enough we know that expp : TpM ⊃ Bp(0, ε)→ Bd(p, ε) ⊂M is a diffeomorphism. We want to
use this to write the integral above as an integral over Bp(0, ε) ⊂ TpM :∫

Bd(p,ε)
(f(q)− f(p))2V̄ (dq) =

∫
Bp(0,ε)

(f(expp(η))− f(p))2V̄ ◦ exp(dη)

=

∫
Bp(0,1)

(f(expp(εη))− f(p))2V̄ ◦ exp ◦λε(dη). (24)

This means we integrate with respect to the measure V̄ ◦ exp ◦λε, where λε denotes multiplica-
tion with ε.

Determining the measure V̄ ◦ exp ◦λε
Since Bp(0, ε) is a star-shaped open neighbourhood of 0, we see that for ε small enough
Vε := Bd(p, ε) = expp(Bp(0, ε)) is a normal neighbourhood of p, so there exists a normal co-

ordinate system (x, Vε) that is centered at p. We interpret for v ∈ Rn vp ∈ TpM as
∑

i vi
∂
∂xi

.

1Space forms are complete, connected Riemannian manifolds with constant sectonial curvature. We will not
go into their existence and properties here. See for instance [25] for a survey of this topic.
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Consequently, when we write Ap for some subset A of Rn, we mean {vp : v ∈ A}. Since the
basis W =

(
∂
∂x1

..., ∂
∂xn

)
is orthogonal in TpM , it is easy to see that φ := vp 7→ v preserves the

inner product and is an isomorphism of inner product spaces. Indeed,

||vp||2 = 〈vp, vp〉 = (vp)
i(vp)

jgij =
∑
ij

vivjδij =
∑
i

(vi)2 = ||v||2.

In particular BRn(0, ε)p = Bp(0, ε) (where BRn denotes a ball in Rn with respect to the Euclidean
metric). We can use this in the following lemma, which tells us more about V̄ ◦ exp ◦λε.

Lemma 5.5 . There exist ε′ > 0 and a function h : BRn(0, ε′)→ R such that h(t) = O(||t||2) and

for all 0 < ε < ε′: V̄ ◦ exp ◦λε = εn
(

1+h(εt)
V (M) dt1..dtn

)
◦ φ on Bp(0, 1).

Proof. Let ε′ be small enough such that the considerations above the lemma hold and let ε < ε′.
For clarity of the proof, we first separately prove the following statement.

Claim: x ◦ exp = φ on BRn(0, ε)p.
Proof. The geodesics through p are straight lines with respect to x, so they are of the form
x(γ(t)) = ta+b with a, b ∈ Rn. For η =

∑
i η
i ∂
∂xi

, the geodesic starting at p with tangent vector

η at p should satisfy b = x(p) = 0 and ai = ηi for all i, so we see γk = tηk. For q ∈ Bd(p, ε), we
see xk(exp(x(q)p)) = 1 ∗ xk(q) = xk(q), so exp(x(q)p) = q. This also shows that x ◦ exp(vp) = v
for v ∈ BRn(0, ε) (since x is invertible), which gives an identification

x ◦ exp : TpM ⊃ BRn(0, ε)p → BRn(0, ε) ⊂ Rn

which is the restriction of φ to BRn(0, ε)p. This situation is sketched in figure 5.

Now we will first use the definition of integration to see what the measure is in coordinates
(so it becomes a measure on a subset of Rn). Then we will use the claim above: we will pull
the measure on Rn back to TpM using φ.
On (x, Vε) the volume measure is given by

√
detGdx1 ∧ .. ∧ dxn. According to [24, Cor

2.3],
√

detG can be expanded (in normal coordinates) as 1 + h(x) where h is such that
h(x) = O(||x||2). Now the measure can be written in local coordinates on BRn(ε′) as (1 +

h(x))dx1 ∧ .. ∧ dxn, so the uniform measure is 1+h(x)
V (M) dx1 ∧ .. ∧ dxn. This yields the measure

V̄ ◦ x−1 = 1+h(t)
V (M) dt1..dtn on x(Vε′) = BRn(0, ε′). We have on BRn(0, 1)p:

V̄ ◦ exp ◦λε = (V̄ ◦ x−1) ◦ (x ◦ exp) ◦ λε.

According to the claim above, x ◦ exp is a restriction of φ, so we can replace it by φ. Since this
map is linear, it can be interchanged with λε, which yields (inserting what we found before and
since ε < ε′): (

1 + h(t)

V (M)
dt1..dtn

)
◦ λε ◦ φ =

(
εn(1 + h(εt))

V (M)
dt1..dtn

)
◦ φ.

In the last step we interpret εn(1+h(εt))
V (M) dt1..dtn as a measure on BRn(0, 1) and this last step is

then just a transformation of measures on Rn. This yields the expression that we want.

Remark 5.6 . We used [24, Cor 2.3] in the proof above. In these notes the expansion of
√

detG
is calculated around a point p in local coordinates centered around p. As can be seen, there
are no linear terms in the expansion. The coefficients for the quadratic terms are coefficients
of the Ricci curvature of M in p. This implies that the way that the uniform distribution on
a ball around p in M is pulled back to the tangent space via the exponential map depends on
the curvature of M in p. In particular, if there is no curvature, M is locally isomorphic to a
neighbourhood in Rn so the same thing happens as in Rn. This means that we get a uniform
distribution on a ball around 0 in the tangent space.
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Bd(p, ε)

Bp(0, ε) BRn(0, ε)

Figure 5: The situation in lemma 5.5. On Bp(0, ε): x ◦ exp = φ. The uniform measure on Bd(p, ε)

is moved via x to BRn(0, ε) using the formula
√

detGt1..tn. This measure can then be pulled back to
Bp(0, ε) using φ. Since φ is an inner product space isomorphism, it will be easy to deal with orthogonal
transformations later, in lemma 5.7.

A canonical part plus a rest term
Now define

µ =

(
1

V (M)
dt1..dtn

)
◦ φ and µR =

(
h(εt)

V (M)
dt1..dtn

)
◦ φ

on Bp(0, 1) and 0 everywhere else. Then the lemma implies that (24) equals∫
Bp(0,1)

(f(expp(εη))− f(p))2εn(µ+ µR)(dη) = εn
∫
TpM

(f(p(ε, η))− f(p))2(µ+ µR)(dη).

Recall that p(ε, η) is just notation for following the geodesic from p in the direction of η for time
ε. In this way we transformed the integral to one that we are familiar with from section 4.2
since we wrote the stepping distribution as a distribution on the tangent space instead of a
distribution on M . To use the theory that we obtained in that section, we need the following
lemma.

Lemma 5.7 . µ is canonical. Moreover
∫
TpM
||η||2µ(dη) = 2πn/2

V (M)Γ(n/2)(n+2) .

Proof. Define ν = 1
V (M)dt1..dtn on BRn(0, 1) and 0 everywhere else. Then we can write µ = ν◦φ.

Since φ preserves the inner product, the measure µ behaves the same with respect to orthogonal
transformations in TpM as ν with respect to orthogonal transformations in Rn. Since ν is
obviously preserved under such transformations, so is µ. This shows that µ is canonical.
Now we calculate the corresponding constant.∫
TpM
||η||2TpMµ(dη) =

∫
TpM
||vp||2TpMµ(dvp) =

∫
Rn
||φ−1(v)||2TpMν(dv) =

∫
Rn
||v||2Rnν(dv)

=
1

V (M)

∫
BRn (0,1)

||v||2Rndv =
1

V (M)

∫ 1

0
r2 2πn/2

Γ(n/2)
rn−1dr =

1

V (M)

2πn/2

Γ(n/2)

1

n+ 2

The first step was just writing the integral with respect to the coordinates for which we defined
µ. The second step holds because µ = ν ◦φ. The third uses the fact that φ preserves the norm.
The but-one-last step is a change of coordinates in Rn using the fact that ||v|| is constant on

spheres around the origin. Here 2πn/2

Γ(n/2)r
n−1 is the area of rSn−1.
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5.2.3 Conclusion and generalization

We collect everything and summarize our findings in the following proposition.

Proposition 5.8 . Let (Pi)
∞
i=1 be as above. Let k = 1[0,1]. Then

lim
ε↓0

lim
N→∞

1

N2ε2+n
EN (f) =

2πn/2

V (M)2Γ(n/2)n(n+ 2)

∫
M
< ∇f,∇f > dV,

where the limit of N →∞ is an almost sure limit.

Proof. First of all it follows from above that

lim
N→∞

1

N2ε2+n
EN (f) =

1

ε2+n

∫
M

∫
M
k(d(p, q)/ε)(f(q)− f(p))2V̄ (dq)V̄ (dp) a.s. (25)

By bounding the integrand of the outer integral and using dominated convergence, we saw that
we can pull the limit into the integral. We also rewrote the measure to deal with the volume
measure instead of the uniform measure. We thus obtain:

lim
ε↓0

1

ε2+n

∫
M

∫
M
k(d(p, q)/ε)(f(q)− f(p))2V̄ (dq)V̄ (dp)

=

∫
M

lim
ε↓0

1

ε2+n

∫
M
k(d(p, q)/ε)(f(q)− f(p))2V̄ (dq)

1

V (M)
V (dp). (26)

We can now calculate the integrand.∫
M
k(d(p, q)/ε)(f(q)− f(p))2V̄ (dq) = εn

∫
TpM

(f(p(ε, η))− f(p))2(µ+ µR)(dη)

= εn
∫
TpM

(f(p(ε, η))− f(p))2µ(dη) + εn
∫
TpM

(f(p(ε, η))− f(p))2µR(dη).

From the results in section 4.2 and 4.3 and lemma 5.7, we see

lim
ε↓0

1

ε2+n
εn
∫
TpM

(f(p(ε, η))− f(p))2µ(dη) = lim
ε↓0

1

ε2

∫
TpM

(f(p(ε, η))− f(p))2µ(dη)

=
2πn/2

V (M)Γ(n/2)n(n+ 2)
< ∇f,∇f > (p).

Let ε′′,K > 0 such that ε′′ < ε′ and |h(s)| < K||s||2 for s ∈ BRn(0, ε′′) (where both ε′ and h are
from lemma 5.5). Note that for ε < ε′′:

|µR| ≤

(
sup

t∈BRn (0,1)
|h(εt)|

)
µ ≤

(
sup

t∈BRn (0,1)
K||εt||2

)
µ =

(
sup

t∈BRn (0,1)
Kε2||t||2

)
µ = Kε2µ.

Now we see for the other integral:

lim
ε↓0

1

ε2+n
εn

∣∣∣∣∣
∫
TpM

(f(p(ε, η))− f(p))2µR(dη)

∣∣∣∣∣ ≤ lim
ε↓0

1

ε2

∫
TpM

(f(p(ε, η))− f(p))2|µR|(dη)

≤ lim
ε↓0

Kε2
1

ε2

∫
TpM

(f(p(ε, η))− f(p))2µ(dη) = lim
ε↓0

Kε2 ∗ lim
ε↓0

1

ε2

∫
TpM

(f(p(ε, η))− f(p))2µ(dη)

= 0 ∗ 2πn/2

V (M)Γ(n/2)n(n+ 2)
< ∇f,∇f > (p) = 0.

Combining everything above shows that (26) equals:∫
M

(
2πn/2

V (M)Γ(n/2)n(n+ 2)
< ∇f,∇f > (p) + 0

)
1

V (M)
V (dp)

=
2πn/2

V (M)2Γ(n/2)n(n+ 2)

∫
M
< ∇f,∇f > dV.
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Note that we first showed that when taking the limit in N (and dividing by N2), the Dirichlet
forms (using k = 1[0,1]) converge to the (formal) Dirichlet form of the random walk that jumps
from each point p to a point that is chosen uniformly from Bd(p, ε) (rescaled by V (M)). Then
we showed that doing this corresponds to choosing a vector according to some distribution
from the unit ball around the origin of TpM and following it for time ε. We showed that this
distribution is a canonical µ plus a rest term µR and we calculated the corresponding time speed
constant of µ. Then we just applied the theory from the previous section and showed that the
rest term vanishes in the limit. We summarize part of this in the following corollary.

Corollary 5.9 . In the situation above, as N → ∞, the Dirichlet forms of the corresponding
processes converge (almost surely) to the (formal) Dirichlet form of a random walk as defined
in section 4.1. The corresponding stepping distribution is µ as defined above plus a rest term
(which disappears in the limit when ε ↓ 0).

Generalization of the kernel k
Note that for the first limit we only needed that k is bounded. After that we chose k = 1[0,1] to
deal with the second limit, but this can be generalized. First of all, note that the calculations
above hold for k = 1[0,s] for any s > 0 (although the limiting process will obviously have a

different speed). Now, as above, we write Dk for the constant such that

ε−2−n
∫
M

∫
M
k(d(p, q)/ε)(f(q)− f(p))2V̄ (dq)V̄ (dp)→ Dk

∫
M
〈∇f,∇f〉 dV. (27)

Also denote

Iε(k) := ε−2−n
∫
M

∫
M
k(d(p, q)/ε)(f(q)− f(p))2V̄ (dq)V̄ (dp), J =

∫
M
〈∇f,∇f〉dV.

If f is constant, there is not much prove, so assume that f is not constant. It is easy to see
that this implies that there is some point where ∇f is not 0, so 〈∇f,∇f〉 is not 0. Since ∇f is
a smooth section of TM , we know p→ 〈∇f,∇f〉 is continuous, so there is an non-empty, open
set where 〈∇f,∇f〉 is not 0. Since V gives positive mass to such sets (and 〈∇f,∇f〉 ≥ 0), we
conclude J 6= 0. We will need this later. Now suppose we have (27) for functions k, l : [0,∞)→
R. Then we see for α, β ∈ R:

Iε(αk + βl) = αIε(k) + βIε(l)→ αDkJ + βDlJ = (αDk + βDl)J,

so we have (27) for αk + βl and Dαk+βl = αDk + βDl. So linear combinations will also work
(note, however, that if a function is not positive and decreasing, it does not make much sense
as a kernel). For a, b ≥ 0: 1(a,b] equals 1[0,b] − 1[0,a], so using linearity we have the same
result for 1(a,b]. Since adding {a} does not change the integrals it also works for 1[a,b]. Linear
combinations of these are the step functions [0,∞) → R, so we can choose k to be any step
function and (27) holds. Now one can try to approximate general functions by step functions.
We have the following proposition.

Proposition 5.10 . Let k be a function [0,∞) → R. Suppose there are step functions (km)∞m=1

such that km → k uniformly as m→∞. Suppose that there is an α such that suppk, suppkm ⊂
[0, α] for all m. Also assume that limm→∞D

km exists. Then (27) holds for k. Moreover,
Dk = limm→∞D

km.

Proof. Let k, (km)∞m=1 and α be as above. Since the supports of k and all the km are contained
in [0, α], we have for all t ≥ 0: |k(t)− km(t)| ≤ ||k − km||∞1[0,α]. We thus see that

|Iε(k)− Iε(km)| ≤ ε−2−n
∫ ∫

|k − km|(d(p, q)/ε)(f(q)− f(p))2V̄ (dq)V̄ (dp)

≤ ||k − km||∞ε−2−n
∫ ∫

1[0,α](d(p, q)/ε)(f(q)− f(p))2V̄ (dq)V̄ (dp)

= ||k − km||∞Iε(1[0,α]).
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Since Iε(1[0,α]) converges to D1[0,α]J as ε goes to 0, we can find an ε′ > 0 such that for all

ε < ε′ : |Iε(1[0,α])| < |D1[0,α]J | + 1 =: K. This means that for all ε < ε′ and for all m we have
|Iε(k)− Iε(km)| < ||k − km||∞K.
Now let ε̂ > 0. Let M1 be such that for all m ≥ M1 and for all ε < ε′ : |Iε(k)− Iε(km)| < ε̂/3.
Let M2 be such that for all l ≥ M2 : | limmD

km − Dkl | < ε̂/(3|J |) (recall that J > 0). Let
M = max{M1,M2}. Since kM is a step function, Iε(kM ) converges to DkMJ so we can find ε0
such that for all ε < ε0 : |Iε(kM )−DkMJ | < ε̂/3. Now we see for all ε < min{ε0, ε′}:

|Iε(k)− lim
m
DkmJ | ≤ |Iε(k)− Iε(kM )|+ |Iε(kM )−DkMJ |+ |DkMJ − lim

m
DkmJ |

< ε̂/3 + ε̂/3 + |DkM − lim
m
Dkm ||J | < ε̂/3 + ε̂/3 + ε̂/3 = ε̂.

This proves that (27) holds for k and that Dk = limm→∞D
km .

Now we can applies this to a nice class of functions.

Corollary 5.11 . Let k : [0,∞) → [0,∞) be continuous, decreasing and compactly supported.
Then (27) holds for k.

Proof. First of all, if h and h′ satisfy (27) and h′ ≥ h, it is easy to see that Iε(h′) ≥ Iε(h) for all
ε, so DhJ ≥ Dh′J . Since J > 0, we conclude Dh ≥ Dh′ . Now let α be such that [0, α] contains
the support of k. Since k is continuous and compactly supported, we can approximate it with a
decreasing sequence of step functions (km)∞m=1 that each have support contained in [0, α]. Since
km ≤ kl for m ≥ l, we see (by the observation above) that Dkm ≤ Dkl for m ≥ l. This means
that (Dkm)∞m=1 is decreasing. Since it is also clearly non-negative, it is bounded from below and
hence convergent. Now proposition 5.10 tells us that (27) holds for k.

We conclude that (27) holds for all kernels that are continuous and compactly supported.
This means that for all such kernels, the convergence result of this section holds (albeit with
different speed constants). A simple example is k(x) = max{1 − x, 0} or, more generally,
k(x) = (1− x/a)r1[0,a](x) for some a, r > 0.

Choosing a specific sequence
We have considered a random grid and studied the convergence of the Dirichlet forms associated
to random walks on the grids as the amount of points increases to infinity and the bandwidth ε
decreases to 0. The limit as N →∞ is an almost sure limit for every fixed f . We would like to
find a fixed sequence (pi)

∞
i=1 for which the first limit holds for any continuous f . This sequence

could serve as the grid that we have been looking for to define an interacting particle system on
(note that the second limit does not depend on the grid). We first have the following lemma.

Lemma 5.12 . Let f, g be continuous functions on M . Then for any x, y ∈M : |(f(x)−f(y))2−
(g(x)− g(y))2| ≤ 3(||f ||∞ + ||g||∞)||f − g||∞.

Proof. Writing out and using the triangle inequality shows

|(f(x)− f(y))2 − (g(x)− g(y))2| ≤ |f(x)2 − g(x)2|+ 2|(f(x)f(y)− g(x)g(y)|+ |f(y)2 − g(y)2|.

Now we see

|f(x)2− g(x)2| = |f(x)− g(x)| · |f(x) + g(x)| ≤ ||f − g||∞||f + g||∞ ≤ ||f − g||∞(||f ||∞+ ||g||∞).

Similarly |f(y)2 − g(y)2| ≤ ||f − g||∞(||f ||∞ + ||g||∞). Now for the last term.

|f(x)f(y)− g(x)(y)| = |f(x)f(y)− f(x)g(y) + f(x)g(y)− g(x)g(y)|
= |f(x)(f(y)− g(y)) + (f(x)− g(x))g(y)|
≤ |f(x)| · |f(y)− g(y)|+ |g(y)| · |f(x)− g(x)|
≤ ||f ||∞||f − g||∞ + ||g||∞||f − g||∞ = ||f − g||∞(||f ||∞ + ||g||∞).
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Combining these terms, we obtain |(f(x) − f(y))2 − (g(x) − g(y))2| ≤ 3(||f ||∞ + ||g||∞)||f −
g||∞.

Recall that we write:

UN,εf =
1

N(N − 1)

N∑
i 6=j=1

W ε
ij(f(Pj)− f(Pi))

2, aεf = EW ε
ij(f(P )− f(Q))2,

where P and Q are iid uniformly random elements of M . For a sequence (pi)
∞
i=1, denote

uN,ε,pf =
1

N(N − 1)

N∑
i 6=j=1

W ε
ij(f(pj)− f(pi))

2.

Now we can present the result.

Lemma 5.13 . There exists a sequence (pi)
∞
i=1 in M such that uN,ε,pf → aεf for every continuous

f .

Proof. Denote the space of continuous functions on M by C(M). Since M is compact, C(M)
is separable with respect to the uniform distance. Let V = {fk : k ∈ N} be a dense (and
countable) subset of C(M). Denote Ag = {UN,εg → aεg}. Note that we only needed for the first

limit that f is bounded, so in particular we know UN,εg → aεg a.s. for all continuous functions.

Hence P(Ag) = 1 for any continuous g. Call A = {UN,εg → aεg ∀g ∈ V }. Then A =
⋂
g∈V Ag.

This implies that

P(A) = 1− P(AC) = 1− P(
⋃
g∈V

ACg ) ≥ 1−
∑
g∈V

P(ACg ) = 1,

so P(A) = 1. We see that for almost every realization of (Pi)
∞
i=1, we have convergence for every

f ∈ V . Call any such realization (pi)
∞
i=1. Now let f be any fixed continuous function on M and

let (gl)
∞
l=1 be a sequence in V such that ||gl−f || → 0 as l goes to infinity. For any two continuous

functions h1, h2 on M , call Ch1h2 = 3(||h1||∞ + ||h2||∞)||h1 − h2||∞. Note that Cfgl → 0 as l
goes to infinity. Now we see, using lemma 5.12:

|uN,ε,pf − uN,ε,pgl
| ≤ 1

N(N − 1)

∑
i 6=j

W ε
ij |(f(pj)− f(pi))

2 − (gl(pj)− gl(pi))2|

≤ 1

N(N − 1)

∑
i 6=j
||k||∞Cfgl = ||k||∞Cfgl → 0,

so uN,ε,pf −uN,ε,pgl goes to 0 as l goes to infinity uniformly in N . We can use the same estimation
for another convergence statement:

|aεf − aεgl | ≤ EW ε
ij |(f(P )− f(Q))2 − (gl(P )− gl(Q))2|

≤ E||k||∞Cfgl = ||k||∞Cfgl → 0,

so aεgl goes to aεf as l→∞.

Now fix δ > 0. Let L1 be such that for all l ≥ L1 and for all N : |uN,ε,pf − uN,ε,pgl | < δ/3. Let L2

be such that for all l ≥ L2: |aεf − aεgl | < δ/3. Set L = max{L1, L2}. Since gL ∈ V , we can find

N0 ∈ N such that for all N ≥ N0 : |uN,ε,pgL − aεgL | < δ/3. Now we obtain that for all N ≥ N0:

|uN,ε,pf − aεf | ≤ |uN,ε,pf − uN,ε,pgL
|+ |uN,ε,pgL

− aεgL |+ |a
ε
gL
− aεg|

< δ/3 + δ/3 + δ/3 = δ.

We conclude that for the sequence (pi)
∞
i=1: uN,ε,pf → aεf for every continuous f .
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We summarize our generalized findings with a fixed sequence in the following proposition.

Proposition 5.14 . There is a sequence (pi)
∞
i=1 of points in M such that for any continuous,

compactly supported kernel k and for any smooth function φ : M → R there is a constant C
such that:

lim
ε↓0

lim
N→∞

ε−2−n 1

N2

N∑
i,j=1

W ε
ij(φ(pj)− φ(pi))

2 = C

∫
M
〈∇φ,∇φ〉 dV. (28)

Moreover, the set of sequences (pi)
∞
i=1 that satisfy the above has probability 1 with respect to the

product of uniform measures on M .

Note that the second statement follows from the proof of lemma 5.13, since we picked any
sequence from a set of probability 1.

5.3 Convergence of the generators

Aim
Now that we have studied the convergence of the Dirichlet forms, it is easier to study the
generators. However, two difficulties arise when trying to copy the strategy for Dirichlet forms
to the generators. The first one is that the generator of a jumping process on VN = {p1, .., pN}
is only defined for functions VN → R. This makes it harder to give meaning to statements
like LKf → Lf (where LK is some generator on the functions on VK and L is a generator on
some set of functions on M). The second one is that for convergence of the generators we need
uniform convergence of the generators applied to a fixed function. This uniform convergence is
hard to obtain using the methods from the previous section.
We do not need convergence of the generators, but only a slightly weaker result for section 6.
This solves the first difficulty. It also weakens the second difficulty, but there still remains a
problem. This will become clearer in section 6.3. What we will prove now is the following
statement.

Proposition 5.15 . There is a sequence (pi)
∞
i=1 of points in M such that for any continuous,

compactly supported kernel k and for any smooth function φ : M → R there is a constant Ĉ
such that for any i:

lim
ε↓0

lim
N→∞

ε−2−n 1

N

N∑
j=1

W ε
ij(φ(pj)− φ(pi)) = Ĉ∆Mφ(pi). (29)

Moreover, the set of sequences (pi)
∞
i=1 that satisfy the above has probability 1 with respect to the

product of uniform measures on M .

Note that for each N we consider a random walk on a finite graph (with iid exponential waiting
times), so we have seen before (in section 2.1) that the expression in the proposition is indeed
the (rescaled) generator of the process.

Approximating integrals
We start with the following lemma.

Lemma 5.16 . Let (Pi)
∞
i=1 be an iid sequence of uniformly random elements of M . Then

P

(
∀f ∈ C(M) :

1

N

N∑
i=1

f(Pi)→
∫
M
fdV̄

)
= 1.
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Proof. Let f be a continuous function. Then E(f(Pi)) =
∫
M fdV̄ < ∞ (recall that V̄ is the

uniform distribution on M). Hence by the strong law of large numbers:

P

(
1

N

N∑
i=1

f(Pi)→
∫
M
fdV̄

)
= 1.

Now let W be a countable and dense subset of C(M). By a standard argument, the above
implies that

P

(
∀f ∈W :

1

N

N∑
i=1

f(Pi)→
∫
M
fdV̄

)
= 1.

Now let (pi)
∞
i=1 be any sequence such that

∀f ∈W :
1

N

N∑
i=1

f(pi)→
∫
M
fdV̄

and let f be any continuous function. Let ε̂ > 0 be fixed. Since W is dense, there is a g ∈ W
such that ||g − f ||∞ < ε̂/3. Let L ∈ N be such that for all N ≥ L:∣∣∣∣∣ 1

N

N∑
i=1

g(pi)−
∫
M
gdV̄

∣∣∣∣∣ < ε̂/3.

Now we see for all N ≥ L:∣∣∣∣∣ 1

N

N∑
i=1

f(pi)−
∫
M
fdV̄

∣∣∣∣∣ ≤
∣∣∣∣∣ 1

N

N∑
i=1

f(pi)−
1

N

N∑
i=1

g(pi)

∣∣∣∣∣+

∣∣∣∣∣ 1

N

N∑
i=1

g(pi)−
∫
M
gdV̄

∣∣∣∣∣
+

∣∣∣∣∫
M
gdV̄ −

∫
M
fdV̄

∣∣∣∣
<

1

N

N∑
i=1

|f(pi)− g(pi)|+ ε̂/3 +

∫
M
|g − f |dV̄

≤ ||g − f ||∞ + ε̂/3 + ||g − f ||∞ < ε̂/3 + ε̂/3 + ε̂/3 = ε̂.

The first limit
Using the lemma above, we can prove the following.

Lemma 5.17 . There is a sequence (pi)
∞
i=1 such that for every i and for every continuous f :

lim
N→∞

1

N

N∑
j=1

W ε
ij(f(pj)− f(pi)) =

∫
k(d(p, pi)/ε)(f(p)− f(pi))V̄ (dp).

Proof. Let (pi)
∞
i=1 be any sequence from the probability one set of lemma 5.16. Define gi :

M → R by gi(p) = k(d(p, pi)/ε)(f(p)− f(pi)). Is is easy to see that gi is continuous. Hence, by
lemma 5.16, we see

1

N

N∑
j=1

W ε
ij(f(pj)− f(pi)) =

1

N

N∑
j=1

gi(pj)→
∫
M
gidV̄ =

∫
k(d(p, pi)/ε)(f(p)− f(pi))V̄ (dp),

where we took the limit of N →∞ in the second step.
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The second limit
Fix a sequence (pi)

∞
i=1 such that the first limit holds and assume that f is smooth. Now we

obtain in exactly the same way as in section 5.2 for k = 1[0,1]:∫
k(d(p, pi)/ε)(f(p)− f(pi))V̄ (dp) =

∫
Bp(0,1)

(f(pi(ε, η))− f(pi))V̄ ◦ exp ◦λε(dη),

where V ◦ exp ◦λε equals εn times some canonical µ plus a rest term µR. Now we can use the
theory of section 4.1 to obtain in exactly the same way as in the proof of prop 5.8 that

lim
ε↓0

ε−2−n
∫
k(d(p, pi)/ε)(f(p)− f(pi))V̄ (dp) = Ĉ∆Mf(pi),

for some constant Ĉ. Note the important fact that this constant is the same for every i. The
reason is that µ does not depend on pi. µR does, but the proof of prop 5.8 shows that µR van-
ishes in the limit. Moreover, it is easy to see from the proofs that Ĉ only differs from C from
prop 5.14 by a factor V (M) (the factor that is necessary to transform V̄ to V in the proof of
prop 5.8). Now, in the same way as in section 5.2, this result can be extended to the case where
k is continuous and compactly supported (and, of course, decreasing). We conclude that the
first statement of prop 5.15 holds. Since the sequence that we used was just any sequence from
a probability 1 set, the set of sequences (pi)

∞
i=1 that satisfy the first statement has probability

1, which proves the second statement of the proposition.

Combination of results
When we combine lemma 5.16, prop 5.14 and prop 5.15, we obtain the following.

Corollary 5.18 . There exists a sequence (pi)
∞
i=1 in M such that for any continuous and compactly

supported kernel k and for any smooth φ the following hold.

• There is a constant C such that:

lim
ε↓0

lim
N→∞

ε−2−n 1

N2

N∑
i,j=1

W ε
ij(φ(pj)− φ(pi))

2 = C

∫
M
〈∇φ,∇φ〉dV. (30)

• There is a constant Ĉ such that for every i:

lim
ε↓0

lim
N→∞

ε−2−n 1

N

N∑
j=1

W ε
ij(φ(pj)− φ(pi)) = Ĉ∆Mφ(pi). (31)

• For any g ∈ C(M):

1

N

N∑
i=1

g(pi)→
∫
M
gdV̄ (N →∞).

Moreover, the set of sequences that satisfy the above has probability 1 (with respect to the product
of uniform distributions). Further, C and Ĉ only differ by a factor V (M).

The reason is that for every requirement the set of sequences that satisfy it has probability 1,
so the set of sequences that satisfy all three of them has probability 1 too.
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6 Hydrodynamic limit of the SEP

In section 5, we saw that it is possible to define a grid on a compact and connected Riemannian
manifold M . We can define a random walk on the grid and when we take limits, the Dirichlet
forms of the random walks converge to the Dirichlet form of Brownian motion and the generators
converge pointwise to the generator of Brownian motion. In this section we will use this grid on
M and these results to define an interacting particle system of which the macroscopic behaviour
is the heat equation. We will first define the Symmetric Exclusion Process (SEP). Then we will
discuss what a hydrodynamical limit is, in particular in the case of the SEP. After that we will
prove that the hydrodynamical limit of the SEP is a solution of the weak heat equation. The
main line of the proof is finished, but some details still need to be filled in. The assumptions that
we need to make are mentioned in section 6.3 and we will comment on them in the concluding
section.

6.1 Symmetric Exclusion Process

The Symmetric Exclusion Process (SEP) is an interacting particle system that was introduced
in [20] and studied in detail in [14, Chapter 8]. The idea is that there is some (possibly countably
infinite) amount of particles on a (possibly countably infinite) graph G. The particles are
considered identical. Each particle jumps after independent exponential times with parameter
1 from x to y with probability p(x, y), unless the place that it wants to jump to is already
occupied. In that case, the particle stays at its place. We assume that p(x, y) = p(y, x). Let
ηt ∈ {0, 1}G denote the configuration of the particles at time t, i.e. ηt(x) = 1 if there is a
particle at place x ∈ G at time t and 0 else. We will sometimes write η(p, t) = ηt(p). For any
configuration η and points x, y define ηxy by

ηxy(z) =


η(x) if z = y

η(y) if z = x

η(z) if z 6= x, y

An equivalent description of this process is the following. All edges (xy) have independent
exponential clocks with rate p(x, y) = p(y, x). Whenever a clock rings, the particles that are
at either side of the corresponding edge, jump along the edge. This means that if there are no
particles, nothing happens. If there is one particle, it jumps. If there are two particle, they
switch places. Since we are not interested in individual particles, the configuration stays the
same in the latter case. Note that in this way there can never be more than two particles at the
same place. Using the notation introduced above, we see that the generator of this process is

Lf(η) =
1

2

∑
x,y

p(x, y)(f(ηxy)− f(η)).

The factor 1
2 is there since we count every edge twice. The domain of this generator is the set

of all continuous functions {0, 1}G → R.

6.2 Hydrodynamic limit

We have already studied limits of sequences of processes in section 4 and 5. In section 4 we con-
sidered a single particle that jumps according to some distribution. The way it jumps changes
with some parameter N that goes to infinity. We saw that we could obtain Brownian motion
as a limiting process of random walks. In section 5 not only the dynamics of the particle varied
with some parameter, but also the grid that the particle moves on. In this section we will study
limits of stochastic processes in yet a different way. Not only the grid will vary but also the
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amount of particles that move along the grid. We will not be interested anymore in individual
particles and there positions, but rather in the distribution of particle mass.
The main goal will be to show that the limiting densities satisfy a particular partial differential
equation: the heat equation. This is the idea of a hydrodynamic limit. At a microscopic scale,
the particles are just random walkers with some interaction, but at the macroscopic scale (where
limits are taken in space and time), the behaviour is deterministic: it is described by a partial
differential equation. We will use this subsection to give the basic definitions.

Radon measures
We start by introducing Radon measures, since we will use these to describe particle configura-
tions.

Definition 6.1 . A Radon measure is a Borel measure µ on a Hausdorff topological space that
satisfies the following properties.

• µ is locally finite, meaning that every point has a neighbourhood with finite measure.

• µ is inner regular, i.e. for any measurable set V : µ(V ) = sup{µ(K) : K ⊂ V compact}.

Since M is a metric space, it is Hausdorff, so we can define Radon measures on it. Denote the
space of Radon measures on M by R(M). Denote µ(f) =

∫
M fdµ for any f : M → R and

µ ∈ R(M) for which
∫
M fdµ is defined. The vague (or weak) topology on R(M) is defined as

follows.

Definition 6.2 . We say that a sequence of measures (µN )∞N=1 in R(M) converges vaguely or
weakly to µ ∈ R(M) as N goes to infinity if for any continuous φ:

µN (φ)→ µ(φ) as N →∞.

In general, we would need to restrict to continuous and bounded φ, but since M is compact,
any continuous function is bounded. Since M is a Polish space (i.e. complete and separable),
it can be shown that R(M) with the vague topology is a Polish space too.

Path space
Now let D = D([0,∞), R(M)) denote the space of all paths γ : [0,∞) → R(M) such that γ is
right continuous and has left limits. On this space we can define the Skohorod metric (see for
instance [18, Appendix A.2.2]). Since R(M) is a Polish space, it can be shown that D with the
Skohorod metric is a Polish space too.

The process
Fix a kernel k that is continuous and has compact support. Now fix a sequence (pi)

∞
i=1 as in

corollary 5.18. This will be the grid. Define the SEP ηN,ε = (ηN,εt )t≥0 on p1, .., pN through the
generator

LN,εh(η) = a(N, ε)
∑
i,j

W ε
ij(h(ηij)− h(η)).

Here ηij := ηpipj and W ε
ij = k(d(pi), (pj)). Further, we set

a(N, ε) =
1

2ĈNε2+n
,

where Ĉ is from lemma 5.18. Recall that multiplying the generator with a constant is equivalent
to speeding the process by that constant. This expression thus provides the time scale.
Let (Xi)

∞
i=1 be some (possibly degenerate) sequence of random variables taking values in {0, 1}.

Set as the initial configuration ηN,ε0 (pi) = Xi.
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Initial conditions and trajectories of particle configurations
Define

µN,εt =
1

N

N∑
i=1

δpiη
N,ε
t (pi),

where δp is the Dirac measure which places mass 1 at p ∈M . It puts a point mass at each particle
and rescales it by the amount of possible positions, which represents the particle configuration
ηN,εt at time t. In particular µN,εt is a sub-probability measure and is in R(M). We assume that

there exists a measurable function ρ0 : M → R such that 0 ≤ ρ0 ≤ 1 and µN,ε0 converges vaguely
to ρ0dV̄ in probability, i.e. for any continuous φ as N →∞ and ε ↓ 0:∫

M
φdµN,ε0 →

∫
M
ρ0φdV̄ in probability. (32)

The limit ρ0 is the initial condition for the heat equation. If this is the case, we say that ρ0dV
is the density profile corresponding to the configurations ηN,ε0 . Note that using measures here
to represent the particles provides a bridge between separate particles (discrete measures) and
density profiles (measures that are absolutely continuous with respect to V ). We would like
to show that if this initial condition is given, then at any time t the configurations ηN,εt have
a corresponding density profile ρtdV̄ . Moreover, we want to show that t 7→ ρt solves the heat
equation with initial condition ρ0.
Instead of dealing with this problem pointwise for each t, we will look at trajectories. As the
particles move according to the SEP, γN,ε : [0,∞) → R(M) defined by t 7→ µN,εt is a ran-
dom trajectory and hence a random element of D. It represents the positions of the particles
over time. The initial configuration X1, .., XN and the dynamics of the SEP determine a dis-
tribution QN,ε on D. In this way we obtain a collection {QN,ε : N ∈ N, ε > 0} of measures on D.

Weak heat equation
Our aim is to show that the trajectory γN,ε converges in probability to a deterministic path of
the form t 7→ ρtdV̄ , where t 7→ ρt satisfies the weak heat equation. What we mean by the latter
is that the limiting densities ρt satisfy the following equation for each smooth φ:∫

M
φρtdV −

∫
M
φρ0dV =

∫ t

0

∫
M

∆MφρsdV ds (33)

= −
∫ t

0

∫
M
〈∇φ,∇ρs〉 dV ds (34)

=

∫ t

0

∫
M
φ∆MρsdV ds. (35)

Once the first line is proved, it is known that ρt is smooth for any t > 0. Then the following
lines are equivalent because of the definition of divergence. Note that V and V̄ only differ by
a constant, so it does not matter which one we use in the equations above. Heuristically, the
heat equation can be obtained from (35) in the following way. Taking derivatives with respect
to t on both sides and interchanging it with

∫
M on the left side yields:∫

M

dρt
dt
φdV =

∫
M
φ∆MρtdV.

Now one has to argue that because this holds for every smooth φ and there are enough smooth
functions on M , this implies that

dρ

dt
= ∆Mρ

at any time point t, which is the heat equation.
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Two variables
The situation that we have here is a bit different from usual hydrodynamic limits. The reason
is the presence of a second parameter: the bandwidth ε. Instead of a fixed process for every
configuration, we have a whole range of processes, depending on ε. This parameter only starts
to play a role as soon as the process moves through time. In the proof of convergence in the
next section, we will not take two limits. Instead we will use a sequence (εl, Nl)

∞
l=1 such that

εl ↓ 0 and Nl →∞. In this way we obtain one sequence of grids and corresponding processes.
Note that for the initial condition, we also take a limit in ε and N . However, the quantities
do not depend on ε, since we look at time 0. This is therefore also the case in the example below.

Example of initial distribution
We can define the random variables (Xi)

∞
i=1 to be independent Bernoulli random variables with

EXi = ρ0(pi) for some continuous function ρ0 : M → R with 0 ≤ ρ0 ≤ 1. Then we see as
N →∞ (and then ε ↓ 0):

E
[∫

φdµN,ε0

]
= E

[
1

N

N∑
i=1

φ(pi)η
N,ε
0 (pi)

]
=

1

N

N∑
i=1

φ(pi)EηN,ε0 (pi)

=
1

N

N∑
i=1

φ(pi)ρ0(pi)→
∫
φρ0dV̄ ,

since φ and ρ0 are continuous and we chose (pi)
∞
i=1 as in corollary 5.18. Further,

var

[∫
φdµN,ε0

]
= var

[
1

N

N∑
i=1

φ(pi)η
N,ε
0 (pi)

]
=

1

N2

N∑
i=1

φ(pi)var(ηN,ε0 (pi))

=
1

N2

N∑
i=1

φ(pi)ρ0(pi)(1− ρ0(pi))→ 0.

Together this implies that (32) holds here for any continuous φ.

6.3 Convergence result

Main theorem
The proof of the convergence result is analogous to [18, Chapter 8]. Its core calculations are
based on the following theorem. It is a standard martingale result, but it is also proved in [18].
We will formulate it in terms of our situation on a compact Riemannian manifold.

Theorem 6.3 . Let {ηt, t ≥ 0} be a Feller process on a compact Riemannian manifold with gen-
erator L and semigroup St. For any function f such that both f and f2 are in D(L), define

Mt = f(ηt)− f(η0)−
∫ t

0
Lf(ηs)ds.

Then Mt is a martingale with respect to the filtration Ft = σ{ηr, r ≤ t}. Moreover, its quadratic
variation 〈M,M〉t equals

∫ t
0 γ(s)ds, where γ(s) = (L(f2)− 2fLf)(ηs).

Application of the theorem
First of all fix a smooth function φ onM . Define for η ∈ {0, 1}{p1,..,pN}: fN (η) = 1

N

∑N
i=1 η(pi)φ(pi) =

µ(f), where µ = 1
N

∑n
i=1 δiη(pi). Note that since LN,ε is the generator of a random walk on a

the finite space of configurations, its domain consists of all functions on those configurations, so
in particular fN and (fN )2 are in it. Applying theorem 6.3 in this situation shows that MN,ε

defined by

MN,ε
t = fN (ηN,εt )− fN (ηN,ε0 )−

∫ t

0
LN,εf(ηN,εs )ds (36)
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is a martingale with quadratic variation
〈
MN,ε,MN,ε

〉
t

=
∫ t

0 γ(s)ds, where γ(s) = (LN,ε(fN )2−
2fNLN,εfN )(ηs). Some basic manipulations show that

f(ηij)− f(η) = − 1

N
(φ(pj)− φ(pi))(η(pj)− η(pi). (37)

Inserting definitions and leaving out some indexes (to keep everything clear) shows that the
right hand side of (36) equals

1

N

N∑
i=1

φ(pi)(ηt(pi))−
1

N

N∑
i=1

φ(pi)(η0(pi))

−

−∫ t

0

1

N

N∑
i,j=1

W ε
ij(φ(pj)− φ(pi))(ηs(pj)− ηs(pi))ds


= µN,εt (φ)− µN,ε0 (φ)−

∫ t

0

2a(N, ε)

N

N∑
i,j=1

W ε
ij(φ(pj)− φ(pi))ηs(pi)ds

= µN,εt (φ)− µN,ε0 (φ)−
∫ t

0

1

N

N∑
i=1

ηs(pi)

2a(N, ε)
N∑
j=1

W ε
ij(φ(pj)− φ(pi))

ds. (38)

Using convergence of the generators
By (31), we can write for any pi:

2a(N, ε)
N∑
j=1

W ε
ij(φ(pj)−φ(pi)) =

1

Ĉ

1

Nε2+n

N∑
j=1

W ε
ij(φ(pj)−φ(pi)) = ∆Mφ(pi)+Epi(N, ε), (39)

where limε↓0 limN→∞Epi(N, ε) = 0. This shows that

∫ t

0

1

N

N∑
i=1

ηs(pi)

2a(N, ε)

N∑
j=1

W ε
ij(φ(pj)− φ(pi))

ds

=

∫ t

0

1

N

N∑
i=1

ηs(pi) (∆Mφ(pi) + Epi(N, ε)) ds

=

∫ t

0

1

N

N∑
i=1

ηs(pi)∆Mφ(pi)ds+

∫ t

0

1

N

N∑
i=1

ηs(pi)Epi(N, ε)ds

=

∫ t

0
µs(∆Mφ)ds+

∫ t

0

1

N

N∑
i=1

ηs(pi)Epi(N, ε)ds.

Filling this in in (38) and (36), we obtain:

µN,εt (φ)− µN,ε0 (φ)−
∫ t

0
µN,εs (∆Mφ)ds = MN,ε

t +

∫ t

0

1

N

N∑
i=1

ηN,εs (pi)Epi(N, ε)ds,

so for any T > 0:

sup
0≤t≤T

∣∣∣∣µN,εt (φ)− µN,ε0 (φ)−
∫ t

0
µN,εs (∆Mφ)ds

∣∣∣∣ ≤ sup
0≤t≤T

∣∣∣MN,ε
t

∣∣∣+ sup
0≤t≤T

∣∣∣∣∣
∫ t

0

1

N

N∑
i=1

ηN,εs (pi)Epi(N, ε)ds

∣∣∣∣∣ .
(40)
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We want to show that this expression converges to 0 in probability. We will deal with the terms
on the right hand side separately.

Assumption on the error term
First of all∣∣∣∣∣
∫ t

0

1

N

N∑
i=1

ηN,εs (pi)Epi(N, ε)ds

∣∣∣∣∣ ≤
∫ t

0

1

N

N∑
i=1

|ηN,εs (pi)||Epi(N, ε)|ds ≤
∫ t

0

1

N

N∑
i=1

|Epi(N, ε)|ds

= t
1

N

N∑
i=1

|Epi(N, ε)|,

so

sup
0≤t≤T

∣∣∣∣∣
∫ t

0

1

N

N∑
i=1

ηs(pi)Epi(N, ε)ds

∣∣∣∣∣ ≤ TE(N, ε)

where E(N, ε) = 1
N

∑N
i=1 |Epi(N, ε)|. At this point we need to make the following assumption.

Assumption: lim
ε↓0

lim
N→∞

E(N, ε) = 0.

We know that this statement holds for every Epi but that is not enough. For instance it would
suffice that both limits are uniform in the pi’s. Then it is true for the following reason.
Conditional proof. We know that

|Epi(N, ε)| =

∣∣∣∣∣∣ 1

Ĉ

1

Nε2+n

N∑
j=1

W ε
ij(φ(pj)− φ(pi))−∆Mφ(pi)

∣∣∣∣∣∣ .
This means that

lim
N→∞

|Epi(N, ε)| =
∣∣∣∣ 1

Ĉ

1

ε2+n

∫
M
k(d(p, pi)/ε)(φ(p)− φ(pi))V̄ (dp)−∆Mφ(pi)

∣∣∣∣ =: g(pi, ε).

Now set g(ε) = supi g(pi, ε). By uniformity of the limit as N → ∞, we see that for all δ > 0
there is an Nδ ∈ N such that for all N ≥ Nδ: 0 ≤ |Epi(N, ε)| ≤ g(ε) + δ. For all such N we see

0 ≤ 1

N

N∑
i=1

|Epi(N, ε)| ≤ g(ε) + δ.

This implies that if the limit in N exists, it must be smaller than g(ε) + δ. This holds for any
δ, so the limit must be under g(ε). By uniform convergence of the second limit, we see that
limε↓0 g(ε) = 0.
We believe that the uniform convergence of the second limit is true, because of compactness.
We are less sure about the first limit (so in N). We will say some more about this in the
discussion.

Convergence of the martingale to 0
Now for the other term. Since the trajectory t 7→ µN,εt is cadlag, so is MN,ε. Hence by Doobs
inequality we see:

P

(
sup

0≤t≤T

∣∣∣MN,ε
t

∣∣∣ > δ

)
≤

E|MN,ε
T |
δ

. (41)

To show that E|MN,ε
T | goes to 0, it suffices to show that E

〈
MN,ε,MN,ε

〉
T

goes to 0 (since then

E
[
(MN,ε

T )2
]

= E
〈
MN,ε,MN,ε

〉
T
→ 0 and hence E|MN,ε

T | → 0). This is what the following

lemma tells us.
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Lemma 6.4 . For any T > 0:

lim
ε↓0

lim
N→∞

E
〈
MN,ε,MN,ε

〉
T

= 0.

Proof. Recall that
〈
MN,ε,MN,ε

〉
T

=
∫ T

0 (LN,ε(fN )2 − 2fNLN,εfN )(ηs)ds. By writing out, one
simply obtains

(LN,ε(fN )2 − 2fNLN,εfN )(η) =

N∑
i,j=1

a(N, ε)W ε
ij(f(ηij)− f(η))2.

Using (37), we see

(f(ηij)− f(η))2 ≤
(

1

N
(φ(pj)− φ(pi))(η(pj)− η(pi))

)2

≤ 1

N2
(φ(pj)− φ(pi))

2,

since η(pi) ∈ {0, 1} for all i. This shows that

0 ≤
〈
MN,ε,MN,ε

〉
T

=

∫ T

0
(LN,ε(fN )2 − 2fNLN,εfN )(ηs)ds

≤
∫ T

0

a(N, ε)

N2

N∑
i,j=1

W ε
ij(φ(pj)− φ(pi))

2ds = T
a(N, ε)

N2

N∑
i,j=1

W ε
ij(φ(pj)− φ(pi))

2.

This implies that also

0 ≤ E
〈
MN,ε,MN,ε

〉
T
≤ T a(N, ε)

N2

N∑
i,j=1

W ε
ij(φ(pj)− φ(pi))

2.

Now note that a(N,ε)
N is a constant times N−2ε−2−n so by (30)

lim
ε↓0

lim
N→∞

a(N, ε)

N

N∑
i,j=1

W ε
ij(φ(pj)− φ(pi))

2 = c

for some constant c. This implies that

0 ≤ lim
ε↓0

lim
N→∞

E
〈
MN,ε,MN,ε

〉
T
≤ lim

ε↓0
lim
N→∞

T

N

a(N, ε)

N

N∑
i,j=1

W ε
ij(φ(pj)− φ(pi))

2 = 0.

We conclude that the right hand side of (41) goes to zero as N goes to infinity and ε goes to
zero, so

lim
ε↓0

lim
N→∞

sup
0≤t≤T

∣∣∣MN,ε
t

∣∣∣ = 0 in probability.

Convergence of the expression to 0 in probability
Combining everything above and using (40), we conclude that

lim
ε↓0

lim
N→∞

sup
0≤t≤T

∣∣∣∣µN,εt (φ)− µN,ε0 (φ)−
∫ t

0
µN,εs (∆Mφ)ds

∣∣∣∣ = 0 in probability.

In particular, for any δ ≥ 0, define

Hδ =

{
α ∈ D : sup

0≤t<T

∣∣∣∣αt(φ)− α0(φ)−
∫ t

0
αs(∆Mφ)ds

∣∣∣∣ ≤ δ
}
.
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It can be shown, as in [18, Chapter 8], that Hδ is closed for any δ > 0. Recall that we write the
distribution of t 7→ µN,εt as QN,ε. Then the convergence result above implies that for any δ > 0:

lim
ε↓0

lim
N→∞

QN,ε(Hδ) = 1.

Limit distribution
We now need to reduce to one limit instead of two. Therefore we state the following.

Assumption: There is a sequence (εl, Nl)
∞
l=1 such that εl ↓ 0, Nl →∞ and the

convergence results above hold as l→∞.

Write Ql = QNl,εl . As in [18, Chapter 8], it can be shown that (Ql)∞l=1 is a tight sequence
of measures on D. This implies that every one of its subsequences is also tight and therefore
has a weakly convergent subsequence. If these all have the same limit, then it follows from a
basis result in metric spaces that the sequence itself converges weakly to that limit. It therefore
suffices for weak convergence of (Ql)∞l=1 to show that every weakly convergent subsequence of
(Ql)∞l=1 has the same limit. Let (Qlk)∞k=1 be any weakly convergent subsequence and denote its
limit by Q. Since H is closed, we know for any δ > 0 that

Q(Hδ) ≥ lim sup
k→∞

Qlk(Hδ) = 1,

so Q(Hδ) = 1. Since this holds for any δ > 0, we see

Q(H0) = Q

( ∞⋂
m=1

H
1
m

)
= 1−Q

( ∞⋃
m=1

(H
1
m )C

)
≥ 1−

∞∑
m=1

Q

((
H

1
m

)C)
= 1.

This means that

Q

(
α ∈ D : sup

0≤t<T

∣∣∣∣αt(φ)− α0(φ)−
∫ t

0
αs(∆Mφ)ds

∣∣∣∣ = 0

)
= 1.

By doing this for a countable set of functions φ that is dense in C∞ and arguing that this
implies the same for any smooth function we see:

Q

(
α ∈ D : sup

0≤t<T

∣∣∣∣αt(φ)− α0(φ)−
∫ t

0
αs(∆Mφ)ds

∣∣∣∣ = 0 ∀φ ∈ C∞
)

= 1.

Since this holds for any T > 0, we see that Q−a.s. for every t ≥ 0 and for all smooth φ:

αt(φ)− α0(φ) =

∫ t

0
αs(∆Mφ)ds. (42)

Uniqueness
Recall that we assumed that at time 0, µN,ε0 converges to ρ0dV̄ . Now the author of [18] reasons
as follows. He first shows some Q − a.s. boundedness condition on α ∈ D. Then he uses a
uniqueness theorem ([18, Thm A.28]). It states that when α ∈ D satisfies (42), the initial
condition and the boundedness condition, then α is of the form t 7→ ρt(x)dx where t 7→ ρt is the
solution to the heat equation with initial condition ρ0 (note that setting αt = ρtdV reduces (42)
to (33)). The idea of the proof is that it passes from measures to functions via smooth approx-
imations of the Dirac measures. Then it uses the uniqueness of the solution of the usual heat
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equation. The latter is a standard result in our case (so for a compact and connected Rieman-
nian manifold) and can be found in [7], for instance. Therefore we believe that the analogous
result holds in our case.

Conclusion
Now let t 7→ ρt be the solution to the heat equation on M with initial condition ρ0 and call
β := (t 7→ ρtdV̄ ). Recall that (42) holds Q−a.s. By the uniqueness result above, this implies
that Q is a Dirac distribution with β as its support. Since this does not depend on Qlk , it must
be the same for any convergent subsequence, so with arguments given above, we conclude that
Ql → Q weakly. Let γl denote the random trajectory t 7→ µNl,εlt . Since Q is degenerate, the
weak convergence implies convergence in probability, so γl → β in probability. This is what we
wanted to show.
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Summary and concluding remarks

This report consists of two main parts. Section 2 and 3 and the appendix contain background
material: introductions to all the concepts that we used. These are mainly Markov processes
with their generators, Dirichlet forms and Riemannian manifolds. Section 4, 5 and 6 contain
our own research (although some results of section 4 were already known). We discuss these
sections separately. In all of them we work with a compact and connected Riemannian manifold.

Invariance principle

In section 4 we gave a direct proof of the invariance principle. We showed uniform convergence
of the generators of random walks applied to fixed smooth functions. Using Trotter-Kurtz,
this implies the convergence (in distribution in the path space) of the corresponding processes.
This result is already known from [10] and [2], but the proofs that are given there do not give
so much insight in our situation (more general or very sketchy in a slightly different setting).
That is why it was good to give a more direct proof, to see more clearly why and under which
conditions the result is true.

Idea of the proofs and suitable jumping distributions
Throughout the calculations we obtained the restrictions that we need on the jumping distri-
butions. First of all they need to be compactly supported, so the calculations stay within one
coordinate chart. This needs to be, in some sense, uniform over the points of M to obtain
uniform convergence. The proof with the generators then mainly consists of a Taylor approxi-
mation. To avoid that the first term blows up, we need the ’mean 0’ restriction on the jumping
distributions. Then to get the right factors for the second term, we need a restriction on the
’covariance matrix’. To uniformly bound the error, we locally use continuity on a compact set.
This implies global uniform convergence by covering the manifold with finitely many charts.
The proof in the case of the (formal) Dirichlet forms is similar. Then we showed in section 4.3
which measures satisfy the restrictions that were obtained. We introduced canonical measures
and showed that compactly supported canonical jumping distributions give convergence to a
constant times Brownian motion.

Remarks on the Dirichlet form
We expected that the Dirichlet form could be an easier object to work with than the generator.
This turned out to be the case in some parts of the report. However, a clear disadvantage of
the Dirichlet form in the setting of a manifold is that it can be a lot harder to show that the
random walk process is reversible than in Rn. Even then, it is not always easy to see what the
right expression for the Dirichlet form is (as is discussed in section 4.2). It would be good to
do more research on both of these questions. Being symmetric is already quite a restriction for
a process in Rn, but it might turn out to be even more restrictive on a manifold.
For example, in the situation of the random walk of section 4.2, a minimum requirement in Rn is
iid jumping distributions. The ’identically distributed’ part is not so natural in the setting of a
manifold, since the distributions are defined on different tangent spaces. Since parallel transport
gives a way to connect vector spaces, one can ’transport’ a measure along a curve. One could
define ’identically distributed’ as: the measure in one point is just the measure from any other
point, transported along a curve between the points. To be well-defined, it should not matter
which pair of points or curve one uses. This puts very strong (symmetry-like) restrictions on
the measures.
As we remarked at the end of section 4.2, it is possible to show convergence of the processes
by just using Dirichlet forms. Then a stronger form of convergence (for instance Mosco conver-
gence) is needed. We believe that this holds in our case, but it was not necessary to show it.
It could be interesting to keep this in mind in cases where generator convergence is hard to show.
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Removing restrictions on the jumping distributions
It could be interesting to see what happens in the case of measures that are not compactly
supported. Then the problem is that the calculations are not local. However, maybe the same
results can be obtained by approximating these measures with compactly supported measures.
We get another interesting situation if we loosen the other restrictions on the jumping distribu-
tions. We expect that the processes then converge to other diffusion processes, such as Brownian
motion with a drift (for instance [10] deals with such more general situations, but, again, with
more abstract methods). Note, however, that in that case the limit process is not necessarily
symmetric, so it is generally not possible to use the Dirichlet form.

Random grid

Properties of a good grid
As we explained in the introduction, our goal was to find a grid (actually, a sequence of grids)
on a manifold on which we can construct an interacting particle system. Whether or not the
(random) grid that we introduced in section 5 is suitable, thus depends on whether we can use
it in section 6. This section shows that want to have a grid on which we can define a random
walk such that the following properties hold.

• It is convenient if we can approximate the integral with respect to the volume measure by
evaluating the function in points of the grid and averaging. We use this in the example
for an initial distribution in section 6.2.

• The generators of the random processes must converge to a constant times the Laplace-
Beltrami operator. The convergence should be stronger than pointwise, but it can be
weaker than uniform. We use this in (39). The assumption that is stated after it shows
how much stronger the convergence should be than just pointwise.

• The Dirichlet forms must converge (when applied to a fixed function) to the Dirichlet
form of Brownian motion. We use this in lemma 6.4.

These properties on the random grid
As a candidate grid, we introduced a random grid. The idea is that we keep adding points
that are independently chosen according to the uniform distribution on the manifold. On these
random grids, we define random walks by choosing jumping probabilities that depend on some
kernel k, a bandwidth ε and the distance between points. We first showed convergence of the
Dirichlet forms when first the amount of points N goes to infinity and then ε to 0. The first
limit comes down to a generalized law of large numbers result by Hoeffding. For the second
limit, we first choose k = 1[0,1]. Then we write the integral in the form of the stepping processes
of section 4 and show that the jumping distribution consists of a canonical part plus a rest part
that vanishes as ε goes to 0. This allows us to use the results from section 4. Then we use this
to show that the same holds if k is continuous and compactly supported. Moreover, since the
first limit is an almost sure limit, a lot of sequences exists that have this convergence.
Showing convergence of the generator (pointwise, we will get back to this) was done in the
same way. Collecting these results, we concluded that there exist (deterministic) sequences that
satisfy corollary 5.18, which basically almost gives the three properties above. In fact, the set of
such sequences has probability 1 (with respect to the countable product of uniform measures).
We make the following remarks.

Stronger than pointwise
First of all, we need that the convergence of the generators is stronger than pointwise, which is
all we have in corollary 5.18. We showed in section 6.3 that it would suffice if both the limits
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are uniform in the pi’s. For the limit of ε to 0, we think the uniformity can be shown, for the
following reason. In the proof of lemma 5.5, we approximate the uniform measure in normal
coordinates around a point. However, the approximation depends on the point, which gives us
only pointwise convergence. If there is a way to make such an approximation uniform on the
manifold, we have uniform convergence, which we need. We believe that such an approximation
must be possible, since the manifold is compact. This compactness gives bounds for curvature,
which should in some way bound the expression for the uniform measure. Uniform convergence
on all of M implies uniform convergence on the pi’s. Also because of compactness, it suffices to
have uniform convergence on, say, open balls.
The limit of N to infinity is more tricky. The problem here is that the convergence result is
just a law of large numbers that does not say much about the rate of convergence of a single
realization. Is is then even harder to say something about uniformity.

Double limit
Further, there is the fact that we have a double limit instead of a single one. The beauty of
how we define the random walk now, is that it apparently does not matter very much how we
choose the jumping probabilities, as long as they depend in some good way on the distance
between points. The problem this creates is that we have an extra variable: the bandwidth ε of
the kernel. Ideally, we would like to express ε in N to obtain a single sequence of random walks
on grids. However, it is not so clear how this can be done. It might depend on the manifold
itself or maybe just on the dimension. We will get back to this issue later.

Criterion on grids: spreading evenly
Note that we do not really scale the grid (as we would do in Rn), we just keep adding points
to it. However, it is still true that the mesh size goes to 0 (with probability 1, this is easy
to show). In fact, one could hypothesize that a good grid needs the following property (that
implies that the mesh size goes to 0): for every set, the fraction of points of the grids in that
set should converge to the uniform measure of that set. One could say that the grids should
spread evenly over the manifold. The uniform sequence that we use is in some way the most
natural candidate to satisfy this property (with probability 1, which gives us a lot of possible
sequences), but certainly not the only one.

Hydrodynamic limit of the SEP

Interpretation
The result that we aimed for is to show that the hydrodynamic limit of the Symmetric Exclu-
sion Process satisfies the heat equation. We take grids as in section 5 and define the SEP on
each grid: independent random walkers except that jumps to occupied sites are blocked. At
each time point, the particles determine a measure: a sum of Dirac measures in the points that
have a particle, scaled by the amount of possible positions. As time evolves, this induces a
random trajectory in the set of Radon measures on the manifold. We assume that at time 0 the
particle distribution converges weakly in probability to an absolutely continuous distribution
ρ0dV̄ . What we want to show is that then the whole trajectory converges in probability to a
trajectory of the form t 7→ ρtdV̄ such that t 7→ ρt satisfies the weak heat equation, as given
in (33), with initial condition ρ0.
We will first give a rough overview of the proof, then we will make some remarks.

Main line of the proof
Theorem 6.3 gives the main identity of the proof, namely that

MN,ε
t = fN (ηN,εt )− fN (ηN,ε0 )−

∫ t

0
LN,εf(ηN,εs )ds
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is a martingale with certain properties. Using convergence of the generators of random walks,
we could show that this implies that

µN,εt (φ)− µN,ε0 (φ)−
∫ t

0
µN,εs (∆Mφ)ds = MN,ε

t +

∫ t

0

1

N

N∑
i=1

ηs(pi)Epi(N, ε)ds. (43)

We could then show that the martingale goes to 0 in probability (using convergence of the
Dirichlet forms of random walks). We had to assume that the rest term (on the right hand side)
also vanishes. Using these results, we could show that any limiting distribution Q on the path
space should satisfy that Q−a.s.

αt(φ)− α0(φ) =

∫ t

0
αs(∆Mφ)ds,

which can be regarded a weak heat equation for measures. We believe that there is a uniqueness
result for such an equation (with the fixed initial condition ρ0dV̄ ).
We assume their exists a sequence such that the double limit is reduced to one limit. This
gives a sequences of distributions. Using a tightness argument, we showed that all subsequences
have weakly convergent subsequences. Because of the uniqueness that we just mentioned, their
limits are equal, which implies that the sequence itself converges weakly to that limit distribu-
tion. Since the limit is degenerate, weak convergence implies convergence in probability of the
trajectory.

The assumptions
To obtain the result, we had to make some assumptions. First of all we need the rest term
of (43) to vanish. It became clear in section 6.3 that this has to do with the fact that point-
wise convergence of the generators is not enough. We already made some comments about this
above.
Further, we need that the double limit can be reduced to one limit. Then tightness gives us
subsequences that still have the right limit. If we would use tightness of {QN,ε, N ∈ N, ε > 0}
(with notation as in section 6), then a converging sequence in this set would not necessarily
have the right limit. The difficulty is that there should be one sequence along which we have
convergence of the Dirichlet forms and of the generators in every point of the grids. This is a
countably infinite amount of limits. For each one of them it is easy to show the existence of
such a sequence, but it is harder for all limits together. This shows the importance of the issue
that we work with a double limit, as we mentioned in our discussion of section 5.
It could be worthwhile to fix ε and use our theory for a limit in N . Then we could study the
process that is left and see if we can take the limit in ε. In this way we keep the double limit.
However, we need some uniqueness result for the differential equation that we obtain, just as
we needed it for the heat equation. It seems like a lot of the other parts of the proof would still
hold.
We also assume (sometimes implicitly) that some proofs work as in the Euclidean case. For
example tightness, unicity of the weak solution of the heat equation and closedness of the set
Hδ from section 6.3. The reason is that their proofs do not seem to depend on the fact that the
space is Euclidean. This makes us believe that analogous results can be proven analogously in
the context of Riemannian manifolds.

Grid
We use the grid from section 5 to define the SEP on. As we noted when discussing section 5,
the only properties of the grid that we need, are the ones that are listed there. This means that
if we can show that any other grid satisfies these properties, we expect that we can make the
same kind of construction with an analogous result. It could be worthwhile to further try to
find such grids. Preferably one on which we can define random walks that only depend on N .
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In that case we do not have the problems of a double limit.

Remark on the method
It is good to note that the method from [18] that we tried to follow has the following advantage.
It reduces studying the SEP to studying a single random walk. The reason is that we apply the
particle configurations to test functions. Then we obtain expressions that are just the generator
or Dirichlet form of a random walk as in section 5, applied to the test function. This comes
from the fact that the generator of the SEP is closely related to the generator of a random walk.
All of this is reflected in the three properties of a good grid: they are only about the generators
and Dirichlet forms of random walks.

Conclusion
Finally, we think that this approach is promising. Some points in the proof need to be strength-
ened or worked out a bit more, but overall we think that the grids that we defined and the
method that we used work. This means that this could enable us to study interacting particle
systems in the setting of a compact and connected Riemannian manifold. Of course there are a
lot of questions that can be asked now. Some suggestions have been done about the grids, but
we could also try to see what happens when we relax the assumptions on the manifold itself. A
natural first step would be to let go of compactness and instead only assume completeness and
the existence of a lower bound on the curvature.
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A Introduction to differentiable manifolds

This appendix contains an introduction to differentiable manifolds. It contains everything that
is needed to understand the topics that are discussed in section 3. We start with the definition
of a smooth manifold. Then we introduce the tangent bundle, which is the space of all vectors
tangent to the manifold. Next, we look at vector fields and discuss the question whether there
is a curve that ’follows’ the vectors in a given vector field. After that we define differential forms
in order to integrate on a manifold.

A.1 Differentiable manifolds

Our intuition is coming from the fact that we are very familiar with Rn. First year students get
courses that introduce differentiation and integration in Rn and everything corresponds with
our geometric intuition, especially for n = 1, 2, 3. The idea of manifolds, however, is that they
are only locally like Rn. When dealing with manifolds, this is what we will constantly use. A
lot of the things we define and even a lot of proofs are directly based on this local relation with
Rn. In all of this we mainly follow [21] and sometimes [12].

A.1.1 Smooth manifolds

Let us start with the definition.

Definition A.1 . Let M be a metric space. We call M a manifold if every x ∈ M has a neigh-
bourhood U such that U is homeomorphic to Rn for some n ∈ N.

Recall that two topological spaces M and N are homeomorphic if there exists a bijective map
f : M → N such that both f and f−1 are continuous. It is easy to show that it suffices to
require that each point has a neighbourhood which is homeomorphic to an open subset of Rn.
Further note that for any x ∈M , the n in the definition is unique. If this n is the same for every
x, we say that M has dimension n or that it is an n-manifold. We will always implicitly assume
this and we usually denote the dimension with the letter n. We see directly that Rn itself and
its open subsets are n-manifolds (since any point in an open subset has an open ball around it,
which is homeomorphic to Rn). A more interesting example is the unit sphere S2 ⊂ R3. Each
point on the sphere has a neighbourhood that is homeomorphic to R2, so it is a 2-manifold
(hence the ’2’ in S2). (This in some way formalizes the explanation of a historical process:
mankind has been convinced for ages that the earth is flat, because they could only observe
it locally.) Note that the unit sphere itself is quite different from R2. In fact, it is compact,
whereas R2 obviously is not.

Differentiable structure
To speak of continuity of (real-valued) functions on M , we only need to know its topology.
However, this is not enough to define differentiability. Luckily, differentiability is a local prop-
erty and a manifold locally looks like Rn. Suppose x ∈ M and φ is a homeomorphism from
U to Rn for some neighbourhood U of x. It seems logical to say that a function f : M → R
is differentiable whenever f ◦ φ−1 is. However, if V is another neighbourhood of x and ψ is a
homeomorphism from V to Rn, we would want to draw the same conclusion. So we want for
any f that f ◦φ−1 is differentiable if and only if f ◦ψ−1 is. Since f ◦φ−1 = (f ◦ψ−1)◦ (ψ ◦φ−1),
we have to impose the restriction that ψ ◦ φ−1 is differentiable. This is precisely what is done
in the definition of differentiable manifolds, although we will even only consider C∞ functions.

Definition A.2 . If U, V ⊂ M are open subsets and x : U → x(U) and y : V → y(V ) are
homeomorphisms onto open subsets of Rn, we call x and y C∞-related if the following maps
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are C∞:
x ◦ y−1 : y(U ∩ V )→ x(U ∩ V )

y ◦ x−1 : x(U ∩ V )→ y(U ∩ V ).

We call a set A consisting of homeomorphisms an atlas for M if the homeomorphisms are
pairwise C∞-related and their domains cover M . An element (x, U) ∈ A is then called a chart
of A or a coordinate system on U .

A sketch of the situation can be seen in figure 6. The maps are typically denoted by x or y to

Figure 6: ϕα and ϕβ are C∞-related if the compositions ϕα ◦ ϕ−1β and ϕβ ◦ ϕ−1α are smooth as maps
between ϕα(Uα ∩ Uβ) and ϕβ(Uα ∩ Uβ) (the dark areas). Source: https://ned.ipac.caltech.edu/

level5/March01/Carroll3/Carroll2.html.

capture the idea that they represent local coordinates on M . When identifying U with Rn via
such a map, it is like we locally draw axes on U to give it an Rn-like structure. The elements
of M itself are usually denoted by p or q.
Any atlas A can be extended by adding all the charts that are C∞-related to all the charts in
A . It can be shown that the extra charts will also be C∞-related to each other (so the new
atlas is indeed an atlas, here we need that the charts in A cover M). Any chart that is not
added is not C∞-related to some chart in A so should not be added. In this sense the atlas
that is obtained is the unique maximal atlas containing A . An atlas is called maximal if it is
equal to its maximal extension. We can now give the main definition.

Definition A.3 . A pair (M,A ) is called a C∞ manifold, differentiable manifold or smooth man-
ifold when M is a manifold and A is a maximal atlas for M . A is called the differentiable
structure for M .

We will usually not mention A explicitly. The following lemma shows a basic property of an
atlas.

Lemma A.4 . Let (M,A ) be a smooth manifold. Suppose (x, U) is a coordinate chart in A and
V ⊂ U is open. Then (y, V ) with y = x|V is a coordinate chart in A .

Proof. It is given that V is open. Since x is a homeomorphism, x−1 is continuous, so x(V ) is
open. Since x is a continuous bijection, so is y. Moreover, x−1|x(V ) is the inverse of y and it
is continuous (as the restriction of a continuous map). This shows that y is a homeomorphism
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from V to the open set x(V ), so it is a coordinate chart.
Now let (z,W ) be any other chart from A . Then z◦y−1 : y(V ∩W )→ z(V ∩W ) is a restriction of
z◦x−1 : x(U∩W )→ z(U∩W ) (since y is a restriction of x and y(V ∩W ) = x(V ∩W ) ⊂ x(U∩W ))
and hence smooth. Similarly, y−1 ◦ z is smooth. This shows that z and y are C∞-related. Since
M is a smooth manifold, A is maximal. The above shows that (y, V ) is C∞-related to any
element of A , so it must be in A .

A natural mapping between two smooth manifolds should preserve the differentiable structure.
We thus define the following.

Definition A.5 . Let (M,A ) and (N,B) be smooth manifolds. We call f : M → N a diffeomor-
phism if it is bijective and y ∈ B if and only if y ◦ f ∈ A . When such f exists we call M and
N diffeomorphic.

A.1.2 Differentiation

Differentiability
In this setting we can start to define what differentiability means. As suggested above we say a
function f : M → Rn is differentiable at p ∈M if its composition with x−1 is differentiable for
any coordinate system (x, U) around p. More generally we say the following.

Definition A.6 . Let M,N be smooth manifolds and f : M → N a map. We call f differentiable
(C∞) if for any coordinate system (x, U) for M and (y, V ) for N we have that

y ◦ f ◦ x−1 : Rn ⊃ x(f−1(V ))→ y(V ) ⊂ Rm

is differentiable (C∞). It is called differentiable (C∞) at p ∈M if for all (x, U) and (y, V ) such
that p ∈ U and f(p) ∈ V the above holds at x(p).

We also call C∞ functions smooth functions. For differentiability (or smoothness) in a point p
it suffices to show the above for any fixed pair of coordinate systems (x, U) and (y, V ). It will
then also hold for all other pairs. Indeed, suppose φ is another chart around p from the same
atlas as x and ψ around f(p) from the same atlas as y. Then we have on some neighbourhood
of φ(p)

ψ ◦ f ◦ φ−1 = (ψ ◦ y−1) ◦ (y ◦ f ◦ x−1) ◦ (x ◦ φ−1).

(ψ ◦y−1) and (x◦φ−1) are differentiable on their domains (since they are from the same atlases,
respectively) and y ◦ f ◦ x−1 is differentiable at x(p) = (x ◦ φ−1)(φ(p)), so ψ ◦ f ◦ φ−1 is differ-
entiable at φ(p). Note that if we replace the two manifolds by Rn for some n (with the identity
map as the coordinate system, we will always implicitly assume this), this definition reduces to
ordinary differentiability of a map Rn → Rm.

Derivative
Now we would also like to calculate the derivative of a function f : M → R. We can define this
locally with respect to a coordinate system.

Definition A.7 . Let f : M → R and p ∈M . Let (x, U) be a coordinate system around p. Then
we define the partial derivative of f with respect to coordinate i of x as

∂f

∂xi
(p) = Di(f ◦ x−1)(x(p)).

We will regard ∂
∂xi
|p as the operator given by f 7→ ∂f

∂xi
(p). When the underlying coordinate

system and the point p are clearly known, we will sometimes denote ∂i := ∂
∂xi
|p.
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Here Di(f ◦ x−1) denotes the derivative of the function f ◦ x−1 : Rn ⊃ x(U)→ R with respect
to the ith variable. Note that this definition says that we map p to its coordinates in (x, U) and
take the derivative of the composition f ◦x−1 in these coordinates. Note that in the case where
M = Rn (and x is the identity) the definition reduces to the definition of a partial derivative in
the usual sense. We can obviously extend this definition to the case where f maps to Rn.
The derivatives with respect to different coordinate systems are related in the following way.

Proposition A.8 . Let (x, U) and (y, V ) be coordinate systems for M and let f : M → R be
differentiable. Then we have on U ∩ V :

∂f

∂xi
=

n∑
j=1

∂f

∂yj
∂yj

∂xi
.

This expression looks very much like the ordinary chain rule, which is exactly what is used to
prove it.

Einstein summation
This is the first of many sums that we will encounter. The general convention (called Einstein
summation) is that in any expression where an index appears both as a subscript and as a
superscript, we assume that we sum over this index (from 1 to the dimension of the space). In
this way we can write the above as

∂f

∂xi
=

∂f

∂yj
∂yj

∂xi
.

Note that we regard j as a subscript in ∂f
∂yj

, since it appears under the line.

Immersion
Now let f : M → N be a differentiable map. If (x, U) and (y, V ) are coordinate systems around
p and f(p), respectively, we can calculate the m× n-matrix(

∂(yi ◦ f)

∂xj
(p)

)
i=1..m,j=1..n

.

The rank of this matrix does not depend on x and y and it is called the rank of f at p.

Definition A.9 . If the rank of f equals n (the dimension of M), we call f an immersion. More-
over, if f is a homeomorphism onto its image, it is called an imbedding.

We now have the following theorem.

Theorem A.10 . Let M be a smooth manifold. If M is compact, then there exists an immersion
f : M → RN for some N ∈ N.

A.2 Tangent bundle

This section deals with a very important notion concerning manifolds: the tangent bundle. The
idea is that in each point of the manifold, we would like to define a space of all the ’vectors’
that are ’tangent’ to the manifold in that point. This space will be of the same dimension as
the manifold. One can for example think of S2, which has a plane as a tangent space in every
point. This is easy to see when we regard S2 as the unit sphere of R3, but it is harder to give a
definition that does not depend on this type of imbedding. This is also the order in which we
will define the tangent space for a general smooth manifold: we will first regard the manifold
as embedded in Rm for some m to obtain an intuition and then we will give a more abstract
definition that does not use such an imbedding. By doing that we (still) follow [21].
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A.2.1 Intuitive definition using imbeddings

Line tangent to a curve
Let us start by looking at Rn. The easiest form of the concept that we will describe is just a
line tangent to an injective differentiable curve c : R → Rn at some point t ∈ R. This line can
be formed by following c up to time t and then continuing in the direction that you have at
time t (and thus, generally, leaving c). This direction is described by the derivative at time t:
c′(t) = ((c1)′(t), .., (cn)′(t)) (assume that c′(t) 6= 0). So if one walks in this direction at speed
one for one unit time after t, he ends up at c(t) + c′(t). The path that he walks since time
t is a translated version of c′(t) with its starting point at c(t). For such a vector v which is
placed at the point p, we will write vp (or, if the context is clear, just v). So we can write c′(t)
translated by c(t) as c′(t)c(t). Now if the speed with which one follows the curve is not the unit
speed, but say speed 2, one will end up at c(t) + 2c′(t) = [2c′(t)]c(t) and if one would walk at
negative unit speed, he ends up at c(t)−c′(t) = [−c′(t)]c(t). Now, denoting the set of all possible
n-dimensional vectors starting at p ∈ Rn by Rnp , we see that we obtain a map

ϕ : Rt → Rnc(t) λ 7→ [λc′(t)]c(t)

that tells us where we end up if we keep walking for a unit time with speed λ in the direction
at time t. Note that the image ϕ(R) = c(t) +Rc′(t) is one-dimensional, it is the line tangent to
c at time t, so at the point c(t) (in the usual sense). This is the tangent space at c(t).

Tangent spaces in Euclidean spaces
We saw above that the tangent space in a point to a curve is just a line and that the tangent
vectors can be obtained by passing through a point with different speeds. We will now look at a
more general case. Fix some smooth function f : Rn → Rm. Then f(Rn) is a smooth subspace
of Rm. We will describe the tangent vectors to this subspace, we will need that later. Here
we can also look at what it means to keep walking in the direction that you have at a certain
point p ∈ Rn with a certain speed for a unit time. However, this speed is now described by a
vector in Rn starting at p representing the speed in each coordinate, so it is an element of Rnp .
The direction in which you were going is now described by the m× n-matrix Df(p) of partial
derivatives. The place where you end up is found by multiplying the direction matrix with the
speed vector. The result is a vector in Rm that is placed at starting point f(p), so it is in Rmf(p).
By doing this with every possible speed, we obtain a hyperplane in Rm, which is the hyperplane
tangent to f(p) (in the usual sense). This is the tangent space at f(p).

Application to imbedded manifolds
We could speak about a line tangent to a curve or a hyperplane tangent to f(Rn), because
we interpreted them as imbedded in Rn and Rm, respectively. To define tangent spaces for
arbitrary manifolds, we use the above in the following way. We start with a general manifold M
and an imbedding i : M → RN for some N ∈ N. Now we consider a coordinate system (x, U)
for M around p ∈ M . Then i ◦ x−1 is a mapping Rn → RN , so it is like f above. The rank
of this map is n (since i is an imbedding), so in a point i ◦ x−1(x(p)) there is an n-dimensional
hyperplane tangent to i ◦ x−1(Rn). We will denote this set by (M, i)p and regard it as the
tangent space at p. It is easy to show that (M, i)p does not depend on the choice of x, but it
does still depend on i. We write its union over p ∈ M as T (M, i). This is a first definition of
a tangent space. It can be shown to be the space of all tangent vectors to differentiable curves
through i(M). The dependence on i can be shown to be insignificant: T (M, i) is essentially the
same as T (M, j) for any imbedding j of M into RK . However, this construction still depends
on an imbedding (which is a bit of a detour and we need it to exist) and we would like to have
one canonical version of the tangent space, instead of a whole collection of them.
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A.2.2 Vector bundles

The tangent bundle that we are about to construct is a specific case of a more general concept: a
vector bundle. Since we will be dealing with these a lot later, we will give the general definition
(from [12]) first.

Definition A.11 . A smooth n-dimensional vector bundle consists of smooth manifolds E (the
total space) and B (the base space) and a surjective smooth map π : E → B (the projection)
such that:

• Each fibre Ep := π−1(p) is a vector space.

• Each p ∈ B has a neighbourhood U and a diffeomorphism ϕ : π−1(U) → U × Rk (a
local trivialisation) such that π1 ◦ ϕ = π on π−1(U), where π1 is projection onto the first
coordinate.

• The restriction of ϕ to p is a vector space isomorphism Ep → {p} × Rk.

We will usually denote a vector bundle by its total space (simply E) or by specifying its pro-
jection map (π : E → B). The intuition behind a vector bundle is that we associate a vector
space to each point of a manifold (the base space) in a smooth way: the union over all these
vector spaces is again a smooth manifold (the total space) and the projection map is smooth.
When studying manifolds, we will use this construction with several kinds of vector spaces.

When we have a bundle over some manifold M , we can define a section of the bundle.

Definition A.12 . Let π : E → B be a vector bundle. A section of E is a continuous map
s : B → E such that π ◦ s = id on B. If s is smooth, we call it a smooth section.

Note that a section is nothing more than a map that for each point p chooses a vector from its
fibre. This is done in a continuous way: if two points are close, then the vectors that are chosen
should not be very different.

A.2.3 Three constructions

The tangent bundle over a manifold M is a vector bundle with base space M . The fibre TpM
at p is the tangent space at p and the total space TM is the union of these tangent spaces.
Figure 7 shows the intuitive idea of TpM . There are (at least) three ways to construct the
tangent bundle (we will present them shortly). They all first define a tangent space at a point
and then take the union over these spaces. These constructions show several ways to think
about the tangent bundle and they can be applied to any n−manifold M . For any smooth
f : M → N we can define the map f∗ in each of these constructions. It takes a vector from
TpM to Tf(p)N in the following way: if you pass through p via a curve γ with tangent vector v
at p, then the corresponding curve f ◦ γ in N has tangent vector f∗v at f(p). This is called a
pushforward function, since the vector v is pushed from TM to TN . We will now describe the
constructions.

Equivalence classes of tangent vectors
In the first way we look at pairs (x, v) where x : U → Rn is a coordinate system around p ∈M
and v is a vector in Rn. We then call (x, v) and (y, w) equivalent if

w = D(y ◦ x−1)(x(p))(v).

The corresponding equivalence classes [x, v]p form the tangent space at p and their union over
p is the tangent bundle. For f : M → N we can define

f∗([x, v]p) = [y,D(y ◦ f ◦ x−1)(x(p))(v)]f(p),
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Figure 7: The tangent space TxM at x ∈ M . Note that ξ ∈ Mx is a vector tangent
to some curve γ through x. Source: https://www.researchgate.net/figure/228371900_fig1_

Figure-1-Optimization-on-a-manifold-The-tangent-space-T-M-x.

where (x, U) and (y, v) are coordinates around p and f(p) respectively.

Equivalence classes of curves
The second way regards differentiable curves c : (−ε, ε) → M with c(0) = p. Let (x, U) be a
coordinate system. We regard two curves c1, c2 equivalent if x ◦ c1 and x ◦ c2 have the same
derivative at 0. The equivalence classes again form the tangent space at p and their union over p
is the tangent bundle. This again shows that the tangent bundle is the collection of all possible
tangent vectors to differentiable curves in M . Here we can define f∗ as the map that takes the
equivalence class of c to the one of f ◦ c.

Point derivations
The third way is more abstract. We define a tangent vector at p to be a linear operator l on
C∞ functions which is a point derivation, i.e. it satisfies Leibniz’s rule:

l(fg) = f(p)l(g) + g(p)l(f).

The collection of all such operators is a vector space, this will be the tangent space at p. If
(x, U) is a coordinate system around p, the derivation at p ( ∂

∂xi
|p = ∂i) is in this space (this is

easy to show using the product rule). In fact the set (∂1, .., ∂n) is a base. This means that any
tangent vector can be written in the form l = l(xi)∂i. Now for f : M → N , f∗(l) can be defined
by its action on C∞ functions g on N :

[f∗(l)](g) = l(g ◦ f).

Tangent vector to a curve
If c : R → M is a differentiable curve, we simplify notation. Since R has only one coordinate,
we call it t and write dt instead of ∂t. We also write

dc

dt
:=

dc

dt
(t) :=

dc

dt
|t := c∗

(
d

dt
|t
)
,

where t represents both the coordinate system and a specific point in R. This, again, is the
vector tangent to c at c(t).
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A.2.4 Orientation

If v1, .., vn and w1, .., wn are two bases for a vector space V and we define A = aij to be the
transformation matrix when passing from the former to the latter:

wi =

n∑
j=1

ajivj ,

then we call the two bases equally oriented if detA > 0 and oppositely oriented if detA < 0
(note that always detA 6= 0). Being equally oriented defines an equivalence relation on all bases
for V and we denote the equivalence class of v1, .., vn by [v1, .., vn]. Each of the (two) classes
that we obtain in this way is called an orientation for V . The orientation corresponding to
the unit vectors e1, .., en of Rn is called the standard orientation. A map f : V → W is called
orientation preserving with respect to the orientation µ on V and ν on W if [f(v1), .., f(vn)] = ν
whenever [v1, .., vn] = µ. We can now define the orientation of a manifold.

Definition A.13 . µ is called an orientation of the manifold M if µp is an orientation on each
TpM and we have a compatibility condition that basically says that if we compare TM |U to
U ×Rn (for some open, connected U), then the orientation should either be preserved in every
fibre or reversed in every fibre. If there exists an orientation of M , we call M orientable.

This definition is obviously not precise, but to make it more precise, we would have to look at
equivalence of bundles and we will not do that here. If M is orientable, there are two possible
orientations that differ by a minus sign. A well-known example of a non-orientable manifold is
the Möbius strip.

A.3 Vector fields and differential equations

It is explained in section 3.1 that the analogue of walking along a straight line on a manifold
is following a solution path of a certain differential equation. This subsection serves to provide
some idea of how we can treat differential equations on a manifold.

Definition of a differential equation
We first need to define a vector field.

Definition A.14 . A section s of TM is called a vector field. If s is C∞, we call it a C∞ vector
field. We denote the set of smooth vector fields on M by T (M).

A vector field is thus nothing more than a map that chooses a tangent vector in each point. This
is done in a continuous way (even smooth in the case of a smooth vector field). The definition
obviously coincides with the concept of a vector field in Rn: here at each point in Rn we have
a vector in Rn and this mapping Rn → Rn is continuous (or smooth in the case of a smooth
vector field). Recall that in a coordinate system (x, U) any tangent vector can be written as a
linear combination of the point derivations with respect to the coordinates of x:

n∑
i=1

ai(p)
∂

∂xi
|p.

A vector field is continuous (smooth) if and only if in every coordinate system each ai is con-
tinuous (smooth).
For a vector field on M , we can ask the question: given a certain starting point, is there a path
through this point that follows the vectors in the vector field? The following definition makes
this idea precise.
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Definition A.15 . Let X be a vector field on M and ε > 0. We call a curve ρ : (−ε, ε) → M an
integral curve with initial condition ρ(0) = p if

ρ(0) = p

dρ

dt
= X(ρ(t)) ∀t ∈ (−ε, ε).

(44)

We call (44) a differential equation.

Recall that dρ
dt denotes ρ∗(

d
dt |t). This definition thus says that the tangent vector to the curve ρ

at each point ρ(t) ∈M is given by X(ρ(t)) ∈ Tρ(t)M . The question is now what the conditions
on X (and M) should be for such a curve to exist and be unique. We will not completely treat
that theory here, but it is good to have an idea of how this is done.

Sketch of how to solve (44)
We try to solve this problem locally. We want a neighbourhood of p on which there is a solution.
The idea now is that since this is a local statement, everything can be translated to Rn via a
coordinate system. This yields a differential equation in Rn. So we need to solve an equation
of the type

α(0) = x

dα

dt
= f(α(t)) ∀t ∈ (−ε, ε)

for some suitable ε. To find a solution in Rn we can use a fixed point theorem. Define

Sα(t) = x+

∫ t

0
f(α(u))du.

If a curve α has Sα = α, then it solves dα
dt = f(α(t)) and has α(0) = x, so it satisfies the

differential equation. It can be shown that the other way is true as well, so α solves the dif-
ferential equation if and only if it is a fixed point of S (i.e. Sα = α). Now if we impose the
condition that f is Lipschitz, then S is a contraction on a suitable space of functions. Using
the contraction lemma (and the fact that the function space is complete) it can be shown that
there exists an ε and α such that the equations above hold. These results can now be translated
back to M . If we require the vector field to be C∞, it satisfies the Lipschitz condition and we
have the existence and uniqueness of a local solution.

In some cases we can say something about a global solution2, namely when X only lives on a
compact subspace of M , i.e. if supp(X) = {p ∈M : X(p) 6= 0} is compact. In this case we first
find for each p an open neighbourhood with a local solution. Then we select finitely many of
them V1, .., Vk that cover the support of X. On each Vi there is a solution for time in (−εi, εi).
Since there are finitely many, we can take ε = mini εi. Now from each point there exists a
solution for time in (−ε, ε) (since nothing happens outside of the support of X so outside of
∪iVi). Now it can be shown that these local solutions are compatible. In fact, it can be shown
that the solutions in subsequent time intervals can be glued together to obtain a solution for
t ∈ R. In particular when M is compact the support of X must be compact, so there is a global
solution for all time.

The description above gave a sketch of how to show existence and uniqueness of solutions
to a certain differential equation on M . This was a very basic differential equation. Others can
be dealt with in similar ways.

2To make precise what we mean by global solution, we have to regard solutions as flows, which we will not do
here.
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A.4 Differential forms and integration

We are used to denote an integral by ∫
fdt.

This comes from the idea that we multiply the value of f at a point by an infinitisimal time
interval dt and then sum over those time intervals. When integrating on a manifold, we must
be more careful to give a sensible meaning to fdt. We will call it a 1−form and it will turn out
to be a function of tangent vectors. To be able to understand this idea, we will first look at a
simple case. Then we will introduce the theory of differential forms. Once we have those we
return to defining integration on a manifold precisely.

A.4.1 1-forms: intuitive introduction

Consider a smooth curve c : [0, 1] → R2 (this example is based on [21, Chapter 8]). Suppose
we want to calculate

∫
c fdx + gdy, so the integral of fdx + gdy over the curve c. Here we

interpret fdx + gdy as some force field in R2 that has component f in the direction of x
and component g in the direction of y. First discretize the interval [0, 1] into a partition
0 = t0 < t1 < .. < tn = 1. Then choose a point to evaluate the integrands, say the left points of
the intervals: c(t0), .., c(tn−1). Denote the first coordinate of c by c1 and the second by c2. Then
on the interval (ti−1, ti), the curve moves c1(ti)− c1(ti−1) in the direction of the first coordinate
and c2(ti) − c2(ti−1) in the direction of the second one. Multiplying the right terms with each
other and summing over the intervals yields the following approximation of the integral:

n∑
i=1

f(c(ti−1))(c1(ti)− c1(ti−1)) + g(c(ti−1))(c2(ti)− c2(ti−1)).

This makes perfect sense for a curve in R2 but on a general manifold we cannot define c1(ti)−
c1(ti−1), so we need another way to write the above. Since each cj is smooth, by the mean value
theorem there are points αi, βi ∈ (ti−1, ti) such that

c1(ti)− c1(ti−1) = (c1)′(αi)(ti − ti−1)

c2(ti)− c2(ti−1) = (c2)′(βi)(ti − ti−1).

Using this, we can write the approximation above in the following way:

n∑
i=1

[
f(c(ti−1))(c1)′(αi) + g(c(ti−1))(c2)′(βi)

]
(ti − ti−1).

Since each (cj)′ is continuous, the sum above converges to the integral∫ 1

0
f(c(t))(c1)′(t) + g(c(t))(c2)′(t)dt.

Therefore we might as well have taken any other points than αi and βi and still converge to the
same integral. If we set αi = βi = ti−1, we obtain

n∑
i=1

[
f(c(ti−1))(c1)′(ti−1) + g(c(ti−1))(c2)′(ti−1)

]
(ti − ti−1)

=

n∑
i=1

(f(c(ti−1)), g(c(ti−1))) • c′(ti−1)(ti − ti−1)

=

n∑
i=1

ω(c(ti−1))(c′(ti−1))(ti − ti−1),
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where ω(p) is a function that maps (u, v) to f(p)u + g(p)v. Note that ω(p) is linear and we
can interpret it as a function on the tangent space TpR2, so it is a linear functional on TpR2. It
is basically the integral of f(p)dx + g(p)dy over the (tangent) vector (x, y)p. This means that
in the expressions above we approximate the integrand by its value at the point c(ti−1) and
the path between c(ti−1) and c(ti) by (ti − ti−1) times the tangent vector to c at c(ti−1). If
we know ω(p) for each p in R2, we can calculate the integral of fdx + gdy over any curve in
R2. We have thus transformed the integrand fdx + gdy to a linear functional on the tangent
space of R2 in each point. This is something that can be generalized to arbitrary manifolds. We
will eventually define the integral over a manifold in yet another way (although closely related
to and motivated by the description above), but this should serve as a motivation to study
functionals on tangent vectors.

A.4.2 The cotangent bundle and 1-forms

We have already seen that each tangent space TpM is a vector space. We can use this to apply
the theory of vector spaces to tangent spaces. In particular we will replace the tangent space
by several related objects. To do this, we will first study some concepts concerning vector spaces.

Dual vector space
Recall that given a vector space V (in our case of finite dimension n), we can define its dual
space V ∗ as the set of all linear functionals on V (i.e. all linear f : V → R). V ∗ is itself a vector
space and we sometimes call its elements covectors. Given a basis v1, .., vn for V , we can define
the functionals ϕ1, .., ϕn ∈ V ∗ by ϕi(vj) = δji . This turns out to be a basis for V ∗ and we will
call it the dual basis (with respect to v1, .., vn, so we will sometimes denote it by v∗1, .., v

∗
n). This

shows that the dimension of V ∗ is again n.
We can also consider the dual of the dual of V : V ∗∗. There is a natural identification V → V ∗∗

that maps v ∈ V to the functional v∗∗ : φ 7→ φ(v). In that sense we will sometimes simply write
v ∈ V ∗∗. If v1, .., vn ∈ V is a basis for V , then v∗∗1 , .., v

∗∗
n is the dual basis of the dual basis of

v1, .., vn and hence a basis for V ∗∗. This basis equals v1, .., vn (through the identification that
we described above). In fact, V is isomorphic to V ∗∗.

Cotangent bundle and 1-forms
We can now make the following definition.

Definition A.16 . Let M be a manifold. Let T ∗pM = (TpM)∗ denote the dual space of the
tangent space at p ∈M . We define their union T ∗M over p ∈M to be the cotangent bundle of
M . The projection map π : T ∗M →M takes any vector in T ∗pM to p.

It can be shown that the cotangent bundle is a smooth vector bundle and the idea is clear: at
each point the tangent space is replaced by its dual space.

Definition A.17 . Let s be a C∞ section of T ∗M (i.e. a C∞ map M → T ∗M that takes p ∈M
to a vector in T ∗pM). Then we call s a 1-form on M .

This means that a 1-form on M is a map that for each p chooses a functional on the tangent
vectors at p. In particular ω above was a 1-form on R2 (under smoothness conditions on f and
g). A special case of a 1-form is given by the next definition.

Definition A.18 . Let f : M → R be a C∞ function. We define the 1-form df for p ∈ M and
v ∈ TpM by

df(p)(v) = v(f).

We call df the differential of f .

Recall that v(f) is defined via the interpretation of v as a point derivation. Not every 1-form
can be obtained as a differential of some f . However we can find a nice representation. Suppose
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(x, U) is a coordinate system around some p ∈ M . Then we can use the coordinate functions
x1, .., xn to define the differentials dx1, ..,dxn (on U). Since

dxi(p)

(
∂

∂xj
|p
)

=
∂

∂xj
|pxi = δji ,

we see that dx1(p), ..,dxn(p) are the dual basis for T ∗pM with respect to the basis ∂
∂x1
|p, .., ∂

∂xn |p
for TpM . This means that we can write any 1-form (on U) as

ω(p) =
n∑
i=1

ωi(p)dx
i(p).

We even have the following formula for differentials:

df =
n∑
i=1

∂f

∂xi
dxi.

Recall that given a function f : M → N , we can push a vector in TpM forward to a vector in
Tf(p)N using the mapping f∗. With 1-forms we can do this the other way around: a 1-form ω
on N naturally defines a 1-form f∗ω on M . This is called pulling back.

Definition A.19 . Let f : M → N and let ω be a 1-form on N . Define f∗ω by

f∗ω(p)(v) = ω(f(p))(f∗v).

Note that f∗ω pushes v to N using f∗ and then applies ω. The resulting map is a 1-form on M .
Before returning to defining integration, we analyze the higher dimensional situation.

A.4.3 Covariant and contravariant tensor fields

Tensors
We can generalize the theory above by looking at functionals on products of V with itself and
even with V ∗ using the following definition (from [12]).

Definition A.20 . Let V be a vector space and V ∗ its dual. Then we define the following.
A covariant k-tensor is a multilinear map

F : V × ..× V (k times) → R.

A contravariant l-tensor is a multilinear map

F : V ∗ × ..× V ∗ (l times) → R.

A tensor of type
(
k
l

)
is a multilinear map

F : V ∗ × ..× V ∗ (l times) × V × ..× V (k times) → R.

The sets of these functions are denoted with T k(V ), Tl(V ) and T kl (V ) respectively.

Note that a function is called multilinear if it is linear in each variable. In particular T k0 (V ) =
T k(V ), T 0

l (V ) = Tl(V ), T 1(V ) = V ∗ and T1(V ) = V ∗∗ = V . We also define T 0(V ) = R. We
now define for F ∈ T kl (V ) and G ∈ T pq (V ) their tensor product F ⊗G by

F ⊗G(ω1, .., ωl+q, v1, .., vk+p) = F (ω1, .., ωl, v1, .., vk)G(ωl+1, .., ωl+q, vk+1, .., vk+p).

The following easy to check properties hold:
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• F ⊗G ∈ T k+p
l+q (V )

• F ⊗G 6= G⊗ F (in general)

• (F ⊗G)⊗H = F ⊗ (G⊗H).

Basis
If we denote by ϕ1, .., ϕn the dual basis for V ∗ with respect to the basis v1, .., vn for V , it can
be shown that the set

{vi1 ⊗ ..⊗ vil ⊗ ϕ
j1 ⊗ ..⊗ ϕjk , 1 ≤ is, jt ≤ n ∀s, t}

is a basis for T kl (V ). This shows that its dimension is nk+l. We denote the coefficients of a

tensor F with respect to this basis by F i1..ilj1..jk
. Sometimes we will want to have the arguments

in a different order. The coefficients of a tensor G : V × V ∗ × V → R will then be denoted by
Gi

j
k.

Remark A.21 . Note that we have the following convention for indexes. The indexes of elements
of V (= V ∗∗) are written as subscripts and their components as superscripts. Indexes of elements
of V ∗ are written as superscripts and their components as subscripts. This ensures that we can
make use of the Einstein summation convention in a natural way.

Trace

Definition A.22 . Let G be a tensor of type
(
k+1
l+1

)
where k, l ≥ 0. Let 0 ≤ p ≤ k + 1 and

0 ≤ q ≤ l + 1. Then we define the trace of G with respect to vector p and covector j to be the
tensor of type

(
k
l

)
that has coefficients

tr(G)i1..ilj1..jk
=
∑
m

Gi1..m..ilj1..m..jk
,

where m is placed at position q between the superscripts and position p between the subscripts.

Tensor fields
As in the one-dimensional case we can replace TpM by T kl (TpM) and obtain a new bundle.

Definition A.23 . Let M be a manifold. Define T kl (TM) as the union over p ∈M of T kl (TpM).
This is called a tensor bundle of covariant tensors of order k. The corresponding projection
π : T k(TM) → M maps vectors in T kl (TpM) to p. A smooth section of T kl (TM) is called a
tensor field.
In the case that l = 0, we call T k(TM) a bundle of covariant tensors of order k and we call a
smooth section a covariant tensor field.
In the case that k = 0, we call Tl(TM) a bundle of contravariant tensors of order l and we call
a smooth section a contravariant tensor field.
The set of tensor fields (covariant, contravariant) is denoted by T k

l (T k,Tl).

It can be shown that this is indeed a smooth vector bundle. Note that we can apply the trace
operator pointwise to a tensor field to obtain the trace of that tensor field. In analogy with the
one-dimensional case, we can define for a given smooth f a pullback function f∗.

Definition A.24 . Let f : M → N be a C∞ function. Let A be a covariant tensor field of order
k on N . We define f∗A by

f∗A(p)(v1, .., vk) = A(f(p))(f∗v1, .., f∗vk).

In this way f∗A is a covariant tensor field of order k on M .
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A.4.4 Alternating functions and k-forms

Intuitive motivation
Instead of using all of T k(V ), we will be regarding a special subset. To understand this,
we need to go back to the context of integration at the beginning. As we could see there,
ω(c(ti−1))(c′(ti−1)) is the integral of f(c(ti−1))dx + g(c(ti−1))dy over the tangent vector to c
at c(ti−1). It sums over the contributions of the integrand in each coordinate. Suppose now
that we would want to integrate over a surface instead of a curve. Then we would need the
integral of the integrand in a point p over the area of the parallelogram spanned by the tangent
vectors at p in each direction of integration. Or more generally the integral over the generalized
’parallelogram’ spanned by the tangent vectors in each of k directions of integration. We could
call such an integral a generalized volume where volume is locally measured by the integrand,
but keep in mind that it is generally not a volume in the sense that we are used to (only in
special cases).
Here is where the multilinear functionals come into play. A functional attributing this general-
ized volume (which is an integral) to a set of vectors must of course be linear in each coordinate:
if one vector is multiplied by a constant, the volume is. The same holds when vectors are added
in one coordinate of the functional: the volumes must be added. This shows that the volume
functional that we look for must be an element of T k(TpM). However, we have an extra restric-
tion: whenever two vectors are swapped, the orientation changes, so the volume must stay the
same except for a minus sign. In other words: the volume functional must be skew-symmetric.
This property is captured by the set of alternating functions. So this is the set of functions that
we will consider.

Alternating functions

Definition A.25 . Let T ∈ T k(V ). We call T alternating if T (v1, .., vi, .., vj , .., vn) = 0 whenever
vi = vj . We denote the subset of T k(V ) of alternating functions by Ωk(V ).

An easy calculation shows that a function is alternating if and only if it is skew-symmetric, i.e.:

T (v1, .., vi, .., vj , .., vn) = −T (v1, .., vj , .., vi, .., vn).

If T ∈ T k(W ) is alternating and f : V → W is a linear transformation between vector spaces,
then f∗T defined by f∗T (v1, .., vk) = T (f(v1), .., f(vk)) is again alternating.

Let us look at an example. It can be shown that Ωn(Rn) has dimension 1: every element
of Ωn(Rn) is a scalar times the determinant function on Rn. The determinant itself is the
unique alternating function on (Rn)n (the n × n real-valued matrices) such that it maps the
unit vectors (e1, .., en) (the identity matrix) to 1. This implies that for any vector space V of
dimension n, Ωn(V ) has dimension 1. The determinant is in some way the most basic, normal-
ized, version of alternating functions on (Rn)k. In fact, all others are somehow built up from
them, we will see this later.

Alternation and wedge product
We would like to have something like a tensor product for alternating functions, but the tensor
product of two alternating functions is in general not alternating. Therefore we introduce a way
to obtain an alternating function from any multilinear function.

Definition A.26 . Let T ∈ T k(V ). Define AltT by

AltT (v1, .., vk) =
1

k!

∑
σ

sgnσ · T (vσ(1), .., vσ(k)),

where we sum over all permuations σ of the set {1, .., k} and sgnσ = 1 if σ is even and −1 if σ
is odd. We call AltT the alternation of T .

109



By construction, AltT is alternating. In fact AltT (v1, .., vk) is the average value of T ◦σ over all
permutations σ of those vectors, keeping in mind the extra minus when the permutation is odd.
If v1, .., vk are rearranged, then AltT can by construction only differ in a minus sign, precisely
when the rearrangement was done according to an odd permutation. This shows that AltT is
alternating (since swapping two vectors is an odd permutation). Now we are ready to define
the product of alternating functions.

Definition A.27 . For ω ∈ Ωk(V ) and η ∈ Ωl(V ), we define their wedge product ω ∧ η by

ω ∧ η =
(k + l)!

k!l!
Alt(ω ⊗ η).

Some easy properties of ∧ are:

• ∧ is bilinear

• f∗(ω ∧ η) = f∗ω ∧ f∗η

• ω ∧ η = (−1)klη ∧ ω (anti-commutativity)

• (ω ∧ η) ∧ θ = ω ∧ (η ∧ θ)

Note that for odd k we have ω ∧ ω = −ω ∧ ω so it must be 0.

Basis and dimension of Ωk(V )
We can now give a better characterisation of the alternating functions on a set V .

Theorem A.28 . Let v1, .., vn be a basis for V and let v∗1, .., v
∗
n be the corresponding dual basis

for V ∗. Then the set
{v∗i1 ∧ .. ∧ v

∗
ik
, 1 ≤ i1 < .. < ik ≤ n}

is a basis for Ωk(V ). This shows that the dimension of Ωk(V ) is
(
n
k

)
.

Note that n must be at least equal to k. If k > n, the only alternating function is the 0 function.
This theorem implies that we can write any ω ∈ Ωk(V ) as

ω =
∑
i1,..,ik

ωi1,..,ikv
∗
i1 ∧ .. ∧ v

∗
ik
.

k-forms
We can repeat the same construction as we have seen a couple of times now.

Definition A.29 . Let M be a manifold. Define Ωk(TM) as the union over p ∈M of Ωk(TpM).
The corresponding projection π : Ωk(TM) → M maps vectors in Ωk(TpM) to p. A smooth
section of Ωk(TM) is called a k-form (and in general a differential form).

Note that a k-form is just an alternating covariant tensor field of order k: in each point we have
an alternating function on k tangent vectors. This will be the generalized volume measure. We
can define the wedge product of such differential forms pointwise, using the wedge product for
alternating functions.

Alternating functions in Rn: linear combinations of determinants
In the next section we will properly define integration on a manifold using differential forms.
However, we will now use the same intuition of this integration as in the beginning of this
section (A.4.4) to better understand k-forms in Rn.
In the case of Rn, we have the standard basis e1, .., en and the corresponding dual basis e∗1, .., e

∗
n.
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It can be shown that the wedge product e∗i1 ∧ .. ∧ e
∗
ik

evaluated in v1, .., vk corresponds to the
determinant of the k × k-matrix  vi1

..
vik

 .

This shows that any alternating function in T k(Rn) is a linear combination of the determinants
of k×k-sub-matrices of the matrix formed by the vectors in which the function is evaluated. To
understand this more intuitively, consider integrating ω = fdx∧ dy+ gdx∧ dz + hdy ∧ dz over
a surface c : [0, 1]2 → R3. We then divide the surface into surface elements. We approximate
these by the product of the step sizes times the integral of f(p)dx∧dy+g(p)dx∧dz+h(p)dy∧dz
over the parallelogram formed by tangent vectors at p = c(si−1, tj−1):

∑
i,j

ω(c(si−1, tj−1))

(
∂c

∂x
(si−1, tj−1),

∂c

∂y
(si−1, tj−1)

)
(ti − ti−1)(si − si−1).

Each parallelogram (two-dimensional parallelogram in a three dimensional space) has projec-
tions on the xy-plane, the xz-plane and the yz-plane (this is the same as regarding the 2 × 2
sub-matrices, the ’2 × 2 components’ of the surface element). The integral over the surface
element is then the sum of the integrals over each of these projections of the integrand corre-
sponding to that projection (i.e. the sum of the integrals over each 2 × 2 component, just like
it was a sum of the integrals over both 1× 1 components when integrating over a curve). But
these integrals are simply calculated as a constant (f(p) in the dx∧dy case) times a determinant
(dx∧dy is the determinant in the xy-plane). In this sense the 2-form fdx∧dy+gdx∧dz+hdy∧dz
on R3 is in each point p just the weighted average over determinants of 2×2-sub-matrices where
the weights are f(p), g(p) and h(p).

A.4.5 Integration

Motivation
To define integration we once again turn to the example at the beginning of section A.4. We
saw that when we calculate the integral

∫
c fdx+ gdy, the approximating sums converge to the

integral ∫ 1

0
f(c(t))(c1)′(t) + g(c(t))(c2)′(t)dt.

So integrating fdx+ gdy over the curve c resulted in integrating (f ◦ c)(c1)′+ (g ◦ c)(c2)′dt over
[0, 1] (in the usual way). Now observe that

c∗(fdx+ gdy)(p)(vp) = (fdx+ gdy)(c(p))(c∗vp)

= f(c(p))dx(c(p))(c∗vp) + g(c(p))dy(c(p))(c∗vp)

= (f ◦ c)(p)c∗(dx)(p)(vp) + (g ◦ c)(p)c∗(dy)(p)(vp),

so
c∗(fdx+ gdy) = (f ◦ c)c∗(dx) + (g ◦ c)c∗(dy).

We also see

c∗(dx)(p)(vp) = dx(c(p))(c∗vp) = (c∗vp)(x) = vp(x ◦ c) = vp(c
1).

If we take vp = d
dt |p where t denotes the identity coordinate map on [0, 1], we get

c∗(dx)(p)

(
d

dt
|p
)

=
d

dt
|pc1 = (c1)′(p) = (c1)′(p)dt(p)

(
d

dt
|p
)
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Since
(

d
dt |p
)

generates Tp[0, 1], we obtain

c∗(dx) = (c1)′dt.

Putting everything together (with analogous results for the second term), we get:

c∗(fdx+ gdy) =
[
(f ◦ c)(c1)′ + (g ◦ c)(c2)′

]
dt.

This is exactly the integrand that we came across above. This means that we can compute∫
c fdx+ gdy by computing∫

[0,1]
c∗(fdx+ gdy) =

∫
[0,1]

[
(f ◦ c)(c1)′ + (g ◦ c)(c2)′

]
dt,

where we can define the integral with respect to dt over [0, 1] in the usual way. In this way we
will define integration.

Integration over k-cubes

Definition A.30 . Let ω be a k-form on [0, 1]k. Let h be such that ω = hdx1 ∧ ..∧ dxk. Then we
define the integral of ω over [0, 1]k as∫

[0,1]k
ω :=

∫
[0,1]

hdx1..dxk,

where the latter is the usual integral in Rk.

Note that such h exists, since in every point ω is a scalar times the determinant, which is
dx1 ∧ .. ∧ dxk.

Definition A.31 . We call a C∞ function c : [0, 1]k →M a singular k-cube in M . If ω is a k-form
on M , then the integral of ω over c is defined as∫

c
ω :=

∫
[0,1]k

c∗ω.

We have the following important property.

Proposition A.32 . Let c be a singular k-cube in M and let ω be a k-form on M . If p : [0, 1]k →
[0, 1]k is bijective and has detp′ ≥ 0, then∫

c
ω =

∫
c◦p

ω.

c ◦ p is called a reparametrization of c that is orientation preserving. We see that the integral
remains the same when we parametrize the k-cube in a different way. If detp′ ≤ 0, we call p
orientation reversing and there will appear a minus sign in front of the integral.

Integration over M
We can now integrate over singular k-cubes in M , but we would like to define an integral over
all of M . If ω is an n−form on M and c1, c2 : [0, 1]n → M are two orientation preserving
singular n-cubes such that suppω ⊂ c([0, 1]n), then it can be shown that

∫
c1
ω =

∫
c2
ω. We

call this number
∫
M ω (note that it depends on the orientation of M , the opposite orientation

gives a minus sign). We now know how to define the integral over M if the n-form has support
contained in the image of a singular n-cube. We will use this to define the integral over M of
any ω with compact support.
If ω is an n-form on M , we can find an open cover O of M such that each element U ∈ O
is contained in the image of a singular n-cube. Now there exists a partition of the unit Φ
subordinate to O, i.e. Φ = {Φi, i ∈ I} for some index set I and:
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• each Φi is a C∞ function M → [0, 1]

• the collection of sets {p : Φi(p) 6= 0} is locally finite

• for each p ∈M :
∑

i∈I Φi(p) = 1

• for each i ∈ I there is a U ∈ O such that suppΦi ⊂ U .

Note that the second property means that every p has a neighbourhood on which only finitely
many Φi are not identically 0. In particular, the sum in the third property only contains finitely
many non-0 terms. For any Φi, the support of Φiω is contained in the image of some singular
n-cube, so

∫
M Φiω is defined above. Now assume that ω has compact support. This implies

that it only intersects finitely many of the sets {p : Φi 6= 0}. This means that ω =
∑

i Φiω is
well defined (only finitely many non-zero terms) and true since the Φi sum to 1. In accordance
to this we define ∫

M
ω =

∑
i

∫
M

Φiω.

It can be shown that this definition is independent of the chosen partition of unity (but, of
course, still dependent on the orientation of M). If the support of ω is not compact, we can
still use this approach, but we need a more subtle restriction on ω.
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