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Summary
This document explores the wave run-up loads on offshore monopile structures, particularly those expe-
rienced by the main access platforms during severe storms. Such incidents have been observed to cause
significant damage, necessitating a deeper understanding and accurate prediction of these loads. The
main objective of this research is to compare various vertical wave run-up load models, focusing on their
prediction accuracy and computational efficiency. First the wave run-up heights and wave run-up loads
of analytical models are compared to each other. These results are calculated with the maximum wave
heights and water depths on the Dogger Bank. It can be seen that the wave run-up heights and therefore
the wave run-up loads are unrealistically high. The main reason for this is that the analytical models are
used outside the boundaries where they are validated for. This leads to less reliable results. Theoretical
and numerical limitations are in this thesis to increase the reliability of the results.
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1
Introduction and Literature

Over the last decade more and more offshore wind turbines have been installed. In this period some of
them have experienced high wave run-up on the monopile [5]. During severe storms the wave run-up
becomes so high that the wave run-up hits the main access platform of the monopile. These hits could
cause major damage to the platform. Since these hits occur [5], it is necessary to better understand
under what circumstances they occur and how they can be predicted. In order to determine the vertical
wave run-up loads on the main access platforms of monopiles, the first step is to determine the wave
run-up height on the monopile. The next step is to translate these wave run-up heights into wave run-up
pressures. In this chapter an overview of the available literature on analytical models and numerical
models for the wave run-up and the resulting loads is given.

1.1. Introduction of key definitions
Three key definitions will be explained.

1. The main access platform of a monopile: refers to the platform on the monopile structure above
the sea. This platform provides access to the inside of the monopile and the turbine to perform
maintenance for example.

2. The wave run-up height on the monopile: when a wave passes through a wind farm it hits the
monopile structures. This interaction between the wave and the structure causes the water to
run-up and go around the monopile since it cannot go through. The wave run-up height is defined
as the z-location of the wave run-up with respect to the mean sea water level.

3. The wave run-up loads: when a wave has a lot of energy, the wave run-up height can become as
high as the main access platform of the monopile and hit the structure.

1.2. Literature review
The literature review is split up in three different parts. The analytical wave run-up height, the analyt-
ical wave run-up loads and the numerical part.

1.2.1. Wave theories
In this section Stokes’ wave theory and Dean’s stream-function theory are described, both theories
describe non-linear waves. Since the waves in this research are extreme and therefore close to the
breaking limit, linear wave theory is not adequate enough, see Figure 1.1.

1



1.2. Literature review 2

Figure 1.1: Graph from DNV whether when to use which wave theory. [8]

Stokes wave theory
Stokes Wave Theory, introduced by Fenton, 1988 [11], is an approach to describe nonlinear periodic
waves on the surface of an inviscid, incompressible, and irrotational fluid. The theory proceeds by
expanding the wave profile and fluid velocity potential as power series. In the theory of Stokes, the
basic equation is written as:

η(x, t) = a cos(ωt− kx) = εη1(x, t) (1.1)

where, the wave steepness is ε = ak and η1(x, t) = k−1 cos(ωt− kx). The first correction in the Stokes
theory is an extra harmonic wave, written with the wave steepness raised to the second power.

η(x, t) = εη1(x, t) + ε2η2(x, t) (1.2)

where εη2 represents the extra harmonic wave. The solution of this equation is:

η(x, t) = a cos(ωt− kx) + ka2
cosh(kd)

4 sinh3(kd)
[2 + cosh(2kd)] cos[2(ωt− kx)] (1.3)

where the first term is the linear part and the second term is the second-order Stokes correction. A
visual representation is given in Figure 1.2.
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Figure 1.2: Visual representation of Stokes wave theory [15]

This approximation can be expanded indefinitely to higher orders to get a better representation.

η = εη1 + ε2η2 + ε3η3 + ε4η4 + ε5η5 + · · · (1.4)

The equations are from the book Waves in Oceanic and Coastal Waters by Holthuijsen., 2007 [15].

Stream-function wave theory
In the stream function theory the velocity components and the surface profile are written in terms of a
series of harmonics (depending on the desired order of approximation). The nonlinear basic equations
are not solved with the velocity potential but with another function: the stream function ψ. This
stream function is described as:

∂ψ

∂z
= ux

(
=
∂ϕ

∂x

)
−∂ψ
∂x

= uz

(
=
∂ϕ

∂z

) (1.5)

If the stream function is visualised as a hill above a horizontal x, z-plane, then the particle velocities are
oriented along the contour lines of the hill, and their magnitudes are equal to the slope of the hill in the
direction normal to these contour lines. The existence of a stream function implies that the continuity
of the water mass in two dimensions is always guaranteed, because

∂ux
∂x

+
∂uz
∂z

=
∂2ψ

∂z∂x
− ∂2ψ

∂x∂z
= 0 (1.6)

The equations are from the book Waves in Oceanic and Coastal Waters by Holthuijsen., 2007 [15].

1.2.2. Analytical wave run-up height on cylinders
A considerable amount of studies have investigated the wave run-up on vertical cylinders. In this section
the developments in the analytical approach are explained.

Hallermeier, 1976 [14] proposed a formula for the prediction of wave run-up on vertical cylinders
based on the velocity stagnation head theory. The idea of this theory is that when the wave hits the
structure, the kinetic energy of the water particles at the wave crest has to be converted into potential
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energy by rising the distance u2/2g above the crest level. The crest level refers to the highest point of a
wave above the still water level, the water level serves as a reference point for measuring wave heights.
The following formula is proposed:

Ru = ηmax +
u2

2g
(1.7)

where Ru is the run-up height on the vertical cylinder [m], ηmax the maximum wave crest elevation [m],
u2 the horizontal water particle velocity [m/s] and g the gravitational acceleration [m/s2].

De Vos et al., 2007 [7] conducted small scale experiments on vertical cylinders. Using the second
order Stokes theory for the wave kinematics, the velocity stagnation head theory is adjusted with the
run-up coefficient m as proposed by Niedzwecki and Duggal, 1992 [21] to obtain the prediction formula
for the run-up caused by regular waves. The formula becomes:

Ru = ηmax +m · u
2

2g
(1.8)

where Ru is the run-up height on the vertical cylinder [m], ηmax the maximum wave crest elevation [m],
m run-up coefficient [-], u2 the water particle velocity [m/s] and g the gravitational acceleration [m/s2].
De Vos et al., 2007 [7] found that a value of m = 2.71 [-] gives a good estimation of the wave run-up
height in irregular waves.

The data from De Vos et al., 2007 [7] has been reanalyzed by Lykke Andersen et al., 2011 [20]. The
study uses the stream function theory introduced by Fenton, 1988 [11]. This research is also validated
for irregular waves. In their research they came up with the following design rules for wave run-up:

Ru,max = ηmax + 1.4 ·m · u
2
max
2g

(1.9)

where m = 4 for s0p = 0.02 and m = 3 for s0p = 0.035. This gives less scatter and on average an
increase of the value m.

Ramirez et al., 2013 [26] improved the formulations from Lykke Andersen et al., 2011 [20]. They
studied wave run-up on vertical piles by conducting large scale experiments. Only the irregular wave
from these experiments are considered for the research. The wave run-up is divided in three different
levels, all with their own formulation of m. The run-up levels are divided in the following way, these
levels are shown in figure 1.3:

• Level A: Level for green water run-up (thick layer)
• Level B: Level for thin layer of water and air mixture, water layer which is no longer attached to

the surface of the pile or high spray concentration.
• Level C: Level for maximum spray. When the spray went higher than the maximum level which

was marked on the pile, this value was estimated as good as possible.

The results of m are given per level and with a condition for the peak wave steepness:

s0p =
2πHm0

gT 2
p

(1.10)

where Hm0 is the significant wave height in the frequency domain [m], g is the gravitational acceleration
[m/s2] and Tp is the peak wave period [s]. The expressions are the following:

• Level A:
m =

{
−66.667s0p + 5.33 for s0p < 0.035

3 for s0p > 0.035
(1.11)

• Level B:
m =

{
−93.333s0p + 7.47 for s0p < 0.035

4.2 for s0p > 0.035
(1.12)

• Level C:
m =

{
−200s0p + 16 for s0p < 0.035

9 for s0p > 0.035
. (1.13)
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Figure 1.3: Different run-up levels in the study of Ramirez et al., 2013 [26]

Kazeminezhad and Etemad-Shahidi, 2015 [17] investigated the data set from experiments carried
out by Lykke Andersen, 2007 [19], De Vos et al., 2007 [7] and Ramirez et al., 2013 [26]. In their studies
they did not make use of the velocity stagnation head theory, but instead they estimated the wave
run-up height based on non-dimensional wave parameters for regular waves:

Ru

H
= 0.76

(
H

h

)0.15(
H

L0

)−0.055

for :
H

h
≤ 0.41 (1.14)

Ru

H
= 0.65

(
H

L0

)−0.055

+ 3.2× 10−3

(
H

h
− 0.41

)0.15(
H

L0

)−1.5

for :
H

h
> 0.41 (1.15)

where H is the wave height [m], h the water depth [m] and L0 the deep water wave length [m].
Bonakdar et al., 2016 [3] continued with this research and included a shallow water condition since

these were missing in the research done by Kazeminezhad and Etemad-Shahidi, 2015 [17]. Also the
relative diameter is included in the equations, D/L. This is an extra relation that is included and fitted
to the experiments for more accurate wave run-up results. Bonakdar et al., 2016 [3] only focused on
regular waves and thus disregarded previous findings on irregular waves.

Ru

H
= 0.863

(
H

h

)0.117(
h

L

)−0.206(
D

L

)0.108

for :
H

h
≤ 0.41 (1.16)

Ru

H
=0.777

(
h

L

)−0.206(
D

L

)0.108

+0.138

(
H

h
− 0.41

)0.316(
h

L

)−2.6(
D

L

)1.16

for :
H

h
> 0.41

(1.17)
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where H is the wave height [m], h the water depth [m], D the cylinder diameter [m] and L the wave
length [m].

In 2017, de Latour [6] continued research with the raw data collected during the Join Industry
Project WIFI JIP II. This is data on wave run-up height on a cylinder. During this research de Latour
continued with the approach of Bonakdar et al., 2016 [3]. They propose equations for use in irregular
waves instead of regular waves. The formulas are tested with the experiments performed during the
Joint Industry Project and show good results because they are fitted to the experiments.

Ru,max
Hmax

= 2.5

(
Hmax
h

)0.117(
h

Lmax

)−0.206(
D

Lmax

)0.108

for: H
h

≤ 0.36 (1.18)

Ru,max
Hmax

= 1.4

(
h

Lmax

)−0.206(
D

Lmax

)0.108

+ 0.93

(
Hmax
h

− 0.36

)0.316(
h

Lmax

)−2.6(
D

Lmax

)1.16

for: H
h
> 0.36

(1.19)

where Hmax is the maximum wave height [m], h the water depth [m], D the cylinder diameter [m] and
Lmax the maximum wave length [m].

Garborg et al., 2020 [12] performed a large re-analysis of the irregular waves of the small scale model
tests of Lykke Andersen et al., 2011 [20] and large-scale model tests of Ramirez et al., 2013 [26]. They
found that the wave run-up is strongly dependent on the wave non linearity. The run-up coefficients
are chosen to be constant for level A, B and C for the sake of simplicity. They are found using stream
function wave theory. For Level A: m = 1.5 , Level B: m = 3.0 and for Level C: m = 5.0.

Grue and Osyka, 2021 [13] found in their investigation that the highest run-up was achieved when
the wave breaks violently just behind the monopile. Next to that the measured run-up velocity shows
a strong nonlinear relationship with the wave slope. Breaking waves are however not considered in this
research.

Li et al., 2022 [18] investigated the wave run-up influential factors. They carried out regular wave
experiments. They defined a new form for m:

m = 0.812(A/D)−0.584(0.239ka+ 0.947) (1.20)

They found that the wave steepness and the structural parameters, ka and A/D, where k is the
wave number, a is the radius of cylinder [m], A is the wave amplitude [m] and D is the diameter of the
cylinder [m], significantly affect the wave run-up. Particularly, for the parameter A/D, the previous
formulae proposed in literature did not include its effect on the wave run-up. They improved the wave
run-up coefficient based on the velocity stagnation head theory.

1.2.3. Analytical wave run-up loads
Literature of the wave run-up loads on the main access platforms on monopiles exists, but in contrast
to the wave run-up there is far less research available. This section describes various analytical formulas
used to determine the wave run loads on a platform.

In 2007 Lykke Andersen and Brorsen, 2007 [19] have measured pressures on horizontal and conical
platforms in a small scale model for irregular waves. By comparing these results with run-up tests
performed earlier, slamming coefficients have been calculated. They observed that irregular and possibly
breaking waves cause more slamming. The first step to calculate the pressures on the horizontal platform
is to calculate the run-up velocity:

v(z) =
√
2g · (Ru − z) (1.21)

where v(z) is the run-up velocity at the vertical coordinate z [m/s], g the gravitational acceleration
[m/s2], Ru the run-up height [m] and z is the vertical coordinate with respect to the reference level
[m]. They use the results of this equation and the measured pressures on the platform to derive the
slamming coefficients. An example of these slamming coefficients can be found in figure 1.4. They are
found to be significantly larger than coefficients of regular and mainly non-breaking waves.
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In Damsgaard et al., 2007 [5] the pressure on the horizontal platform is calculated, in this calculation
the slamming coefficient Cs is included:

F

A
=

1

2
Csρ(v(z))

2 (1.22)

where ρ is the seawater density [kg/m3] and v(z) is the run-up velocity at the vertical coordinate z
[m/s]. During their research they also found that the loads on the horizontal platform are twice as high
as the loads on a conical platform with a slope of 45 degrees.

Figure 1.4: Measured pressures for the horizontal platform indicating the slamming coefficient for the maximum local
load, from Damsgaard et al., 2007 [5]

Another method to estimate the vertical wave load is developed by Abdussamie et al., 2014 [2].

Fz(t) =
π

8
ρ

Bl2[
1 +

(
l
B

)2]1/2 ẇ +
π

4
ρBl

dl

dt

1 + 0.5
(

l
B

)2[
1 +

(
l
B

)2]3/2w +0.5ρBlCDw|w|+ ρBl(η − a)(g + ẇ)
(1.23)

where the first, second and third terms represent the inertial force, the impact/slamming force and
the drag force respectively. The wave kinematics, particle velocity and acceleration in z-direction, are
denoted by w and ẇ. The parameter l denotes the horizontal wetted length of the platform, η represents
the instantaneous wave elevation, B the breadth of the deck structure, CD is the drag coefficient and ρ
is the seawater density.

The results from this equation have been compared with experiments and a CFD model. This
new equation is slightly underestimating the vertical loading but is accurate enough to use for a quick
estimation. But is not further used because it is only a platform above the water line, no wave run-up
on a cylinder is there prior to impact.

1.2.4. Numerical wave run-up
In this section the numerical approach of calculating the wave run-up on the monopile is discussed.

Bredmose and Jacobsen, 2011 [4] performed a 3-dimensional numerical investigation of wave inter-
action with a monopile and a main access platform. In their study it has been found that the lowest
platform elevation resulted in the highest forces on the platform. The results of their investigation can
be found in figure 1.5. They also mentioned that the point of wave overturning was influenced by the
grid resolution.
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Figure 1.5: Vertical forces on main access platform from Bredmose and Jacobsen, 2011 [4]

Noticing the more accurate result using non-linear theory found in the study of Lykke Andersen et
al., 2010 [20], Peng et al., 2012 [25] decided to compare a CFD model with these results. They found
that the wave run-up is strongly dependent on the wave non-linearity. Next to this they found that the
relative wave run-up is strongly dependent on the Ursell number, the following relation is found:

Ru

h
= 10.8 · γD · ln (0.27 · Ur + 1) (1.24)

where γD is a factor accounting for the effect of structure diameter on wave run-up and Ur, Ursell number
calculated as Ur = HL2

h3 , Ur depends on the wave height H [m], wave length L [m] and water depth h [m].

Pavilons et al., 2022 [24] performed a study of which the objective was to find the waves within a
sea state that lead to the largest hydrodynamic loads on a 2D representation of a main access platform.
The numerical wave tank used can be found in figure 1.6. They found that the wave with the highest
surface elevation and the largest breaking index leads to the largest hydrodynamic loads if it overturns
within a distance of approximately 1/3λp before the location of the platform. This leads to the following
wave selection range for breaking waves in OceanWave3D [10]

−2

3
λp + xB85 < xT < λp + xB85 (1.25)

with λp representing the wave length associated with the peak frequency of the spectrum, xB85 the
location of breaking onset and xT the location of the structure. They also mentioned that the surface
elevation is the best screening parameter for the maximum moment at the wave’s incipient point.

Figure 1.6: Sketch of the 2D numerical wave tank used in Pavilons et al., 2022 [24]

In OpenFOAM it is possible to measure forces on a surface, this is typically done using the forces
or forceCoeffs function object. During the simulation, OpenFOAM calculates the pressure and shear
stress distributions on these surfaces. The integral of the pressure over a surface, combined with the
surface normal directions, contributes to the net pressure force. The function object outputs force data
at specified time intervals, so it is possible to track the forces over time.

1.3. Problem description
As discussed above, literature is available for the wave run-up heights on a monopile for both analytical
and numerical methods. However, there is little literature on the loads on main access platforms that
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follow from these wave run-ups. Within the industry, the challenge lies in the multitude of methodologies
available for calculating wave run-up velocity and with that the loads, with analytical approaches.
Furthermore, the outcome differs significantly with 3D numerical methods.

Numerical models, especially in 3D, are known to be very time consuming and need a huge amount
of computational power. Therefore, early on in the design, the platform needs to be fixed in shape and
elevation. Hence, it is desirable to have a reliable relatively quick method to estimate the wave run-up
loads that could be used in earlier phases of design works.



2
Research objectives and Methodology

The objective of this research is to compare different vertical wave run-up load models. A comparison
will be made on the differences in vertical load prediction and computational time. The results of this
comparison will be used to obtain a model that can be used in the early design phase of monopiles
where flexibility in main access platform shape and elevation is needed.

2.1. Research question
How can CFD modelling in OpenFOAM be applied to determine the wave run-up loads on the main
access platform of a monopile in early design stage and how does this CFD model compare to existing
analytical models?

2.1.1. Sub-questions
The following sub-questions support the main research question and will be answered throughout this
research:

• How do the analytical wave run-up height models of Garborg et al., 2020 [12], de Latour, 2017 [6]
and Li et al., 2022 [18] compare to each other?

• How are the wave run-up heights translated into loads?
• How does a numerical model in OpenFoam [16] compare to these analytical models?
• Is it possible to make a simple model to obtain reasonable accurate predictions (within a factor 2

on the conservative side) of wave run up loads within a time span of a few days?

2.2. Methodology and plan of approach
The following steps will be taken to reach the objective of this research:

1. Select a wind farm location that will be used in this study and describe the metocean parameters.
2. How do the analytical wave run-up height models of Garborg et al., 2020 [12], de Latour, 2017 [6]

and Li et al., 2022 [18] compare to each other?
3. Calculate the wave run-up loads on the main access platform resulting from the wave run-up

heights models from Garborg et al., 2020 [12], de Latour, 2017 [6] and Li et al., 2022 [18].
4. Use OceanWave3D by Engsig-Karup et al., 2009 [10] to create the individual waves needed for the

numerical model.
5. Use the numerical model OpenFOAM to solve for the complex interaction between free surface

flows and the structure.
6. Validate the results of the created numerical model against existing experimental data.
7. Compare the results of the created model with those from literature (both analytical and numer-

ical) to obtain the optimum between, computational time and reliability.

10
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The validation of this numerical model can be done using available experiments and models.
First of all, the wave run-up height can be validated with experiments done during the Wifi JIP II.

In the experimental tests, run-up height on the monopiles were measured with wave gauges situated
around the monopiles.

Secondly, in experiments from Andersen et al., 2007 [19] the pressure on the main access platform
has been measured. Seventeen pressure sensors have been measuring the pressure at different places on
the platform in this research. For each case the wave height, peak period, water depth, wave steepness,
monopile diameter and platform height are mentioned as well.



3
Comparison analytical models

In this chapter the different analytical wave run-up height and load models are compared. First the
wave run-up height of each model on a specific location will be compared, after that the wave run-up
loads of each model on a specific location will be compared. The following analytical theories will be
compared in this study: a method developed by de Latour, 2017 [6], developed after WIFI JIP II, the
re-analysis Garborg et al., 2020 [12], the analysis done for the Dogger Bank wind farm, 2022 [9] and
the theory Li et al., 2022 [18] developed.

3.1. Wind farm
In this section the location of the reference wind farm used in this study will be discussed. After that
the metocean parameters used in this study will be explained.

3.1.1. Wind farm location
The reference site used in this study is the Dogger Bank wind farm. The seabed level within the wind
farm range between -21 and -35 m LAT.

Figure 3.1: Location of the Dogger Bank.

12
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3.1.2. Metocean parameters
The following metocean parameters data is available for each of the turbine in this location:

• Hm0,50: is the significant wave height over 50 years in the frequency domain. This is given as:
Hm0 = 4

√
m0, where m0, the zeroth moment of the variance spectrum, is obtained by integration

of the variance spectrum.
• Hmax,50: is the maximum wave height over 50 years in the time domain.
• Tp: is the peak wave period. The peak wave period corresponds with the wave period with the

highest energy and corresponds with the peak of the wave spectrum.
• h: is the water depth. Defined as the vertical distance between the sea bottom and the still water

level [m]

• D: is the diameter of the monopile [m].
• SWL: is the still water level. It is used as a reference level.

With these available parameters, all other parameters needed for the calculations can be calculated
using stream function theory. In Figure 3.2 the reference levels used in this study are drawn.

Figure 3.2: Reference levels

3.2. Wave run-up height
The formulas for the wave run-up height that will be compared can be found in table 3.1. For this
research the value m = 5 for level C as proposed by Garborg et al., 2020 [12] is neglected. They mention
that large variation is found in the maximum spray values, see figure 1.3. Another reason to not include
level C wave run-up heights is that this research focuses on high impact loads, this spray consists of
relatively small drops of water over a large area. This will not give high loads.
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Table 3.1: Formulas in the comparison

Garborg Ru = ηmax +m · u2

2g with: m = 1.5 for lvl A and m = 3.0 for lvl B

Garborg with m=3.5 Ru = ηmax +m · u2

2g with: m = 3.5

de Latour

Ru,max

Hmax
= 2.5

(
Hmax

h

)0.117 (
h

Lmax

)−0.206 (
D

Lmax

)0.108

for: H

h
≤ 0.36

Ru,max

Hmax
= 1.4

(
h

Lmax

)−0.206 (
D

Lmax

)0.108

+ 0.93

(
Hmax

h
− 0.36

)0.316 (
h

Lmax

)−2.6 (
D

Lmax

)1.16

for: H

h
> 0.36

Li Ru = ηmax +m · u2

2g with: m=0.812(A/D)−0.584(0.239ka+ 0.947)

First, the steps that are taken in the model are explained to calculate the wave run-up height:

1. In this case the input for the model is coming from the Dogger Bank [1]. The input file consists of
the 101 wind turbine location, the water depth (h) of the location and the corresponding maximum
wave height over 50 years (Hmax,50). Water depths for the Dogger Bank vary between −23.3 [m]
and −34.44 [m]. The maximum wave heights vary between 16.1 [m] and 19.3 [m].

2. Since the wave period has not been provided for each wind turbine, a study has been performed
[1] to see which period occur within the wind farm. It was found that the wave periods (TH,max)
are between 11.4 [s] and 18 [s]. Therefore in the model, for each wind turbine, the wave length
(L) is calculated for the range of wave periods. In this research the wave periods are determined
between 11.4 [s] and 18 [s] with steps of 0.1 [s]. The interval of these wave periods represents the
wave periods associated with the 50 year maximum wave height in an extreme sea state. These
associated wave periods are higher than the peak periods of the waves. These wave lengths are
calculated with formula 3.1

L =
gT 2

2π
∗ tanh(2πh

L
) (3.1)

This means an initial guess of L will be taken and an iterative process will take place to find the
solution for which L converges. These values of wave length are stored for each wave period. In
figure 3.3 the wave length, wave run-up height, surface elevation and maximum crest velocity are
plotted versus the wave period for a steady maximum wave height value.
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Figure 3.3: Wave length, maximum wave run-up height, surface elevation at the crest and maximum crest velocity vs
T - H=18.29m, h=24.95m and D=8.5m

As shown in the figure there is a linear relation between the wave period and the wave length. A
higher wave period will result in a higher wave length.
Another thing to point out is that for smaller wave periods and thus wave lengths the maximum
crest velocity is higher. And therefore results in higher wave run-up heights.

3. In the next step the following wave characteristics needed for the formulas given in table 3.1 are
calculated. The wave number (k), maximum crest velocity (umax) and maximum surface elevation
(ηmax) are calculated using Fenton’s stream wave function [11]. According to Holthuijsen [15]
steam-function theory works well for non-linear waves. It captures higher-order non-linear waves
for shallow and intermediate water depths. This means the wave characteristics will be calculated
accurately for the waves within the wind farm. DNV provided the industry with guidelines on
what stream function order to use for errors with a maximum of one percent, this can be seen
in figure 3.4. The red dot in the figure is showing an example for the following case: H = 15m,
T = 15s and h = 30m. Since this case is representative for the wind turbine locations, it can be
expected that a stream function order of 11 or higher is needed to accurately calculate the wave
characteristics.
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Figure 3.4: Applicable wave theories for different water depths [8]. The red dot represents the following wave: H=15m,
h=30m and T=15s

4. As explained in step 3 the order N of the stream function is important for accurate estimations.
The goal is to get a wave that satisfies the boundary conditions, requirements of convergence and
consistency. To ensure this correct solution for the wave is reached, the surface elevations of the
wave should not include any non-linearities, second peaks for example. The particle velocities
over depth should hardly have any difference for different stream function orders. The last check
is to check if wave length convergence is reached when increasing the stream function order.

5. When a correct stream function wave is found, the correct wave characteristics are calculated. All
these parameters are inserted in the formulas mentioned in table 3.1. The model also creates an
output file, this output file contains all information regarding each wind turbine. Each turbine
returns for each method the wave period for the highest run-up height, the order used in the
stream function and the highest wave run-up height.

For each method and turbine the highest wave run-up is plotted in the scatter plot in figure 3.5. As
discussed before four of the five are based of the same formulas but are calibrated with the value m,
and the formulas from de Latour, 2017 [6] is something different.

The first thing of notice is that the highest wave run-up heights are found in the shallower areas.
This can be explained by the effect that in shallower areas, waves tend to get steeper. And steeper
waves have been linked to higher wave run-up heights.

The second thing of notice is the lower values for the method developed by Li et al. The figure
shows that almost all values are lower than the values of Garborg level A. This means that all wave
run-up heights from Li are lower than the thick layer wave run-up (see figure 1.3). In the next section
a sensitivity analysis is performed to find the reason for this.
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Figure 3.5: Wave run-up height scatter plot for the different methods without any limits.

3.3. Sensitivity study
A sensitivity study of the value m of the method Li is performed since it is the only parameter that is
different than three of the four other methods. Instead of m being a single constant value, m depends
on wave amplitude A = H

2 , monopile diameter D, wave number k and radius a = D
2 . The theory may

not hold for the extreme wave heights that are present in the Dogger Bank. Therefore the plots have
been created, on the y-axis the m value, on the x-axis the wave height from 2m until 16m. And these
have been tested against the wave number and diameter. See figures 3.6 and 3.7

Figure 3.6: m Li vs maximum wave height for different diameters
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Figure 3.7: m Li vs maximum wave height for different wave numbers

From figure 3.6 it can be concluded that value m depends on both the wave height and the diameter
of the monopile. The figure demonstrates a clear trend where m decreases with increasing wave height,
particularly for wider structures. And for the larger wave heights the m goes under the value of one as
could be expected from figure 3.5.

From figure 3.7 it can be concluded that there is a strong inverse relationship between the wave
height and m. But that m is relatively insensitive to the wave number. This means that the wave
height is the primary factor influencing m.

3.4. Wave run-up loads
After the wave run-up heights are calculated, the related wave run-up loads can be calculated. This
done with following equations:

v(z) =
√
2g · (Ru − z) (3.2)

where v(z) is the run-up velocity at the vertical coordinate z [m/s], g the gravitational acceleration
[m/s2], Ru the run-up height [m] and z is the vertical coordinate with respect to the reference level [m].

F

A
=

1

2
Csρ(v(z))

2 (3.3)

where F
A is the load applied on the main access platform [N/m], ρ is the seawater density [kg/m3],

Cs is the slamming coefficient [-] and v(z) is the run-up velocity at the vertical coordinate z [m/s].
The wave run-up loads are calculated for highest wave run-up load for each turbine. When calculating
these load the platform is set at 5 different z heights: z = 10[m]LAT , z = 15[m]LAT , z = 20[m]LAT ,
z = 25[m]LAT and z = 30[m]LAT .

A distinction has been made between the local loads and global loads, with Cs,global = 1.5 and
Cs,local = 10. Andersen and Brorsen, 2007 [19] determined that these are conservatively calibrated
slamming coefficients for closed plate platforms.

The local wave run-up loads are defined as the pressure over an area of 0.5m2, the middle of this
area is taken 2m from the monopile edge. The global wave run-up loads are defined as the pressure
over the main access platform over an area of 160◦, where the middle is defined as the wave direction.
Illustration of both pressure can be found in figures 3.8 and 3.9.
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Figure 3.8: Illustration of how the local pressure is applied [? ]

Figure 3.9: Illustration of how the global pressure is apllied [9]

The results of all these calculations are shown in table 3.2 and summarized in figures 3.10 and 3.11.
For the simplification of the table only the three highest wave run-up heights and their loads have been
calculated. To see if the monopile location is of influence on the wave run-up height, the three highest
are documented. It is a possibility that the different methods give a different highest location. In the
velocity and loads columns five numbers are shown, these correspond with the reference levels z. The
first number corresponds with z = 30m and the last number with z = 10m. In the results produced
by the method developed by Li [18], some result are given by as ’nan’. In python this means ’not a
number’, this can be explained for Li because the wave run-up height is not high enough to give a result.
If the wave run-up height does not get to the reference height, there will be no velocity and there will
be no answer. If there is no water present at the reference height, there can be no loads.
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Figure 3.10: Wave run-up height [m] with corresponding wave height [m] and water depth [m]

Figure 3.11: Global and local loads of the highest wave run-up heights per method



3.4. Wave run-up loads 21

Table 3.2: Wave run-up height and loads

Name h [m] H [m] T [s] u [m/s] Ru max [m] z [m] Vel. in z [m/s] Global loads [kPa] Local loads [kPa]
Garborg level A

A04 24.95 18.33 11.4 17.2 33.48

30
25
20
15
10

12.9
16.26
19.04
21.47
23.64

128
204
280
355
431

857
1362
1867
2372
2878

A01 23.88 17.76 11.4 16.7 32.26

30
25
20
15
10

11.94
15.51
18.4
20.9

23.13

110
185
261
337
413

733
1238
1744
2249
2754

B01 23.3 17.36 11.4 16.3 30.88

30
25
20
15
10

10.74
14.61
17.65
20.24
22.53

89
164
240
316
392

594
1099
1604
2109
2614

Garborg level B

A04 24.95 18.33 11.4 17.2 55.63

30
25
20
15
10

24.52
26.44
28.23
29.92
31.52

464
540
615
691
767

3095
3600
4105
4610
5116

A01 23.88 17.76 11.4 16.7 53.57

30
25
20
15
10

23.68
25.66
27.51
29.24
30.87

433
508
584
660
736

2886
3392
3897
4402
4907

B01 23.3 17.36 11.4 16.3 51.11

30
25
20
15
10

22.63
24.71
26.62
28.4

30.08

395
471
547
623
698

2638
3143
3648
4154
4659

m=3.5

A04 24.95 18.33 11.4 17.2 63.02

30
25
20
15
10

27.31
29.05
30.69
32.25
33.74

576
651
727
803
879

3841
4346
4851
5356
5862

A01 23.88 17.76 11.4 16.7 60.67

30
25
20
15
10

26.46
28.25
29.94
31.53
33.05

540
616
692
768
843

3604
4109
4614
5120
5625

B01 23.3 17.36 11.4 16.3 57.86

30
25
20
15
10

25.39
27.25
29.0

30.64
32.2

497
573
649
725
801

3319
3825
4330
4835
5340

de Latour

A04 24.95 18.33 17.9 12.3 38.68

30
25
20
15
10

16.38
19.14
21.55
23.72
25.7

207
283
358
434
510

1381
1887
2392
2897
3402

A01 23.88 17.76 17.9 12.1 38.64

30
25
20
15
10

16.36
19.12
21.54
23.71
25.69

206
282
358
434
509

1378
1883
2388
2894
3399

B01 23.3 17.36 17.9 11.9 38.4

30
25
20
15
10

16.21
19.0

21.43
23.6
25.6

203
278
354
430
506

1353
1859
2364
2869
3374

Li

A04 24.95 18.33 11.4 17.2 22.25

30
25
20
15
10

nan
6.64

11.93
15.5
18.4

nan
34

109
185
261

nan
227
732

1237
1743

A01 23.88 17.76 11.4 16.7 21.65

30
25
20
15
10

nan
5.7

11.43
15.12
18.08

nan
25

100
176
252

nan
167
672

1177
1682

B01 23.3 17.36 11.4 16.3 20.95

30
25
20
15
10

nan
4.31
10.8

14.66
17.69

nan
14
90

165
241

nan
95

601
1106
1611
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3.5. First conclusion
First of all, regardless of which method is used, the same wind turbine location gives the highest wave
run-up height. Since only one method for calculating wave run-up loads is available, these turbines will
also experience the highest wave run-up loads.

Secondly, table 3.2 shows that the method from de Latour has the highest wave run-up height and
loads for T = 17.9s. While the other methods get the highest loads for T = 11.4s. The different
methods give different results and will therefore be investigated in the numerical model.

It can also be concluded that there is a significant variation in wave run-up heights and therefore
a large variation in wave run-up loads. This makes it clear that other methods need to be considered
during this process as well to make a better estimation.

The high wave run-up heights and loads are mainly caused by the high particle velocity. This value
is squared in the run-up calculation, as seen in table 3.1.

As mentioned before, the wave that gives highest run-up height is the same for all methods. Since
this wave gives high values, a closer look is give to the wave. In figures 3.12 and 3.13 the particle velocity
and surface elevation of this wave is plotted for all orders N of the stream function. For this model,
Fenton’s stream function is used [11]. Higher orders of the stream function are not available since the
wave theory does not give solutions for them. As can be seen in the figures the solutions vary a lot
and do not give a credible solution. The wave is also plotted (blue dot with number 1) in the figure
provided by the DNV guidelines, figure 3.14. It can be seen than the wave has a higher H/h ratio that
the wave breaking line. Meaning that for this wave, the wave theory does not apply.

Therefore, in the next section possible limitations of the wave run-up height models are discussed
to see how to deal with waves like this.

Figure 3.12: Particle velocity for different stream function orders, H=18.3m, T=11.4s and h=24.95m.
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Figure 3.13: Surface elevation for different stream function orders, H=18.3m, T=11.4s and h=24.95m.

Figure 3.14: DNV guideline, blue dot: H=18.3m, T=11.4s and h=24.95m



4
Limitations and reliability of the analytical

models

4.1. Limitations of the wave run-up height models
In this section the basic principles and limitations of the models used in this chapter are discussed.

4.1.1. Wave energy
The presence of a wave at the water surface implies that water particles were moved from their position
at rest to a new position. This shift calls for work to move the particles against gravity, in other words it
requires potential energy. Besides, the water particles in the wave also move, this movement represents
the kinetic energy. To estimate the potential energy, consider a slice of water with thickness ∆z in a
column with horizontal surface area ∆x ∆y (see figure 4.1).

Figure 4.1: The column in the harmonic wave that is used in deriving the expressions for wave energy. [15]

The wave-induced potential energy in the entire water column, from bottom to surface, is equal to
the potential energy in the presence of the wave minus the potential energy in absence of the wave [15].
When divided by the horizontal surface area of the column and time-averaged over one period, this
gives:

Epotential =

∫ η

−d
ρgz dz −

∫ 0

−d

ρgz dz =
∫ η

0

ρgz dz (4.1)

where ρ represents the water density, g the gravitational acceleration and the overbar the time-averaging.
For a wave with amplitude a, the outcome of the integral is as follows:

24



4.1. Limitations of the wave run-up height models 25

Epotential =
1

2
ρgη2 =

1

4
ρga2 (4.2)

The kinetic energy in the same slice of water as above is 1
2ρ∆x∆yu

2. This gives the following
time-averaged kinetic energy in the entire column:

Ekinetic =

∫ η

−d

1

2
ρu2 dz (4.3)

The result of this integral using linear theory is:

Ekinetic =
1

4
ρga2 (4.4)

The total time-average wave-induce energy density E = Epotential + Ekinetic is then:

E =
1

2
ρga2 (4.5)

4.1.2. Origin formula wave run-up height
Most of the analytical models used in this research use the following equation to calculate the wave
run-up height on a cylinder:

Ru = ηmax +m · u
2

2g
(4.6)

The first notable experimental work on wave run-up on cylinders was done by Hallermeier, 1976 [14].
In his study on thin circular vertical piles (with diameter 2a very much less than a wavelength, L), he
suggested that the wave run-up height can be expressed by the velocity head, u2

2g . The assumption is
that the water particles are forced to convert their kinetic energy into potential energy, the derivation
will be given below and is visualized in figure 4.2.

Ekin = Epot (4.7)

1

2
ρu2 = ρg∆z (4.8)

This results in the following change in height of the water particle:

∆z =
u2

2g
(4.9)

Figure 4.2: Visualization derivation run-up height on a cylinder

This total wave run-up height is the combination of surface elevation and change in height of the
water particle:

Ru = ηmax +
u2

2g
(4.10)

where Ru is the run-up height on the vertical cylinder [m], ηmax the maximum wave crest elevation
[m], u2 the horizontal water particle velocity [m/s] and g the gravitational acceleration [m/s2]. In
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1992 Niedzwecki and Duggal [21] performed small scale experiment to investigate the wave run-up on
cylinders and found that the wave run-up height in formula 4.10 underestimates the wave run-up height.
And therefore added the wave run-up coefficient m, as in formula 4.6. This underestimation of the wave
run-up height could be caused by the fact that the amount of energy in the wave is not well represented
in this velocity head theory.

4.1.3. Wave against a wall
In this research the wave run-up height on a cylinder is an important parameter. One could argue
that the wave run-up height against a cylinder cannot be higher than the wave run-up on a wall since
water particles and therefore energy is lost around the cylinder. In figure 4.3 the result of a standing
wave is shown. When a regular wave component meets a vertical wall perpendicular to its propagation
direction, it is reflected and sent back where it came from with an identical amplitude and speed. The
incoming and reflected wave interfere and superimpose. At that point the wave seems to be stationary
in space with twice the amplitude of the incoming wave. In a case of 100% reflection ai = ar, the
surface elevation is as follows:

Figure 4.3: A standing wave due to the full reflection of an incident wave against a vertical wall. The short straight
arrows are the trajectories of the water particles as they undergo their motion in one wave period. [15]

η(x, t) = 2ai cos(kx) sin(ωt) (4.11)

The surface elevation of this standing wave fluctuates as a sine wave in time. The maximum run-up on
a wall at x = 0 can therefore be written as:

Ru = 2ai (4.12)

Ning et al., 2017 [22] found that the peak free surface elevation on a wall is approximately 2.6 times
the incoming wave amplitude.

Ru = 2.6ai (4.13)

This exceeds the result of the perfect reflection discussed above. The possible reason for this is the
non-linear interaction of the incoming wave groups with the vertical wall. This approximation for the
maximum wave run-up on a wall will be considered in this research.

In the EurOtop manual [27] in section 5.2.4, it is stated that the wave run-up limit for a vertical
wall is the following:

Ru = 1.8Hm0 (4.14)

The EurOtop manual is a guideline on the prediction of wave overtopping for coastal structures. There
is also a section for wave run-up on vertical walls in intermediate water.

All 3 of these limits will be presented later in the study to see if they can be implemented as a high
limit for wave run-up on monopiles.
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4.1.4. Limitations of the experiments used in the development of the different
wave run-up equations

In this section the limitations of the experiments used in the development of the different wave run-up
equations as given in Table 3.1 are explained. When developing these equations, the researchers relied
on experiments performed in small- and large-scale wave tanks. Therefore it is useful to look into the
boundaries of these experiments. Then it is known when it is possible to use them and when they are
outside the boundaries of the experiments. A common quick estimation of the steepness of the wave
is the dimensionless parameter H/h. These values of the methods used in this research are shown in
table 4.1.

Table 4.1 shows that the high limit in which the methods have been tested are: 0.37, 0.46 and
0.4. Garborg et al., 2020 [12] used the experiments performed by Andersen et al., 2011 [20]. In their
experiments, they tried to make waves with a H/h ratio higher than 0.46, but did not succeed. It was
impossible for them to generate waves with a ratio of 0.5 because of the flat bottom configuration. This
was due to waves breaking just in front of the wave paddle. Since the waves in the wind farm analyzed
in this research are also on a relatively flat bottom, this H/h ratio might be something to keep in mind
as a potential limit of the waves analyzed.

Table 4.1: H/h values of the different methods

H/h Remark
Garborg 0.35-0.46 Tried for higher wave heights, but waves would break immediately.
Garborg with m=3.5 0.35-0.46
de Latour 0.27-0.37
Li 0.23-0.40

4.1.5. Lowering the wave height to reach wave length convergence
Another method to make sure the waves are in the range of the stream function, is to lower the wave
height until wave length convergence is reached for the higher orders of the stream function. The goals
of this wave length convergence is to make sure that parameters, as particle velocity of the wave over
depth and the surface elevation of the wave do not vary when using different stream function orders.

4.2. Wave run-up heights and loads with limits
In this section two different methods are discussed to get more realistic wave run-up height results and
to eliminate unrealistic waves. The first one is: implementing the H/h limit from the experiments. The
second one is: lowering the wave height until wave length convergence in the higher orders of the stream
function is reached.

4.2.1. Implementing an H/h limit
In this section a fixed H/h limit is implemented, this H/h is 0.46 and is the high limit of the experiments
from Garborg et al., 2019 [12]. All wave heights in this section are lowered since the water depth per
location is fixed and the H/h is fixed as well. In figure 4.4 the wave run-up heights are plotted. The
figure shows that for all methods the wave run-up height declines more or less linear for a declining
water depth. A difference with the method without limit is that the method of de Latour now becomes
the method with the highest wave run-up. A possible explanation for this is that the particle velocity
of the wave is not present in the equations, as opposed to the other methods where it is dominant. It
is also worth pointing out that with this method the monopile locations with larger water depth give
the highest wave run-ups. In the method without this limit it was the locations with the smaller water
depths where the highest run-ups where located.
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Figure 4.4: Wave run-up heights with H/h limit

In figure 4.5 the location in the DNV guideline figure of the three waves that gives the highest wave
run-up are shown. It can be seen in the figure that the waves with this limit are not over, on or close
to the boundary of the stream function theory anymore. Due to the fixed H/h limit and the waves
having the same wave period, they are all three almost on the same location. The waves within this
limit are not close to the theoretical limit of the theory but are on the limit of the small- and large-scale
experiments conducted.

Figure 4.5: Location of the 3 highest wave run-up location from table 4.1 in the DNV guideline. The 3 dots are on top
each other because they have same location.
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In table 4.2 all relevant information can be found of the monopile locations with the highest run-up
for each method. In the last three columns the information refers to the following locations: z heights:
z = 10[m]LAT , z = 15[m]LAT , z = 20[m]LAT , z = 25[m]LAT and z = 30[m]LAT . The particle
velocities of the locations with the highest wave run-up is a lot lower than in the method without limit.
Due to this the wave run-up heights are lower. From this also follows that for the for the higher reference
locations no answer is found.

In figure 4.6 the wave run-up height for each method with corresponding wave height and water
depth can be found. It can be seen that the highest wave run-up is now for the locations with the
greatest water depth.

Figure 4.6: Wave run-up height [m] for H/h =0.46 with corresponding wave height [m] and water depth [m]
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Table 4.2: Wave run-up height and loads with H/h limit, three highest wave run-up results per method from Figure 4.4

Name h [m] H [m] T [s] u [m/s] Ru max [m] z [m] Vel. in z [m/s] Global loads [kPa] Local loads [kPa]
Garborg level A

A10 34.44 15.84 11.40 8.31 13.06

30
25
20
15
10

nan
nan
nan
nan
7.74

nan
nan
nan
nan

46

nan
nan
nan
nan
308

H15 34.15 15.71 11.40 8.25 12.89

30
25
20
15
10

nan
nan
nan
nan
7.53

nan
nan
nan
nan

43

nan
nan
nan
nan
292

A08 33.89 15.59 11.40 8.19 12.75

30
25
20
15
10

nan
nan
nan
nan
7.34

nan
nan
nan
nan

41

nan
nan
nan
nan
277

Garborg level B

A10 34.44 15.84 11.40 8.31 18.33

30
25
20
15
10

nan
nan
nan
8.09

12.79

nan
nan
nan

50
126

nan
nan
nan
336
842

H15 34.15 15.71 11.40 8.25 18.09

30
25
20
15
10

nan
nan
nan
7.79

12.60

nan
nan
nan

46
122

nan
nan
nan
312
817

A08 33.89 15.59 11.40 8.19 17.88

30
25
20
15
10

nan
nan
nan
7.52

12.43

nan
nan
nan

43
119

nan
nan
nan
290
796

m=3.5

A10 34.44 15.84 11.40 8.31 20.09

30
25
20
15
10

nan
nan
1.36

10.00
14.07

nan
nan

1
77

152

nan
nan

9
514

1019

H15 34.15 15.71 11.40 8.25 19.83

30
25
20
15
10

nan
nan
nan
9.73

13.89

nan
nan
nan

73
148

nan
nan
nan
487
992

A08 33.89 15.59 11.40 8.19 19.59

30
25
20
15
10

nan
nan
nan
9.49

13.72

nan
nan
nan

69
145

nan
nan
nan
463
969

de Latour

A10 34.44 15.84 11.40 8.31 20.23

30
25
20
15
10

nan
nan
1.43

10.08
14.19

nan
nan

2
79

154

nan
nan

10
523

1035

H15 34.15 15.71 11.40 8.25 19.98

30
25
20
15
10

nan
nan
nan
9.81

14.02

nan
nan
nan

75
150

nan
nan
nan
500

1002

A08 33.89 15.59 11.40 8.19 19.75

30
25
20
15
10

nan
nan
nan
9.56

13.85

nan
nan
nan

71
147

nan
nan
nan
474
978

Li

A10 34.44 15.84 11.40 8.31 20.92

30
25
20
15
10

nan
nan
2.03

10.46
14.77

nan
nan

4
85

163

nan
nan

19
563

1106

H15 34.15 15.71 11.40 8.25 20.64

30
25
20
15
10

nan
nan
nan

10.24
14.59

nan
nan
nan

80
159

nan
nan
nan
530

1077

A08 33.89 15.59 11.40 8.19 20.37

30
25
20
15
10

nan
nan
nan
9.97

14.41

nan
nan
nan

76
156

nan
nan
nan
500

1048
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4.2.2. Lowering the wave height to reach wave length convergence
In this section another limit is used to search for waves within the boundaries of the stream wave function
and with wave length convergence over the stream function orders. To ensure this correct solution for
the wave is reached, the surface elevations of the wave should not include any non-linearities, second
peaks for example. The particle velocities over depth should hardly have any difference for different
stream function orders. When this goal is reached, the goal of a mathematically sound wave solution
is achieved, and we do not have a numerical solution which cannot exist. For this section the three
highest wave run-up locations for the method without limit is used (table 3.2).

First the wave height is lowered from 18.4m to H = 16.5m, while the water depth stays 24.95m
and the wave period stays 11.4s. At this wave height we do get solutions for all orders of the stream
function. The DNV guideline, wave length over N, particle velocity and surface elevation are plotted
below. The DNV guideline, figure 4.11 shows that the wave is just within the theoretical boundary of
the stream function. But the other three figures show that the wave does not get consistent results for
all the order of the stream function. This means this wave cannot be used and the wave height is still
too high.

Figure 4.7: The blue dot represents the lowered wave
height: H=16.5m in the DNV guideline

Figure 4.8: H=16.5m wavelength over N

Figure 4.9: H=16.5m, surface elevation Figure 4.10: H=16.5m, particle velocity
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The process of lowering the wave height is repeated until a result with wave length convergence is
achieved. In this case the wave height had to be lowered until H = 15.9m. The results are shown below:

Figure 4.11: H=15.9m DNV guideline Figure 4.12: H=15.9m wavelength over N

Figure 4.13: H=15.9m, surface elevation Figure 4.14: H=15.9m, particle velocity

For the wave with the highest wave run-up the wave height had to be lowered from 18.5m to 15.9m
for this limit. The process is repeated for the other two waves as well. The results of this limit can be
found in table 4.3. The wave run-up height with their corresponding wave height and water depth is
shown in figure 4.15. The wave run-up height results are higher than for the H/h over limit but lower
than for the one without limit.
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Figure 4.15: Wave run-up height [m] for wave length convergence limit with corresponding wave height [m] and water
depth [m]
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Table 4.3: Wave run-up height and loads with wave length convergence limit

Name h [m] H [m] T [s] u [m/s] Ru max [m] z [m] Vel. in z [m/s] Global loads [kPa] Local loads [kPa]
Garborg level A

A04 24.95 15.90 11.4 12.7 19.56

30
25
20
15
10

nan
nan
nan
9.46

13.69

nan
nan
nan

69
144

nan
nan
nan
460
965

A01 23.88 14.90 11.4 12.2 17.13

30
25
20
15
10

nan
nan
nan
6.47

11.83

nan
nan
nan

32
108

nan
nan
nan
215
720

B01 23.30 14.60 11.4 12.1 16.74

30
25
20
15
10

nan
nan
nan
5.84

11.50

nan
nan
nan

26
102

nan
nan
nan
175
680

Garborg level B

A04 24.95 15.90 11.4 12.7 30.20

30
25
20
15
10

1.97
10.10
14.15
17.27
19.91

3
78

154
230
306

20
525

1030
1535
2040

A01 23.88 14.90 11.4 12.2 26.13

30
25
20
15
10

nan
4.71

10.97
14.78
17.79

nan
17
92

168
244

nan
114
619

1124
1629

B01 23.30 14.60 11.4 12.1 25.53

30
25
20
15
10

nan
3.21

10.41
14.37
17.45

nan
7

83
159
235

nan
53

558
1063
1568

m=3.5

A04 24.95 15.90 11.4 12.7 33.74

30
25
20
15
10

8.57
13.10
16.42
19.18
21.58

56
132
208
284
359

378
883

1388
1894
2399

A01 23.88 14.90 11.4 12.2 29.13

30
25
20
15
10

nan
9.00

13.38
16.65
19.37

nan
62

138
214
289

nan
416
922

1427
1932

B01 23.30 14.60 11.4 12.1 28.46

30
25
20
15
10

nan
8.23

12.88
16.25
19.03

nan
52

128
203
279

nan
349
854

1359
1864

de Latour

A04 24.95 15.90 17.9 10.7 32.75

30
25
20
15
10

7.35
12.33
15.82
18.66
21.13

41
117
193
269
344

278
783

1288
1793
2298

A01 23.88 14.90 17.9 10.0 31.40

30
25
20
15
10

5.24
11.20
14.95
17.94
20.49

21
96

172
248
324

141
646

1151
1656
2162

B01 23.30 14.60 17.9 9.9 31.27

30
25
20
15
10

4.99
11.09
14.87
17.87
20.43

19
95

170
246
322

128
633

1138
1643
2149

Li

A04 24.95 15.90 11.4 12.7 17.12

30
25
20
15
10

nan
nan
nan
6.44

11.82

nan
nan
nan

32
107

nan
nan
nan
213
718

A01 23.88 14.90 11.4 12.2 15.65

30
25
20
15
10

nan
nan
nan
3.56

10.53

nan
nan
nan

9
85

nan
nan
nan

65
570

B01 23.30 14.60 11.4 12.1 15.40

30
25
20
15
10

nan
nan
nan
2.81
10.3

nan
nan
nan

6
81

nan
nan
nan

40
545
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4.3. Reliability
In this chapter it can be seen that the reliability of the analytical models can be come an issue when
the H/h ratio of the waves becomes extreme. When working with extreme waves it is important to take
a closer look at the limits of the wave run-up models. The extreme waves in this research have H/h
ratios beyond the scope of the experiments used to validate the wave run-up models with. Therefore,
there is need for limits to make sure the wave run-up results get more reliable.

The H/h = 0.46 limit of the experiments of Garborg et al., 2020 [12] is plotted in figure 4.16. The
location of the highest wave is shown in the graph as the dot. It is found that none of the Dogger Bank
locations are on or within the H/h = 0.46 limit of the experiments performed. This highest location has
a H/h ratio of 0.74 and the location with the lowest H/h ratio is 0.57. This means all of the locations
are calculated outside of the range where these models are calibrated with, and the reliability of the
results goes down.

Figure 4.16: DNV guideline [8] with H/h limit of experiments used in Garborg et al., 2020 [12]

In chapter 6 a 2-dimensional numerical is introduced to investigate if this can be used as such a
limit.

4.4. Conclusion
In this chapter the wave run-up heights and loads are calculated without a limit, a limit based on small-
and large-scale experiments and a limit based on wave length convergence to get more realistic waves
within the stream function theory. A summary of the wave run-up height results is given in table ??.
The following conclusions can be drawn

• When calculating with wave heights close to breaking wave heights, it must be checked if the
waves are within the limits of the wave theory and if the solutions are stable.
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• It has been observed that the application of the wave run-up height models can lead to very high
wave run-up heights. Application of stream function theory, without checking for wave length
convergence, can results in high orbital velocities and therefore high wave run-up heights. This
could be caused because the models are used outside the boundaries where they validated against.
They are also beyond the theoretical limit of a standing wave against a wall, which in the case of
a wave hitting a cylinder is considered an upper bound.

• The equations that use the wave run-up formulation based on the stagnation head theory are
heavily influenced by the particle velocity of the wave. This is the main parameter that drives
the wave run-up height since it is squared in the equation.

• The spread in wave run-up height over the model without limit and the model with the two limits
is less for the de Latour and Li equations than it is for the other ones.

• When working with steep waves that are close to breaking it is possible that these do not perform
very well. The steepness of the waves where the equations are validated with is up to a H/h ratio
of 0.46. It was for the researchers not possible to create steeper waves for flat seabeds. This
means that the wave run-up heights that are calculated are outside the range where the empirical
relations are derived for, and therefore the reliability of the results can be questioned.

• In figure 4.16 the line with the H/h limit is drawn and is concluded that without any limit all
Dogger Bank locations are above this line and are used outside the scope of the models. Therefore
the results are less reliable without any limits.

• The highest three methods in the wave convergence limit have wave run-up heights that are
approximately 2 times the maximum wave height. These wave run-up heights are still higher
than the theoretical wave run-up on a wall of 2.6ai, which is considered not possible.

• It can be observed that the method of Li gives the lowest wave run-up height. The difference
between Li and the other method is that Li uses regular wave experiments to calibrate their
results while Garborg and de Latour use irregular wave experiments. This could explain the
difference between the methods since regular wave do not account for the nonlinearities that
occur in irregular wave fields and could therefore underestimate the wave run-up height.

Figure 4.17: Summary of the wave run-up height of the different methods and limits for the Dogger Bank.
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Table 4.4: Summary of the wave run-up height of the different methods and limits for the Dogger Bank

Name Ru max [m] Ru max (L - limit) [m] Ru max (H/h - limit) [m] Ru max wall (2.6ai) [m]
A04 33.48 19.56 13.06 39.18

Garborg level A A01 32.26 17.13 12.89 37.83
B01 30.88 16.74 12.75 36.79

A04 55.63 30.2 18.33 39.18
Garborg level B A01 53.57 26.13 18.09 37.83

B01 51.11 25.53 17.88 36.79

A04 63.02 33.74 20.09 39.18
Garborg with m=3.5 A01 60.67 29.13 19.83 37.83

B01 57.86 28.46 19.59 36.79

A04 38.68 32.75 26.49 39.18
de Latour A01 38.64 31.4 26.35 37.83

B01 38.4 31.27 26.22 36.79

A04 22.25 17.12 13.23 39.18
Li A01 21.65 15.65 13.14 37.83

B01 20.95 15.4 13.06 36.79



5
Connection between 2D and 3D wave run-up
This chapter investigates whether a relationship can be found to link 2D and 3D wave run-up heights.
The link would be a way to compare the results of the analytical models validated with 3D experiments
with the 2D numerical model discussed in the next chapter.

5.1. Theoretical formulas
The linear diffraction theory allows calculation of the wave field around a body of arbitrary shape.
The solution for a cylinder is shown in equation 5.1. The wave run-up at chosen angle (Ru(θ) is the
maximum value of the surface elevation η.

η

H
= Re

[[ ∞∑
m=0

iβm cos(mθ)
πkaH

(1)′
m (ka)

]
· e−iωt

]
(5.1)

where H(1)′

m is a Hankel function of the first kind and
βm = 1, m = 0
βm = 2(−1)mim, m > 0
k = 2π/L, wave number
and with the following reference levels:

Figure 5.1: Wave diffraction around a cylinder.

It has been tried to extract analytical solutions out of equation 5.1, but it was not possible to
generate run-up values.
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As no analytical solution for the maximum value of the expression for η exists, an approximation is
used [7].

Ru
ηmax

=

[
1 +

(
2πD

L

)2
]1/2

(5.2)

where ηmax is the maximum surface elevation [m], D the diameter of the cylinder [m] and L the wave
length [m].

After investigating it seems that these are not equations for wave run-up height but this equation
describes the free surface around a cylinder.

5.2. Conclusion
There are at this moment no analytical models to compare 2D and 3D wave run-up results. This could
be for further research.



6
2D numerical model

In this chapter, the theoretical formulations of the two numerical models are explained; after this,
the difference between the use of 2-dimensional vs. a 3-dimensional model is discussed. Then, the
2-dimensional model is explained, and the results from this model are compared to the analytical wave
run-up formulations. The goal is to gain insight into whether a relatively quick numerical model can
help to predict the wave run-up height on monopile more accurately.

6.1. Theoretical formulation of the numerical model
In this section, some theoretical background will be provided on the two numerical models used to solve
the problem. The first is OceanWave3D, developed by Engsig-Karup et al., 2009 [10]. The second is
waves2Foam from Jacobsen et al., 2012 [16]. OceanWave3D is a fully non-linear potential flow solver
using a flexible order finite difference method. Waves2Foam is a package for introducing and sampling
free surface waves in the open source CFD toolbox OpenFOAM. Then these two are linked to each
other as described in Paulsen et al., 2014 [23]. The final numerical solver is shown in Figure 6.1

Figure 6.1: Visualization of the coupled numerical model.
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6.1.1. OceanWave3D
The numerical solver OceanWave3D is capable of propagating fully nonlinear 3D waves up to the point
of breaking. The solver uses a Cartesian coordinate system with the xy-plane located at the still water
level and the z-axis pointed upwards. In this study, the solver is used for 2D wave propagation. In the
y-direction of the grid a only one cell will be used, making it a 2D problem.

It is assumed that the fluid is inviscid and the flow is irrotational. Assuming 2D the velocity potential
relates to the fluid velocities in the following way

u = ∇ · ϕ (6.1)

with ϕ being the velocity potential, the velocity vector u and the nabla operator ∇ relate to the
horizontal and vertical fluid velocities the following way, Pavilons et al., 2022 [24]

u = (ux, uz) (6.2)

∇ =

(
∂

∂x
,
∂

∂z

)
(6.3)

The evolution of the free surface conditions, η, is governed by the kinematic and dynamic free surface
conditions. The kinematic free surface condition is described as

∂η

∂t
= −∂η

∂x

∂ϕ̃

∂x
+
∂ϕ̃

∂z

(
1 +

(
∂η

∂x

)2
)

(6.4)

η being the free surface elevation and t the time. The velocity potential at the free surface is described
with

ϕ̃ = ϕ
∣∣
z=η

(6.5)

The dynamic free surface condition is given as (Paulsen et al., 2014 [23])

∂ϕ̃

∂t
= −gη − 1

2

(∂ϕ̃
∂x

)2

−

(
∂ϕ̃

∂z

)2(
1 +

(
∂η

∂x

)2
) (6.6)

with g the gravitational acceleration.
The full mathematical framework can be found in Engsig-Karup et al., 2009 [10].

6.1.2. Waves2Foam
The wave structure interaction analysis is performed in the OpenFOAM domain with the waves2Foam
[16] toolbox.

The governing equations for the combined flow of air and water are given by the Reynolds averaged
Navier-Stokes equations

∂ρu
∂t

+∇ ·
[
ρuuT

]
=−∇p∗ − g · x∇ρ +∇ · [µ∇u+ ρτ ] + σTκγ∇γ (6.7)

coupled with the continuity equation for in-compressible flows

∇ · u = 0 (6.8)

Here u = (u, v, w) is the velocity vector field in Cartesian coordinates, p∗ is the pressure in excess of
the hydrostatic, ρ is the density, g is the gravitational acceleration and µ is the dynamic molecular
viscosity.

Since the analysis is performed in 2D instead of 3D, the y-directions are neglected and equation 6.7
becomes

∂ρu
∂t

+∇ · (ρu)uT = ∇p∗ − (g · x)∇ρ (6.9)

u and x are the fluid velocity and position vectors.
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The full mathematical description can be found in Jacobsen et al., 2012 [16]

One of the most commonly used ways to capture free-surface flow in OpenFOAM is via the volume
of Fluid (VOF) approach. This tracks the interface by solving for a phase friction field α. Jacobsen et
al. 2012 [16] implemented this VOF method in their waves2foam solver.

∂α

∂t
+∇ · uα+∇ · urα(1− α) = 0 (6.10)

Where ur is a relative velocity. The fluids are tracked by a scalar field α. α is 0 for air and 1 for water,
and any intermediate value is a mixture of the two fluids.

6.2. Shortcomings 2D numerical model
The goal of this research is to investigate whether a simple and time-efficient numerical model can be
used to calculate wave run-up height and loads. This means a 2-dimensional model needs to be used
because a 3-dimensional model is not time efficient, the calculations time will take 2-3 weeks and is
therefore out of the question. A 2-dimensional model, however, comes with some drawbacks.

In table 6.1 a summary of the differences between a 2-dimensional and 3-dimensional numerical is
provided.

Table 6.1: Comparison of a 2D vs a 3D numerical model

Aspect 2D model 3D model
Computational cost Approx. 3 hours 2/3 weeks
Structure (Too) simple, no possibility for water to flow around. Realistic but complex
Wave propagation One direction only Multidirectional is a possibility (not necessary in this case)
Wave run-up loads Possible overestimation due to water not being able to leave More accurate analysis of the loads
Usage Initial design phase Final design phase

A 2D model of a monopile means that it becomes a model that calculates waves against a wall since
no water can go through because of the lack of a third dimension. It is assumed in this study that wave
run-up on monopile can be never be higher than wave run-up on a monopile. The reasoning behind
this is that a monopile is 3D structure, this means that when there is wave run-up not all wave energy
will go in vertical direction. Energy will also spread around the structure in horizontal direction. If we
compare this with a wall, there will be less wave energy available to go in the vertical direction. This
will lead to less wave run-up. Since it is theoretically impossible for the wave run-up on a monopile to
be higher than on a wall, the 2D numerical model (waves against a wall) could be used as an upper
bound limit for wave run-up heights on monopiles. Together with the relatively fast computation time,
it might be usefull in early design of a monopiles. For example when determining the height of the main
access platform.

6.3. Explanation of the models
6.3.1. Oceanwave3D
Oceanwave3D has a GUI (Graphical User Interface) where the user can build the model. This to
consider are time of the simulation, the time step, the geometry of the domain, the resolution of this
domain, stream function input parameters, wave generation and absorption zones. With this input, a
input file is created for the simulation in OpenFOAM. This file together with coupling as described in
Paulsen et al., 2014 [23] gives the wavefield input of the OpenFOAM simulation.

Due to this coupling it is possible to have the waves running for some time before starting the
simulation in OpenFOAM. This means it is possible to get rid of the starting effects of the waves, the
waves not being fully developed for example.

6.3.2. OpenFOAM
Within the Oceanwave3D domain, the OpenFOAM domain is created. This is where the actual simula-
tion will take place. For this research a wave flume is created. This wave flume consists of a grid. This
grid consists of a number of cells in the x direction and a number of cells in the y direction. Since the
problem in this research is 2-dimensional, the number of cells in the z direction is set to 1 cell.
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In figure 6.2 a wave flume can be seen, the water is visualized in red and air in blue. OpenFOAM
water and air are treated as two different phases with separate densities. The visualization is a repre-
sentation of the solved cells by the VOF method and either have value of 1 for water, 0 for air. As
discussed in chapter 7.1.2.

An example of these cells can be seen in figure 6.3, and the 2D application in figure 6.4.

Figure 6.2: Wave flume in OpenFOAM, horizontal and vertical axis are in meters

Figure 6.3: Wave flume grid example

Figure 6.4: Out of plane view of the wave flume, 1 cell in this direction

6.4. Validation of the 2D numerical model
6.4.1. Wave validation
The first step of running the model is to check the wave in the numerical model with the theoretical
stream function wave.

In OceanWave3D a regular wave field will be created using non-linear stream function theory. A
maximum wave height H = Hmax[m], maximum wave period T = Thmax[s] and water depth h[m]
are inputted. The length of the wave generation zone is chosen to be approximately 1.5 times the
corresponding wave length 1.5L.

In OpenFOAM it is possible to place wave gauges that track the surface elevation of the water. These
wave gauges are used to plot the surface elevation of the model against the theoretical stream function
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waves. At first a smaller wave flume has been investigated to see if the coupling between OceanWave3D
and the OpenFOAM domain was done correctly. This smaller flume has a lower computation time and
therefore is used in the beginning. The following wave input parameters are used: H = 0.972m, h = 4m
and T = 3.76s. In figure 6.5 a visualization of the waves in the OpenFOAM domain can be seen.

Figure 6.5: Visualization of the wave in the OpenFOAM domain

After this, the surface elevation of the wave gauge is plotted against the theoretical surface elevation
of a stream function wave. In figure 6.6 the need for a later start can be seen, the waves need to develop
first. The waves, especially from t = 40s show good agreement with the theoretical stream function
wave. The order N of the stream function used is 32.

Figure 6.6: Comparison of theoretical and measured surface elevations

The next step is to go to a larger wave flume, the wave input parameters are the following: H = 13m,
h = 25m and T = 13s.

In figure 6.7 a snapshot of the waves in the OpenFOAM simulation can be seen. In the beginning
of the wave flume the wave is still in the coupling part, while later in the wave flume the wave is in a
normal shape. At the end of the wave flume the wave absorber is also visible.
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Figure 6.7: Visualization of the large wave flume with H=13m waves.

In figure 6.8 a comparison of the surface elevation at the location the the wave gauge, x = 480m
is shown. At first, the wave is off, probably due to starting effects. But after t = 100s the waves are
resembling the theoretical wave of the stream function. This figure can be used to choose the starting
and end time of the simulation later when the wall is present in the wave flume. Only one wave from
trough to trough is needed for such a simulation to measure the wave run-up height on a wall. After
this, reflections from the wall will become significant, and a realistic wave run-up height cannot be
measured.

Figure 6.8: Theoretical surface elevation vs simulation H=13m.

6.4.2. Wave run-up height results
First it is investigated if the numerical model performs within range of the theoretical wave run-up limit
of a wave against a wall. After this the results of the 2D numerical model will be discussed. The analyt-
ical wave run-up models are derived from 3D experiments and can therefore not be compared directly
with the wave run-up results from the 2D numerical model. The numerical, however, can provide an
upper limit and provide insight into whether the analytical models can be used and whether they are
used outside their limits. The results of this numerical model and analytical models are compared to
theoretical waves on a wall.

The next step to perform the wave run-up against the wall is to add the wall in the numerical wave
flume. The wave run-up heights will be measured with wave gauges in the area before the wall. In
figure 6.9 the wave flume with the wall is shown. In figure 6.10 and 6.11 the approach of the wave
and the actual wave run-up against the wall can be seen. It can also be observed that in these figure
waves are present behind the wall. The reason for this is that the wave are already running through
the OpenFOAM domain before the simulation starts. This is because it is desired to let the simulations
start at a point in time where the waves are fully developed. Another reason is that the simulation can
start when the crest of the wave just passed. Therefore the wall is introduced in a later stage and are
waves visible after the wall. The wave input parameters are: H = 14m, h = 25m and T = 13s.
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Figure 6.9: Large wave flume with wall

Figure 6.10: Large wave flume with wall - approach of the wave to the wall. The wall is introduced at t=120s

Figure 6.11: Large wave flume with wall - wave run-up on the wall

The wave run-up height on the wall is measured for the following case: H = 10m, 11m, 12m, 13m, 14m, 15m, 16m,
h = 25m and T = 13s. And then compared to the analytical methods and theoretical run-up height
limits on a wall.

The surface elevation before the wall is plotted at different locations before the wall, figure 6.12.
These wave gauges just before the wall measure the wave run-up height.
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Figure 6.12: The wave run-up height before the wall of H=13m, h=25m and T=13s

From the surface elevation file the wave run-up height of the numerical model is determined. For
each wave height, the results are documented in table 6.2 and figure 6.16. In this table the numerical
results are compared with the two theoretical wall limits and the analytical wave height models.

For the wave heights H = 15m and H = 16m the wave run-up on the wall is not included in the
results since the wave start breaking after leaving the coupling zone. Breaking waves are not included
in this research. The surface elevation is plotted below as well as snapshot of the simulation. It can
be seen that surface elevation is not in good agreement with the theoretical surface elevation anymore.
This has to do with the fact that these waves are too steep for the flat slope of this wave flume and
therefore start breaking.

Figure 6.13: Surface elevation at wave gauge at x=440m vs theoretical surface elevation - H=15m, h=25m and T=13s.
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Figure 6.14: Surface elevation at wave gauge at x=440m vs theoretical surface elevation - H=16m, h=25m and T=13s.

Figure 6.15: Wave breaking in the wave flume for H=16m, h=25m and T=13s.
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Table 6.2: Numerical results compared with the theoretical limit of wall and analytical wave run-up models for
different wave heights.

(a) Numerical wave run-up, H=10m

Method Wave run-up height [m]
Wave height H=10m

Numerical model 17.7
Limit: 2.6*ai 16.9
Limit: EurOtop 12.0
Garborg lvl A 8.5
Garborg lvl B 10.6
Garborg with m=3.5 11.3
de Latour 16.6
Li 7.9

(b) Numerical wave run-up, H=11m

Method Wave run-up height [m]
Wave height H=11m

Numerical model 20.2
Limit: 2.6*ai 18.9
Limit: EurOtop 13.2
Garborg lvl A 10.0
Garborg lvl B 12.7
Garborg with m=3.5 13.5
de Latour 18.7
Li 9.1

(c) Numerical wave run-up, H=12m

Method Wave run-up height [m]
Wave height H=12m

Numerical model 21.6
Limit: 2.6*ai 21.3
Limit: EurOtop 14.4
Garborg lvl A 11.6
Garborg lvl B 15.0
Garborg with m=3.5 16.3
de Latour 20.7
Li 13.3

(d) Numerical wave run-up, H=13m

Method Wave run-up height [m]
Wave height H=13m

Numerical model 23.0
Limit: 2.6*ai 23.3
Limit: EurOtop 15.6
Garborg lvl A 13.5
Garborg lvl B 18.0
Garborg with m=3.5 19.5
de Latour 22.7
Li 11.7

(e) Numerical wave run-up, H=14m

Method Wave run-up height [m]
Wave height H=14m

Numerical model 20.4
Limit: 2.6*ai 25.7
Limit: EurOtop 16.8
Garborg lvl A 15.8
Garborg lvl B 21.6
Garborg with m=3.5 23.6
de Latour 24.7
Li 13.3

(f) Numerical wave run-up, H=15m

Method Wave run-up height [m]
Wave height H=15m

Numerical model Wave breaking
Limit: 2.6*ai 28.3
Limit: EurOtop 18.0
Garborg lvl A 18.7
Garborg lvl B 26.4
Garborg with m=3.5 29.0
de Latour 26.7
Li 15.2

(g) Numerical wave run-up, H=16m

Method Wave run-up height [m]
Wave height H=16m

Numerical model Wave breaking
Limit: 2.6*ai 30.9
Limit: EurOtop 19.2
Garborg lvl A 23.1
Garborg lvl B 34.3
Garborg with m=3.5 38.1
de Latour 28.8
Li 17.9
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Figure 6.16: Overview of wave run-up heights

(a) Wave run-up heights for H=10m (b) Wave run-up heights for H=11m

(c) Wave run-up heights for H=12m (d) Wave run-up heights for H=13m

(e) Wave run-up heights for H=14m (f) Wave run-up heights for H=15m

(g) Wave run-up heights for H=16m
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6.5. Discussion of the results
In this chapter, the comparison between the numerical results, the limits, and analytical models is
discussed.

• First of all, it can be concluded that the theoretical wave run-up height of the EurOtop limit [27]
Ru = 1.8Hm0 is lower than the limit from Ning et al., [22] Ru = 2.6ai. A possible reason for
this is that in the study done by Ning, regular waves are used. While the EurOtop manual uses
irregular waves. Irregular waves can be considered as resulting in less run-up height because more
energy is dissipated due to local steepness for example.

• The results of the numerical simulations are always higher than the theoretical limit of the EurOtop
manual.

• The results of the numerical simulations are sometimes higher than the limit of 2.6 ∗ ai and
sometimes lower. For all simulations except H = 14m they are within a range of 10% of this limit.
For H = 15m and H = 16m the wave run-up height results are not included because of wave
breaking.

• The method of de Latour is almost the same as the theoretical limit of a wall for all wave heights.
The method can be considered as conservative because it calculates waves run-up on a cylinder
instead of a wall.

• The methods of Li and Garborg level A (thick layer run-up), are within the limit of a wall for all
cases.

• The method of Garborg level B and the conservative method with m = 3.5 start to exceed the
theoretical wave limit from a wave height of H = 15m. This is because of the dominant particle
velocity in these equations and a higher value of m, meaning the wave run-up height increases fast
when the wave height increases. The H/h ratio is 0.6 at that moment, so beyond the boundary of
the experiments where these equations are validated with. The high H/h ratio for the experiments
used for those equations is 0.46.



7
Conclusion

This chapter answers the sub-questions and the main research question of this research.

7.1. Sub-questions
7.1.1. How do the analytical wave run-up height models compare to each

other?
In this research the following analytical models are compared with each other, all equations can be
found in table 3.1:

• A method developed by de Latour, 2017 [6] with the wave run-up height experiments performed
during WIFI JIP II. This method calculates wave run-up heights on a cylinder based on empirical
formulas with the maximum wave height, water depth, wave length and diameter of the cylinder.

• A method developed by Garborg et al., 2020 [12] where they re-analyse experiments. This method
is based on the velocity stagnation theory and calibrated to the experiments by a run-up coefficient
m. This m-value is 1.5 for thin layer run-up on the cylinder and m is 3 for thick layer run-up on
the cylinder.

• A method where m=3.5 is used for conservatism, 2022 [9].It uses the same equation as Garborg
et al, but they use a value of m is 3.5 for conservatism.

• The last method is from Li et al., 2022 [18] they also use the velocity stagnation theory but re-
evaluated the wave run-up coefficient m. In their research m depends on the wave and structural
parameters.

All analytical models are used to calculate the wave run-up heights of 100 locations within a wind-
farm. At each location the maximum wave run-up height is calculated with the maximum wave height,
water depth at the location and the wave period that gives the highest wave run-up (T = 11.4 − 18s).
The results can be seen in figure 3.5.

From these results the following conclusions can be drawn:

• The resulting wave run-up height of the method of de Latour is less sensitive to changes in wave
height than the other methods.

• The particle velocity is very dominant in the outcome of the wave run-up height in the methods of
Garborg and the conservative method with m = 3.5. The combination of this value being squared
in the run-up height equation and the high values of the wave run-up coefficient m gives wave
run-up height values as high as 60m.

• The method of Li gives the lowest results in wave run-up height. This is because the parameter
dependent wave run-up coefficient m they introduced is below 1.0 for a wave height of around 8m
or higher. This reduces the effect the particle velocity has on the wave run-up height.

• The wave run-up heights of Garborg level B and the conservative method with m = 3.5 are
extremely high and are not considered realistic.

52



7.1. Sub-questions 53

• Another reason for Li’s lower results could be the difference in experimental approach. Li uses
regular wave experiments to calibrate their results, whereas Garborg and de Latour use irregular
wave experiments. This difference could explain the differences between the methods, as regu-
lar waves do not capture the nonlinearities present in irregular wave fields and may therefore
underestimate wave run-up height.

When taking a closer look to the waves that cause these extreme wave run-up heights, it is concluded
that these waves do not satisfy all criteria (a wave that satisfies the boundary conditions, requirements
of convergence and consistency). In figure 3.12 and 3.13 the particle velocity and surface elevation of
the wave that gives these wave run-up are shown. In these figures it can be seen that the order of the
stream function influences the outcome of the particle velocity and surface elevation. Double crests
are observed as well as peaks at different locations in time. It can be concluded that this wave is not
correct.

Another reason for these extreme wave run-up heights is that the extreme waves that are used
for this research are beyond the boundaries where these models are validated. It is important to use
additional checks when working with extreme waves. The H/h limits of the analytical models can be
found in table 4.1. If the waves exceeds the high boundary of the H/h limit of the experiments the
reliability of the results cannot be guaranteed. All Dogger Bank locations are above the line as shown
in figure 4.16 and discussed in section 4.3. Therefore, additional limits are needed to make sure more
reliable results can be obtained.

The two main limits are suggested to obtain more realistic wave run-up heights are the following:

• The wave height of the extreme waves is lowered until wave length convergence is reached. When
doing this more realistic waves are used in the wave run-up height equations.

• A theoretical limit of waves against a wall can be used as an upper bound limit for wave run-up
on a cylinder. It is physically not likely for a wave to have higher wave run-up on a cylinder than
wave run-up on a wall. This is due to the 3D effect of water dissipating around the cylinder. In
this research this limit is taken as 2.6 times the incoming wave amplitude as described in Ning et
al., 2017 [22].

All above conclusions considered, it is best to use Garborg level B for wave run-up with H/h ratios
up until H/h = 0.46 because it is the only method that uses large scale experiments and they were able
to create waves with highest H/h values. Above H/h = 0.46 it is better to use de Latour, especially for
the extreme waves. De Latour does not use stream function theory in the equation and it is a way to
avoid high particle velocities (u) in combination with high run-up coefficients (m) which leads to high
wave run-up for Garborg. For the extreme waves, de Latour without a limit is approximately the same
as the limit for wave run-up on a wall, so conservative. If the goal is to be less conservative, one of the
two limits to lower the wave height can be considered to get lower wave run-up results.

7.1.2. How are the wave run-up heights translated into loads?
After calculating wave run-up heights the next step in the analytical approach is to translate these wave
run-up heights into wave run-up loads. For analytical model this is done with the following two steps:

1. Calculate the vertical wave run-up velocity at a reference height z, v(z) =
√
2g · (Ru − z). This

reference height z should be chosen at the desired main access platform height.
2. With this vertical wave run-up velocity the pressure on the horizontal platform can be calculated:

F
A = 1

2Csρ(v(z))
2. This equation includes a slamming coefficient Cs, these can be derived from a

graph developed by Damsgaard et al., 2007 [5]. This graph is derived by measured pressure on
a horizontal platform during experiments. Two different pressures are calculated: global pressure
and local pressure. The local wave run-up loads are defined as the pressure over an area of 0.5m2,
the middle of this area is taken 2m from the monopile edge. The global wave run-up loads are
defined as the pressure over the main access platform over an area of 160◦, where the middle is
defined as the wave direction. Illustration of both pressure can be found in figures 3.8 and 3.9.

Other analytical methods to translate wave run-up heights into wave run-up loads were not found.
In OpenFOAM it is possible to measure forces on the surface of a structure. It is however not

possible to validated these results due to a lack of experiment. Therefore it is not possible to say
something about the reliability of these results.
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7.1.3. How does a numerical model in OpenFOAM compare to these analyt-
ical models?

A 2-dimensional numerical model is created to calculate the wave run-up height on a wall. This model
is used as an upper bound limit for the wave run-up height since it is physically unlikely for wave run-up
on a cylinder to be higher than wave run-up on a wall. The results from this model are compared to
two theoretical limits of wave run-up on a wall and to the analytical models.

• The wave run-up on the wall of the 2-dimensional model is within 10% of the theoretical wall
wave run-up of 2.6ai for wave heights up until H = 13m.

• The wave run-up on the wall of the 2-dimensional model is higher than the EurOtop limit of
Ru = 1.8Hm0 for all cases. This limit is lower than the other wall limit because the significant
wave height is used instead of maximum wave height, all wave heights used in the simulations
need to be corrected before the run-up is calculated.

• The method of Garborg level B and the conservative method with m = 3.5 start to exceed the
theoretical wave limit from a wave height of H = 15m. This is because of the dominant particle
velocity in these equations and a higher value of m, meaning the wave run-up height increases fast
when the wave height increases. The H/h ratio is 0.6 at that moment, so beyond the boundary
of the experiments where these equations are derived for, see table 4.1. The highest H/h ratio for
the experiments used for those equations is 0.46.

• The method of de Latour is almost the same as the theoretical limit of a wall for all wave heights.
The method can be considered as conservative because it calculates waves run-up on a cylinder
instead of a wall.

• The methods of Li and Garborg level A (thick layer run-up), are within the limit of wall for all
analysed cases.

7.1.4. Is it possible to make a simple model to obtain reasonable accurate
predictions of wave run-up loads within a time span of a few days?

In this research two different kind of models are developed to see if it is possible to make a time-efficient
model that can predict reasonable accurate predictions for wave run-up loads. The first one is an an-
alytical model where different approaches are compared and limits on these approaches are investigated.

First of all, better insight in the different analytical models is provided in this research. With the
obtained limits in this research, a better insight is given in when the analytical are used outside its
boundaries and provides methods to reduce the risk of unreliable results. Since there is only one an-
alytical method found to translate wave run-up heights into wave run-up loads, the same can be said
about the loads. However it is advised to gain more insight into this translation of wave run-up height
into wave run-up loads. It could be that this translation is very conservative, but since there was no
way to compare methods this is for further research.

Secondly, a 2-dimensional model is created to calculate the wave run-up height on a wall. This
model can be used as an upper bound limit of the wave run-up height on a cylinder since it is physically
unlikely for wave run-up on a cylinder to be higher than on a wall.

No 2-dimensional numerical was found in this thesis to calculate validated loads on a platform.

7.2. Main research question
7.2.1. How can CFD modeling in OpenFOAM be applied to determine the

wave run-up loads on the main access platform of a monopile in early
design stage and how do CFD models compare to existing analytical
models?

The goal of this research is to investigate if a relatively quick numerical model can contribute to more
accurate wave run-up results and how such a model compares to existing analytical wave run-up models.

A 2-dimensional numerical model (waves on wall) can be used to help determine the reliability of
the waves that are outside the boundaries of the analytical models. Since the 2.6ai limit is in the same
range as the numerical, it is more time efficient to use this wall limit. When waves are used outside
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the boundaries of the analytical models the waves run-up height and therefore load results increase a
lot faster than the numerical and theoretical results on a wall. It can be used as a check not to exceed
limit for the analytical wave run-up models.

Within the use of the analytical wave run-up models themselves new insights has been discovered
as well. The most important one is that the reliability of the waves run-up results goes down when
the H/h ratio for the experiments has been exceeded. Limits have been investigated to increase the
reliability again.



8
Recommendations

This research provides further understanding on how to predict wave run-up heights and loads on a
main access platform in a relatively small amount of time. There is however still a lot that can be
improved, some recommendations are given in this chapter.

8.1. Analytical model
• At this moment there is only one method to translate wave run-up heights into wave run-up loads,

this method has been validated with one set of experiments. There are no other experiments
performed on wave run-up loads on a horizontal platform. It is necessary to further investigate
the slamming coefficient that needs to be used in the final equation that calculates the loads.

• To further improve the reliability of the analytical models for extreme waves it is necessary to
perform experiments with H/h ratios higher than that are available now. The existing wave
run-up height models can be further calibrated to these extreme conditions.

8.2. Numerical model
• The 2-dimensional model used in this thesis could be extended with a platform at the top and

measure loads. However, there is no way to validate these results. In order to use such a model
validation of these loads is needed with experiments.

• With a validated 2D model and a validated 3D model, an investigation into the differences between
2D and 3D numerical modeling could be done. A link between 2D and 3D could be made.

• In this 2-dimensional model there is no way to validate wave run-up loads on a platform. This
means the reliability of 2-dimensional cannot be compared to any other results and therefore
cannot be used as limit for the loads. Also measuring pressures on a platform on a wall could be
helpful to further understand this.
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A
Numerical wave run-up

In this appendix more figure and graphs of the numerical wave run-up are presented.

Figure A.1: Surface elevation at wave gauge at x=480m vs theoretical surface elevation - H=10m, h=25m and T=13s.

.

Figure A.2: Surface elevation at wave gauge at x=480m vs theoretical surface elevation - H=11m, h=25m and T=13s.
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Figure A.3: Surface elevation at wave gauge at x=480m vs theoretical surface elevation - H=12m, h=25m and T=13s.

Figure A.4: Surface elevation at wave gauge at x=480m vs theoretical surface elevation - H=13m, h=25m and T=13s.

Figure A.5: Surface elevation at wave gauge at x=440m vs theoretical surface elevation - H=14m, h=25m and T=13s.
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Figure A.6: Surface elevation at wave gauge at x=440m vs theoretical surface elevation - H=15m, h=25m and T=13s.

Figure A.7: Surface elevation at the wall for different wave gauge locations locations - H=10m, h=25m and T=13s.

Figure A.8: Surface elevation at the wall for different wave gauge locations locations - H=11m, h=25m and T=13s.
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Figure A.9: Surface elevation at the wall for different wave gauge locations locations - H=12m, h=25m and T=13s.

Figure A.10: Surface elevation at the wall for different wave gauge locations locations - H=13m, h=25m and T=13s.
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