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Abstract

With the advent of smart thermostats like Toon®, detailed information about
operation and usage of central heating boilers has become easily available.
However, this information is not used in a systematicway bymost companies
including Eneco, and the wealth of information within is not available to the
users.

This has a few drawbacks. For instance, when a mechanic is sent to repair a
broken boiler, the mechanic has to rely on the data provided by the callcenter
receiving the call from the customer. This data is often missing, incomplete
or incorrect. This means that no reliable information about which parts to
bring and how long the repair will take is available a priori. Secondly, some
malfunctions could have been easily resolved by the end-user, for instance
by refilling the system with water.

This research aims to provide a starting point in a systematic and automated
approach in analysing the behaviour of the boiler by detecting malfunctions
as they occur. To do so, a mathematical model of a house is designed. On
this model an Extended Kalman Filter is built which monitors important pa-
rameters of the system in real-time. The estimated parameters can in future
research be used as features in a more complete fault detection and identifi-
cation scheme.

The filter has successfully been tested against simulated faults, and shows
promising results when applied to real data.
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1 Introduction

1.1 Background

With the slow shift of the energy industry from fossil fuels tomore sustainable
sources of energy, the position of the energy providers is changing. Eneco - a
major energy provider in the Netherlands - calls this “de nieuwe wereld” or
“the new world” in english.

In this changing landscape, energy providers are looking for differentiators
to keep customers loyal. Price can be one of these differentiators, and this is a
tactic many new players on the market are using. For a big corporation with
a relatively high overhead like Eneco, this is a not a viable strategy. For this
reason Eneco is always on the lookout for new ways of binding customers.

Toon® is one of the differentiators Eneco is offering. With this smart ther-
mostat, customers can save on their energy bill by cutting on their consump-
tion. This might seem counterintuitive, because Eneco is effectively helping
customers buy less of its product. However, by charging money for these
services, Eneco is moving from a supplier of energy to a provider of services
around energy.

With this in mind, it is in the best interest of Eneco to sell as many Toons as
possible. However, thermostats by themselves are not very exciting. The bet-
ter the thermostat, the fewer interactions the customer has with it. To keep
the Toon® interesting for customers, additional services are offered. Most of
these services are built around insight: “how much energy are you consum-
ing compared to your neighbour?” or convenience: “turn your heating on (or
off) remotely”.

Eneco has recently started adding a new service to its lineup called BoilerIQ.
With BoilerIQ any faultcode transmitted by the boiler is registered and trans-
lated into an meaningful message on the Toon®. With these messages a me-
chanic can be requested via Eneco. The benefit from the side of the mechanic
is that information about the boiler and its health is available, since the entire
fault history of the boiler is available.
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1. Introduction

Figure 1.1: Screenshot of the recently launched BoilerIQ service

The benefit for the customer is that the hassle is reduced: calling a mechanic
and taking a day off, only to find that the mechanic does not have the right
parts in his van.

The service is built around fault codes transmitted over the OpenTherm pro-
tocol - one of the two protocols supported by Toon, see Section 2.3. Unfortu-
nately only around 40%of boilers connected to Toon® is using theOpenTherm
protocol, the rest is connected via the traditional On-Offmethod, where fault-
codes are not available. Of those 40% communicating via OpenTherm, only
around 30% of boilers actually transmits fault codes. This means that currently,
only roughly 12% of households can use this service. 1

1.2 Problem statement

As described in the previous section, services like BoilerIQ on Toon® that
generate revenue and increase customer loyalty are valuable to Eneco. How-
ever, as it currently stands, the service does not reach most of the customer-
base of Eneco.

The primary goal of this research is to create a fault-detection scheme which
1Numbers taken from Eneco documents and results of pilots run by Eneco
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1.3. Methodological Approach

can be applied to all boilers, regardless of protocol, brand or type.

In addition to the primary goal, the following secondary objectives have been
formulated.

1) Faults are to be detected over a longer period of time. Traditionally, me-
chanics have a few busy months when the weather starts getting colder
during the autumn, as this is when residents notice their houses are not
heated properly. By having an automated detection scheme, it is possi-
ble to spread repairs over a longer period of time, reducing costs.

2) Faults not noticed directly by residents should be detected. This can
improve energy efficiency, for instance by notifying customers when
the radiators in the living room are turned off and all heat ends up in
the bathroom.

These lead to the following research question:

How can the most common faults in a domestic central heating system be
detected using data from Toon® that is available for all households?

1.3 Methodological Approach

The data provided by Eneco does not contain reliably labelled faults due
to how the OpenTherm standard is implemented (see Chapter 2), and the
avaible data can not be used directly as a training set for classification al-
gorithms. One option would have been to label the set by hand. However,
faults are expected to be rare (on average, boilers break down once every
three years, or 1000 working days versus 1 faulty day), and labelling by hand
would require a lot of time of an expert, which is simply not available.

Therefore, a different approach is taken. First, a model of a house based on
thermodynamic properties is built, which is then validated against the mea-
sured data (see Chapter 3). Then, well-known faults are introduced into this
model, resulting in a labelled set of measurements that can be used to test the
detection scheme. The faults are chosen so that they correspond to the most
common faults in a central heating system, keeping ease of implementation
in mind.

The detection scheme is chosen to be an online parameter estimator using
an Extended Kalman filter (see Chapter 4) which tracks the heat given off by
the radiators and the loss of heat to the outside, since these are important

3



1. Introduction

indicators of a fault. This approach has the added benefit of being easily im-
plemented in Python, an open source programming language which is used
within Eneco.

Finally, when the detection scheme is tested against simulateddata (seeChap-
ter 5), real data is used to show the effectiveness of the scheme on less-perfect
data.

1.4 How to read this thesis

Themain content of this thesis is split into four parts. First, what the available
data is, how it is measured and what issues it has is described in Chapter 2:
“Central Heating Boilers”. The mathematical derivation of the model and
common faults are described in Chapter 3: “Modeling”. Then, a method of
detecting these faults from the simulated data is explained in Chapter 4: “On-
line Parameter Estimation”. Finally, the results of this scheme are discussed
in Chapter 5: “Results”.

To see how these chapters relate to each other, see Fig. 1.2.

Measured Data

House Model Faults

Parameter Estimator

Results

Central Heating Systems (Chapter 2)

Modeling (Chapter 3)

Online Parameter Estimation (Chapter 4)

Results (Chapter 5)

Figure 1.2: Structure of this thesis
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2 Central Heating Systems

In this chapter the twomost important aspects of a central heating system are
described; boilers and thermostats. The goal of this chapter is to give some
background into the different elements of the system, and to understandwhat
kind of issues Eneco is running into while building smart applications for
these central heating systems.

2.1 Central heating boilers

One way of heating a home is by using a central heating boiler. This boiler
heats water, which is pumped through the home. The hot water gives off
heat in the rooms via radiators, thereby heating the room. Other methods
of heating the home are fireplaces, district- and block heating1. Toon® only
works with central heating boilers, and other forms of heating will not be
discussed in this thesis.

In the customerbase of Eneco, high efficiency condensing boilers are the most
common. A schematic overview of a condensing boiler is given in Fig. 2.1.

In Fig. 2.1, the condensing part is the most interesting. After the hot combus-
tion gasses are passed through the first heat exchanger, they are transferred
to a second heat exchanger. The water in this heat exchanger is coming from
the house directly, and has the purpose of cooling the gasses down below
their dew point.

The reason this adds quite a bit of efficiency to the system is because the ex-
haust gasses from a non-condensing boiler are both hot and wet. When the
water in the exhaust gas is removed via condensation, a portion of the energy
remaining in the exhaust gasses can be extracted.

Note that the return water (“Cold water in” in Fig. 2.1) must be sufficiently
cool in order for the condensation to occur. When the temperature of the re-

1Urban Persson and Sven Werner. “Heat distribution and the future competitiveness of
district heating”. Applied Energy 88, pp. 568–576, 2011.
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2. Central Heating Systems

Figure 2.1: Schematic overview of a condensing boiler2

turn water is above the dew point, no condensation will occur, and the boiler
will effectively be a non-condensing boiler.3 The relation between return wa-
ter and effiency is given in Fig. 2.2.

These boilers usually serve two purposes: to heat the house and to provide
hot tap water. To prevent the formation of cavitating bubbles and calcium
buildup, the boiler is a closed system. When the boiler is set to heat the house,
hot water is pumped through the house, where it gives off heat via the radi-
ators.2

When the boiler is set to provide hot tap water, the three way valve usually
redirects the flow of hot water through a heat exchanger, which heats the tap
water. Cooled down, the water in the closed loop is returned to the boiler,
where the cycle starts again. More exotic systems where both tap and heat-
ing water are directly fed into the boiler exist, but a situation with a heat
exchanger and a three way valve is most common.

3Simone Baldi et al. “Real-timemonitoring energy efficiency and performance degradation
of condensing boilers ”.

2Harish Satyavada and Simone Baldi. “ANovelModellingApproach for Condensing Boil-
ers Based on Hybrid Dynamical Systems”. Machines 4, pp. 10–10, 2016.
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2.2. Thermostats

Figure 2.2: Efficiency curve of a condensing boiler. Note how the effiency rises
sharply above the dew point of the exhaust gasses3

2.2 Thermostats

In order to have a comfortable living climate inside a house, thermostats are
installed to control the temperature inside the house by regulating the heat-
ing. The thermostats installed vary from the famous “The Round” byHoney-
well which is a completely mechanical device, to the touch screen controlled,
internet connected thermostats like Toon® and Nest.

The system of a heated house is stable and slow, and a very simple controller
is sufficient to control the temperature. An often used controller is an On-
Off type controller. This controller usually has a lower and an upper bound
set to the temperature. When the temperature crosses the lower bound fom
below, the heating is turned off. When the temperature crosses the upper
bound from above, heating is turned on. While this type of control is cheap
and easy to implement, with the rise of high efficiency condensing boilers this
kind of control is not desirable.

Why this kind of control is undesirable has two reasons. The first reason is
efficiency. When an On-Off controller turns the boiler on, the boiler heats the
water to its set temperature, normally around 70-80 degrees Celcius. Except
for extremely cold conditions, this is usually too hot, and the water returns

7



2. Central Heating Systems

at a temperature well above the condensation point of the exhaust gasses.4
This effectively rendering the high efficiency boiler a traditional boiler, as the
exhaust gasses are not condensed, see Fig. 2.2.

Apart from energy considerations, controlling a house with a bang-bang con-
troller inevitably results in over- and undershoots during the day. Compare
the situation with a car, driving on the highway where the only options for
speed control are full throttle or no throttle. To improve comfort, more grad-
ual control is desirable.

2.2.1 Toon®

This research is based on data collected by Toon®, a smart thermostat devel-
oped by Quby and offered primarily by Eneco, a major Dutch utility. This
thermostat offers a user friendly touchscreen interface (see Fig. 2.3), and var-
ious additional services traditional thermostats do not offer.

Figure 2.3: The Toon® display.

Toon® is an internet connected thermostat, whichmakes it possible to control
the temperature in the house via the internet with the mobile app. This en-
ables the user to come home early, and still arrive in a warm home by turning
the heating on in transit.

4L Peeters et al. “Control of heating systems in residential buildings: Current practice”.
Energy and Buildings 40, pp. 1446–1455, 2008.
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2.3. The OpenTherm standard

Because the Toon® is internet connected, it is also possible for Eneco to col-
lect anonymous, aggregated usage data. This enables users to compare their
usage with similar households, and can be used to propose a better heating
schedule, to name a few possibilities. In previous research, it was found that
by using Toon®, households can on average save between 5,1% and 6,1% on
their annual gas bill5, while at the same time increase comfort.

Toon® can be used on most modern central heating boilers, as most of these
boilers support either the On-Off or OpenTherm protocol (see Section 2.3).
However, for some newer services like BoilerIQ, an OpenTherm connection
is required. Another reason to connect the Toon® via OpenTherm is that this
protocol allows for more granular control than On-Off, as discussed before.

2.3 The OpenTherm standard

In Section 2.2 the benefits of having more gradual control was mentioned.
One of the protocols for enabling this gradual control of the water tempera-
ture is the OpenTherm standard.1 When the boiler supports it and the ther-
mostat is wired correctly, this is the protocol that Toon® uses. Even though
most modern boilers support OpenTherm, only 42% of all Toons is commu-
nicating with the boiler via OpenTherm. This gap is likely caused by older
boilers, incorrect wiring or faulty settings.

OpenTherm is a digital standard, and allows for two-way communication
between the boiler and the thermostat. The thermostat can request a certain
water temperature, which the boiler will then regulate by controlling the flow
of gas.

In contrast to On-Off thermostats, this means that OpenTherm connected
thermostats can request a steady baseload, instead of switching on and off
continuously. This results in stabler room temperature, less thermal stress in
the boiler and pipes, and a higher efficiency.

The OpenTherm standard allows for two-way communication; the boiler can
send information about faults back to the thermostat. Unfortunately, the stan-
dard for faults is under-specified, and this leads to a situation where fault-
codes for different brands can mean completely different things. A few ex-
amples of this are listed in Table 2.1.

5Dennis Ramondt. “Savings from Smart Thermostats with Energy Displays”. Available at
SSRN 2745144, 2015.

1See https://www.opentherm.eu
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2. Central Heating Systems

Table 2.1: Demonstration of faultcodes meaning different things for different types
and brands

Boiler Code 1 Code 4
Intergas Kombi Kompakt
HR22

Temperature too high No flame signal

Agpo Domina C124e No flame signal N/A
AWB Thermo HR Short circuit measured Fault in controller

This means that a scheme based on faultcodes can only work when the brand
and type of the boiler is known. Unfortunately, there is no flag in theOpenTherm
standard which will convey this information, and with BoilerIQ it is required
for Toon® to rely on information given by the customer.

2.4 Available Data

The data available for this thesis is an anonymous set of 545 Toon® customers
participating in the pilot. The boilers in the set are both OpenTherm and On-
Off connected. The data is provided for a 7 month period, starting at April
2015 and ending in October 2015. For each household, a set of 44 variables is
provided. All of these variables are sampled once per minute.

Since the data spans the months from April to October, there are no real win-
ter months in the set. At the time of this research, more data is not available.
Fortunately, the set contains a range of cold days where residents are using
their central heating systems.

Since the set is a mixed set of both OpenTherm andOn-Off connected boilers,
many of the variables populated by the OpenTherm connection are not set in
On-Off boilers. And finally, because the implementation of the OpenTherm
standard differs significantly between different manufacturers, not all vari-
ables are filled reliably even for OpenTherm boilers.

Table 2.2 shows a selected number of variables, together with how well the
data is populated. An interesting point is that of the “boiler setpoint”. This is
the OpenTherm variable that is used to regulate the watertemperature of the
water used for heating. For OpenTherm boilers, this variable takes a value
between 0 and 80. For On-Off boilers, the variable takes a value that is either
0 or 1.

10



2.4. Available Data

Of all the variables, only “room temperature”, “room setpoint” and “boiler
setpoint” are reliably available for all households in the dataset. This is be-
cause these variables are eithermeasured or set by Toon. The “room setpoint”
is the setpoint set by the user, and this is what Toon® uses to calculate the
“boiler setpoint”, which is essentially the control signal.

By only considering “room temperature” and “boiler setpoint” from Toon®,
it is possible to completely take the Toon® and its control algorithms out of
the loop, focussing only on the effect of the boiler on the room temperature.

Table 2.2: Statistics on selected variables in provided dataset

Variable Data Points Number of Toons
Room Setpoint 165M 545
Room Temperature 167M 545
Boiler Setpoint 164M 545

11





3 Modeling

In this chapter the mathematical and theoretical foundation of this thesis are
explored. First, the model of the house is discussed, along with the simpli-
fications and assumptions made. After, the most common faults in a central
heating system are described, along with methods of modelling these faults.

3.1 Modeling a heated house

The model of the house will be used both to generate training data and as
the basis of the Extended Kalman filter. In this section the choice of model
structure is explained. Then, variations on this structure are described, along
with a method of evaluating the performance of these variations.

3.1.1 Model structure

To model the thermal behaviour of a house, it is useful to look at the various
elements of the house to see what role they play. Although the dimensions,
materials and properties of the elements will differ from household to house-
hold, most houses share the following elements:

• Air
• Walls
• Floors and ceilings
• Furniture
• Windows
• Heating

The definition of all of these elements is taken very broadly, so that a house
with a roof can be said to have the same elements as an appartment with no
roof. This will make the equations simpler and more general, so that even if
the building type is not know, the model is still applicable.

13



3. Modeling

Air

First, let us consider the air in the home, since this is what we will be measur-
ing and controlling the temperature of. Heat transfer within a medium such
as air takes place via conduction, convection and radiation. This means there
is no simple analytical solution which can accurately model the heat transfer
through the air. However, using software like COMSOL6, it is possible to do
a numerical simulationwhich takes these effects into account.7 The downside
of this approach is that it takes enormous amounts of computing power, and
it requires the geometry of the house to be well-known.

For simplicity, it is assumed that the air has a uniform temperature through-
out the house, and that themeasured temperature reacts to changes instantly.

Walls

Since walls behave differently when they face the outside than when they are
between rooms, it makes sense to look at these two cases separately. First,
the outside facing walls are considered.

Heat transfer through a wall is an example of conductive heat transfer. When
the system is in steady state, the heat transfer from the inside to the outside
of the wall is given by8:

Q̇

A
= q̇ = h(Tin − Tout) (3.1)

Here, Tin, Tout are the (constant) temperatures inside and outside the wall, q̇
is the heat transfer in Watt per m2, Q̇ is the total heat transfer and h is the
heat transfer coefficient. A sketch of the situation where convection between
a wall and the air is also taken into account is given in Fig. 3.1.

The assumption in the figure is that the wall is made from a single, uniform
material. In reality, most walls consist of multiple layers with different prop-
erties. However, when the system is in steady state, the heat transfer is still
described by (3.1).

When the system is not in steady state, the temperature profile in each of the
segments is no longer linear, and the flow of heat entering the wall no longer
equals the flow exiting the wall. This can be modeled by dividing the wall

6Comsol. COMSOL Multiphysics: Version 3.3. 2006.
7V Gerlich. “Modelling Of Heat Transfer In Buildings.” ECMS, 2011.
8H E A Van den Akker and R F Mudde. “Fysische transportverschijnselen I”., 1998.
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3.1. Modeling a heated house

Figure 3.1: Conduction and convection around a wall.1

into layers with a certain heat capaciy, where each layer exchanges heat with
its surrounding layers. Each layer is then cooling down or heating up until
steady state is reached again. However, the number of parameters quickly
explodeswith this approach, and for simplicity it is assumed that thewall can
be described as a single layer with a uniform temperature. The temperature
of this single layer wall can be written as:9

Cwall
dTwall

dt
= −Q̇ (3.2)

Since the wall is in contact with both the inside and outside air, it exchanges
heat with both, and equation (3.2) can be rewritten as:

Cwall
dTwall

dt
= −hwall,out(Twall − Tout)− hwall,in(Twall − Tin) (3.3)

Here, the wall has a heat capacityCwall and heat transfer coefficients hwall,out,
hwall,in to the outside and inside, respectively. It is assumed that the tem-
perature of all walls facing outward is uniform, regardless of orientation or
position.

Apart from heat loss, walls can absorb energy from the sun causing them to
heat up. Solar radiation is not measured by the Toon® directly, but satellite
measurements are available via the KNMI (the Dutch metereology institute).

9Klaus Kaae Andersen, Henrik Madsen, and Lars H Hansen. “Modelling the heat dynam-
ics of a building using stochastic differential equations”. Energy and Buildings 31, pp. 13–24,
2000.

1Source: http://web.mit.edu/16.unified/www/FALL/thermodynamics/notes/notes.html
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3. Modeling

It is easy to imagine that with solar radiation local effects like orientation and
shadows play a large role. However, because walls have a large total heat
capacity compared to the air inside a house, it is assumed that these local
effects even out over the course of a day.

The solar radiation is given in terms of power, and (3.4) describes the situation
with an extra heating term. In the literature solar radiation is rarely taken
into account with simple, generic models like the one used in this thesis. The
assumption made above therefore needs to be verified before using it in the
model. In subsection 3.1.2 four versions of the model are compared, of which
two have this extra term and two do not.

Cwall
dTwall

dt
= −hwall,out(Twall − Tout)− hwall,in(Twall − Tin) +Qsolar (3.4)

Now that the outside walls are modeled, let us look at the internal walls.
Here, internal walls refer to the walls that are not in contact with the out-
side air, like walls between rooms. Just like the outside facing walls, the heat
transfer through the internal wall in steady state can be described by (3.1).
However, with the assumption of uniform air temperature, this means that
both sides of the wall are always at the same temperature, meaning that there
is no heat transfer when the temperature remains unchanged.

However, when the system is not in steady state, meaning that the temper-
ature of the air is different from the temperature of the wall, heat will flow.
Like with the outside walls, it is assumed that the wall can be described as
a single layer with a uniform temperature. The internal walls then transfer
energy to the air via the following relation:

Cwallinternal

dTwallinternal

dt
= −hwallinternal

(Twallinternal
− Tin) (3.5)

By modeling the internal walls this way, they have effectively become a ther-
mal mass, which can give off or take heat, effectively damping the system.

Floors, ceilings and furniture

When the different elements of a house were introduced, it was stated that
the definition of each of the elements was to be taken very broadly. Why this
is useful will become clear when dealing with floors, ceilings and furniture.
The reason these are lumped together is because it is possible to model these
as either inside or outside walls.
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3.1. Modeling a heated house

The reason behind this is simple: we havemodeled an insidewall as a thermal
mass, while we have modeled an outside wall as a thermal mass with an
additional loss term. By using the arguments made for inside walls, it can be
argued that furniture can be modeled as a simple thermal mass, too.

With floors it depends on the type of house if they should be modeled as an
inside or outside wall. For an appartment with downstairs neighbours, the
floor is likely heated from both sides. For a room on the ground floor, the
bottom of the floor is in direct contact with the outside air, and should there-
fore be considered an outside wall. Fortunately, both elements are already
modeled, and these differences in building types are reflected in the model
parameters.

Windows

Windows are interesting to model, because unlike walls, they let radiation
from the sun pass through. However, before considering solar radiation, we
will first consider the basic thermodynamic properties of the windows.

Most windows in modern homes are double glazed windows. These win-
dows are relatively good insulators, but unlike walls their thermal mass can
be neglected.10 This means that windows can bemodeled as an extra heatloss
term, where heat flows directly from the inside to the outside:

Q̇window = −hwindow(Tin − Tout)

As mentioned before, windows are interesting because the radiation from
the sun passes through. The effect of solar radiation on the temperature of a
house is unfortunately very difficult to model without detailed information
about the orientation of the home, shadow created by obstacles, size of win-
dows and their properties, and so on.

Therefore, in this thesis the direct effect of solar radiation coming through the
windows is ignored. This has a direct effect on the performance of the model
in sunnier months. However, by assuming that either the heating is not on
during these months, or the sun is not yet shining when the heating is on, the
model could still work for these periods.

Fortunately, during the winter months the effect of solar radiation is less pro-
nounced, as can be seen from Fig. 3.2. When an effective surface area of a

10Léon Peter Bernard Marie Janssen and Marinus Maria Cornelis Gerardus War-
moeskerken. Transport phenomena data companion. 1997.
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3. Modeling

house of 10m2 is taken, the solar radiation contributes around 5kWh per day
in June and July, while it contributes around 1kWh per day in December and
January. To put these numbers into perspective, the energy content of a cubic
meter of natural gas is approximately 10kWh.11 On average, an appartment
in the Netherlands uses around 2m3 of gas per day for heating2, which comes
down to 20kWh per day.
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Figure 3.2: Solar radiation throughout the year according to the KNMI, aggregated
per month.

Heating

Finally heating is considered. In the houses considered in this thesis, heating
is provided by a central heating boiler and radiators. The boiler pumps hot
water through the radiators, which give off the heat in the home.

The radiator can be modeled as a metal slab with a uniform temperature.
However, unlike with the cases we have seen before, a large portion of the
heat transfered from the radiator is in the form of radiation (hence the name).8

Heat radiation from a gray body can be approximated as:

Q̇ = ϵσAT 4 (3.6)

11David R Lide. CRC Handbook of Chemistry and Physics, 85th Edition. CRC Press, June 2004.
2Source: milieucentraal.nl
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3.1. Modeling a heated house

Here, ϵσ is the emissivity factor, A is the surface of the body, and T is its
temperature. This means that the heat flowing from the radiator to the air
due to the radiation is:

Q̇radiator,radiation = ϵradiatorσradiatorAradiatorT
4
radiator − ϵroomσroomAroomT 4

room

The heat transfer between the water and the air through the metal is com-
parable to the transfer between out- and inside air through the walls, only
with different constants. From the perspective of the radiator, the total heat
transfer is:

Q̇radiator =− ϵradiatorσradiatorAradiatorT
4
radiator + ϵroomσroomAroomT 4

room

− hradiator,water(Tradiator − Twater)

− hradiator,air(Tradiator − Troom)
(3.7)

To get rid of the nonlinear term in (3.7), the system is linearized using the
procedure from Mudde and van den Akker8. This results in:

Q̇radiator =− hradiator,radiation(Tradiator − Troom)

− hradiator,water(Tradiator − Twater)

− hradiator,air(Tradiator − Troom)

(3.8)

Where hradiator,radiation is a lumped parameter containing linearisation con-
stants, material properties, etc. (3.8) can be simplified to:

Q̇radiator =− hradiator,water(Tradiator − Twater)

− h′radiator,air(Tradiator − Troom)
(3.9)

Where h′radiator,air is the newheat transfer coefficient which handles both con-
vection and linearised radiation. To simplify the relation further, it is as-
sumed that the heat transfer coefficient from water to the radiator is much
greater than the heat transfer coefficient from radiator to the room. Because
of this, it is assumed that the water inside the radiator and the radiator have
the same temperature.

Q̇radiator = −h′radiator,air (Tradiator − Troom) (3.10)
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3. Modeling

The temperature of thewater coming from the boiler is regulated by the boiler.
The water can not become cooler than room temperature, and not hotter than
the setpoint in the boiler (usually 60 − 80°C). This means that the difference
can take values between 0 and Tmax − Troom. By assuming that Tmax is much
higher than Troom, small variations in Troom can be neglected, and the heat-
flow can be approximated to be linear over the entire range.

Now, because of this, the boiler effectively regulates this difference in tem-
perature, and thus the flow of heat to the room. Assuming this regulator is a
simple low-pass filter, the following relation holds:

Pradiator(s)

U(s)
=

Pmax

τs+ 1
(3.11)

Here τ is a time constant which determines the system behaviour, Pradiator(s)
is the Laplace transform of P = Q̇, the heat flowing from the radiator to the
room. U is the Laplace transform of the control signal from the thermostat,
andPmax the heat given off when the radiators reach Tmax. Because u(t) takes
values between 0 and 1, this extra scaling is neccesary.

From this relation, it is clear that the heatflow can be seen as a scaled and low-
pass-filtered version of the input from the thermostat to the boiler. However,
this assumes that the effect of the heat flowing from the radiators into the
room is immediately measured by the thermostat, which is not realistic. To
compensate for this effect, the radiator output can again be low-pass-filtered,
resulting in a higher order low-pass filter.

Based on this result, different low-pass filters have been tested. A third or-
der Bessel filter showed the best performance. This filter has a few desirable
properties like minimal overshoot and ripple, none of which are expected in
a heating system. The Bessel filter has no exact digital counterpart, but it was
found that the approximated filter did not show significant degradation.

Combining the elements

Now that the heatflow from each of the elements is described, these flows
can be combined into a single model taking all these effects into account. To
do this, the flows are first rewritten to the perspective of the air, since this is
what we will be controlling and measuring.

Because the elements are defined in terms of their heat flows, and these flows
are independent, combining the elements is as simple as summing their flows
into and from the inside air. However, this results in many different temper-
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3.1. Modeling a heated house

atures (furniture, internal walls, walls, etc) that need to be estimated, apart
from their heat transfer coefficients. For simplicity, it is therefore assumed
that these separate elements can be described by a single heat capacity.

The simplest way of doing this is by lumping all elements together. Because
it likely contributes the most to the mass, we will refer to this mass as the
wall. However, because all elements are lumped together it means that the
wall should have different heat transfer coeffients going outside and in. This
results in the following model of the home:

Cair
dTin

dt
=− hwindow(Tin − Tout)

− hwallinside
(Twall − Tin)

+Qheating · ufiltered

Cwall
dTwall

dt
=− hwalloutside(Twall − Tout)

− hwallinside
(Twall − Tin)

(3.12)

Here, ufiltered is the low-pass-filtered control signal from the thermostatwhich
runs from 0 to 1, andQheating is the scaling factor described earlier. Cair is the
heat capacity of the inside air, Cwall is the heat capacity of the combined ele-
ments, and h denotes the different heat transfer coefficients.

In the literature models such as these based on first principles are used of-
ten12,13,14. One of the benefits of such a model is that the parameters can be
interpreted, since they have physical meaning. The model also lends itself
very well to be linearized, because simply assuming the parameters are con-
stant is enough to yield a linear model.

Since this model is essentially a model of energy storages and resistors, this
model can be seen as an RC circuit, see Fig. 3.3. In this figure, the heat
transfer coefficients are replaced for notational simplicity: β = hwallinside

,
β̄ = hwalloutside , β̂ = hwindow.

12J M Gordon and Y Zarmi. “Massive storage walls as passive solar heating elements: An
analytic model”. Solar Energy 27, pp. 349–355, 1981.

13Mario Vašak, Antonio Starčić, and Anita Martinčević. “Model predictive control of heat-
ing and cooling in a family house”. MIPRO, pp. 739–743, 2011.

14Wesley J Cole et al. “Reduced-order residential homemodeling for model predictive con-
trol”. Energy and Buildings 74, pp. 69–77, 2014.
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Twall Troom
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Cwall
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Qheating

Croom

Figure 3.3: RC Diagram of heated house model

3.1.2 Validation

To test the accuracy of the model, the standard metrics of variance accounted
for (VAF) and mean squared error (MSE) are used. The variance accounted
for is defined as15:

VAF = max
(
1− var(y − ŷ)

var(y) , 0

)
· 100% (3.13)

Where y is the measured data, and ŷ is the data provided by the model. The
MSE is defined as:

MSE =
(y − ŷ)2

n

Here, n is the length of the vectors y and ŷ. Again, y is the measured data,
and ŷ is the data provided by the model.

The parameters of themodel are foundby running a simulation over twodays
and using an optimization algorithm to find the parameters thatminimize the
MSE.

15Jan-Willem Van Wingerden and Michel Verhaegen. “Subspace IDentification of MIMO
LPV systems: The PBSID approach”. 2008 47th IEEE Conference on Decision and Control,
pp. 4516–4521, 2008.
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3.1. Modeling a heated house

Because finding the parameters is a non-convex problem, the Levenbergh
Marquardt algorithm is used in a multistart configuration. Because such a
solution is not guaranteed to find the global minimum, poor fits - judged by
MSE - are discarded.

Also, to make sure there is enough information about all the parameters in
the data, only a subset of the data is taken into account. This subset is selected
by the following requirements:

• The boiler must be heating the house for at least a total of 50 minutes in
two days

• The temperature must drop below 18 degrees celcius at least once
• No holes in the data longer than 15 minutes may occur

The above results in a total of 3754 periods of two days that are suitable for
optimization. To speed up the process, the optimization was run on a cluster
of linux servers, with a total of 60 cores and 192GB ram. Even with all those
cores available, running the optimization still took around a day for every
version of the model.

Model variations

1. The simplest version, where direct heatloss through the windows is ig-
nored;

2. The simple solar version. Windows are ignored, but there is an extra
heating termQsolar added to the wall to account for the solar radiation;

3. The windows version. This is the structure as described in the previous
section and shown in Fig. 3.3;

4. The windows and solar version. Here, direct heatloss through the win-
dows is not ignored, and solar radiation to the wall is added as an extra
heating term Qsolar.

The results of the optimizations are given in Table 3.1. The numbers show
that the “Windows” model performs the best on the dataset: it has the most
good fits, and of those good fits there is a great number of fits with very high
VAF (>95%).

Note that there is a large difference between the number of periods in the
subset and the number of good fits. This can be caused by the fact that the
optimization problem is non-convex, and a certain amount of luck is required
to start within a basin of attraction of a good minimum.
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Table 3.1: comparison of performance of different models

Good fits Fits with VAF > 95% Fits with VAF > 90%
Simple 1050 489 748
Simple + Solar 989 351 582
Windows 1182 602 926
Windows + Solar 1054 426 646

Another caveat is that the selection criterium here is not the most thorough.
By simply looking at the number of fits in each category, we are likely biasing
against models that are difficult to fit, for instance because they have more
parameters.

By comparing these numbers and looking at the plots resulting from these
models, some understanding of the strenghts and weaknesses of each model
is obtained. For example, it was found that the simplest model had trouble
keeping thewall temperature constant over the period of a fewdays: good fits
tended to have a steady decrease in wall temperature, resulting in a horrible
fit when more than two days were simulated. When the fit was made over a
longer period of time to alleviate this problem, the overall fit quality dropped
drastically.

An interesting observation is that models using solar radiation as an extra in-
put performworse than the other models. The reason for this is probably that
sunshine is a very local phenomenon, and taking the radiation levels from the
Koninklijk Metereologisch Instituut (KNMI) is too broad a generalisation. It
was found that the best fits for models with solar radiation taken into account
were fits where the radiation profile had a shape similar to the temperature
profile. On days where the two profiles did not look alike, the value of the
solar parameter dropped drastically. This is an indication that the data on
solar radiation provided by the KNMI does not add significant information
to the model.

The model that was easiest to fit is the model with windows, as given in Fig.
3.3. To get a feeling for how good this model is, see Fig. 3.4, where the mea-
sured room temperature is plotted against the simulated wall and room tem-
peratures.

3.1.3 Model selection

The structure as chosen is given in Fig. 3.3. Note how, compared to the litera-
ture7,13, there is an extra loss term added to the model which models the loss
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3.1. Modeling a heated house

Figure 3.4: Comparison of simulation with real measured data of the chosen model

through windows. Also note that for simplicity the notation as in the figure
is adapted, and that Q = Qheating and u is low-pass filtered with the Bessel
filter described earlier.

Without loss of generality, the heat capacity of the inside air is set to 1. Since
(3.12) is a continuous time model and the data is only available at fixed in-
tervals (1 minute), it makes sense to discretize this model. To discretize, the
forward euler method is used, yielding equation (3.14).

Troom,k+1 = Troom,k − tsβ(Troom,k − Twall,k)

− tsβ̂(Troom,k − Tout,k) + tsQuk

Twall,k+1 = Twall,k −
tsβ

Cwall
(Twall,k − Troom,k)

− tsβ̄

Cwall
(Twall,k − Tout,k)

(3.14)
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Finally, this set of equations is transformed into a state-spacemodelx[k+1] =
Ax[k] +Bu[k], y[k] = Cx[k]where:

[
Troom[k + 1]
Twall[k + 1]

]
=

[
1− ts(β + β̂) tsβ

ts
Cwall

β 1− ts
Cwall

(β + β̄)

][
Troom[k]
Twall[k]

]

+

[
tsQ tsβ̂
0 ts

Cwall
β̄

] [
u Tout

]
y[k] =

[
1 0

] [Troom[k]
Twall[k]

]
(3.15)

The model depends on many parameters, for clarity an overview of the pa-
rameters and their physical interpretation is given in Table 3.2.

Table 3.2: overview of parameters used in model.

Parameter Meaning
ts Time between samples, in this case ts=60s
Q Heating constant, indicates how much power is

given off when the thermostat requests 100%
β Heat transfer coefficient between thermal mass and inside air
β̄ Heat transfer coefficient between thermal mass and outside air
β̂ Heat transfer coefficient between inside and outside air
Cwall Heat capacity of thermal mass

3.2 Modeling most common central heating faults

Now that the model for the house is selected, it is time to introduce some
faults into the system. The faults as described in this section are some of the
most common faults as described by Eneco technicians, together with faults
technicians normally do not see, but which would be valuable to detect.

3.2.1 Low water pressure

The most common repair is a rather trivial one: low water pressure in the
system. This is one of the few faults residents can actually solve themselves16

16Intergas. Handleiding/instructie Kombi Kompakt HR-ketel Intergas. Jan. 2011.
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in a few simple steps, but it still shows up as one of the main causes of service
requests.

Boilers measure the water pressure in the system, and when it drops below a
certain point, the boiler automatically shuts off, resulting in a complete loss
of control from the point of view of the thermostat. In OpenTherm connected
boilers, the waterpressure can be communicated with the thermostat. With
more primivitive “on-off” boilers, there is little warning; experts at Eneco do
not expect to see a significant decrease in effiency because of decreasingwater
pressure.

This fault can be modeled by setting Q = 0 in the simulation.

3.2.2 Stuck three-way valve

In the Netherlands, a system which provides both domestic hot water and
heating is most common3. In this system, there is a three-way-valve which
determines the flow of hot water coming from the boiler.

When the valve is set to heating, hot water from the boiler flows through the
house, where it gives off heat in the radiators. Cooled down, it returns to the
boiler. When the valve is in the hot water position, hot water flows from the
boiler through a heat exchanger. Again, it gives off heat and returns to the
boiler. The system itself is a closed loop (ignoring leaks, which would trigger
a low water pressure fault, eventually).

Sometimes the three-way valve gets stuck in the heating position, the hot
water position or somewhere in between. Because different positions of the
valve cause completely different behaviour, three different cases are looked
at4.

First we will look at what happens if the valve is stuck in the “central heat-
ing” position. Whenever the temperature in the heat exchanger drops below
a threshold, or when there is a demand for hot water, the boiler will activate,
pumping hot water through the house instead of the heat exchanger. How-
ever, because the heat exchanger will not heat up, the boiler will not turn off
by itself, continuing to give off heat in the house.

When the valve is stuck in the “domestic hot water” position, the behaviour
is the opposite. Whenever the thermostat requests hot water, it is pumped
through the heat exchanger instead of the house - the exchanger quickly over-
heats, causing the boiler to shut itself off. This results in complete loss of

3According to data provided by Eneco
4As explained by Eneco technicians
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control from the point of view of the thermostat, much like with the water
pressure.

Whenever the valve is stuck somewhere in the middle, the behaviour be-
comes more complex and less predictable. To illustrate this, imagine the sit-
uation where the valve is stuck in a position where half of the water flows
through the house, and half of the water flows through the heat exchanger.
Whenever there is a demand for hot water, hot water is pumped through
both the house and the heat exchanger. This results in an unexpected rise of
temperature in the house, but since the exchanger is also heated, the heating
should eventually stop.

Whenever the temperature in the house drops, the thermostat will demand
hot water, which (again) will flow through both the house and the heat ex-
changer. After a while, very little heat will be given off in the heat exchanger.
This causes the water returning to the boiler to be too hot, which will cause
the boiler to reduce power or completely shut off. This situation is a lot harder
to model than the two situations mentioned before, as the amount of loss of
control depends on the heat given off in the house and the heat exchanger.

This means there are three different models for this kind of fault, of which the
“heating” position is nearly impossible to simulate reliably. This type of fault
is therefore left out of the scope of this research. The other two situations can
be modeled as a sudden drop inQ, either to zero or to a value between 0 and
Qoriginal.

3.2.3 Gradual performance degradation

Apart from sudden changes in the system like the faults we have seen be-
fore, some faultsmanifest themselvesmore slowly. One example is air slowly
working itself into the radiators, causing only a part of the radiator to heat up,
slowly decreasing the heat given off.

Most of the causes for slow degradation are subtle, and mechanics only see
the systems once every one or two years. Thismeans there is notmuch knowl-
edge available on how these systems degrade, and if these degradations can
be used to predict failures in the future.

However, detecting degradation is a first step in uncovering trends and cor-
relation between faults. Without detection, more advanced schemes that try
to predict when a boiler needs maintenance will not exist.

Introducing the degradations is simpler than finding out why they occur, and
can be done by lowering Q, or increasing β slowly.
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3.2.4 Closed radiators

The faults so far have been system faults. Another reason the central heating
systen might not work as efficient as intended is caused by user error, and is
caused by the user closing the radiators.

When a central heating installation is designed, the number of radiators and
their size is chosen based on the expected power required in the room. After
the radiators are installed, the flow of hot water needs to be balanced in the
system, so that the amount of heat given off in the bathroom is in proportion
to the heat given off in the living room. This is done by turning a small screw
usually located at the bottom of the radiator.

Apart from this screw, there is usually a thermostatic knob on each radiator.
This knob can be used to make adjustments in the amount of heat given off
by each radiator. This can be useful if a room without a thermostat does not
get warm quick enough.

Unfortunately, these knobs are oftenmisused or forgotten; creating an imbal-
ance in the system. What happens then is that a large portion of the heat ends
up in a room that is not in continuous use, like an upstairs bathroom.

By continuously monitoring the heat given off in the room with the thermo-
stat, changes to this knob could be detected. A model of this situation is a
sudden drop of the heat given off in the room, so a sudden drop in Q. How
low Q goes depends entirely on how bad the imbalance is, and how far the
radiator has been turned down.

3.2.5 Heating with the windows open

The last fault we will look at is an inefficiency caused by user behaviour, like
the previous fault. Since this is only a temporary inefficiency, intervention is
usually not required. However, detecting opened windows or doors can add
valuable information to the control algorithm. This information can then be
used to either increase the power in an attempt to keep temperature stable,
or to save energy by decreasing the setpoint for a while.

Finally, the detection can be coupled with other measurements like energy
consumption to determine occupancy. This can then be used to improve the
temperature programs that are configured on the thermostat.

By now it must be clear how this fault can bemodeled. This is again a sudden
increase, this time in the β̂ parameter.
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3.2.6 Summary

In this section, a number of common faults togetherwith their proposedmod-
els are described. Since many of these faults share behaviour, the faults and
their models are summarized in Table 3.3. Note that since no strict upper
limit for most of the variable faults can be given, the entire possible range is
given, where 100% corresponds to the fault not being noticeable.

Table 3.3: Overview of different faults, where “HW” stands for Hot Water.

Fault Q β Timeframe
Low water pressure 0% unchanged immediate
Stuck 3-way valve (heating) irregular unchanged immediate
Stuck 3-way valve (HW) 0% unchanged immediate
Stuck 3-way valve (in between) 0-100% unchanged immediate
Closed radiators 0-100% unchanged immediate
Performance Degradation 0-100% increased weeks-months
Heating with open windows unchanged increased immediate
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4 Online Parameter Estimation

In the previous section we looked at modeling central heating in a house, and
a few common faults. We saw that by slowly or quickly changing a number
of parameters in themodel it is possible to obtain the faulty behaviour. In this
chapter wewill look at howwe can find the parameters of themodel from the
measured values only. This chapter is split into three parts, in the first part
the theoretical background of the Kalman filter is given, since it is the basis
of the method used in this research. In the second part the Extended Kalman
filter - a commonly used extension to the Kalman filter which can deal with
nonlinear systems - is introduced. In the third part we will look at how we
can use this Extended Kalman filter to estimate parameters of the model in
realtime.

4.1 Kalman filter

Named after Rudolf E. Kálmán who published his paper “A New Approach
to Linear Filtering and Prediction Problems” in 196017, the Kalman Filter has
become one of the most important tools in the systems engineers’ toolkit.

The main selling point of the Kalman Filter is that it can estimate unknown
parameters even when the measurements are affected by statistical noise. It
does so by combining previous measurements, and the resulting estimates
are usually more accurate and reliable than those based on only a single mea-
surement.

The algorithm works in two steps. In the first step - prediction - the Kalman
Filter estimates the current state parameters and their uncertainties. Once
the next measurement is available, the filter executes the second step. In this
step, the filter combines the estimate with themeasurement using a weighted
average, giving a smaller weight to the more uncertain value.

17R E Kalman. “A New Approach to Linear Filtering and Prediction Problems”. Journal of
Basic Engineering 82, pp. 35–45, 1960.
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4. Online Parameter Estimation

This approach requires the algorithm to assign uncertainties to both the pre-
diction and themeasurement. The uncertainty in themeasurement is a tuning
parameter, which is usually fixed a priori by the engineer. The uncertainty in
the prediction, however, is calculated by propagating the uncertainty in the
state through the linear model.

The reason this can be done efficiently is that a normal distribution remains
a normal distribution when transformed by a linear transformation. This
means that if the uncertainties in the states of a linear system are assumed
to be normal, they will remain normal, and only two parameters - the mean
and variance - are required to describe their distributions completely.

With the background out of the way, let us look at the mathematical steps of
the Kalman filter, and how the idea is implemented. Because it is the most
widely used, and directly applicable to this research, we will only discuss the
discrete version of the filter.

The first step of the algorithm is to make a prediction of the state x and its
covariance P :

x̂[k|k − 1] = Ax̂[k − 1|k − 1] +Bu[k − 1]

P [k|k − 1] = AP [k − 1|k − 1]A⊺ +Q

When the measurement at k comes in, the update step takes place.

e[k] = y[k]−Cx̂[k|k − 1]

K[k] = P [k|k − 1]C⊺ (CP [k|k − 1]C⊺ +R[k])−1

x̂[k|k] = x̂[k|k − 1] +K[k]e[k]

P [k|k] = (I −KC)P [k|k − 1]

The notation of x̂[k|k−1] denotes the estimate of x, k using knowledge up to
k− 1. Also,A andC are the standard discrete system matrices,Q andR are
covariance matrices of the process and measurement noise, respectively.

4.2 Extended Kalman filter

However powerful the Kalman filter is, one of its limitations is that the sys-
tem must be a linear system in state-space form. The Kalman Filter assumes
the system matrices are known, and can not be used to estimate the model
parameters directly. And it is these model parameters that are really the pa-
rameters of interest in a fault detection scheme.
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4.2. Extended Kalman filter

Fortunately extensions of the standardKalman filter exist thatmake it capable
of estimating parameters for nonlinear systems. The simplest of these exten-
sions is the Extended Kalman Filter, or EKF, which is also one of the most
widely used.18,19,20,21,22

To understand the basics of the EKF, let us define a non-linear state space
model, as follows:

x[k] = f(x[k − 1],u[k − 1]) +w[k − 1]

y[k] = h(x[k]) + v[k]

Where x is the state vector, y, k the measurement vector, and w and v are
process and measurement noise, respectively. Finally, f and h are (possibly)
non-linear functions.

Now, since f and h can be nonlinear functions, it is no longer possible to di-
rectly calculate the covariance of the outcome. However, we can approximate
f and h by using their taylor expansion, and this is exactlywhat the EKF does;
at every timestep, the two functions are linearized around their current value,
and these linearized versions are used to calculate the new covariance matri-
ces. However, it is important to note that the error term (e, k in the standard
Kalman filter) is calculated using f and h directly.

To see the difference between the EKF and the standard Kalman Filter, the
EKF is given below.

x̂[k|k − 1] = f(x̂[k − 1|k − 1],u[k − 1])

P [k|k − 1] = FP [k − 1|k − 1]F ⊺ +Q

18Hongwen He, Zhentong Liu, and Yin Hua. “Adaptive Extended Kalman Filter Based
Fault Detection and Isolation for a Lithium-Ion Battery Pack”. Energy Procedia 75, pp. 1950–
1955, 2015.

19P Howlett, P Pudney, and X Vu. “Estimating Train Parameters with an Unscented
Kalman Filter”. 2004.

20Wei Xue and Ying qing Guo. “Application of Kalman Filters for the Fault Diagnoses of
Aircraft Engine”. In: Kalman Filter. Mar. 2014. Pp. 1–15.

21Heather H Lambert. A simulation study of turbofan engine deterioration estimation using
Kalman filtering techniques. Tech. rep. June 1991.

22R Luppold et al. “Estimating in-flight engine performance variations using Kalman filter
concepts”. In: 25th Joint Propulsion Conference. 1989.
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4. Online Parameter Estimation

Again, when the measurement at k comes in, the update step takes place.
e[k] = y[k]− h(x̂[k|k − 1])

K[k] = P [k|k − 1]H[k]⊺ (H[k]P [k|k − 1]H[k]⊺ +R[k])−1

x̂[k|k] = x̂[k|k − 1] +K[k]e[k]

P [k|k] = (I −K[k]H[k])P [k|k − 1]

Where:

F [k − 1] =
∂f

∂x

∣∣∣∣
x̂[k−1|k−1],u,k

H,k =
∂h

∂x

∣∣∣∣
x[x|k−1]

Interestingly, note how there is no need for a (version of the)B matrix in this
approach, since the control input is simply fed into the definition of F . Also
note how the two algorithms really are not that different. The only differences
are in the use of F and H instead of A and C, and how the new prediction
is now done with a nonlinear model.

The EKF is a very powerful method, but since it relies on linearization, there
are no longer any guarantees of optimality, like there are with the standard
Kalman filter. In some cases - usually when the system is highly nonlinear -
the EKF will not perform satisfactory and another extension will have to be
chosen, like the Unscented Kalman Filter (UKF)23,24, which is computation-
ally more expensive.

Fortunately, in this case themodel is already linear, and the ExtendedKalman
Filter can be used directly.

4.3 Using the Extended Kalman filter for parameter
estimation

Now that we have seen how we can use the EKF to estimate the state in a
nonlinear system, let us look at how we can use this to estimate parameters
of the model of a house.

23E AWan and R Van Der Merwe. “The unscented Kalman filter for nonlinear estimation”.
… 2000 AS-SPCC The IEEE 2000, 2000.

24Mohammad Taghi Sabet, Pouria Sarhadi, and Mostafa Zarini. “Extended and Unscented
Kalman filters for parameter estimation of an autonomous underwater vehicle”. Ocean Engi-
neering 91, pp. 329–339, 2014.
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4.3. Using the Extended Kalman filter for parameter estimation

The model is given below:

Troom,k+1 = Troom,k − tsβ(Troom,k − Twall,k)

− tsβ̂(Troom,k − Tout,k) + tsQuk

Twall,k+1 = Twall,k −
tsβ

Cwall
(Twall,k − Troom,k)

− tsβ̄

Cwall
(Twall,k − Tout,k)

Where Troom,k means the temperature of the room at time k. ts is the time con-
stant, which in this case is set to one minute (60 seconds). Also note that the
Q here stands for the heat given off in the room, and should not be confused
with theQ[k]matrix in the EKF.

Now, to estimate the parameters of interest (Q, β, β̄, β̂, Cwall), we can add
these parameters as states, augmenting the system. Since these parameters
are assumed to be constant, the model becomes:

Troom,k+1 = Troom,k − tsβk(Troom,k − Twall,k)

− tsβ̂k(Troom,k − Tout,k) + tsQuk

Twall,k+1 = Twall,k −
tsβk

Cwall,k
(Twall,k − Troom,k)

− tsβ̄k
Cwall,k

(Twall,k − Tout,k)

βk+1 = βk

β̄k+1 = β̄k

β̂k+1 = β̂k

Cwall,k+1 = Cwall,k

Qheating,k+1 = Qheating,k

Where, again, the subscript k denote the value of the parameter at time k.
This set of equations can be written as:

x[k + 1] = f(x[k],u[k])

y[k] = h(x[k])
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4. Online Parameter Estimation

with:

x =



Troom

Twall

β
β̄

β̂
Cwall

Q


With all this in place, implementing the EKF for parameter estimation is straight-
forward. We have everything we need to implement the EKF, except for the
linearized equations:

F [k − 1] =
∂f

∂x

∣∣∣∣
x̂[k−1|k−1],u,k

H,k =
∂h

∂x

∣∣∣∣
x[x|k−1]

Calculating F shows one small issue: Cwall appears at the denominator of a
fraction in f . Taking the derivative of 1

Cwall
to Cwall yields 1

2C2
wall

- so naively
linearising here will not work. Fortunately, it is easy to see that 1

Cwall
can

simply be replaced with Cwall,inv everywhere, solving this problem. The es-
timated value can then easily be transformed back by taking its inverse.

To make it easy to remove or add states and play with different variations of
the model, the calculation of F and H is left to the computer. The code is
listed in the appendices A-C.
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5 Results

In this chapter the results of estimating systemparameters using the Extended
Kalman filter are shown. The goal of this reserach is to detect faults in the sys-
tem, and these system parameters are a valuable indicator of these faults.

The estimator is first tested on a noise-free model to see if all parameters are
tracked properly. A realistic amount of white noise is then added to mimic
the less than perfect measurements in reality.

Various faults are then introduced into the model generating the data. First,
suddendrops of heating and sudden jumps in heat-loss are introduced. These
correspond to abrupt failures. Secondly, a slower degradation of the heating
installation and insulation is introduced to the model. With these faults and
degradations, the most common faults and sources of inefficiencies are cov-
ered.

[

ucontroller

Toutside

]

House Model

EKF

Tinside

T̂inside

[

T̂wall

θ̂

]

θ

+

−e

Figure 5.1: Schematic overview of parameter estimation setup using the Extended
Kalman Filter (EKF).

In Fig. 5.1 the parameter estimation setup is shown. Here, θ denotes the real
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5. Results

model parameters, and θ̂ are its estimates. All parameters and signals are
time-varying, and the time indices are left out for simplicity. Note that only
Tinside is measured, and therefore this is the only signal used in the feedback
loop. In this setup, the faults are introduced by varying θ, and the goal is
to use the Extended Kalman Filter to reconstruct these parameters from the
available measurements.

Finally, the parameter estimator is used to estimate the parameters on mea-
sured data from a real household, putting the system to the test.

5.1 Tracking parameters without noise

The first step in finding out if the approach has any chance of success is to
check if the parameters in the model can be found by the filter. To see if the
filter works, the Kalman filter is initialized with different initial values than
the boiler model used to generate the measured data.

There are many parameters of interest in the model, and plotting them all
adds no real value. Therefore, only the parameters of interest are shown in
the plots. However, it is important to note that all parameters of the model
are tracked and estimated simultaneously, even when they are not plotted.
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Figure 5.2: Tracking two parameters: Q and β.

In Fig. 5.2, Q and β and their estimates are shown for a simulated week in
april. Both parameters are estimated correctly, without any bias, within the
timeframe of a week. In the figures,Q and β are the real values ofQ and β, as
set in the model. Qest and βest are the values found by the Extended Kalman
Filter.
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5.2. Introducing noise to the model

It is interesting to note that because β converges slower than Q, the effect of
the mismatch in β can also be seen in Q. This is especially noticable around
the 3rd of April, where Q had converged to the correct value, but is pulled
downward by the incorrect value of β and other parameters.

5.2 Introducing noise to the model

Since Kalman filters are designed to deal with noisy data, and because real
data is never free from noise, zero mean white noise is added to the output.
In reality the noise on a system like this is not white, and likely not even zero
mean. However, no reliable noise model is available, so zero mean white
noise is the best we have.

The variance of the white noise is chosen so that the simulation is comparable
to the real measurements from Toon, or slightly worse.
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)
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Figure 5.3: Room temperature with additive measurement noise (σ = 0.05)

In Fig. 5.3, the results of adding noise to the output is shown. Note that the
overall pattern is less regular than that of the noise-free system, but that the
overall trends are still easily seen by eye.

In Fig. 5.4 the effect of the noise on the estimates is shown. It is clear that the
additive noise disturbs the estimates. However, even though the estimates
themselves are more noisy, the overall behaviour is still correct. Both esti-
mates for Q and β converge to their real values in roughly the same time as
in the noise-free case.
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Figure 5.4: Tracking Q and β in the presence of additive measurement noise

5.3 Tracking time-varying parameters

In the previous two sections, it is shown that the EKF can correctly estimate
the constant parameters of the model. Since the whole point of tracking these
parameters and estimating their values online is to detect changes in their
values corresponding to faults, the next step is to see if it is possible to track
parameters that change over time.

First, two cases of sudden change are looked at. These situations correspond
to a common failure like loss of water pressure and a common ineffiency like
opened windows. Next, two cases of slow degradation are considered.

It is important to stress again that the goal here is to observe the performance
of the filter in a controlled environment. Even though putting real measured
data through it is more exciting, since the true state of the system is unknown
there is no easy way to tell if the filter is working correctly.

5.3.1 Sudden loss of heating

As described in the section onmodeling common faults, one of themost com-
mon faults is the loss of water pressure. This fault can be modeled by sud-
denly droppingQ to zero, resulting in complete loss of control from the point
of view of the thermostat.

Here,Q is taken to be constant for a fewdays to give the filter time to converge
before suddenly dropping to zero. All other parameters are kept constant for
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5.3. Tracking time-varying parameters

the entire duration. Also, since there is information about Q in the measured
signals only when u is not zero, a convenient time for the failure is chosen -
otherwise the filter would look slower than it really is.
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Figure 5.5: Tracking Q and β when Q suddenly drops to zero.

In Fig. 5.5 it is shown that the sudden drop in Q is picked up by the EKF
almost instantly. Note how it seems to take a few more days for the filter to
converge to the true value of zero.
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Figure 5.6: Detail view of the sudden drop in Q.

To get a better view of the error, in Fig. 5.6 a detail view of the same event
is shown. Here, it shows the filter is able to pick up a value close to the true
value within half an hour. However, it takes the filter much longer to finally
converge to the correct value.

From this plot, it seems like β is not influenced by the sudden decrease in Q
at all.
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5. Results

5.3.2 Sudden increase in heat loss

The next sudden change is that of a sudden heat loss. This corresponds to
a resident opening a window or a door. This is not something that would
usually require intervention, so it is important to be able to separate from a
loss in heating control as described in the previous section.

Again, the algorithm is given a fewdays to converge before suddenly increas-
ing β significantly. All other parameters are again kept constant.
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Figure 5.7: TrackingQ and β when β suddenly increases significantly, without tun-
ing the covariance matrices
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Figure 5.8: Detail view of the sudden increase in β, without tuning the covariance
matrices

In Fig. 5.7 the result of this increase in β is shown. Clearly, the algorithm is
struggling more than in the previous section. In the detail view of Fig. 5.8 it
can be seen that there is a slight decrease in Qest (from 0.15 to 0.14), but βest

42



5.3. Tracking time-varying parameters

takes a long time to converge to its new value, and it evenmoves in thewrong
direction first.

As mentioned, the covariance matrices for this case are set to the same values
as for the detection of a drop inQ. In Fig. 5.9 the results of a simple tuning of
these matrices is shown. Here, the uncertainty in β is increased, causing it to
react faster.

01
Apr
2015

02 03 04 05 06 07 08 09 10

0.00

0.05

0.10

0.15

0.20

E
ff
e
ct
iv
e
 h
e
a
ti
n
g
 [
k
W

]

Q

Qest

β (right)

βest (right)

0

2

4

6

8

10

12

14

H
e
a
t 
lo
ss
 [
W
K
−1

]

Figure 5.9: Tracking Q and β when β suddenly increases significantly, with tuned
covariance matrices for this specific failure
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Figure 5.10: Detail view of the sudden increase in β, with tuned covariance matrices
for this specific failure

From Fig. 5.9 it can be seen that the parameter is much better tracked than
before tuning the covariance parameters.
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5.3.3 Slow degradation of heating

So far we have looked at sudden changes in the behaviour of the system. If
these changes are severe, the resident is likely to notice something is wrong
and call a mechanic. With slow degradation, there is a timeframe in which
the resident will not notice anything while the system is not performing op-
timally. The question now remains: is it possible to detect slow degradation
of the system?

To answer this question the parameterQ is slowly decreased over a period of
a month, while all other parameters are again kept constant. The covariance
matrices are kept the same as in the situationwith the sudden drop in heating.
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Figure 5.11: Tracking Q and β when Q slowly drops to zero.

In Fig. 5.11 it can be seen that the filter tracks the parameter over time nicely.
When the heating has stopped almost completely, βest starts to diverge, much
like we saw when the heating stopped working suddenly.

5.3.4 Slow increase in heat loss

Here, the value of β is slowly increased over a period of a month, while all
other parameters are kept constant. Also, the covariance matrices of the filter
are the same as the ones used when tracking Q, and have thus not be tuned
to respond to changes in β.

In Fig. 5.12 the results are shown. The filter is able to track the slowly varying
value of β much better than when it varied quickly. This time, there is no
confusion as to which parameter changed (Q or β).
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Figure 5.12: Tracking Q and β when β slowly increases.

Note that it might look as if the estimates for Q are more noisy than in the
previous cases, but this is simply caused by a change in the axis - the scale is
still the same.

5.4 Applying the filter to data of a household

In the previous sections we have seen it is possible to track the parameters of
the model using the EKF. In the real world there are manymore disturbances
and imperfections than in the simulation run before, so it is interesting to see
how the filter deals with this kind of imperfect data.

To keep the results interpretable, a nice household is selected, based on two
criteria: the boilermust be controlled using theOn-Off protocol, and themea-
surements must be nice. Nice here means there are no big gaps, outliers or
erratic behaviour. All of those real-data problemsmust be of course be solved
before implementing this algorithm, but are outside of the scope of this re-
search.

A period of ten days at the beginning of april is selected. The length of ten
days is chosen because it is the longest interval in which no big gaps occur in
the data, and where it is sufficiently cold. The outside temperature is taken
from theKNMI at “deBilt1”, because nodetailed location information is avail-
able in the anonymized dataset. Also note that the input signal is low-pass
filtered to mimic the slow response of the system.

1De Bilt is a typical choice as the average for the whole of Netherlands
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Figure 5.13: Tracking Q over a period of 10 days for a real household
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5.4. Applying the filter to data of a household

In Fig. 5.13 the result of tracking theQ parameter over the course of ten days
is shown. Here, u is the control signal from Toon® to the boiler, Troom is the
measured room temperature, and Qest is the estimated heating parameter.
Interestingly, the value or Qest converges to a value of 0.15, only to drop to
almost zero rapidly near the end of the period. The drop seems to correspond
to a long period of heating.
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Figure 5.14: Detail view of the dip inQwhen the filter is applied to real data, showing
a fault

To see what is going on, in Fig. 5.14 a detailed view of the period around the
8th of april is shown. It is clearly visible that even though the Toon® requests
full heating over the course of 8 hours, the temperature inside the house does
not rise. In fact, the temperature is steadily dropping over this time period,
which should not be possible when everyhing is working correctly.

Near the end of the period the behaviour of the system seems to go back to
normal again, but the value of Q does not rise to 0.1 again. Unfortunately, it
is not possible to see if the filter would pick up the value again later, due to
large holes in the data after this period.

In Fig. 5.15 the wall temperature as estimated by the filter is shown. The
first few days the estimation seems odd at times, but generally reasonable.
However, near the 8th, the estimates are all over the place, jumping up and
down.
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Figure 5.15: Tracking the wall temperature over the course of ten days

5.5 Effect of covariance windup

As discussed in the paper by Evestedt25, when the input signal is not suffi-
ciently exciting, the uncertainty in the state will grow at least linearly. This
effect is called (covariance) windup, and results in unstable behaviour when
the uncertainty grows too large.

In the model used in this research, it is possible for the heating to be inactive
for long periods of time. When there is no heating, there is no information
about Q present in the signal. This makes the estimator susceptible to the
windup problem. The effect of the problem is shown in Fig. 5.16.

It can be seen that in the periods between heating, the entry in the covariance
matrix that denotes the uncertainty in Q is growing linearly. The increase
in uncertainty places heavier weight on the newmeasurements, which intro-
duces peaks in the estimate of Qwhenever new information is available.

The linear increase is mainly caused by the following equation in the predict
step:

P [k|k − 1] = FP [k − 1|k − 1]F ⊺ +Q

25Magnus Evestedt and Alexander Medvedev. “Stationary behavior of an anti-windup
scheme for recursive parameter estimation under lack of excitation”. Automatica 42, pp. 151–
157, 2006.
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5.5. Effect of covariance windup

Here,Q is a tunable parameter of the Extended Kalman Filter, and the value
of this matrix is usually constant.
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Figure 5.16: Effect of lack of excitation on covariance

A simple method of dealing with this problem is by artificially reducing the
uncertainty in the model to zero when there is no information onQ available,
effectively ignoring the measurements. This works for Q because there is a
direct relationship between the input and Q. For more complex behaviour
like β, a more elaborate method is required.

The scheme used here is implemented as follows: in the update step, the diag-
onal entry of the covariance matrix Q which corresponds to the uncertainty
in the model parameter Q is multplied with u2[k]. Here u is the low-pass-
filtered control signal, which takes a value between 0 and 1. The result of
this multiplication is that when there is no input signal, the uncertainty in the
parameter remains constant. This new covariance matrix is namedQmodified.
By using this scheme, the update step mentioned earlier becomes:

P [k|k − 1] = FP [k − 1|k − 1]F ⊺ +Qmodified

In Figure 5.17 the result of this modification is shown. The linear increase
of the covariance between the periods of heating have dissapeared, and the
estimate for Q has far less overshoot whenever new information comes in
(note the difference in scale on the y-axis for both values).

49



5. Results

02
Apr
2015

03 04 05
0.0000017

0.0000018

0.0000019

0.0000020

0.0000021

0.0000022

0.0000023

0.0000024

C
o
v
a
ri
a
n
ce

 i
n
 Q

PQ

Qest (right)

0.1480

0.1485

0.1490

0.1495

0.1500

0.1505

0.1510

E
ff
e
ct
iv
e
 h
e
a
ti
n
g
 [
k
W

]

Figure 5.17: Effect of ad-hoc approach limiting the windup of covariance, resulting
in more stable tracking of Q

5.6 Summary

In this chapter we have seen that the Extended Kalman filter can be used to
find the parameters of a residential house model with central heating. The
filter works reliably in the presence of white noise, and can track parameters
that change over time.

The results also show that it is more reliable to track a slowly varying param-
eter than a sudden change. The system handled the slow degradation of the
heating and the slow increase in heatloss without retuning, while the sudden
increase in heatloss required a manual retuning to be correctly tracked.

In a way this makes sense: when the boiler is heating the house, the filter
can not know where the sudden fault originates. Decreasing the incoming
flow of heat has an effect comparable to an increase of the outgoing flow of
heat. However, when there is a change in heating, these two faults can be
separated.

Fortunately, despite the bad performance on sudden increases in β, it is possi-
ble to tune the system to provide a relative robust estimate forQ. This means
that it is possible to detect faults in the heating, while ignoring faults in heat-
loss. Since increases in heatloss do usually not require an intervention, this is
more than acceptable.

The filter is applied to the data from a real household somewhere in the
Netherlands, where it tracked its parameters over the course of ten days.
Even though not all parameters were estimated reliably, the Q parameter
proved to be a good indicator of a fault by indicating a fault the author did
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not know was there.

In an attempt to minimize the effect of covariance windup, which can cause
instability in the estimates when the input signals do not contain enough in-
formation, an anti-windup scheme is implemented. Despite its simplicity, the
schemeworks just as expected, and greatly reduces overshoot of the estimate
when new information about Q comes in.
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6 Conclusions &
Recommendations

At this point the research is finished. The main findings are presented in this
chapter. Finally, some recommendations for further research are presented.

6.1 Conclusions

To detect the most common faults in central heating systems, a model based
on physical principles is built. Using this model, a parameter estimation
scheme is designed, which is tasked to track parameters that are an indicator
of the most common faults.

It is shown that by using an Extended Kalman Filter, it is possible to track
these parameters of both the model and a real system over time. The Ex-
tended Kalman Filter is able to detect slow performance degradations of the
system, as well as sudden changes in the model parameters. These parame-
ters give valuable information about the state and functioning of the system,
and can be used to detect common faults in a central heating system.

To conclude, the Extended Kalman filter shows great potential in being the
foundation in a newdetection scheme for central heating boilermalfunctions.
A scheme which can be applied to every household with a Toon, regardless
of boiler brand or type.

Limitations

When setting up the filter, there are a number of parameters that require tun-
ing. Manual tuning has shown that the system is sensitive to the choice of ini-
tial conditions, with the wrong initial conditions convergence becomes slow.
This is not desirable in a system which is meant to be deployed to hundreds
of thousands of systems.

The noise that was added to the measurements is zero mean white noise,

53



6. Conclusions & Recommendations

which is not realistic. In a normal household, deviations in temperature are
likely caused by human activities like cooking and showering, or by operat-
ing devices that give off heat, such as dryers. All of these disturbances have in
common that they are not zero mean but biased. Further research is needed
to see what kind of effect these more realistic noise models have, and how the
system can be improved to deal with them.

Finally, the anti-windup scheme as implemented for the heating parameter
Qworks fine forQ, but can not be used for other parameters directly. Since β
has the tendency to drift when Qu is nearly zero for a while (which is either
when there is a fault, or during warmer months), it appears the signal is not
rich enough for β at times either, but no scheme is implemented yet for this
parameter.

6.2 Recommendations

The first step in a detection scheme is designed in this research. However,
tracking model parameters alone is not enough to automatically detect faults
in a reliable manner. To make this research applicable, it is needed to build a
detection model on the outcome of the filter.

At this moment a pilot is running at Eneco where a group of households are
invited to share fault information. This means that the detection scheme can
be trained on a real, labelled set, rather than simulated data. This also opens
the possibility of using the algorithm to detect more elaborate faults, since
more information on how these faults really look is available.

Tuning the covariance matrices is still a form of art, rather than science. To
make it easier to deploy the scheme to a large group of households, further
research should look into auto-tuning methods for the covariance.

Sometimes the estimate for parameters such as Q and β become negative.
These kind of values can result in unstable behaviour, and should thus be
avoided. There are papers suggesting it is possible to use constraints with
the Kalman Filter26,27,28, and this is something that should be looked at in
further research.

26D Simon and T L Chia. “Kalman filtering with state equality constraints - IEEE Xplore
Document”. IEEE transactions on Aerospace and …, 2002.

27D Simon. “Kalman filtering with state constraints: a survey of linear and nonlinear algo-
rithms”. Control Theory &amp; Applications, IET 4, pp. 1303–1318, 2010.

28DMWalker. “Parameter estimation using Kalman filters with constraints”. International
Journal of Bifurcation and Chaos 16, pp. 1067–1078, 2006.
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Since the anti-windup scheme can not be used for other parameters thanQ, a
more advancedmethod should be adopted to prevent the divergence of other
parameters when the input is not persistently exciting.

Since persistence of excitation can be a problem in this scheme, the controller
could be outfitted with a “diagnostics” mode, where it creates a rich input
signal. This rich signal will likely aid the detection and diagnosis of the fault
considerably. Most faults are now detected (by residents) during the start
of the colder season. By using this mode it would be possible to spread the
detection of faults throughout the year.

Solar radiation is not taken into account in this research, as it was found that
no constant value could reliably be found over the course of two days. This
is likely caused by local effects such as shadows and the orientation of the
house. Because it is shown that the EKF can track time-varying parameters,
future research could be aimed at estimating the time-varying solar influence,
thereby creating a model which also works in summer months.

Finally, the data available did not span the winter months. In future research
it would be interesting to see how the performance of the Extended Kalman
Filter differs for colder months, where the effect of heating is expected to be
more pronounced.

To conclude, the results of this research are promising. This research could
be the starting point of an exciting fault detection and identification scheme,
which could potentially be deployed to all customers, as compared to the 11%
of the customer base used now in the BoilerIQ application.
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Appendix A: Python base class

from sympy import symbols, Matrix
from cached_property import cached_property
from sympy.utilities.autowrap import autowrap
import numpy

class DiscreteNonlinearModel(object):

states = []
inputs = []
parameters = []
Ts = 1

def __init__(self):
self.state = Matrix([0]*len(self.states))

@cached_property
def analytical_f(self):

raise NotImplementedError()

@cached_property
def analytical_h(self):

raise NotImplementedError()

@cached_property
def _lambda_f(self):

v, f = self.analytical_f
return autowrap(f.T, args=list(v))

@cached_property
def _lambda_F(self):

v, f = self.analytical_f
states = symbols(self.states)
F = f.jacobian(states)
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return autowrap(F, args=list(v))

@cached_property
def _lambda_B(self):

v, f = self.analytical_f
inputs = symbols(self.inputs)
F = f.jacobian(inputs)
return autowrap(F, args=list(v))

@cached_property
def _lambda_h(self):

v, h = self.analytical_h
return autowrap(h.T, args=list(v))

@cached_property
def _lambda_H(self):

v, h = self.analytical_h
states = symbols(self.states)
H = h.jacobian(states)
return autowrap(H, args=list(v))

def f(self, inputs):
”””x[k+1] = f(x[k], u[k])”””
return self._lambda_f(*self.state.flatten(), *inputs, *self.params)

def F(self, inputs):
return self._lambda_F(*self.state.flatten(), *inputs, *self.params)

def B(self, inputs):
return self._lambda_B(*self.state.flatten(), *inputs, *self.params)

def h(self, state, inputs):
”””y[k] = h(x[k], u[k])”””
return self._lambda_h(*state.flatten(), *inputs, *self.params)

def H(self, inputs):
return self._lambda_H(*self.state.flatten(), *inputs, *self.params)

def predict(self, inputs):
state = self.advance(inputs)
return self.h(state.flatten(), inputs), state

def advance(self, inputs):
self.state = self.f(inputs)
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return self.state
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Appendix B: Python EKF
implementation

import numpy as np
from sympy import eye

class ExtendedKalmanFilter(object):

def __init__(self, model):
self.model = model
self.Q = np.eye(len(model.states))
self.R = np.eye(len(model.outputs))
self.P = 1e-3
self.K = 0

def predict(self, y, inputs):

F = self.model.F(inputs)
H = self.model.H(inputs)

x_hat_k_m = self.model.f(inputs).T
P_k_m = F.dot(self.P).dot(F.T) + self.Q

K_k = np.divide(P_k_m.dot(H.T), H.dot(P_k_m).dot(H.T) + self.R)

x_hat_k = x_hat_k_m + K_k.dot(y - self.model.h(x_hat_k_m, inputs))
self.P = (np.eye(len(K_k)) - K_k.dot(H)).dot(P_k_m)

self.model.state = x_hat_k
self.K = K_k

return self.model.h(x_hat_k, inputs), x_hat_k
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Appendix C: Python house model

from sympy import symbols, Matrix

class RealisticBoilerModel(DiscreteNonlinearModel):
states = [’Tin’, ’Twall’, ’Q’, ’beta_hat’, ’beta’, ’beta_bar’, ’Cw’]
inputs = [’Tout’, ’u’]
parameters = []
outputs = [’Tin’]

def __init__(self):
super().__init__()
self.params = []

@property
def analytical_f(self):

variables = symbols(self.states + self.inputs + self.parameters)
Tin, Twall, Q, beta_hat, beta, beta_bar, Cw, Tout, u = variables
return variables, Matrix([

Tin - (self.Ts*beta)*(Tin-Twall) - (self.Ts*beta_hat)*(Tin-Tout) + self.Ts*Q*u,
Twall - (self.Ts*Cw*beta)*(Twall-Tin) - (self.Ts*beta_bar*Cw)*(Twall-Tout),
Q,
beta_hat,
beta,
beta_bar,
Cw

])

@property
def analytical_h(self):

x, *v = symbols(self.states + self.inputs + self.parameters)
return [x] + v, Matrix([x])
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def linear_statespace(self):
# Only the first two states are important in the linear statespace model
# All other states here are only there for finding the parameters
# Also, this model is linearised around u = 0
u = np.zeros(len(self.inputs))
A = self.F(u)[:2, :2]
B = self.B(u)[:2]
C = self.H(u)[:, :2]
D = np.zeros([C.shape[0], B.shape[1]])
return A, B, C, D
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