
 
 

Delft University of Technology

Suspended AlGaN/GaN HEMT NO2 Gas Sensor Integrated with Micro-heater

Sun, Jianwen; Sokolovskij, Robert; Iervolino, Elina; Liu, Zewen; Sarro, Pasqualina M.; Zhang, Guoqi

DOI
10.1109/JMEMS.2019.2943403
Publication date
2019
Document Version
Final published version
Published in
Journal of Microelectromechanical Systems

Citation (APA)
Sun, J., Sokolovskij, R., Iervolino, E., Liu, Z., Sarro, P. M., & Zhang, G. (2019). Suspended AlGaN/GaN
HEMT NO

2
 Gas Sensor Integrated with Micro-heater. Journal of Microelectromechanical Systems, 28(6),

997-1004. Article 8856274. https://doi.org/10.1109/JMEMS.2019.2943403

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/JMEMS.2019.2943403
https://doi.org/10.1109/JMEMS.2019.2943403


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 28, NO. 6, DECEMBER 2019 997

Suspended AlGaN/GaN HEMT NO2 Gas Sensor
Integrated With Micro-heater

Jianwen Sun , Robert Sokolovskij, Elina Iervolino, Zewen Liu, Pasqualina M. Sarro, Fellow, IEEE,
and Guoqi Zhang, Fellow, IEEE

Abstract— We developed an AlGaN/GaN high electron mobil-
ity transistor (HEMT) sensor with a tungsten trioxide (WO3)
nano-film modified gate for nitrogen dioxide (NO2) detection.
The device has a suspended circular membrane structure and
an integrated micro-heater. The thermal characteristic of the
Platinum (Pt) micro-heater and the HEMT self-heating are
studied and modeled. A significant detection is observed for
exposure to a low concentration of 100 ppb NO2 /N2 at ∼300◦C. For a 1 ppm NO2 gas, a high sensitivity of 1.1% with a
response (recovery) time of 88 second (132 second) is obtained.
The effects of relative humidity and temperature on the gas
sensor response properties in air are also studied. Based on the
excellent sensing performance and inherent advantages of low
power consumption, the investigated sensor provides a viable
alternative high performance NO 2 sensing applications. It is
suitable for continuous environmental monitoring system or high
temperature applications.

Index Terms— GaN, HEMT, micro-heater, WO3, NO2 sensor.

I. INTRODUCTION

RECENTLY, there have been growing concerns about
environment pollution. The increasing demand for low

power, compact, gas sensors for industrial and consumer
applications drives the research of novel technologies towards
miniaturization of the sensor without sacrificing sensitivity.
Among polluting gases, nitrogen dioxide (NO2) is the one of
the most harmful gases originating mainly from combustion of
automobile exhaust (0.1∼50 ppm) [1], furnaces, plants, etc. [2]
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The concentration varies quiet heavily with different applica-
tion environments, which creates the need for wearable, low
power, continuous environmental monitoring systems. Current
sensors are not suited for continuous air quality monitoring
due to high power, slow response, and low sensitivity (ppb
level). In this paper, a novel design of AlGaN/GaN HEMT
NO 2 gas sensor integrated with a micro-heater is presented.
AlGaN/GaN heterojunctions exhibit great potential for high
performance sensors development due to high carrier density
two-dimensional electron gas (2DEG) at the interface intro-
duced by the strong polarization effect, which is sensitive to
the changes in surface potential [3]. Compared to AlGaN/GaN
Schottky diode sensors for nitric oxide (NO)[2], ammonia
(NH3) [4], [5], nitrogen dioxide (NO2) [6], hydrogen (H2) [7],
and acetone [8], AlGaN/GaN HEMT sensors provide several
advantages: Firstly, the current to be measured is larger than
that in Schottky diodes, resulting in higher current changes and
lower theoretical detection limits. Secondly, the sensitivity can
be modulated and optimized by changing the gate bias. Finally,
the 2DEG does not interact with the analytes but is sensitive
to surface states. By functionalizing the gate area of a HEMT
sensor for different analytes, such as enzymes, polyimides,
or metals, sensitivity to H2 [7], NO2 [9], NH3 [9], [10],
methane (CH4) [11], pH [12], urea [13], glucose [14], chloride
ion [15], heavy metal [16], and DNA [17] have been reported.

As for most of chemical sensing, as shown in numerous
experimental works and theoretical considerations, the impor-
tant parameters such as selectivity, sensitivity, and response
time of gas sensors can be improved by increasing the sur-
face temperature. To sustain elevated operating temperature,
a heating element is often integrated into the sensor system.

As shown in figure 1, a voltage or current controlled MEMS
micro-heater, with a suspended and thus thermally isolated
structure, enables low power heating. The micro-heater and
HEMT sensor area were defined as active area. From previous
work [18], a SiO2 layer with low thermal conductivity provides
an effective thermal isolation between the active sensor area
and the silicon frame for substantial reduction of power
consumption, down to 5-100 mW, when the active area of
sensor is heated to the desired operating temperature.

Here, for the first time, we have fabricated suspended
AlGaN/GaN HEMT sensors with WO3 nano-film modified
gate and integrated MEMS microheater as a sensor platform.
The sensor comprises an AlGaN/GaN membrane suspended
within a silicon frame micromachined out of the silicon
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Fig. 1. Schematic of AlGaN/GaN HEMT integrated with micro-heater.

Fig. 2. Schematic cross-section of HEMT sensor structure.

wafer, and the following elements are over the membrane:
a micro-heater which controls the temperature of the sensing
layer, two SiO2 insulating layers, an HEMT sensor part and
a WO3 nano-layer on top. The micro-heater performance
and the AlGaN/GaN self-heating on the membrane structure
are studied for the first time. In addition, the temperature
and relative humidity effects on AlGaN/GaN sensor device
are investigated and discussed. Finally, the response prop-
erties of HEMT sensor to NO2 gas with concentration of
0.1-40 ppm are presented. We conclude that the sensor concept
that combines the HEMT sensor with a micro-heater can be
applied to NO2 gases detection in consumer electronics and
industrial applications.

II. FUNDAMENTAL DESIGN AND FABRICATION PROCESSES

A. Device Fabrication

Figure 2 presents a schematic drawing of the device cross-
section. The HEMT sensor is placed together with the micro-
heater surrounding the source/gate/drain area on a suspended
membrane. The contact pads are on the thick silicon frame.
The silicon substrate (400 μm) is backside etched away by
deep reactive ion etching (DRIE) to form a circular membrane
(650μm in diameter). The AlGaN/GaN heterostructure was
grown by Suzhou Nanowin Co. on a 2-inch silicon <111>
1 mm-thick wafers using Metal-organic Chemical Vapor Depo-
sition (MOCVD). Starting from the substrate structure con-
sisted of, a 2 μm-thick undoped GaN buffer layer, followed

Fig. 3. Main steps for the fabrication of the suspended AlGaN/GaN HEMT
sensor integrated with micro-heater. (a) starting wafer with epitaxial layers;
(b) mesa etching to define sensor area; (c) Ohmic contact deposition and
annealing; (d) PECVD SiO2; (e) micro-heater deposition and passivation;
(f) metal deposition and top/bottom passivation; (g) opening contact pads
at the frontside and etching window at the backside; (h) functional material
deposition; (i) substrate etching from the backside to form the suspended
structure.

by a 1 nm-thick AlN interlayer, an undoped 25 nm-thick
Al0.26Ga0.74N barrier layer, and a 3 nm-thick GaN epitaxial
cap layer. The electron mobility was ∼1500 cm2

/
V − s, with

a sheet electron density of ∼ 1×1013cm−2.
The fabrication process flow (Fig.3) started with a

mesa etching using a chlorine/boron chloride (Cl2/BCl3)
plasma to define the sensor geometry. Then, Ti/Al/Ti/Au
(20/110/40/50 nm) metal contacts were e-beam evaporated and
patterned by lift-off technology. Rapid thermal annealing at
870◦C for 45 seconds under N2 ambient in a RTP-500 system
was conducted to make the contacts Ohmic and improve relia-
bility at high temperature. 200-nm Silicon dioxide (SiO2) was
then deposited by plasma-enhanced chemical vapor deposition
(PECVD). A Ti/Pt (30/200 nm) metal layer was deposited by
e-beam evaporation and patterned by lift-off to form the micro-
heater, followed by a 200-nm PECVD SiO2 layer for isolation
from the interconnect layer. The SiO2 was patterned in buffer
oxide etch (BOE) solution and the thick metal interconnect
formed using evaporated a Ti/Au (20/300 nm) layer stack.
The topside of the wafer was covered by PECVD SiO2 layer
and the backside was polished down to 400 μm and 5 μm-
thick SiO2 layer was deposited as hard mask during the DRIE
process to etch the silicon substrate. Then backside SiO2 was
patterned by inductively coupled plasma (ICP) etching using
AZ4620 photoresist as mask and the topside SiO2 layer was
etched in BOE solution to form opening for the contact pads
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Fig. 4. The fabricated device: (a) optical image; (b) SEM image of HEMT sensor from 45◦ angle; (c) AFM image and step height measurement at red solid
wireframe area of figure 4(b); (d) SEM image of the device cross section.

and gate windows. The WO3 (10 nm) functional material layer
was deposited on the gate area of 80 μm x 40 μm by physical
vapor deposition (PVD). For comparison, the reference chip
is without WO3 layer deposition on gate area. The Silicon
substrate is etched away below the active area in the final
step. The microheater has a rectangle geometry around a
central area of 230 μm x 290 μm, as showed in figure 4 (a).
Figure 4 (b) and (d) show SEM images of the gate area from
45◦ angle and cross-sectional view of the fabricated sensor,
respectively. Figure 4 (c) shows the AFM image and step
height measurement of 10 nm WO3 layer.

After dicing, the chips were wire-bonded to a prototype
with ceramic quad flat no-lead (CQFN) package with size of
4 mm x 4 mm (Fig. 5). This sensor package is designed to
eliminate the effect of gas flow by a perforated lid.

B. Measurement Set Up

For gas testing experiments, the HEMT sensors were placed
in a stainless steel chamber (20 mL) and connected to a

Fig. 5. (a) the schematic diagram of a gas sensor package; (b) the photograph
of a packaged sensor on test PCB.

Keithley 2700 and a power source. Gas sources of pure N2
and varying concentration of NO2 were inserted in the testing
chamber based on dynamic gas distribution instrument at
atmospheric pressure. The gas flow rate was controlled at
100 sccm and the concentration of NO2 in N2 was varied
from 100 ppb to 50 ppm at ambient temperature.
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Fig. 6. EDS spectrum of the gate surface of the HEMT sensor.

III. RESULTS AND DISCUSSION

The energy dispersive spectrum (EDS) of the device gate
area surface is reported in figure 6. The corresponding peaks of
Ga, W, N, Al, O elements are observed. Clearly, the deposition
of WO3 on the gate surface by magnetron sputtering is
confirmed.

A. Micro-Heater Calibration and Thermal Characterization

Before the heater is used as heating element, it is necessary
to perform a calibration for extracting the temperature of active
area, which is between source and gate. The sample is placed
in an oven and the temperature was varied from 303.15 K
up to 353.15 K and the resistance versus temperature curve
has been recorded. Low current values are supplied to the Pt
heater element to prevent self-heating of the heater itself. The
temperature dependence of the resistivity is well descried by
the following linear equation:

ρH (T) = ρ0 [1 + α (T−T0)] (1)

where ρH and ρ0 are, respectively, the heater resistivity at
temperature T and at ambient temperature T0; α is the thermal
coefficient of resistance (TCR). The measured TCR of the
heater is equal to 3861 ppm/K with a deviation of 10 ppm/K
according to the RTD standard [19].

However, the self-heating effect of the AlGaN/GaN HEMT
device also causes a local increase in crystal temperature
due to the dissipated Joule electric power. The combined
thermal characteristic of the Pt micro-heater and the HEMT
self-heating at ambient temperature is shown in Figure 7. The
surface temperature can be measured by infrared radiation (IR)
thermal camera or extracted by the resistance change of the
micro-heater at ambient temperature, showing a linear growth
with increasing the drain-source voltage, VDS. Figure 7 shows
the max temperature distribution on the gate surface when
changing the voltage of drain-source, VDS, and micro-heater,
VH. Figure 8 shows measured heating power consumption of
micro-heater and temperature versus microheater voltage at
VDS =5 V. As adding the voltage of micro-heater, VH, the max
temperature of gate surface will nonlinear grow. When the
voltage of micro-heater is VH =4 V and VH =3 V, the max
gate surface temperature is about 297.87 oC and 135 oC.
In fact, the power of sensor is about 200 mW when the

Fig. 7. Combined heating characteristic of the Pt micro-heater and HEMT
self-heating at ambient temperature of 298.15 K for voltage of micro-heater,
VH = 0 V to 3 V and VDS = 2 V to 10 V with 1 V increments.

Fig. 8. Measured heating power consumption of micro-heater and tempera-
ture versus microheater voltage at VDS = 5 V.

operating temperature is about 300 oC. The reasons of a little
high power maybe as following: one is the residual Si around
the membrane during the DRIE process; another one is the
ceramic package with high thermal conductivity coefficient
resulting in increased the power consumption. The power of
the sensor will be optimized in the next phase. To further
improve heating efficiency, a larger size membrane and cycle
heating [10] can be utilized.

B. Temperature and Humidity Measurement

The AlGaN/GaN HEMT devices were tested versus ambient
temperature and humidity in the 263 K to 353 K range, with
10 K steps, and the 5% RH to 90% RH range. The gate voltage
of the HEMT device was left floating and VDS varied from
0V to 20 V. As shown in figure 9, the saturated current has
a little drop with raising VDS due to the thermal and lattice
scattering of the 2DEG. And the IDS decreases remarkably
between 263 K and 353 K at 20% RH. The saturated current
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Fig. 9. I-V characteristics of HEMT sensor under variable ambient temper-
ature at 20% relative humidity.

Fig. 10. I-V characteristics of HEMT sensor under different relative humidity
at 353.15 K.

temperature coefficient is −0.63 mA/mm∗K, which is in
agreement with results from literature [20]. Figure 10 indicates
that the relative humidity has no significant effect on the
I-V characteristics of HEMT at 353.15 K. The humidity
effect at different temperatures is shown in Figure 11. The
IDS decreases upon increasing the relative humidity from
5% to 90% at low temperature. However, the effect of rel-
ative humidity on IDS becomes insiginificant with increasing
ambient temperature. Of course, the temperature influence
should be avoided during measurement. In order to eliminate
the temperature interference, a differential method (including
a second structure with the same geometry but not exposed to
gas/humidity in one chip) can be a suitable solution.

C. Gas Sensing Measurement

The gas sensors were placed in the testing chamber
and heated to 571 K while exposed to 0.1-40 ppm NO2

Fig. 11. Temperature and relative humidity effect on the Ids of HEMT sensor
at VDS = 5 V.

Fig. 12. Transient response of AlGaN/GaN HEMT sensor to NO2 gas
concentrations at ∼300 ◦C (a)0.1-1 ppm. (b) Enlarged part of the response
curve of 1 ppm.

gas in pure N2. Figure 12 (a) presents that the transient
response of AlGaN/GaN sensor for 0.1-1 ppm at the oper-
ating bias of VDS =5 V and VH =4 V. A clear effect is
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Fig. 13. Gas concentration dependent sensing properties of HEMT sensor
for 0.1-80 ppm NO2 gas at ∼300 ◦C.

observed under a low concentration of 100 ppb NO2/N2 at
∼ 300 ◦. Figure 12 (b) shows the enlarged parts of data in
figure 12 (a) measured at a NO2 concentration of 1 ppm.
To quality a sensor to be efficient, response time and recovery
time are crucial to be determined. Response time (tResponse)
and recovery time (tRecovery) were defined as the time required
for the drain current to change/return from 10% to 90 %
of its saturated response value to NO2 gas. And as shown
in Figure 13, the current change values (�I) and sensitivity
(S= �I/I) toward NO2 gas increase after WO3 layer deposi-
tion. At the concentration of 10 ppm, �I and S were found to
increase from 9 μA and 0.25% to 29 μA and 1.21%, respec-
tively. And the limit of sensor detection also be improved from
2 ppm to 100 ppb. Figure 14 characterizes the response time
and recovery time as function of NO2 concentration with WO3
layer and without WO3 layer. The response time of sensor
with WO3 layer is improved from 423 second to 91 second at
10 ppm. However, the recovery time of device without WO3
layer are faster. The possible reason is that the AlGaN surface
is easy for NO2 molecule desorption. At the concentration

Fig. 14. Response time (b) and recovery time (c) versus NO2 concentration.

of 1 ppm, �I and S were found to be 26 μA and 1.1% with
a response and recovery time of 88 second and 132 second,
respectively. The response times could be further reduced with
a shorter distance between the gas cylinder and the sensor.
The effect of the working temperature, known to have great
influence on the sensitivity of gas sensor, was studied as
well. The current change and sensitivity as a function of
micro-heater voltage are plotted in Figure 15. The sensitivity
of sensor exposed to 10 ppm NO2 at VH =3 V (135 ◦),
VH =3.5 V (210 ◦) and VH =4 V (300 ◦) are 0.29%, 0.9% and
1.4 %, respectively. The sensing properties are significantly
enhanced with increasing micro-heater voltage (temperature).
Nano WO3 gate AlGaN/GaN HEMT sensors have shown a
great potential to detect low NO2 concentration with a fast
response time.

D. Sensing Mechanism

Several potential sensing mechanisms have been reported
based on adsorption on surface of catalytic metal dissociate
and release electrons [9], [21], [22] When the sensor are
exposed to NO2 gas, chemisorption reaction on the WO3
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Fig. 15. Current change and sensitivity of sensor with WO3 layer to 10 ppm
NO2 at different micro-heater voltages (temperature).

surface results in gas ions (negatively charged for NO2) that
rapidly diffuse at the surface. NO2 gas adsorb directly on the
surface of WO3 layer as well as reacts with adsorbed O− ions
according to the following reaction [23]

NO2 (gas) + e−NO−
2 (ads) (2)

NO−
2 (ads) + O− (ads) + 2e−NO (gas) + 2O2− (ads) (3)

On the other hand, the surface states would be altered by
the polar NO2 molecules, which would manipulate the 2DEG
concentration. Therefore, the surface potential of the WO3
and AlGaN are changed, resulting in the variation of drain
current of the HEMT device. The changed surface potential
can mathematically be represented by the Helmholtz model

�V = NS p(cosθ)

εε0
(4)

wherep is the dipole moment, NS is the dipole density per
unit area, θ is the angle between the dipole and the normal
surface, ε is the relative permittivity of the material, and ε0 is
the permittivity of free space. The surface potential is major
affected by the value of p/ε of the polar molecules.

IV. CONCLUSIONS

In conclusion, nano-film WO3 gate AlGaN/GaN HEMT
sensors integrated with micro-heater on suspended membrane
have been microfabricated and characterized. The combined
effect of micro-heater heating and self-heating on membrane
has been studied first time. Significant detection is observed
under a low concentration of 100 ppb NO2/N2 at ∼300 ◦.
As exposed to a 1 ppm NO2 gas, a high sensing sensitivity
of 1.1% with a response (recovery) time of 88 second (132 sec-
ond) is obtained. The sensor shows is not affected under high
relative humidity ambient while the temperature influence need
be avoided. Based on the excellent sensing performance and
inherent advantages of low power consumption, the HEMT

sensor combined nano-film WO3 functional gate and micro-
heater provides an attractive alternative for high performance
NO2 sensing applications.
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