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Abstract

More and more research shows the substantial health repercussions
of air pollution. Therefore, improving air quality is high on polit-
ical agendas in modern societies. In the Netherlands, particularly
around major roads, NO; standards set by the government are of-
ten exceeded. Air quality models are used to monitor air quality
values and design policies to reduce air pollution. Currently, author-
ities in the Netherlands use a Gaussian Plume Model for decision-
making, but this model paints a rather skewed view of reality due to
its underlying assumptions. This research contributes to academic
knowledge about air quality modelling by evaluating two innova-
tive model types, a physics-based LES model and a data-driven re-
gression model, for their usage in decision-making to improve air
quality. This is done by comparing the performance of both mod-
els with the performance of a Gaussian Plume Model for predicting
NO; levels around a large highway in the Netherlands. Also, two
combinations of the LES model and the regression model are exam-
ined. It is concluded that both the LES model and the regression
model show potential for accurately predicting air quality around
highways in the Netherlands. The LES model is particularly suitable
for predicting high NO; levels, and the regression model is consid-
ered suitable for predicting the average NO, levels over a longer
timeframe. A model in which the LES results were combined with a
regression model outperformed the original models and is therefore
considered to hold the most potential for usage within air quality

policy.
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Introduction

The Court of Appeal in Brussels ruled last year that the Flemish government had not acted adequately
to protect citizens against air pollution (Hof van Beroep Brussel, 2021). As a result of this ruling, high
penalty payments have to be paid by the Flemish government, and they quickly have to draw up an
ambitious air quality plan that describes how they will eliminate violations of air quality standards.
A similar charge lingers over the Dutch state. In 2017, the interest group Milieudefensie started
a lawsuit in which they demanded that the Dutch government undertakes steps to comply with
European air quality regulations (Rechtbank Den Haag, 2017; Milieudefensie, 2021). In both cases,
the plaintiff invokes the right to clean air, as enshrined in Directive 2008 /50/EC on ambient air quality
and cleaner air for Europe (Directive 2008/50/EC, 2008).

Air quality is a recurring problem in the Netherlands. Postma (2005) states that the availability of
clean air is not self-evident in a densely populated and traffic-intensive country like the Netherlands.
A couple of years ago, the Netherlands belonged to the countries with the highest air pollution in
Europe (Guerreiro et al., 2016). In recent years, air quality levels in the Netherlands have improved,
but the values are still far below the World Health Organization’s (WHO) recommended air quality
guidelines (Atlas leefomgeving, n.d.). This means that many people in the Netherlands are exposed
to unhealthy levels of air pollution.

In the last years, there has become more attention for the consequences of air pollution. Due
to recent studies that showed that health consequences of prolonged exposure to air pollutants were
more severe than known before (WHO, 2021b), improving air quality has risen on the political agenda
in the Netherlands. In 2021, the National Institute for Public Health and the Environment quantified
the health impacts of air pollution in the Netherlands and found that more than 10000 people suffer
from chronic lung disorders, 4000 underweight infants are born each year, and 1200 people develop
lung cancer (De Ingenieur, 2021). In general, air pollution leads to an average lifespan reduction of
thirteen months in the Netherlands (www.vzinfo.nl, n.d.). In terms of disease burden, the effect of
air pollution is equivalent to being overweight and larger than excessive alcohol consumption (RIVM,
n.d.).

In 2020, almost 40 percent of air pollution emissions in the Netherlands were attributable to
traffic or transport (RIVM, n.d.). In addition, exceedances of air quality standards as defined by the
European Commission often occur around main traffic arteries (Compendium voor de leefomgeving,
n.d.). Monitoring air pollution levels around highways is very important to maintain healthy levels
of air quality. It has been shown that nitrogen dioxide (NO») is a good indicator of traffic-related
air pollution since concentrations higher than the background concentration can be measured till at
least 1000 meter distance from the road (Fischer et al., 2000). However, measurement devices are
expensive and do not provide insight into future concentrations. As a result, air quality models have
been developed that are capable of interpolating and predicting pollutant concentrations. The Dutch

1
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government uses variations of the so-called Gaussian Plume Model (GPM) for modelling air quality
(Infomil, n.d.-c).

The model, however, paints a rather skewed view of reality because of its underlying assumptions.
This raises the question of whether the model is the best fit to support air quality policy. Outcomes
of Gaussian Plume Models generally have a large insecurity range, and the model interpretations
deviate among users (De Ingenieur, 2021). An example of a misconception in the interpretation of
model results was the speed limit increase at the A10 highway in Amsterdam from 80 km/h to 100
km/h. Prior to the intervention, the executive ministry expected a rise in NO; of 0.1 ug/ m3 based on
predictions of the model. Afterward, the concentrations turned out to be 3.8 ug/m3 higher on average
than for the original speed limit. The model used for the calculations did not consider the impact
of the surrounding buildings on the dispersion of the air pollutants (Infomil, n.d.-c). The higher
concentrations due to the increase in speed limits lead to discontent and protests among residents.
This example shows how wrong model results led to inadequate policy implementation, illustrating
the importance of accurate air quality models.

Current advancements in sensor technology, computer science, and local weather forecasting can
enable new ways of air quality forecasting that could lead to more accurate predictions. An innovative
model with high potential for air quality forecasting is the atmospheric model created by Whiffle, in
which the dispersion of air pollutants is modelled as a result of air movement and turbulence. This
type of model is called a Large Eddy Simulation (LES). Other methods for modelling air quality that
show potential are machine learning models. Research by Kang et al. (2018) shows that using big
data and machine learning approaches such as neural networks and random forests yield promising
results for predicting air quality.

This research compares three different models for predicting air quality around highways in the
Netherlands. These include the physics-based LES-model created by Whiffle and a data-driven re-
gression model. To put results into context, a GPM is used as a benchmark model. This research
aims to contribute to decision-making aimed at improving air quality policy in the Netherlands by
exploring innovative types of air quality models. This study intends to answer whether the innova-
tive models are more suitable for supporting decision-making about air quality around major roads
in the Netherlands than the existing GPM.

1.1. Related work

This section summarizes the existing literature on the role of air quality models in policy-making,
followed by various model types created so far. Afterward, the knowledge gap is identified, and the
research question is addressed.

1.1.1. The role of air quality modelling in society

Poor air quality causes adverse long-term health effects (Kang et al., 2018), leading to reduced qual-
ity of life for individuals and considerable societal costs (Pervin et al., 2008). Consequently, officials
have introduced laws to regulate those concentrations in many countries (Delavar et al., 2019). Air
pollution models can play an essential role in monitoring air pollution. Research by Kang et al. (2018)
reveals that air quality evaluation and forecasting models can support decision-makers while devel-
oping policies to enhance air quality. They are used, amongst others, to determine the location of new
pollution sources, establish source emission limits and design air-pollution control strategies (Weil et
al,, 1992). Also, Baklanov & Zhang (2020) emphasizes the importance of air quality predictions for
societal purposes. They found that many countries use air quality modelling for designing preventive
measures to minimize exposure to unhealthy levels of air pollution. The usage of air quality models
goes far back in time. Miller (1982) stated that air quality models already played a significant role
during the promulgation of the Clean Air Act Amendments in the US in 1970. Due to its economic
and societal relevance, air quality forecasting evolved into a distinct discipline.
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1.1.2. Types of air quality models

Various approaches, developments, and applications of air quality models have been created over re-
cent years (El-Harbawi, 2013). Air quality models can be divided roughly into two categories; models
in which chemical and atmospheric conditions are simulated based on physics formulas and models
in which patterns are derived from historical data (Seaman, 2000). In this research, the first category
is referred to as physics-based models, and the latter category of models is called data-driven models.

The GPM is a physics-based model that uses atmospheric conditions and relations to model pol-
lutant dispersion (Miller & Hively, 1987). For a prolonged period, the GPM model was the most
commonly employed in physics-based models, according to Daly & Zannetti (2007). Daly & Zannetti
(2007) stated that this model type was particularly suitable for understanding the diffusion proper-
ties of plumes emitted from large industrial stacks. However, due to its underlying assumptions, the
model presents a strongly idealized and simplified image of reality (Tomas et al., 2015). One of the
assumptions is that atmospheric turbulence is stationary and homogeneous (Abdel-Rahman, 2008).
This assumption does not hold in reality and has significant consequences for the model’s outcomes
since the dispersion of pollutants in the lowest part of the atmosphere is determined by the presence
and structure of turbulence (Weil et al., 1992). Furthermore, the GPM can not easily cope with ob-
stacles in its scenery, as it does not account for the effect of a change in turbulence structures due
to the buildings (Reed et al., 2005). This also applies to the GPM that the government uses to map
air pollution. In the validation of this model, it is stated the model is not suitable for calculating
concentrations of air pollutants in areas where buildings are situated around the roads (“Technis-
che beschrijving van standaardrekenmethode 2 (SRM-2) voor luchtkwaliteitsberekeningen”, 2014). In
general, the GPM is suitable for providing generalized solutions for air pollutant dispersion but leads
to incorrect and misleading results in situations with more complex weather- or terrain conditions
(Bieringer et al., 2021).

A type of simulation model that can simulate atmospheric processes in more detail is the LES. In
this model, large turbulent flows in the planetary boundary layer, the lowest part of the atmosphere,
are solved explicitly (Grylls et al., 2019). The LES modelling approach has been successfully used
to predict airborne dispersion in many atmospheric scenarios and terrain conditions (Bieringer et al.,
2021). LES simulations used to be very computationally expensive, but developments in computa-
tional capabilities are generating new possibilities for its usage (Grylls et al., 2019). An implementa-
tion of an LES model is the atmospheric model created by Whiffle. This model runs almost entirely on
Graphics Processing Units (GPUs) and is therefore much faster than the standard Central Processing
Unit (CPU) (Schalkwijk et al., 2015). This model is named GRASP, which stands for GPU-Resident
Atmospheric Simulation Platform (Whiffle, n.d.). In the literature, also other attempts are found in
which LES is used for the prediction of air pollution (Tseng et al., 2006; Grylls et al., 2019).

Another approach for modelling air quality is the usage of data-driven models. These models
search patterns in historical data to predict air quality, instead of simulating a physical relationship
between emissions and ambient concentrations (Daly & Zannetti, 2007). There has recently been
much attention to machine learning techniques in this field. Sinnott & Guan (2018) state that the
emergence of machine learning models brought new opportunities for air quality forecasts. In ad-
dition, Baklanov & Zhang (2020) mentions that machine learning models can generate accurate air
quality predictions. A relatively simple machine learning approach that is accurate in many situations
is Ordinary Least Squares (OLS) regression (Bonaccorso, 2017). Other research has already shown
that OLS regression can achieve an adequate accuracy when predicting air quality (Mahanta et al.,
2019).

Also, hybrid models that use both data-driven techniques and atmospheric relations to predict air
quality show high potential Baklanov & Zhang (2020). Ryan (2016) demonstrates the power of hybrid
models, as they state that an physics-based model, combined with statistical post-processing, holds
the most theoretical promise for air quality modelling.
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1.2. Research approach

In this research, an LES-based model and a regression model are researched and compared to each
other and to a benchmark GPM. Afterward, combination of the models is examined to improve
the air quality predictions even more. The research adds to the academic literature by comparing
the performance of these model types with each other for the specific case of predicting air quality
around highways in the Netherlands. To the best of our knowledge, no earlier attempt has been
made to compare the performance of those three modeling approaches for predicting air quality lev-
els around highways. Based on this research gap, the following research question is defined:

How could air quality predictions around highways in the Netherlands be improved in order to support
decision-making aimed at enhancing air quality levels?

The research approach that is employed to answer the research question is the modelling ap-
proach. Three different models are compared with each other. The first model is the GRASP model,
which is until now, mainly used for ultra-high resolution weather forecasts. In this research, the per-
formance of the model for predicting NO, values around highways is assessed. The second model
in this research is a regression model. The third model is a GPM model that serves as a benchmark.
The thesis is exploratory in nature, as the main goal is to identify the potential of innovative models
for improving air quality predictions. This is done by applying the models to a specific case and
comparing their performances on different criteria.

1.2.1. Research sub-questions
This section defines five sub-questions that individually cover a part of the aforementioned research
question.

1. How does air quality modelling support decision-making in the Netherlands?

The first sub-question provides insight into the usage of air quality modelling to support decision-
making in the Netherlands. For defining the requirements of the air quality models, it is essential to
know in which context the models add generative value to the policy-making process. An overview
of current air quality policies and regulations is given, and important actors are identified. Afterward,
the role of air quality models in the decision-making process is discussed.

2. What are the requirements of air quality models to adequately support decision-making?

Based on the identified purposes of air quality models in the Netherlands in the first sub-question,
the requirements to which air quality models should comply are distinguished. Furthermore, perfor-
mance metrics are chosen to evaluate how well the models meet these requirements. Those perfor-
mance metrics are focused on how similar the predictions are to the NO, measurement data.

3. What is the performance of a LES-model, a regression model and a GPM for predicting NO; values around
highways in the Netherlands?

Firstly, the GRASP and GPM simulations are prepared by implementing a linesource to simulate the
highway and by defining the settings such as run-time, domain, and resolution of the runs. The
regression model is trained on the training set of the data. After the models have run for the cho-
sen timeframe the performance of the GRASP model, the regression model and the GPM model are
assessed by using the performance metrics. The performances of the models are compared to each
other, and the strengths and weaknesses of the models are discussed.
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4. Could the combination of a regression model and the GRASP predictions enhance the accuracy of the predic-
tions?

Based on the results of sub-question 3, it is examined whether a combination of both models can
capture the strength of both models and lead to more accurate results. It is checked whether the
combination of the model leads to higher performance on the performance metrics than the original
models.

5. Which model is considered to be most suitable for usage in decision-making concerning air quality?

The last sub-question assesses the suitability of the examined models for supporting decision-making
aimed at improving air quality around the Netherlands” highways. This is done by evaluating the
models against the requirements of air quality to support decision-making.

1.2.2. Research outline
Figure 1.1 shows the research flow diagram of the paper and fits the research questions to the the
corresponding research methodology that is used.

Research Activities

Research problem, literature review,

Introduction
research approach, outline

v

SQ1: How does air quality modelling
support decision-making in the
Netherlands?

System overview ‘

SQ2: What are the requirements of air
quality models to adequately support
decision-making?

v
SQ3: What is the performance of a LES-
model, a regression model and a GPM for
predicting NO2 values around
highways in the Netherlands?

Model implementation and -
evaluation

SQ4: Could the combination of a
regression model and the GRASP
predictions enhance the accuracy of the
predictions?

v
SQ5: Which model is considered to be
Conclusion most suitable for usage in decision-

making concerning air quality?

Figure 1.1: Research Flow Diagram

To answer the first two sub-question, literature is conducted. This includes articles found through
searching via search engines such as Google Scholar and Scopus, but also governmental websites
and publications from research institutes in the Netherlands. The third and fourth sub-question are
answered in chapter 3 and 4, which consists of the model implementation and the model results. The
fifth sub-question is answered in chapter 5, in which a conclusion is drawn and the answer to the
main question is formulated explicitly.



System overview

In this chapter, firstly an overview of the main actors that are involved in the air quality policy is
given. Secondly, air quality regulation and the role of air quality models in this process are discussed.
In the first two sections an answer to the first sub-question is given; How does air quality modelling
support decision-making in the Netherlands? Afterward, the requirements with which air quality
models should comply to be suitable in the decision-making process are identified, and this answers
the second sub-question.

2.1. Actors

The landscape of actors involved in the air quality policy in the Netherlands is complex, as it concerns
people from many different sectors and aggregation levels. Air pollution crosses international borders
but simultaneously can have very local impacts. Furthermore, air quality regulation often inhibits
economic activity (Henderson, 1995). Therefore, governmental actors have conflicting interests as
they are responsible for stimulating economic activity and monitoring air quality. This paragraph
discusses the most critical actors interested in air quality around highways in the Netherlands.

2.1.1. Governmental actors

In the European Union, the European Environmental Agency (EEA) and the European Commis-
sion (EC) warrant that the air quality standards outlined in directive 2008/50/EG are adhered to by
member-states (Europadecentraal, n.d.). The EC monitors how well member states implement the
EU directives based on environmental information provided by the EEA.

The Ministry of Infrastructure and Water Management (I&W) is accountable for air pollution orig-
inating from traffic on a national level in the Netherlands (www.rijksoverheid.nl, n.d.). The Ministry
of Health, Welfare and Sport monitors air quality values nationally to check whether it meets the
standards. This is typically done by the the National Institute for Public Health and the Environment,
also called the RIVM. The RIVM possesses measurement stations and developed the current air qual-
ity models. Furthermore, they are responsible for alarming and informing the population whenever
air pollution exceeds certain values. The models developed at the RIVM are made publicly available.
They are used by the Ministry of I&W to assess the impact of new infrastructural projects on air qual-
ity. One of the executive agencies, Rijkswaterstaat, operates the large highways in the Netherlands
and has to ensure that exceedances of the European directive are prevented.

However, the Ministry of 1&W is also responsible for the accessibility and traffic flow in the
Netherlands. Measurements that benefit the latter goal often contradict their objective to improve air
quality. These conflicting interests make the position of the Ministry of 1&W complex when it comes
to air quality around highways. An example that illustrates this complex position was the increase of
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the maximum speed at the A10 in 2016, as described in 1. On the one hand, this measure improved
traffic flow, but on the other hand, it harmed air quality (Ligterink & Smokers, 2016). Accurate air
quality models are very important to this actor to address these difficulties. The air quality models
provide the possibility to optimize traffic flow while simultaneously monitoring air quality values so
that they do not exceed the limits.

2.1.2. Interest groups

Multiple interest groups represent the interest of air quality in the Netherlands. Examples of large
interest groups are Milieudefensie and Longfonds. Their goal is to represent citizens by defending
the right to breathe clean air. As mentioned in chapter 1, Milieudefensie has launched a lawsuit
against the Dutch government, claiming that the government should do more to ensure clean air.
Other activities of interest groups include informing citizens about the consequences of air pollution,
and the current air quality status in the Netherlands. Next to the large interest groups that focus on
air quality on a national level, there are also local interest groups committed to a more specific issue.
An example is Kerngroep Ring Utrecht, who demonstrated against the road expansion of two large
highways in Utrecht in 2021.

2.1.3. Citizens science initiatives

Next to the interest groups, there are citizen science communities established that monitor air quality.
Citizens can join this initiative by purchasing their own measuring equipment and adding measure-
ments to a database. A well-known example of such a citizens science initiative that stores air quality
measurements collected by citizens is Sensor.community (formerly Luftdaten). They publish large-
scale measurements of air quality indicators. Those citizen science initiatives aim to provide insight
into air quality at different locations.

2.1.4. Other actors

Engineering firms and research institutes are also actors with a significant impact or an interest in
air quality. The government often employs engineering firms to calculate the effect of, for example,
infrastructural interventions on air quality. To do this, they use models created by the RIVM. Further-
more, research institutes like TNO provide new insights regarding air quality based on their research.
Furthermore, Dutch citizens are involved; in particular, vulnerable people who suffer from lung dis-
ease or who live close to highways are important actors, as they are the most affected by policies
concerning air quality around roads.

2.2, Air quality regulation

In the Netherlands, an essential element of air quality regulation is monitoring air quality levels.
Multiple guidelines and threshold values exist that attempt to quantify upper limit values that can
ensure healthy air quality. The RIVM tracks values of air quality based on measurements and interpo-
lations. This paragraph gives an overview of the air quality standards applicable to the Netherlands.
Afterward, measures to improve air quality used by the government are discussed.

2.2.1. WHO Global air quality guidelines

The Global Air Quality Guidelines of the WHO provide global recommendations on thresholds for
key air pollutants that pose health risks. The guidelines are applicable worldwide and are scien-
tifically substantiated (WHO, 2021a). Last September, the limits for common air pollutants were
sharpened after recent studies proved the health consequences of air pollution to be more severe than
known before (WHO, 2021b). The WHO Global air quality guidelines are recommendations and not
legally binding (Infomil, n.d.-c). Table 2.1 shows the guidelines for the different air pollutants set by
the WHO.



2.2. Air quality regulation 8

2.2.2. European standards

In EU directive 2008/50/EG, limit values and target values concerning air pollutants are defined.
Limit values should not be exceeded by the member states. Sometimes target values are set next to
the limit values. In this case, the member state must reach the target values within a certain period.
The member state should be able to prove that they are committed to reach these values and that
they have undertaken steps that demonstrate their dedication (Europese wetgeving luchtverontreiniging,
n.d.). The limits specified in the directive are shown in Table 2.1.

2.2.3. Dutch Environmental Management Act

In Dutch legislation, thresholds are included in the Environmental Management Act (EMA). Many
limit values arise from the EU directive (Infomil, n.d.-d). Next to the limit values, an alarm threshold
and an information threshold are specified at which the government is obliged to inform the entire
population or vulnerable people in the population respectively (Infomil, n.d.-d). The table below
shows the limit values specified in the EMA. For NO», there are two standards set. The first one
is the yearly average, which may not exceed 40 y g/m?, and the second is an hourly average of
200 u g/m3. In practice, it appears that, in particular, the yearly average is exceeded from time to
time at different locations in the Netherlands (Compendium voor de leefomgeving, n.d.). Next to
NO; limits, thresholds for PMjp and PM; -5 are set. PM is short for particulate matter; PM, - 5 and
PMyy are, respectively, the particles in the air with a diameter smaller than 2.5 and 10 » m. Also, for
benzene a threshold is set, but this one is seldom exceeded.

Instance Pollutant Type Concentration | Note
World Health Orga- | NO; Yearly average | 10 ug/m3
nization
PMig Yearly average | 15 ug/m3
PM; -5 Yearly average | 5 ug/m3
European directive & | No2 Yearly average | 40 ug/m3

Environmental Man-
agement Act

No» Hourly average | 200 ug/m3 Maximum of 18
exceedances

PMyg Yearly average | 40 ug/m3

PMjig Daily average 50 ug/m3 Maximum of 35
exceedances

PM; -5 Yearly average | 20 ug/m3

Benzene Yearly average | 5 ug/m3

European directive PM; -5 Target value 14.4 ug/m3

Table 2.1: Air quality standards applicable to the Netherlands

Whenever the air quality thresholds exceed the accepted concentration, the government is re-
quired to take extra measures. Those measures may be taken at three levels: national, regional, and
locally (Infomil, n.d.-a), and can be distinguished into two distinct categories: emission controlling
and immission controlling measures (Infomil, n.d.-b). The first category aims to reduce air pollution
by decreasing the sources of air pollutants. For traffic-related air pollution, this can be done through,
for example, stimulating public transport, reducing the maximum speed, or attempting to alter the
traffic composition. The second category of measures is aimed at reducing air pollution exposure to
humans. Examples of immission reducing measures are building walls around highways that impact
the dispersion pattern of the pollutants, or spatial planning, such that people do not live or work
around places with high levels of air pollution.
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2.3. Usage of air quality models

Models play an important role in different stages of the decision-process concerning air quality. In
the Netherlands, the Monitoringstool created by the Ministry of 1&W is the model used for this
purpose (Aerius Air calculation tool, n.d.). In this tool, two different calculation models are included
for modelling air quality values around highways, called SRM1 and SRM2. Both models are based
on the Gaussian Dispersion Formula and can be classified as GPMs (Wesseling & Van Velze, 2015).
SRML1 is applied for inner-city traffic and SRM2 for suburban traffic. The SRM1 and SRM2 models are
deployed for multiple purposes. First of all, the models are used by RIVM for monitoring air quality
to check whether the values are below the limit values as described in Table 2.1 (Aerius Air calculation
tool, n.d.). If the values exceed limits, additional measures are required. Furthermore, the SRM1 and
SRM2 method is also used to calculate the impact of infrastructural changes on the air quality in
the surrounding area (Nieuw Normen- en Handhaving-stelsel Schiphol, 2016). Before an infrastructural
project is approved, an environmental impact assessment needs to be written (Rijkswaterstaat, n.d.).
In this provision, a paragraph about the impact of the project on air quality has to be inserted. To
compose this section, government institutions or engineering companies must use the SRM1 or SRM2
method in the Monitoringstool that is made publicly available.

2.4. Requirements of air quality models

In general, air quality models serve a societal purpose and modellers in this area should pursue
transparency, involvement of multiple views, replication and analysis of sensitivity and uncertainty
within the modelling process (Saltelli et al., 2020). Transparency includes clear communication about
assumptions and uncertainties in the modelling phase. This requirement is independent from the
type of model that is used, but in general models with a higher complexity are more prone to be-
come a black box than more simple models. Therefore, complex models need more explanation and
communication about the processes within the model to clearly address limitations and assumptions
within the model (Saltelli et al., 2020). This should be taken into account while assessing different air
quality models.

As stated in section 2.3, air quality models in the Netherlands are used for assessing current
air quality values, but also for environmental impact studies and issuing permits of new emission
sources. In general, the air quality models used for those regulatory purposes have to provide spatial
distribution of high episodic concentrations and of long-term averaged concentrations for comparison
with air quality guidelines (De Leeuw et al., 1997). In the Netherlands, the binding guidelines are
set in Directive 2008/50/EC and the EMA. Therefore, air quality models for policy making in the
Netherlands should be able to monitor whether the air quality values do not exceed those limits. In
the case of NO,, this means that a model can be used to calculate yearly values and hourly values
since, for both periods, a limit value is set. For modelling averages per year, the model should be
able to capture the trend over a longer timeframe. For modelling hourly values, it is crucial that high
No, values are modelled, as the government has the task of minimizing exceedances of the hourly
threshold.

In the following chapters, the GRASP model, the GPM, and a regression model are implemented
to predict values around highways and be validated accordingly. Based on this analysis, a conclusion
can be made about the suitability of those models based on the requirements mentioned in this
paragraph. In this research, only the performance of the models is included to assess the suitability
of the model. Computational time and maintenance of the models are excluded from the scope of
the research.



Methodology

In this chapter, the methods that are used to assess the performance of the three models for predicting
air quality around major roads are discussed. To achieve this, firstly the performance metrics that are
used for comparing the performance of the models are described. Secondly, the process of gathering
the data required for the simulations is described. Afterward, the set-up of the respectively GRASP,
the GPM, and the regression models is defined. This chapter defines the methodology that needs to
be followed to answer the third and the fourth sub-questions, as defined in chapter 1.

3.1. Performance metrics

To compare the performance of the GRASP model, the GPM and the regression model, metrics
are defined that measure the similarity between the models” predictions and the measurement data.
The performance metrics used in this research are given in equation 3.3. These include the Mean
Absolute Error (MAE), the Root Mean Squared Error (RMSE), and the Pearson Correlation Coefficient.
The MAE measures the deviation between the actual and the predicted values. The MAE is scale-
dependent and has the same unit as the variable. Furthermore, the RMSE is a common metric and
is considered a good error metric for numerical predictions (Christie & Neill, 2021). It is interesting
to examine the difference between the RMSE and the MAE, as a large difference between those
values means a large variation between the errors of the model. The RMSE and the MAE focus on
the error between the models’ predictions and the measurement data. However, even with a high
error, a model prediction can still provide valuable insights when there is a high correlation between
the predictions and the measured value. Therefore, next to the MAE and the RMSE, the Pearson
correlation (r) is used to check the relation between the predicted and measured values. A higher
r-value means a higher correlation between the measurement data and the model predictions.

RMSE — VI O—30P -

N
MAE — Ying \yg\i])—?(i)l (3.2)
- n(Egxy— (L9 (Ly) (3.3)

VI EP-() Ly~ ()
where;
7 = Predicted value
y = Measured value
N = Number of samples

10
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The scores of the models on the performance metrics are compared with each other and used as
criteria to assess the suitability of the models for predicting air quality around major roads in the
Netherlands. Next to the performance metrics, the results are interpreted based on the behavior of
the models that is visualized in the figures.

3.2. Data collection
This section goes through the datasets required for the simulations. This is done by addressing the
availability and quality of the data, as well as its limitations.

3.2.1. NO; measurements

To assess the performance of the models, the predicted values of the models are compared with
NO; measurement data. The RIVM monitors NO, values to assess whether the values meet the
air quality standards and publishes them at Luchtmeetnet.nl. The measurements are in compliance
with the European regulation that specifies requirements for testing legal standards (Vaststellen van
luchtkwaliteit, n.d.). As a result, the measurements can be considered high-quality data. The quality
of the measurements is important since the data is measured per hour and an error in the data has
a large impact on the performance of the models. The RIVM has a total of 44 measurement stations
around the country. Of all those measurement stations, only one station is directly adjacent to the
highway. This station is located at the A2 close to Breukelen. The measurement station and its
geographical location are showed in Figure 3.1a and Figure 3.1b. Since this is the only station located
directly next to the highway, the measurements of the station show the most accurate impact of traffic
emissions from highways. Therefore, the data originating from this measurement station is used to
compare with the model predictions. The hourly measurements can be easily extracted from the site
of Luchtmeetnet for the years 2012 till 2021.

A2

* Measurement
station

(a) Position of measurement station in landscape (b) Geographic location of measurement station

Figure 3.1: Measurement station RIVM directly next to the A2 Breukelen

3.2.2. Traffic data

The emission levels of the simulated highway in the GRASP model and GPM are quantified over
time using historical traffic data. Also the regression model uses the traffic data as input data. Traf-
fic characteristics that have an impact on air pollution are found to be traffic speed, intensity, and
composition (Zalakeviciute et al., 2018; Energy News Network, n.d.; Johansson et al., 2009). Data has
been searched that contains these data-points for highways in the Netherlands. For most large roads
in the Netherlands, traffic data is gathered by the National Road Traffic Data Portal (NDW). Their
data contains historical information about traffic intensity, composition, and corresponding average
speed per mile marker at a specific location. However, while examining the data for the location
defined in paragraph 3.2.1, vehicle composition is missing in most situations, and only the average
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vehicle speed is available in the dataset. Research states that average speed is not a good indicator of
traffic emission, as instantaneous speed fluctuation has a more significant impact on the strength of
the emissions than average speed (Panis et al., 2006). They found that the instantaneous speed and
acceleration profiles might be considerably different for the same average speed, resulting in differ-
ent fuel consumption and emission levels. Therefore, it might not be representative to consider the
average speed when implementing emission levels from traffic data. Due to those availability issues,
in this research, only traffic intensity is used for computing the emission strength. The traffic inten-
sity is measured in vehicles per hour. At the NDW, the traffic intensities are stored for almost every
hectometer sign. Therefore, the hectometer signs at the A2 closest to the measurement station for
both directions are used for conducting the traffic intensities. These are hectometer signs 46.0 Li and
46.0 Re. The quality of the traffic data is high for most periods, as there are not much missing values
in the data. However, for the year of 2018, the data contains of many invalid values. A modelling
period is chosen for the models for which the quality of the traffic data is high.

3.2.3. ERA5 Weather data

The models use ERAS5 data to incorporate large- and mesoscale weather effects. ERA5 data is pro-
duced by the European Centre for Medium-Range Weather Forecasts (ECMWEF). The ERA5 dataset
includes reanalysis data of multiple atmospheric, land, and oceanic climate variables (Era5, n.d.). Re-
analysis data provides a thorough overview of past weather and climate by combining observations
and models (Hersbach et al., 2020). The data is globally complete and consistent in time and is there-
fore sometimes referred to as ‘'maps without gaps’ (Hersbach et al., 2020). The data span the planet
on a grid of 30 km, and they use 137 levels to resolve the atmosphere from the ground up to an
altitude of 80 km (Era5, n.d.). In GRASP, ERAS5 data is used to define large-scale boundary conditions
in order to obtain realistic weather conditions (Wiegant & Verzijlbergh, 2019). Furthermore, ERA5
data is used as input for the GPM and regression models. From the ERA5 dataset, four variables are
selected. These include wind direction, wind speed, solar insolation, and cloud coverage.

3.2.4. Data limitations

As mentioned above, the measurement data for NO; concentrations are collected entirely from one
measurement station, since this is the only measurement station that publishes NO, concentrations
next to a highway. The performance of the models is therefore based on the performance for this
specific location. For traffic patterns, this is not a problem as these are expected to be similar at
different places along the highways in the Netherlands. However, the models might perform differ-
ently at other locations next to Dutch highways, as the landscape might differ. In this research, a site
was chosen with few buildings in between the highway and the measurement station. Performance
of the models can be different if buildings are present between the highway and the measurement
station. Another limitation is the lack of data on speed patterns of traffic and vehicle composition on
the highway over time. In the current implementation of the models, only traffic intensity is used as
an indicator for traffic emissions. Still, the composition of the cars, their speed, and the presence of
traffic jams all affect the level of the emissions. This lack of data applies to all three models; therefore,
the comparison of the model performance is still considered accurate. However, it is expected that
the model performances would improve whenever this is added to the models since it would increase
the similarity of the simulated location and the location of the measurement station. Also the data of
the traffic intensity is sometimes lacking, as for some years the data consists of many invalid values.
This has implications for the period that has been used to train the regression model on.

3.3. Timeframe

To compute the final results, the models were run for a year. As all seasons occur in one year, this
period is expected to comprise most of the weather conditions that prevail in the Netherlands. Due
to the lockdowns in 2020 and 2021, patterns in traffic intensity were different and not representative
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during the corona crisis. Therefore, a timeframe before the corona pandemic is chosen. The year that
has been selected is 2019. The regression model is split in a training and a testset, and only the results
of the regression model on the test set are representative for the performance of the model. Ideally,
the test set would therefore comprise a period of a year as well to allow for comparison between
the models. However, due to availability issues in the traffic data, the year 2018 cannot be used as
training data. Therefore, the regression model consists of a training set of 8 months and a testset of 4
months.

3.4. GRASP

In this section, first the background of the GRASP model is discussed. Afterward, the implementation
of the GRASP model is described. This is done by explaining the implementation of the roadway,
going through the terrain conditions, and presenting the model set-up.

3.4.1. Background of GRASP

As mentioned in chapter 1, GRASP is an application of an LES model. LES models have been devel-
oped to simulate turbulent flows. This is done by simulating the turbulence caused by the largest
eddies in the planetary boundary layer and using parametrizations to simulate the smaller eddies.
The larger eddies are resolved using the Navier-Stokes equations, and the smaller eddies are treated
by a sub-grid model to reduce computational costs. The larger eddies are filtered based on the grid

size. This process is shown in Figure 3.2.
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Figure 3.2: Filtering of eddies in Large Eddy Simulation

Dispersion of air pollutants in the atmospheric boundary layer is dominated by turbulence since
pollutant particles are transported by the turbulent flow (Tomas et al., 2015). As turbulence is resolved
within the GRASP model, the model is suitable for predicting the air pollutant concentrations coming
from an emission source. In this specific case, the emission source is the highway. Although the
computational effort required for the LES has dramatically been reduced since it is possible to run
them on a GPU instead of a CPU (Bieringer et al., 2021), the GRASP model still requires considerably
more computational power than the other solutions in this research.

3.4.2. Implementation GRASP simulations

In GRASP, the pollutant emissions are assumed to behave as a passive tracer. This implies that the
concentration of the pollutant is so low that it does not impact the motion of the fluid. A line source
is implemented to simulate the highway as an emission source. This line source spans the domain
from north to south with an angle corresponding to the overall direction of the road. In GRASP, a
line source is a straight line and cannot simulate the curves of the highway. An emission source is
called a tracer in GRASP. A visualization of the implemented line source in GRASP can be seen in
Figure3.3. Figure 3.3a shows the GRASP simulation at time t=0. Figure 3.3b shows the GRASP model



3.4. GRASP 14

during the run. The red color represents how the air pollutants from the line source disperse over
the domain. In Figure3.3b, the wind is coming from a south-eastern direction, which can be seen in
the way that the pollutants spread over the area.

' Linesource!

(a) Snapshot of GRASP simulation at timestep t=0  (b) Snapshot GRASP simulation during the run

Figure 3.3: Implementation of the line source in GRASP

Simulation of traffic intensities

Furthermore, the traffic intensities described in paragraph 3.2.2 are used as input data for the model
to define the emission level of the line sources. In GRASP, the emission strength of the tracer cannot
be made variable over time. However, it is possible to implement multiple tracers in the model, which
can be turned of/on during the run. Looking at the traffic data in Figure 3.4, a clear daily pattern
can be distinguished in which two peaks are visible. Those peaks represent the rush hours that occur
twice a day, see 3.4a. Since the GRASP tracer can not be variable over time, a workaround is chosen
in which multiple tracers together recreate the daily traffic profile. This workaround is visualized
in Figure 3.4b. The different blocks each represent a tracer turned on and off during a model run.
The emission strengths of the tracers are simulated such that at rush hour, the sum of the active
tracers equals one. The values belonging to the different tracers in the GRASP model are included in
appendix A.
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(a) Average daily traffic intensity at Breukelen A2 in 2019 (b) Implementation of traffic profile in GRASP as tracers

Figure 3.4: Simulating traffic intensity in GRASP

Terrain conditions

The simulation is set up so that the conditions at the A2 near Breukelen are as accurately replicated
as possible to legitimize the comparison between GRASP and the measurement data. In GRASP,
obstacles in the domain are taken into account through the usage of a height map in which altitudes
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from a Dutch elevation map are included. The heights of the obstacles in the domain are depicted in
Figure3.5. The red star in the picture represents the measuring station.
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Figure 3.5: Height map of simulation domain GRASP (the red star represents the measuring station)

Set-up GRASP simulations

The model parameters are defined in Table 3.1. The values of the parameters were established by
choosing an initial value and calibrating these values through model runs. The domain size should
be large enough to represent the situation at the selected location accurately but should not be larger
to reduce run-time. The domain size consists of two elements, the grid size and the number of grid
points. The grid size is the resolution of the model and defines the distance of the boxes over which
the atmospheric variables are averaged. Variable N stands for the total number of grid points. The
grid points multiplied by the grid size together define the domain size. The center of the grid was
chosen such that the highway is positioned in the middle of the domain. In GRASP, a metmast can be
used to record statistics of a range of variables at a specified location in the domain. Different spots
were tested to decide upon the position of the metmast. The metmast must be close to the highway
to simulate the measurement station, as this one is also placed right next to the highway. However,
the line source and the metmast have to be placed in different grid cells to simulate the effect of
turbulence between the line source and the metmast. Therefore, two positions of the metmast are
examined in different cells next to the line source. The first position was selected one grid box away
from the line source. This represents approximately 40 meters since the grid size is 32 by 32 meters.
The second location is two grid boxes away from the metmast, which is about 70 meters away from
the line source. It was seen that the trend in the model was better maintained at the location closest
to the line source. The graphs belonging to this analysis are placed in appendix B. Based on this
analysis, the location of the metmast at one grid cell away from the line source was selected. The
values of the variables are computed every minute (fs;p1ing), but stored only every hour to save
computational power (tyyite)-
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H Parameter Variable Value H
Domain size Ly, Ly, L, 8192 x 8192 x 1024
Grid size dy,dy,d; 32x32x8
Grid points Ny, Ny, N; 256 x 256 x 128
Grid center Lat, Lon 52.20126, 4.98660

Metmast position  Lat, Lon 52.20142, 4.98820
Sampling interval =~ Afgyppring 60
Writing interval Atyrite 3600

Table 3.1: Model set-up GRASP

3.5. Gaussian Plume Model

As mentioned in chapter 2, the current model used for defining air quality policy in the Netherlands is
a GPM. Therefore, the GPM is included as a benchmark in this research, as the GRASP model and the
GPM should, at least to some extent, perform better than the GPM to add value for decision-making
about air quality.

3.5.1. Background of Gaussian Plume Model

According to Reed et al. (2005) Gaussian models are the most common mathematical models used
for air dispersion. They are built on the assumption that the contaminant will diffuse according to a
normal distribution (Reed et al., 2005). The GPM is most often used to model point-source emissions
such as chimneys. The Gaussian dispersion formula that belongs to these models, as described by
Jain (2015), is shown below.

2 2
X = W[exp(—O.S* (le )] [exp(—0.5 x Uﬂz )] (3.4)
where;

X = hourly concentration at downwind distance x, ugm=3,

us = mean wind speed at pollutant release height, m/s,

Q = pollutant emission rate, ug/s,

0y = standard deviation of lateral concentration distribution,

0, = standard deviation of vertical concentration distribution,

H = pollutant release height (stack height), m,

y = crosswind distance from source to receptor, m,

The stability coefficients 0, and ¢, are computed using the Pasquill-Gifford-Turner Stability Clas-
sifications, as described in Turner (1970). This classification distinguishes six stability classes and
defines the relationship between the stability classes and the coefficients. The theory defines the sta-
bility coefficients based on solar insolation, cloud coverage, and wind speed. In general, it can be
stated that the atmosphere is more stable during nighttime due to low solar insolation. During the
daytime, the stability coefficient is based on the wind speed and the strength of the solar insolation.
At night time, the stability is classified based on the cloud coverage and the wind speed. The Pasquill-
Gifford-Turner Stability classifications and their corresponding stability coefficients are included in
appendix E.

Given that it is an analytical solution computing the NO; concentrations using the GPM equation
requires little computational effort (Tomas et al., 2015). However, due to its underlying assumptions,
the GPM presents a highly simplified picture of reality. Those assumptions include constant meteoro-
logical conditions, flat terrain, a negligible deposition, and a conical plume shape (Reed et al., 2005).
Furthermore, a line source can not be easily implemented in the model since the integration over a
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finite line with the Gaussian dispersion formula is only accurate whenever the wind is perpendicular
to the line source (Briant et al., 2013).

3.5.2. Implementation GPM

For the implementation of the GPM, an open-source code created by P. Connoly (2018) is modified
and used. The Gaussian dispersion formula, as presented in section 3.5.1 forms the base of this code.
ERADS data is used for the weather variables to make an accurate comparison between GRASP and the
GPM. This includes wind speed, wind direction, solar insolation, and cloud coverage. Wind speed,
solar insolation, and cloud coverage are used for computing the atmospheric stability coefficients.

Simulating traffic intensities
For simulating the traffic intensities, the same approach is used as in the implementation of the
GRASP model as described in section 3.4.2.

Terrain conditions

Since the GPM assumes a flat terrain, no obstacles are included in the simulation set-up. Therefore,
the only similarity between the domain and the A2 near Breukelen’s landscape is the relative location
of the roadway and the metmast.

Set-up GPM

The domain size and resolution are comparable with the GRASP domain size as seen in Table 3.2.
However, due to implementation choices in the models, the grid size and grid points are slightly
different for the GPM and GRASP model. The position of the metmast is chosen such that the
metmast is one grid box away from the line source. As the Gaussian dispersion formula is dependent
on its previous values, the sampling interval equals the writing interval, which is one hour.

H Parameter Variable Value H
Domain size Ly, Ly, L, 8000 x 8000 x 500
Grid size dy, dy, d, 50 x 50 x 10
Grid points Ny, Ny, N; 160 x 160 x 50
Grid center Lat, Lon 52.20126, 4.98660

Metmast position  Lat, Lon 52.20126, 4.99028
Sampling interval = Atgpppring 3600
Writing interval Atyrite 3600

Table 3.2: Model set-up GPM

As mentioned in paragraph 3.5.1, a line source can not easily be implemented in the GPM. There-
fore, instead of a line source, a sequence of point sources is used. In Figure3.6, a cross-section of the
GPM in the z-direction is shown. The figure shows the sequences of points and the emission disper-
sion over the xy-plane. The red star represents the location of the metmast in the model. For the
implementation of the traffic intensity, the same method is used as for GRASP, in which the emission
source follows the values of the average traffic profile in the same proportions. The values used for
the emission source are included in appendix A.



3.6. Regression models 18

4000 100

3000

80
2000

1000 50

o]

y (m)
mg m3

—1000 40

—2000
20

—3000

“
o
“
[
[
[
I
[
o
[
I
“
L
“
[
.
I
[
#
.
[
-
“
[
“
[
z
[
[

-

—4000
—4000 —3000 -2000 -1000 O 1000 2000 3000 4000

x (m)

Figure 3.6: Implementation of the line source in GPM (the red star represents the measuring station)

3.6. Regression models

The prior models, GPM and GRASP, are based on physical formulas that simulate atmospheric condi-
tions. Besides these approaches, also a data-driven approach is used to predict NO, values near the
A2 at Breukelen. The computed model is a polynomial regression that fits within the OLS method.
As mentioned in section 1.1, OLS regression is a relatively simple machine learning technique that is
shown to be accurate in many situations and has already been proven to be suitable for predicting
air quality in Mahanta et al. (2019).

3.6.1. Formalisation of the regression model

Equations of model

In polynomial regression, the relationship between the independent and dependent variables is rep-
resented by an nth degree polynomial. The Polynomial regression model that is created is fit with
the OLS method, in which the variance of the coefficients is minimized under the Gauss Markov The-
orem. The maximum order or degree of the polynomial coefficients can be optimized for the model.
This is done by computing the RMSE on the predictions of the regression models with different de-
grees. The degree that leads to the lowest RMSE is chosen. The formula for a second-order multiple
regression with three regressors (xj, Xz, X3) is the following:

7 = Bo + B1x1 + Baxa + Baxz + P11%3 + Poax3 + Basx3 + Brax1x2 + B13x1%3 + +P23X2xX3
(3.5)

where;

1§ = Predicted value for dependent variable

x; = Regressor value

Bi = Effect parameters

Model input

The dependent variable in the regression model is the NO, concentration. The regression model uses
three different features for the prediction of the dependent variable, namely the ERA5 windspeed,
ERA5 wind direction and the traffic intensity. These are called the regressors. As the ERA5 wind
direction is a circular variable, it has to be transformed before it can be used as input data for the
regression model. This is done through a method described by Jammalamadaka & Lund (2006). In
this method, the sample (non-circular) direction is computed by first taking the sine and cosine of the
wind direction, as shown in equation 3.6.
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arctansina;/ cosa;, if cosa; >0
4 — { arctansina;/ cosa; + 7, if cosa; <0 (3.6)
Undefined, if \/ sina;2 4+ cosa;2 =0

where;
4 = Mean direction of sample,
a; = Circular wind direction,

The sample mean direction 4 is no longer a circular variable, and can be used as input for the
regression model.

Model implementation

The regression model is implemented using the scikit-learn library in python (Pedregosa et al., 2011).
The data used for creating and testing the regression model consists of one year and 2 months. The
data is split into a training- and a test-set. The training set includes 70% of the data and is used to
create the model. The other 30% of the data is allocated for the test-set and is used to test the model’s
prediction capacity. Furthermore, the maximum degree of the polynomials is specified. To find the
degree for which the model yields the best results, the RMSE on the test set is calculated for different
degrees of the model. Choosing the right degree for the model is important; when the degree of the
model is chosen too low, the model cannot capture the relation between the input and output data.
However, a degree that is too high leads to overfitting of the model to the training set. In Figure3.7,
the degree of the model is plotted against the RMSE. The plot shows that at a degree of 3, the RMSE
is the lowest. Therefore, the chosen degree for the model is 3.
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Figure 3.7: Analysis of polynomial degrees for regression model

3.7. Combination of models

Next to comparing the models, it is examined whether a combination of the GRASP model and the
regression model can increase the performance of the models. Two regression models are created for
this purpose. In the first model, the GRASP pollutant predictions are added as a regressor, next to the
ERA5 windspeed, ERA5 wind direction, and the traffic intensities. This regression model is created
to see whether the outcomes of GRASP contain additional information that improves the regression
model.

The second model uses the wind speed and direction predicted in GRASP for the location of the
measurement station instead of the ERA5 data. In this model, the regressors are the GRASP wind
speed, GRASP wind direction, and the traffic intensities. For the construction of both models, the
data is again divided between the training- and the test-set with the ratio of 0.7/0.3. The degrees
of the models are computed using the same approach as in 3.6. The degree chosen for both regres-
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sion models with GRASP input is three. In appendix C, the results of the different degrees for the
regression models with GRASP data are shown.



Results and discussion

In this chapter, the results of the models are presented. First, the post-processing process of the
models” predictions is discussed. Subsequently, the results of the GRASP model, the GPM and the
regression model are presented and discussed. Afterward, the results generated by a combination of
the regression model and the GRASP results are shown and compared with the original models. This
chapter concludes upon the third and fourth sub-question, as defined in chapter 1.

4.1. Post-processing of outcomes

The results of the models are post-processed to make the output data of the models suitable for
comparison. In this section, the steps taken in this process are discussed. The analyses in this section
are based on model runs for two months.

4.1.1. Normalization of outcomes

The emission strength of the line sources, based on the traffic intensities that are implemented in the
GRASP model and the GPM, follow the same pattern that is based on Figure 3.4 (see appendix A for
exact values). However, due to implementation choices in the GPM and GRASP model, the absolute
pollutant emissions cannot be compared with each other. It is chosen to re-scale the outcomes to allow
for the comparison between the output values of the different models. The re-scaling method that
is used is normalization. Frequently used techniques for normalization are Z-score normalization
and min-max scaling. The results data characteristics are examined to decide upon the normalization
method. Almost all outcome datasets follow a positively skewed distribution, as seen in the distribu-
tions in Figure 4.1. Since Z-score normalization requires normally distributed data (Ali et al., 2014),
this is not appropriate. In mix-max normalization, there are no assumptions about the distribution
of the data. For this reason, min-max scaling is chosen. The formula that is used for performing
normalization is the following:

Xnew - (X - Xmin)/(Xmax - Xmin) (4.1)
where;
Xpnew = normalized model prediction,
X = model prediction,

Xin = minimum value in dataset,
Xmax = maximum value in dataset

21
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Figure 4.1: Distributions of GRASP, GPM, regression model results before postprocessing and distribution of NO,
measurements

When looking at the distribution in Figure 4.1 closely, it can be concluded that both the GRASP
and the GPM outcomes contain outliers since some of the pollution concentrations, shown on the x-
axis, become very high compared to the average value. However, min-max scaling requires a dataset
without outliers. The impact of min-max scaling on the GRASP and GPM results with outliers can
be seen in Figure 4.2. Due to the min-max scaling, the outliers cause a plot in which most values are
close to zero.
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Figure 4.2: Timeseries of normalized model predictions with outliers in the data

4.1.2. Outliers

In the previous section, it was shown that both GPM and GRASP results contain outliers. This section
examines the characteristics of the outliers in the GPM and GRASP results, and a procedure to deal
with those outliers is defined.

Outliers in GRASP

To determine which values in the GRASP results are outliers, a thresholding method is used based
on the interquartile range (IQR). In Yang et al. (2019), it is stated that defining outliers based on the
interquartile range is a frequently used approach for defining an outlier threshold. In general, the
threshold in the IQR thresholding method is defined as follows:

Tin = Ql —cx IQR 4.2)
Tmax = Q3+ c*x IQR (4.3)
IQOR =Q3 - Q1 (4.4)

where;
Tiin = Minimum threshold,
Q1 = First quartile,
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Q3 = Third quartile,

c = Constant value defining conservativeness,
IQR = Interquartile range,

H = pollutant release height (stack height)

In the GRASP and GPM results, only outliers above the third quartile are present; therefore, only
formula 4.3 is used. For ¢, a value of 3 is chosen, as Taylor (2020) defines this as the value for which
strong outliers are removed. It is vital that high NO, predictions are not falsely identified as outliers,
as high NO; values are critical to be predicted. Therefore, a conservative, relatively high value is
used for c. In appendix D, it is visualized which values are considered outliers in the GRASP results.

Whenever the outlier values in GRASP are examined more closely, it can be seen that most of
these values share the same wind characteristics. In Figure 4.3, the GRASP results are plotted against
the wind speed and the wind direction.
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Figure 4.3: Wind speed and wind direction of outlier values in GRASP results

Low wind speed generally results in a smaller dispersion area and, therefore, to higher pollutant
concentrations. If the wind comes from the north or south, the wind direction is parallel to the
highway. These wind directions result in an accumulation of air pollutants over the length of the
highway, as air pollutants move over the direction of the highway and not away from the highway.
In other words, the high values of the outliers in GRASP can be partly explained by their weather
characteristics. However, it seems like the GRASP model overestimates the effect of those weather
characteristics, as the concentrations reach unrealistically high values much higher than the measure-
ments, as can be seen in the distribution graphs in 4.1, when looking at the values on the x-axis that
are reached by the GRASP model and the GPM.

In the Figures 4.4, the pollution roses of both the GRASP outcomes and ERA5 data with the NO»
measurements are visualized. A pollution rose is a means to illustrate the frequency distribution
of wind direction temporally correlated with a pollutant. The wind speed, wind direction, and the
normalized pollutant predictions of GRASP are used to create the pollution rose in Figure 4.4a. The
pollution rose in Figure 4.4b uses the wind direction and wind speed from ERA5. The pollution
roses show that between 24% and 30% of the wind speed came from a south-western direction in
the considered time period. This can be seen in the plot as the plume towards 225 degrees of the
circle is within the two most outer rings, representing 24% and 30%. The wind directions of GRASP
and ERAS are slightly different since GRASP predicts the wind direction more locally. The colors
represent the NO, values. In the pollution rose for GRASP, it can be seen that the pollution levels
are at their maximum when the wind is coming from the south. This is a wind direction parallel to
the A2, where the air pollutants are stacking up over the length of the highway instead of dispersing
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over a larger area. This effect is not to the same extent visible in the pollution rose of the ERA5
data and the measurements. From the pollution rose of GRASP, it becomes clear that the outliers in
GRASP come from a wind direction parallel to the highway. When comparing both pollution roses
in figure 4.4, it is seen that the effect of the normalization of the GRASP data with outliers results in
a majority of low values, seen from the dark blue color. For the pollution rose of the ERA5 data and
the measurement, the normalization results in a wider variety of normalized NO; levels, seen from
the wider variety of colors in Figure 4.4b.
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Figure 4.4: Pollution rose of GRASP after normalization with outliers and pollution rose of NO, measurements and ERA5
data

Based on this analysis, the hypothesis is that the combination of a low wind speed and a wind
direction parallel to the highway leads to high NO> values in GRASP. The reason that GRASP predicts
such high values for those conditions has most probable to do with the fact that GRASP does not
account for turbulence on a very small scale (yet). Thus, the slightly larger eddies may or may not
reach the metmast, resulting in an all-or-nothing effect. This effect is reinforced by the fact that the
turbulence created by the cars on the highway is not included in the GRASP model, as a simple line
source is used to simulate the highway. Therefore, the hypothesis is that the combination of the latter
explanation and the unfavorable weather conditions cause large outliers in the GRASP results.

Outliers in GPM

The same approach for determining the outlier threshold as in GRASP is used for the GPM. The value
chosen as outlier threshold is shown in context to the results in appendix D. The GPM results contain
fewer outliers, so the outlier threshold is lower than for GRASP based on equation 4.3. In Figure 4.5,
the outliers are visualized in a scatter plot that shows the atmospheric stability on the x-axis and the
wind speed on the y-axis. Atmospheric stability is categorized in the six categories of the Pasquill-
Gifford-Turner Stability Classifications. Atmospheric stability of 1 represents an extremely unstable
atmosphere, and atmospheric stability of 6 is the most stable atmosphere. It can be seen that the
outliers in the GPM occur when the atmosphere is stable and the wind speed is low. This corresponds
to literature about the GPM, in which it is stated that a stable atmosphere causes high peaks in the
outcomes of the GPM (Abdel-Rahman, 2008). Furthermore, just as in the GRASP outcomes, a low
wind speed leads to a smaller surface of dispersion and, thus, causes higher pollutant concentrations.
This can be seen on the y-axis of 4.5.
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Figure 4.5: Wind speed and atmospheric stability of outlier values in GPM results

Treatment of outliers

The previous sections discussed the conditions under which outliers occur in the GRASP and the
GPM model results. It was shown that both models seem to estimate unrealistic high values under
certain circumstances. These values highly impact the outcome data and make the normalization
unfeasible. Therefore, it is decided to remove the outliers from the outcomes of the models. This is
done using forward fill in which the outlier value is replaced by the last non-outlier value.

4.2. Comparison of GRASP, GPM and regression model

This section presents the results of the post-processed output data of the GRASP model, the GPM,
and the regression model. The GRASP and the GPM results show a period of a year. For the
regression model, only the test set is visualized in the results, containing four months of data. In
this section, firstly, the scores of the models on the performance metrics are presented. Secondly, the
distributions of the results and the timeseries are visualized. Furthermore, the performances of the
models in different circumstances are shown. After the results are presented, they are interpreted
and discussed.

4.2.1. Performance metrics

Table 4.1 shows the scores of the models on the performance metrics. Both the GRASP model and
the regression model outperform the GPM in terms of RMSE, MAE, and Pearson correlation. The
regression model scores best compared to the GRASP and the GPM model.

Original models
H MAE RMSE Pearson correlation
GRASP 0.1633 0.2160 0.4154
GPM 0.2169 0.2598 0.28230
Regression model 0.1471 0.1807 0.6612

Table 4.1: Performance metrics of GRASP, GPM and regression model

4.2.2. Distributions

In Figure 4.6 below the distributions of the predicted pollutant concentrations are shown. Both the
GRASP results, the GPM results and the measurements follow a positively skewed distribution. The
results of the regression model approximates a normal distribution. Based on these plots, the distri-
bution of the GRASP model and the GPM look most similar to the distribution of the measurements.
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Figure 4.6: Distributions of GRASP, GPM, regression model results and NO, measurements

4.2.3. Performance of models for different circumstances
The performance of the models is also evaluated for the different months in the year and for the
different wind directions. This is done by computing the RMSE per month and per wind direction.

Performance per month

In Figure 4.7, a visualization of the RMSE of the models for all months in the year is shown. The
results of the regression model consist of four months, as only the test set is taken into consideration.
It can be seen that the performance of GRASP is relatively stable, ranging from an RMSE score of
approximately 0.12 to 0.25. In general, the RMSE for the GRASP results is slightly higher in the
winter period (November till February). The performance of the GPM model has more variations
over the months, ranging from 0.12 in April to 0.34 in February. Also, the RMSE of the GPM results
is larger in winter. The RMSE values for the regression model are only computed in the winter, with
a low variation per month over the test set.
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Figure 4.7: RMSE of the GPM, GRASP model and regression model per month over a year

Performance for different wind directions

Figure 4.8 shows the RMSE for the different wind directions. The GRASP model shows the lowest
RMSE for a western wind direction, and the highest RMSE for a northern wind direction. The
western wind direction is the wind direction for which the pollutants are blown from the highway
towards the metmast, which generally leads to higher pollution than the eastern wind direction. The
northern direction is also the wind direction that occurred least often, as seen in the pollution roses
in appendix F. Hence, a large error already significantly impacts the wind direction’s score, so this
value is less representative. For the GPM, the southern wind direction leads to the highest errors.
The RMSE values of the regression model are relatively stable and do not show large differences in
performance for different wind directions.
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Figure 4.8: RMSE of the GPM, GRASP model and regression model for different wind directions

4.2.4. Time plots

The timeseries 4.9 show the predictions of the models and the measurements for one month, namely
February 2020. It is chosen to visualize one month to keep the plots uncluttered. The timeseries are
shown to get insight in the behaviour of the models.
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Figure 4.9: Timeseries showing the behavior of models over a month

Daily and weekly trend

As visible in the timeseries, the measurement data shows daily and weekly patterns. The first pattern
consists of two clear peaks daily, caused by the rush hours that occur twice a day. Next to the daily
pattern, also a weekly pattern is visible. It can be seen in the data that after approximately five days
with high peaks in the rush hours, the peaks are lower for two days. This pattern coincides with the
week and weekend days. For example, 22 and 23 February were weekend days, and 24 till 28 were



4.2. Comparison of GRASP, GPM and regression model 30

weekdays.

These patterns are, to some extent, visible in the results of the models. The results of the GRASP
model and the GPM show commonalities in capturing the weekly and daily trend, as shown in Figure
4.9a and Figure 4.9b. In the predictions of the GRASP model and the GPM, a daily pattern can be
distinguished that approaches the daily variations in the measurement data. The weekly trend is
more difficult to discern in the GRASP model results and the GPM result. This notion is explained
by a limitation in the model set-up of the GPM and the GRASP model. Both models use an average
traffic profile for the emission strength of the line source. Because of this, the models cannot predict
variations in pollutant concentrations due to differences in traffic intensities over the days, such as the
difference between weekend and weekdays. Variations in pollutant concentrations between days are
solely caused by differences in meteorological conditions in the models. To address this limitation,
the GRASP model and the GPM could be adapted in future research so that the emission strength of
the line source in the models is reliant on actual traffic data.

The predictions of the regression model over the test-set in Figure 4.9c show that the regression
model captures both the daily and the weekly trend of the pollutant concentrations. This leads to a
low MAE and RMSE and a high Pearson correlation. However, the amplitude of the daily trend is
generally higher than in the measurement data, and the regression model overestimates the pollutant
concentrations during most hours. Despite this, the outcomes of the regression model show that a
large part of the trend in the measurement date can be explained by variations in the three regressors;
wind direction, wind speed and traffic intensity. It should be noted that the regression model is the
only model in the research that does not require the usage of an average traffic profile. This explains
at least a part of the better performance of the regression model.

Sensitiveness of GPM and GRASP model for outlier value

Another fact that stands out in the timeseries is that the GRASP model underestimates the pollution
concentration in most hours. This can also be seen in the GRASP pollution rose in appendix F.
Furthermore, with a few exceptions, the amplitude of the daily peaks is relatively small in general. A
reason for this behavior is the sensitiveness of the GRASP model to the threshold that is chosen for
which a data point is considered to be an outlier. The values are normalized and therefore considered
relative to their maximum value. This phenomenon also applies to the GPM model, as a threshold
value for outliers is also used to post-process the GPM results. However, the original GRASP results
contain more outliers; therefore, a higher outlier threshold value is chosen, and the effect is more
visible in the GRASP results. Selecting the threshold for which a data point is regarded as an outlier
must be done carefully. If the threshold value for outliers is too high, the average of the outcomes
becomes lower than the average of the measurements. This latter explanation applies to the results
of the GRASP model, where values are systematically underestimated. However, data points are
wrongly considered outliers if the threshold value is too low. This research uses a technique based
on the interquartile range to define the outlier threshold for GRASP and the GPM. However, it would
be better to solve the outlier problem within the models instead of removing them from the output
data to minimize intervention in model performances. As no outliers had to be removed for the
regression model, this problem does not apply to the regression model. This is another explanation
for the better performance of the regression model compared to the GRASP model and the GPM.

Predicting high NO; values

High NO; values in the measurements are predicted relatively well by the GRASP model. The most
prominent peaks in measurement data coincide at least to some extent with high values in the GRASP
data that show on days 5, 6, 24, and 28. The GPM poorly captures the high values in the measurement
data. The high values in the GPM results do not coincide with peaks in the measurement data. The
highest peaks in the measurement data on days 5, 6, 24, and 28 are not incorporated in the GPM
predictions. The regression model captures the high values in the measurement data well. However,
the regression model also shows high values that do not reflect the measurement data, for example,
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during day 9 or 18. Therefore, the high values are less reliable. Based on this analysis, it is concluded
that the GRASP model is the most suitable for predicting high values in the measurement data.

4.3. Combination of GRASP and the regression model

This section examines the performance of a regression model completed with data from the GRASP
model. First, the results of the regression model with the GRASP pollutant predictions are shown,
and afterward, the results of the regression model with GRASP weather data are presented.

4.3.1. Performance metrics

The score on the performance metrics of the two regression models with GRASP data is shown in
4.2. The Pearson correlation coefficient is lower for the two regression models that include GRASP
data than for the original regression model. For the regression model with the GRASP pollution
predictions, the Pearson correlation is only slightly lower than for the original regression model,
for the regression model with GRASP weather predictions this difference is larger. Both regression
models outperform the GRASP, GPM and original regression model in terms of MAE and RMSE.
Of the two regression models with GRASP data, the regression model with the GRASP predictions
scores the best in terms of RMSE, MAE and Pearson correlation.

Combi models
MAE RMSE Pearson correlation

Original regression || 0.1471 0.1807 0.6612

model

Regression model with || 0.1180 0.1480 0.6266

GRASP pollutant predic-

tions

Regression model with || 0.1257 0.1580 0.5388

GRASP weather predic-

tions

Table 4.2: Performance metrics of models with added GRASP data

4.3.2. Regression model with GRASP pollutant predictions

The performance of the regression model that includes GRASP pollutant predictions is shown in
Figure 4.10. The model predicts the pollutant concentrations with lower errors than the original re-
gression model, which became clear from the MAE score and the RMSE score. This is also visualized
in Figure 4.11, which depicts the difference between the original regression model and the measure-
ments, as well as the differences between the regression model with GRASP pollutant predictions
with the measurements. It is seen that the original model has larger deviations for the measurement
data than the regression model with GRASP pollutant predictions. The trend of the two regression
models are similar, but the amplitude of the regression model with GRASP pollutant predictions as
the initial regression model overestimated the magnitude of the daily trend. Furthermore, most of
the high values in the measurement data are captured by the regression model with GRASP pollutant
predictions, for example at day 5, 6 and 26. However, not all high values in the regression model
with GRASP pollutant predictions correspond to high values in the measurements, for example at
day 9, there is a peak visible in the regression model with GRASP pollutant predictions that does not
exist in the measurement data. In general, it can be stated that the regression model with GRASP
pollutant predictions performs better than both the original regression model and the GRASP model
when it comes to predicting pollutant concentrations with low errors. However, it can be questioned
whether a regression model is the best method for combining the GRASP predictions with the other
data since a phenomenon that often arises in regression models is multicollinearity. Multicollinearity
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occurs when the independent variables of a regression model are correlated. In this model, both the
GRASP predictions and the other predictors are added to the model, while GRASP predictions also
depend on weather variables. Problems caused by multicollinearity are (i) the regression model be-
comes very sensitive to a slight change in the coefficients, and (ii) the regression model’s coefficients
do not accurately represent the effect of a change in the dependent variable for each 1 unit change
in an independent variable. However, it is still possible to obtain a good fit for a model in which
collinearity is present (Neter et al., 1996). As the regression model aims to make predictions for pol-
lutant concentrations and the goal is not to obtain insight in quantifying the relationship between the
independent and the dependent variable, it is still considered to be fit for the purpose. Nevertheless,
the regression model with GRASP pollutant predictions is more prone to overfitting the training set
due to the multicollinearity. Therefore, another data-driven model type might generate even better
results on the test set. For example, a neural network since multicollinearity is not a problem for
neural networks as parameters are fitted using backward propagation.
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Figure 4.10: Timeseries of regression model with addition of GRASP results as a regressor
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4.3.3. Regression model with GRASP weather data

Figure 4.12 shows the regression model when instead of the ERA5 weather data, the GRASP weather
data is used for the construction of the model. Also the regression model with GRASP weather pre-
dictions predicts the pollutant concentrations with lower errors than the initial regression model, as
can be seen in Table 4.2. In particular, the high values in the regression model that were not visible
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in the measurement data are not present in the regression model with GRASP weather data, which
can be seen in Figure 4.13 at for example day 9 and 28. An explanation for the lower errors of the
regression model with GRASP weather predictions is that the GRASP weather predictions comprise
weather conditions at the exact location of the metmast, where ERA5 data contain more aggregated
weather patterns. The differences in wind directions in the pollution roses in appendix F also demon-
strate this. This explains the higher accuracy of the model compared with the original regression
model. The high values in the measurement data are not captured very well by the regression model
with GRASP weather predictions, as the peaks on days 6, 24, and 28 are not captured. Still, the model
regression model with GRASP weather predictions could be helpful for computing yearly averages
of NO» concentrations.
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Figure 4.12: Timeseries of regression model with usage of GRASP weather data instead of ERA5 weather data
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Conclusion and further
recommendations

Adherence to the limit values defined by the EU in Directive 2008/50/EC is the main priority within
air quality policy in the Netherlands. However, the limits set for NO, are regularly exceeded around
highways. The RIVM is responsible for monitoring the air quality values. To get insight into air
quality values, they use a GPM. This research examined whether new, innovative model types such
as an LES model and a regression model could result in more accurate air quality predictions. The
research question belonging to this study is:

How could air quality predictions around highways in the Netherlands be improved in order to support
decision-making aimed at enhancing air quality levels?

To support decision-making in the Netherlands, air quality models should be able to verify if
air quality values are below their set thresholds. For NO,, two thresholds are active: one for the
maximum of hourly averages that may only be exceeded multiple times each year and a yearly
average that may not be exceeded. Air quality models should be able to monitor whether the air
quality values stay below those limits. In the case of NO2, this means that the model can be used to
calculate yearly and hourly NO; values.

In this research, it is concluded that the current model applied in decision-making in the Nether-
lands, the GPM, is outperformed by both the GRASP model and the regression models. The GRASP
model showed better performance than the GPM, especially in terms of predicting high NO; values
in the measurements. This could be very useful for identifying whether the hourly limit values are
not exceeded.

Although the GRASP model outperforms the current GPM model, there is still room for further
improvement in the future. It is seen that the GRASP model is not capable of modeling the varia-
tions in traffic intensities between weekdays and weekends. This can be researched in the future by
implementing a time-dependent emission profile for the line source. It was also concluded that the
GRASP model tends to predict outliers under certain circumstances, which needed to be filtered out
in the post-processing step. To reduce the number of predicted outliers, the GRASP model can be
extended by including the effect of turbulence on a micro-scale turbulence. With this extension, the
performance of the GRASP model becomes less sensitive to the chosen outlier threshold.

The regression models also outperformed the GPM. The regression model led to the lowest error
statistics compared to the GPM and GRASP model and is, based on this performance, most suitable
for predicting yearly NO, averages. The results showed that a large part of the trend in the mea-
surement date could be explained by variations in the three regressors; wind direction, wind speed
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and traffic intensity. However, the regression model still slightly overestimates most of the NO»
concentrations and contains high NO, values that are not present in the measurement data.

The regression model was extended in this research in two ways; by adding the GRASP pollutant
predictions as a regressor and by replacing the ERA5 weather data with GRASP weather predictions.
Adding GRASP weather predictions to the regression model instead of ERA5 weather data leads to
lower errors in the NO; predictions than in the original regression model or in the GRASP model.
These smaller errors were mainly due to the reduction of wrongly predicted high values compared to
the original regression model. The better performance of the regression model with GRASP weather
predictions implies that local weather conditions significantly impact the concentrations measured
at the monitoring stations. Adding the NO, predictions from the GRASP model to the original
regression model resulted in the lowest RMSE and MAE score compared to the other regression
models, the GPM and GRASP model. Therefore, combining the GRASP pollutant predictions with a
data-driven model seems promising. However, a regression model is not considered the best method
to combine the GRASP predictions with a data-driven model due to multicollinearity, which often
leads to overfitting of the training data. To improve the predictions even further, a suggested method
for examination is a neural network, as multicollinearity is not a problem for neural networks.

The results of the study imply that there is a lot of potential for innovative models such as GRASP
and data-driven models for making more accurate air quality predictions. Based on this research,
the model that shows the most potential is a combination between the GRASP model and a data-
driven model. However, before the implementation of this model within decision-making in the
Netherlands, more research is required. The performance of the models is only assessed for one
location in this study, which is situated in a rural area with minimal buildings. Examining different
locations with other landscapes would be required for drawing final conclusions about the suitability
of the models for predicting air quality around major roads. Furthermore, it is interesting to look at
other applications of air quality models to see whether the conclusions drawn in this research also
apply to those circumstances, for example, the predictions of air quality within urban or industrial
areas.

Furthermore, in this research, the suitability of the models in the decision-making process is solely
assessed based on the performance of the models. However, other considerations like computational
costs and the complexity of maintenance should be considered before deciding upon a model’s suit-
ability for societal purposes. Especially within the public domain, criteria such as transparency of
the used models are important. The model should not become a black box for the people using it, as
this can have major unethical consequences. At this moment, it can be stated that innovative models
such as GRASP or machine learning models have a higher complexity than the GPM. Therefore, it is
expected that more resources are required by the government to meet the transparency requirements
for the GRASP model. However, it is not improbable that those resources will be allocated as more
and more research demonstrates the seriousness of the consequences of air pollution and as it has
gained greater prominence in the political debate. The implementation and responsible use of new
forms of air quality models within policy-making is a pertinent subject of further study.

This research tried to contribute to the domain of air quality modelling. Further research on
this topic is highly important, as accurate air quality predictions contribute to more efficient air
quality policy. Precise model predictions can prevent misunderstandings about the consequences
of changes in spatial planning or can show the effectiveness of measures aiming to improve air
quality. It provides the opportunity to know on forehand under what conditions air quality will
reach unhealthy values. In those situations, preventive measurements can be taken. For example, on
days with unfavorable weather conditions, speed levels on highways can be decreased to maintain
healthy air conditions. On other days, when the weather conditions are more favorable, air quality
does not have to limit traffic flow. This also applies to other domains, for example, modelling the air
quality around industrial areas. In this sense, economic activity and air quality do not obstruct each
other but can be optimized to maximize public well-being.



GRASP and GPM tracer values

In the GRASP model and the GPM model the total emission strength of the linesource is divided over
tracers is four days. The first one represents the background concentration. Based on the averaged
traffic profile, Tracer 1 is set on 20% of the total emission strength. Tracer 2 includes the concentrations
at daytime. This one is set on 40% of the total emission strength. This means that at daytime, the
strength of the linesource is minimal 60% of the maximum emission strength, since tracer 1 and tracer
2 are both working. The third and the fourth tracer represent the rush hours. Those rush hours last
for three hours and during rush time, the emission of the linesource is at its max. The tracer values
and times are shown in table A.1.

Duration | Start time | End time | Relative emission strength
Tracer 1 | 24 hours | 00:00 23:59 0.2
Tracer 2 | 16 hours | 05:00 21:00 0.4
Tracer 3 | 3 hours 06:00 09:00 0.4
Tracer 4 | 3 hours 15:00 18:00 0.4

Table A.1: Values of tracers in GRASP and GPM based on traffic intensities
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Metmast position GRASP

In Figures B.1 and B.2, the results of the GRASP model for a period of a week is shown. It can be
seen that when the metmast is placed further from the linesource, there is less variation in the model
results. This is particularly visible between day 5 and day 6, as the model that is located further from
the linesource does not pick up differences in No2 concentrations, where the model that is located
one grid box from the linesource does. For this reason, the metmast is positioned in the GRASP
model at one gridbox away from the line source.

Model performance
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Figure B.1: Location of metmast in GRASP one gridbox from line source
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Figure B.2: Location of metmast in GRASP two gridboxes from line source
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Analysis of degrees for regression
models with GRASP input

C.1. Regression model with GRASP pollutant predictions

In Figure C.1 it can be seen that the performance of the model with different degrees is slightly
unstable. The model does not clearly converge to one optimum. However, the RMSE is the lowest
at a degree of 3, and therefore this value is chosen for the regression model with GRASP pollutant
predictions.
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Figure C.1: Analysis of polynomial degrees for regression model with GRASP pollutant predictions

C.2. Regression model with GRASP weather predictions

Figure C.2 shows that the model in which GRASP weather data is added performs the best at a
degree of 3. The graph clearly converges to an optimum of 3 and rises again if the degree becomes
higher.
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C.2. Regression model with GRASP weather predictions
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Figure C.2: Analysis of polynomial degrees for regression model with GRASP weather predictions



Determining outliers

In the plots below, the outlier threshold value is shown in context to the results. In figure D.1a, it can
be seen that the GRASP results contain relatively more outliers than the GPM results, as visualized
in D.1b. The method that is used to compute the outlier threshold is based on the interquartile range.
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Figure D.1: Outlier values
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Pasquil-Gifford-Turner Stability
Classifications

The figures in this appendix are obtained from Turner (1970).

E.1. Pasquill table

In the table below, the Pasquill-Gifford-Turner Stability categories are defined. These categories are
used in the Gaussian Plume Model to represent the atmospheric stability. A stability classification
"A’ means that the atmosphere is very unstable and the stability classification ‘F’ means that the

atmosphere is moderately stable.

Atmospheric Stability Classifications

‘ Day Night
Surface solar insolation cloudiness®
wind
speed® Cloudy Clear
(m/s) Strong" Moderate® Slight! (= 4/8) (=38)
<2 A A-Bf B E F
2-3 A-B B C E F
3-5 B B-C C D E
5-6 (& cC-D D D D
>6 C D D D D

E.2. Stability classes and dispersion coefficients

Figure E.1: Atmospheric stability classifications

For the six stability classes, dispersion coefficients can be read for the different distances from the
emission source. The graphs that are created for this purpose can be seen in Figure E.2. These
stability coefficients are input variables of the Gaussian Dispersion Formula.
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E.2. Stability classes and dispersion coefficients
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Pollution roses

In Figure E1, two pollution roses are shown. Figure F.1a shows the pollution rose of the predicted
wind direction and pollution level by GRASP. Figure F.1b shows the pollution rose of the NO, mea-
surement station and the ERA5 wind direction. The wind directions over 2019 predicted by GRASP
and analyzed by ERAS are very similar. It can be seen that the most prevailing wind direction was a
south-western wind direction. The wind direction from the north occurred least often in 2019, based
on both datasets.

In general, the correlation between the NO, concentrations and the wind directions has similar
characteristics. Pollution levels are higher whenever the wind comes from the two western quad-
rants, which can be explained by the fact that the measurement station is located on the east side of
the highway. Furthermore, both figures show that the pollution levels are lower when the wind is
perpendicular to the highway.

However, there are also differences among the two pollution roses. In the GRASP pollution rose,
compared to the other pollution rose, a “all-or-nothing effect’ is visible. There are more values that
belong to the highest pollution category, as can be distinguished with the yellow color, but there are
also more values that fall within the lowest pollution category, which can be seen with the dark blue
color. The pollution rose of the measurements and ERA5 data has more values in the mid-range of the
pollution categories. It is expected that the explanation that is given in the main text for the presence
of outliers also applies to the difference of the pollution roses. It can be seen that the highest values
are present for a southern and a northern wind direction, the wind direction for which the wind is
parallel to the highway. GRASP overestimates the pollution levels whenever the wind is coming from
these directions.

Although the large outliers are removed from the results visible in these pollution rose, it is
expected that the dataset still contains too high predictions for this wind direction, as the outlier
threshold is relatively high. Due to the effect of this relatively high values in the normalization
process, the other values become low after the normalization. Therefore, also many values are present
in the GRASP pollution rose that belong to the lowest pollution category, marked with the dark blue
color.
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