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Abstract

Writing unit tests is a crucial task in the software development lifecycle, ensuring
the correctness of the software developed. Due to its time-consuming and laborious
nature, it is, however, often neglected by software engineers. Numerous automatic
test generation tools have been devised to ease unit testing efforts, but these test gen-
eration tools produce tests that are typically difficult to understand. Recently, Large
Language Models (LLMs) have shown promising results in generating unit tests and in
supporting other software engineering tasks. LLMs are capable of producing natural-
looking (human-like) source code and text. In this thesis, we investigate the usability
of tests generated by GitHub Copilot, a proprietary closed-source code generation tool
that uses a LLM for its generations and integrates into well-known IDEs. We evaluate
GitHub Copilot’s test generation abilities both within and without an existing test suite.
Furthermore, we also evaluate the impact of different code commenting strategies on
test generations, both within and without an existing test suite. We devise aspects of
usability to investigate GitHub Copilot’s test generations. In total, we investigate the
usability of 290 tests generated by GitHub Copilot. Our findings reveal that within an
existing test suite, approximately 45.28% of the tests generated by Copilot are passing
tests. The majority (54.72%) of generated tests in an existing test suite are failing, bro-
ken, or empty tests. Furthermore, tests generated by Copilot without an existing test
suite are less usable compared to those generated within an existing test suite. The vast
majority (92.45%) of these test generations are failing, broken, or empty tests. Only
7.55% of tests generated without an existing test suite were passing, and most of them
provided less branch coverage when compared to human-written tests. Finally, we find
that tests using a code usage example comment resulted in the most usable generations
within an existing test suite. In contrast, when there is no existing test suite, a comment
combining instructive natural language combined with a code usage example yielded
the most usable test generations.
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Chapter 1

Introduction

The act of writing unit tests is a critical but tedious task for software engineers, considered
one of the most “labor-intensive tasks in software testing” [3]. In part due to the time-
consuming and repetitive act of writing unit tests, software engineers frequently neglect
writing unit tests [7, 11]. Automatic unit test generation has been one approach to address
the labor-intensive aspect of writing unit tests. Numerous tools have been created to au-
tomatically generate unit tests with the goal of achieving a high structural coverage [27].
Tools such as EvoSuite and Randoop are two well-known and researched tools for automat-
ically generating tests [14, 24]. These automatic unit test generation tools rely on techniques
that employ a form of automated white-box test generation, where the primary objective is
to maximize structural code coverage. Aspects such as readability and understandability of
generated unit tests are not of primary concern [15]. This results in poor readability and
understandability of the generated unit tests [16, 12]. Furthermore, the application of these
automatic unit test generation tools in the industry is limited, in part due to software en-
gineers having to spend a considerable amount of time analyzing the output of such tools
when using them [4, 15]. Automated test generation is thus still far from being widely
adopted in the industry to assist in software engineering tasks [4].

GitHub Copilot1 is a commercial code generation tool that integrates within existing
popular IDEs (such as Visual Studio Code2 or IntelliJ3). Copilot uses a Large Language
Model (LLM) to produce code suggestions (henceforth, called generations) based on com-
ments and code context. Large Language Models (LLMs) have shown promising results in
numerous software engineering tasks, such as programming language translation [31], code
completion [13], and code summarization [1]. LLMs are capable of “producing natural-
looking completions for both natural language and source code” [26]. Fittingly, research on
Copilot’s generations has shown that Copilot produces readable and understandable gener-
ations, with similar complexity to human-written code [2, 22].

We hypothesize that GitHub Copilot can make writing tests a less time-consuming and
tedious act for software engineers. However, this ultimately depends on how usable gener-

1GitHub Copilot: https://github.com/features/copilot
2Visual Studio Code https://code.visualstudio.com/
3IntelliJ: https://www.jetbrains.com/idea/
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1. INTRODUCTION

ated tests are. After all, Copilot might be able to generate a unit test, but that does not mean
that the test can be (directly) used by a software engineer as the test may contain a syntax or
runtime error. Within this thesis we attempt to find out how useable the generated tests from
Copilot are, and how software engineers can use Copilot to generate more useable tests.

1.1 Research Goals

To evaluate the usability of GitHub Copilot’s test generating ability we define several as-
pects of usability. In general, we define a usable generation as a generation from Copilot
that could be directly used in a test suite without any modification. We consider usability
to be a range and not binary. Some generations are more usable than other generations. For
example, a generation with multiple runtime errors would be less usable than a generation
with no runtime errors. In particular, we consider the following aspects for usability:4

Syntactic Correctness The generated test should not contain syntax errors.

Runtime Correctness The generated test should not give errors at runtime due to,
for example, passing incorrect parameters to a method or alike.

Passing The generated test should be a non-empty passing test.

Non-Triviality The generated test should contain assertions and the assertions are not
tautological assertions.

Coverage The generated test should cover the same branches as the same test written
by a human.

A test can be generated within and without the context of an existing test suite. Copilot uses
code context (code and comments) to produce its generations. Thus, test generation made
within an existing test suite (test code context) may be influenced by the surrounding code
context. Hence, we investigate the usability of tests generated within an existing test suite
(RQ1) and without an existing test suite (RQ2). The latter scenario is especially important
to understand the usability of generated tests when no tests have been written yet.

By varying the code and code comments a software engineer writes in their code file
before invoking Copilot, they can influence the generation they receive from Copilot. This
begs the question of how code comments should be formulated to attain the most usable test
generation. In particular, we evaluate the usability of test generations using different test
method comment strategies both within (RQ3) and without (RQ4) an existing test suite. In
summary, we intend to address the following research questions:

4These aspects are partially based on earlier work by Schäfer et al. [26] and Xie et al. [32] who separately
devised ways to evaluate the “quality” of tests generated by a LLM.
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1.2. Research Approach

RQ1 How usable is a test generated by GitHub Copilot within the context of an
existing test suite?

RQ2 How usable is a test generated by GitHub Copilot without the context of
an existing test suite?

RQ3 How should a test method comment be formulated to attain a usable test
generation from GitHub Copilot within the context of an existing test
suite?

RQ4 How should a test method comment be formulated to attain a usable test
generation from GitHub Copilot without the context of an existing test
suite?

1.2 Research Approach

To answer our research questions, we conduct an empirical study on tests sampled from
open-source Python projects. We consider projects from both GitHub and GitLab to mit-
igate potential training bias (the underlying model of GitHub Copilot is trained on open-
source GitHub projects [9]). For each sampled test method, we strip the test method con-
tent/body leaving only the test method signature and comment. See Listing 1.1 for an ex-
ample of a test stripped method.

1 def test_set_row_height(self):
2 """Unit test for set_row_height"""
3 [INSERT]

Listing 1.1: Example stripped test method from the pyspread project. Note that the test
method signature (row 1) and method comment (row 2) stay, but the test method body (row
3) has been stripped. They keyword [INSERT] indicates the place from which GitHub
Copilot is invoked.

We then use Copilot to “regenerate” the test method body, which results in a test gen-
eration. We generate the test both within the existing test suite of the sampled test (With-
Context), and without the test suite (Without-Context). We then document all aforemen-
tioned usability aspects for each generated test for both With- and Without-Context. Fur-
thermore, we select a subset of the sampled tests to evaluate four different types of test
method comment strategies. We manually formulate the four different method comments
for each method in the subset, and then use Copilot to regenerate a test with each of the
different method comments (for example, the method comment in Listing 1.1 is modified).
Similarly, we document the usability aspects of generations produced using the different
method comment strategies for both With- and Without-Context. Furthermore, we make a
replication package available with all documented tests and scripts which we used to ana-
lyze the tests [17].

3



1. INTRODUCTION

1.3 Structure of Thesis

The remainder of the thesis is structured as follows: Chapter 2 discusses background in-
formation and related work on test generation. In Chapter 3 we cover how we set up our
study design and which choices we made. Then in Chapter 4 we present the results of the
research question we are investigating, where we cover each usability aspect. In Chapter 5
we discuss the results and observations, answer the research questions, and also discuss the
threats to validity. Finally, Chapter 6 concludes the thesis findings and provides directions
for future research.

4



Chapter 2

Background and Related Work

Within this chapter we provide background information and an overview of research relat-
ing to our goal of evaluating GitHub Copilot’s test generation abilities. We first provide
background information, and then delve into more recent work employing and evaluating
LLMs for test generation.

2.1 Traditional Test Generation Tools

There have been numerous tools developed with the aim of achieving high structural cov-
erage by automatically generating unit tests [27]. Two widely recognized and extensively
researched tools for this purpose are EvoSuite [14] and Randoop [24], which are considered
to be state-of-the-art unit test generation tools [27]. These automatic unit test generation
tools rely on search-based optimization and feedback-directed techniques (respectively) for
test generation. The primary objective is to maximize structural code coverage of the target
code under test. In part due to exclusively focusing on the coverage criteria, traditional
test generation tools—such as Evosuite and Randoop—have been critiqued for their lack of
readability and understandability of tests generated as judged by practitioners [16, 12] and
have limited adoption in the industry [4].

2.2 Large Language Models

Large Language Models (LLMs) are generative language models that are built using deep
learning techniques (often employing a Transformer-based [30] architecture). LLMs can be
pre-trained (trained) on massive corpora of text and source code, and can then be fine-tuned
(trained further) for specific tasks. LLMs can often be controlled via a prompt. The gener-
ations of a LLM can be affected using carefully constructed prompts (prompt engineering)
to attain particular outcomes [21].

LLMs have exhibited promising results in a range of software engineering tasks, in-
cluding programming language translation [31], code completion [13], and code summa-
rization [1]. Notably, LLMs demonstrate a remarkable capacity to generate completions
that appear natural and coherent in both natural language and source code contexts [26]. In

5



2. BACKGROUND AND RELATED WORK

part due to the naturalness of LLM generations—which is lacking in the output of traditional
test generation tools—researchers have started to train or use existing LLMs for generating
unit tests [26, 29, 5, 28]. Research on test generation using LLMs has demonstrated the
ability of LLMs to produce readable unit tests [29, 33].

2.3 GitHub Copilot

GitHub Copilot is a tool developed by GitHub1 and OpenAI2 to make code suggestions
(generations) directly within well-known IDEs. Copilot’s generations have been shown to
improve perceived developer productivity in a study from GitHub itself [34]. Furthermore,
several studies have demonstrated that Copilot’s generations have a similar readability and
understandability to human-written code [2, 22]. Copilot employs a distinct version of
OpenAI’s Codex LLM to create it generations [9]. Codex has been fine-tuned on publicly
available open-source GitHub projects [9]. A key difference between using Codex and
Copilot for code generations is that the prompt used to attain generations from the LLM can
not be dictated when using Copilot.

2.4 Large Language Models for Test Generation

We discuss several papers that use LLMs for unit test generation and how they relate to our
work.

Lahiri et al. [20] develops TICODER, a system that addresses the problem of the seman-
tic gap between the informal natural language used to produce a generation (i.e., the user
specified prompt) and the actual code generation. They advocate for “test-driven user-intent
discovery” [20], where direct user feedback is used to “refine and formalize the user intent
through generated tests.” The tests are generated using OpenAI’s Codex LLM [9]. In the
proposed system, TICODER, the focus is on establishing the correct user intent and then
generating tests that correspond to the user intent. We are particularly concerned with the
usability of test generated of already existing code, instead of test generations which are
created to conform to new code generations.

Tufano et al. [29] develops ATHENATEST, an LLM-based approach which is capable
of generating unit tests for Java. They pre-train an LLM using natural language and Java
source code, and then fine-tune it using Java unit tests and their focal methods (i.e., the
method(s) being exercised by the respective unit tests) [29]. They compare ATHENATEST

tests generations to tests generated by EvoSuite [14] and OpenAI’s GPT-3 LLM [8]. They
find that ATHENATEST “achieves comparable or better test coverage” while at the same time
being more readable, understandable, and effective as judged by professional practitioners
[29]. Lemieux et al. [21] develops CODAMOSA, a technique combining search-based soft-
ware testing (SBST) with Codex to achieve a higher structurual coverage. CODAMOSA

uses MOSA [25], a mutation-based test generation approach, until no more additional cov-
erage can be achieved; then it uses Codex [9] to generate a test for methods which still have

1GitHub: https://github.com/
2OpenAI: https://openai.com/
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2.4. Large Language Models for Test Generation

a low coverage. They evaluate CODAMOSA on over 400 open-source Python modules and
find that CODAMOSA achieves “statistically significantly higher coverage” on most mod-
ules when compared to using only SBST or Codex for test generation. Unlike Tufano et al.
[29] and Lemieux et al. [21] we do not develop a tool or train a LLM to generate tests for
a particular programming language with the goal of maximizing or increasing coverage.
Instead, we focus on investigating how usable test generations from GitHub Copilot are,
within an IDE for different use cases (e.g., without existing tests or using a certain method
comment strategy). Hence, we take a developer-centric perspective, and investigate how
Copilot can or should be used.

Schäfer et al. [26] develops an experimental tool named TESTPILOT3 that is able to
generate unit tests for JavaScript projects [26]. The TestPilot tool uses an “off-the-shelf”
version of the Codex LLM and employs prompt refiners to generate a test, where the prompt
is automatically refined based on whether the previous prompt generated a passing test. For
example, if a prompt resulted in a test containing a syntax error, Codex is re-prompted
and instructed to fix the error in the generated test. They evaluate the tool on 25 open-
source JavaScript projects. TestPilot achieves a median statement coverage of 68.2% and
the majority of generated tests included “at least one assertion that exercises functionality
from the package under test” [26]. A key difference between the work presented in this
thesis and the TESTPILOT approach, is that we interact with GitHub Copilot rather than
using OpenAI’s Codex model. As a result, we are unable to directly influence or view
the prompt which is used to prompt the LLM underlying GitHub Copilot when making a
generation. This difference does not only exist for the approach of Schäfer et al. [26], but
also for all other LLM test generation approaches discussed in this section.

Siddiq et al. [28] investigates the Java test generation ability of the Codex [9], Code-
Gen [23], and OpenAI’s GPT-3.5 [10] LLM. They construct varying prompt scenarios. For
example, containing the full code of the class under test, with code comments and relevant
imports needed for unit testing in Java. They find that across all models, numerous gen-
erated test were not compilable, even after they employed rule-based repairs to fix these
generated test [28]. Overall, they find that the LLMs perform worse than EvoSuite in terms
of line and branch coverage, and number of passing tests. Similarly, Bareiß et al. [5] in-
vestigates the Java test generating ability of Codex [9], among other tasks. They generate
tests for 18 Java methods using a prompt for each method consisting of helper functions, an
example method with a respective test, and the method under test. In particular, they find
that Codex achieves higher coverage than Randoop for the 18 Java methods. Furthermore,
they report that “suitable” examples are key for the Codex model to make “effective predic-
tions” [5]. Similar to Siddiq et al. [28] and Bareiß et al. [5] we investigate the test generation
ability of a LLM. Among other differences, we use GitHub Copilot, and they directly em-
ploy the Codex LLM for their test generations. Furthermore, Siddiq et al. [28] investigates
test smells in generations to assess their quality, whereas we consider usability aspects of
generations. Another difference is that we evaluate every generation as is, whereas Siddiq
et al. [28] attempts to apply rule-based repairs and then evaluates the generation. A key dif-
ference between our work and the work of Bareiß et al. [5] is that we only consider the first

3TESTPILOT: https://githubnext.com/projects/testpilot/
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2. BACKGROUND AND RELATED WORK

generation provided by Copilot, whereas they generate 100 test candidates for each method
under test so that it can be compared against Randoop.

Xie et al. [32] develops CHATUNITEST, a ChatGPT-based4 approach for automatically
generating unit tests. The approach generates a ChatGPT prompt with “adaptive focal con-
text” (referring to the code under test) to generate tests. If needed, it uses rule-based repair,
and prompt refining (similar to TESTPILOT [26]) to repair generations that are broken tests.
CHATUNITEST achieves similar coverage to EvoSuite on the projects which they evaluated,
and a substantially higher (method) coverage than ATHENATEST [29]. Relatedly, Yuan et al.
[33] investigates the test generation ability of ChatGPT, and develops CHATTESTER an ap-
proach that uses prompt refining to repair broken tests. The initial prompt includes the
focal method (code under test), relevant code imports, and a natural language description
instructing ChatGPT to generate a test for the focal method. They find that nearly 42.1%
of all tests generated by ChatGPT fail due to compilation or execution errors. Their pro-
posed approach, CHATTESTER, uses prompt refining to repair broken tests which yields a
substantial improvement over using ChatGPT directly.

Both Xie et al. [32] and Yuan et al. [33] use ChatGPT for their test generation. Their
approaches are similar to each other. They both also differ from the work presented in this
thesis in at least two ways: (1) they employ ChatGPT instead of GitHub Copilot (which
directly integrates in IDE) for test generations (2) they both use a form of prompt refining,
whereas we only consider the generation outputted by GitHub Copilot. Nonetheless, the
usability aspects proposed in this thesis are partially based on the test quality factors used
to evaluate CHATUNITEST [32], but instead of considering compile correctness, we look at
runtime correctness (among other differences).

4OpenAI’s ChatGPT3.5: https://platform.openai.com/docs/guides/gpt/managing-tokens
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Chapter 3

Study Design

The goal of our study is to understand how GitHub Copilot performs with regard to test
generation. We randomly sample tests from open-source projects and use Copilot to “re-
generate” the tests in different scenarios (as specified by the research questions). Within
this chapter we discuss how we select the projects and sample tests from those projects,
we devise usability aspects to investigate generations, and communicate how we have used
Copilot to invoke generations.

3.1 Project Selection

In order to answer the research questions we study the usability of Copilot’s test generation
ability using seven open-source Python projects. We chose Python projects as Python is one
of the best supported programming languages in the Codex model (Copilot is powered by a
Codex model) [9].

Project Domain Provider Stars LOC # Test
Classes

# Tests
Methods

click CLI GitHub 13941 21371 0 327
pyexperiment research GitHub 181 6492 36 239
django-multiurl web development GitHub 274 266 1 8
python-crontab DevOps GitLab 83 1927 19 176
exif image handling GitLab 29 6007 7 51
python-lottie file manipulation GitLab 112 24307 35 195
pyspread GUI application GitLab 47 21481 14 173

Table 3.1: List of open-source Python projects from which tests were sampled.

Projects were selected from GitLab1 and GitHub. Codex has been trained on public
GitHub open-source projects [9]. Caution must be exercised on selecting projects to prevent
Copilot from simply regurgitating training data from GitHub. Hence, we include open-
source projects from GitLab. We have intentionally selected mostly less popular projects, as

1GitLab: https://about.gitlab.com/
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3. STUDY DESIGN

we conjecture that the Codex LLM underlying Copilot has been trained on source code from
more popular open-source projects. We find that similar LLMs found in the literature often
use popular open-source projects for their pre-training [13, 31]. Although, we ultimately
can only speculate which projects Codex has been trained on.

Furthermore, we only consider projects for which the test suites use the pytest2 or
unittest3 framework, to simplify the coverage analysis needed in this study. The final set of
projects in Table 3.1 were selected to have a diverse set of software domains ranging from
a GUI application to simple file manipulation, and to have a diverse range of project sizes.

3.2 Sampling and Labelling

Early manual evaluation of a subset of test methods indicated that the presence of a method
comment influences the test generated by Copilot. Hence, we split the test methods into two
strata: test methods with comment and test methods without comment. We then employ
stratified sampling to select tests. We randomly select one test method with a comment and
one without a comment for each project. This results in a batch (set of tests) containing
sampled tests with and without comments for all projects. Some projects have no or only a
few tests with comments, and vice versa. Hence, the batch size can vary each time a new
one is created.

For each sampled test Ti (i is the identifier of a test) we use Copilot to create a generation
Gi. We call Ti the original, or human-written test. Every pair (Ti,Gi) is assigned code
aspect labels. Code aspect labels intend to reveal the deficiencies of generations (such as the
runtime or syntax errors). These labels are iteratively created based on manual inspection
of a generation Gi or original test Ti. For example, a generated test might be a failing
generation due to not catching an exception. This pair would then be assigned a label such
as failure_to_catch_exception among other code aspect labels. We continue to create
batches of test methods until we reach a point of theoretical saturation for the code aspect
labels. This initial set of test pairs (Ti,Gi) resulting from the sampling until saturation is
called O.

3.3 Aspects of Usability

We created the usability aspects to gauge the usability of (Python) test generations from
Copilot. In general, we define a usable generation as a test generation from Copilot that
could be directly used in a test suite without any modification. In particular, we define and
justify our set of aspects that represent usability as follows:

Syntactic Correctness Syntax errors occur when a generation Gi can not be parsed
by Python due to incorrect syntax usage. In turn, this renders the generation Gi as
broken; as a generation with a syntax error requires modification before it can be
employed in a test suite. Hence, negatively impacting the usability.

2pytest: https://docs.pytest.org/en/7.2.x/
3unittest: https://docs.python.org/3/library/unittest.html
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3.4. Invoking Generations

Runtime Correctness A generation without syntax errors may still give runtime er-
rors from the Python interpreter. For example, this occurs when a generation Gi is
passing an incorrect value to a parameter of a method. Similar to generations with
syntax errors, a generation with a runtime error requires modification and thus nega-
tively impacts usability.

Passing A syntactically correct and runtime error-free generation may still be a fail-
ing test. We prefer a passing test generation over a failing one, as it requires fewer
modifications to use in a test suite. Nevertheless, a failing test generation can expose
new faults. It is possible that the assertion oracles in the generated test are correct,
but the code under test is flawed. Similarly, a passing test might unintentionally com-
ply with faulty behavior exhibited by the code under test. We assume that because
the code under test is tested by the original test Ti, that the code under test is cor-
rect. Hence, a generation that is a failing test requires modification before it can be
employed in a test suite, which negatively impacts the usability.

Non-Triviality Passing tests may contain no assertions or have tautological asser-
tions. As a result the tests appears to be passing but in reality no meaningful behavior
is being asserted. This would thus require modification of the generated test, as the
test oracles would need to be added to check the correctness of the code under test,
which in turn negatively impacts the usability.

Coverage When considering a test pair (Ti,Gi) we can determine the branches cov-
ered of the two tests Ti and Gi separately. When the same branches are covered by Gi

as in Ti, we consider the generation Gi as a more usable generation than when Gi cov-
ers fewer of the same branches. Gi covering fewer of the same branches indicates that
fewer branches are exercised than the human-written test Ti. In turn, the generation
Gi would require modification to ensure it fully covers all branches as in the “in-
tended” human-written test Ti. This intention is visible to Copilot because we leave
the original method signature (and method comment). We consider covering fewer
of the same branches as the original test, a less suitable test, and hence negatively
impacting the usability.

Syntactic Correctness, Runtime Correctness, Passing, and Non-Triviality are determined
for all Copilot generations using the iteratively assigned code aspects labels. It should be
noted that a generation Gi can have multiple code aspects labels (e.g., passing and trivial).

3.4 Invoking Generations

We invoke a generation from Copilot for a given original test by stripping the test method
body, and then “regenerating” the test method body using Copilot directly in an IDE.4 For
example, in Listing 3.1 we have a test method from the pyspread project. The test method
consists of a method signature (row 1), method comment (row 2), and method body (row

4GitHub Copilot does not provide an official API, hence we manually use Copilot in an IDE.
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3-5). In Listing 3.2 we have the same test method but stripped, the method body has been
removed only leaving the method signature and method comment. This stripped test method
would then be used to invoke a generation from Copilot. The token [INSERT] indicates
from which position a Copilot generation is requested, this token is not included in the final
stripped test used for invoking a generation.

1 def test_set_row_height(self):
2 """Unit test for set_row_height"""
3

4 self.data_array.set_row_height(7, 1, 22.345)
5 assert self.data_array.row_heights[7, 1] == 22.345

Listing 3.1: Example method from the pyspread project.

1 def test_set_row_height(self):
2 """Unit test for set_row_height"""
3 [INSERT]

Listing 3.2: Stripped example method from the pyspread project.

As a result of this process we have the original test Ti and a generated test Gi. This allows
us to compare to a representative baseline. Namely, what a human programmer would
have written in that context, which is the original test. Furthermore, because we leave the
method signature (and method comment, if available) Copilot has some information of the
code under test being targeted. We are effectively simulating writing tests using GitHub
Copilot in an IDE.

3.4.1 With- and Without-Context

We are interested in the usability of the generations when there is an existing test suite
(With-Context) and when there is no existing test suite (Without-Context). Thus, for every
test invoked within an existing test suite, we also invoke the test without an existing test.
Meaning that all test files (except the test file of the original test) are deleted from the test
suite. Within the test file of the original test, all other test methods are deleted. This results
in a single test file, with a single test method. Code imports, and helper and utility functions
are kept.

3.5 Varying Test Method Comments

During the stripping process, the test method comment can be changed. A different method
comment can give a different generation. We evaluate the usability of generations with
varying test method comment strategies, to determine how a test method comment should
be formulated to attain the most usable test generations. We use a smaller subset of O called
M to evaluate method comment strategies. This subset M contains failing test pairs (Ti,Gi)
belonging to the following projects: click, django-multirurl, python-crontab, exif,
and pyspread. A failing test pair is a test pair for which the generation Gi is not a passing
test or empty. We selected failing test pairs from these five aforementioned projects to sim-
plify the method comment formulations process. Furthermore, we only selected failing test

12
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pairs because we assume that practitioners employing Copilot would first directly invoke
Copilot to make a generation for a test (due to the ease of invoking a generation) and if that
generated test is failing would then attempt to invoke Copilot to generate a more usable test
by providing a (instructive) comment.

We devise four method comment strategies which we evaluate. This means that for
every pair in (Ti,Gi) ∈ M we invoke four generations with a modified method comment,
and investigate their usability. We define and demonstrate an example for each of the four
strategies using the example test method in Listing 3.3.

1 def test_no_match(self):
2 with self.assertRaises(urlresolvers.Resolver404):
3 self.patterns_catchall.resolve(’/eggs/and/bacon/’)

Listing 3.3: Example method from the django-multirurl project.

(1) Minimal Method Comment
This type of comments provides a minimal description of a particular test method.
An example would be:

1 def test_no_match(self):
2 """Test the resolve function"""
3 [INSERT]
4

Listing 3.4: Test method with a Minimal Method Comment.

(2) Behavior-Driven Development Comment
This type of comment provides a Behavior-Driven Development scenario description
of a particular test method. The basic structure of the formulation is as follows:
“Given x when y then z.” An example would be:

1 def test_no_match(self):
2 """Given that I resolve a URL
3 when that URL does not match
4 then an exception should be raised"""
5 [INSERT]

Listing 3.5: Test method with a Behavior-Driven Development Comment.

(3) Usage Example Comment
This type of comments provides a code snippet of a possible call of the code under
test. In the usage example we include an explicit usage example and what the example
“gives” (if applicable). An example would be:

1 def test_no_match(self):
2 """example usage:
3

4 url = urlresolvers.URLResolver(RegexPattern(r ’ˆ/’), [
5 multiurl(
6 url(r ’ˆ(\w+)/$’, x, name=’x’)
7 )

13
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8 ])
9 url.resolve(’/jane/’)

10

11 gives:
12

13 ResolverMatch() object"""
14 [INSERT]

Listing 3.6: Test method with a Usage Example Comment.

The example usage does not need to relate to a specific scenario a test is testing, but
only to the code under test. This approach is based on earlier LLM test generation
work by Max et al. [26].

(4) Combined
Finally, we combine all aforementiond comment strategies in one method comment.
An example would be:

1 def test_no_match(self):
2 """Test the resolve function
3

4 Given that I resolve a URL
5 when that URL does not match
6 then an exception should be raised
7

8 example usage:
9

10 url = urlresolvers.URLResolver(RegexPattern(r ’ˆ/’), [
11 multiurl(
12 url(r ’ˆ(\w+)/$’, x, name=’x’)
13 )
14 ])
15 url.resolve(’/jane/’)
16

17 gives:
18

19 ResolverMatch() object
20 """
21 [INSERT]

Listing 3.7: Test method with a Combined Comment.

The method comments were manually formulated by two contributors of this research
project. They independently formulated the comments using two proper subsets of M,
where an intersection of those two subsets was first discussed to come to a negotiated agree-
ment on how to formulate each type of method comment.

3.6 Study Execution

Within this research we consider the first suggestion (generation) provided when GitHub
Copilot is invoked, and do not consider the alternative suggestions (when they are avail-
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able) to allow for a consistent and fair comparison.5 Suggestions were manually invoked
in the PyCharm 2022.2.4 (Professional Edition) with the GitHub Copilot plugin version
1.2.3.2385. All generations requested from Copilot in this study occurred between Decem-
ber 2022 and May 2023. All coverage computation was done using Coverage.py.6

5Getting started with GitHub Copilot (Seeing alternative suggestions): https://docs.github.com/en/c
opilot/getting-started-with-github-copilot#seeing-alternative-suggestions

6Coverage.py: https://github.com/nedbat/coveragepy
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Chapter 4

Results

Within this chapter we report the results of RQ1 and RQ2, which we combine in one section
(which we refer to as RQ1,2) so we can discuss each usability aspect With- and Without-
Context. We similarly discuss and combine the findings of RQ3 and RQ4.

4.1 RQ1,2 : How useable is a test generated by GitHub Copilot
within and without the context of an existing test suite?

In total 53 test pairs (Ti,Gi) were considered, these test pair form the set O. All considered
test pairs (Ti,Gi) ∈ O were labelled with one or multiple code aspects. All labels assigned
(with their definition) can be found in Table 4.2, we created 8 code aspects in total. The code
aspect labels were iteratively created, we stopped sampling sets of tests (batches) when there
were no more new code aspect labels that could be created (until theoretical saturation).

We find that 54.72% (29 generated tests) of all generations With-Context and 92.45%
(49 generated tests) of all generations Without-Context are failing generations. A failing
generation is a generation Gi that is a failing or broken test, or an empty generation. Fur-
thermore, we define a broken test as a test with either a syntax or runtime error. In Table
4.1 a breakdown of all tests generated is provided, where each generated test belongs to

With-Context (n = 53) Without-Context (n = 53)
Passing Tests 24 (45.28%) 4 (7.55%)
– Trivial 0 (0.00%) 0 (0.00%)
Failing Generations 29 (54.72%) 49 (92.45%)
– Failing Tests 9 (16.98%) 10 (18.87%)
– Broken Tests 12 (22.64%) 38 (71.70%)

– Syntax Error 3 (5.66%) 11 (20.75%)
– Runtime Error 9 (16.98%) 27 (50.94%)

– Empty Generation 8 (15.09%) 1 (1.89%)

Table 4.1: Breakdown of all Copilot generations for RQ1,2 With- and Without-Context.
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Code Aspect
Name/Label Definition

Assert Mismatch The generated test contains an assertion that evaluates to false
Empty Generation An empty generation was received from GitHub Copilot

Incorrect
Parameters

The generated test is using the keyword arguments (parameters)
of a class or method incorrectly. Either by passing down inapplicable
objects or values, or by passing down an incorrect number of arguments

Syntax Error The generated test contains a syntax error
Non-existent
Attribute

The generated test is using an attribute of an object, but the attribute
does not exist or is not subscriptable

Unresolved
Reference

The generated test contains a reference to an object which does
not exist in the namespace

Failure to
Catch Exception

The generated test raises an exception which is not captured, but
should be captured (as can be determined from the original test)

Lookup Error
The generated test is using a key of an object, but the key does
not exist

Table 4.2: List of code aspect labels with their definition.

Figure 4.1: Summary of code aspects of failing generations With-Context (RQ1).

one category based on their code aspect labels. In Figure 4.1 and Figure 4.2 we can find a
summary of code aspects of failing generations for With- and Without-Context respectively.
We discuss the usability aspects of these generations in the following subsections.
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context of an existing test suite?

Figure 4.2: Summary of code aspects of failing generations Without-Context (RQ2).

4.1.1 Syntax and Runtime Correctness

In Table 4.1 we find that 5.66% and 16.98% of all generations fail due to a syntax error
or runtime error (respectively) With-Context. Without the context of a test suite, 20.75%
and 50.94% of all generations fail due to a syntax or runtime error (respectively). We have
identified six reasons demonstrating why these syntax and runtime errors occur, and we
illustrate them with an example:

(1) Syntax Error
In all test generations containing a Syntax Error, both With- and Without-Context, the
failing generation appears to be incomplete which results in a Syntax Error. Up to the
last row of every generated test method with a Syntax Error all code is syntactically
correct. For example, the generated test method test_captures_stdout_stderr
(see Listing 4.1) fails because the last row of the generation is seemingly incomplete—
it misses a single closing quote and parenthesis.

1 def test_captures_stdout_stderr(self):
2 """Test capturing stdout and stderr from print
3 """
4 message = "This should be captured..."
5

6 buf = io.StringIO()
7 with stdout_err_redirector(buf):
8 print(message)
9 print(message , file=sys.stderr)

10
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11 self.assertEqual(buf.getvalue(), message + ’\n’ + message + ’\

Listing 4.1: Failing generation due to an Syntax Error. On row 11 the single quote and
parenthesis should be closed.

(2) Incorrect Parameters
Incorrect Parameters result in a failing generation when the keyword arguments (pa-
rameters) being passed down are not the expected parameters for a particular class or
method. For example, the generated test method test_option_optional is using a
keyword argument optional in the creation of a class instance of an Option object
(see Listing 4.2). However, the keyword optional does not exist for an Option ob-
ject. A TypeError is thrown noting the unexpected keyword argument (i.e., incorrect
parameter). Another form by which Incorrect Parameters results in failing generation
is when the parameters being used do exist, but are provided an incorrect value. For
example, when an integer is expected but a string is given.

1 def test_option_optional():
2 cli = Command("cli", params=[Option(["-c"], optional=True)])
3 assert _get_words(cli, ["-c"], "") == []
4 assert _get_words(cli, ["-c"], "-") == ["--help"]

Listing 4.2: Failing generations due to an Incorrect Parameter. On row 2 the class Option
does not have an argument optional.

(3) Non-existent Attribute
Non-existent Attribute occurs when an attribute of an object is being used, and the
attribute does not exist or is not subscriptable (i.e., Copilot assumes an object con-
tains other objects which can be accessed). For example, the generated test method
test_modify_ascii_same_len (see Listing 4.3) fails because the object self.image
does not contain the attribute _update_exif().

1 def test_modify_ascii_same_len(self):
2 """Verify that writing a same length string to an ASCII tag

updates the tag."""
3 self.image.model = "Canon EOS 5D Mark III"
4 self.image._update_exif()
5 check_value(self , self.image.model , "Canon EOS 5D Mark III")
6 check_value(self , self.image._get_exif(),

MODIFY_ASCII_SAME_LEN_HEX_BASELINE)

Listing 4.3: Failing generations due to an Non-Existent Attribute. The update exif()
attribute does not exist for self.image.

(4) Unresolved Reference
In a generation with an Unresolved Reference, a reference is made to an object
which does not exist. For example, the generated test method (see Listing 4.4) con-
tains the usage of a class named CronRange. This results in a NameError stating
that CronRange is not defined. Within the project there does exist a class named
CronRange. However, it is not imported and thus does not exist in the namespace.
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1 def test_18_range_cmp(self):
2 """Compare ranges"""
3 self.assertEqual(CronRange(’*/6’), CronRange(’*/6’))
4 self.assertNotEqual(CronRange(’*/6’), CronRange(’*/7’))
5 self.assertNotEqual(CronRange(’*/6’), CronRange(’*/6-7’))

Listing 4.4: Failing generations due to an Unresolved Reference. The CronRange object
does not exist.

(5) Failure to Catch Exception
In a generation with a Failure to Catch Exception, an exception is raised which is
meant to be caught, but the generation fails to do so. For example, the generated test
method test_cli (see Listing 4.5) fails because a SystemExit exception is thrown
by parser.parse_args() in some cases (this is a parametrized test).

1 def test_cli(argv , res):
2 """Test cli"""
3

4 with patch.object(sys, ’argv’, argv):
5 parser = PyspreadArgumentParser()
6 args = parser.parse_args()
7

8 if res is not None:
9 assert args == res

10 else:
11 assert args is None
12

Listing 4.5: Failing generations due to an Failure to Catch Exception. The
parser.parse args() can raise an exception which should the be catched.

(6) Lookup Error
Similar to Non-existent Attribute, but instead a key or index value is being used which
does not exist. For example, the generated test method test_06_env_access (see
Listing 4.6) fails because the key value CRON_VAR does not exist in self.crontab.env.
Another form of the Lookup Error is when an out of range index value is used on a
list or array.

1 def test_06_env_access(self):
2 """Test that we can access env variables"""
3 self.assertEqual(self.crontab.env[’PERSONAL_VAR’], ’bar’)
4 self.assertEqual(self.crontab.env[’CRON_VAR’], ’fork’)
5 self.assertEqual(self.crontab[0].env[’CRON_VAR’], ’fork’)
6 self.assertEqual(self.crontab[1].env[’CRON_VAR’], ’spoon’)
7 self.assertEqual(self.crontab[2].env[’CRON_VAR’], ’knife’)
8 self.assertEqual(self.crontab[3].env[’CRON_VAR’], ’knife’)
9 self.assertEqual(self.crontab[3].env[’SECONDARY’], ’fork’)

10

Listing 4.6: Failing generations due to an Lookup Error. The key value
self.crontab.env[’CRON VAR’] does not exist.
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Comparison With- and Without-Context Within Figure 4.1 and Figure 4.2 we observe
that tests generated Without-Context have an increase in overall occurrence of Non-existent
Attributes (366.67%), Incorrect Parameters (200%), Syntax Errors (266.67%), and Unre-
solved References (200%) when compared to tests generated With-Context. Tests generated
Without-Context have a decrease of 87.5% in Empty Generation occurrences.

4.1.2 Passing and Non-Trivial

In Table 4.1 we find that 45.28% and 7.55% of the generated tests were passing for With-
and Without-Context (respectively). All passing tests were non-trivial, and thus contained
at least one non-tautological assertion. Our manual inspection of passing tests With-Context
reveals that some passing tests appear to “mimic” tests in its direct test context (in the same
test file). To demonstrate the mimicking behavior we show a generated test in Listing 4.7
and a test in its direct context in Listing 4.8.

1 def test_option_optional():
2 cli = Command("cli", params=[Option(["-c"], optional=True)])
3 assert _get_words(cli, ["-c"], "") == []
4 assert _get_words(cli, ["-c"], "-") == ["--help"]

Listing 4.7: A test generated by Copilot.

1 def test_option_count():
2 cli = Command("cli", params=[Option(["-c"], count=True)])
3 assert _get_words(cli, ["-c"], "") == []
4 assert _get_words(cli, ["-c"], "-") == ["--help"]

Listing 4.8: A highly similiar test in the direct test context of Listing 4.7.

The generated test in Listing 4.7 appears to be mimicking the test in Listing 4.8. To further
capture this mimicking behavior we compute the edit similarity between the generated test
and every other test in its direct test context. We compute the edit similarity for a given test
T in the direct test context Gi as follows:1 s(T,Gi) = 1− d(T,Gi)

max(|T |,|Gi|) where d(x,y) is the
Levenshtein distance between x and y. For each generated test Gi we find the most similar
test T in the direct context of Gi, resulting in a set of edit similarities consisting of the edit
similarity value between every Gi (excluding empty generations) and the most similar test
T in the direct context of Gi.

In Figure 4.3 we have a box plot summarizing all edit similarities for both With- and
Without-Context. Overall, we can see that generations Gi With-Context are similar to some
test T in the direct context of Gi. This effect is particularly pronounced for passing tests
With-Context, which are even more similar. This implies that Copilot is producing genera-
tions which are similar to already existing tests in the direct context. Hence, GitHub Copilot
appears to be mimicking tests in the direct context for its test generations. Without-Context,
Copilot cannot mimic tests in the direct context (as this has been removed), and hence the
generations are less similar.

1This approach is based on the work of Schäfer et al. [26] and Ippolito et al. [26] who employed edit
similarity (or alike) to determine how similar a test was to a generated test in the context of LLM memorization.
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Figure 4.3: Box plot of the edit similarities between every Gi and the most similar test T in
the direct context of Gi for RQ1,2. An edit similarity of s(x,y) = 1 would indicate an exact
copy. Empty generations are excluded.

Moving on, we further note that in Table 4.1 we find 16.98% of the tests generated
With-Context has no syntax or runtime error, but contain an assertion that evaluates to false
(a failing test). In addition, 15.09% of tests generated With-Context are empty. That is,
Copilot did not return a generation. In total, combining these two percentages, 32.07% of
tests generated With-Context did not contain a syntax or runtime error but did not produce a
passing test. We find a similar percentage of failing tests for Without-Context generations,
but a 87.5% decrease in Empty Generations. We have identified two reasons demonstrating
why failing tests or empty generations occur, we illustrate them with an example:

(1) Assert Mismatch
Copilot is not able to determine the expected value of one or multiple assertions for
the code under test. For example the generated test method test_handle_bad_attribute
is asserting whether an AttributeError is raised where the error messages should
match the following string: "unknown image attribute fake_attribute". Copi-
lot however fails to generate the correct string (see Listing 4.9), which results in an
Assert Mismatch (failing test). In this case, Copilot did not have sufficient informa-
tion to correctly determine the string to be matched on. Furthermore, the code context
did not reveal which string should be matched on.

1 def test_handle_bad_attribute():
2 """Verify that accessing a nonexistent attribute raises an

AttributeError."""
3 with open(
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4 os.path.join(os.path.dirname(__file__), "grand_canyon.jpg"),
"rb"

5 ) as image_file:
6 image = Image(image_file)
7

8 with pytest.raises(AttributeError , match="image does not have
attribute"):

9 image.fake_attribute

Listing 4.9: Failing generation due to an Assert Mismatch. The string being matched on
(row 8) should be: "unknown image attribute fake attribute".

(2) Empty Generation
Empty Generations2 occur when Copilot returns no generation. The underlying rea-
son for returning an Empty Generation can only be speculated as the Copilot system
is closed-source. However, it could be caused by context length limit of the Codex
LLM underlying Copilot [28]. The prompt being formulated by Copilot based on the
code context may be too long for the model.

Comparison With- and Without-Context Within Figure 4.1 and Figure 4.2 we note that
tests generated Without-Context have a decrease of 87.5% in Empty Generations occur-
rences when compared to With-Context.

4.1.3 Coverage

We compute the branch coverage3 for the original test Ti and generated test Gi of every
passing test pair (Ti,Gi) ∈ O for both With- and Without-Context. In total, there are 24
passing tests With-Context, and four Without-Context. In Table 4.3 we find an overview of
all passing tests generated With-Context and their coverage data. Recall that for the cover-
age usability aspect we consider generations Gi covering fewer branches than the original
test Ti as negatively impacting the usability. We consider these generations as less suitable
with respect to the human-written test Ti; this suitability is captured by the Branch Overlap
Ratio in Table 4.3.

When considering passing tests With-Context, we find that 17 of the 24 (#2-18) gener-
ated passing tests cover the same branches as their human-written counterpart Ti. Only one
test generated (#1) covers the same and more new branches. The remaining five generated
tests (#19-24) cover strictly fewer branches and/or cover new branches. Hence, most pass-
ing tests generated by GitHub Copilot With-Context do not cover fewer branches than the
original test Ti, which positively impacts the usability.

Identical branches being exercised in the test cases (#2-18) can be partly explained due
to most passing tests mimicking an existing test within the direct test context. As a result
of this mimicking, Copilot may produce a generation that is highly similar to the original
test. This is for example the case when the original test Ti has tests in its direct test context

2An Empty Generation gives a passing test as the generated test method does not fail. We however count it
as a failing generation.

3The line coverage was initially also considered but yielded similar results.
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# Test Name

Diff.
Covered
Branches
(Ti,Gi)

Branch
Overlap
Ratio

New
Branches
Covered
by Gi

1 test option custom class reusable +7.38% 1.0 15
2 test show true default boolean flag value 0.0% 1.0 0
3 test resolve match first 0.0% 1.0 0
4 test resolve match last 0.0% 1.0 0
5 test resolve match middle 0.0% 1.0 0
6 test resolve match path brand 0.0% 1.0 0
7 test list all 0.0% 1.0 0
8 test main no processes long 0.0% 1.0 0
9 test data access 0.0% 1.0 0
10 test on markup renderer pressed 0.0% 1.0 0
11 test rgb2qimage 0.0% 1.0 0
12 test insertTable 0.0% 1.0 0
13 test row 0.0% 1.0 0
14 test rgb666 0.0% 1.0 0
15 test set row height 0.0% 1.0 0
16 test get absolute access string 0.0% 1.0 0
17 test 04 number 0.0% 1.0 0
18 test find list 0.0% 1.0 0
19 test 06 clear 0.0% 0.98 2
20 test 21 slice special 0.0% 0.8 13
21 test progressbar item show func -1.5% 0.98 0
22 test remove layer -11.36% 0.89 0
23 test 09 removal during iter -16.9% 0.81 2
24 test command -19.85% 0.85 0

Table 4.3: Overview of coverage data for all passing test pairs generated With-Context.

which are similar, but each one exercises a slightly different test scenario (such as the case
for repetitive tests with similar method signatures). Copilot mimics one of the neighboring
tests to produce its generation Gi, which ends up being nearly identical to the original test
Ti. This explains why the majority of passing tests generated from Copilot in Table 4.3
cover the exact same branches as the original test Ti.

In Figure 4.4 we have an overview of the coverage data of all passing tests Without-
Context. We find that only one generated test (#1) covers the same branches as their human-
written counterpart. The remaining generated tests (#2-4) cover fewer and/or some new
branches. This indicates that tests generated Without-Context, even if passing, are less
suitable.
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# Test Name

Diff.
Covered
Branches
(Ti,Gi)

Branch
Overlap
Ratio

New
Branches
Covered
by Gi

1 test get absolute access string 0.0% 1.0 0
2 test 09 removal during iter -4.23% 0.78 14
3 test get context objects missing -15.89% 0.87 1
4 test handle bad attribute -95.92% 0.06 0

Table 4.4: Overview of coverage data for all passing test pairs generated Without-Context.

4.2 RQ3,4 : How should a test method comment be formulated
to attain a usable test generation from GitHub Copilot
within and without the context of an existing test suite?

We consider test pairs from O who belong to a subset of the projects considered in this
investigation: click, django-multiurl, python-crontab, exif, and pyspread. Fur-
thermore, we only consider failing test pairs (see Section 3.5 for details). In total, we select
23 tests Ti for which the respective generation Gi was found to be failing in RQ1,2. These
test pairs form the set M. Recall that for RQ3,4 we formulate four test method comment
strategies: Minimal Method Comment (MMC), Behavior-Driven Development Com-
ment (BDDC), Usage Example Comment (UEC), and Combined Comment (CC). We
are in particular interested which of these four method comment strategies result in the most
usable test generations. Hence, we compare each method comment strategy to each other
using the aspects of usability and discuss the best performing ones.

For each test in Ti in M, we apply the four method comment strategies and then invoke
Copilot with the adjusted method comment. This result in four generations for each test Ti,
which we denote as (Ti,Gi,k) where k indicates which of the four method comment strategies
was used (e.g., Gi,MMC). All pairs (Ti,Gi,k) are assigned code aspect labels using the labels
defined in Table 4.2.

In Table 4.5 we find a breakdown of all test generations for each method comment
strategy, both With- and Without-Context. This breakdown is constructed similarly to the
breakdown in Section 4.1. Figure 4.4 shows a summary of code aspects of failing gener-
ations for both With- and Without-Context for all considered method comment strategies.
We compare the usability aspects of the generations for each method comment strategy in
the following subsections.

4.2.1 Syntax and Runtime Correctness

In Table 4.5 we find that With-Context the Usage Example Comment yields the least num-
ber of tests with syntax or runtime errors (broken tests). Without-Context the Combined
Comment strategy yields the least number of broken tests. In Figure 4.4 we find which
type of runtime errors occur for all the different method comment strategies, which reveals
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With-Context (n = 23)
MMC

(n = 23)
BDDC

(n = 23)
UEC

(n = 23)
CC

Passing Tests 5 (21.74%) 6 (26.09%) 8 (34.78%) 6 (26.09%)
– Trivial 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Failing Generations 18 (78.26%) 17 (73.91%) 15 (65.22%) 17 (73.91%)
– Failing Tests 8 (34.78%) 7 (30.43%) 8 (34.78%) 8 (34.78%)
– Broken Tests 7 (30.43%) 7 (30.43%) 4 (17.39%) 6 (26.09%)

– Syntax Error 1 (4.35%) 1 (4.35%) 1 (4.35%) 1 (4.35%)
– Runtime Error 6 (26.09%) 6 (26.09%) 3 (13.04%) 5 (21.74%)

– Empty Generations 3 (13.04%) 3 (13.04%) 3 (13.04%) 3 (13.04%)
Without-Context MMC BDDC UEC CC
Passing Tests 4 (17.39%) 3 (13.04%) 5 (21.74%) 5 (21.74%)
– Trivial 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Failing Generations 19 (82.61%) 20 (86.96%) 18 (78.26%) 18 (78.26%)
– Failing Tests 7 (30.43%) 6 (26.09%) 7 (30.43%) 11 (47.83%)
– Broken Tests 12 (52.17%) 14 (60.87%) 11 (47.83%) 7 (30.43%)

– Syntax Error 1 (4.35%) 4 (17.39%) 1 (4.35%) 1 (4.35%)
– Runtime Error 11 (47.83%) 10 (43.48%) 10 (43.48%) 6 (26.09%)

– Empty Generations 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)

Table 4.5: Breakdown of all Copilot generations for RQ3,4 With- and Without-Context.
Cells in bold highlight the largest number of passing or failing tests in the row.

why the generations fail. We find the same reasons as found in RQ1,2 apply here but with
different distributions for every method comment strategy.

Comparison With- and Without-Context In Figure 4.4 we note that, independent of the
comment strategy applied, a Without-Context generation results in an increase of broken
tests. Notably, the overall occurrence of Incorrect Parameters and Unresolved References
increases for generations Without-Context.

4.2.2 Passing and Non-Trivial

In Table 4.5 we find that all passing tests are non-trivial, independent of the method com-
ment strategy applied. With-Context the Usage Example Comment yields the most passing
test. Without-Context, both the Usage Example Comment and Combined Comment pro-
duce the same number of passing tests. Furthermore, in Figure 4.5 we similarly find that
GitHub Copilot is mimicking existing tests in the direct test context (see Section 4.1.2),
although the effect is less pronounced.

Comparison With- and Without-Context We observe that in Figure 4.4 generations
Without-Context produce no Empty Generations independent of method comment strategy,
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Figure 4.5: Box plot of the edit similarities between every Gi,k and the most similar test T
in the direct context of Gi,k for RQ3,4. An edit similarity of s(x,y) = 1 would indicate an
exact copy. Empty generations are excluded.

this is in similar to our earlier finding in RQ1,2 regarding Empty Generations. Namely,
generations made Without-Context receive fewer Empty Generations from Copilot, possibly
due to the limited context length of the underlying model of Copilot.

4.2.3 Coverage

We compute the branch coverage for the original Ti and generated Gi,k for every pair
(Ti,Gi,k) where Gi,k is a passing test, both With- and Without-Context. In Table 4.7 and
Table 4.8 we find an overview of all passing tests and their coverage data for With- and
Without-Context (respectively). Recall that for the coverage usability aspect we consider
covering fewer of the same branches as the original test Ti as negatively impacting the us-
ability, and that we are interested in the method comment strategy that results in the most
usable test generations. The ratio of the branches covered by the original test Ti and the
generated test Gi,k is captured using the Branch Overlap Ratio. Hence, we compare the dif-
ferent method comment strategies by computing the average Branch Overlap Ratio (BOR)
over all test generated. Concretely, we compute the average BOR over all test generations4

considered in RQ3,4 (n = 23) for each method comment strategy.
In Table 4.6 we find an overview of the average BOR. We observe that the Usage Ex-

ample Comment yields the highest average BOR when considering all test generated With-
Context when compared to other strategies. Likewise, we find that the Combined Com-

4Generations which are failing have a BOR of 0 by definition. Passing tests where the BOR is Not Available
(NA) are considered to have a BOR of 1.
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With-Context Without-Context
(n = 5)
MMC

(n = 6)
BDDC

(n = 8)
UEC

(n = 6)
CC

(n = 4)
MMC

(n = 3)
BDDC

(n = 5)
UEC

(n = 5)
CC

Avg. BOR
(all generated tests) 0.21 0.25 0.34 0.26 0.17 0.13 0.2 0.21

Table 4.6: Overview of the average Branch Overlap Ratio for each method comment strat-
egy. Cells highlighted in bold indicate the highest average Branch Overlap Ratio in the
row.

ment strategy produces test generations with the highest average BOR when compared to
other strategies for Without-Context generations.
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#
Method
Comment
Strategy

Test Name

Diff.
Covered
Branches
(Ti,Gi,k)

Branch
Overlap
Ratio

New
Branches
Covered
by Gi,k

1 UEC test handle bad attribute +102.04% 1.0 56
2 UEC test 18 range cmp +0.97% 1.0 1
3 UEC test reverse 0.0% NA 0
4 UEC test 07 reboot 0.0% 1.0 0
5 UEC test get context objects missing 0.0% 1.0 0
6 UEC test selection blocks 0.0% 1.0 0
7 UEC test confirm repeat 0.0% 0.98 4
8 UEC test option optional 0.0% 0.88 19
9 MMC test 07 reboot +0.98% 0.98 3
10 MMC test group group class 0.0% 1.0 0
11 MMC test get context objects missing 0.0% 1.0 0
12 MMC test mono 0.0% 1.0 0
13 MMC test option optional -8.87% 0.86 12
14 CC test reverse 0.0% NA 0
15 CC test no match 0.0% 1.0 0
16 CC test 07 reboot 0.0% 1.0 0
17 CC test get context objects missing 0.0% 1.0 0
18 CC test selection blocks 0.0% 1.0 0
19 CC test mono 0.0% 1.0 0
20 BDDC test handle bad attribute 0.0% 1.0 0
21 BDDC test cli 0.0% 1.0 0
22 BDDC test mono 0.0% 1.0 0
23 BDDC test get context objects missing -0.93% 0.99 1
24 BDDC test make pass decorator args -2.63% 0.9 12
25 BDDC test 18 range cmp -3.88% 0.94 2

Table 4.7: Overview of coverage data for all passing test pairs in M generated With-Context.
NA indicates that the test Ti did not cover any branches of the code under test (e.g., the unit
test is testing a method of a third-party library).
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#
Method
Comment
Strategy

Test Name

Diff.
Covered
Branches
(Ti,Gi,k)

Branch
Overlap
Ratio

New
Branches
Covered
by Gi,k

1 UEC test 07 reboot +0.98% 0.98 3
2 UEC test reverse 0.0% NA 0
3 UEC test 18 range cmp -1.94% 0.97 1
4 UEC test make pass decorator args -17.54% 0.83 3
5 UEC test 06 env access -18.09% 0.8 2
6 MMC test group group class +136.36% 1.0 78
7 MMC test 18 range cmp +6.8% 0.97 10
8 MMC test 07 reboot +0.98% 0.98 3
9 MMC test mono 0.0% 1.0 0
10 CC test modify ascii same len +83.33% 1.0 51
11 CC test modify ascii shorter +83.33% 1.0 51
12 CC test mono 0.0% 1.0 0
13 CC test 18 range cmp -1.94% 0.97 1
14 CC test 06 env access -12.77% 0.85 2
15 BDDC test no match 0.0% 1.0 0
16 BDDC test cli 0.0% 1.0 0
17 BDDC test mono 0.0% 1.0 0

Table 4.8: Overview of coverage data for all passing test pairs in M generated Without-
Context. NA indicates that the test Ti did not cover any branches of the code under test
(e.g., the unit test is testing a method of a third-party library).
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Chapter 5

Discussion

Within this section we discuss the results and answer each research question. Furthermore,
we attempt to formulate implications from our results. Finally, we discuss the threats to
validity.

5.1 Usability of GitHub Copilot’s Test Generations (RQ1,2)

We find that GitHub Copilot is able to generate usable tests when the intended test is similar
to an existing test in the test file. Tests generated Without-Context were failing generations
in 92.45% of the tests evaluated, this is a stark contrast to tests generated With-Context
which only resulted in 54.72% failing generations. Our findings indicate that Copilot heav-
ily depends on the direct test context to generate a passing tests. In addition, we note that
generations mimic existing tests in the context, which further strengthens the finding that
Copilot depends on the direct context.

Observation I
Our findings suggest that GitHub Copilot depends on the direct test context (i.e., the
test file in which Copilot is invoked) to produce passing tests. Often, mimicking a
neighboring test method when generating a test method.

Interestingly, our findings suggest that Copilot does not appear to consider the code
under test. Failing generations, both With- and Without-Context, fail for reasons such as
having Non-existent Attributes and Incorrect Parameters. These reasons for failing genera-
tions are particularly prominent in generations Without-Context. This suggests that Copilot
does not consider the code under test, but only other test methods in its context. Due to the
closed-source nature of Copilot, the exact context used to prompt generations can only be
speculated. It may be due to the limited context length (4096 tokens) of the Codex LLM
which powers Copilot [9, 28].

All projects which are considered in this research separate the test files from the code
files. Arguably, if tests are written in the same file as the code under test, Copilot may
produce more usable generation due to the presence of the code under test in the context.
The code under test could then provide information that would lead a test generation to
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not contain Incorrect Parameters or using Non-existent Attributes, as the code context can
provide examples of the correct usage.

Observation II
Our findings suggest that GitHub Copilot does not consider the code under test, when
invoking Copilot to generate tests written in files separate from the code.

We find that 55.66% of tests generated (combining both With- and Without-Context)
are broken tests or empty generations. These generations are particularly harmful to the
usability of Copilot’s test generation, as they can require substantial modification before the
generated test can be employed.

Failing tests are another culprit of Copilot’s test generation ability, with 17.92% of tests
generated (combining both With- and Without-Context) being a failing test. To determine
correct asserts is a hard problem within itself, which is known as the “test oracle prob-
lem” [6]. The test oracle problem refers to the problem of determining correct and incorrect
behavior, so that correct asserts can be formulated. Within our usability analysis of genera-
tions, we consider a generation that is a passing test better than a generation that is a failing
test, as it arguably requires fewer modifications to be used in a test suite. However, failing
tests can actually reveal new faults. Perhaps the assertions generated in the test are correct,
and the code under test is faulty. Likewise, a passing test may be conforming to faulty be-
havior of code under test. Nonetheless, we exclusively focus on usability of generations,
and not the fault-finding ability of generations. Additionally, we assume that the code under
test is correct as the original test is passing. Although it is important to note that whether
a generation is passing or failing does not necessarily say anything about correctness or
incorrectness of the code under test.

We find that 75% of passing tests generated With-Context cover the exact same branches
(or more) as their human-written counterparts (the intended test). Without-Context only
25% (1 out of the 4 passing tests) cover the same branches. We consider generations cover-
ing the same branches as their human-written counterpart as more suitable than generations
who do not. This indicates that passing tests generated by Copilot With-Context do capture
the “intention” of the test method signature (and comment, if available) quite well, as the
branches executed by the generated test are the same branches executed by the same test
written by a human. With-Context generations often covering the same branches as their
human-written counterpart can be partially explained by the mimicking behavior of Copilot
(see Observation I).

Observation III
Our findings suggest that 75% of all passing tests generated by GitHub Copilot
within the context of an existing test suite cover the exact same branches (or more)
as the same tests written by humans.
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5.2. Influencing GitHub Copilot’s Test Generations using Test Method Comments (RQ3,4)

Answer to RQ1

How usable is a test generated by GitHub Copilot within the context of an exist-
ing test suite?
Less than half (45.28%) of all generations invoked within the context of an existing
test suite are passing tests. The majority (54.72%) of generations are failing, bro-
ken, or empty tests. All passing tests contain non-tautological assertions and often
cover the same branches as their human-written counterpart. Due to the majority of
generations being failing generations, the overall usability of GitHub Copilot’s test
generation ability is considerably negatively affected, as close to half of all genera-
tions will require modification before being used in a test suite. Hence, the usability
of tests generated by GitHub Copilot within the context of an existing test suite is
poor.

Answer to RQ2

How usable is a test generated by Copilot without the context of an existing test
suite?
A minority (7.55%) of all generations invoked without the context of an existing
are passing tests. The vast majority (92.45%) of generations are failing, broken, or
empty tests. All passing tests contain non-tautological assertions and mostly cover
fewer of the same branches as their human-written counterpart. Due to the vast
majority of generations being failing generations and passing tests covering fewer
branches, the overall usability of GitHub Copilot’s test generation ability is severely
negatively affected, as almost all generations will require modification before being
used in a test suite. Hence, the usability of tests generated by GitHub Copilot without
the context of an existing test suite is extremely poor.

5.2 Influencing GitHub Copilot’s Test Generations using Test
Method Comments (RQ3,4)

Method comments are a way to prime GitHub Copilot to produce a different (potentially,
more useable) generation. We have compared the usability of Copilot’s test generations
when applying four different test method comment strategies: Minimal Method Comment
(MMC), Behavior-Driven Development Comment (BDDC), Usage Example Comment
(UEC), and Combined Comment (CC).

We find that the application of any one of these method comment strategies resulted in
more passing tests than not following any of these method comment strategies. Meaning
that the application of any one of the aforementioned method comment strategy would have
resulted in less failing, and thus more usable generations. We delve into the usability aspects
of all method comment strategies to determine which of these method comment strategies
resulted in the most usable generations, for both With- and Without-Context.

Firstly, we note that for all method comment strategies, both With- and Without-Context,
there are no trivial passing tests. Furthermore, we note 13.04% of With-Context genera-
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tions, independent of method comment strategy applied, are Empty Generations. Without-
Context, there are no Empty Generations. Earlier, in the results of RQ1,2, we noted that tests
generated Without-Context have a 87.5% decrease in Empty Generations. Both these find-
ings suggests that tests generated Without-Context are less likely to be Empty Generations.
This could be caused by context length limit of the Codex LLM underlying Copilot [28].
The prompt being formulated by Copilot based on the code context may be too long for the
model.

Observation IV
Our findings suggest that GitHub Copilot is less likely to produce an empty test
generation when there is no test code context.

Secondly, we observe that 34.78% of tests generated using the Usage Example Com-
ment strategy are passing tests With-Context and 21.74% are passing tests Without-Context,
the highest among all method comment strategies. We find that the Usage Example Com-
ment strategy produces generations with the lowest number of broken tests With-Context.
We further find that With-Context the number of failing tests for the Usage Example Com-
ment and Combined Comment strategy is the same, but Without-Context the Combined
Comment has more failing tests and fewer broken tests than the Usage Example Comment
despite having the same number of passing tests. This indicates that a Combined Comment
strategy would be more usable than a Usage Example Comment strategy when generating
tests Without-Context, as the Combined Comment strategy produces fewer broken tests
while having the same number of passing tests as the Usage Example Comment strategy
for Without-Context generations. We consider broken tests to be less usable than failing
tests. Nonetheless, it will require more effort to formulate a Combined Comment than a
Usage Example Comment. Thus, in practice, a Usage Example Comment would yield
similar results but with less effort.

The remaining two test method comment strategies, Behavior-Driven Development
Comment and Minimal Method Comment, produce more broken tests and fewer passing
tests than either the Combined Comment or Usage Example Comment strategy. Further-
more, this suggests that including a usage code example as part of the method comment
yields more passing tests.

Observation V
Our findings suggest that test method comment strategies that include a code usage
example result in more passing tests than test method comment strategies without a
code usage example.

Thirdly, passing tests that use the Usage Example Comment and Combined Comment
strategy produce the highest average ratio of branches overlapping with their human-written
counterparts for With- and Without-Context (respectively). Meaning that these strategies
produce the most suitable test for their respective context application.
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Answer to RQ3

How should a test method comment be formulated to attain a usable test gener-
ation from GitHub Copilot within the context of an existing test suite?
We find that the Usage Example Comment strategy produces the most passing
tests (34.78%) and the least amount of broken tests (17.39%) when compared to
all other method comment strategies considered within the context of an existing test
suite. Furthermore, the Usage Example Comment produces test generations with the
highest average ratio of branches overlapping with their human-written counterparts.
Hence, a test method comment should be formulated as a Usage Example Comment
to attain a usable generation within the context of an existing test suite.

Answer to RQ4

How should a test method comment be formulated to attain a usable test gener-
ation from GitHub Copilot without the context of an existing test suite?
We find that the Combined Comment strategy produces the most passing tests
(21.74%) and the least amount of broken tests (30.43%) when compared to all other
method comment strategies considered without the context of an existing test suite.
Furthermore, the Combined Comment produces test generations with the highest av-
erage ratio of branches overlapping with their human-written counterparts. Hence,
a test method comment should be formulated as a Combined Comment to attain a
usable generation without the context of an existing test suite.

5.3 Implications

Within this section we discuss the implications of our findings for three target groups: prac-
titioners, researchers, and for the GitHub Copilot system itself.

Implications for Practitioners Practitioners invoking GitHub Copilot (without modify-
ing method comment) in their software testing efforts, will find themselves applying manual
modifications to GitHub Copilot’s generations, even when applying GitHub Copilot within
an existing test file with existing tests (see Answer to RQ1). In that case, GitHub Copi-
lot tends to mimic other tests for its generations (see Observation I). Our findings suggest
that invoking GitHub Copilot with the intention of mimicking an existing test is more
likely to result in usable generation. Without any existing test context, GitHub Copilot
hardly provides any usable generation (see Answer to RQ2). Nonetheless, practitioners can
affect the generations by modifying the context. When you have an existing test context,
we observe that providing a code usage example within the test method before invoking
GitHub Copilot will yield more usable generations (see Answer to RQ3). When there
is no existing test context, a method comment providing both a natural language descrip-
tion and a usage example (Combined Comment) will yield more usable generations (see
Answer to RQ4). Although in practice, a Usage Example Comment will provide similar
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results to a Combined Comment, with less effort (because it takes more time to formulate
a Combined Comment).

Implications for Researchers Previous research on test generation using LLMs demon-
strated the value of including some form of a test code example when prompting the model [26,
5]. Generations from GitHub Copilot mimic their surrounding test context for its genera-
tions (see Observation I), essentially treating the surrounding test context as test code ex-
amples. Without that context, GitHub Copilot is unable to mimic and thus provides far
fewer usable generations (see Answer to RQ2). Furthermore, we find that method com-
ments containing a code usage example result in more passing tests, independent of the test
context (see Observation V). Hence, we hypothesize that test code examples are useful for
generating tests using LLMs.

Nonetheless, GitHub Copilot’s generations are often broken tests, even when test code
context is plentiful (see Answer to RQ1). Broken tests frequently contain runtime errors
such as Unresolved References or Non-existent Attributes. In these cases, GitHub Copilot
is “hallucinating” references, object attributes, or alike; these references or attributes
do not actually exist. Hallucination refers to generations (from language generations model
such as the LLM which underpins GitHub Copilot) that are “nonsensical or unfaithful to the
provided source content” [19]. Hallucinating is a larger challenge within language genera-
tion models [19]. Further research should investigate how these hallucinations, stemming
from the language generation models, can be mitigated in the domain of test generation.

Implications for GitHub Copilot Our findings suggest that GitHub Copilot does not
consider the code under test when generating tests (see Observation II). We hypothesize
that GitHub Copilot does not send the code under test as part of the prompt it uses for gen-
erating its suggestion. Furthermore, while we do not know the exact model which powers
Copilot, we do know that the Codex model has limited context length (4096 tokens), and
that Copilot uses a model which descends from a Codex model [9]. Thus, we assume that
it is not possible to include all code under test as part of the prompt for any reasonably
sized project. One could modify the prompts of the GitHub Copilot system such that
it includes the relevant code under test, as much as possible, whenever GitHub Copi-
lot is invoked for generating a test method. Such a system could use techniques such as
static analysis to narrow down the relevant code under test based on code imports/references
made in the direct test context, or possibly even the file or method name, and then include
the code under test as part of the prompt.

5.4 Threats to Validity

Within this section we discuss the primary threats to the validity of the research presented.
In particular, we discuss the internal and external threats, and the threats to reproducibility.
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5.4. Threats to Validity

5.4.1 Internal Threats

• Within this work we evaluate a commercial code generation tool (GitHub Copilot).
We have treated the GitHub Copilot system as a black-box system, and we do not
know what exact code context has been included which led to the generations which
we investigated in this research.

• The formulations of the different method comments (Minimal, Behavior-Driven De-
velopment, and Usage Example) are not unique for a given method. For example, ev-
ery person will likely write a (slightly) different Behavior-Driven Development Com-
ment for the same method. We partially mitigate this by ensuring method comment
formulations were independently formulated by two contributors of this research the-
sis.

• Code aspect labels were iteratively created by manual inspection of Copilot’s test
generations. Despite careful labelling the labels are subject to human error. This
however would not impact the results and findings overall as we investigated and
labelled 290 generations.

5.4.2 External Threats

• While we have considered in total 290 test generations from GitHub Copilot, they
all stem from 53 test methods sourced from seven open-source projects. All the se-
lected open-source projects use the English language for their (code) documentation,
and are focused on a diverse, but limited set of domains. The findings may not be
generalizable. Including more projects (which would lead to more generations) could
strengthen the confidence of the findings presented. Furthermore, we exclusively fo-
cus on the Python programming language, and do not include other programming
languages as part of our analysis.

• The findings presented in this research may not generalize to future versions of GitHub
Copilot. This can impact the findings presented if the GitHub Copilot system under-
goes (major) changes. We include the GitHub Copilot plugin version used in this
research in Section 3.6.

5.4.3 Threats to Reproducibility

The GitHub Copilot system, being a commercial system, may change its underlying LLM
in the future, resulting in different code generations than those documented and investigated
in this research. This in turn may impact the reproducibility of the results. To mitigate this,
we include all generations investigated in this study as part of the replication package [17].
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Chapter 6

Conclusions and Future Work

Within this section we provide a gist of the findings of our study by summarizing the results
and discussion, and provide several potential future research directions.

6.1 Conclusions

Within this thesis we investigated the usability of in total 290 tests generated by GitHub
Copilot in several scenarios: with- and without an existing test suite (test code context), and
with four different method comment strategies. We have defined several usability aspects
to investigate the generations.

Firstly, we find that 45.28% of test generated by Copilot within an existing test code
context are passing tests, containing no syntax or runtime errors. The majority (54.72%) of
generated tests within an existing test code context are failing, broken, or empty tests. We
observe that tests generated within an existing test code context often mimic existing test
methods. In part due to this mimicking effect, passing tests generated by Copilot within
existing test code context often cover the exact same branches as their human-written coun-
terpart, which indicates that these generations are suitable.

Secondly, we find that tests generated by Copilot without an existing test code context
are substantially less usable than tests generated within an existing test code context, with
the overwhelming majority (92.45%) of test generations being failing, broken, or empty
tests. Only 7.55% of tests generated without existing test code context were passing, and
most of them covered fewer branches than their human-written counterpart.

Finally, we find that test method comments using a Usage Example Comment produced
the most usable test generations when invoking GitHub Copilot within an existing test code
context. Without existing test code context, the Combined Comment strategy yielded the
most usable test generations.

6.2 Future work

Within this work, we demonstrate the usability of tests generated by Copilot in projects
written using the Python programming language. A natural suggestion for future work is
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to investigate Copilot’s output in test suites written in different programming languages
and to potentially compare them (as far as it is possible). In particular, statically typed
programming languages might produce different reasons for failing generations than the
ones we have seen so far.

We have only considered one particular commercial code generation tool: GitHub Copi-
lot. There do also exist other commercial code generation tools (such as Tabnine1). Fur-
thermore, there are code generation models in existence in research [13, 31] or in the open-
source domain (such as FauxPilot2). It would be useful information for software practition-
ers to know how the test generation usability of all these different tools and models relate.
The usability aspects defined within this thesis can be applied to investigate the usability of
other code generation tools, as the aspects are tool agnostic.

A newly released blog article3 from GitHub suggests that newer versions of GitHub
Copilot consider other code files which are open in the IDE for its generations. Future
research on GitHub Copilot’s test generations should consider how opening certain code or
test files in the IDE impacts the usability of Copilot’s test generations.

1Tabnine: https://www.tabnine.com/
2FauxPilot: https://github.com/fauxpilot/fauxpilot
3“How GitHub Copilot is getting better at understanding your code”: https://github.blog/

2023-05-17-how-github-copilot-is-getting-better-at-understanding-your-code/
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