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Angle-insensitive Human Motion and Posture
Recognition Based on 4D imaging Radar and
Deep Learning Classifiers

Yubin Zhao, Alexander Yarovoy, Fellow, IEEE, Francesco Fioranelli, Senior Member, IEEE

Abstraci— The need for technologies for Human Activity Recog-
nition (HAR) in home environments is becoming more and more
urgent because of the aging population worldwide. Radar-based
HAR is typically using micro-Doppler signatures as one of the
main data representations, in conjunction with classification al-
gorithms often inspired from deep learning methods. One of the
limitations of this approach is the challenging classification of
movements at unfavorable aspect angles (i.e., close to 90°) and of
static postures in between continuous sequences of activities. To
address this problem, a hierarchical processing and classification
pipeline is proposed to fully exploit all the information available
from millimeter-wave (mm-wave) 4D imaging radars, specifically the
azimuth and elevation information in conjunction to the more conventional range, Doppler, received power, and time
features. The proposed pipeline uses the two complementary data representations of Point Cloud (PC) and spectrogram,
and its performance is validated using an experimental dataset with 6 activities performed by 8 participants. The results
show good performance of the proposed pipeline compared with alternative baseline approaches in the literature, and
the effect of key parameters such as the amount of training data, signal-to-noise levels, and virtual aperture size is
investigated. Leave-one-subject-out test is also applied to study the impact of body characteristics on the generalizability
of the trained classifiers.
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I. INTRODUCTION or interact with the sensor [7], [8].

The basic principle of radar-based HAR is that each human
activity has unique kinematic patterns, and such patterns can
be represented by measurable features such as the velocity of
different human body parts along with the physical extent of
their movements, namely micro-Doppler signatures [9], [10].
Radar-based HAR methods are generally data-driven and can
be divided into two categories in terms of the applied data
representations and corresponding classification algorithms. To
the first category belong, studies where handcrafted features
are extracted from the pre-processed radar data and then used
together with supervised Machine Learning algorithms. For in-
stance, studies such as [11]-[13] used handcrafted features and
machine learning algorithms (e.g. Support Vector Machine,
SVM) to classify different human activities, intended as indi-
vidual motions performed by human subjects (e.g., walking,
sitting still, boxing, and so on). To the second category belong,
other studies where radar data are represented and treated as
image-like or video-like inputs which are treated by means of
Deep Learning algorithms. For example, spectrogram images
were used as the input to Deep Convolutional Neural Network
This work was in part supported by the NWO KLEIN (M1) RAD-ART  models [14]-[16], and sequences of spectrogram images were
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The increasingly aging population and the prevalence of
non-communicable diseases have made in recent years more
and more urgent the capability to monitor patient health at
home. This raises the importance of indoor human activity
recognition (HAR) enabling automatic monitoring systems to
potentially improve life quality, reduce hospitalization, and
most importantly provide timely help in case of emergencies,
such as in case of serious fall or stroke events [1], [2].

From a technical perspective, automated HAR was origi-
nally mostly based on visual aids [3] or wearable sensors [4],
[5]. However, both types of sensors - cameras of various kinds
and inertial measurement units - exhibit inherent limitations
[6], such as poor functionality in darkness or intense light
conditions as well as potential privacy issues for cameras, and
end-users’ inconvenience to carry or wear sensors that might
lead to poor compliance and usage. On the other hand, radar
is gaining attention for its potential advantages: it provides
consistent sensing quality regardless of light conditions, and
works contactless, without end-users needing to carry, wear,
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Doppler information suffer from two inherent limitations.
Firstly, the classified movements are typically artificially lim-
ited to be performed along the line-of-sight direction of the
radar, or at a small aspect angle so that the Doppler infor-
mation remains representative enough. The second limitation
is that static postures on their own or in between continuous
sequences of movements are rarely investigated, since their
micro-Doppler signatures are not easily distinguishable from
the static clutter.

To overcome the first limitation, the usage of distributed
or even multistatic radar systems has been proposed, in order
to simultaneously sample and reconstruct the micro-Doppler
signatures from different aspect angles [18]-[22]. While effec-
tive, this approach requires the usage of multiple nodes, with
an increase in complexity of the overall system and the need to
cope with the synchronization of data from the different sensor
nodes. Another approach, recently proposed thanks to the
availability of millimeter-wave (mm-wave) MIMO (Multiple
Input Multiple Output) radars, is based on the use of 4D
imaging radar that exploits azimuth and elevation resolution
capabilities to attain additional spatial information on the
subject’s posture [23], [24]. While promising, this approach
is still not investigated in detail in the literature and there is a
scope to define effective classification processing pipelines that
can take the advantages of mm-wave 4D imaging capabilities
for HAR.

To address the aforementioned radar-based HAR issues of
unfavorable orientations (in terms of aspect angles with respect
to radar’s line-of-sight) and static human postures, this work
proposes a radar-based classification pipeline that exploits the
richer information provided by mm-wave 4D imaging radar.
The main contributions of the proposed pipeline are as follows.

e Unlike in the other studies such as [23] where the
radar point clouds are treated as images, the proposed
pipeline is designed with the goal to exploit all the six
intrinsic ’features’ obtained by imaging radar, namely
range, azimuth, elevation, Doppler, received power, and
time information, rather than focusing on just one specific
data representation.

e The hierarchical structure of the proposed pipeline sim-
plifies the task of HAR in a multi-angle scenario, with
the help of the designated neural networks, 7-Net, and
achieves classification of both static postures and dynamic
motions.

e The pipeline is designed to be robust to a noisy and
limited amount of radar data by replacing the Max Pool-
ing layer in T-Net and PointNet with Average Pooling,
and deliberately using lighter-weight neural networks,
respectively.

To validate the performance of the proposed pipeline, a custom
experimental dataset is collected including 8 human subjects
performing 6 in-place activities (including 4 motions and 2
postures) at 5 different orientations. The measurement was
conducted in an office-like room to simulate an indoor real-life
environment. The proposed pipeline attains the classification
accuracy of 87.1%, which is significantly higher than the
state-of-the-art alternatives applied to the same dataset. The

Authorized licensed use limited to: TU Delft Library.

proposed pipeline also shows robust results in case of low
signal-to-noise ratio (SNR), varying dimensions of the virtual
apertures (i.e., the number of array channels that worsen or
improve angular resolutions), and leave-one-subject-out test
to validate performance for unseen individuals.

The rest of the paper is organized as follows. Section II de-
scribes the proposed method. Section III presents the measured
dataset for validating the performance of the proposed method.
Section IV discusses the attained results for the proposed
method and its comparison with the state of the art. Finally,
conclusions are drawn in Section V.

[I. DESCRIPTION OF THE PROPOSED PIPELINE AND
COMPARATIVE BASELINES

Radar conventionally used in HAR (i.e., radar with a single
receiver and operating at the relatively low carrier frequency
in the 5.8 or 24 GHz ISM bands) generates data from which
information related to four intrinsic features of the object
can be extracted: range as 1D spatial information, Doppler
proportional to the target’s radial velocity, received power
proportional to the Radar Cross Section of the object, and
the temporal relations from the movements of the body parts.
The usage of these four features or representations of the data
has been thoroughly analyzed in the literature, and it appears
that the state-of-the-art research mostly relies on the Doppler
information [25]—-[28].

To overcome the inherent limitations of Doppler informa-
tion, additional intrinsic features must be introduced. 4D imag-
ing radar at mm-wave frequencies can provide an estimation
of the spatial occupancy of the human body in height and
width in different positions. Specifically, the usage of multiple
channels in an antenna array allows estimating the angles of
arrival of the targets. At mm-wave frequencies, human bodies
are perceived as extended targets, with multiple scatterers
generated by each moving body part forming the so-called
point clouds (PCs) [23]. This scattering behavior, combined
with the angular estimation capabilities on both azimuth and
elevation, enables a new, broader ’feature space’ to explore
for radar-based HAR. However, when operating at mm-wave,
a disadvantage to account for is that the detection range is
shorter than at lower frequencies conventionally used for HAR
such as the ISM bands of 2.4, 5.8, and 24 GHz, because of
the higher propagation losses. Nevertheless, current mm-wave
systems at 60-77 GHz show good detection and classification
capabilities at the ranges of interest for HAR applications.

The overview of the proposed method to exploit all these
features is given in Figure 1. Specifically, this method exploits
the six intrinsic features of range, azimuth, elevation, Doppler,
received power, and time by combining both PCs and spec-
trograms as the input data representations. The hierarchical
structure of the classification pipeline includes the so-called
“orientation classification module’ to first classify to which
orientation the human subject is facing toward (e.g., 0, 45,
90, 135, 180°). Then, based on the predictions made by this
module, the *PC classification module’ predicts which posture
or motion pair the input belongs to (more details about the
definition of motion pair is given later in this section). Finally,
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Overview of the proposed classification pipeline, where the main contributions are the parallel processing and fusion of PCs and
spectrograms, and the usage of T-Net to obtain angular orientation insensitivity. Besides the data generation and pre-processing operations (top
box), the three main modules include the orientation classification, the PC classification, and the spectrogram classification.

for those inputs predicted as a motion pair, the ’spectrogram
classification module’ is then utilized to classify to which
specific motion the input sample belongs, e.g., bending over or

standi

ng up from bending, or, sitting down or standing up from

sitting. The descriptions of the main modules are as follows.

1y

1530-437X (c) 202

The data generation module starts with measuring
experimental data via the imaging radar. Given the
measured raw imaging radar data, the signal processing
flow involves two parallel branches: (a) 2D Fast Fourier
Transform (FFT) is applied on fast-time and slow-
time domains to estimate range and Doppler spectra;
then 2D FFT is also applied on the virtual channel
domain to obtain the azimuth and elevation information.
PCs are generated by applying the order-static constant
false alarm rate detector in the range-Doppler domain,
subsequently detecting local peak values in the azimuth
domain and the global peak value for the elevation
domain. Each coherent processing interval (frame du-
ration) is 100ms. PCs from 20 frames are aggregated to
represent one segment of activity, since the PC generated
from a single coherent processing interval is typically
not dense enough to represent the shape of a human
body [23]. (b) spectrograms are generated by applying a
Short Time Fourier Transform (STFT) on the slow-time
axis aggregated over the range bins where the human
subject is present. The specific parameters used for the
data generation module are listed in Table I.

1 IEEE. Personal use is permitted, but republication/redistribution reguires IEEE permission. See ht
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TABLE |
PARAMETER SPECIFICS USED IN THE DATA GENERATION MODULE.
Parameter Value Parameter Value
Number of range and 256 Number of azimuth 128
Doppler FFT points FFT points
Number of elevation Number of reference cells
FET poi 64 . . 8
points in range domain
Number of reference cells Number of guard cells
. . 4 . . 12
in Doppler domain in Doppler domain
Number of guard cells 4 Scaling factor for 63
in Doppler domain OS-CFAR algorithm i
. Overlapped window
Window length for STFT 128 length for STET 127
Power threshold below the
. 40dB
maximum power level per spectrogram

2) The orientation classification module includes a so-

called T-Net architecture modified from [29]. T-Net was
originally used to transform the input PC to achieve
angle insensitivity. T-Net outputs a 3x3 transformation
matrix used to be multiplied with the input PC such
that the rotated PCs are transformed to the same aspect
angle. Essentially, the feature learning layers within
T-Net can learn the geometric characteristics of PCs,
which are related to the human orientation. Therefore, in
the proposed implementation the multi-perception layers
in the original T-Net are modified to be compatible
with a classification task, and the max pooling layer
is replaced with the average pooling layer to achieve
more robustness to noisy data. Based on the predictions
on human orientation, the multi-angle human activity
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classification problem is simplified to be a uni-angle
problem.

3) For each predicted orientation of the human subject, the
PC classification module is then used. This module
is adapted from PointNet [29] by proposing a new
global symmetric function average pooling to replace
the original max pooling in order to be robust to
noise. The PC classification module makes a prediction
according to the spatial distribution of PCs aggregated
over 20 frames. As previously mentioned, without this
aggregation, the sparsity of the radar PC over one or few
frames would make the classification task for human
movements or postures too challenging. An undesired
consequence of this aggregation over time is that dy-
namic activities and motions that are implicitly shorter
than the duration of 20 frames would result in very sim-
ilar PCs, for example sitting down & standing up from
sitting, or bending over & standing up from bending.
Therefore, the output of this module may include classes
that are possible motion pairs (e.g., (a) sitting down on a
chair or standing up from sitting, and (b) bending over or
standing up from bending), or static postures such as (c)
sitting still and (d) standing still. These are summarized
in Table II.

4) The last module is the spectrogram classification mod-
ule. This module takes the predicted class from the
previous module and uses the spectrogram as the input
to the AlexNet [30] to recognize the individual motion
class within the motion pair (a) or (b). The choice of
AlexNet [30] is due to its relatively simple structure and
easier convergence compared to deeper neural networks,
but it theoretically can be replaced by other spectrogram-
based classification approaches from the literature [25],
[26] if desired. Therefore, the final classification output
of the proposed pipeline is a combination of modules
using both PC and spectrograms as input data represen-
tations.

As claimed by [31], an angle-insensitive HAR pipeline
should be robust to achieve angle-insensitive HAR given
training data collected at multiple orientations, or even ideally
given training data collected at one orientation only. Thus, two
definitions are given for how to use a classification pipeline in
terms of different combinations of training data with respect
to human orientation. These include training with data from
one human orientation and testing with multiple orientations,
which is termed as SAC (Single Angle Classifier), and MAC
(Multiple Angle Classifier) if training is performed with data
collected at multiple orientations. It should be noted that
the orientation classification module becomes insignificant for
SAC cases, and thus is bypassed in the proposed pipeline.
Angle Sensitivity Matrix (ASM) and Angle Sensitivity Vec-
tor (ASV) are used as metrics to evaluate the classification
performance of SAC and MAC, respectively, as proposed in
[31]. The former has two dimensions of training and test
orientations, and the latter is compacted from a matrix into a
vector, as data of all orientations are used for training together.
The work in [31] is used as a comparative baseline to evaluate

Authorized licensed use limited to: TU Delft Library.

the proposed pipeline and is named as baseline-1.

Furthermore, additional comparisons are made with other
pioneering studies investigating the feasibility of applying
imaging radar for radar-based HAR. In particular, [23] used
’snapshots’ of PCs aggregated over the interval of activity as
the input to their designed deep convolutional neural network.
Their method essentially treats imaging radar-based HAR as a
2D image classification problem, unlike the proposed pipeline
that processes the 3D coordinates of the detected PCs. It is
crucial to determine whether the full use of all the intrinsic
features provided by 4D imaging radar helps to achieve better
HAR performance, so [23] is used as a replica of Orientation
classification module, PC classification module and the entire
pipeline for comparison. This comparative architecture is
named baseline-2. Furthermore, since the classifier in [23] is
not explicitly compared with other image-based classifiers in
the literature, four of them - namely, VGG [32], ResNet [33],
DenseNet [34] and ViT [35] - are also used for comparison in
this paper. They are named baseline-3 to baseline-6.

[1l. DATASET DESCRIPTION

To validate the performance of the proposed pipeline, a mm-
wave MIMO FMCW radar developed by Texas Instruments
(cascaded AWR?2243 radar) was used to collect an experimen-
tal dataset. Mm-wave FMCW MIMO radar has been a popular
choice in short-range applications such as indoor HAR thanks
to its flexibility, low cost, and small physical size as an off-the-
shelf product, mostly driven by the technological development
in the automotive sector. Specifically, the cascaded AWR2243
radar operates at 79GHz with 12 transmitters and 16 receivers.
Using MIMO configuration, the radar produced a virtual array
with an aperture of 43\ x 3\ (see Figure 2), where A is the
center wavelength of the transmitted signal. For the purpose
of comparative studies, we mostly inherited the FMCW wave-
form parameters from [23], which are given as follows: chirp
duration 63 usec, chirp slope 60 MHz/usec, chirps per frame
128, frame period 100 ms, frequency bandwidth 2.84 GHz, and
A/D sampling rate 2.7 MHz. The radar specifications derived
from these parameters are as follows: range resolution of 52.8
mm, azimuth resolution of 1.4 degrees (at broadside), elevation
resolution of 18 degrees (at broadside), velocity resolution
of +£0.0286 m/s. These resolutions are expected to provide
sufficient information on human dynamics as well as body
shapes.

TABLE Il
LIST OF MOTIONS, MOTION PAIRS, AND POSTURES FOR THE MEASURED
DATASET. MOTION PAIRS AND POSTURES REPRESENT THE
INTERMEDIATE OUTPUT CLASSES (A-B-C-D) OF THE PC
CLASSIFICATION MODULE, WHEREAS INDIVIDUAL MOTIONS AND
POSTURES REPRESENT THE FINAL OUTPUT CLASSES OF THE
PROPOSED PIPELINE (1-6).

Mot'lon Motion Posture
pair
a 1. Sitting down c 5. Sitting still
2. Standing up from sitting d | 6. Standing still
b 3. Bending over
4. Standing up from bending
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Fig. 2. Visualization of the virtual channels in the used AWR2243

imaging radar, where array and subarrays are defined according to the
number of channels used for the subsequent signal processing.

TABLE IlI
BODY CHARACTERISTICS OF THE 8 PARTICIPANTS.
Subjectindex [ 1 | 2 | 3 [ 4 | 5 [ 6 | 7 | 8 [ MeaniSd
Height (em) | 180 | 168 | 170 | 180 | 185 | 178 | 177 | 177 | 176.9%5.5
Weight (kg) | 75 | 70 | 70 | 70 | 95 | 82 | 72 | 72 | 75.7%88

The dataset was collected in an office-like room with
tables, chairs, and cabinets to simulate a real-life indoor
environment. The radar was placed at 0.75m height from the
ground to illuminate the whole human body in the field-of-
view. A chair was placed 2.7m away from radar in the Y-
axis direction and participants performed activities around it.
Overall, 6 activities were included in the dataset, consisting
of 4 most common daily motions, and 2 postures that can
be viewed as the transitional states between such motions
(Table II). The measurements include eight human subjects,
whose body characteristics are very similar, as shown in Table
III. During the measurements, postures and motions were
recorded separately. Specifically, a complete time interval for
each measurement was 2 minutes. During this time, the human
subjects were asked to perform either one static posture, e.g.
sitting still on the chair, or a motion pair, e.g., sitting down
and standing up from sitting for a period of approximately 2
seconds for each individual motion. Labels are then generated
manually for these data by visual segmentation. The measured
dataset consists of 2,239 samples and is divided into 80% for
training and 20% for testing. In addition to the processing
chain mentioned in Section II, snapshots of the front view of
the aggregated PCs as in [23] are also stored for comparative
studies.

To further examine the performance of the proposed pipeline
in more challenging conditions, some additional datasets were
generated based on the measured one. Specifically, “noisy
data” were generated by adding additive white Gaussian noise
to the measured raw data (i.e., prior to any processing steps
to generate spectrograms or PCs) while assuming the original
measured data to be noise-free. Based on the amount of added

Authorized licensed use limited to: TU Delft Library.

noise to raw data, the final obtained SNR values are 20dB,
18dB, 15dB, 13dB, 10dB and 8dB. Moreover, “small-aperture
datasets” were generated by selecting the raw data of only
a subset of virtual channels for subsequent signal processing
(essentially the subarray-1 to 4 shown in Figure 2). This was
done to test the effect of reduced angular resolutions on the
generated PCs and on the subsequent classification.

[V. EXPERIMENTAL RESULTS AND DISCUSSION
A. Results of the Proposed Pipeline

This section presents the results of the proposed pipeline
classifying 6 activities. It should be noted that the training
and testing are independently repeated 5 times to increase the
reliability of the results, so the results presented in this section
express the values averaged from 5 realizations.

The orientation classification module provides very accurate
predictions of human subjects’ orientation with an accuracy
of 97.5%, which will significantly simplify the task for PC
and spectrogram classification modules. The PC classification
module also makes promising predictions with an average
accuracy of 97.9% (defined as the sum of the true positive
samples for classes a-d divided by the total number of samples
in Table IV). The spectrogram classification module, however,
has less favorable performance (83.8%) according to the sum
of the number of true positive samples for classes 1-2 and
3-4 divided by the number of true samples for classes a and
b, respectively, in Table IV. Specifically, the binary classi-
fication accuracy for sitting down/standing up from sitting
is 85.7%, and the binary classification accuracy for bending
down/standing up from bending is 81.0%. These numbers
are lower than the results in some state-of-the-art studies,
for example, almost 100% -classification accuracy of sitting
down and standing up from sitting was achieved in [27] and
more than 90% in [28]. However, it should be noted that
this difference in performance is related to the fact that these
studies did not consider the multi-angle scenario, as more than
65% of the misclassifications of classes 1-4 are actually caused
by the samples where the human subjects performed motions
at 90° orientation. Considering all the above, each stage of
the hierarchical pipeline exhibits satisfactory performance with
classification accuracy between 81.0% and 99.0%, leading to
an overall average classification accuracy of 87.1% for the
proposed pipeline classifying 6 activities.

TABLE IV
CONFUSION MATRIX FOR THE PROPOSED PIPELINE TO CLASSIFY 6
ACTIVITIES, WHERE VALUES WERE AVERAGED FROM 5 INDEPENDENT
REALIZATIONS.

a b C d
True/Pred. 1 2 3 4 5 6
a 1 347 73 1 0 0 0
2 48 413 0 0 0 0
b 3 0 2 324 76 0 3
4 0 1 77 332 0 0
c 5 0 5 0 3 432 24
d 6 0 5 0 5 9 443
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B. Results of Ablation Study

Through the removal of specific modules in the proposed
pipeline, this section is expected to study their individual
contribution. For example, the PC classification module alone
could be adapted to directly predict which activity the subject
is performing; or, in case of the orientation classification
module being removed, the PC classification module and
spectrogram classification module together could accept input
samples from all orientations. Table V shows the classification
results attained in these ablation studies by mean accuracy/F1-
score and their standard deviation from five different realiza-
tions, where each realization includes an independent training
and testing. It is reasonable to conclude that each classifi-
cation module makes a crucial contribution to the overall
performance of the proposed pipeline. Meanwhile, the results
attained with only one classification module on its own are
significantly lower than the others, as the accuracy and F1-
score in the first two rows are significantly lower than their
counterparts in the other rows. This not only demonstrates the
advantage of the hierarchical structure, but also reveals the
significance of the two complementary data representations
that exploit all available features of mm-wave 4D imaging
radar.

TABLE V
SUMMARY OF THE ACCURACY AND F1-SCORE RESULTS FROM THE
ABLATION STUDY WITH THE DIFFERENT MODULES IN THE PROPOSED
PIPELINE.

Used Modules
PC classification
spec. classification
Ori classification &
spec. classification
PC classification &
spec. classification
Ori classification &
PC. classification
Full Pipeline

Accuracy F1
74.3%=+1.1% 74.1%=+1.2%
73.5%4+3.2% 74.4%=+1.9%

77.1%+2.5% 76.4%+2.1%

80.9%+1.0% 80.7%+1.2%

81.4%+1.2%
86.7 % +1.3%

81.9%+1.8%
87.1% +1.2%

C. Results vs the Comparative Baseline Approaches

This subsection presents the results comparing the proposed
pipeline with the alternative baselines from the literature
described in Section II, together with the ASM and ASV
metrics from [31] as a function of training and testing angles
for the different human activities'.

When using the proposed pipeline as a SAC, the orientation
classification module becomes pointless since only the data
of one orientation can be used for training. As a result,
only the PC and the spectrogram classification modules are
utilized from the pipeline. The corresponding ASM and ASV
in comparison with those of the baseline-1 [31] are given
in Figures 3 and 4, and Table VI. It should be noted that,
since the conventional spectrogram-based classifiers lack the
necessary spatial information to classify static postures, only
four motions are considered in our implementation of the

INeural networks in [31] and [23] are implemented by the authors and
trained from scratch, as the pre-trained models or training data were not made
publicly available

Authorized licensed use limited to: TU Delft Library.
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Fig. 3. ASVs of the proposed pipeline and the baseline-1 [31] as a

function of orientation.

e e

Fig. 4.  ASMs of (a) the proposed pipeline for 4 motions, (b) the
baseline-1 [31] for 4 motions, and (c) the proposed pipeline for 6
activities. The horizontal axis is test angle, the vertical axis is training
angle, and from top to bottom and from left to right the values are 0, 45,
90, 135 and 180°, respectively.

baseline-1. Three main points are drawn from this analysis
as follows:

o Figure 3 shows that the closer 90° the human orien-
tation is toward, the worse the results are, considering
all methods. This is presumably due to the fact that
movements with a torso orientation of 90° do not generate
representative Doppler features for classification.

o Figure 4 shows that the proposed pipeline outperforms the
method in [31] for the seen test data, as shown by the cells
on the diagonal. Yet, the proposed pipeline appears to be
more sensitive to angle variations than Yang’s method
[31] given test data collected at an orientation close to
the training data (e.g., the cells on the non-diagonal upper
left or bottom right parts). Meanwhile, for those results
obtained from a test angle far from the angle of the
training data (e.g., the cells on the upper right or bottom
left parts), the proposed pipeline again shows superiority
thanks to the use of additional spatial information.

« Following the definitions of quantitative metrics for angle
sensitivity in [31], the mean value (X) and L2-distance
(||v|]2) of ASV and ASM are reported in Table VI. As
it can be seen, the proposed pipeline mean accuracy is
significantly higher than that of baseline-1, and the L2-
distance is smaller. Therefore, quantitatively speaking, the
proposed pipeline is better at classifying motions and /
or postures than baseline-1 in terms of both MAC and
SAC.

Table VII shows the results in terms of accuracy and F1
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TABLE VI
QUANTITATIVE METRICS INSPIRED FROM THE baseline-1[31].
COMPARISON OF RESULTS USING THE PROPOSED PIPELINE AND THEIR
CLASSIFICATION APPROACH.

.. MAC-based results | SAC-based results
Method Activity < ol < ol
proposed 4 motions 82.1% 9.4% 47.7% 10.5%
proposed 6 activities | 83.8% 7.4% 50.8% 9.9%
baseline-1 [31] 4 motions 76.3% 10.8% 45.6% 10.9%

scores for the different baselines from the literature [23], [32]-
[35] and the proposed pipeline. The proposed pipeline shows
a lead 12.2% in accuracy and 13.1% in Fl-score compared
with baseline-2 to 6 when classifying 6 activities end-to-end.
Furthermore, the accuracy advantage of the proposed pipeline
is at least 22.4% for classifying human orientations and at least
11.5% when the image classifier baselines are used as a replica
of the proposed PC classification module. All these results
appear to suggest that fully exploiting all the information
provided by an imaging radar, e.g. using together spectrograms
and the PC coordinates as input to classifiers, is more helpful
in achieving good classification results than treating PCs as
’snapshot’ images, as the latter approach implicitly causes a
loss of information.

TABLE VII
CLASSIFICATION ACCURACY AND F1 SCORE OF THE PROPOSED
PIPELINE VS BASELINES IN THE LITERATURE FOR THE TASKS OF
ORIENTATION CLASSIFICATION, PC-BASED CLASSIFICATION, AND
OVERALL HAR WITH 6 CLASSES. Diff INDICATES PERFORMANCE
DIFFERENCES COMPARED TO THE PROPOSED PIPELINE.

Method Task Acc. Diff. F1 Diff.

proposed HAR 87.1% 0% 86.7% 0%

baseline-2 HAR 749% -122% 73.6% -13.1%
baseline-3 HAR 70.1% -17.0% 689% -17.8%
baseline-4 HAR 653% -21.8% 64.5% -22.2%
baseline-5 HAR 62.7% -24.4% 619% -24.8%
baseline-6 HAR 58.4% -28.7% 582% -28.5%
proposed  Ori. classification ~ 97.5% 0% 97.3% 0%

baseline-2  Ori. classification  75.1%  -22.4% 73.9% -23.4%
baseline-3  Ori. classification  53.4%  -44.1% 52.8% -44.5%
baseline-4  Ori. classification  56.3% -412% 56.4%  40.9%
baseline-5  Ori. classification 62.8% -34.7% 61.5% -34.8%
baseline-6  Ori. classification  62.1% -354% 61.6% -35.7%
proposed PC classification ~ 99.0% 0% 97.2% 0%

baseline-2 ~ PC classification 86.0% -13.0% 85.8% -11.4%
baseline-3 PC classification 87.5% -11.5% 87.4% -9.8%
baseline-4 ~ PC classification 83.5% -155% 829% -143%
baseline-5  PC classification  80.2% -188% 79.9% -17.3%
baseline-6 ~ PC classification  81.8% -17.2% 81.4% -15.8%

Radar data measurement is generally more complex and
time-consuming than using vision-based sensors, thus limiting
the typical radar-based HAR dataset to be much smaller than
the computer vision datasets. To be more specific, Yang’s work
[31] and Kim’s work [23] included 60 and 288 samples per
activity, respectively, whereas our dataset includes roughly
300 training samples per activity. Therefore, an important
comparison is about the classification pipeline performance
with respect to a limited number of training samples. Figure
5 presents the test accuracy of the baselines and the proposed
pipeline trained with only a randomly selected percentage of
the training data available from the measurements. The results
in Figure 5 show that the performance of the proposed pipeline

0.88 T
=—©— proposed, 6 activities
0.86 [ ==& proposed, 4 motions
baseline-1, 4 motions
084t + baseline-2, 6 activities 1
;
0.82
g 08
=]
3
< 0.78
0.76
>
0.74
0.72 ]
0.7 ! ! .
20% 40% 60% 80% 100%
Percentage of data used for training
Fig. 5.  Classification accuracy of the proposed pipeline and two

selected baselines with respect to varying number of training samples.

shrinks sharply from 87.1% to 74.0% accuracy for 6 activities
and from 83.0% to 73.5% for 4 motions, as the number of
training samples decreases. Nevertheless, the test accuracy
remains on average higher than or approximately equal to
the state-of-the-art baselines in [23], [31] as the number of
training data is reduced. up to the point of using only 20% of
the training data (equivalent to 358 samples per activity).

To conclude, in terms of different quantitative metrics
presented in this subsection, the proposed pipeline in general
has significantly superior performance over the baselines in /)
angle insensitivity, 2) classification accuracy, and 3) robustness
against a limited number of training samples.

D. Results for Different SNR

This section focuses on one of the most influential pa-
rameters in radar systems, SNR. Because of the randomness
nature of additive noise, data generation, training and testing
are repeated for five independent realizations and averaged for
every value of considered SNR, as described in Section III.
Figure 6 shows the average test accuracy and the standard
deviation of these five realizations in terms of varying SNR
levels. As can be seen, the classification performance decrease
almost linearly along with decreasing SNR levels, and the
accuracy could drop to nearly 50% for an SNR of 8dB, which
is approximately 35% lower than the measured data (assumed
to be noise-free in this evaluation). These results suggest that
noisy data could significantly undermine the performance of
the proposed pipeline. Last and most importantly, the perfor-
mance gain due to the proposed replacing of max pooling
with average pooling is clearly shown by comparing the blue
curve with the red in Figure 6. This appears to indicate that
average pooling as a symmetric function fits better the task
of processing noisy radar data compared to the original max
pooling in [29].

For data-driven classification methods, it is also interesting
to evaluate whether differences in SNR between training
and test data could influence classification performance. In

ires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 6. Classification accuracy with respect to varying SNR levels.
Average pooling is used in the proposed pipeline, whereas max pooling

refers to the original PointNet and its transformation network T-Net in
[29].

this case, we can cross-validate the results of ’training-with-
measured-data’ and ’testing-with-noisy-data’, and vice versa.
The results are listed in Table VIII. These results show that
radar-based PCs and spectrograms in noisy conditions are
unlikely to be sufficiently representative for classifying human
body shapes and postures, hence additional work would be
needed to make the pipeline more robust to severe degradation
in SNR.

from a different one. Hence, the cross-examination results of
training on the large-aperture dataset and testing on the small-
aperture dataset and vice versa are also given in Table IX. The
following findings are drawn from this analysis. First, since the
largest decrease in performance is as small as 9.2% in accuracy
and 9.1% in Fl-score, it is reasonable to conclude that the
proposed pipeline has promising robustness to be applied on
different imaging radars, i.e. with different and often smaller
apertures. Secondly, as the classification accuracy continuously
drops from the first to the fifth row in Table IX, it is clearly
established that the classification results are significantly influ-
enced by the MIMO aperture size. Thirdly, the significance of
the consistency between training and test data is highlighted
according to the huge accuracy drop as shown in the cross-
examination evaluations, suggesting that simply re-using the
data collected with different radar may not be an optimal
data augmentation method without some manipulation either
on the data or on the classification pipeline. Finally, in the
cross-examination evaluation, the combination of array and
subarray-2 always provides substantially better results. This
could be the result of our signal processing chain, i.e., local
peak value detection is utilized in the azimuth domain but
not in the elevation domain so that PCs are generated by the
virtual arrays with the same horizontal (i.e., azimuthal) MIMO
aperture are similar.

TABLE IX
PERFORMANCE OF THE PROPOSED PIPELINE WITH DATA WITH VARYING
MIMO APERTURE, I.E. DIFFERENT ANGULAR RESOLUTIONS.
CROSS-EXAMINATION RESULTS OF TRAINING & TESTING WITH
DIFFERENT APERTURES ARE ALSO SHOWN

TABLE VI
CROSS-EXAMINATION OF THE ROBUSTNESS OF THE TRAINED PIPELINE Train array  Test array  Acc. Diff. F1 Diff.
GIVEN TESTING DATA OF UNSEEN SNR LEVELS, WHERE meas. barray ; barray . S;é? 30;7"7 2213’ 30;%17
subarray- subarray- 6%  -3.5% 4%  -33%
INDICATES THE ORIGINAL ME?\‘SOL::EE_[::RDQ;ASET THAT IS ASSUMED TO BE subarray-2 subarray-2 83.3% 3.8% 83.0% 37%
' subarray-3 subarray-3  79.4% -71.7% 79.2% -7.5%
Train SNR  Test SNR Acc. Diff. F1 Diff. subarray-4 subarray-4  71.8%  -93% 71.5%  -9.1%
meas. meas. 87.1% 0% 86.7% 0% array subarray-1  264%  -60.7%  25.7% -61.0%
meas. 20dB 67.8% -193% 674% -193% array subarray-2 58.7%  -294%  588%  -27.9%
meas. 18dB 653% -21.8% 64.6% -22.1% array subarray-3  274%  -50.7%  26.8%  -59.9%
meas. 15dB 60.0% 21.1% 58.7% 28.0% array subarray-4  31.6%  -555% 31.8% -54.9%
meas. 13dB 55.3% 31.8% 52.8% -33.99% subarray-1 array 28.1% -59.0% 263% -60.4%
meas. 10dB 508%  -343% 49.8%  -36.9% subarray-2 array 728% -143% 67.8% -18.9%
meas. 8dB 478% _393% 444% _423% subarray-3 array 26.8% -60.3% 25.9% -60.8%
30dB eds. 69.0% -181% 68.7% -18.0% subarray-4 array 29.0% -58.1% 23.6% -63.1%
18dB meas. 50.1% -37.0% 504% -36.3%
15dB meas. 49.6% -37.5% 50.8% -35.9%
13dB meas. 41.8% -453% 432% -43.5%
10dB meas. 4.9% -422% 451% -43.6% F. Results of Leave-One-Subject-Out Test
84B meas. 314%  -557% 30.8% -55.9%

E. Results for Variations in MIMO Aperture

Using an imaging radar with a relatively smaller MIMO
aperture can be economical and power-efficient, whereas this
comes at the cost of reduced angular resolutions. The results
obtained from four separate pairs of training and test datasets
are given in Table IX, where the definitions of subarray-1 to 4
are visualized in Figure 2. Moreover, we investigate the results
when training the proposed pipeline with the data obtained
from one of the virtual radar apertures, but testing with the data

Authorized licensed use limited to: TU Delft Library.

It is expected that different human participants may have
their own body size and height, and thus exhibit specific char-
acteristics in their kinematic patterns when performing daily
activities. In the interest of training a generally-applicable
classification pipeline, it is significant to learn whether the
body physical characteristics and their kinematic patterns can
be directly linked by the proposed pipeline. In an ideal
situation where human subjects share similar body physical
characteristics, like in our dataset (see Table III), assuming that
the kinematic patterns are very similar across individuals of
similar body shape and size, these could be learnt by observing
a small set of individuals. However, as it can be seen in
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Fig. 7. Classification accuracy of the PC classification module (blue
bars), the spectrogram classification module (red bars), and the entire
pipeline (orange bars) in the leave-one-subject-out test, where the
horizontal axis represents the index of the left-out subject.

Figure 7, in the case of classifying activities of an unseen
human subject, the mean accuracy drops to 63.5%, which is
approximately 20% lower than the results in Section IV-A. To
be more specific, the mean PC classification accuracy and the
mean spectrogram classification accuracy are approximately
80% and 71%, showing decreases of more than 17% and 12%,
respectively.

Firstly, this finding fits the typical patterns in the leave-one-
subject-out tests also observed in other studies with different
data for HAR [19], [20]. Secondly, these values suggest that,
despite very similar body characteristics, individuals still have
distinct kinematic patterns due to their specific way of moving
when performing the daily activities. These differences are
what cause the performance of the proposed pipeline to suffer
when a leave-one-subject-out test is applied. In addition, as
shown in Figure 7, the lowest accuracy is attained from subject
6 (height 178 cm, weight 82 kg) instead of subject 5 whose
body characteristics (height 185 cm, weight 95 kg) can be seen
as an outlier. This again appears to show that the similarity
of the kinematic patterns does not necessarily exist even for
people who have very similar body characteristics of shape and
size, suggesting the importance of having as much diversity as
possible in the training data in order to have a more generally-
applicable classification pipeline.

V. CONCLUSION

This work presents a pipeline for recognizing human mo-
tions and static postures performed toward multiple orien-
tations using a 4D imaging radar. The proposed pipeline
starts with the data generation module, including two parallel
processing chains to generate PC and spectrogram as input
data representations. Through the combination of PCs and
spectrograms to represent the varying human body shapes and
kinematic patterns, respectively, the information provided by
4D mm-wave imaging radar in terms of range, Doppler, az-
imuth, elevation, received power, and time are fully exploited.

Authorized licensed use limited to: TU Delft Library.

The proposed hierarchical classification pipeline attains an
accuracy of 87.1%, significantly outperforming the state-of-
the-start methods that only utilize either point cloud or spec-
trogram in isolation. It is also demonstrated that the proposed
pipeline has substantial robustness against possible unfavor-
able conditions such as low SNR levels, a limited amount
of training data, or relatively poor angular resolutions. The
possibility of transferring trained models amongst different
people is also demonstrated with a leave one subject out test,
even if additional work is needed to increase performance in
this case. The data generation module can be further improved
by introducing automated segmentation methods such that
each data sample contains no redundant information but just
the desired activity on its own. Furthermore, architectures
such as recurrent neural networks (e.g. GRU or LSTM cells)
could be further integrated into the pipeline to model temporal
connections between activities performed at different time
steps one after the other. Moreover, the pipeline should be
validated with additional data in terms of number of partici-
pants and types of activities. More participants, where possible
with diverse body size and height, will help explore the
generalization capabilities of the proposed pipeline to different
physical characteristics. More activities, such as for example
falling to the ground or other critical activities, will support
the application of the proposed pipeline in a more realistic
HAR setting.
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