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Abstract
Instance segmentation on data from Dynamic Vision

Sensors (DVS) is an important computer vision task that
needs to be tackled in order to push the research forward
on these types of inputs. This paper aims to show that
deep learning based techniques can be used to solve the
task of instance segmentation on DVS data. A high per-
forming model was used to solve this task, using event-
based data that was transformed into RGB-D images.
The chosen model for this work was Mask R-CNN, with
an alteration for depth images, because of its high per-
formance on frame based data. The N-MNIST dataset
provides the event-based input, and the transformation of
such an input is presented in this study. Furthermore, the
masks are generated with the help of the MNIST dataset
and heuristics are used for placing them at the correct
positions. The results are promising and comparable to
other results from literature on the task of semantic seg-
mentation. The code is available on GitHub1 and some
qualitative results can be viewed on YouTube2.

Keywords: Event Cameras, Instance Segmentation,
Dynamic Vision Sensor, Mask R-CNN.

1 Introduction
Instance segmentation is the computer vision task that deals
with finding masks for certain objects in images. For con-
text, bounding box detection finds boxes that surround some
objects, and semantic segmentation distinguishes what class
each pixel belong to (e.g. balloon, background). Instance
segmentation is the combination of bounding box detection
and semantic segmentation, and it returns the mask of each
particular instance as an output (i.e. balloon1, balloon2), a
visual comparison is shown in Fig 1.

Figure 1: Bounding Box Detection VS Semantic Segmentation VS
Instance Segmentation, image taken from [1].

Event cameras (Fig 2) are asynchronous sensors that cap-
ture changes in light intensity at every pixel. These event-
based cameras have been available to the public since 2008
[2], and more recently larger companies have shown more in-
terest in the technology [3]. The cameras work as follows:
for each pixel an event is created when the difference in the
logarithm of light intensities crosses a certain threshold. The
direction of an event can be either positive or negative, de-
pending on the direction of the light change. The output of
these Dynamic Vision Sensors (DVS) is a stream of events
that include the pixel position (x,y), polarity (p), i.e. the pixel
is changing to either a darker or lighter value, and a timestamp

1Code is available on GitHub: https://github.com/ana-baltaretu/i
nstance-segmentation

2Qualitative results: https://youtu.be/MtkTWbTHgzQ

(t), denoted as e(x, y, p, t). The reason for having a stream of
events is to allow each pixel to record events asynchronously,
which provides various advantages in comparison to a frame
based approach.

Figure 2: Conventional Frame-based camera (top) vs Event-based
camera (bottom) along with the data they record, [4].

Some of the advantages of using these types of inputs are:
recording at a high temporal resolution and low latency be-
cause each pixel responds asynchronously to light stimuli,
and a pixel does not have to wait for other pixels in order
to trigger an event. Another advantage is the high dynamic
range [5], which means it can handle very bright or very dark
shots better than frame-based cameras. On the other side,
there are some challenges with these cameras, because they
are relatively new [2]. So far they have been mainly used in
robotics related tasks and not so much for solving other com-
puter vision problems, as mentioned in [5], thus there are not
that many sources or algorithms developed specifically for
solving tasks such as instance segmentation. Another chal-
lenge is the lack of labeled data, which can pose huge de-
lays when attempting to train and compare the performance
of models. Lastly, there is no official representation for the
stream of events that is fully compatible with neural networks
and which utilizes the advantages of event-based cameras.

The main reason behind using event-based data is that it
contains a more sparse representation than frame-based data,
which can make it easier and faster for a deep network to rec-
ognize some object, because it has less information that could
confuse the model. Another reason is the fact that event-
based cameras have a high dynamic range, which means they
can still properly function in brighter or darker environments.
This advantage could provide, for example, more accurate ob-
ject detection during the night, which could lead to improve-
ments in the autonomous driving sector.

In this paper the objective is to show that event-based cam-
eras can be used more widely in the field of computer vi-
sion, not only in robotics, and more specifically to solve the
task of instance segmentation. To the best of our knowledge,
there are currently no models that do instance segmentation
on event-based cameras, and the papers with the closest topic
are on semantic segmentation [6], [7].

The aim of this research is to answer the following ques-
tion: “Can we train deep networks to do instance segmenta-
tion on event-based cameras?”. This requires making deci-
sions in terms of the way the event-based data is represented,
what model is used for training and how the performance is
evaluated.

https://github.com/ana-baltaretu/instance-segmentation
https://github.com/ana-baltaretu/instance-segmentation
https://youtu.be/MtkTWbTHgzQ


The main contributions from this paper are:

1. Generating masks for digits from the event-based
dataset, N-MNIST [8], by making use of the original
frame based dataset, MNIST [9].

2. Converting the event-based data to an RGB-D format
such that the Mask R-CNN model [10] could be trained
on it.

3. Generating and training a dataset with several digits in
the same image to demonstrate that the model still per-
forms well, even with additional data.

The remainder of this paper is structured as follows: in
Section 2 there is a deeper dive into the already existing re-
search that relates to this paper. Afterwards, Section 3 ex-
plains the idea behind combining Mask R-CNN with event-
based data. Following that, in Section 4 the methodology
which was used in order to answer the question is presented.
Section 5 explains the setup of experiments and the results
are showcased. In Section 6 and 7 there is a reflection on
the ethical aspects of the research and some comments on the
work. Finally Section 8 concludes the paper and mentions
possibilities of future research.

2 Related work
In order to get acquainted with the topic of event-based cam-
eras and how they work the paper [5] was used as a starting
point for this research. It provides a comprehensive overview
of what has been attempted in the field of DVS cameras as of
August 2020. The advantages and challenges of these cam-
eras are explained in the paper, as well as how the different
brands of cameras record and store data. It also showcases
multiple ways in which event-based data can be represented,
some of which have been considered when exploring the topic
of this paper. For example the “Time surfaces” are very sim-
ilar to the Depth Frames that were created in this paper to
make use of the time information provided by the cameras.
Some differences are that the Depth Frames are normalized
to a fixed size interval and they contain all of the events, not
only negative events. The paper [5] also shows that most of
the focus for DVS camera applications was set on robotics
tasks, and less on tasks such as instance segmentation, with
the closest mention of it describing motion segmentation.

One relevant paper is [6] which shows promising results
by using a CNN and doing semantic segmentation on the
DDD17 dataset [11]. The paper shows how to generate labels
for the dataset, which provided some inspiration to attempt to
auto-generate labels in this research, instead of manually la-
belling the dataset. Their results are further improved by [7]
in which a Teacher network is used to train a Student network
through knowledge distillation, which is further explained in
that paper, and attempts to solve the tasks of semantic seg-
mentation and object detection on the same dataset. Although
semantic segmentation is closely related to instance segmen-
tation, the latter also needs to identify each instance of a class,
not only classify the pixels in an image. Therefore the results
in this paper cannot be compared directly with the results in
the previously mentioned papers, but they can be at least used

to set some expectations in terms of performance. The previ-
ously mentioned papers were also used to gather some ideas
on how to solve such a task and they helped with the decision
of which metrics should be used to compare results. A com-
parison of the results using the various metrics is shown later
in this paper.

The dataset that is used in this paper is based on the N-
MNIST (Neuromorphic MNIST) dataset from [8]. MNIST
is a large dataset of hand-written numbers, which has been
used in the past as a point of comparison when training mod-
els. The neuromorphic version of the dataset, N-MNIST, con-
verts the initial 28x28 pixel images into event-based data by
making use of a DVS sensor attached to a mechanism which
moves it to set locations. This movement is formed by three
saccades (Fig 3), and events get generated at the edges of the
numbers. The choice to move the camera instead of moving
the MNIST digit on the screen was made to take advantage of
properties that the event based cameras offer, and is further
explained in the N-MNIST paper [8].

Figure 3: Saccades on the N-MNIST dataset, red=on (pixel changes
from black to white), blue=off (pixel changes from white to black),
from [8].

The contents of paper [12] were of great help when de-
ciding on the representation of the input. For this paper the
two-channel images, shown in Fig 4, were chosen because
they represent the event-based data in a CNN-friendly for-
mat. More specifically the two-channel images have constant
shapes, no matter how many events get triggered in the se-
lected time window, and they keep track of the polarity of
events. In their paper the Red color channel was used to rep-
resent the negative polarity and the Blue color channel was
used to represent the positive polarity, and maximum values
on the respective channel were given to the pixels that get
triggered during the time interval of creating the images.

Figure 4: Event representation as two-channel image, [12].

Mask R-CNN [10] is a popular framework that has been
used for many tasks that are related to instance segmenta-
tion. It is based on another network, called Faster R-CNN
[13], which solves the task of proposing approximate regions
where objects are located. In addition to that, Mask R-CNN
has a branch which predicts segmentation masks (Fig 5).



Newer developments with this algorithm have used 4-channel
images, to take advantage of depth information provided by
RGB-D cameras [14].

Figure 5: Instance segmentation with Mask R-CNN, [10].

3 Intuition behind EV-Mask-RCNN
The hypothesis when starting this study was that the event-
based data could be transformed in such a way that it could
be fed into a deep network and have it predict the masks
of the digits from the N-MNIST dataset [8]. To prove this
hypothesis the input was transformed into RGB-D images,
ground truth masks were automatically generated for each
frame, then this information was fed into the already existing
Mask R-CNN model [10]. The results were then compared
to results from different training settings for the same model,
but also with results from papers that tried to solve a similar
task, semantic segmentation.

In order to make use of the properties of event cameras,
such as recording the time at which an event happens and
keeping track of the polarity of an event, the decision was
made to use the RGB-D channels of an image. The polarity of
each event is represented through its own color channel, with
the Red color channel representing off-events (pixel changing
from white to black). This usually happens at the edges of the
digit in the direction in which it is moving, although some-
times events do randomly get triggered on the screen because
of sensor noise. The Blue color channel was used to represent
on-events (pixels changing from black to white) which hap-
pens at the opposite edges of the red events. Lastly the Depth
channel was used to represent the position in time at which
some events happen. “Older” events have lower values in the
generated depth frames and “younger” events have larger val-
ues, with the idea that the latter ones would contribute more
when deciding where to place the mask.

4 Methodology
This section starts with a more in-depth look at how the in-
stance segmentation dataset and masks were created, then
moves on to a description of how the model was trained and
evaluated, while the concrete findings are presented in Sub-
section 5.2.

4.1 Single digit dataset generation
The event-based data comes from the N-MNIST dataset [8],
which was created by recording the MNIST digits displayed
on a screen, while moving the DVS camera. The N-MNIST
dataset was used to create the RGB-D images and masks
used in this paper. The N-MNIST dataset contained labels

for which class an entry belongs to, which could be used for
solving a classification task, but these were not enough for
training a model to do instance segmentation.

Because the Mask R-CNN model requires actual images
as an input, a first step was to create the 34x34 RGB frames.
This was done by taking the events from a fixed sized time
window and depending on whether their polarity was positive
or negative the frame was colored with red or blue at that pixel
position, shown in Fig 6. If an event was triggered at the same
location during that time window, the latest value was kept.

Figure 6: Generating frames by flattening the events from a 10ms
time window, first image contains events as they are recorded by the
DVS sensor, while the second one shows them flattened.

Furthermore, in order to make use of the time information
that event cameras record when an event is detected a depth
frame is created, shown in Fig 7. In these frames events
that happened first have lower values (closer to black) and
events that occur later have higher values (closer to white).
The depth frames were normalized through contrast stretch-
ing, such that even if the length of the time window is changed
later on, the depth frames have values in the range of 0 to 255.

Figure 7: Depth frames for 10, 20 and 50 ms time windows, lighter
pixels are more recent events, darker pixels are older events, and
black pixels mean no event was triggered there.



An important step prior to training was generating masks
for the given data. First of all the frames were denoised and
the center of the digit was calculated based on the mean of
the location of the minimum and maximum events detected
on the X and Y axis. Afterwards the dimension of a digit was
determined through taking an average over multiple frames
which contained the same digit. To create realistic masks
the MNIST dataset was overlaid at these calculated positions.
This was achieved because the authors of [8] kept the digits in
the same order, allowing the N-MNIST indices to be matched
to their MNIST masks.

A more difficult part was aligning the masks with the event
data, since it was not feasible to have a human manually plac-
ing the masks, this had to be automated. The main idea was
to use the centers previously generated and slightly shift the
masks vertically, horizontally or diagonally to better “match”
them with the events. To determine how well the masks match
when placed at some position the sum of pixels from the in-
tersection between the mask and the red pixels (events trig-
gered by changing from white to black) was calculated. This
is because the edges of the digit are located at the location in
which the latest red pixel appear and for short time windows
previously triggered events are a good indication of where
the digit was. Some examples of the final generated RGB-D
frames and their masks can be seen in Fig 8 and in Fig 13.

Figure 8: Training masks generated for one entry, left is the RGB-D
input frame, middle is the mask of the background and right is the
mask of the digit.

4.2 Multiple digits dataset generation
Generating a dataset that contains multiple digits in a single
frame was comparatively easier to do once all of the frames,
masks and depth images were generated, as explained in Sub-
section 4.1. To make this new dataset, new images of size 64
by 64 pixels were created, 1 digit was taken in order of the IDs
of the images and 3 other digits were chosen randomly from
the base dataset. These four digits were then placed at the
set locations of [(0, 0), (0, 32), (32, 0), (32, 32)], and because
the initial N-MNIST images were of size 34x34, 1 row and
1 column were removed from each edge of an image to not
lose much information from either one of the digits. Lastly,
to easily match each mask with its digit when loading them:
the digits were stored and the masks were color-coded, with
the color indicating which digit they should be used for, ex-
amples can be seen in Figure 9.

4.3 Training the model
The MNIST dataset was already split into training and test-
ing, and to further separate the training results from the final
results, the decision was made to divide the training dataset
into 80% training data, and 20% validation data, while keep-
ing the testing dataset entirely separate and using it to calcu-

Figure 9: Example of polarity frames, depth images and color-coded
masks, generated for images with multiple digits.

late the results after the model was trained. The training and
testing was done on multiple time windows, more specifically
on 10 ms, 20 ms and 50 ms time windows such that it could be
compared with other models. The decision was made to not
go over a 50 ms time window because the size of an image is
relatively small and at 50 ms a number is clearly visible, usu-
ally without any sparsity. The difference of how the frames
look like for various time windows is shown in Fig 10.

Figure 10: Comparison between how frames look for time windows
of 10 ms, 20 ms and 50 ms, polarity is shown only, no depth applied.

To avoid detecting masks which are not significant enough,
the “DETECTION MAX INSTANCES” variable from the
model configuration was set to maximum 1 mask for the train-
ing with individual digits in one frame, and it was set to 4
when training with multiple digits.

4.4 Comparing results
The comparison to other sources is limited because of how
niche the performed experiment is, and at the time of writ-
ing this paper, no direct comparisons could be found in the
literature. Therefore, the evaluation mainly focuses on see-
ing how different adjustments to the input relate to the out-
put scores. Another point of comparison is seeing how other
models trained to do semantic segmentation compare to the
Ev-Mask-RCNN model trained to do instance segmentation,
because some metrics can be related between the two tasks.

The evaluation metrics that were used in the experiment
are accuracy (Acc), mean intersection over union (MIoU)
and mean average precision (mAP), because these metrics are
widely used in other papers, especially those that focus on se-
mantic segmentation, like [6] and [7].

Accuracy, inspired by [6], is defined as the sum of pixels
that have the same class (indicated by the Kronecker delta
function, δ) in the prediction (yi) and in the ground truth (ŷi),
which is then divided by the total number of pixels in the im-
age (N ), shown in Equation 1. This metric was used to give
an indication of how many pixels are properly categorized.
It is not that representative for singular digits because most



pixels are categorized as “background”, but it is more repre-
sentative for a scene with more entries, for example for the
multiple digits dataset.

Accuracy(yi, ŷi) =
1

N

N∑
i=1

δ(yi, ŷi) (1)

Intersection over Union (IoU) is defined as the area of in-
tersection divided by the area of union between the ground
truth and predicted mask, similarly to how it is defined in
[15] for bounding boxes. The metric used in this paper is the
Mean Intersection over Union (MIoU), which is just the av-
erage over all classes between these predictions, or 0 if the
correct digit is not predicted at all. The reasoning behind us-
ing this metric was that it could better show when a mask is
properly placed on a digit, in comparison to accuracy.

The mean average precision (mAP) metric is based on the
IoU and calculates the score using precision and recall. This
metric was used in the Mask R-CNN paper [10] and to eval-
uate the performance of a model on the COCO dataset [16],
explained in more detail in this article [17]. This metric was
used because it was already implemented from the Mask R-
CNN code, it is based on MIoU and it could be used as a point
of comparison for future papers.

The testing dataset, mentioned in the previous subsection,
was used to create the results that can be seen in Subsection
5.2, and this entire dataset was kept separate from the training
data.

5 Experimental Setup and Results
The concrete setup that was used for the experiment, includ-
ing configuration settings for Mask R-CNN is described in
Subsection 5.1, followed by quantitative and qualitative re-
sults that were found on various time windows shown in Sub-
section 5.2.

5.1 Experiment setup
The model was trained and tested on a HP ZBook Studio
x360 G5 laptop, using the Central Processing Unit Intel(R)
Core(TM) i7-9750H CPU @ 2.60GHz.

The model used for training is Mask R-CNN [10], and
some relevant parts of the custom configuration are: its back-
bone is based on Resent-50 [18], it uses 4 image channels
(RGB-D) anchor scales of 4, 8, 16, 32, 64. The size of an im-
age that Mask R-CNN gets trained on is 64x64 even though
the images with individual digits are 34x34, they get scaled
up because they need to have powers of 2 as the anchors. The
images that contain multiple digits are generated as 64x64
images to begin with and digits trimmed to 32x32 are placed
in each corner. The number of classes used for training is 11
(10 digit classes and background) and the model was trained
using a learning rate of 0.001 over 5 epochs, which was then
reduced to 0.0001 over 10 more epochs. The weights were
saved after epoch 2, 5 and 15, to be able to compare the per-
formance on the different metrics.

Transfer learning was used from the weights of the COCO
dataset [16] because this model was already trained to de-
tect other classes in an image, and with pre-trained weights

the training process requires less time or training data. This
was not possible on all layers because the shape of the input
didn’t match, so the “mrcnn class logits”, “mrcnn bbox fc”,
“mrcnn bbox”, “mrcnn mask”, “conv1” are initialized with
random weights and trained from scratch, as suggested in the
Wiki page3 from an implementation of Mask R-CNN.

5.2 Results
Results for the base dataset. The results in Table 1 are
measured by using the model to predict the mask on a never-
before-seen entry, and repeating this 500 times on random en-
tries from the testing dataset, then taking an average of the re-
sult. These results so far are promising and show a trend that
with more training time the model performs better in terms of
Accuracy, MIoU and mAP, metrics which were explained in
Subsection 4.4.

Table 1: Results from running the model over multiple epochs (for
each metric the possible values are between 0-100, with 100 being
the best).

Metrics \Epochs 2 epochs 5 epochs 15 epochs
Acc (10 ms) 93.33 95.04 95.64
Acc (20 ms) 94.23 95.63 96.29
Acc (50 ms) 94.76 95.27 96.51

MIoU (10 ms) 14.19 41.05 55.47
MIoU (20 ms) 20.48 47.24 58.01
MIoU (50 ms) 27.82 41.73 60.29
mAP (10 ms) 13.4 32.8 42.3
mAP (20 ms) 18.7 37.1 43.2
mAP (50 ms) 23.7 35.2 44.6

The results of training Mask R-CNN on RGB-D images
that contain event based data with time windows of 10, 20
and 50 ms are shown in Table 2, and they are presented along
with results from papers [6] and [7] to provide a better com-
parison in terms of performance expectations. Even though it
is hard to make a one-to-one comparison because of the dif-
ferent datasets that are used, similarities in terms of Accuracy
and MIoU are still important for proper reflection. It might
seem from the table that Ev-Mask-RCNN performs better
than other models, but this should be taken with a grain of
salt because the DDD17 dataset is comparatively more com-
plex than the N-MNIST dataset.

Table 2: Comparison of results from EV-Mask-RCNN with other
similar results from literature.

Model & Dataset Accuracy
10ms

MIoU
10ms

Accuracy
20ms

MIoU
20ms

Accuracy
50ms

MIoU
50ms

EV-SegNet [6]
(on DDD17) 86.46 45.85 - - 89.76 54.81

EVDistill [7]
(on DDD17) - 48.68 - - - 57.16

EV-Mask-RCNN
(on N-MNIST) 95.64 55.47 96.29 58.01 96.51 60.29

Currently the best MIoU that was achieved through this
model is 60.29%, and the best accuracy is 96.51%, both on

3Wiki page with suggestions on how to use RGB-D images in
Mask R-CNN: https://github.com/matterport/Mask RCNN/wiki#tra
ining-with-rgb-d-or-grayscale-images

https://github.com/matterport/Mask_RCNN/wiki##training-with-rgb-d-or-grayscale-images
https://github.com/matterport/Mask_RCNN/wiki##training-with-rgb-d-or-grayscale-images


50 ms time windows. Qualitative results with relatively good
predictions for the average case are shown in Fig 11 and in
Fig 14.

Figure 11: Predicted masks for one entry with a single digit.

Results for the dataset with multiple digits. A new model
was trained to predict multiple digits in the same frame, with
a small tweak to the settings shown in Subsection 5.1, having
the maximum number of predicted masks set to 4 instead of
1. The dataset itself was generated based on the single digit
dataset, using the procedure explained in Subsection 4.2. The
results from this model are calculated after training it on 15
epochs, and an average of the predictions of each frame is
taken for 500 random samples from the validation dataset.
The metrics used for this dataset are the same as the ones
used for the base dataset: Accuracy, MIoU and mAP, mainly
because we want them to be comparable with other papers in
the future. The best results for the multiple digits dataset are
Accuracy of 95.38%, MIoU of 31.70%, and mAP of 42.48%,
with qualitative results being shown in Fig 12 and Fig 15.

Figure 12: Predicted masks for one entry with multiple digits.

6 Responsible Research
It is of utmost importance to conduct research responsibly
because it builds trust in the completed work and enables for
collaboration between researchers.

Even though this research does not have any people or sen-
sitive data involved, it is still important to mention that fu-
ture research might need to consider topics such as respon-
sible machine learning. For example, a possible applica-
tion of instance segmentation with event based cameras could
be pedestrian detection, especially because during the night
these cameras might perform better. Special care must be
taken for recognizing darker colored skin tones since it might
be harder for event based cameras to register an event in
such cases. Therefore it is very important to have a balanced
dataset and do proper field testing before publicly releasing

such a model. No such testing was done in this paper because
it focuses on a more simplistic dataset.

In terms of reproducibility, the methodology, documented
code4 and pre-trained weights5 were made publicly available
and the data can be generated by making use of this code, and
the N-MNIST dataset [8]. More specifically, the methodol-
ogy is documented in Section 4 along with the concrete setup
that was used to run the experiment. Furthermore, the results
are shown in Section 5.

7 Discussion
The choice to use the N-MNIST dataset was taken early on
and it was an important one mainly because of the duration of
the project. The training time was a constraint because of a
lack of a GPU and the small size of images was a positive in
this regard. The dataset itself was very simplistic, with min-
imal noise around the digit, which was usually centered, and
mostly visible in all of the generated frames. This visibil-
ity could pose problems in a real world setting (for example
with a live-recorded dataset) and the choice of a time win-
dow, could affect how many frames contain all the required
contours for proper detection. For this project it was also very
important that the masks could be generated and placed auto-
matically. The benefit of having a single entry in a denoised
frame meant that heuristics could be applied for aligning the
masks, and the already existing MNIST dataset could be used
to create them. The results drastically increased when chang-
ing the mask placement heuristics, and, as it is now, the masks
seem to be properly placed in almost all of the frames. On a
negative note, the results should not be considered as gener-
alizable, for reasons mentioned in Subsection 7.1, mainly be-
cause the dataset is very “empty” compared to the real-world
setting, but it could be used as a baseline to compare other
methods by making use of the same dataset and masks, as
MNIST was used in the past for frame-based methods.

7.1 Comments on results
The results for the base dataset as well as the multiple digit
dataset are promising and are comparable to results from se-
mantic segmentation on different datasets, shown in Table 2.
Even though the setup of this experiment is simplistic, it is
noticeable that the model made significant improvements af-
ter training on 15 epochs, as it was shown in Table 1. From
the experiments it seems that the results are comparatively
better than the results of other papers [6], [7], but that might
be mainly because of the simplicity of the dataset that is used
in this research. The other papers use the DDD17 dataset
[11], which is not only more complex because of the size of a
frame, but also because the background contains more noise.
Therefore the results from Table 2 should not be compared di-
rectly, but rather taken as a general guideline of what results
we expected.

4Link to code on GitHub: https://github.com/ana-baltaretu/insta
nce-segmentation

5Pre-trained weights: https://github.com/ana-baltaretu/instanc
e-segmentation/tree/main/release logs

https://github.com/ana-baltaretu/instance-segmentation
https://github.com/ana-baltaretu/instance-segmentation
https://github.com/ana-baltaretu/instance-segmentation/tree/main/release_logs
https://github.com/ana-baltaretu/instance-segmentation/tree/main/release_logs


7.2 Contours or entire objects
One problem with drawing conclusions from these results is
that the dataset itself might have been too simplistic to ac-
curately measure the performance of instance segmentation.
More concretely, all of the digits are more or less contours,
so after training, the model only needs to indicate where these
contours are located. One possible point of concern is that for
time windows of 20 and 50 ms the masks themselves were
just as thick as the red pixels. For these time windows the
model got trained to determine that when there are red pixels,
the digit is more likely to be present. On the positive note, for
the 10 ms time window, the model not only recognized the red
pixels as part of the mask, but also the white pixels (where no
event got triggered) up until the blue pixels and categorized
them correctly. If the objects being detected were larger and
no events are triggered in the middle of them, this could in-
dicate that the model could still learn to detect the pixels in
between red and blue that help define the shape of the mask.
It is clear that the model is good at detecting edges as being
part of an object, but it should definitely be investigated fur-
ther to see whether it can detect entire objects with constant
color, rather than just their contours.

8 Conclusions and Future Work
In conclusion the experiment itself provided relatively good
results given that the masks themselves are not always per-
fectly placed, and it shows that instance segmentation is pos-
sible on event based data. For thin edged objects, like the
numbers, it performs well and it can be used to at least pre-
dict the contours if not the entire object.

In terms of future work, one recommendation would be to
look into generating a dataset with simplistic shapes, such as
a triangle, square, pentagon or others, and using the method
from [8] to transform it into an event-based dataset. Follow-
ing that, the contents of this paper could be directly applied
to see if a model can actually be trained to detect the masks
of entire objects or just the contours.

Another suggestion would be to either figure out a way to
automatically label, or just manually label the DDD17 dataset
such that this model could be more or less directly compared
to the results of semantic segmentation from [6] and [7].

Lastly a final recommendation would be to take a look at
direct comparisons between training on event-based data ver-
sus training on frame-based data. For example future projects
could look into comparing differences in training time, how
fast each model predicts a mask per frame and how accurate
each of them are. It would be advisable to use a more ad-
vanced dataset for this task, such that the difference in results
would be more obvious, and as a starting point, the model
used in this paper, Mask R-CNN [10], could be used directly
on either frame or event-based data.
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A Training masks

Figure 13: Masks generated for training from each time window of
10 ms, based on event location and MNIST dataset.
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B Results for singular digit

Figure 14: Qualitative results of the masks created by the trained
model, for each digit the left column shows the ground truth and
right column contains the predictions of the model, with a 10ms
time window of events used to generate a frame.

C Results for multiple digits

Figure 15: Qualitative results for multiple digits, left column being
the ground truth and right column being the prediction, trained for
15 epochs.
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