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SUMMARY

Air traffic has grown tremendously over the last century and is predicted to keep
on growing at a rate of 4 to 5% per year for at least the next 20 years. Increasing
air traffic also means increasing impact on the environment through the emission
of greenhouse gasses and noise. The growing environmental awareness in soci-
ety has lead to the formulation of a set of goals for the aerospace industry that
are challenging, if not impossible, to achieve with the current aircraft develop-
ment strategies. To significantly increase the efficiency of air transport, and thus
decrease the environmental impact, radical new aircraft designs are necessary.

The traditional sequential design strategies do not allow for the proper trade-
offs between the different disciplines involved in aircraft design. The traditional
emphasis on aerodynamic performance of a wing, for example, may result in a
heavier wing structure and as a consequence, a reduced overall performance when
looking at the range or fuel consumption instead of only the drag. This problem
can be overcome by using multi-disciplinary optimisation. Research done since the
1970’s and 1980’s has shown that significant improvements in aircraft performance
can be obtained when aerodynamics and structures are designed in a simultaneous
approach.

Typically, such multi-disciplinary optimisation frameworks use a number of dif-
ferent geometries and computational meshes for optimisation and analysis. Not
only does this introduce extra computational cost, because information has to
be transferred from one mesh to the other and back, but it also causes errors
between the optimised and analysed geometries due to the approximative nature
of these computational meshes. Furthermore, much of the research is limited in
design freedom due to the use of the standard planform variables that describe
the current generation aircraft wings. This obstructs the way towards disruptive
new designs.

In the research presented in this dissertation, the goal was to remove these prob-
lems by developing a geometrically consistent aerostructural optimisation frame-
work for the preliminary design of both conventional and non-conventional aircraft
wings. The isogeometric analysis concept, a method where the analysis models
use the same basis functions, and thus geometry, as those used in computer-aided
design software, was identified as a potential solution to both issues. Implement-
ing this method in both the aerodynamic and structural analysis models results in
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a framework that uses the same geometry in optimisation and analysis, meaning
no mesh generation or complex transfer algorithms are required. Furthermore,
the computer-aided design geometries provide a smooth and flexible way of modi-
fying the shape and thus automatically provides a basis for very broad shape
optimisation.

The implementation of the isogeometric concept was first tested in a two-dimen-
sional optimisation framework. An isogeometric boundary element potential flow
solver was developed that uses the Greville abscissae for the collocation points.
Multi-patch support was implemented to enable the analysis of more complex
airfoil geometries. A Timoshenko beam model was coupled to the aerodynamic
model through a coupling method based on gradient information related to the
shared geometry for optimisation and analysis. A boundary layer model was ad-
ded to estimate the viscous drag generated by the airfoil, as this is crucial for
shape optimisation.

To demonstrate the complete two-dimensional optimisation framework, the land-
ing performance of a morphing airfoil for a 25 kg UAV was optimised. A two-step
optimisation approach was formulated in which in the first step the lift coefficient
was maximised and in the second step the drag coefficient was included in the
objective to ensure the airfoil was free of separated flow. The design variables
consisted of the skin thickness and a version of lamination parameters suitable for
describing the layup of beam structures. The actuation forces were also included
as design variables. At this stage, the aerodynamic shape was optimised implicitly
through the morphing design variables.

The optimisation of the airfoil, equipped with three actuators connecting the
top and bottom skin behind the front spar, was performed multiple times with
different sets of design variables. A clear trend was visible showing that including
more design freedom resulted in more extreme landing configurations and higher
lift coefficients. The inviscid results showed a maximum increase of 42% in lift
coefficient when all design variables were included. The inclusion of the drag
coefficient in the objective function in the second step of the optimisation indeed
resulted in a design that did not suffer from flow separation in the most extreme
landing configuration.

The experience and knowledge gained during the development of the two-dimen-
sional aeroelastic optimisation framework were used in the next stage to create a
more elaborate three-dimensional version. Again, an isogeometric boundary ele-
ment potential flow model was selected as most suitable. A multi-patch formula-
tion was developed to allow the analysis of more complex aircraft wing geometries
and the Prandtl-Glauert correction was implemented to extend the validity of the
model to higher subsonic flow conditions.

The Reissner-Mindlin shell theory was selected as most suitable for analysis of the
multi-patch structural geometry. The isogeometric shell model combines naturally
with the geometry representation and the aerodynamic boundary element model.
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Lamination parameters were implemented to be able to vary the composite layups
in a continuous fashion. To evaluate the failure of the composite material an
existing Tsai-Wu failure envelope based on principle strains instead of stresses
was implemented.

The aerodynamic geometry in the three-dimensional framework consists of only
the outer mold line and the structural geometry of only the wingbox, making
the coupling method developed in the two-dimensional framework cumbersome
to use. Coupling the aerodynamic and structural models was thus done through
a novel method based on radial basis function interpolation that properly deals
with the non-interpolatory nature of the control points. The new coupling method
was demonstrated to accurately transfer loads and displacements between the two
models.

Besides the lift-induced drag provided by the potential flow model, the viscous
drag was required for proper wing shape optimisation. The boundary layer model
used in the two-dimensional framework was taken as the basis for a quasi-three-
dimensional boundary layer model. Additionally, the buckling behaviour of the
structural wingbox was analysed using an isogeometric plate buckling model. The
buckling panels were modelled as simply-supported plates bordered by the ribs
and stiffeners.

The three-dimensional isogeometric aeroelastic analysis framework was demon-
strated through the analysis of the undeflected Common Research Model. Three
different load cases were analysed. The cruise condition was analysed for aeroelas-
tic deformation and boundary layer characteristics. The 2.5g pull-up and -1.0g
push-down load cases were investigated for aeroelastic deformation and mater-
ial and buckling failure. The presented results compared favourably with results
from literature.

Implementation of the isogeometric aeroelastic model in an optimisation frame-
work and application to the fully free optimisation of a rectangular wing exposed
several challenges in the current implementation. Maintaining the mesh quality
throughout the shape optimisation was found to be one of the main challenges.
The non-smooth design sensitivities resulted in extreme local changes of the wing
shape, resulting in severe distortion of the isogeometric mesh. Additionally, the
discontinuous nature of the boundary layer model had a detrimental effect on
the convergence of the optimisation and the low computational efficiency of the
current implementation became more apparent in an optimisation environment.
Potential solutions for these challenges were presented and discussed.

In conclusion, it was demonstrated that isogeometric analysis is a suitable ap-
proach to create a geometrically consistent aeroelastic analysis model. Implement-
ation in an aerostructural optimisation framework for designing non-conventional
aircraft wings, however, has exposed some shortcomings in the current imple-
mentation, but potential solutions were identified to overcome these challenges.
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SAMENVATTING

Luchtverkeer is enorm gegroeid door de laatste eeuw heen en het wordt voorspeld
dat het zal blijven groeien met 4 tot 5% per jaar voor ten minste de volgende 20
jaar. De toename in luchtverkeer betekent ook een toename van de invloed op het
milieu door de uitstoot van broeikasgassen en lawaai. De toenemende aandacht
voor het milieu in de samenleving heeft er voor gezorgd dat er een aantal doelen
zijn geformuleerd voor de luchtvaart industrie die uitdagend, zo niet onmogelijk,
te behalen zijn door middel van de huidige strategieën voor het ontwerpen van
vliegtuigen. Om aanzienlijke verbeteringen te realiseren in de efficiëntie van het
luchtverkeer, met als gevolg vermindering van de belasting van het milieu, zullen
er ingrijpende nieuwe vliegtuig ontwerpen nodig zijn.

De traditionele sequentiële ontwerp strategieën staan het niet toe om de benodigde
afwegingen te maken tussen de verschillende disciplines die een rol spelen binnen
het ontwerpen van vliegtuigen. De nadruk die van oudsher op de aerodynamis-
che prestaties wordt gelegd, kan bijvoorbeeld resulteren in een vleugelconstructie
die zwaarder is met als gevolg verminderde prestaties als er naar het vliegbereik
of brandstofverbruik wordt gekeken in plaats van naar alleen de weerstand. Dit
probleem kan opgelost worden door gebruik te maken van multidisciplinaire op-
timalisatie. Onderzoeken gedaan sinds de jaren zeventig en tachtig van de vorige
eeuw hebben aangetoond dat er aanzienlijke verbeteringen te behalen zijn als de
aerodynamica en constructie tegelijkertijd worden ontworpen.

Zulke multidisciplinaire optimalisatie raamwerken gebruiken gewoonlijk een aan-
tal verschillende geometrieën en discretisaties voor optimalisatie en analyse. Dit
zorgt niet alleen voor extra rekenkundige kracht die nodig is om informatie tussen
de verschillende discretisaties uit te wisselen, maar ook voor afwijkingen tussen
de geoptimaliseerde en geanalyseerde geometrieën doordat dit soort discretisaties
een benadering zijn van de daadwerkelijke geometrie. Veel van het bestaande
onderzoek is bovendien gelimiteerd in ontwerpvrijheid vanwege het gebruik van
standaard variabelen voor het beschrijven van het bovenaanzicht van de vleugel
die gericht zijn op het ontwerp van de huidige generatie vliegtuigvleugels. Dit
houdt de ontwikkeling van innovatieve nieuwe vleugelontwerpen tegen.

Het doel van het onderzoek dat in deze dissertatie wordt beschreven was om deze
problemen weg te nemen door het ontwikkelen van een geometrisch consistent
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optimalisatie raamwerk voor gelijktijdige optimalisatie van de aerodynamica en
de constructie tijdens de voorontwerp fase van conventionele en onconventionele
vliegtuig vleugels. Isogeometrische analyse is een methode die gebruikt maakt
van dezelfde onderliggende wiskundige functies, en dus dezelfde geometrie, als
die in computer-ondersteund ontwerpen worden gebruikt. De methode vormt een
mogelijke oplossing voor de beschreven problemen. De implementatie van deze
methode in zowel het aerodynamische als het constructiemodel resulteert in een
raamwerk dat gebruik maakt van dezelfde geometrie in zowel de optimalisatie als
de analyse. Er zal dus geen rekenkracht verloren gaan aan het creëren van dis-
cretisaties en het overdragen van informatie tussen de verschillende modellen. De
computer-ondersteunde ontwerp geometrie voorziet bovendien in de mogelijkheid
om de vorm van de vleugel vloeiend aan te passen over een breed bereik en vormt
dus een goede basis voor uitgebreide vleugelvorm optimalisatie.

De implementatie van het isogeometrische concept is eerst getest in een twee-
dimensionaal optimalisatie raamwerk. Een isogeometrisch randelementen poten-
tiaalstromingsmodel dat gebruik maakt van de Greville abscissen als collocation

punten is ontwikkeld. De analyse van complexere vleugelprofielen is gëımplemen-
teerd door middel van de toevoeging van ondersteuning voor geometrieën die uit
meerdere stukken bestaan. Een Timoshenko balk model is gekoppeld aan het aero-
dynamische model door middel van een koppelingsmethode gebaseerd op gradiënt
informatie gerelateerd aan de gedeelde geometrie voor optimalisatie en analyse.
Een grenslaag model is toegevoegd om de viskeuze weerstand opgewekt door het
vleugelprofiel te berekenen, omdat dit essentieel is voor de vorm optimalisatie.

Het tweedimensionale raamwerk is gedemonstreerd door middel van een toepas-
sing in het optimaliseren van de landingscapaciteiten van een 25 kg zwaar on-
bemand vliegtuig door gebruik van morphende vleugelprofielen. Een twee-staps
optimalisatiemethode is ontwikkeld waarin in de eerste stap de liftcoëfficiënt wordt
gemaximaliseerd en in de tweede stap de weerstandscoëfficië}nt wordt toegevoegd
in de doelfunctie om te zorgen dat er geen loslating voorkomt in de luchtstroming.
De ontwerpvariabelen bestaan uit de huid dikte en een versie van laminatiepara-
meters geschikt voor het beschrijven van het composieten laminaat voor balkcon-
structies. De morphing krachten zijn ook onderdeel van de ontwerpvariabelen. In
deze fase van het onderzoek werd de aerodynamische vorm alleen geoptimaliseerd
door middel van de ontwerpvariabelen die voor morphing gebruikt werden.

De optimalisatie van het vleugelprofiel, uitgerust met drie actuatoren die de huid
achter de voorste langsligger aan de boven- en onderkant met elkaar verbinden, is
meerdere keren uitgevoerd met verschillende combinaties van ontwerpvariabelen.
Een duidelijke trend kon worden waargenomen waarbij het toevoegen van meer
ontwerpvariabelen resulteerde in een extremere landing configuratie en hogere
liftcoefficienten. De niet-viskeuze resultaten lieten een maximale toename in
liftcoëfficiënt van 42% zien wanneer alle ontwerpvariabelen werden gebruikt in
de optimalisatie. De toevoeging van de weerstandscoëfficiënt in de doelfunctie in
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de tweede stap zorgde er inderdaad voor dat er geen loslating plaatsvond op het
vleugelprofiel in de meeste extreme landingsconfiguratie.

De ervaringen en kennis opgedaan in de ontwikkeling van het tweedimensionale
raamwerk is gebruikt in de volgende fase, waar een uitgebreidere versie voor driedi-
mensionale problemen is ontwikkeld. Wederom is een isogeometrische randelemen-
ten potentiaalstromingsmodel gekozen als meest geschikt. Complexe vliegtuigvleu-
gels behoren tot de analyse mogelijkheden door implementatie van de mogelijkheid
om geometrieën bestaand uit meerdere stukken door te rekenen en de Prandtl-
Glauert correctie is toegevoegd om de validiteit van het model uit te breiden naar
hoog-subsonische snelheden.

De Reissner-Mindlin schaaltheorie was geselecteerd als de meest geschikte the-
orie voor de analyse van de vleugeldoos. Het isogeometrische schaalmodel vormt
een natuurlijke combinatie met de representatie van de geometrie en het aero-
dynamische randelementen model. Laminatieparameters zijn gëımplementeerd
om te zorgen dat de composieten laminaten op een continue manier gevarieerd
kunnen worden. Om het falen van het materiaal te kunnen voorspellen is een
Tsai-Wu bezwijkcriterium gebaseerd op de hoofdrekken in plaats van spanningen
gëımplementeerd.

De aerodynamische geometrie in het driedimensionale raamwerk bestaat uit al-
leen de buitenste huid van de vleugel en de constructie geometrie uit alleen de
vleugeldoos. Vanwege deze ongelijkheid in geometrie kan de koppelingsmethode
ontwikkeld in het tweedimensionale raamwerk niet simpelweg gebruikt worden.
Een nieuwe methode gebaseerd op radiale basis functie interpolatie is ontwikkeld
die goed om kan gaan met de niet-interpoleerbare eigenschappen van de controle
punten. Demonstratie van de nieuwe koppelingsmethode heeft aangetoond dat
de krachten en verplaatsingen nauwkeurig worden overgegeven tussen de twee
modellen.

Naast de lift gëınduceerde weerstand berekent in de potentiaalstromingsmodel, is
ook de viskeuze weerstand nodig voor fatsoenlijke vleugelvorm optimalisatie. Het
grenslaag model dat gebruikt werd in het tweedimensionale raamwerk is gebruikt
om een quasi-driedimensionaal grenslaag model te creëren. Het knikgedrag van
de vleugeldoos wordt bovendien geanalyseerd door een isogeometrisch knikmodel
voor platen. Deze knik panelen worden gemodelleerd als vrij opgelegde platen
omlijst door de dwarsliggers en verstijvers in de vleugel.

De mogelijkheden van het driedimensionale isogeometrische aeroelastische analyse
raamwerk zijn gedemonstreerd door middel van de analyse van het undeflected

Common Research Model. Drie verschillende belastingsgevallen werden geana-
lyseerd. De kruisvlucht omstandigheid werd geanalyseerd op het gebied van aer-
oelastische vervormingen en grenslaag gedrag. De 2.5g optrek- en -1.0g neerdruk-
condities werden onderzocht op het gebied van aeroelastische vervormingen en
materiaal en knik bezwijking. De gevonden resultaten waren vergelijkbaar met
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resultaten gevonden in de literatuur.

Implementatie van het isogeometrische aeroelastische model in een optimalisatie
raamwerk en toepassing op de volledig vrije optimalisatie van een rechthoekige
vleugel onthulde een aantal uitdagingen die nog aanwezig waren in de huidige
implementatie. Het behouden van de kwaliteit van de vermazing van de geomet-
rie doorheen de gehele optimalisatie was een van de hoofduitdagingen gebleken.
De piekerige ontwerpgradiënten resulteerden in extreme lokale veranderingen in
vleugelvorm waardoor de vermazing zwaar vervormde. Een andere uitdaging was
de discontinue eigenschap van het grenslaagmodel die een negatief effect had op
de convergentie van de optimalisatie. De benodigde computerkracht vormde de
laatste grote uitdaging. In een optimalisatie omgeving werd duidelijk dat de hui-
dige implementatie relatief veel computerkracht vereist. Potentiele oplossingen
voor deze uitdaging werden voorgesteld en besproken.

Concluderend kan er gezegd worden dat isogeometrische analyse succesvol is
gebruikt om een geometrisch consistent aeroelastisch analyse model te creëren.
Implementatie van dit model in een aerodynamisch en constructie optimalisa-
tie raamwerk voor het ontwerp van onconventionele vliegtuigvleugels heeft echter
laten zien dat er nog tekortkomingen zitten in de huidige implementatie, maar
potentiele oplossingen zijn aangedragen om deze tekortkomingen te boven te ko-
men.
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NOMENCLATURE

ROMAN SYMBOLS

A Cross-sectional area m2

A Aerodynamic influence coefficient

A Laminate in-plane stiffness matrix N/m

As Laminate transverse shear stiffness matrix N/m

b Span m

B Laminate coupling stiffness matrix N

B Matrix with strain-displacement relations

c Chord m

cf Skin friction coefficient -

C Boundary element jump term

Cd Section drag coefficient -

CD Wing drag coefficient -

Cl Section lift coefficient -

CL Wing lift coefficient -

Cp Pressure coefficient -

CT Thrust specific fuel consumption kg/N/s

C Material stiffness tensor

d Dimensionality

D Laminate out-of-plane stiffness matrix N m

E Young’s modulus N/m2

f Force vector N

F Force vector N

g Gravitational acceleration m/s2

G Fundamental solution

G Shear stiffness N/m2

G Normal velocity aerodynamic influence coefficient matrix

h Beam cross-sectional height m

H Aeroelastic coupling matrix
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H Perturbation aerodynamic influence coefficient matrix

I Second moment of area m4

J Jacobian

K Stiffness matrix

L Lift N

M Mach number

M Mass kg

n Number of basis functions

n Unit normal vector

N B-spline basis function

p Degree of basis functions

p Pressure N/m2

P Control points

Q Velocity m/s

r Distance between two points m

r Vector between two points m

R NURBS basis function

R Radius m

R Range m

R Residual vector

s Curvilinear beam coordinate m

S Boundary surface

S Material strength in shear N/m2

S Surface area m2

t Thickness m

t Unit tangential vector

T Transformation matrix

u Displacement m

u Displacement vector m

U Elastic strain energy N m

U Velocity vector m/s

V Potential energy N m

V Volume m3

w Beam cross-sectional width m

w Control point weight factor

w Mode shape

W Weight N

x Design variable
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x x-coordinate m

x Position vector m

X Material strength in 0-direction N/m2

y y-coordinate m

Y Material strength in 90-direction N/m2

z z-coordinate m

GREEK SYMBOLS

α Angle of attack rad

α Membrane beam lamination parameter

β Bending beam lamination parameter

β Prandtl-Glauert correction factor

γ Shear strain -

Γ Boundary

ǫ membrane strain -

θ Rotational deformation rad

κ Bending strain -

λ Eigenvalue

ν Poisson’s ratio -

ξ Knot value

Ξ Knot vector

Π Total potential energy N m

ρ Density kg/m2

σ Normal velocity vector m/s

φ Perturbation velocity potential m2/s

φ Perturbation velocity potential vector m2/s

Φ Total velocity potential m2/s

χ Bending strain -

χ Set of non-zero basis functions

SUB/SUPERSCRIPTS

∞ Freestream conditions

0 Undeformed

a Aerodynamic

b Bending

b Body surface
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c Compressive

C0 C0-continuous

m Membrane

ref Reference value

s Shear

s Structural

t Tangential

t Tensile

v Viscous

w Wake surface

ABBREVIATIONS

BEM boundary element method

BIE boundary integral equation

CAD computer-aided design

CAE computer-aided engineering

CFD computational fluid dynamics

CRM common research model

FEA finite element analysis

FEM finite element method

FFD free form deformation

FSI fluid-structure interaction

GCMMA globally convergent method of moving asymptotes

IGA isogeometric analysis

MDO multi-disciplinary optimisation

MTOW maximum take-off weight

NURBS non-uniform rational b-splines

RANS Reynolds-averaged Navier-Stokes

RBF radial-basis function

SST singularity subtraction technique

UAV unmanned aerial vehicle

uCRM undeflected common research model
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1
INTRODUCTION

Aircraft industry has grown tremendously in the 20th and 21st century, from the
first flight of the Wright brothers to the multi-billion Euro industry it is today. A
continued annual growth of 4 to 5 percent of the air traffic is predicted by Airbus
for the foreseeable future, more than doubling the number of annual passenger
kilometres within 20 years [1]. Whereas this growth is an opportunity from an
economic point of view, it is problematic from an environmental standpoint.

The European Commission, together with key figures from the aircraft industry,
formulated a set of, among others, environmental goals for the year 2050 for the
aircraft industry [2]. These goals involve a 75% reduction in C02 and a 90% reduc-
tion in NOx emissions per passenger kilometre compared to typical new aircraft
in the year 2000. Achieving the aforementioned growth of the aircraft industry
sector and at the same time accomplishing these challenging goals, requires signi-
ficant technological advancements. The traditional incremental advances to the
well-known ”wing and tube” concept, observed in the last half a century, will have
to make place for disruptive advances in aircraft design for the future generations
of aircraft in order to significantly increase the likelihood of accomplishing these
environmental goals.

Deviation from the ”wing and tube” configuration renders large portions of the
empirical data and knowledge currently used in aircraft design obsolete. Physics-
based models are therefore necessary to fill up this void in knowledge and enable
the design of new aircraft configurations. Traditionally, the disciplines involved in
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the design process were relatively isolated from each other. The strive for lighter
and, consequently, the trend towards more flexible structures and the increased
use of composite materials, however, calls for a multi-disciplinary design and
optimisation approach to ensure that the proper trade-offs can be made while
considering the performance of the complete aircraft. A multi-disciplinary ap-
proach enables increased aircraft performance compared to the traditional design
procedures where many disciplines are treated individually.

Multi-disciplinary design and optimisation of aircraft wings, specifically, is used
to find the optimal aerodynamic shape and structural parameters at the same
time. The aerodynamic and structural models typically have different require-
ments when it comes to their computational meshes. The difference can be found
in, for example, mesh density, local refinements, or degree of the elements. The
optimisation process, however, requires a single geometrical description. As a
result, these optimisation frameworks typically use three different geometrical
discretisations that need to be coupled to each in order to consistently transfer
changes made to the optimisation model to the aerodynamic and structural com-
putational meshes. This step can be computationally costly and may introduce
geometrical errors in the computational meshes compared to the intended optim-
ised geometry. These problems are more apparent when the optimisation process
involves large changes in the wing shape. This explains why, generally, in existing
research a limited set of variables for describing the shape is selected for optimisa-
tion. The range of possible geometries can in such a way be limited to ensure the
shape modifications can be transferred to the analysis models relatively accurate.

These two problems can be avoided by ensuring the same geometrical description
is used throughout the optimisation framework. Creating such a geometrically
consistent framework can be achieved in one of two ways. A computational mesh
can somehow be used as the geometrical description for the optimisation as well,
or the optimisation model can be used directly as a mesh for the computational
models. The first approach, although possible in a single-discipline optimisation,
is infeasible for a multi-disciplinary optimisation because only one of the two
computational meshes can be selected as geometrical description for the optim-
isation. The aforementioned problems will thus still occur when transferring the
geometrical modifications from one mesh to the other. Additionally, this approach
will remove any discrepancies between the optimisation and analysis models, but
they will still differ from the exact geometry as described in a computer-aided
design (CAD) model.

The second approach is more suitable for a multi-disciplinary framework, but
requires a modification of the analysis methods. The methods can no longer use
the conventional Lagrangian basis functions, but will have to be able to deal with,
for example, B-splines or non-uniform rational b-splines (NURBS) basis functions,
which are heavily used in CAD software. This is exactly what the isogeometric
analysis (IGA) concept was developed for: to remove the gap between design and
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analysis. IGA removes the necessity of a link between CAD and computer-aided
engineering (CAE) since the exact model will now be available during the analysis.
Mesh refinements or shape modifications, for example, can be directly done in the
analysis environment, without the cumbersome process of going back to the CAD
geometry first and generating a new mesh.

In the following two sections, an overview will be given of the state of the art of the
two main research field relevant to this dissertation: aerostructural optimisation
and isogeometric aeroelastic analysis. Subsequently, the goal and challenges of
this research, as derived from the current state of the art, will be explained.
Finally, the outline of this dissertation is presented.

1.1 MULTI-DISCIPLINARY WING DESIGN AND OPTIMISA-

TION

The idea of combining structural and aerodynamic design of aircraft wings in
a single multi-disciplinary optimisation (MDO) framework has received ample
attention over the last half a century. The computational resources available
to researchers has grown tremendously during this period, and alongside it a
clear trend can be seen in the research on MDO of aircraft wings from simple
one-dimensional to full computational fluid dynamics (CFD) and finite element
method (FEM) models. In this section, an attempt is made to give an overview
of how the field of aerostructural wing optimisation has progressed over the years.

The earlier work in the field focussed mainly on demonstrating the basic concept
of applying this simultaneous aerodynamic and structural optimisation versus the
traditional iterative, sequential strategy. Grossman et al. [3], for example, com-
bined a lifting line aerodynamic model and a beam structural model to demon-
strate that the results obtained with the combined optimisation strategy are su-
perior compared to the sequentially obtained results. Due to the simplicity of the
models, the design variables were limited to structural thickness and planform
parameters. They applied their computational framework to the design of a sail-
plane wing and found that the integrated design approach was able to capitalise
on favourable interactions between the aerodynamics and structure and in such a
way increase the performance and, at the same time, lower the structural weight.

A similar fidelity-level was used in the work of Wakayama and Kroo [4, 5] to
investigate the influences of various parameters, such as drag and weight, in the
optimal planform of a subsonic wing. Although no structural design variables
were included in the optimisation directly, the work can still be considered multi-
disciplinary as a fully stressed and non-buckling structural design was obtained
through several analytical constraint equations for the thickness of the wing pan-
els. The results demonstrated that, in order to find sensible wing planforms, it is
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necessary to take into account off-design conditions in the optimisation.

Grossman et al. [6] changed the aerodynamic model to a vortex lattice model and
a more elaborate FEM model consisting of membrane, shear and rod elements in
later work. The framework was used to design a wing for a transport aircraft. The
more complex models increased the computational cost, so a more efficient method
of computing the cross-disciplinary sensitivities and optimisation algorithm were
introduced. A similar set of geometrical design variables as before was used
and the structural ones were extended to take into account composite materials
through a single ply orientation variable.

In these early stages, it was also recognised that to explore new aircraft configur-
ations, MDO was of crucial importance. The work of Gallman [7], for example,
explored the advantages of joined-wing aircraft using a framework consisting of
vortex lattice aerodynamics and a structural beam model.

Later in the 1990’s, as computational power grew rapidly, a transition towards
higher-fidelity models occurred. The relatively simple lifting line or vortex lat-
tice models were discarded in favour of Euler and Navier-Stokes models. The
beam models had to make place for more complex finite element models. For
example, Chattopadhyay and Pagaldipti [8] coupled a parabolised Navier-Stokes
model to a box beam model and Baker and Giesing [9] combined an Euler model
with a detailed FEM model. Both papers investigated the MDO of high speed
civil transport aircraft. The increased computational expense of the more com-
plex models was countered by innovations in sensitivity computations and more
efficient optimisation formulations. Despite these efforts, the number of design
variables had to remain very low, including only global shape parameters such as
twist and sweep.

A different approach to include higher-fidelity models was presented by Giunta
et al. [10]. Cheaper low-fidelity computational models were used to restrict the
design space to the region of interest using a design of experiments approach.
The points of interest were analysed using higher-fidelity models to build re-
sponse surfaces for the actual MDO of the aircraft. This significantly reduced to
computational cost and, furthermore, removed any computational noise present
in the original models from the optimisation process.

Maute et al. [11] described an MDO framework consisting of Euler CFD and a de-
tailed FEM model including spars, ribs, hinges and control surfaces. A simplified
CAD model was used as an optimisation geometry, from which the computa-
tional meshes were derived. Despite the use of such a geometrical representation,
the optimisation was still limited to only the sweep and twist, and the structural
thicknesses of the wing. The analytical sensitivities were computed using different
strategies. It was shown that the strategy using the exact sensitivities consistent
with the aeroelastic model outperformed the alternative approximate strategies
in the optimisation of the Aeroelastic Research Wing. The reduction in the num-
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ber of iterations in the optimisation compensated for the increased computational
cost of computing the exact sensitivities.

All the literature mentioned so far involves optimisations with a relatively low
number of design variables. Especially the number of aerodynamic variables is
kept low by only looking at planform parameters or global thickness to chord ra-
tios. The reason behind this was computational cost, as was already mentioned.
The step from finite-difference sensitivities to direct analytical sensitivities im-
proved the situation, so that higher-fidelity models became feasible to use, but
the computational cost still scales directly with the number of design variables.
Shape optimisation of, for example, the outer mould line of the wing requires a
relatively large number of design variables, which up to then was prohibitively
expensive.

The introduction of the coupled-adjoint sensitivities in the high-fidelity aerostruc-
tural optimisation process meant that the number of design variables was no longer
the main driver of the computational cost. The foundation of the implementa-
tion of the coupled adjoint was laid down by Reuther et al. [12] and Martins et
al. [13] implemented the method and demonstrated the framework consisting of
Euler or Navier-Stokes CFD and a FEM wingbox model. An aircraft wing was
optimised for minimal drag using 10 variables for the wing twist and 180 vari-
ables for bump functions allowing actual shape optimisation of the outer mould
line. In later work, the framework was used to optimise a supersonic business jet
using 76 shape variables related to the twist, camber and bump functions of the
wing and 10 structural thickness variables. Kreisselmeier-Steinhauser constraint
aggregation functions were used to circumvent the problem of the adjoint sensit-
ivity analysis now scaling with the number of constraint equations instead of the
number of design variables. A 16% lower structural weight was found compared
to the sequentially optimised aircraft.

The same computational framework, as presented in earlier work by Maute et
al. [11], was extended to be able to use the coupled adjoint sensitivities as well
[14]. The same wing optimisation case was used to demonstrate the accuracy
of the new sensitivity analysis and, because the limit on the number of design
variables was taken out, an outer mould line shape and thickness optimisation
was performed. The stress constraints used previously were taken out to reduce
the number of constraint equations and consequently the computational cost of
the adjoint sensitivity formulation.

An MDO approach used in an industrial setting was presented by Piperni et al.
[15]. A transonic small disturbance aerodynamic model was combined with a FEM
model for the conceptual and preliminary design of a large business jet. Wing
planform and airfoil shape variables and structural thickness variables were used in
the optimisation. In a later development of the framework, an Euler/boundary-
layer code was used instead of the transonic small disturbance model for high
speed aerodynamics [16]. The low-speed performance was evaluated using a three-
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dimensional panel code and a semi-empirical stall and post-stall model.

The European aerospace industry and research institutes have also presented vari-
ous multi-disciplinary, multi-level and multi-fidelity aircraft design and optimisa-
tion frameworks [17, 18, 19]. The focus in these projects is often to maintain
disciplinary design autonomy, so that the different design teams within an in-
dustrial setting (e.g. aerodynamic and structures) keep responsibility for their
own design methodology. The frameworks are aimed to be used in a large part
of the design process, from conceptual to detailed design. Consequently, differ-
ent levels of fidelity are used in the analysis. The conceptual stage makes use
of low-fidelity or (semi-) empirical tools, while in the later stages high-fidelity
aerodynamic (Navier-Stokes, Euler) and structural (detailed FEM) models are
used.

Martins and colleagues further improved their multi-disciplinary framework over
the years. Kenway et al. [20] presented numerous computational improvements
to the framework. By implementing more efficient algorithms and parallel com-
puting capabilities, the computational efficiency was significantly improved. This
was demonstrated by analysing the objective, constraints and sensitivities for an
aircraft with more than 5000 design variables. The updated framework was used
for the optimisation of a transport aircraft, taking into account multiple points
in the flight envelope [21]. The free-form deformation method was used to para-
metrise the geometry and Euler CFD coupled to a detailed FEM wingbox model
made up the aeroelastic analysis.

A similar aerostructural optimisation framework was presented by Zhang et al.
[22]. Instead of the free-form deformation method, a B-spline parametrisation of
the geometry was used for the shape optimisation. The parametrisation enabled
an efficient and robust mesh movement algorithm that allows for large shape
changes. The control points of the B-splines were used as shape variables in
the optimisation, besides the structural thickness parameters, for aerostructural
optimisation of a planar wing. The resulting drooped-wing concept improved the
objective function by approximately 4%.

Most of the recent work on aerostructural optimisation focusses on increasing
the fidelity-level and at the same time reducing the computational cost by im-
plementing more efficient algorithms. However, it is also recognised that for pre-
liminary design these high-fidelity optimisation frameworks are still prohibitively
expensive as many different configurations have to be evaluated and optimised.
Kennedy and Martins [23], for example, presented a framework consisting of a
three-dimensional panel method with an empirical viscous drag prediction and a
FEM wingbox model. The geometry is parametrised using the free-form deforma-
tion method, which would allow airfoil shape optimisation. In the presented work,
however, the authors limit the optimisation to global wing shape parameters and
structural thicknesses only.
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Elham and van Tooren [24] described their low-fidelity framework consisting of
a vortex lattice method coupled with a quasi-three-dimensional boundary layer
model for drag computation and a beam FEM model. The geometry was para-
metrised using 6 planform design variables and 160 airfoil shape variables. The
wingbox panel thicknesses were used as structural design variables. Kreisselmeier-
Steinhauser functions were used for the constraint equations because adjoint sens-
itivities were computed.

1.2 ISOGEOMETRIC AEROELASTIC ANALYSIS

Isogeometric analysis (IGA), a term coined by Hughes et al. [25], is a method
aimed at taking away the boundary between design and analysis. Instead of the
conventional process, where the geometry created in a CAD environment has to
be converted to analysis-suitable computational meshes, IGA provides a way to
use the underlying CAD description in the analysis as well. The result is that,
ideally, the CAD geometry can directly be transferred to the analysis framework
and in such a way the exact geometry is available in the analyses models at all
times. The main benefits are found in reduced computational effort, since the
geometry does not need to be converted, and increased accuracy due to the use
of the exact geometry in the analysis [26].

The application of IGA in the field of aeroelasticity is limited to the analysis of
wind turbines. Most of the work comes from Bazilevs and co-workers and focusses
on high-fidelity analysis of wind turbine. The earlier work used NURBS-based
Navier-Stokes aerodynamics and Kirchhoff-Love shells with a matching interface
[27, 28]. A framework based on T-splines and a non-matching fluid-structure inter-
face enabled more tailored meshes for the two disciplines [29]. The computational
model was extended to take into account the full wind turbine, including support
and nacelle [30]. In later work, the framework was made suitable for the simulation
of off-shore wind turbines by including the capability of free-surface fluid-structure
interaction (FSI), which allows simulation of the interaction between the water
and the support tower [31].

The recent work by Ferede et al. [32] on the analysis of wind turbine blades
shows the implementation of IGA in the parametrisation of the geometry and the
discretisation of the beam model that represents the turbine blade structure. The
aerodynamics was represented by the standard blade element momentum theory.
A conventional FEM shell model was added to analyse the stress response and
buckling behaviour of the blade in more detail.

In the more general field of FSI, the IGA concept has been used in various fields
of research. High-fidelity models have been used for the simulation of blood flow
in blood vessels and bioprosthetics [33, 34, 35, 36, 37, 38]. The coupling of FEM
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shell models with boundary element method (BEM) fluid models has recently
gained more attention in an FSI application. Van Opstal et al. [39] and Heltai
et al. [40] both used such a combination of Kirchhoff-Love shells and Stokes flow,
demonstrating the favourable combination of the two types of discretisations.

1.3 GOAL OF THE RESEARCH

All of the references mentioned in section 1.1 share a common feature. A variety
of geometries, parametrisations, discretisations and computational meshes is used
throughout the optimisation frameworks. As mentioned before, this results in an
extra computational burden for transferring data between different parts of the
framework and induces geometrical errors in analysis and optimisation. Also, the
generation of computational meshes from the parametrised geometry can be a
costly step.

Additionally, in most of the recent literature, the parametrisation of the wing
geometry is based upon the conventional planform variables such as span, sweep
and taper, and a method for parametrising the airfoils in the wing. Although this
works very well for aerostructural optimisation of conventional wing configura-
tions, it prohibits the generation of innovative concepts that are essential for the
progress of aircraft performance and the reduction of the environmental impact
of the aerospace industry.

These two limitations in the current state of the art have resulted in the formu-
lation of the following goal for this research:

Develop a preliminary wing design framework for geometrically con-

sistent aerostructural analysis and optimisation that enables the design

of non-conventional wing configurations.

The IGA concept was identified as an ideal method for achieving this goal and
was chosen as the route to take towards the geometrically consistent framework
and the increased design freedom. The state of the art on isogeometric aero-
elasticity only covers high-fidelity approaches, which would be computationally
prohibitively expensive. As a result, the following challenges in achieving the
aforementioned high-level goal were identified:

• Develop low-fidelity static aeroelastic analysis capabilities that are fully
based on the IGA concept.

• Fit the aeroelastic analysis model in a geometrically consistent aerostruc-
tural optimisation routine that provides a high level of design freedom for
exploring new wing configurations.
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1.4 DISSERTATION OUTLINE

This dissertation is divided into one introductory chapter, three chapters compris-
ing the main content of the dissertation, and one concluding chapter. The first
chapter after the introduction covers a description and application of the two-
dimensional isogeometric aeroelastic analysis and optimisation framework that
was developed. An introduction into the IGA concept is given to make the reader
familiar with the terminology. Subsequently, the implementation of the concept
into a BEM potential flow model is described. It is explained how the conven-
tional governing equations are modified to accept NURBS basis functions and
the model is verified against reference solutions. Next, the structural model is
presented. An overview of the linear curved Timoshenko beam model in the local
reference frame is given, after which the modifications to express the model in
a global reference frame are presented. The structural model is verified against
some analytical benchmarks. The change of reference frame was required to ac-
commodate the coupling of the aerodynamic and structural model based upon
the gradient information obtained from the shared geometrical parametrisation.
The missing viscosity in the potential flow model is compensated for by including
a boundary layer model for the flow around the airfoil. The two-dimensional op-
timisation framework is demonstrated by applying it to the design of an actively
morphing airfoil. The results of different optimisation cases are presented and
discussed.

The third chapter covers the three-dimensional isogeometric aeroelastic analysis
framework in a similar fashion as the second chapter. An explanation of the exten-
sion of the IGA concept into three-dimensional shells is given first. Subsequently,
the aerodynamic model is presented. Contrary to the two-dimensional work, a
stronger formulation of the Kutta condition had to be used in this model to ensure
proper convergence of the pressure distribution at the trailing edge. The model
was verified against solutions taken from the literature. The structural model de-
scribed next is based on the Reissner-Mindlin theory as this provides both transla-
tional and rotational degrees of freedom, simplifying the multi-patch implement-
ation compared to a Kirchhoff-Love implementation. Lamination parameters are
employed to parametrise the composite material and allow for gradient-based op-
timisation of the layup of the composite material. The model was verified against a
reference solution. A different coupling method compared to the two-dimensional
work is presented. Although sharing the same model, the aerodynamic and struc-
tural analyses cover different parts of this model. As a result, a more elaborate
coupling method is required where surface points are computed for evaluating the
coupling matrix, which is subsequently projected back onto the control points.
The coupled aeroelastic model is verified against a reference solution. The ap-
plicability of the framework is extended by including a quasi-three-dimensional
boundary layer model and a plate buckling model. The resulting isogeometric
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aeroelastic analysis framework is demonstrated in an application to the undeflec-
ted common research model (uCRM) wing model. Three different load cases are
analysed and the results are discussed.

In the fourth chapter, a description of the geometrically consistent, fully free op-
timisation framework is given. The design case of a simple rectangular wing is
presented, and the design sensitivities are verified through a comparison to fi-
nite difference sensitivities. The preliminary results of the optimisation are used
to expose three main challenges that still remain in the current implementation.
First, shortcomings in mesh quality maintenance are identified by investigating
the shape sensitivity information and initial optimisation results. Two potential
solutions are proposed for future implementation. Second, the boundary layer
behaviour in the current framework is discussed and possible improvements are
proposed. Third, the computational efficiency of the isogeometric aeroelastic ana-
lysis is reviewed, and possible measures are identified to reduce the computational
cost.

Finally, this dissertation is concluded in chapter five. Conclusions are drawn about
the work that is presented in this dissertation on the development of a geomet-
rically consistent aerostructural optimisation framework. The goals formulated
in the introduction of this dissertation are reflected upon. Besides the proposed
improvements from chapter four, recommendations are made for extensions to the
aerostructural optimisation framework for future work.
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TWO-DIMENSIONAL ISOGEOMETRIC

AEROELASTIC ANALYSIS AND

OPTIMISATION
1

Before diving into the full three-dimensional aeroelastic analysis and optimisation
problem, a two-dimensional version of the framework is developed. The simpler
geometry and computational models allow to built up experience and confidence
in the isogeometric aeroelastic analysis and optimisation concept.

Low-fidelity models, although having a somewhat lower accuracy, can enable the
use of extensive optimisation in early design stages. As was mentioned already in
the introduction of this thesis, low-fidelity isogeometric aeroelastic analysis has
been almost untouched, while, for example, aerodynamic analysis in the form
of the BEM has been shown to be a suitable candidate for the implementation
of IGA. The work of Politis et al. showed the application of IGA to exterior
planar Neumann potential problems and they demonstrated superior convergence
properties compared to a conventional BEM implementation [41]. Takahashi and
Matsumoto demonstrated the application of the fast multipole method to the
same type of problem, reducing the computational cost from quadratic to linear

1This chapter is largely based on the journal paper Gillebaart, E. and De Breuker, R. (2016).
“Low-fidelity 2D isogeometric aeroelastic analysis and optimization method with application to

a morphing airfoil”, Computer Methods in Applied Mechanics and Engineering, vol. 305, pp.
512-536.
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with respect to the number of control points [42]. One of the most important
challenges in BEM, computing the singular integrals, was tackled by Heltai et al.
by desingularising the boundary integral equation. The application to 3D Stokes
flow problems showed the accuracy of the method [43].

The fact that the BEM only requires a boundary description of the problem
creates a perfect match with CAD, since the output of such software is only a
boundary discretisation. Furthermore, analysing the exact geometry is beneficial
for aerodynamic analysis, since small perturbations can have significant effects.
Also in other fields it has been shown that the benefits of IGA work well in a
BEM framework. Simpson et al. applied IGA to 2D elastostatic analysis [44]
and later to acoustics, using T-splines instead of NURBS [45]. The elastostatic
analysis was expanded to multipatch 3D analysis in the work of Lian et al. [46].
Scott et al. used T-spline instead of NURBS in 3D elastostatic analysis [47].

Another advantage of IGA is that it is very suitable for shape optimisation prob-
lems, especially in a BEM framework, as has been shown for structural shape
optimisation in 2D, using a desingularised BEM formulation, by Lian et al. [48]
and in 3D by Li and Qian [49]. The IGA implementation delivers very accurate
shape sensitivities, resulting in precise optimisation results. Furthermore, the dis-
cretisation can be used directly in optimisation, removing the need for a separate
shape parametrisation as demonstrated by Cho and Ha [50].

The benefits of the combination of CAD and BEM together with IGA are fully ex-
ploited in the aeroelastic framework presented in this chapter. An IGA potential
flow solver is closely coupled to an IGA curved Timoshenko beam solver formu-
lated in a global reference system. Subsequently, a one-way coupling is formed
between the aeroelastic model and a boundary layer model. A gradient-based op-
timiser is used in combination with analytically computed sensitivities. To show
the capabilities of the framework, it is applied to the aeroelastic optimisation of
an active morphing airfoil.

The chapter is built up as follows. In Section 2.1 a short introduction into IGA is
given, and the aerodynamic, structural and boundary layer models are described.
The coupling of the models is also explained. The next section presents the design
case of the morphing airfoil, together with the optimisation specifications. The
results are presented and discussed in Section 2.3 and the chapter is summarised
in Section 2.4.

2.1 COMPUTATIONAL TECHNIQUES

The low-fidelity aeroelastic framework consists of an isogeometric potential flow
aerodynamic model and an isogeometric curved Timoshenko beam structural
model. The flow diagram in Figure 2.1 shows the process of performing an aero-
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structural optimisation. For the different parts of the process it is indicated what
software is used. It starts with the development of the CAD geometry that will

 

Aerostructural optimisation        

(GCMMA Matlab code)

Aeroelastic analysis

Generate CAD 

geometry

(Rhinoceros 5)

Import geometry in 

Matlab

(IGES Matlab 

toolbox)

Generate input

(Matlab code)

Aerodynamic 

analysis

(Matlab code)

Structural analysis

(Matlab code)

Solve aeroelastic 

system

(Matlab code)

Post-processing

(Matlab code)

Commercial software

Open-source software

Developed software

NURBS 

Matlab 

toolbox

Figure 2.1: Flow diagram of the full aerostructural optimisation process

be used throughout the entire optimisation process. This is done in the com-
mercial software Rhinoceros 5. The remainder of the process is performed in
Matlab. The Matlab analysis code is developed by the author and is supported
by three open-source Matlab codes. The IGES Matlab toolbox by Per Bergström
is used to import the CAD geometry resulting from Rhinoceros 5 into Matlab.
The GCMMA algorithm by Krister Svanberg is used for the optimisation and
the NURBS Matlab toolbox by D.M. Spink is used for computing many things
related to the NURBS functions, such as basis function values and derivatives.

13



2

2. TWO-DIMENSIONAL ISOGEOMETRIC AEROELASTIC ANALYSIS AND OPTIMISATION

This section will describe the theory and implementation of both the aerodynamic
and structural model. The coupling between these models and the loads and
displacements transfer method will also be presented. First a short introduction
into NURBS and isogeometric analysis is given for completeness.

2.1.1 NURBS CURVES AND BASIS FUNCTIONS

In the present work NURBS basis functions are used, because these are the most
common in CAD software. A NURBS curve is fully defined by three items:

• The control points Pi ∈ R
d, 1 ≤ i ≤ n, where d indicates the dimensionality

of the problem.

• The degree p of the basis functions.

• The knot vector Ξ = [ξ1, ξ2, ..., ξn+p+1].

An example of a two-dimensional NURBS curve of degree 3 is shown in Figure
2.2. From this example it can be seen that the control point may or may not

0 1 2 3 4 5 6
x

-1

-0.5

0

0.5

1

1.5

y

NURBS curve
Control polygon
Knots

Figure 2.2: Example of a NURBS curve with control polygon and knot location

be on the curve. Only so-called open knot vectors are used in the present work,
meaning that the first and last knots are repeated p+ 1 times. As a consequence
the NURBS curve is always interpolatory at the start and end of the curve. The
order of continuity of the rest of the curve can be modified by repeating the other
knots. The order of continuity at a knot is equal to p + 1 − r, where r is the
multiplicity of this knot.

Mathematically a NURBS curve can be represented as follows:

C(ξ) =

n
∑

i=1

Ri,p(ξ)Pi (2.1)
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where C(ξ) is the vector with Cartesian coordinates of the point described by the
parametric point ξ1 ≤ ξ ≤ ξn+p+1, and Ri,p(ξ) is the ith rational basis functions
of degree p. These basis functions are given by

Ri,p(ξ) =
Ni,p(ξ)wi

n
∑

j=1

Nj,p(ξ)wj

(2.2)

where Ni,p(ξ) is a B-spline basis function of order p, and wi is the weight factor
corresponding to the ith control point. The B-spline basis functions of degree 0
are defined as

Na,0(ξ) =

{

1 if ξi ≤ ξ ≤ ξi+1

0 otherwise
(2.3)

and for higher degrees

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ) (2.4)

The recursive character results in higher cost for computing the basis functions.
However, several efficient algorithms exist to speed up the computations, of which
the Cox-de-Boor algorithm [51] is most popular. This algorithm was also used in
this work.

NURBS basis functions (as well as B-spline basis functions) possess some prop-
erties that are favorable for their implementation into analysis models. The basis
functions possess the local support property, meaning that in every knot span
[ξi, ξi+1) at most p + 1 non-zero basis functions exist, namely Ni−p,p, . . . , Ni,p.
Furthermore, they are non-negative and form a partition of unity at each para-
metric location. In the interior of the knot span all derivatives of the non-zero
basis functions exist and at a knot itself the functions are p−r times continuously
differentiable.

The principle of IGA, as was mentioned before, is to use the NURBS basis func-
tions both for describing the geometry and to approximate the unknowns. For the
aerodynamic model the unknowns are the doublet strength, as will be explained
in Subsection 2.1.2, and for the structural model the unknowns are the displace-
ments, as will be explained in Subsection 2.1.3. The power in this approach lies
in the fact that the geometry and its boundary discretisation can be completely
done in CAD software and this geometry can immediately be analysed in the IGA
analysis software.

Even though the exact geometry is provided by the CAD software, the discret-
isation might not be detailed enough to enable the analysis to provide accurate
results. This problem can be easily solved by either knot refinement or degree el-
evation, or a combination of both [26]. The computational algorithms to perform
such operations on NURBS functions are well documented in literature [51]. The
knot refinement and degree elevation operations have no effect on the geometry
itself, making these operations efficient and simple.
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2.1.2 AERODYNAMIC MODEL

The aerodynamic model is based on the potential flow model, which is character-
ised by Laplace’s equation: ∇2Φ∗ = 0 (2.5)

where Φ∗ is the total velocity potential. The boundary conditions for the flow
over an airfoil are the flow tangency condition at the boundary of the airfoil and
that the disturbance of the flow should go to zero far away from the airfoil:

∂Φ∗(x)

∂n
= 0 for x ∈ Γb (2.6)

lim
r→∞

∇Φ = 0 (2.7)

where n is the outward unit normal vector to the boundary of the body Γb, r is
the distance from the body, and Φ is the perturbation velocity potential. This
problem is reduced to solving the following boundary integral equation (BIE) [52]:

C(x0)Φ(x0) =

ˆ

Γb

(

∂Φ(x)

∂n(x)
G(x0,x) − Φ(x)

∂G(x0,x)

∂n(x)

)

dS(x)

−
ˆ

Γw

∆Φ(x)
∂G(x0,x)

∂n(x)
dS(x) (2.8)

where x0 is the point under consideration, x the point of integration on the
surface of the body and the wake, C the jump term, Γw the wake surface, and G
the fundamental solution as is given in Equation 2.9.

G(x0,x) =
1

2π
log

(

1

|x0 − x|

)

(2.9)

The normal derivative of the fundamental solution is given by

∂G

∂n
(x0,x) =

(x0 − x) · n(x)
2π|x0 − x|2

(2.10)

Setting the normal derivative of the perturbation potential to zero and assuming
the notation C = C(x0),Φ0 = Φ(x0),Φ = Φ(x), G = G(x0,x), S = S(x),n =
n(x), gives the following solution:

CΦ0 = −
ˆ

Γb

Φ
∂G

∂n
dS −

ˆ

Γw

∆Φ
∂G

∂n
dS (2.11)

When the point x0 approaches point x on the boundary of the body, a singularity
will be encountered. To desingularise Equation 2.11, the potential inside the body
is investigated. The flow tangency boundary condition in Equation 2.6 implies
that the potential inside the body is constant. Furthermore, the normal vector is
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opposite compared to that of the external problem and the jump term becomes
1− C [53]. The following equation thus holds for the interior problem:

1− C = −
ˆ

Γb

∂G

∂n
dS (2.12)

This relation is fully dependent on the geometry of the problem. Multiplying the
equation with the total potential at point x0 and subtracting it from Equation
2.11 gives

Φ0 =

ˆ

Γb

(Φ− Φ0)
∂G

∂n
dS (2.13)

which is no longer singular. Combining Equation 2.11 and 2.13 and introducing
the free stream potential Φ∞, gives the equation for the total velocity potential:

Φ∗

0 = −
ˆ

Γb

(Φ− Φ0)
∂G

∂n
dS −

ˆ

Γw

∆Φ
∂G

∂n
dS +Φ∞ (2.14)

For the internal problem, the constant velocity potential is set to zero, which
results in the final form of the problem that needs to be solved to find the velocity
potential along the boundary:

−
ˆ

Γb

(Φ− Φ0)
∂G

∂n
dS −

ˆ

Γw

∆Φ
∂G

∂n
dS +Φ∞ = 0 (2.15)

The velocity potential jump in the wake is related to the unknown velocity po-
tential distribution on the body through the Kutta condition [54].

The geometry is now discretised using a NURBS curve and the unknown doublet
strength is approximated using the same basis functions.

x(ξ) =

n
∑

i=1

Ri,p(ξ)Pi; Φ(ξ) ≈
n
∑

i=1

Ri,p(ξ)Φi (2.16)

Using the dot to indicate derivatives with respect to ξ to simplify notation, the
Jacobian of the transformation from the Cartesian coordinate system to the para-
metric space becomes

J(ξ) =
√

ẋ2
1 + ẋ2

2 (2.17)

The non-zero knot spans in the knot vector of the curve can be considered as the
elements that build up the geometry. The collocation method is used to set up a
linear system of n equations for the n+ 1 unknown velocity potentials. The final
equation is provided by the Kutta condition. The resulting system is as follows:











A1,1 · · · A1,n A1,n+1

...
. . .

...
...

An,1 · · · An,n An,n+1

−1 0 1 −1





















Φ1

...
Φn

∆Φ











=











Φ1
∞

...
Φn

∞

0











(2.18)
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where Ai,j are the aerodynamic influence coefficients. The wake is modelled as a
single element with a constant value, so its influence can be computed analytic-
ally. The other, non-singular, influence coefficients are computed numerically in
the parametric domain. The integrals, as given in Equation 2.19, are computed
using standard Gaussian quadrature. An adaptive scheme is used for the number
of integration points to ensure accurate values for near-singular integrals. The
number of integration points is increased as a collocation point is closer to the
element over which the integral has to be computed.

Ai,j =

1
ˆ

0

Rj,p(ξ)
∂G(ξi, ξ)

∂n
J(ξ)dξ (2.19)

The desingularised contributions are computed by summing up the non-singular
contributions and multiply it with the basis function values in the collocation
point.

To find the pressure distribution over the airfoil the flow velocity tangential to
the airfoil boundary has to be found. This is found by taking the derivative of
the doublet strength in the tangential direction. In conventional panel methods
the derivative has to approximated using a finite difference scheme, but since the
NURBS curve representing the doublet strength is easily differentiable this can
be done exactly:

Qt =
dΦ

ds
=

1

J

dΦ

dξ
(2.20)

The pressure distribution is now found using Equation 2.21

p = −ρ

2

(

Q2
t −Q2

∞

)

(2.21)

where p is the pressure, Qt the tangential velocity, and Q∞ the free stream ve-
locity. To find the force acting in the control points of the aerodynamic mesh,
the pressure is integrated over the element e after multiplication with the corres-
ponding non-zero basis functions in the set χ(e):

fχ(e)n =

ˆ

Γe

p(ξ)Rχ(e),p(ξ)J(ξ)dξ (2.22)

The aerodynamic model is verified by comparing the results to those obtained
using XFOIL [55]. XFOIL is also based on potential flow theory, but uses the
traditional discretisation into linear panels. When using the inviscid solver within
XFOIL, the same results as the model described before should be found. Figure
2.3 shows the pressure distribution obtained using the present model and XFOIL
for a NURBS approximation of the NACA2412 airfoil at an angle of attack of 3
degrees. The control points and weights for the coarse mesh of the airfoil can be
found in Appendix A. A good match is observed between the two distributions
over the entire chord length. The lift coefficient of the same airfoil for an angle
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of attack ranging from -8 to 8 degrees is compared in Figure 2.4. Again a good
match is found. Comparison to the experimental results from Abbot and Doenhoff
(1959) [56] shows that the inviscid results from both the present model and XFOIL
have a slightly higher slope.
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Figure 2.3: Comparison of results of the
present aerodynamic model and XFOIL for
the pressure distribution on a NACA 2412
airfoil at an angle of attack of 3 degrees
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Figure 2.4: Comparison of results of the
present aerodynamic model, XFOIL and
experimental data for the lift coefficient of
a NACA 2412 at various angles of attack

2.1.3 STRUCTURAL MODEL

The structural model is based on linear curved Timoshenko beams using an iso-
geometric formulation. Existing work in this field makes use of the local Frenet
coordinate system to formulate the beam model [57, 58]. In the present frame-
work, however, a global coordinate system was required to enable the transfer of
loads from the aerodynamic model to the structural model and the displacements
the other way around. For clarity first the formulation in the Frenet coordinate
system is described, followed by the derivation of the formulation in the global
coordinate system.

LOCAL FORMULATION

In the Frenet coordinate system, defined by the tangential, normal and bi-normal
unit vectors (t,n,b), the membrane, transverse shear and bending strain com-
ponents of a planar curved beam are defined as

εm(s) =
dut(s)

ds
− un(s)

R(s)
(2.23)
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γs(s) =
ut(s)

R(s)
+

dun(s)

ds
− θb(s) (2.24)

χb(s) =
dθb(s)

ds
(2.25)

where ut, un and θb are the mid line tangential and normal displacements, and
the cross-section rotation, respectively. They are all expressed in the curvilinear
coordinate s, as shown in Figure 2.

n

t

b

y

x

s

Figure 2.5: Curved beam coordinate systems

The total potential energy of the planar Timoshenko beam is the sum of the
elastic strain energy U , and the potential energy of applied external forces V :

Π = U + V (2.26)

U =
1

2

L̂

0

(

EAεm
2 +GAγ2

s + EIθ2b
)

ds (2.27)

V = −
L̂

0

(f · u)ds− F · u (2.28)

where E and G are the Youngs modulus and shear modulus respectively, A is the
cross-sectional area and I is the moment of inertia along b. The vectors F, f and
u are the concentrated loads, distributed loads, and displacements and rotations,
respectively.

The IGA implementation starts with the representation of the geometry using
NURBS curves. For simplicity the explanation will first be given for a geometry
built up out of a single NURBS curve (single patch). The required modifications
for a multi-patch geometry will be described later. The geometry is described by
Equation 2.29, where the control points Pi contain the x and y coordinates.

x(ξ) =

n
∑

i=1

Ri,p(ξ)Pi (2.29)
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Using the dot to indicate derivatives with respect to ξ to simplify notation, the
Jacobian of the transformation from the Cartesian coordinate system to the para-
metric space becomes

J(ξ) =
√

ẋ2
1 + ẋ2

2 (2.30)

and the radius of the beam

R(ξ) =
J3

|ẋ1ẍ2 − ẍ1ẋ2|
(2.31)

The unknown displacements and rotations are approximated using the same basis
functions as those that are used to describe the geometry:

ut(ξ) ≈
n
∑

i=1

Ri,p(ξ)u
i
t; un(ξ) ≈

n
∑

i=1

Ri,p(ξ)u
i
n; θb(ξ) ≈

n
∑

i=1

Ri,p(ξ)θ
i
b (2.32)

In the parametric space the strains now become

εm(ξ) =
u̇t

J
− un

R
(2.33)

γs(ξ) =
ut

R
+

u̇n

J
− θb (2.34)

χb(ξ) =
θ̇b
J

(2.35)

Substituting Equations 2.32 to 2.35 in total potential energy equation and tak-
ing the second derivative of the strain energy U and the first derivative of the
potential energy V with respect to the displacement and rotation control points,
will result in the stiffness matrix, K, and force vector, f , respectively. The in-
tegrals are computed using Gaussian quadrature at the knot span level. The
unknown displacements and rotations, u, are found by simply solving Ku = f

and substituting the control point values in Equation 2.32.

When the geometry is more complex and cannot be described by a single NURBS
patch, multiple patches have to be created and connected to each other. All
the patches are interpolatory at the start and end of the curve, simplifying the
process of connecting them. In the present work a master-slave technique is used
to make sure the patches are connected properly and the redundant slave degrees
of freedom are eliminated. The approach also allows connecting patches through
hinges by only matching the displacement degrees of freedom between two patches
and leaving the rotation degree of freedom as it is.

GLOBAL FORMULATION

To obtain a structural model in a global frame of reference some straightforward
changes have to be made to the model described in the previous part. The tan-
gential and normal displacements from the local coordinate system are expressed
in the global x and y displacements:

ut(ξ) = ug(ξ) · t(ξ); un(ξ) = ug(ξ) · n(ξ) (2.36)
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where ug is a vector with x and y displacements u and w, and t and n are the
local tangential and normal vectors, respectively. These unit vectors are derived
from the NURBS curve describing the geometry:

t =

[

ẋ1

J
ẋ2

J

]

; n =

[

−t2
t1

]

(2.37)

Substituting Equation 2.36 into the strain Equations 2.33 to 2.35, results in the
strains in a global coordinate system:

εm(ξ) =
u̇g · t+ ug · ṫ

J
− ug · n

R
(2.38)

γs(ξ) =
ug · t
R

+
u̇g · n+ ug · ṅ

J
− θb (2.39)

χb(ξ) =
θ̇b
J

(2.40)

The derivatives of the unit tangent and normal vectors are equal to

ṫ =

[

ẍ1

J − ẋ1J̇
J2

ẍ2

J − ẋ2J̇
J2

]

; ṅ =

[

−ṫ2
ṫ1

]

(2.41)

where the derivative of the Jacobian can be found with Equation 2.42:

J̇ =
ẋ1ẍ2 + ẍ1ẋ2

J
(2.42)

The global displacements are again approximated by the NURBS basis functions:

u(ξ) ≈
n
∑

i=1

Ri,p(ξ)u
i; w(ξ) ≈

n
∑

i=1

Ri,p(ξ)w
i (2.43)

The stiffness matrix and force vector in the global coordinate system can now be
found by taking the second derivative with respect to the displacements and rota-
tions of the strain energy and the first derivative with respect to the displacements
and rotations of the potential energy of the externally applied forces.

Verification of the structural model is performed by comparing its results to some
analytical solutions obtained by Cazzani et al. (2014) [58]. The single patch im-
plementation is tested using the vertically loaded cantilever arch shown in Figure
2.6. The radius R is 2 m, the Young’s modulus is 80 GPa, and the Poisson’s ratio
is 0.2. The cross-section of the arch is rectangular with the thickness h equal
to 0.01 m and the depth equal to 0.2 m. A vertical unit load P is applied at
the tip of the arch. The vertical displacement at the tip of the arch is computed
using the described structural model for an increasing number of elements. The
convergence plot in Figure 2.7 shows that the displacement converges nicely to
the analytical value.

The multi-patch implementation of the structural model is verified using the ver-
tically loaded incomplete ring shown in Figure 2.8. The single patch making up
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Figure 2.6: Sketch
of the vertically loaded
cantilever arch
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Figure 2.7: Convergence plot for the single
patch cantilever arch

the geometry is split at point A to create two separate patches. The radius R
is 2.935”, the Young’s modulus 1.05 · 107 psi, and the Poisson’s ratio 0.3. The
cross-section of the beam is rectangular with a thickness h of 0.125” and a depth
of 1.2”. The vertical displacement in point A is computed for an increasing num-
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Figure 2.8: Sketch of
the vertically loaded in-
complete ring
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Figure 2.9: Convergence plot for the multi-
patch incomplete ring

ber of elements and the convergence plot is shown in Figure 2.9. Again a nice
convergence towards the analytical result is observed.
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2.1.4 COUPLING

The aerodynamic and structural models are closely coupled, to enable fast compu-
tation of the converged solution. The coupling scheme is based on the conservation
of energy, meaning that the virtual work, δW , done by the aerodynamic loads on
the aerodynamic mesh should be equal to the work done by the equivalent set of
loads on the structural mesh [59]:

δW = δuT · faero = δuT
a · faaero (2.44)

where δu and δua are the virtual displacements of the structural and aerody-
namic control points and faero and faaero are the aerodynamic forces acting on
the structural and aerodynamic control points. To achieve a close coupling, a
coupling matrix H is required which couples the aerodynamic displacements to
the structural displacements:

ua = H · u (2.45)

Inserting Equation 2.45 into Equation 2.44 shows that in that case the following
relation also holds:

faero = HT · faaero (2.46)

Conventional methods for finding this coupling matrix, such as radial basis func-
tion interpolation, fail in the current work due to the fact that the control points
of the IGA mesh are not always located on the boundary. In the present work
both the structural mesh and aerodynamic mesh originate from a coarse initial
mesh, as is illustrated in Figures 2.10 to 2.12.
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Figure 2.10: Example of a coarse control
polygon
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Figure 2.11: Aerodynamic mesh derived
from the control polygon in Figure 2.10
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Figure 2.12: Structural mesh derived
from the control polygon in Figure 2.10
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To obtain the required coupling matrix the sensitivity matrices for the structural
and aerodynamic mesh with respect to the coarse mesh are used. These sensitivity
matrices describe how the control points in either the aerodynamic or structural
mesh move as the control points in the coarse mesh are moved and can thus be
used to link the aerodynamic displacements, ua, to the structural displacements,
u:

ua = H · u =
dPaero

dPstruct
· u =

dPaero

dPcoarse
·
(

dPstruct

dPcoarse

)−1

· u (2.47)

Both the aerodynamic and structural model are linear, so a single Newton-Raphson
iteration gives the converged displacement field:

(Ks −Ks
a) · u = fsaero,0 + f0

Ks
a = HT ·Ka ·H

fsaero,0 = HT · faero,0
(2.48)

where K are the stiffness matrices and f0 any external force besides the aero-
dynamic load. The superscript s indicates that the values are in terms of the
structural degrees of freedom and the subscript 0 indicates that the forces are
those acting on the undeformed geometry. The converged aerodynamic forces are
computed using the displacement field obtained by solving Equation 2.48:

faero = faero,0 +Ka ·H · u (2.49)

From these converged aerodynamic forces the lift coefficient can be determined,
by taking into account the angle of attack.

2.1.5 BOUNDARY LAYER MODEL

To gain some insight in the viscous effects, such as drag and flow separation, a
boundary layer model is coupled to the aeroelastic model described in the previous
subsections. The input into this boundary layer model is the deformed geometry
obtained from the aeroelastic analysis. A flow-chart of the system is given in
Figure 2.13.

Aeroelastic

analysis

Boundary layer

analysis

Deformed geometry

Drag coefficient

Lift coefficient

Deformed geometry

Start

Undeformed geometry

End

Figure 2.13: Flowchart of the analysis module
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The deformed geometry is used to obtain the tangential velocity distribution
along the boundary of the airfoil. Using a boundary layer model based on the one
described by Moran [60], which is based upon several semi-empirical methods, the
growth of the boundary layer along the airfoil is computed. The laminar part of
the boundary layer is described by Thwaites’ method and the turbulent part by
Head’s method. The transition between the two different flow states is determined
using Michel’s method. The tangential velocity distribution is discretised into
small elements along the boundary and using these methods the development of
the boundary layer is computed step-by-step from the front stagnation point to
the trailing edge.

The main modifications compared to the original implementation are made in the
transition and separation steps. To be able to use the drag coefficient in a gradient-
based optimisation process the response surface should be continuous. Therefore,
instead of only determining the element in which transition or separation occurs
and assuming that the full element is turbulent or separated, an interpolation
is done to find the location of transition or separation more accurately. This
prevents any jumps in the response when the location switches from one element
to the next.

The profile drag coefficient is subsequently determined using the Squire-Young
formula, which takes into account the momentum thickness and displacement
thickness at the upper and lower side of the trailing edge of the airfoil [61].

For verification of the boundary layer model, its results are compared to those
obtained using XFOIL. The drag coefficient of a NACA2412 airfoil at an angle
of attack ranging from 0 to 10 degrees at a Reynolds number of one million is
computed using the presented boundary layer model and XFOIL. The results are
shown in Figure 2.14. For this range of interest the results match quite well,
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Figure 2.14: Comparison of results of the present boundary layer model and XFOIL for the
drag coefficient of a NACA2412 airfoil for different angles of attack at a Reynolds number of
one million
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especially when realising that whereas XFOIL makes use of a two-way coupling
of the aerodynamic and boundary layer model and a more sophisticated drag pre-
diction, the present framework only uses a one-way coupling in combination with
the Squire-Young formula. The deviation at higher angles of attack is probably
caused by flow separation, as the results from the Squire-Young formula become
inaccurate as soon as separation takes place. Most important is that the trend
matches the XFOIL results, making the present implementation suitable for op-
timisation.

2.2 MORPHING AIRFOIL OPTIMISATION

The aeroelastic framework described in the previous section is applied to the
optimisation of an active morphing airfoil. The goal is to morph the baseline
airfoil shape, designed for optimal performance during cruise flight, into an airfoil
shape more suitable for landing conditions. This means that the lift coefficient
of the airfoil at a certain angle of attack needs to be maximised resulting in
a reduced minimum landing speed and thus increased landing performance. In
Subsection 2.2.1, a description is given for the design case, including the unmanned
aerial vehicle (UAV) under consideration and the flight conditions of interest to
the optimisation problem. Subsection 2.2.2 covers the setup of the optimisation
problem. The objective, constraints and design variables will be presented.

2.2.1 DESIGN CASE

The UAV considered for the optimisation has a mass of 25 kg and its wings are
rectangular with the NACA2412 airfoil. The wingspan is 3.0 m and the chord
length is 0.6 m. The cruise and landing flight conditions are listed in Table 2.1.

Table 2.1: Flight conditions for UAV in cruise and landing flight

Cruise Landing
Speed [km/h] 110 56.02

Altitude [m] 304.8 304.8
Angle of attack [deg] - 6.373
Lift coefficient [-] 0.2425 -

The internal structure of the airfoil consists of a stiff wing box in the leading
edge, with a single spar at 25.00% of the chord. The actuators are located at
43.75%, 62.50% and 81.25% of the chord and have a vertical orientation in the
undeformed NACA2412 airfoil. The actuators are connected to the skin through
hinges. Throughout all the analyses and optimisation runs the front spar of the
airfoil is fully clamped. An illustration of the structure is shown in Figure 2.15.
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Figure 2.15: Geometry and internal structure of the morphing airfoil

2.2.2 OPTIMISATION SETUP

The main objective of the optimisation is to maximise the lift coefficient in landing
flight conditions, while the NACA2412 geometry is maintained during other flight
conditions. Without taking into account viscous effect, however, this would lead
to infeasible results where flow separation would cause bad performance in landing
conditions. The viscous effects are introduced into the optimisation by including
the drag coefficient into the objective function. Instead of simply optimising the
lift coefficient, the ratio of the lift and drag coefficient is optimised. The emphasis
is put on the lift coefficient by raising it to a certain power. In the present work a
power of 1.5 is used, which leads to realistic results where the influence of the lift
coefficient is still dominating. This approach requires a two-step optimisation to
avoid conservative results due to local minima present in the objective function,
as is demonstrated in the next section.

Two separate analysis runs are done. One at landing conditions with the actuators
enabled and one at 2.5g flight conditions with the actuators locked. Additional
constraints are added to ensure a feasible design is found:

• Strain constraints are used for the airfoil skin in the morphing section. The
IGA framework allows easy strain evaluations at any point on the geometry.
In the present work the strain at 100 evenly spaced points were taken into
account as constraints. The maximum allowed strain is 4000 microstrain.

• Constraints on the maximum actuation forces and maximum actuator strokes
are implemented to avoid infeasible actuator requirements. The maximum
value for the actuation force is set to 500N and the actuator stroke may be
at most 40% of the initial length.

• When lamination parameters are included as design variables a set of con-
straint equations is implemented to ensure feasible laminate designs.
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Besides the lamination parameters, the thickness and actuation forces are also
included as design variables. The lamination parameters, however, deviate from
the standard lamination parameters, because the current framework only covers
two-dimensional problems. A modified set of lamination parameters is used to
scale the membrane and bending stiffness of the laminate [62]:

EI = α
wh3Eref

12
(2.50)

EA = βwhEref (2.51)

where h and w are the thickness and width of the laminate, and Eref is the
reference Young’s modulus of the material. In the current work the modulus in
the fibre direction of the material used in the optimisation, carbon fibre AS4/8773,
was selected as the reference Young’s modulus. The specifications of the material
are given in Table 2.2.

Table 2.2: Material properties of carbon fibre AS4/8773

AS4/8773
E1 [N/m2] 1.198× 1011

E2 [N/m2] 9.08× 109

G12 [N/m2] 5.29× 109

ν [-] 0.32
tply [m] 1.83× 10−4

A set of boundaries for the feasible design space was found by simply check-
ing many different laminates and take the outer boundaries of the dataset. For
unidirectional pre-impregnated carbon fiber in an epoxy material AS4/8773 the
bounding box is created by the following equations:

−βi + 0.474αi + 0.0368 ≤ 0, for i = 1 . . .Np

βi − 1.3013αi + 0.5656 ≤ 0, for i = 1 . . .Np

βi − 9.4808αi + 8.8408 ≤ 0, for i = 1 . . .Np

−βi + 0.4694αi + 0.5306 ≤ 0, for i = 1 . . .Np

−βi + 1.2842αi + 0.2476 ≤ 0, for i = 1 . . .Np

βi − 8.9981αi + 0.5595 ≤ 0, for i = 1 . . .Np

(2.52)

The design space of a laminate with fewer layers is conservative with respect to
the design spaces of a laminate with more layers, so a minimum thickness can
be chosen and the design space for this thickness can be safely used for thicker
lamina as well.

The globally convergent method of moving asymptotes (GCMMA) [63] is used to
perform the gradient-based optimisation. The objective, constraints and design
variables are all normalised or scaled such that their magnitudes are similar. The
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direct sensitivities are computed using algorithmic differentiation in all three mod-
els, ensuring efficient computation and accurate sensitivities [64]. The Karush-
Kuhn-Tucker optimality conditions are used as convergence criterion.

Four different optimisation cases are studied in the present work.

• First of all, a baseline optimisation is done where only the actuation forces
are included as design variables. The thickness for the baseline is chosen
such that the cruise geometry can still be closely maintained during the
2.5g load case and is equal to 20 plies, or 3.66 mm. The laminate is set to
a quasi-isotropic one by setting the lamination parameters to 0.5.

• The second optimisation also includes the thickness of the skin as design
variable besides the actuation forces.

• The third case uses the actuation forces and lamination parameters to obtain
an optimal result.

• The final optimisation includes all the design variables and should theoret-
ically give the best result.

Table 2.3 gives and overview of the settings per optimisation case.

Table 2.3: Settings for the four optimisation cases

#
Skin

thickness
Actuation

forces
Lamination
parameters

1 Baseline 3.66 mm Free a = b = 0.5
2 Thickness Free Free a = b = 0.5
3 Laminate 3.66 mm Free Free
4 Thickness + laminate Free Free Free

2.3 RESULTS

As was mentioned in the previous section, the drag coefficient was included in the
objective function to ensure a feasible result without flow separation. To show
the influence of the objective function formulation on the final morphed airfoil,
both single step and double step optimisation approaches will be discussed. In
the first subsection the single step optimisation approaches, using the inverse of
the lift coefficient or the fraction of drag and lift coefficient as objective function,
are presented . Subsequently, the final two-step optimisation formulation result is
shown and the results for the four optimisation cases are presented and discussed.
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2.3.1 SINGLE STEP OPTIMISATION

The single step optimisation approaches are only demonstrated for the fourth
optimisation case, which includes both thickness and lamination parameters as
design variables. The effect of the objective function will be most pronounced for
this case. The results from the optimisation based on only the lift coefficient is
presented first. Subsequently, the results from the optimisation using both drag
and lift coefficient are presented.

1/Cl MINIMISATION

In Figure 2.16 the deformed airfoil is shown. At the trailing edge a large de-
formation can be seen. This deformation causes the flow to separate, which is
unfavourable during any flight condition. The lift coefficient for the deformed
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Figure 2.16: Deformed airfoil for lift
coefficient maximisation for optimisation
case 4
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Figure 2.17: Objective function optim-
isation history for three different initial
design variable sets for optimisation case
4

airfoil is 1.56 and the drag coefficient is equal to 0.0181.

The solution of this optimisation approach is insensitive with respect to the initial
design vector. In Figure 2.17 the optimisation history of the objective function
is shown for three different starting points. The solid line represents the starting
point as mentioned in the previous section, with the design variables in the middle
of their ranges. The dashed and dashed-dotted lines result from starting close
at the maximum and minimum of the variable ranges, respectively. The figure
shows that all optimisations converge to the same objective function value and on
inspection of the resulting geometries it can indeed be concluded that the same
solution has been found in all three cases.
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Cd/C
1.5
l MINIMISATION

Taking the objective function equal to Cd/C
1.5
l results in a much more conser-

vative solution. The increased complexity of the objective functions introduces
more local minima, so the chances of the optimiser ending up in one of these
minima is increased. The resulting deformation in Figure 2.18 indeed shows that
the deformation is less pronounced compared to Figure 2.16. A lift coefficient of
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Figure 2.18: Deformed airfoil for C1.5
l

/Cd maximisation for optimisation case 4

1.148 and a drag coefficient of 0.0106 is found for this airfoil.

2.3.2 TWO-STEP OPTIMISATION RESULTS

Neither of the morphing airfoils found in the previous subsection satisfy the re-
quirements. The first airfoil experiences too much deformation, causing flow sep-
aration. The second airfoil is still far away from the possible increase in lift as
demonstrated by the first airfoil. From these results the idea was formulated to
create a hybrid two-step optimisation approach. The two steps are as follows:

1. The maximum possible lift coefficient is found by using the inverse of the
lift coefficient as objective function.

2. From that point in the design space, the next optimisation step is star-
ted with the drag coefficient included in the objective function and the lift
coefficient raised to the power 1.5.

The benefit of this approach is that it will be insensitive to the initial design
vector, as was shown in Subsection 2.3.1. The second step is more sensitive to
the starting design, but as this point is always the same this is not a problem.
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The optimiser will thus find a solution close to the solution with the maximum
lift coefficient, but a little bit more conservative to avoid flow separation.

This two-step optimisation approach is used for the four optimisation cases de-
scribed in previous section. The results are presented in the remainder of this
section. A summary of the optimisation results is given in Table 2.4. An in-
crease in the lift and drag coefficient is observed for all designs compared to the
NACA2412 airfoil. The optimisation histories for the objective function in the
first and second optimisation step are collected in Figures 2.19 and 2.20. In

Table 2.4: Objective function and lift and drag coefficient for the NACA2412 and the four
optimisation cases

Objective
function [·10−3]

Lift
coefficient [-]

Drag
coefficient [-]

NACA2412 10 1.028 0.0105
Baseline 9.58 1.074 0.0107
Thickness 9.54 1.318 0.0144
Laminate 9.46 1.259 0.0134
Thickness + laminate 8.80 1.459 0.0155
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Figure 2.19: Objective function optim-
isation histories for the first optimisation
step for the four cases normalised with re-
spect to the undeformed NACA2412 per-
formance
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Figure 2.20: Objective function optim-
isation histories for the second optimisa-
tion step for the four cases normalised with
respect to the undeformed NACA2412
performance

the first step the objective function converges faster as less design variables are
involved. In the second step only the case with both the thickness and lamina-
tion parameters included changes significantly. The other cases were not able to
achieve a solution with flow separation in the first optimisation step due to the
bounds on the design variables. The minimum in the second step thus coincided
with that of the first step. The combined effect of the thickness and lamination
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parameters enables a more extreme deformation and thus results in flow separa-
tion and a large increase in drag in the first step.

In the following subsections more details will be given per design. First the
baseline result is presented to understand what the performance of a non-optimised
structure would be. The results of the other optimisation cases are compared with
the baseline, but also with each other. Finally, the absence of flow separation is
investigated.

BASELINE

The undeformed NACA2412 airfoil in landing conditions has a lift coefficient of
1.028 and a drag coefficient of 0.0105, resulting in a value of 0.01 for the objective
function. For the baseline configuration only the actuation forces are optimised,
as was explained before.

The resulting deformed shape with the constant skin thickness and quasi-isotropic
layup is shown in Figure 2.21, together with the undeformed shape and actuator
connection points.
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Figure 2.21: Baseline deformed and un-
deformed shape in landing flight condi-
tions
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Figure 2.22: Strain in the skin of the
baseline configuration

It is visible that the thickness of the trailing edge is decreased and the camber
is slightly increased, which indeed results in an increase in lift coefficient. The
objective function for the baseline case is equal to 9.58 · 10−3, which translates
into a lift coefficient of 1.074 and a drag coefficient of 0.0107. A slight increase in
both lift and drag is thus achieved compared to the NACA2412 airfoil.

Because the thickness and lay-up is uniform throughout the skin, the deformation
is almost symmetric. The actuation force in this case limits the deformation.
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All three actuation force design variables are hitting their upper limit of 500N,
preventing the optimiser to move towards more extreme camber lines. None of
the other constraints are active. The cruise shape is maintained during the 2.5g
load case. The strain in the skin is shown in Figure 2.22, which shows that it
does not reach the limit anywhere. Similar as the deformation, the strain is also
nearly symmetric on the upper and lower surface.

SKIN THICKNESS OPTIMISATION

Figure 2.23 shows the deformed shape resulting from the skin thickness optimisa-
tion. The actual skin thickness distribution is shown in Figure 2.24, where also
the skin thickness of the baseline structure is shown for comparison. The vari-
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Figure 2.23: Thickness optimisation res-
ulting deformation
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Figure 2.24: Thickness optimisation res-
ulting thickness distribution

ation in skin thickness allows the optimiser to introduce more camber compared
to the baseline result. This results in an increased lift coefficient of 1.318, which
is significantly higher than that of the NACA2412 and baseline airfoils.

The thickness distribution shows that most of the thickness design variables are at
their limit values. The thickness of the skin connected to the spar at the bottom
side has the lowest thickness possible to introduce a compliant hinge. At the top
the opposite is observed. The thickness is increased to the maximum value in
order to maintain a stiff connection in this location. This allows for more camber
to be introduced in the structure.

The middle and last actuators are at their maximum stroke and force, and the
strain approaches the strain limit in most of the thin sections, as is shown in
Figure 2.25. The cruise shape is again maintained during the 2.5g load case.
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Figure 2.25: Strain in the skin of the thickness optimised configuration

LAMINATE OPTIMISATION

The skin deformation and lamination parameters for the laminate optimisation
case are shown in Figure 7, and Figures 8 and 9, respectively. The deformation is
again larger compared to the baseline, but less severe compared to the thickness
optimisation case. This is also reflected in the resulting lift coefficient of 1.259,
which is in between the baseline and thickness optimisation values.
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Figure 2.26: Laminate optimisation res-
ulting deformation
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Figure 2.27: Laminate optimisation res-
ulting α distribution

The lamination parameters both show similar behaviour as the thickness distri-
bution in the previous case. The stiffness is strongly reduced and increased in
same sections as where the thickness was reduced and increased in the previous
results. The thickness, however, has a larger influence on the bending stiffness,
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Figure 2.28: Laminate optimisation res-
ulting β distribution
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Figure 2.29: Strain in the skin of the
laminate optimised configuration

explaining the larger displacement for the skin thickness optimisation.

Similar as to the previous results, the middle and last actuator reach their max-
imum stroke and force. Figure 2.29 shows that the strain limit is now reached in
three out of four flexible sections. The cruise shape is maintained during the 2.5g
load case.

SKIN THICKNESS AND LAMINATE OPTIMISATION

Figures 2.30 and 2.31 to 2.33 show the deformation and design variable distribu-
tion for the optimisation case with both the thickness and lamination parameters
included as variables. The increased design freedom results in the highest lift
coefficient of 1.459, achieved by the bigger displacement and larger curvature of
the trailing edge compared to the previous results.

Contrary to the previous results, which showed very similar trends, this design
case shows different behavior near the trailing edge. In the previous results both
the upper and lower skin at the trailing edge were stiff, but in this case all design
variables go the to minimum value on the upper side. When comparing the
design variables within the optimisation case, it can be seen that the results are
very similar in terms of stiff and compliant sections.

The actuator closest to the trailing edge reaches maximum force and stroke, while
the one furthest away from the trailing edge reaches an actuation force of zero.
The middle actuator exerts a force of approximately 215N. The strain in the skin
close to the trailing edge reaches the limit, as well as the strain at the bottom of
the spar. This is illustrated in Figure 2.34.
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Figure 2.30: Thickness and laminate op-
timisation resulting deformation
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Figure 2.31: Thickness and laminate op-
timisation resulting thickness distribution
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Figure 2.32: Thickness and laminate op-
timisation resulting α distribution
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Figure 2.33: Thickness and laminate op-
timisation resulting β distribution
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Figure 2.34: Strain in the skin of the thickness and laminate optimised configuration

2.3.3 ATTACHED FLOW

The drag coefficient was added to the objective function to make sure the optim-
ised results would be separation free, as was mentioned before. In Figure 2.35
the skin friction coefficient on the upper and lower surface of the last airfoil is
shown, as computed by XFOIL. The curve for the upper surface clearly shows
the transition point at around 14% of the chord, because the friction coefficient
rises sharply at that point. On the bottom surface the same phenomenon can be
observed at the transition point at around 69% chord. At the trailing edge the
friction coefficient on the upper surface decreases towards zero, but is still slightly
above. When the friction coefficient is equal to or lower than zero the flow has
separated, so this shows that indeed no flow separation is taking place.
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Figure 2.35: Development of skin friction coefficient in the boundary layer on the upper and
lower surface of the airfoil with optimised skin thickness and laminate
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2.4 SYNOPSIS

A two-dimensional low-fidelity isogeometric aeroelastic optimization framework
was presented and applied to the optimization of an active morphing airfoil. The
framework consists of an isogeometric BEM potential flow solver and an isogeo-
metric curved Timoshenko beam solver, which are closely coupled. The coupling
matrix is derived from the sensitivity matrices of the structural and aerodynamic
control points with respect to a shared coarse control polygon. Both solvers make
use of NURBS basis functions to describe the geometry and approximate the un-
known variables. A boundary layer model is included in the framework to enable
the computation of viscous effects.

The integrals for the aerodynamic model are desingularized, enabling easy calcu-
lation of the originally singular contributions to the aerodynamic influence coeffi-
cients. The multi-patch beam model is formulated in a global frame of reference
to simplify the coupling to the aerodynamic model. The patches are connected
through a master slave technique, enabling both rigid connections and hinged con-
nections. The boundary layer model is based on existing semi-empirical integral
methods improved with interpolation techniques to accurately determine points
of flow transition or separation.

The aeroelastic optimization framework was used to optimize the landing per-
formance of a 25kg UAV. The airfoil shape for cruise conditions was set to a
NACA2412 and the goal was to maximize the lift coefficient during landing flight
conditions by adding three actuators in the trailing edge of the airfoil and optim-
izing the skin thickness and lamination parameters. Four cases were optimized
with varying design variables. To ensure feasible results without significant flow
separation the drag coefficient was added to the objective function.

The results showed that higher lift coefficients were achieved, as more design
variables were included, as was expected. The skin thickness was shown to be the
most important design variable in the presented design case, because the structure
is predominantly loaded in bending. The inviscid results showed an increase in
lift coefficient of up to 42% for the case with both skin thickness and lamination
parameter as design variables. Analysis of the airfoil in Xfoil showed that indeed
no flow separation was taking place, caused by the use of the drag coefficient in
the objective function.
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THREE-DIMENSIONAL ISOGEOMETRIC

AEROELASTIC ANALYSIS
1

This chapter presents a further development of the 2D isogeometric aeroelastic
analysis from the previous chapter and describes a geometrically consistent aero-
elastic framework for the analysis of 3D aircraft wings. Adding an extra dimension
of course calls for other aerodynamic and structural models. The potential flow
BEM is still used for the aerodynamic part, but now for complete wings instead
of just the airfoils. The structural beam model is replaced by a shell model. Sim-
ilar as in the two-dimensional framework, the combination of these models with
IGA creates a geometrically consistent analysis framework that can directly use
the boundary representation obtained from CAD software. The two models are
closely coupled through a radial-basis function (RBF) interpolation routine and in
a post-processing step, the structural strength and buckling and the aerodynamic
viscous drag are computed.

In Section 3.1 of this chapter, the computational models and techniques are de-
scribed and their implementations are verified against reference solutions. In the
next section the framework is demonstrated through the analysis of a realistic
3D wing. Three load cases are analysed and the results are discussed. Finally, a
summary of the chapter is given.

1This chapter is largely based on the journal paper Gillebaart, E. and De Breuker, R. (2017).
“Geometrically consistent static aeroelastic simulation using isogeometric analysis”, Computer
Methods in Applied Mechanics and Engineering, under review.
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3.1 COMPUTATIONAL TECHNIQUES

The isogeometric aeroelastic analysis method presented in this chapter consists
of four distinct modules that interact with each other to find the final aeroelastic
result. In Figure 3.1, an overview of the complete method with the internal inter-
actions is presented to get a better understanding of how the model is assembled.
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Flow properties

Etc.
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analysis
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analysis
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Figure 3.1: Overview of the isogeometric aeroelastic analysis framework

The flow diagram in Figure 2.1 presented in Section 2.1 also holds for the three-
dimensional framework. The only difference is that instead of the GCMMA al-
gorithm, the built-in Matlab function fmincon is used.

The main modules of the framework are the aerodynamic and structural ones,
which are described in Subsections 3.1.2 and 3.1.3. These models are coupled to
each other to enable the computation of the aeroelastic equilibrium, as explained
in Subsection 3.1.4. The results from this aeroelastic analysis are used to compute
the strains (Subsection 3.1.3), the buckling behaviour (Subsection 3.1.5) and the
viscous drag of the aeroelastically deformed geometry (Subsection 3.1.5). First a
short overview of the extension of the isogeometric principle to three dimensions
is given in Subsection 3.1.1.

3.1.1 ISOGEOMETRIC ANALYSIS IN THREE DIMENSIONS

The same principles as shown in Chapter 2 for 2D NURBS curves hold for 3D
curves, but also for surfaces, as will be used in the models presented later on
in this chapter. A control net is obtained for a surface instead of the control
polygon formed by the control points Pi for a curve. An additional knot vector
H = [η1, η2, ..., ηn+q+1] defines the bivariate NURBS surface of degree p in one
direction and degree q in the other. An example is given in Figure 3.2
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Figure 3.2: Example of a NURBS surface with control net and knot locations

3.1.2 AERODYNAMIC MODEL

The implementation of the aerodynamic model is based on the work by Kim et
al. [65]. The potential flow model used for the hydrodynamic analysis of ship
propellers in that work is in principle directly applicable to the aerodynamic ana-
lysis of aircraft wings. However, to enable the analysis of more complex wing
models, multipatch analysis has to be added to the existing work. Furthermore,
the Prandtl-Glauert correction is implemented in the model to extend the validity
of the model up to high-subsonic Mach numbers. In the following subsection, a
short overview of the aerodynamic model as presented by Kim et al. is given for
completeness, together with the extension to multipatch analysis and the imple-
mentation of the Prandtl-Glauert correction.

The aerodynamic model is based on the potential flow theory, which assumes
incompressible, inviscid and irrotational flow. A flow of this type is described
by Laplace’s equation. The boundary integral equation resulting from the flow
tangency boundary condition is the governing equation for the flow around an
wing:

φ(x0)

2
= −

¨

Sb

(

φ(x)
∂G(x,x0)

∂n
+

∂φ(x)

∂n
G(x,x0)

)

dS

−
¨

Sw

(

∆φ(x)
∂G(x,x0)

∂n

)

dS (3.1)

where x are the boundary coordinates, x0 is a specific point on the surface, φ is the
perturbation velocity potential, ∆φ the potential jump in the wake, n the surface
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unit normal, Sb and Sw the wing body and wing wake surfaces, respectively, and
G the 3-dimensional fundamental solution of Laplace’s equation:

G =
1

4πr
(3.2)

where r = |x−x0| is the distance between the point of interest and the integration
point. From the flow tangency boundary condition, the value for the normal
derivative of the velocity potential can be found:

∂φ

∂n
= −n ·U∞ (3.3)

where U∞ is the freestream velocity vector.

The potential jump in the wake is constant in flow direction and is, according to
the Kutta condition, equal to the jump in potential at the trailing edge of the wing,
so the two surface integrals can be joined together. The isogeometric principle is
invoked to discretise the geometry and the perturbation velocity potential as well
as its normal derivative, leading to the following discretised boundary integral
equation:

R(ξ0, η0) · φ
2

+
1

4π

¨

Sb∪Sw

(

R(ξ, η)
n · r
r3

)

dS · φ

= − 1

4π

¨

Sb

(

R(ξ, η)
1

r

)

dS · σ (3.4)

where R is the matrix with NURBS basis function values, φ and σ are the control
points for the perturbation velocity potential and its normal derivative, and r is
the vector, with length r, pointing from the integration point x to the surface
point x0. At this stage the Prandtl-Glauert correction can be introduced. This is
done through scaling the geometry in the flow direction by a factor β =

√
1−M2

in the integrals, where M is the Mach number:

R(ξ0, η0) · φ
2

+
1

4π

¨

Sb∪Sw

(

R(ξ, η)
n(x̃) · r(x̃, x̃0)

r(x̃, x̃0)3

)

dS · φ

= − 1

4π

¨

Sb

(

R(ξ, η)
1

r(x̃, x̃0)

)

dS · σ (3.5)

where the overhead tilde indicates the coordinates scaled in flow direction by a
factor β.

The surface integrals are broken up into the elements that are formed by the
non-zero knot spans in the parametric domain. The higher-order discretisation
prohibits the use of analytical expressions for the integrals, so Gaussian quadrat-
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ure is used to evaluate them numerically. The resulting equation is

R(ξ0, η0) · φ
2

+
1

4π

[

ne
∑

i=1

ngp
∑

g=1

R(ξg, ηg)
n(ξg , ηg) · r(ξg , ηg)

r(ξg , ηg)3
J1(ξg, ηg)Jgwg

]

· φ

= − 1

4π

[

ne
∑

i=1

ngp
∑

g=1

R(ξg, ηg)
1

r(ξg , ηg)
J1(ξg, ηg)Jgwg

]

· σ (3.6)

where ne and ngp are the number of elements and Gaussian quadrature points
per element, J1 the Jacobian for the transformation from the physical to the
parametric domain, Jg the Jacobian for the transformation from the parametric
to the parent domain in which the Gaussian quadrature points are defined, and
wg the quadrature weights. Equation 3.6 can be rewritten in short as

h · φ = g · σ (3.7)

The integrals are unfortunately not well behaved as the surface point x0 ap-
proaches the integration point. In the limit, they even become singular since the
distance r will go to zero. Special care has to be taken in computing these integ-
rals to be able to obtain accurate results. The singular integrals are computed by
splitting the singular element into four triangular elements originating from the
singular point to the four corner points. A quadratic transformation is applied
to introduce a Jacobian that is zero in the singular point and thus cancels the
singularity. The sum of the four triangular integrals will give an accurate result
for the integral. For the nearly singular integrals, an adaptive refinement scheme
is implemented. Depending on the distance the element under consideration is
partitioned into four smaller elements until the characteristic size of the elements
is small enough compared to the distance between the element and the surface
point x0.

The collocation method is applied to create a system of equations that can be
solved for the unknown perturbation velocity potential control points, as in Equa-
tion 3.8,

H · φ = G · σ (3.8)

where the rows of H and G are the h and g taken from Equation 3.7. In most
of the literature on the application of IGA in BEM formulations, the Greville
abscissae are used as collocation points. In previous work of the authors on 2-
dimensional aeroelastic analysis using IGA, these points were also used, so this
was also the starting point for the present work. The results when using these
collocation points show poor convergence at the trailing edge of the wing. The
pressure distribution on the top and bottom side of the wing does not converge
at a single point, but instead crosses shortly before the trailing edge point and
diverges, as is shown in Figure 3.3.

The dynamic Kutta condition, as described in the work of Kim et al. [65], is im-
plemented to reduce this problem. However, to be able to enforce this condition, it

45



3

3. THREE-DIMENSIONAL ISOGEOMETRIC AEROELASTIC ANALYSIS

0 0.2 0.4 0.6 0.8 1
x [m]

-1.5

-1

-0.5

0

0.5

1

C
p [-

]
Greville points
Uniform points

(a) Full pressure distribution

0.8 0.82 0.84 0.86 0.88 0.9 0.92
x [m]

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

C
p [-

]

Greville points
Uniform points

(b) Trailing edge pressure distribution

Figure 3.3: Pressure distribution of the Onera M6 wing at 33% span using Greville abscissae
or uniform points as collocation points

is necessary to solve the system of Equation 3.8 in a constrained least squares way.
The overdetermined system is constructed by placing four collocations points uni-
formly on every element resulting in more collocation points compared to control
points. Together with the dynamic Kutta constraint, it shows better convergence
of the pressure distribution at the trailing edge. This is shown in Figure 3.3 with
the dashed line.

Once the perturbation velocity potential is known, the pressure distribution on
the body and the resulting aerodynamic loads can be computed. The loads in the
control points are computed by integrating the pressure distribution multiplied by
the normal vector and the basis function values over the wing surface area. The
induced drag is computed using a Trefftz plane analysis [54]. The intersection of
the wake with the Trefftz plane is modelled as a NURBS curve to maintain the
exact geometrical concept of the isogeometric principle. The singularity subtrac-
tion technique (SST) [66] is used to take care of the hypersingular integrals and
the Telles transformation [67, 68] is applied to the nearly singular integrals.

For a multipatch geometry, the system of Equation 3.8 is computed for the entire
geometry in one go. At this point, however, measures have to be taken to ensure
the proper continuity of the solution. The lowest requirement is to enforce C0-
continuity, so that overlapping control points of the different patches have the
same value for the perturbation velocity potential in the final solution. This
is done by introducing a transformation matrix that couples these overlapping
control points at the edges of neighbouring patches:

H ·TC0
· φ = G · σ (3.9)

In Figure 3.4, the pressure distribution for the Onera M6 wing is shown resulting
from the transformation as shown in Equation 3.9. The black lines on the surface
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indicate the boundaries of the 39 NURBS patches forming the wing geometry.
The relative difference with the unconstrained pressure distribution is also shown.
The extreme values are found at the leading edge around the patch interfaces and
exceed 100%, illustrating that enforcing C0-continuity is essential for an accurate
solution. The large difference in the leading edge zone can be explained by the
strong changes in pressure distribution and the pressure distribution crossing zero
in this zone. A small deviation in the location where it crosses zero results in large
relative differences.

(a) C0-continuous pressure distribution

(b) Difference between C0- and C−1-continuous pressure distribution

Figure 3.4: Comparison of Onera M6 results with C−1- and C0-continuity for a geometry
consisting of 39 NURBS patches

The IGA aerodynamic model is verified by comparing it to the results of the
panel code TriPan and the Euler CFD code SUmb [69], as presented in the work
of Kennedy and Martins [23]. The pressure distribution of the Onera M6 wing
at Mach numbers 0.5 and 0.7 is compared between the three different models at
two spanwise locations of the wing. The incoming flow is at an angle of attack
of 3.06 degrees. The TriPan results were obtained using 8,000 surface panels, the
SUmb results with 3.15 million volume cells including 32,768 surface cells, and the
present model uses 39 patches with in total 1,096 cubic surface elements and 2,835
degrees of freedom. The comparison is shown in Figure 3.5. For a Mach number
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Figure 3.5: Comparison of the IGA aerodynamic model with TriPan and SUmb for the Onera
M6 wing

of 0.5, the results of the three different models are very similar for both spanwise
locations. For Mach 0.7 the results of the present model and TriPan are still close
together, but they start to deviate from the results of SUmb especially at the
suction peak at the leading edge. This demonstrates that the limit of the potential
flow theory including the Prandtl-Glauert correction is indeed somewhere around
a Mach number of 0.6 to 0.7. Above this limit, the compressibility effects start
to play a significant role in the solution, which the present model is unable to
capture.

3.1.3 STRUCTURAL MODEL

Considering the shell-like nature of the aerodynamic model, the natural choice for
shell elements for the structural representation was made. In general, the wingbox
of an aircraft can be seen as a thin-walled structure. Kirchhoff-Love shell elements
would be sufficient to represent such a structure. The use of IGA has opened up
the doors to applying the Kirchhoff-Love theory due to the increased order of
the basis functions [70]. The absence of rotations in the formulation, calls for C1

continuity of the displacements. In the interior of a NURBS patch, the functions
can be of as high a degree as the user requires. Only on the edges of a patch, the
continuity decreases to zero, due to the nature of the open knot vectors that are
used. Inside the patch, it is thus no problem to use the Kirchhoff-Love theory. For
a multipatch model, however, special care has to be taken at the patch interfaces
due to the C0 continuity at these locations [71].

The alternative is using the Reissner-Mindlin shell theory, which includes the ro-
tations and can also be used for thicker shells. The lower complexity of the multip-
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atch implementation of the Reissner-Mindlin theory compared to the Kirchhoff-
Love theory has motivated the authors to use this theory for the aeroelastic model
presented in this work. A linear shell model based on the work of Dornisch et al.
[72, 73] is implemented with the addition of the capability to analyse anisotropic
structures as well as isotropic ones. The membrane, bending, and shear stiff-
nesses of the composite materials are parametrised using lamination parameters
[74] for future optimisation purposes. In the following subsection, an overview of
the implementation of the anisotropic material in the shell model is given and it
is verified.

The stiffness matrix for a Reissner-Mindlin shell made of isotropic material is
computed as the volume integral

K =

ˆ

V

B⊤ ·C ·B dV (3.10)

where the superscript ⊤ indicates the transpose, C is the material stiffness tensor
and B the matrix describing the relation between the strains and the displace-
ments and rotations. For a derivation of the B matrix see the work by Dornisch
and Klinkel. [72]. Both matrices can be split into components related to the
membrane, bending, and shear deformations:

K =

ˆ

V

(Bm)⊤ ·Cm ·Bm dV +

ˆ

V

(

Bb
)⊤ ·Cb ·Bb dV +

ˆ

V

(Bs)⊤ ·Cs ·Bs dV (3.11)

The superscripts m, b and s indicate the membrane, bending and shear compon-
ents, respectively.

For an anisotropic material, it is possible that there is a coupling between the
different components of the deformation. For example, an in-plane load may
introduce not only in-plane stretching, but also out-of-plane bending deformation.
The material stiffness tensor, C̃, for an anisotropic material can be written as

C̃ =







A B 0

B D 0

0 0 As






(3.12)

where the A, B, D and As matrices are the extensional stiffness, bending-
extensional coupling stiffness, bending stiffness, and transverse shearing stiffness,
respectively [75]. Stiffened panels are commonly used for aircraft structures. The
stiffeners are not explicitly modelled in the present structural model, but their
effect is taken into account by computing a so-called smeared panel stiffness that
adds the effect of the stiffeners to all four material stiffness matrices [76]. The
global structural stiffness matrix can now be computed as follows:

K =

ˆ

V

(Bm)
⊤ ·A ·Bm dV +

ˆ

V

(Bm)
⊤ ·B ·Bb dV +

ˆ

V

(

Bb
)⊤ ·B ·Bm dV

+

ˆ

V

(

Bb
)⊤ ·D ·Bb dV +

ˆ

V

(Bs)
⊤ ·As ·Bs dV (3.13)
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Once the displacements and rotations of the structural nodes have been determ-
ined, the strains in the structure can be computed. The B matrix is stored at a
selection of the integration points and by using Equation 3.14 the strains in these
integration points can be computed:

ǫi =

































ǫi11

ǫi22

2ǫi12

κi
11

κi
22

2κi
12

γi
1

γi
2

































= Bi · u (3.14)

where ǫ is a vector with the all the strain components: ǫij the membrane strains,
κij the bending strains, and γi the transverse shear strains, and u is the vector
with degrees of freedom. The superscript i indicates the values at integration
point i. The strain components are used to compute the engineering strains at
the top and bottom of the shells, as the extreme value will be located at either of
those. The principal strains at the top and bottom can subsequently be computed
by determining the eigenvalues of the infinitesimal strain tensor.

The stresses or strains occurring in the structure can be compared to the material
strengths through the available composite strength failure criteria to evaluate
whether structural failure occurs or not. However, with a future application in
gradient-based structural optimisation in mind, lamination parameters are used
for the description of the composite laminates. This means no explicit stacking
sequence is available in the analysis and thus the extreme values of the stresses
or strains cannot be determined, rendering the strength failure criteria useless in
this case. IJsselmuiden et al. [74] derived a failure envelope based on the Tsai-Wu
failure criterion which ensures that no failure occurs regardless of the ply angle
in the composite laminate. In the present model, the implementation by Khani
et al. [77] is used, who reformulated the failure envelope of IJsselmuiden in terms
of the principal strains.

The implementation of the anisotropic materials is verified by comparing the res-
ults from the present model to those obtained with the commercial finite element
analysis (FEA) software Abaqus version 6.13. For the verification, a wingbox for
the Onera M6 wing was modelled. It consists of the top and bottom skin panels, a
front and rear spar, and eight ribs. All elements have the same thickness of 5mm.
The composite material that is used has the specifications as listed in Table 3.1.
For all elements, a symmetric, unbalanced lay-up of [0/45/45/0] was used. The
0 and 90 degree directions are as shown in Figure 3.6 for the first wingbox bay.
The remaining bays follow the same definition. A concentrated load of 50kN

50



3

3.1. COMPUTATIONAL TECHNIQUES

Table 3.1: Material properties (Source: [78])

UD Carbon/Epoxy (AS4/3501-6)

E11 147.0GPa

E22 10.3GPa

G12 7.0GPa

G23 3.7GPa

G13 7.0GPa

ν12 0.27

ρ 1600 kg/m3

Figure 3.6: 0 and 90 degree axes for the composite lay-up definition for the first wingbox bay
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is applied to the tip of the wing at the trailing edge spar, and the wingbox is
fully clamped at the root. The Abaqus shell model consists of 12,032 linear S4R
elements with a total of 70,800 degrees of freedom, and the IGA model consists of
1,412 cubic elements with a total of 12,994 degrees of freedom. The comparison of
the displacement field is shown in Figure 3.7, where the result of the Abaqus model
is shown with on top of that the outline of the deformed geometry obtained using
the present model. The maximum displacement of the Abaqus model is 0.2508m
and for the IGA model it is 0.2% lower at 0.2503m. The comparison of the res-

Figure 3.7: Structural displacements of the Onera M6 wingbox under a tip load obtained
with Abaqus with an overlay of the outline of the deformed wingbox obtained using the present
model

ulting strain field is shown in Figure 3.8. The minimum principal strain of the top
outside surface is shown for the two models, which again show a good similarity.
The white lines in the results obtained with the present model are caused by the
fact that the strains are computed in the integration points, so at the edges of
the patches a small gap occurs due to the integrations points being in the interior
of the elements. The strains in the rest of the structure, as well as the maximum
principal strains, show similar likeness between the models.

3.1.4 AEROELASTIC COUPLING

Coupling the previously described aerodynamic and structural models will enable
the simulation of the static aeroelastic behaviour of aircraft wings. In previous
work of the authors on two-dimensional isogeometric aeroelastic analysis, it was
concluded that the non-interpolatory nature of the NURBS geometry introduces
some difficulties in the coupling process.[79] In that work, the gradient matrices
that contain the gradients of the control points of the aerodynamic and structural
mesh with respect to the control points of the coarse CAD mesh were used to
couple the two disciplines. The fact that all three geometries were largely the
same, made it relatively easy to use this procedure.

In the present work, the CAD model contains all geometrical features, but the
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(a) Present model (b) Abaqus

Figure 3.8: Minimum principal strain in the top surface of the Onera M6 wingbox obtained
using the present model and Abaqus

aerodynamic model consists of only the outer skin of the wing model, and the
structural model consists of only the wingbox, as is shown in Figure 3.9. This
complicates the coupling using the gradient matrices, as this requires the extra-
polation of the displacements of the wingbox to the leading and trailing edge
sections of the wing before transferring the displacements to the aerodynamic
mesh. Considering the non-interpolatory nature of the NURBS and that the
aeroelastic model is meant to be used in a fully free shape optimisation, this is
not a trivial task. Furthermore, the structural displacements are mapped onto
the coarser CAD mesh before being mapped onto the aerodynamic mesh in the
aforementioned method. As a result, the displacement field of the aerodynamic
mesh can only be as complex as the CAD mesh allows it to be. This thus in-
creases the requirements of the CAD mesh in terms of the number of control
points and degree of the basis functions. These two problems made the gradient
matrix method unappealing for the present work, and a different approach was
sought for this three-dimensional coupling problem.

Coupling the control points directly is difficult due to them not lying on the
surface and thus not being interpolatory. To circumvent this problem, the NURBS
geometry of the aerodynamic model is evaluated in the Greville abscissae and the
structural model in a user defined selection of points. The Greville abscissae can
be also be used for the structural points, but a reduced set of points will lower
the computational cost of the RBF interpolation [80] without compromising the
accuracy. The Greville abscissae in the parametric space of the NURBS patches
can be computed as follows:

ξ̄i =
ξi+1 + ξi+2 + · · ·+ ξi+p

p
, i = 1, 2, . . . , n (3.15)

The computed surface points can subsequently be coupled to each other through
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Figure 3.9: The CAD, aerodynamic and structural geometries

RBF interpolation. The basis function values at the surface points are stored in
separate matrices, Ra and Rs, and are used to retrieve the coupling matrix H̃

that couples the structural (subscript s) and aerodynamic (subscript a) control
points:

Ra ·Pa = H ·Rs ·Ps (3.16)

Pa = H̃ ·Ps (3.17)

H̃ = R−1
a ·H ·Rs (3.18)

where Pa and Ps are the aerodynamic and structural control points, and H the
coupling matrix for the surface points xa = Ra ·Pa and xs = Rs ·Ps. Using the
Greville abscissae for the aerodynamic surface points, results in a invertible square
matrix Ra with a good coverage of the complete model. The transformation
matrix can now be used to couple the translational structural degrees of freedom
to the translations of the aerodynamic control points.

The aerodynamic and structural geometries are split up into two groups for the
coupling. The leading and trailing edges of the aerodynamic geometry are coupled
to the spars and ribs only. The remaining aerodynamic panels are coupled to the
upper and lower skin panels of the wingbox. This is done to avoid problems
with local peak loads on the skin of the wingbox. Direct coupling of the full
aerodynamic model to the full structural model would result in considerable out-
of-plane forces on the wingbox skin panels. The panels would deform excessively,
as they are not designed to carry such a load. By coupling the leading and trailing
edges to the spars and ribs only, a more realistic load transfer is obtained and the
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skin panels carry only the load for which they were designed. The two coupling
matrices are in the end assembled into a single matrix.

Once the coupling matrix is determined, the structural displacements can be
transferred to the aerodynamic mesh using Equation 3.19:

ua = H̃ · us (3.19)

where the superscripts a and s indicate whether the variable is defined on the
aerodynamic or the structural mesh, respectively. With the transpose of the
coupling matrix, the aerodynamic loads can be transferred to the structural mesh:

fsa = H̃⊤ · faa (3.20)

The accuracy of the coupling method is verified through graphical inspection of
the aerodynamic and structural meshes and by numerically inspecting the force
transfer and resultant forces and moments. In Figure 3.10, both the aerodynamic
and structural geometries under aeroelastic deformation are shown on top of each
other. The interpolation and transfer of the structural displacements to the aero-
dynamic mesh give accurate and smooth aerodynamic displacements. The force
and moment resultants on both meshes are identical, as is shown in Table 3.2.

Figure 3.10: The deformed aerodynamic and structural models on top of each other

Table 3.2: Aerodynamic and structural force and moment resultants

Fx [N] Fy [N] Fz [N] Mx [Nm] My [Nm] Mz [Nm]

Aerodynamic -159.93 120.86 2418.2 1269.1 -1126.2 162.99

Structure -159.93 120.86 2418.2 1269.1 -1126.2 162.99

The coupling matrix H̃ can now be used to set up the governing equations for
the aeroelastic system comprised of the IGA aerodynamic and structural models
described before. The first equation is the balance of internal and external loads:

fin − fext = fs − fa − fe = 0 (3.21)

where fs are the internal structural loads, fa the aerodynamic loads, and fe any
remaining external loads, such as for instance gravitational loads, fuel loads or
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engine thrust. The equation is linearised using a Taylor series expansion to end
up at the monolithic governing linear system, which is solved on the structural
mesh:

(Ks
s −Ks

a −Ks
e) · us = fsa,0 + fse,0

(

Ks
s − H̃⊤ ·Ka

a · H̃−Ks
e

)

· us = H̃ · faa,0 + fse,0

J · us = H̃ · faa,0 + fse,0 = R0 (3.22)

where Ks, Ka and Ke, are the gradients of the forces with respect to the displace-
ment and thus the structural, aerodynamic and external force stiffness matrices.
The subscript 0 refers to the forces as computed for the undeformed initial con-
figuration. The structural stiffness matrix is directly available from the structural
model. The aerodynamic and external stiffness matrices are the gradients of the
corresponding forces with respect to the structural degrees of freedom and are
computed analytically. This monolithic system can be solved in one go to find
the aeroelastic solution, whereas a typical staggered approach requires an iterat-
ive process to end up in the point of equilibrium. The monolithic approach is
thus computationally more efficient and stable.

With Equation 3.22 the aeroelastic deformation can be determined at a constant
angle of attack of the wing. To be able to perform aeroelastic analysis in a
trimmed configuration, an additional equilibrium equation is required. The trim
equation makes sure that the lift is equal to the weight:

L−W = 0 (3.23)

The same linearisation procedure is followed with the unknown now being the
angle of attack α of the wing. Combining the two governing equations results in
the complete aeroelastic system:

[

J −
(

∂fsa
∂α +

∂fse
∂α

)

∂L
∂u

∂L
∂α

]

·
[

us

∆α

]

=

[

R0

W − L0

]

(3.24)

Once the aeroelastic deformations and the trimmed angle of attack are determ-
ined, the strains can be computed as was already described in subsection 3.1.3,
as well as the buckling and boundary layer behaviour as is described in the next
subsection.

The aeroelastic analysis is verified by comparing results for the Onera M6 wing
with results obtained using SOL 144 in MSC.Nastran version 2014.1. The Onera
M6 was originally not designed with an aeroelastic application in mind. The wing
is relatively short and stiff and thus shows little aeroelastic coupling. The skin
panels can be made thinner to promote aeroelastic deformations. This, however,
will at some point result in significant deformations of the airfoil in between
the ribs due to the aerodynamic pressures acting on the skin. In the present
verification case the material stiffness properties are lowered instead of lowering

56



3

3.1. COMPUTATIONAL TECHNIQUES

the skin thickness to ensure sufficient bending stiffness and consequently avoid
too large airfoil deformations.

The isotropic material that is used for the verification has a Young’s modulus of
147MPa and a Poisson’s ratio of 0.27. A thickness of 10mm is used for all skin,
spar and rib panels. The Mach number is 0.7, the altitude 35 000 ft, and the angle
of attack 3 degrees. The wingbox is modelled in MSC.Nastran using CQUAD4
elements and the aeroelastic coupling is created using the SPLINE4 card with all
aerodynamic and all structural nodes included.

The results of the two models are shown in Table 3.3. The tip displacement of the
present model is about 6.5% higher compared to that of the MSC.Nastran model.
This can be explained by the different aerodynamic models that are used. The
MSC.Nastran model uses the doublet lattice model, in which the wing thickness is
not modelled and thus not taken into account. This results in a lower aerodynamic
lift as is also shown in Table 3.3.

Table 3.3: Aeroelastic results for Onera M6 wing at an equal angle of attack for the present
and MSC.Nastran models

Present model MSC.Nastran Difference

Angle of attack [deg] 3 3 0.00%

Rigid lift [N] 1387.7 1313.6 5.64%

Elastic lift [N] 899.6 856.8 5.00%

Tip displacement [m] 0.1494 0.1403 6.49%

To compensate for the lower lift the angle of attack of the MSC.Nastran model
is slightly increased, such that the rigid lift of the two models are approximately
equal. The results of this updated simulation are shown in Table 3.4 and show
that the displacement results are now within 1% of each other.

Table 3.4: Aeroelastic results for Onera M6 wing at an equal rigid lift for the present and
MSC.Nastran models

Present model MSC.Nastran Difference

Angle of attack [deg] 3 3.16 -5.06%

Rigid lift [N] 1387.7 1387.9 -0.01%

Elastic lift [N] 899.6 905.2 -0.62%

Tip displacement [m] 0.1494 0.1483 0.74%

3.1.5 POST-PROCESSING

The results of the aeroelastic analysis are used to determine whether or not any
buckling is occurring in the structure and to compute the viscous drag in the
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deformed trimmed configuration in a post-processing step. First, the buckling
implementation is described.

Typically, the wingbox inside aircraft wings consists of the top and bottom
stiffened skin panels, two or more spars, and a number of ribs. As explained
in Subsection 3.1.3, in the present work, the stiffeners on the skin panels are not
explicitly modelled. These stiffeners do have a large influence on the buckling
behaviour of the wingbox, so for the buckling analysis the user can add stiffeners
for buckling purposes only. To reduce the computational cost of the complete
model it is also possible to reduce the number of modelled ribs and add ribs for
the buckling analysis only.

The curvatures in the wingbox structure are typically low, so they can be modelled
as flat plates instead of curved shells to reduce the computational cost. This will
result in a conservative approximation of the buckling load. The IGA plate buck-
ling model follows the derivation of Shojaee et al. [81], but with a more general
load definition instead of expressing the in-plane loads as a factor times one load
value. The Kirchhoff-Love plate model only has the out-of-plane deformations
as unknowns, since the buckling panels are modelled as simply supported plates.
This choice is made to ensure a conservative approximation of the buckling load
by assuming the bending loads of any individual plate cannot be transferred to
the surrounding structure.

The eigenvalue problem that has to be solved to find the buckling load is as
follows:

(K− λiKg) ·wi = 0 (3.25)

where K is the global stiffness matrix, Kg the geometric stiffness matrix, and λi

and wi the ith buckling load and mode shape, respectively. The global stiffness
matrix is obtained in a similar way as was done for the Reissner-Mindlin shell
model, except that the strain-displacement relation is now different and only the
D material matrix is used for the out-of-plane displacement . The geometric
stiffness matrix is obtained as a function of the internal in-plane loads:

Kij
g =

ˆ

V

B̃⊤

i · ñ · B̃j dV (3.26)

where ñ is the integral through the plate thickness of the in-plane internal stresses
and B̃i a vector with shape function derivatives in integration point i:

B̃i =

[

∂Ri

∂x
∂Ri

∂y

]

(3.27)

The geometry of the buckling plates is derived from the structural model and the
user-supplied information on stiffener and additional rib locations. The corner
point of every panel bounded by the stiffeners and ribs are used to find a flat plate
through a projection procedure. The in-plane loads in the integration points are
determined by projecting the plate integration points onto the shell geometry and
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evaluating the loads in those points while taking into account the transformation
in coordinate systems.

The other post-processing step is computing the viscous drag. The inviscid po-
tential flow model as described in Subsection 3.1.2 can only provide the induced
drag. A higher fidelity model is necessary to obtain the viscous drag component.
In the present work, a quasi-3D boundary layer model is implemented based on
the previous work from the authors on 2D aeroelastic analysis [79]. Contrary to
other literature on this subject, where for the drag analysis separate 2D aerody-
namic analyses of the wing sections are done [82, 83, 84], in the present model the
3D flow field computed with the 3D aerodynamic model is directly used as input
for the boundary layer analysis. Several sections of the flow field are extracted to
obtain the velocity field around the local airfoils. This data is then used in the
2D boundary layer model to approximate the viscous drag.

The 2D sections of the geometry and flow field are determined by finding the
intersection between the NURBS geometry and a vertical plane in flow direction at
a number of spanwise locations, as is illustrated in Figure 3.11 for a single cutting
plane. The intersection is determined by the marching algorithm as described by
Hu et al. [85]. Once the local airfoil and tangential velocity field are determined,
the boundary layer model, consisting of Thwaites’ method for laminar flow, Head’s
method for turbulent flow, and Michel’s method for the transition, is used to
compute the growth of the boundary layer from the stagnation point to the trailing
edge. The Squire-Young formula is used to predict the viscous drag resulting from
the boundary layer.

V
∞

Figure 3.11: Onera M6 geometry with cutting plane and intersection curve

The sectional drag coefficients are used to approximate the drag of the complete
wing through a piecewise constant integral over the surface, divided by the plan-
form area:

CDv
=

2

S

ˆ b/2

0

Cdv
c dy (3.28)

where CDv
and Cdv

are the 3D and sectional viscous drag coefficients, S the wing
planform area, b the span, and c the chord length.

59



3

3. THREE-DIMENSIONAL ISOGEOMETRIC AEROELASTIC ANALYSIS

The drag approximation method is verified by comparing the drag of the Fokker
50 and Fokker 100 wings to reference data taken from the work of Mariens et
al. [82] and Elham [83]. In these references, their quasi-3D aerodynamic model
is compared to results obtained using the higher-fidelity code MATRICS-V [86],
which is based on full potential theory with a 3D integral boundary layer model.
This data is used to verify the boundary layer model presented here.

In Figure 3.12, the total drag and its induced and viscous components of the
Fokker 50 wing are compared at different lift coefficients. The present model
shows a slightly steeper increase of the induced drag and an underestimation of
the viscous drag. The movement of the transition lines on the top and bottom of
the wing with increasing lift is accurately captured as can be seen by the similarity
in the trend of the viscous drag component with respect to the reference data.
For the Fokker 100 wing, an underestimation of the drag is observed as well, as
is shown in Figure 3.13. The limitation of the potential flow model is also clearly
seen in these results, as the increasing wave drag at higher Mach numbers is not
taken into account, resulting in a larger deviation with respect to the reference
data for increasing Mach number.
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Figure 3.12: Comparison of drag com-
ponents versus lift for the Fokker 50 wing
for the present model and results from
Mariens et al. [82]
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Figure 3.13: Comparison of total drag
versus Mach number for the Fokker 100
wing for the present model and results from
Elham [83]

The accuracy of the viscous drag estimation is suitable considering the goal and
application of the present framework. For the future optimisation purposes, the
trends of the viscous drag are more important than the actual values, especially
when taking into account the complexity of computing viscous drag for complex
geometries. It does, however, need to be taken into account that it is not directly
possible to use the drag value in a combined aerostructural objective, as this
would result in an unrealistic balance between the two disciplines.
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3.2 RESULTS

To demonstrate the unified isogeometric aeroelastic framework as described in
the previous sections, the uCRM wing is analysed, and the results are presented
in this section. This model is derived from the well-known common research
model (CRM) and provides the jig shape that results in the actual CRM outer
mold shape in 1g cruise condition, as explained by Kenway et al. [87]. This wing
model is thus ideally suited for aeroelastic analysis as it provides the geometry
in an unloaded condition. The span of the uCRM measures 58.9m, the leading
edge sweep is 37 degrees, and the wing surface area is 383.7m2. The mass of
the aircraft excluding the wing and all external masses connected to the wing is
130 202kg. [88]

3.2.1 MODEL DESCRIPTION

The wingbox presented in the work of Kenway et al. consists of two spars and
48 ribs. In the present work, the layout of the ribs is modified slightly to avoid
the rib-rib intersections at the transition from the centre wingbox to the actual
wing structure. In the present model a gradual change in the angle of the ribs
is implemented instead of the discrete jump, resulting in one less rib in total.
This is done because of the requirement in the current framework to have a
patch boundary at every connection between skin and internal structure. The rib-
rib intersections would require an even higher number of patches, which would
increase the computational cost considerably. The CAD model as used in the
present work is shown in Figure 3.14.

The structural design of the wingbox used in the present work is based on engin-
eering judgement and are by no means optimised for structural or aerodynamic
performance. The goal is to analyse a feasible and realistic design to show the
capabilities of the aeroelastic framework. The structural model as described in the
remainder of this subsection results in a wingbox with a mass of around 16 000kg
without taking into account stiffener mass. Comparing this value to values found
in literature and taking into account it is not optimised, it can be considered to
be a realistic value [88, 21].

The stiffener and rib distribution used for the buckling analysis is shown in Figure
3.15. A stiffener pitch of around 25 to 30 cm is used. The stiffeners are placed
along the parametric coordinates of the NURBS patches. The ribs are stiffened in
both horizontal and vertical direction. The spars are only stiffened in the vertical
direction.

The composite material for the skin, spars and ribs is the same as was used in
the structural verification and is given in Table 3.1. Additionally, the material
strengths, given in Table 3.5, are used for evaluating the failure criterion. The
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Figure 3.14: Complete CAD model of
the uCRM wing with wingbox and aero-
dynamic surfaces

Figure 3.15: uCRM wingbox with
stiffener and rib layout for the buckling
analysis

Table 3.5: Material strengths (Source: [78])

UD Carbon/Epoxy (AS4/3501-6)

Xt 948.5MPa∗

Xc 717.6MPa∗

Yt 23.7MPa∗

Yc 94.8MPa∗

S 31.6MPa∗

∗ Including knockdown factors for
environmental, barely visible im-
pact damage, and material scatter
effects. [89]
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directional stiffness distribution on the top skin resulting from the lamination
parameters is shown in Figure 3.16, where the rosettes indicate the membrane
and bending modulus of elasticity as a function of the polar angle θ as computed
using Equations 3.29 and 3.30, respectively, [90]

Em11 (θ) =
1

A−1
11 (θ)

(3.29)

Eb11 (θ) =
1

D−1
11 (θ)

(3.30)

where

A−1 (θ) = T⊤ ·A−1 ·T (3.31)

D−1 (θ) = T⊤ ·D−1 ·T (3.32)

and

T =







cos2 (θ) sin2 (θ) 2 cos (θ) sin (θ)

sin2 (θ) cos2 (θ) −2 cos (θ) sin (θ)

− cos (θ) sin (θ) cos (θ) sin (θ) cos2 (θ)− sin2 (θ)






(3.33)

The stiffness is aligned with the swept leading edge and is the same for all the
panels shown in Figure 3.16. The bottom skin has the same stiffness characterist-
ics. The ribs and spars are composed of a quasi-isotropic laminate. The thickness
of the wingbox panels is shown in Figure 3.17. The bottom skin experiences sig-
nificantly higher strains compared to the top skin, as will be demonstrated later
in this section, and is thus thicker. This is consistent with designs from other
literature. [91, 21]

Figure 3.16: Stiffness distribution in top
skin panels of the uCRM model

Figure 3.17: Thickness distribution of the
uCRM model

The external masses and loads acting on the wing, such as landing gear, fuel
and engine, are taken from the work of Werter [92] and are introduced as either
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concentrated or distributed loads. An engine thrust of 60 kN is used based on the
assumption of a lift-over-drag ratio of the aircraft of around 20.

Three load cases are analysed to demonstrate the computational framework.
Firstly, the clamped wing at 1.0 g cruise condition is analysed for aeroelastic
deformation and drag. Secondly and thirdly, a 2.5 g symmetric pull-up and a
−1.0 g symmetric push-down condition are analysed for structural deformations,
strength, and buckling. In general, a cruise Mach number of 0.85 is used for
the CRM. In the present model, however, this would be outside of the region of
applicability of the potential flow model. For the present work, a cruise Mach
number of 0.7 is used instead. This reduced speed will lead to a lower lift gen-
erated by the wing, which would result in a relatively high angle of attack in
the cruise condition. To compensate for this lower speed, the cruise altitude is
lowered from the normally used 37 000 ft to 30 000 ft. The pull-up and push-down
load cases are performed at the same Mach number, but at a lower altitude of
10 000 ft. All simulations are performed with a full fuel load.

3.2.2 CRUISE LOAD CASE

In the 1.0 g flight condition, the maximum tip displacement is 1.64m. It occurs at
the trailing edge tip due to the wash-out effect caused by the swept geometry. In
the work of Kenway and Martins [21], a tip displacement of approximately 1.52m
was found, which indicates that the structural design used in the present work
is indeed reasonable. The complete deformation field is shown in Figure 3.18,
together with the deformation fields of the other load cases.

Figure 3.18: Initial and deformed geometry of the uCRM wing under 1.0 g cruise, 2.5 g pull-up,
and −1.0 g push-down loading conditions

The be able to estimate the drag of the wing at cruise condition, the aerody-
namic analysis is performed on the deformed geometry, as was explained before.
The pressure distribution in the deformed configuration is shown in Figure 3.19.
The angle of attack for the trimmed cruise flight is 3.5 degrees resulting in a lift
coefficient of 0.78. The lift-induced drag is equal to 0.032.
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Figure 3.19: Pressure distribution of the
uCRM wing at 1.0 g cruise condition

Figure 3.20: Transition lines on the top
and bottom side of the uCRM wing at 1.0 g
cruise condition

For the quasi-3D viscous drag prediction, the part of the wing that represents
the centre wingbox is ignored and only the part that is actually in the airflow is
taken into account. This part is sliced at ten uniformly distributed locations to
determine the local 2D flow field. The boundary layer model results show that
the upper side of the wing is almost fully turbulent, with the transition from the
laminar zone in the first 10% of the chord. The lower side of the wing has a larger
laminar zone and changes to turbulent at around 55% of the chord. The transition
lines for the top and bottom side are shown in Figure 3.20. The resulting viscous
drag coefficient is equal to 0.015, bringing the total drag coefficient to 0.047.

3.2.3 PULL-UP LOAD CASE

The maximum tip displacement for the 2.5 g load case is 3.63m at the trailing
edge tip. This is a relatively large displacement compared to the span of the
wing, so caution has to be taken with respect to the use of the linear structural
model in this case. In future work it would be advisable to switch to a non-linear
structural solver. The full displacement is again shown in Figure 3.18.

The values of the Tsai-Wu failure criterion in the wingbox are shown in Figure
3.21a, where a value below 1 means that there is no failure. It can be seen that the
bottom wing is most critical, which explains the required higher skin thickness on
this side, as was already shown in Figure 3.17. At the intersections of the spars
and ribs, local peaks in the strain can be observed. This is caused by the coupling
of the leading and trailing edges to the structural members, as was explained
before. The loads from these aerodynamic surfaces is fully transferred to the
spars and ribs connections, resulting in load concentrations at these points. The
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same effect can be seen at the points where the engine and landing gear loads are
introduced in the structure. The fuel loads are distributed over the spars, so the
effect is smaller there. In most of these peak locations, the Tsai-Wu criterion is
higher than 1.0 meaning the current wing design would fail in these locations. A
more accurate model of the load introduction and local structural reinforcement
would overcome this issue, but this falls outside the scope of the demonstration
of the present model.

(a) Tsai-Wu criterion (b) Buckling criterion

Figure 3.21: Structural results for the uCRM wing under a 2.5 g symmetric pull-up load

The buckling criterion for all the buckling panels in the wingbox are shown in
Figure 3.21b, where again a value below 1 means no buckling. The figure shows
that only in the top skin towards the wing tip buckling plays a significant role. In
the rest of the wingbox, the strength criterion is more important for the present
model.

3.2.4 PUSH-DOWN LOAD CASE

The −1.0 g load case induces a displacement field in the opposite direction as the
other two load cased, as is shown in Figure 3.18. This results in a downward
displacement of −0.78m at the leading edge tip. From the strength and buckling
results in Figures 3.22a and 3.22b, it is clear that this load case is less critical
than the 2.5 g load case for the present design. The strain concentrations due to
the leading and trailing edge are more clearly visible now, due to the lower level
of strain in the rest of the wingbox.
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(a) Tsai-Wu criterion (b) Buckling criterion

Figure 3.22: Structural results for the uCRM wing under a −1.0 g symmetric push-down load

3.3 SYNOPSIS

A computational framework was presented for the aeroelastic analysis of aircraft
wings using the isogeometric analysis concept to create a consistent approach for
the geometry throughout the analysis. A multi-patch isogeometric aerodynamic
potential flow model of the full wing is coupled to a multi-patch isogeometric struc-
tural model of the wingbox through a RBF interpolation routine. The structural
model supports anisotropic materials, and stiffened panels can be represented
through a smeared stiffness approach. In both disciplines, the relevant parts of
the same CAD model are used to ensure a consistent geometry throughout the
analysis. The resulting aeroelastic deformations are used to compute strains and
evaluate the strength criterion. The local buckling behaviour is investigated with
an isogeometric plate buckling model, and the viscous drag is estimated using a
quasi-3D boundary layer model that uses the 3D flow field from the potential flow
model as input.

The separate parts of the framework were verified against reference solutions.
The aerodynamic verification demonstrated that using the Greville abscissae as
collocation points results in unfavourable convergence of the pressure distribution
at the trailing edge. Using uniformly distributed collocation points in combination
with a dynamic Kutta condition improves the convergence. The implementation
of a C0 transformation matrix for the multi-patch models further improves the
quality of the solution.

The coupling of the aerodynamic and structural model is done through a RBF
interpolation routine where the Greville abscissae are used to evaluate a set of
points on both geometries to be able to achieve the interpolation. The coupling
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matrix is then projected back onto the control points to be able to use it for
setting up the aeroelastic system. The coupling is done for two separate sets of
points to ensure a realistic transfer of the aerodynamic loads onto the wingbox.

Viscous drag is estimated in a post-processing step where the 3D flow field result-
ing from the potential flow model is used as input for a quasi-3D boundary layer
model, instead of performing complete 2D airfoil analyses. The drag estimation
compares well to existing literature in terms of trends, but underestimates the vis-
cous drag by approximately 10%. This is deemed satisfactory when taking into
account the scope and future application of the present computational framework.

The complete framework was demonstrated by performing an aeroelastic analysis
of the uCRM wing for three different load cases. The cruise load case was used
to demonstrate the aeroelastic analysis in combination with the drag estimation
method. The 2.5 g symmetric pull-up and −1.0 g symmetric push-down man-
oeuvre load cases showed the material failure and the plate buckling analyses.
Selected results were compared to results from literature and similar values were
observed, confirming the capabilities of the present framework.
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TOWARDS THREE-DIMENSIONAL

ISOGEOMETRIC AEROSTRUCTURAL

OPTIMISATION

The isogeometric aeroelastic analysis framework presented in the previous chapter
was developed with the aim of aerostructural optimisation in mind. The analysis
framework allows for a geometrically consistent formulation of the optimisation
problem. Throughout the main part of the process, (parts of) the same exact
CAD geometry are used, removing any costly mesh generation steps and avoiding
the introduction of geometrical errors. Furthermore, the CAD geometry provides
a natural environment for shape optimisation through the control points of the
NURBS functions. In the present analysis model, approximate geometries are
used only in the post-processing steps to reduce computational cost and complex-
ity in these steps.

This chapter describes the initial steps towards the goal of geometrically consistent
aerostructural optimisation of conventional and non-conventional aircraft wings.
The optimisation formulations is presented in Section 4.1, including the objective
function, constraints and design variables. Subsequently, the sensitivity analysis is
described and verified. A design case example is presented in Section 4.3. Section
4.4 covers the remaining challenges that were identified in initial aerodynamic
shape optimisation attempts.
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4.1 OPTIMISATION FORMULATION

The goal of aerostructural optimisation in this research is to simultaneously find
the best aerodynamic shape and structural stiffness and thickness to maximise
the total performance of an aircraft wing. In traditional aircraft wing design,
these two disciplines are kept separate. The aerodynamic shape is optimised for
aerodynamic performance in the form of drag minimisation, and the structure is
optimised for minimum weight.

A simple example, however, demonstrates that the total performance of a wing
requires a trade-off between the two disciplines. The Breguet range equation,
given in Equation 4.1, shows that both aerodynamic lift and drag and structural
weight influence the range an aircraft can fly. A multi-disciplinary approach is
thus crucial when striving for maximum performance in wing design.

R =
V∞

g

1

CT

CL

CD
ln

(

Winitial

Wfinal

)

(4.1)

In the following subsections, the objective function, constraints and design vari-
ables that are used in such an aerostructural optimisation are described.

4.1.1 OBJECTIVE FUNCTION

The objective function for aerostructural optimisation is more complex compared
to the traditional objective functions used in sequential design. If a single dis-
cipline is optimised, the absolute value of the objective function is not of critical
importance, as the aim is to minimise it irrespective of the actual value. Once two
or more disciplines are included in an objective function, such as in the Breguet
range equation, it is essential that the parameters in the objective function rep-
resent the actual values, as trade-offs have to be made during the optimisation.
Without accurate values, the balance between the different disciplines is incorrect,
and thus an incorrect trade-off will be made by the optimiser.

In the present aeroelastic analysis model, the lift and drag of only the wing are
computed. As a result, it would be incorrect to use this in the objective func-
tion directly, since that involves the complete aircraft. The empirical models as
described in the work by Kenway and Martins [21] are used to estimate the drag
introduced by the rest of the aircraft. Together with the wing drag, this gives an
estimation of the drag of the full aircraft.

The aircraft wing mass is formed by the primary structural wingbox mass, com-
puted from the structural model, and the secondary mass of the components
attached to the leading and trailing edge of the wingbox, which is related to the
wing surface [23]:

Mwing = 1.5Mprimary
wing + 15Swing (4.2)
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where the factor 1.5 takes into account any detail ignored in the wingbox model.
Together with fixed design masses for the rest of the aircraft components, the full
aircraft mass is estimated.

With these estimations of the full aircraft lift, drag and mass, an actual multi-
disciplinary objective function such as the Breguet range equation, or equations
derived from it, can be used in the aerostructural optimisation.

4.1.2 CONSTRAINTS

The constraint used in the optimisation can be divided into two groups. The first
group are the geometrical constraints and the second group are the structural
constraints. The geometrical constraints are aimed at making sure the optimised
geometry satisfies some basic geometrical requirements. The following constraints
are included in the framework:

• Lower limit on the volume per wingbox bay

• Upper limit on the wing span

• Lower limit on the wing area

The first constraint is to ensure enough space is available for fuel storage in the
wings. The other constraints are there to avoid the optimiser to move to too
extreme regions of the design space.

The second group consists of structural constraints and include the following:

• Feasibility constraints for lamination parameters

• Tsai-Wu failure constraints

• Buckling failure constraints

In the current work, eight lamination parameters are used to describe an unbal-
anced, symmetric laminate. Before a design can be realised, these lamination
parameters have to be translated to a manufacturable composite layup. The feas-
ibility constraints make sure the lamination parameters form a set of which the
stiffness characteristics can actually be approximated by a physical layup.

A total of six feasibility constraints are used per set of lamination parameters.
Two of these describe the relation between the in-plane lamination parameters
and two the relation between the out-of-plane parameters. The remaining two
equations provide a coupling between the in- and out-of-plane parameters [92].
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The Tsai-Wu failure constraints are implemented to avoid any material failure
in the structural wingbox. As explained in Subsection 3.1.3, the constraint is
based on the principal strains instead of the more traditional formulation based
on the stresses due to the use of lamination parameters. The principal strains are
computed in every structural integration point. For a cubic NURBS discretisation,
this results in 16 evaluation points per isogeometric element. The strains are
expected to be highest at corner points of the elements, so only the four points
closest to the corners are taken into account in the constraints. In order to further
reduce the number of constraints, it is possible to select the n most critical points
per patch in the initial design.

The buckling failure constraints originate from the panel buckling model, de-
scribed in Subsection 3.1.5. For every buckling panel, the n most critical modes
in the initial design are taken into account. Taking only the single most critical
mode into account would result in incorrect gradient information in the case of
mode switching. By taking a big enough selection of critical modes, the chance is
high that any mode that would be critical throughout the optimisation is included
in the set.

4.1.3 DESIGN VARIABLES

The design variables can be divided into the same two groups as was done for
the constraints: geometrical and structural. The geometrical, or shape, design
variables govern the aerodynamic shape of the wing. These are the control points
of the NURBS patches making up de wing geometry.

Every patch, however, is a self-containing piece of the geometry, so without proper
measures, the optimiser could basically disassemble the complete geometry into
an unconnected set of patches. At every patch-patch interface, rules have to be
implemented to tell the optimiser what is allowed at that interface. In the present
framework, three options are available:

• C−1 connection: All interface control points of the two patches are free to
move.

• C0 connection: The patches have to remain connected, but a kink is allowed.

• G1 connection: The patches have to remain connected in a smooth way
without a kink in between the patches.

The consequences for the control points on the connected patches are obvious
in the first two cases: In the first case all control points are free to move as
illustrated in Figure 4.1b, and in the second case the overlapping control points on
the interface have to remain overlapped as illustrated in Figure 4.1c. The smooth
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(a) Initial configuration (b) C−1 continuous

(c) C0 continuous (d) G1 continuous

Figure 4.1: Different options for patch connectivity. Blue and red indicate the two connected
patches and the green markers the overlapping control points.

connection is achieved when the control points before and after the interface and
the overlapping ones are on one line, as illustrated in Figure 4.1d.

This connectivity information can be used to reduce the number of design vari-
ables, as the value of the control points on the connecting, or slave, patch can be
derived from the control points on the master patch. A transformation matrix
is set up to enable the transfer between the reduced set of control points to the
full set so that the shape perturbations originating from the optimiser can be
introduced into the geometrical patches.

The structural design variables consist of lamination parameters and thicknesses.
The lamination parameters consist of eight variables per laminate: four in-plane
parameters and four out-of-plane variables. This set of parameters can represent
unbalanced, symmetric layups. The possibility of having unbalanced laminates
is included because these are essential for aeroelastic tailoring through laminate
extension-shear coupling. The structural design variables are currently implemen-
ted per patch.

The possibility of assigning structural design variables to every control point is
also implemented, which would allow the optimisation of the local layup. By using
the same NURBS discretisation as in the CAD model, a smooth variation of the
lamination parameters and thickness can be obtained. Proper restrictions on the
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rate of change of the variables are required to ensure a design that can actually
be manufactured [93]. The NURBS discretisation can provide the possibility of
computing gradients of the variables due to its higher continuity.

4.1.4 OPTIMISER

The number of design variables for a typical aerostructural design case using the
presented framework has an order of magnitude of a thousand, making using any-
thing but gradient-based optimisation intractable. The built-in fmincon function
in Matlab is used with its interior-point algorithm and user-supplied gradients.

4.2 SENSITIVITIES

As mentioned before, a gradient-based optimiser is used, meaning the gradients, or
sensitivities, of the objective and constraints with respect to the design variables
need to be computed. The sensitivities are computed analytically, as the number
of design variables and computational cost of the framework prohibit simpler
methods like finite differencing. The direct method, in contrast to the adjoint
method, is used to compute all the sensitivities throughout all the models. The
order of magnitude of the number of design variables and constraints is roughly
equal, so implementing the adjoint in the current framework would not result in
a significant reduction of the computational effort.

As explained in Subsection 3.1.4, the monolithic aeroelastic system can be written
as in Equation 3.24. The sensitivities of the aeroelastic displacements and trim
correction of the angle of attack can be computed by taking the derivative of this
equation:
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where x is a design variable.

Replacing the matrix with the symbol J̃ and rearranging to solve for the required
gradients gives the following equation for the sensitivities of the aeroelastic solu-
tion with respect the a design variable:
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(4.4)
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The second term in the parenthesis involves the derivative of the aerodynamic
stiffness matrix, which is part of J as was explained in Subsection 3.1.4. The
aerodynamic stiffness matrix, being the first derivative of the aerodynamic forces
with respect to the aeroelastic degrees of freedom, is computationally expensive to
obtain. For shape optimisation, Equation 4.4 shows that also the second derivative
would be required, which is prohibitively expensive to compute in the current
framework.

One way around this problem is to use the governing Equations 3.21 and 3.23
to determine the sensitivities instead of the monolithic aeroelastic system. The
approach, explained in detail by Martins and Hwang [94], is based on computing
the derivatives in the point of equilibrium where it is known that the gradient of
the governing equation is zero. This simplifies the computation. In the presented
framework, however, only a single Newton iteration is done to find the aeroelastic
solution and as such, the computation is not done in, or very close to, the point
of equilibrium. Using this approach in the current framework thus only gives the
approximate sensitivities, as is also explained in the early work of Grossman [6].

More concretely, it means that the variation of the matrix J̃ multiplied by the
aeroelastic solution is not taken into account when following this approach. To
improve the accuracy of the sensitivities, the variation of the structural stiffness
matrix is computed in the present framework and is included in the computation
of the aeroelastic sensitivities, so at least part of the variation of J̃ is taken into
account.

In the remainder of this section, the analytical sensitivities are verified through
comparison with finite difference results. A random perturbation in the design
variables is applied and the combined induced change in objective and constraint
equations is compared to the change predicted by the analytical sensitivities mul-
tiplied by the design variable perturbations.

First, the effect of the aforementioned approximation of the aeroelastic sensitiv-
ities is investigated. In Figure 4.2, the errors of the finite difference sensitivities
with respect to the analytical ones are shown for the objective function and the
first 10 Tsai-Wu and buckling failure constraints. This selection of the constraints
is done for clarity of the figures. The remaining sensitivities show the same beha-
viour. These results are obtained while keeping the components that are ignored
in the approximation constant. The analysis thus corresponds with the sensitiv-
ity computation in this case. The plots indeed show accurate convergence of the
finite difference sensitivities to the analytical results for reducing step sizes. A
step size of 10−4 or smaller makes the difference indistinguishable.

In Figure 4.3, the results are shown when all the variations in J̃ are included in the
analysis and the sensitivities are thus approximate. The finite difference results for
the objective function sensitivities still closely converge to the analytical results.
The results for the constraints, however, show that there is a difference of about
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Figure 4.2: Comparison of analytical and finite difference shape sensitivities for consistent
analysis and sensitivity computation
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Figure 4.3: Comparison of analytical and finite difference shape sensitivities for approximate
sensitivity computation
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10% between the analytical and finite difference results. The approximation of
the sensitivities thus gives reasonable results in this case.

The sensitivities with respect to the structural design variables are also verified.
The effect of the approximation is not found in the results of the lamination
parameters as these structural design variables do not cause any variation in J̃

outside the structural stiffness matrix. The variation in the structural stiffness
matrix is taken into account, so the sensitivities should indeed still be exact. The
results for the in-plane and out-of-plane variables are shown in Figures 4.4 and
4.5, respectively. In the objective function results, it can be seen that at smaller
finite difference steps, the results diverge again. The change in drag values is so
low at these perturbation levels that numerical noise starts playing a role in the
finite difference results.
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Figure 4.4: Comparison of analytical and finite difference in-plane lamination parameter sens-
itivities for approximate sensitivity computation

The thickness variables do cause some variation in some of the terms of J̃ as they
influence the weight of the wing. The effect, however, is negligible in this case,
as is shown in Figure 4.6. Both the objective and constraints converge to the
analytical results.

4.3 DESIGN CASE

The aerostructural optimisation framework is tested through the application to
the design of a high-subsonic aircraft wing for an aircraft with a maximum take-
off weight (MTOW) of 100 000kg. The initial design is a simple rectangular
wing with a constant symmetrical airfoil throughout the semi-span of 20m. The
untapered wing has a chord of 5m and has no sweep. A neutral starting geometry
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Figure 4.5: Comparison of analytical and finite difference out-of-plane lamination parameter
sensitivities for approximate sensitivity computation

10-510-410-310-210-1

Step size

-30

-25

-20

-15

-10

-5

0

5

E
rr

or
 [%

]

(a) Objective function

0 5 10 15 20
Constraints

-80

-70

-60

-50

-40

-30

-20

-10

0

E
rr

or
 [%

]

FD 10-1

FD 10-2

FD 10-3

FD 10-4

FD 10-5

(b) Constraints

Figure 4.6: Comparison of analytical and finite difference thickness sensitivities for approxim-
ate sensitivity computation
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(no sweep, no taper, etc.) was chosen so that no bias towards a certain solution
is included in the initial design.

The optimisation model is shown in Figure 4.7, where Figure 4.7a shows the
patches making up the geometry and Figure 4.7b shows the control net taking into
account the continuity requirements. The model consists of 10 spanwise sections,
each composed of 8 patches totalling 80 patches for the complete model. The
patches representing the skin of the wing are all bi-cubic, and the internal patches
are cubic in the direction they are connected to the skin to ensure matching
discretisations. In the vertical direction, these patches are linear to reduce the
number of control points and to ensure that the spars and ribs remain flat.

(a) Patches (b) Control net

Figure 4.7: Optimisation geometry showing the patch discretisation and control net

The implementation of the continuity requirements of the geometry can be seen
in the absence of certain rows of control points. The values of these control points
are computed from the other points to enforce C1-continuity and as such are not
included in the set of design variables.

The aerodynamic and structural meshes derived from the optimisation geometry
are shown in Figure 4.8. The aerodynamic mesh consists of only the outer skin
of the wing and the structural mesh of only the wingbox patches. The patches
originating from the optimisation geometry are refined to ensure converged ana-
lytical results. The aerodynamic mesh consists of 50 patches and 2580 control
points. The structural mesh is also built up out of 50 patches and consists of
3240 control points. The wingbox is constructed out of a front and rear spar and
10 ribs closed off by the upper and lower skin panels.

Before the full aerostructural optimisation, the aerodynamic shape was attemp-
ted to be optimised separately to gain trust and experience with the optimisation
framework. The initial results showed several shortcomings in the current imple-
mentation that call for modifications to the framework. The remaining challenges
towards the complete aerostructural optimisation capabilities are demonstrated
and explained in the next section.
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(a) Aerodynamic mesh (b) Structural mesh

Figure 4.8: Aerodynamic and structural optimisation meshes

4.4 CHALLENGES

The shape optimisation is performed using only the optimisation geometry and
aerodynamic mesh. The control net, as depicted in Figure 4.7b, is used as design
variables. The two main problem areas that are identified in the results are main-
taining the mesh quality and the continuity of the boundary layer formulation.
Additionally, the computational efficiency of the current framework is too low
for direct use in a preliminary design phase of large complex wings. The fol-
lowing subsections will elaborate on these challenges, and potential solutions are
proposed that can (partially) resolve these shortcomings.

4.4.1 MESH QUALITY

The shape optimisation is purely based on the modification of the NURBS con-
trol points. No global parameters as span, sweep or taper are included to reduce
the restrictions placed on the possible optimised designs. Avoiding these global
variables allows designs that deviate from the well-known solutions that are para-
metrised by these variables. This does, however, make maintaining a quality
mesh throughout the optimisation more challenging. The geometry can change in
many different ways, which could lead to unfavourable solutions, either because
of reduced accuracy in the analysis due to severe mesh deformations or due to
physically infeasible results.

The sensitivity analysis of the aerodynamic performance parameters with respect
to the shape design variables revealed shortcomings in the current framework that
result in these mesh quality issues. In Figure 4.9a, the sensitivities of the control
points near the tip of the wing are shown. The high value at the trailing edge
tip causes severe local deformations of the geometry, as illustrated in Figure 4.9b.
Not only is this physically unfavourable, it also has a significant impact on the
accuracy of the analysis as the deformation grows. The most likely cause of this
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local spike in sensitivity is the requirement of the inclusion of a discretised wake in
the potential flow model. The dimensions of the wake in the current aerodynamic
model depend on the trailing edge points only. As the drag is computed using
a Trefftz plane analysis, the dimensions of the wake have a direct influence on
the lift-induced drag. This single point will thus have a strong influence on the
induced drag, as is seen in Figure 4.9a.

(a) Sensitivities (b) Deformation

Figure 4.9: Shape sensitivities of the induced drag with respect to the y coordinate at the
wing tip and illustration of the resulting shape deformation

To smoothen the effect of this single point, the y-coordinate of the control points
at the tip of the wing can be parametrised with a single design variable. This
resolves the problem of the physically infeasible local deformation at the trailing
edge tip, as is illustrated in Figure 4.10. The issue with the mesh deformation,
however, is reduced but still present. The outer control points are moved in
order to increase the span, but the rest of the control points remain stationary, as
is shown in the same figure. As a result, the isogeometric elements near the tip
become severely stretched (Figure 4.10b), and computational accuracy is reduced.

(a) Optimisation control points (b) Aerodynamic mesh

Figure 4.10: Illustration of the tip shape deformation with a single design variable for all
tip y-coordinates showing the deformation of the optimisation control points and aerodynamic
mesh
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Two challenges can be identified from these results. The first challenge is that
large local peaks in the sensitivities should be avoided, as these will force the
optimiser into an infeasible direction. Although the resulting geometry is still
smooth due to the use of NURBS functions, the deformations are too local and as
such the optimised design will not be feasible in a real-life application. The second
challenge is to maintain a high enough mesh quality throughout the optimisation.
Control points should move in-plane to ensure a regular mesh, even though it may
not result in actual modifications of the shape.

These challenges are similar to those encountered in node-based shape optimisa-
tion. Mesh regularisation and filtering techniques have been developed in this
field to provide a solution to these challenges. For example, the vertex morphing
method presented by Hojjat et al. [95] provides a synchronous approach to tackle
both problems. Considering that in the optimisation framework presented in this
dissertation the boundary between CAD and FEM has been removed, it can be
interpreted as both CAD-based and node-based optimisation. As such, the ver-
tex morphing method could provide a means to reduce the aforementioned issues
of mesh quality and sharp sensitivity distributions in the framework presented
here. The method has also been demonstrated for the node-based shape op-
timisation of a forward-swept wing, where it was demonstrated that the method
allows the exploration of true design alternatives, contrary to the more traditional
experience-based parametrisation [96].

The sensitivities of the induced drag with respect to the x-coordinates at the
complete trailing edge section of the wing, shown in Figure 4.11a, exhibit a pattern
where high values can be found on the patch boundaries, while very low values are
found in between. This can be explained by the way the continuity of the patch
connections is implemented. For G1-continuity, the control point on the boundary
and the two neighbouring ones should be on the same line. As a result, when one
of the neighbouring control points is moved over a distance X in x-direction, the
other neighbouring control points will move over a distance −X in x-direction.
The result is that these two deformations cancel each other.

The induced drag becomes smaller as the aspect ratio of the wing increases. As
the two effects cancel each other, the resulting change in aspect ratio is small, and
thus the sensitivity is very low. The control points on the patch boundaries do
have a direct effect on the aspect ratio and as such have a higher sensitivity. The
resulting deformation, however, is unfavourable as the movement of these control
points automatically induces a wavy pattern in the trailing edge, as is illustrated
in Figure 4.11b.

The most obvious solution for this problem would be to modify the CAD discret-
isation and avoid the use of G1 connections. The current framework, however,
can only work with conforming meshes between the different patches, so at every
rib and spar interface a patch boundary should be present in the skin. If non-
conforming meshes would be allowed, the problem could be reduced. A single
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(a) Sensitivities (b) Deformation

Figure 4.11: Illustration of the tip shape deformation with a single design variable for all
tip y-coordinates showing the deformation of the optimisation control points and aerodynamic
mesh

patch throughout the span could be used instead of separate patches between
the ribs and spars, removing the G1 connections. Non-conforming multi-patch
isogeometric implementations have been demonstrated using different methods.
For example, Nguyen et al. [97] demonstrated an approach based on Nitsche’s
method, Dornisch et al. [98] applied the mortar method for coupling the patches,
and Coox et al. [99] focussed on a master-slave technique that is both simple in
implementation and use, and robust and flexible.

For more complex geometries it might not be possible to avoid the use of multiple
patches over the span of the wing. The work of Kiendl et al. [100] identified a
similar problem of strong influence of the geometry discretisation in the shape op-
timisation of shells. Along lines of C0-continuity, they enforced the C1-continuity
in the same fashion as is done in this dissertation, which resulted in an increased
geometrical influence of these points. They developed a sensitivity weighting
method that spreads out the influence again, such that the shape optimisation
follows a more physical path and wavy results, such as those shown in Figure
4.11b, can be avoided.

4.4.2 BOUNDARY LAYER BEHAVIOUR

As was already mentioned in Chapter 2, the optimisation framework has the
tendency to get stuck in local optima due to the boundary layer model. In the two-
dimensional work, this was countered by implementing a two-step optimisation
approach. For the three-dimensional work, the issue becomes more apparent as
now not one, but multiple sectional boundary layer analyses are combined to
estimate the viscous drag, as explained in Subsection 3.1.5. Every one of these
analyses could run into a situation where from one iteration to the next, a jump
in the transition point or separation can occur. These discontinuous phenomena
cause large inaccuracies in the sensitivity information and as such pose a challenge
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for the optimisation algorithm.

Removing these discontinuities is challenging as the physical behaviour of the
boundary layer can be seen as discontinuous. A possibility would be to use a fully
turbulent boundary layer formulation instead of the current laminar/turbulent
implementation. This will result in a conservative estimation of the drag, as
a turbulent boundary layer generates more drag, but as there is no transition
point any more, there will not be any jumps either. Additionally, it could be
interesting to take into account the friction coefficient in the boundary layer.
When it is zero, it means the flow has separated. This information can be used to
create a continuous constraint that prevents separation over the complete section.
Enforcing this on every point on the wing sections would result in a large number
of additional constraints. Combining it with a constraint aggregation technique
could overcome this, if necessary.

The current boundary layer implementation seems more suitable for a refining op-
timisation of an already globally optimised wing design instead of an optimisation
starting from a very general wing shape. The chance of ending up in some local
minimum that stops the optimisation before reaching the kind of designs that are
sought after is currently too big. Another option to reduce the issues with the
boundary layer would be to implement a multi-step optimisation formulation, as
was demonstrated in Chapter 2. In that case, the boundary layer model was not
included in the first step, where only the lift was maximised. This enabled the
optimisation of the airfoil to a much greater extent compared to the single-step
optimisation. In the second step, the boundary layer model was included through
the drag coefficient, and the airfoil resulting from the first step was further refined.

A more general approach could be formulated by using a lower-fidelity drag es-
timation model in the first optimisation step. A semi-empirical model, such as the
one used by Kenway and Martins [21], provides a much more robust estimation
where phenomena like transition and separation of the flow are not taken into
account. Implementing such a model would allow for a global optimisation of the
wing shape. In the second optimisation step, the model as described in Subsection
3.1.5 could be used to further refine the design while taking into account the more
complex flow phenomena.

4.4.3 COMPUTATIONAL EFFICIENCY

The final main challenge in the presented aerostructural optimisation framework
is the computational efficiency. The computational cost of the current implement-
ation is relatively high when considering its targeted application in a preliminary
design phase. Despite parallelisation of large parts of the analysis models, an
analysis run with sensitivity analysis of a design case such as presented in this
chapter takes around 3 hours on a system with two Intel Xeon E5-2640 v4 pro-
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cessors with a total of 20 cores and 128GB of RAM. A run without sensitivity
analysis takes about 40 minutes on the same system.

The main part of this computational cost originates from the aerodynamic model.
The use of higher-order basis functions prohibits the use of analytical integrals
for the aerodynamic influence coefficients. Numerical quadrature has to be used
to compute the influence of every element on every collocation points, rapidly
increasing the computational cost as the number of degrees of freedom increases.
Additionally, this process results in fully populated matrices in the governing
equation, making it expensive to solve this equation for the unknown flow vari-
ables. The gradients of these matrices are also required for creating the aerody-
namic system and for the sensitivity analysis, which results in very high memory
usage to store all this data.

The memory requirements have been reduced by avoiding the storage of the full
gradient data of the aerodynamic influence matrices. Instead, the gradient data
is computed in blocks, and the gradients of the flow variables are computed per
block and only this information is stored.

A more substantial saving can be achieved by implementing the fast multipole
method in the aerodynamic boundary element model. The method, regarded as
one of the top 10 algorithms in scientific computing developed in the twentieth
century [101], decreases the quadratic scaling of the computational time with the
number of degrees of freedom in the conventional BEM to a linear scaling. Addi-
tionally, the aerodynamic influence coefficient will no longer be fully populated,
potentially resulting in a significant decrease in memory usage in the gradient
computation. [102]

Implementation of the fast multipole method in an isogeometric application has
been demonstrated by Takahashi and Matsumoto [42] for two-dimensional poten-
tial problems governed by the Laplace equation. A decrease from quadratic to
linear scaling of the computational time with respect to the number of degrees of
freedom was indeed achieved. Simpson and Liu presented the implementation of
a black-box multipole method to overcome the complexity of implementing the
fast multipole method to an existing BEM model, again demonstrating the same
reduction in scaling of computational time with the number of degrees of freedom.

4.5 SYNOPSIS

An aerostructural optimisation framework for the preliminary design of non-
conventional aircraft wings was presented. The formulation of the optimisation
problem was described, including objective function, constraints and design vari-
ables. The sensitivity analysis required for the gradient-based optimisation was
described, with extra focus on the approximate solution for the gradients of the
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state variables of the aeroelastic system. The analytical design sensitivities were
verified through comparison with finite difference results.

An aerostructural design case was presented. Initial shape optimisation results
revealed several challenges still remaining before the fully free aerostructural op-
timisation can be attempted. The three main challenges were found to be the
regulation of the mesh quality and sensitivity smoothness, the boundary layer
behaviour and the computational efficiency of the framework. The shortcom-
ings in the current implementation were identified and potential solutions were
proposed.
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CONCLUSIONS AND

RECOMMENDATIONS

In the introduction of this dissertation, the basis of this research was formulated
in the form of the following main research goal:

Develop a preliminary wing design framework for geometrically con-

sistent aerostructural analysis and optimisation that enables the design

of non-conventional wing configurations.

Through further investigation of the state-of-the-art this goal was translated to a
more concrete set of two sub-goals:

• Develop low-fidelity static aeroelastic analysis capabilities that are fully
based on the isogeometric analysis (IGA) concept.

• Fit the aeroelastic analysis model in a geometrically consistent aerostruc-
tural optimisation routine that provides a high level of design freedom for
exploring new wing configurations.

In this final chapter, the conclusions drawn throughout this dissertation are sum-
marised, and the goals are reflected back upon in order to evaluate the successful-
ness of the research to achieve these goals. Subsequently, although already partly
covered in Chapter 4, recommendations for future research are given.
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5.1 CONCLUSIONS

Two low-fidelity computational frameworks for isogeometric aeroelastic analysis
were presented that rely on the use of non-uniform rational b-splines (NURBS)
basis functions to represent both the geometry and the unknown fields. The first
framework was formulated in two-dimensional space and focuses on the aeroelastic
analysis of airfoils.

The aerodynamic model is a multi-patch isogeometric potential flow boundary
element method (BEM) model. A desingularised formulation is used to enable
easy and accurate calculation of the singular contributions present in a boundary
element model. The Greville abscissae are used as collocation points, and verific-
ation with numerical and experimental results showed the accurate performance
of the model. A multi-patch curved Timoshenko beam model was implemented
for the structural analysis. The model is formulated in the global reference frame
instead of the conventional local reference frame to enable easy coupling with the
aerodynamic model. A master-slave technique is used to couple the structural
patches, allowing both rigid and hinged connections. Comparison with analytical
solutions verified the accuracy of the model.

The aerodynamic and structural model are both derived from a shared computer-
aided design (CAD) model. The gradient information computed analytically in
these steps is used for the formulation of a novel coupling method. The gradient
matrices containing the gradients of the aerodynamic and structural control points
with respect to the CAD control points are used to couple the two models to each
other and form a monolithic aeroelastic model. A semi-empirical boundary layer
model is implemented for the computation of the viscous drag that is neglected
by the potential flow model.

For the second computational framework the same concept was used, but now
for three-dimensional aeroelastic analysis. An isogeometric potential flow model
taken from literature was further extended to be able to deal with more complex
geometries, and the Prandtl-Glauert transformation was included to allow more
accurate simulations at high-subsonic Mach numbers. The structural model is
based on a linear isogeometric Reissner-Mindlin shell model from literature, ex-
tended to include the analysis of anisotropic materials and lamination parameters.
Both three-dimensional models were verified against reference numerical results.

A further development of the conventional radial-basis function (RBF) interpol-
ation was presented to enable the coupling of the aerodynamic and structural
models. Different parts of the shared CAD geometry are used in the two discip-
lines, calling for a different coupling method as was used in the two-dimensional
situation. RBF interpolation was made possible by evaluating the Greville abscis-
sae on the aerodynamic and structural models. These surface points are used to
create the coupling matrix, which subsequently is projected back onto the control
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points through the matrices containing the basis function values of the Greville
abscissae points.

The boundary layer model from the two-dimensional work was used to create a
quasi-three-dimensional model for the viscous drag estimation. Sections of the
three-dimensional solution are analysed and integrated to find the drag. An iso-
geometric panel buckling model was implemented to analyse the local buckling
behaviour of the wing.

The three-dimensional analysis framework was demonstrated through the simula-
tion of a wing model based on the undeflected common research model (uCRM)
wing. The wing was analysed at three different flight conditions and the aeroelas-
tic deformations, deformed aerodynamics, material failure and buckling failure
results were presented and discussed. The aeroelastic results compared well with
results found in the literature.

Both aeroelastic analysis frameworks rely on the isogeometric concept and as such
the first sub-goal has been achieved successfully. The models are geometrically
consistent through the use of the CAD geometry for both the aerodynamic and
structural disciplines. Only in the post-processing steps, the isogeometric concept
is not always adhered to. This to allow for the use of existing simpler models.
The frameworks have been demonstrated to produce accurate aeroelastic results.

Achieving the second sub-goal required the implementation of the aeroelastic ana-
lysis frameworks into an optimisation formulation. The two-dimensional version
was applied to the optimisation of an active morphing airfoil. At this stage, no
full aerostructural optimisation was performed to reduce the complexity of the
optimisation. The goal of the optimisation was to improve the landing conditions
of a unmanned aerial vehicle (UAV) through morphing of the trailing edge section
of the airfoil. The actuation was provided by three vertically placed actuators.
Only structural and morphing design variables were included.

A single step optimisation procedure was compared to an improved two-step pro-
cedure. The first one quickly ended up in local minima due to the boundary layer
model. The two-step procedure avoided this problem by first optimising the lift
coefficient without taking into account the viscous drag and in the second step
refining the design by including it again. The two-step approach was used to
optimise the airfoil design using different sets of design variables. As the number
of design variables increased, the increase in lift also grew due to the increased
design freedom. The optimisation result with all design variables included showed
an increase in lift coefficient of 42%. The absence of flow separation was confirmed
through a simulation in Xfoil.

The three-dimensional aerostructural optimisation formulation was presented, de-
scribing the objective, constraints and design variables. The analytical sensitivity
analysis was described and the resulting gradients compared well to finite dif-
ference results. A design case for the fully free aerostructural optimisation was
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described in the form of a relatively simple rectangular wing model that would
allow geometrically unbiased optimisation.

Initial shape optimisation attempts identified three main challenges that require
additional work before the aerostructural optimisation can be performed. The
current implementation shows large peaks in shape sensitivity values resulting in
large local deformations of the geometry. Additionally, the mesh deformations
are very local deteriorating the quality of the mesh and reducing the quality
of the analysis results. A potential improvement was proposed in the form of
mesh regularisation and filtering techniques as encountered in node-based shape
optimisation.

Additional challenges were found in the boundary layer behaviour. The prob-
lem, already encountered in the two-dimensional optimisations, originates from
the discontinuous nature of the boundary layer model. Modification of the lam-
inar/turbulent formulation to a fully turbulent one and implementation of a con-
tinuous constraint on the flow separations were proposed as an improvement. A
multi-level approach such as used in the two-dimensional work was also described
as a possible solution.

Finally, the computational cost of especially the aerodynamic boundary element
method was identified as too high for preliminary design. The fast multipole
method was proposed as a possible solution to reduce the computational time
and memory usage.

In conclusion, the second sub-goal has not been realised completely in the presen-
ted work. The geometrical consistency was achieved through the use of the CAD
geometry for all the relevant parts of the analysis and optimisation. The chal-
lenge, however, is to create a framework that allows a high level of design freedom.
This requires a very robust framework that can deal with large deformations while
maintaining accuracy. Furthermore, the framework should deliver a smooth ob-
jective function and constraints that allow optimisation over a big range of the
design space. Only then will it be possible to achieve the fully free aerostructural
optimisation that was envisioned for this research project. The improvements
that were proposed based on the initial optimisation results provide the next
steps towards such a framework.

5.2 RECOMMENDATIONS FOR FUTURE WORK

The main recommendations for improving the presented three-dimensional aero-
structural optimisation framework were already proposed in Chapter 4 and were
summarised in the previous section. The recommendations in this section are
based on the assumption that these ideas have been implemented into the frame-
work and the fully free aerostructural optimisation can be performed successfully.
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The first step should be to compare the geometrically consistent optimisation
framework to the traditional methods. This comparison will reveal whether the
anticipated benefits of the implementation of the isogeometric analysis concept
and uniform use of the CAD geometry are indeed realised in the form of increased
accuracy and ability to more easily explore non-conventional layouts.

The constraints that are currently implemented in the framework are concerned
with structural and aerodynamic limitations only. Including constraints for the
combined field of aeroelasticity will further improve the quality of the optim-
isation results. The static aeroelastic model could be used to compute, for ex-
ample, the divergence speed and control effectiveness. Especially when exploring
non-conventional wing designs, it will be important to take into account such
constraints, as these can make or break a design.

Continuing along these lines, dynamic aeroelastic effects like flutter or gust re-
sponses could be taken into account if the computational models are extended to
their dynamic versions. The trend of more slender and flexible wings increases
the coupling between aerodynamics and structures, so these phenomena become
more and more important in the early design stages. The dynamic framework
also allows the evaluation of more load cases besides the standard static ones
covered in this dissertation. The more flexible wings of course also exhibit larger
displacements, which could go outside the linear regime of the structural model.
Extension to a non-linear shell model will enhance the analysis capabilities.

The potential flow theory used for the aerodynamic analysis limits the validity of
the analysis to high subsonic speeds, despite the implementation of the Prandtl-
Glauert correction. Most modern-day transport aircraft tend to fly at transonic
speeds, making the current framework unreliable for the optimisation of such
aircraft. Changing the complete aerodynamic to, for example, an Euler model
would deteriorate the low-fidelity nature of the framework and would drive up
the computational cost. Furthermore, it would destroy the natural combination
of CAD, BEM, and shell finite element method (FEM) through the isogeometric
analysis concept, as volume meshes would be required for such a model. The
defect-correction approach as presented by Dillinger [90] could be a viable method
to include the transonic effects in the current framework while maintaining its
low-fidelity nature.

As was already shortly mentioned in Chapter 4, the NURBS discretisation could
provide an interesting basis for the implementation of fibre steering for the com-
posite laminates. Assigning the lamination parameters to the control points
will guarantee a smooth and continuous variation of the parameters and as such
smooth variation of the fibre angles in the laminates. The continuity of the vari-
ables over the wing surface can be used to place constraints on the rate of change
of the lamination parameters, which could perhaps serve as manufacturing con-
straints to avoid large discrepancies between the structural performance before
and after translation to physical layups. In any case, the lamination parameters
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resulting from the optimisation will need to be translated to physical laminates, so
a multi-step conversion method as, for example, described by Peeters [93] would
have to be implemented.

Finally, the current clamped wing model is a simplification of the reality where
the wing interacts with all the other parts of the aircraft, such as the fuselage, tail
and engines. A first step would be to take into account the aerodynamic effects of
these other components in order to increase the accuracy of the aerodynamic loads.
The next step would be to also take the structural side into account and model
a fully elastic aircraft. This would allow a better simulation of the aeroelastic
behaviour of the full system. The current strategy, where the same CAD model
is used for aerodynamics and structures, will still be applicable in this situation,
although it might be worth considering changing from NURBS to more flexible
basis functions, such as T-splines, for modelling these more complex geometries.
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A. CONTROL-POINTS FOR NACA2412 AIRFOIL

Table A.1: Part 1 of the coarse mesh con-
trol points and weights for the NACA2412
airfoil

x [m] y [m] weight

0.6 0 1

0.596 -0.0003 1

0.5878 -0.0009 1

0.5738 -0.002 1

0.5564 -0.0033 1

0.5346 -0.0049 1

0.5088 -0.0067 1

0.4793 -0.0088 1

0.4467 -0.011 1

0.4115 -0.0133 1

0.3743 -0.0157 1

0.3358 -0.0181 1

0.2967 -0.0203 1

0.2575 -0.0222 1

0.2189 -0.0236 1

0.1817 -0.0248 1

0.1465 -0.0255 1

0.1138 -0.0254 1

0.0842 -0.0245 1

0.0583 -0.0226 1

0.0367 -0.0197 1

0.0197 -0.0157 1

0.0081 -0.0109 1

0.0015 -0.0053 1

-0.0003 0 1

Table A.2: Part 2 of the coarse mesh con-
trol points and weights for the NACA2412
airfoil

x [m] y [m] weight

0.0005 0.0056 1

0.006 0.0124 1

0.0167 0.0193 1

0.033 0.0263 1

0.0542 0.0327 1

0.0799 0.0382 1

0.1096 0.0427 1

0.1426 0.0458 1

0.1784 0.0475 1

0.2161 0.0477 1

0.2552 0.0463 1

0.295 0.0439 1

0.3346 0.0406 1

0.3736 0.0367 1

0.4111 0.0322 1

0.4465 0.0273 1

0.4793 0.0224 1

0.5089 0.0175 1

0.5348 0.0129 1

0.5566 0.0088 1

0.5739 0.0054 1

0.5879 0.0026 1

0.5961 0.0008 1

0.6 0 1
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