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Abstract. Stochastic finite element method and random finite element method can provide rigorous tools for slope reliability 
analysis incorporating spatial variability of soil properties. However, both of them are difficult to be applied into practice due to 
the modification of finite-element codes and the low efficiency, respectively. To address these problems, this paper develops a 
more practical approach called non-intrusive stochastic finite element method (NISFEM) for slope reliability analysis in spatially 
variable soils. In the NISFEM, the random fields of spatially variable soils are generated using Karhunen-Loeve expansion, and 
the safety factor of slope stability is calculated using commercial finite-element package. After that, the Hermite polynomial 
chaos expansion is used to express the safety factor explicitly for slope reliability analysis. In addition, this paper suggests an 
easy dimension reduction technique to further improve the efficiency of NISFEM, namely, to adopt a relatively small truncated 
ratio in Karhunen-Loeve expansion. The proposed method is illustrated and verified using a multi-layered soil slope example. 
Through the sensitivity study, it is found that the vertical spatial variability affects the slope failure probability and the sensitivity 
of uncertain soil properties significantly. 
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Polynomial Chaos Expansion  

1. Introduction 

Spatial variability of geotechnical properties is 
one of the most significant uncertainties that 
affect the reliability of slope stability (Li et al., 
2014). Stochastic finite element method (SFEM) 
(Sudret and Der Kiureghian, 2000) and random 
finite element method (RFEM) (Griffiths and 
Fenton, 2004, 2009) have provided rigorous tools 
for slope reliability analysis incorporating spatial 
variability of soil properties. Both of them are 
based on FEM which requires no a prior 
assumption of the location or shape of the critical 
slip surface (Griffiths and Lane, 1999). However, 
they are still difficult to be applied into practice. 
The SFEM fails since it requires modification of 
deterministic finite-element codes. This is known 
as "intrusive analysis". Although the RFEM is 
non-intrusive, the Monte Carlo Simulation used 
for uncertainty propagation in RFEM needs 
extensive computational efforts. 

A more practical approach to perform finite-
element-based reliability analysis in a non-
intrusive manner is based on surrogate models or 
meta-models, which is also referred as non-
intrusive SFEM (NISFEM). For example, Jiang 

et al. (2014) adopted the Hermite polynomial 
chaos expansion (HPCE) for slope reliability 
analysis. Nevertheless, surrogate models often 
suffer from so-called curse of dimensionality in 
geotechnical reliability analysis considering 
spatially variable soil properties using random 
field theory (Vanmarcke, 2010). Some efforts 
have been made to reduce the uncertainty 
dimension, such as using sparse polynomial 
chaos expansion (SPCE) to truncate useless PCE 
terms (Al-Bittar and Soubra, 2013), and using 
series expansion methods (e.g., Karhunen-Loeve 
expansion (KLE), expansion optimal linear 
estimation (EOLE)) for random field 
discretization to reduce random variables in 
uncertainty propagation. These efforts are 
appreciated but still do not meet the practical 
demand, particularly when involving reliability 
analysis of large scale fields in high spatially 
variable soils. 

This study aims to develop a NISFEM for 
slope reliability analysis considering spatial 
variability of soil properties and suggest an easy 
dimension reduction technique to further 
improve the efficiency. The paper starts with a 
description of NISFEM, including KLE for 
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modelling the spatial variability of soil properties, 
finite-element analysis of slope stability, and 
HPCE used as the surrogate model to express the 
performance function explicitly. Thereafter, the 
reliability analysis, including moment analysis, 
failure probability calculation and global 
sensitivity analysis, is performed based on the 
HPCE. Lastly, the proposed method is illustrated 
through a two-layered soil slope example. 

2. Non-intrusive Stochastic Finite Element 
Method 

2.1. Random Field Modeling of Spatially 
Variable Soils 

Random field theory (Vanmarcke, 2010) is 
adopted in the NISFEM to model the spatial 
variability of soil properties. Among the 
commonly-used random field generation 
technique, the KLE is often used, with the square 
exponential autocorrelation function to reduce 
the number of random variables for random field 
discretization, namely, the uncertainty dimension. 

Based on KLE, a stationary lognormal 
random field Hk(x) of k-th uncertain soil property 
Xk, k = 1, 2, …, np, can be expressed as follows 
(Sudret and Der Kiureghian, 2000): 
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where �ln,k and �ln,k are the mean and standard 
deviation of ln(Xk), respectively; {�k,i, i = 1, 2, …, 
ntk} is a set of independent standard normal 
variables; {�k,i, i = 1, 2, …, ntk} and {�k,i(x), i = 1, 
2, …, ntk} are the eigenvalues and eigenfunctions 
of autocorrelation function of Xk, respectively, 
and they can be calculated using the wavelet-
Galerkin technique (Phoon et al., 2002); x is the 
centroid coordinates of random field mesh that 
coincides with the finite-element mesh in this 
study; ntk is the number of truncated terms, and it 
is determined to guarantee the truncated ratio 
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ratio �0, e.g., 0.95 (Jiang et al., 2014). The total 
number of random variables of all uncertain soil 
properties is 
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As pointed out in Sudret and Der Kiureghian 
(2000), the KLE always under-represents the true 
variance of the random field. It will behave more 
significantly as � decreases. Thus, � represents 
the accuracy of random field discretization. 

2.2. Finite-Element Analysis of Slope Stability 

After a realization of all random fields {Hk(x), k 
= 1, 2, …, np} is generated, it is mapped to the 
finite-element mesh adopted in the finite-element 
analysis of slope stability. The safety factor (FS) 
of slope stability can be calculated using shear 
strength reduction technique, in which the slope 
failure is defined by the occurrence of non-
convergence of solution in finite-element 
analysis (Griffiths and Lane, 1999).  

Note that, in the framework of NISFEM, the 
finite-element analysis can be easily performed 
in commercial finite-element package, which is 
repeatedly invoked to calculate the responses 
(i.e., FSs) and returns them to the reliability 
analysis. This allows the practitioners to use the 
NISFEM without being compromised by 
reliability theory, and also enhances the 
application of NISFEM in complex slope 
problems. 

2.3. Hermite Polynomial Chaos Expansion as 
Surrogate Models 

To obtain higher computational efficiency on FS, 
the surrogate model, instead of the deterministic 
finite-element analyses, is often used to express 
the implicit relationship between FS and random 
variables explicitly. The 2nd order HPCE (Li et 
al., 2011) is employed herein to express the FS 
as follows: 
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where � = {�k,i, k = 1, 2, …, np, i = 1, 2, …, ntk}; 
�p (p = 0, 1, 2) is Hermite polynomial with p 
degrees of freedom; a0, ai and aij are unknown 
coefficients, which can be determined through 
the regression-based method. Note that the 
number of unknown coefficients in Eq. (2) is 
(nt+1)(nt+2)/2. 

Obviously, the computational efforts depend 
on the number of unknown coefficients. Some 
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means can be used to reduce the number of 
unknown coefficients to improve the efficiency 
of NISFEM, such as truncating some useless 
PCE terms (e.g., SPCE). A more direct way is to 
decrease the number of random variables, say nt, 
and this can be easily achieved using a relatively 
small �0 value in KLE. However, the small �0 
value will, undoubtedly, affect the accuracy of 
reliability analysis. Their relationship will be 
explored in the next subsection. 

3. Reliability Analysis Based on Hermite 
Polynomial Chaos Expansion 

NISFEM performs reliability analysis based on 
the HPCE obtained from the previous subsection. 
Generally, it contains failure probability (Pf) 
calculation (for slope stability problems, Pf is 
defined as P(FS<1)) and global sensitivity 
analysis. In this study, the moment analysis on 
FS is also performed. 

3.1. Moment analysis on safety factor 

Based on the HPCE, it is easy to calculate the 
first and second moment (i.e., mean and 
variance) of FS using First Order Second 
Moment (FOSM) method. Note that Eq. (2) can 
be rewritten as 
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where b0, bi and bij are unknown coefficients 
corresponding to a0, ai and aij. Assume Eq. (3) is 
the accurate expansion of FS when nt trends to 
infinity. Its mean and variance can be estimated 
as 
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where E[FS(�)] and D[FS(�)] are the mean and 
variance of FS, respectively, which are derived 
from the fact that {�i, i = 1, 2, …, nt} is a set of 
independent standard normal variables. In 
addition, using Eqs. (1) and (3), and the 

empirical linear assumption on FS, i.e., 
� �kFS H� x , it can be inferred that 

i ib ��     (5) 
 

Eq. (5) implies that the random variable with 
a small eigenvalue may have a small coefficient, 
and consequently has minimal effect on the 
variance of FS. Similar conclusion can be drawn 
by other series expansion methods (e.g., EOLE) 
or higher order PCE. Furthermore, the accuracy 
of variance of FS (donated by �), which indicates 
the accuracy of reliability analysis, can be 
defined as 
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Eq. (6) indicates that � and � have an 

approximate linear relationship. Although the 
FOSM lacks of accuracy on the estimation of Pf, 
it provides an interesting viewpoint to link the  

 
Table 1. Summary of statistics of uncertain soil properties 
(Modified from Kim et al. (2002)) 

Soil Parameters Mean COV Distribution 
Upper 
layer 

c'1(kPa) 28.7 0.3 Lognormal 
	'1(°) 20 0.2 Lognormal 

Weak 
layer 

c'2(kPa) 0 / /
	'2(°) 10 0.2 Lognormal 

 
 
 
 
 
 
 

Figure 1. Finite-element mesh of the slope example and its 
deterministic critical slip surface (Unit: m) 
 
accuracy of random field discretization (i.e., �) 
with the accuracy of reliability analysis (i.e., �). 
From this aspect, the accuracy of reliability 
analysis can be reflected by the selected �0 a 
prior. Therefore, a reasonable �0 value should 
prefer to guarantee sufficient accuracy of 
reliability analysis rather than sufficient accuracy 
of random field discretization. The rationality 
will be verified by the illustrative example in 
section 4. 

1.1
0.4

12.2

24.4 24.4 12.2

Bedrock

1Upper layer
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3.2. Subset Simulation for Failure Probability 
Calculation 

The reliability analysis based on the surrogate 
model, i.e., HPCE, is much easier than that based 
on deterministic finite-element analyses. Hence, 
some rigorous methods (e.g., MCS) are feasible. 
To improve the accuracy at small probability 
levels, an advanced MCS called Subset 
Simulation (Au and Wang, 2014) is adopted with 
a relatively large N (e.g., 106) and p0 = 0.1. 

3.3. Global Sensitivity Analysis on Sobol's 
Indices 

Global sensitivity of each input random variable, 
i.e., �i in Eq. (2), can be explored using Sobol's 
indices based on HPCE (Sudret, 2008). Besides, 
the sensitivity index of each uncertain soil 
property Xk, which is of interest in fact, is 
defined as (Al-Bittar and Soubra, 2013) 
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where ST,i = the total Sobol's index of �i, and its 
calculation detail can be referred to Sudret 
(2008). According to the rank of SXk, the most 
sensitive soil property can be identified. 

4. Illustrative Example 

The proposed NISFEM is illustrated using a 
multi-layered soil slope in this section, as shown 
in Fig. 1. The example was also studied by Kim 
et al. (2002) on the deterministic slope stability 
analysis with limit analysis method. Table 1 
summarizes the statistics of uncertain soil 
properties. In addition, the unit weight, Young’s 
modulus and Poisson’s ratio of both layer soils 
are assumed to be 18.8kN/m3, 100MPa and 0.3, 
respectively.  

The finite-element model of the slope is 
created using the commercial finite-element 
package ABAQUS in this study. Based on the 
mean values of uncertain soil properties, the 
deterministic finite-element analysis of slope 
stability is performed using an elastic-perfectly 
plastic constitute model with a Mohr-Coulomb 
failure criterion. The corresponding FS is 1.336, 

which is between the lower-bound (i.e., 1.25) 
and upper-bound (i.e., 1.37) using limit analysis 
method as reported in Kim et al. (2002). As 
shown in Fig. 1, the deterministic critical slip 
surface (represented by its plastic strain) is 
obviously non-circular and passes along the 
weak layer. 

4.1. Nominal Case Study 

To incorporate the spatial variability of soil 
properties into slope reliability analysis, the 
square exponential autocorrelation function is 
adopted, with vertical autocorrelation distance lv 
and horizontal autocorrelation distance lh being 
4m and 40m, respectively. Fig. 2 shows a typical 
realization of cohesion random fields and its 
slope stability analysis results. 

As a thumb of rule, �0 is take as 0.95. The 
corresponding nt = 20 (ntk = 9, 9 and 2 for c'1, 	'1 
and 	'2, respectively), leading to 231 unknown 
coefficients in the HPCE. A total of 500 runs of 
deterministic finite-element analyses are then 
performed based on random samples generated 
by Latin Hypercube Sampling method to 
calculate these unknown coefficients. Finally, the 
Pf is estimated as 0.496% using Subset 
Simulation. The sensitivity indices ST,i of each 
random variables �i and SXk of c'1, 	'1 and 	'2 are 
shown in Fig. 3. Obviously, the sensitivity index 
decays rapidly with ntk, and c'1 is most sensitive 
parameter, followed by 	'2 and 	'1. 

 

 
Figure 2. A typical realization of cohesion random fields and 
its slope stability analysis results 
 

FS = 1.331
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Figure 3. Sensitivity indices of random variables and 
uncertain soil properties 

4.2. Effect of Truncated Ratio �0 

According to the obtained HPCE, the 
approximate linear relationship between 

ib  and 

i�  (see Eq. (5)) can be verified from Fig. 4. 
Additionally, different � values are considered in 
the nominal case, as shown in Fig. 5, to verify 
the assumption that the accuracy of random field 
discretization (i.e., �) is linked with that of 
reliability analysis (i.e., �) (see Eq. (6)). The 
result obtained from � = 0.99 is treated as the 
exact solution. Definitely, there exists an 
approximate linear relationship between � and �, 
and � increases more gently in comparison with �. 
As a result, when � = (0.75~0.85), it achieves 
sufficient accuracy to guarantee � > 0.95, and 
larger � will not improve the accuracy 
significantly. Although this depends on the 
problems studied, it provides a reference to 
choose a reasonable �0.  

To further verify the results, six 
representative �0 values (i.e., 0.99, 0.95, 0.9, 0.85, 
0.75 and 0.5) are considered in Fig. 6. It can be 
observed from Fig. 6 that �0 has slight effect on 
failure probability when �0 is larger than 0.85. In 
contrast, �0 has minimal effect on Sobol's indices 
as �0 varies from 0.5 to 0.99.  

 

 
Figure 4. The relationship between 

ib  and 
i�  
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Figure 5. Effect of accuracy of random field discretization on 
accuracy of reliability analysis 
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0 on failure probability and Sobol's 
indices 
 

In conclusion, �0 can be properly loosened 
(e.g., 0.85) to balance the efficiency and 
accuracy of the NISFEM. In this example, as �0 
decreases from 0.95 to 0.85, the nt and number 
of unknown coefficients correspondingly reduce 
from 20 to 12 and from 231 to 91, respectively, 
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which significantly improves the efficiency but 
slightly affects the accuracy. 
 

 
Figure 7. Effects of spatial variability on failure probability 
 

Figure 8. Effects of spatial variability on Sobol's indices 

4.3. Effects of Spatial Variability 

With the aid of NISFEM, a sensitivity study is 
performed to explore the effects of spatial 
variability on the slope reliability analysis. Three 
typical lv values (i.e., 2m, 4m and 8m) and three 
typical lh values (i.e., 20m, 40m and 80m) are 
considered, respectively. Note that the �0 value is 
taken as 0.85, as discussed in previous 
subsection. Consequently, the number of 
unknown coefficients is reduced by 2~3 times 
compared with that for �0 = 0.95. 

As shown in Fig. 7, the vertical spatial 
variability has more significant effects on slope 
failure probability than the horizontal spatial 
variability. As the autocorrelation distance 
increases (i.e., the spatial variability becomes 
weaker), the estimated Pf increases. Fig. 8 shows 
similar results that vertical spatial variability has 

significant effects on Sobol's indices of uncertain 
soil properties. For the same lh, Sc'1 increases and 
S	'2 decreases as lv increases, while S	'1 almost 
remains unchanged. In addition, c'1 is the most 
sensitivity parameters, followed by 	'2, in most 
cases, and 	1' is the least important parameter 
that affects the slope failure probability since its 
sensitivity index always ranks the last. The 
global sensitivity analysis results can provide an 
important reference for working out effective 
remedial measures to mitigate slope failure risk. 

5. Summary and Conclusion 

This paper proposed a non-intrusive stochastic 
finite element method (NISFEM) for slope 
reliability analysis in spatially variable soils, 
which was illustrated through a multi-layered 
soil slope example. In the NISFEM, the random 
fields of spatially variable soil properties are 
discretized using Karhunen-Loeve expansion 
(KLE), and the safety factor of slope stability is 
calculated using the commercial finite-element 
package. This allows the practitioners to use 
NISFEM without being compromised by 
reliability theory, and also enhances the 
application of NISFEM in complex slope 
problems. The Hermite polynomial chaos 
expansion is then used to express the FS 
explicitly. Thereafter, the slope reliability 
analysis, including moment analysis, failure 
probability calculation and global sensitivity 
analysis, is performed.  

Meanwhile, this paper suggests an easy 
dimension reduction technique to further 
improve the efficiency of the NISFEM. 
Specifically, it suggests a relatively small 
truncated ratio (�0) in KLE, which could lead to a 
less number of random variables with slight 
influence on the accuracy. Generally, a proper �0 
value should be taken to balance the efficiency 
and the accuracy, and it is recommended to be 
0.85 in this study. The rationality is verified 
through the numerical results in the illustrative 
example. More rigorous and systematic 
exploration on the selection of the �0 value 
should be further investigated. 

A sensitivity study was also performed using 
NISFEM to explore the effects of spatial 
variability on slope reliability analysis. It was 
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found that the vertical spatial variability affects 
the slope failure probability and the sensitivity of 
uncertain soil properties significantly. 
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