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Abstract

Today, machine learning has an accelerated im-
pact in quantitative finance. Current models re-
quire large amounts of data, which can be expen-
sive. A notable area of research, physics-informed
neural networks (PINNS), has proven to be effective
in approximating problems that are described by
partial differential equations (PDEs). During train-
ing, the PDE is embedded in the loss function and
evaluated at the residual points. This allows these
types of neural networks to solve problems where
data is scarce or noisy. Recent studies have shown
that the method for sampling residual points has
a great influence on training efficiency. Residual-
based adaptive distribution (RAD) sampling is the
adaptive sampling method used throughout this pa-
per. This research applies PINNs with RAD sam-
pling to solve the Black-Scholes PDE. Here, the
Black-Scholes model is used to determine the price
of options in a financial market. The fundamental
goal of this paper is to study the difference in train-
ing performance between non-adaptive and RAD
sampling. The types of options that are being con-
sidered in this study, are the European call options
and the American put options. The results shown
suggest that both types of options benefit from us-
ing RAD sampling compared to non-adaptive sam-
pling. With a loss decrease of 39.33%, Ameri-
can put options improve more using RAD sampling
than European call options. Although European
call options still show a decrease in loss of 7.57%.

1 Introduction

The world of finance is increasingly dependent on machine
learning methods to model markets and asset prices [9].
These models are often very complex because financial mar-
kets are driven by many factors. This means that a large
amount of data is required to train these models to predict
future value [11].

The latter is where physics-informed neural networks
(PINNSs) could add value in the industry. These types of neu-
ral networks represent a relatively recent advancement in the
field of artificial intelligence. PINNs are used to solve prob-
lems described by partial differential equations (PDEs) [25].
PINNs work by incorporating the relevant PDE, including
initial and boundary conditions, as part of the loss function.
They need much less data than ordinary neural networks and
work in cases where the data is noisy [16].

Since PINNSs are a relatively new topic of research, there
are still many aspects that can be refined to improve perfor-
mance. Recent studies have reported that the method of sam-
pling residual points plays a major role in the training effi-
ciency of PINNs [20]. These residual points are the points
sampled to compute the loss of the PDE associated with the
PINN.

A new way of sampling is based on the research by Wu et
al. [30], where they introduce residual-based adaptive distri-

bution (RAD) sampling. This works by constructing a proba-
bility density function (PDF) based on the loss function. It
computes the probability of a point being sampled for the
next training iterations. If the loss is high at a certain residual
point, then the probability of sampling this point increases.

This research touches on the problem of pricing options.
The most popular model for estimating the value of an option
is the Black-Scholes model, which was originally introduced
in 1973 [3]. Their model makes several assumptions about
the underlying asset, one of which is that the value of the
underlying asset follows a geometric Brownian motion.

The main focus of this paper is to investigate how RAD
sampling affects the performance of PINNs solving option
pricing compared to random non-adaptive sampling. Further-
more, numerical methods [1][6][4] for solving Black-Scholes
are discussed. Lastly, the type of option that benefits most
from PINNs and RAD sampling is identified.

The application of PINNs to solve the Black-Scholes equa-
tion is an important area of research, as current (numerical)
methods for solving Black-Scholes are computationally ex-
pensive and relatively less scalable [9]. However, the imple-
mentation of PINNs for option pricing remains largely unex-
plored.

The structure of the paper is as follows. Section 2 describes
the methodology on which the rest of the paper and the ex-
periment are based. It shows how PINNs, RAD sampling,
and Black-Scholes work. Subsequently, Section 3 shows the
experimental setup and the results are followed in Section
4. Section 5 discusses the ethical aspects of the results and
shows the reproducibility. Moreover, Section 6 discusses the
results from the previous sections. Finally, Section 7 con-
cludes the paper and summarizes the work.

Related literature

The topic of PINNSs is a new field in the academic literature.
In addition, the topics of sampling methods and option
pricing for PINNs have been very little studied as of today.
The following section covers the research that is related to
adaptive sampling and option pricing with PINNs.

The RAD sampling method, which is used for this re-
search, was originally introduced in the study by Wu et al.
[30]. They compared two different groups of sampling ap-
proaches: non-adaptive and adaptive sampling. Non-adaptive
sampling methods include: uniform sampling, random sam-
pling, Latin hypercube sampling [21], Halton sequence [12],
Hammersley sequence [13], and Sobol sequence [26]. These
non-adaptive sampling methods and uniform points with re-
sampling are compared against three adaptive sampling tech-
niques. The first is Residual-based Adaptive Refinement
(RAR), which is a greedy algorithm first introduced in Lu
et al. [20]. The second and third methods are RAD sam-
pling and residual-based adaptive refinement with distribu-
tion (RAR-D) sampling, which were both proposed by Wu
et al. [30]. Their results show a significant improvement in
performance of the PINNs when using the RAD or RAR-D
sampling methods.

Liu et al. introduced another adaptive sampling algorithm
called EI-RAR [19]. This method builds on the previously



mentioned RAR and RAR-D algorithms. The EI-RAR algo-
rithm adds a new expected improvement (EI) function, which,
compared to RAR-D, places a greater emphasis on boundary
points. In addition, Liu et al. introduce EI-Grad, a second
algorithm that considers the gradients of the residuals when
making sampling decisions.

The work by Wang on Relative Residual Resampling [28]
takes a different approach to improve residual sampling.
Their research is based on the conception that there is often
an unbalance in the number of points sampled for boundaries
and initial conditions versus the samples within the PDE’s
domain. They introduce Relative Residual Resampling (R3),
which dynamically changes the number of sampling points
for each type of point in training.

As for related work, which focuses on PINNs for option
pricing, Tanios [27] was one of the first to adopt PINNs for
this application. They focus on multi-asset European op-
tions, solving forward and inverse cases of the Black-Scholes
model.

In the same period, Bai et al. [2] proposed their improved
physics-informed neural network (IPINN) method for option
pricing in finance. They were successfully able to improve
the performance of PINNs using a local adaptive activation
function [15].

In contrast to the previous papers, Gatta et al. created a
method for American option pricing [9]. They introduced
a trick for the free boundary problem [29] that occurs with
American options. The free boundary is trained as a separate
entity with its own initial condition, in addition it is related to
the PINN’s Dirichlet and Neumann boundary conditions.

2 Methodology

All the relevant background information and methods on how
the model is constructed, is described in this section. Start-
ing with Section 2.1, illustrating the approach that PINNs
take. Section 2.2 shows the workings of the RAD sampling
method. Finally, Section 2.3 describes the problem of option
pricing and introduces the Black-Scholes model as a solution.

2.1 Physics-Informed Neural Networks

The first introduction of PINNs was in 2019 by Raissi et al.
[25]. They developed a framework that can be used to solve
supervised problems that are described by partial differential
equations. This framework can be used to simulate in a situa-
tion where all parameters of the PDE are known. On the con-
trary, when not all parameters are available but simulations
are provided, it allows for the retrieval of the parameters in
an inverse manner.

This paper focuses on the forward problem using PINNs.
The fundamental concept is that one can use a neural net-
work adding the PDE to the loss function, then with automatic
differentiation and backpropagation capabilities (included in
most machine learning libraries) one can calculate the loss
and gradients [16]. The loss function for the PINNS in this
paper takes on the following structure:

L = wpgeLpde + Winit Linit + wpoLyo + wp1 Lyn (1)

Here in Eq. 1, £ denotes the total loss consisting of the
PDE loss Lpqc, the loss of the initial condition £;,;:, and
boundary boundary losses Lo and Lp;. The loss components
can be balanced using the weights Wpge, Winit, Wpo, and wpy.
The loss components are measured with the mean squared
error (MSE) [7], for N points it is defined by:

1 N
MSE = + ;(y — i) @)

In Eq. 2, y; denotes the observed value and g; is the pre-
dicted value. The PDE loss component is computed by the
following:

1 die
Lypde = N Z (s(t;dmx;de))z 3)
pde i—1

In Eq. 3, {t} 4., 7 2o} ¥rde g the set of residual points for
e(t, z). Where €(t, ) denotes the residual value at time ¢ and
point x according to the PDE. The initial and boundary loss
components are all computed in a similar manner, using the

following equation:

Z (U(t?mm x%md) - ﬂznd)2 (4)

i=1

Here, {t},,4: Thpas Uppq }1o2s® denotes the data for the initial
or boundary points and 4, ; marks the predicted value for an
initial or boundary point at u(¢,x). Where u(t, z) computes
the value at a certain initial or boundary point at time ¢ and
point x.

2.2 Residual-based Adaptive Distribution
Sampling

The adaptive sampling technique called RAD sampling was
introduced by Wu et al. [30]. Their inspiration came from
Nabian et al. [23] who developed a sampling strategy which
resamples the residual points using a PDF. These methods
start with a large non-adaptive sample space, for each point
the residual is calculated. Finally, sample the desired number
of points according to the PDF. Their improved PDF of the
RAD methods is as follows:

k ZT
pla) o MH 5)

Eq. 5 calculates the probability of sampling p(x), which
includes two non-negative hyperparameters k and c. Wu et
al. [30] advise ¥k = 1 and ¢ = 1 as a default choice. In Eq.
5, e(z) is the residual value at = and E[¢*(z)] is an approx-
imation of the mean of £*(z), which can be estimated using
numerical integration.

The algorithm of the RAD sampling method developed by
Wu et al. is shown in Algorithm 1:



Algorithm 1 RAD

1: Randomly sample NV initial residual points R

: Run the training on R for n iterations

while the total number of iterations is not reached do
R < N new points picked by Eq. 5
Run the training on R for n iterations

end while

AN AN

The initial NV residual points (line 1 of Algorithm 1) are
randomly sampled from a uniform distribution over the entire
domain. In line 4 of Algorithm 1 the algorithm needs to pick
new points according to Eq. 5. With a low-dimensional z,
like in the case of this research, this can be done with the
following steps [30]:

1. Sample a large set of points Sy using random sampling

2. Calculate p(z) for all points in Sy

3. Create the probability mass function P(x) = % where
A= EzESO p(x)
4. Sample points from Sy using P(z)

2.3 Black-Scholes Option Pricing

The Black-Scholes model [3] has been widely used for pric-
ing financial derivatives and in particular stock options. There
are many types of stock options, however, the most common
characteristic is that they give the holder the right but not the
obligation to buy or sell a stock at a later time for a prede-
termined price. An option that allows one to buy a stock is
called a call option [22], while an option that allows someone
to sell a stock is called a put option [5]. All options have an
expiration date, underlying stock price, and a strike price (the
price for which the owner can buy or sell). The most widely
known types of options are European and American options.
The only distinction between the two is that with European
options, the owner can only exercise its right to buy or sell
on the expiration date. In contrast, with American options,
the owner has the right to exercise at any moment before the
expiration date.

The Black-Scholes model makes several assumptions
about the options [3], the following are the most relevant:

1. The short-term interest rate is constant
2. The underlying price follows a random walk
3. The stock does not pay any dividends

An important property for this research of the Black-
Scholes model is that it can be described by a PDE [3]:
vV 1, ,0%V ov
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In the PDE from Eq. 6 the parameters are the option price
V, underlying price S, time t, volatility o, and risk-free inter-
est rate r.

2.3.1 European call option

An additional assumption that the Black-Scholes originally
makes is that the option is European. The European call and
put options are very similar, the European put option is left

out because it is not used throughout this research. For Eu-
ropean options there exists an analytical solution. The initial
and boundary conditions for European call options are de-
fined below.

C(0,t) =0
C(S,t)=5—K when S — o0 @)
C(S,T) = max(S — K,0)
In Eq. 7, C(S, t) is the value of a call option, with underly-
ing stock price S, time ¢, time at maturity 7", and strike price
K. Note that the last condition is the initial condition.

The analytical solution for European call options from the
Black-Scholes method:

C(S,t) = S®(dy) — Ke" TV d(dy)
2
dy — In(S/K)+ (r + % )(T —t)
oI —1 (®)
2
4y = WS/K) + (= 5)T 1)
oI —1t
Here in Eq. 8, ® denotes the cumulative distribution func-

tion of the standard normal distribution. An example of an
analytical solution is visualized in the following figure:

Figure 1: The analytical solution to an example of the European
call option problem. Where the option is described by K = 100,
r = 0.05 and o = 0.1. The solution is computed according to the
method from Eq. 8. It shows the value u at time ¢ and underlying
stock price S.

Figure 1 show the price of the option w over time ¢ and
underlying price S.

2.3.2 American put option

American call options are near equivalent to European call
options [17], therefore the American call version is not con-
sidered in this paper.

Unlike the European call option, pricing American put op-
tions with the Black-Scholes model cannot be done analyti-
cally. This is due to its early exercise ability that allows the
option owner to exercise at any time before the expiration.
There are several numerical methods to solve this pricing
problem, a few examples are finite elements [1], finite differ-
ences [6], and Monte-Carlo simulation [4]. These methods



aim to solve the same problem using different approaches.
Finite elements and finite differences, unlike Monte-Carlo,
discretize the PDE. On the other hand, Monte-Carlo simula-
tions use random sampling to make an approximation. For
this research Monte-Carlo simulations are used, because they
are both quick and intuitive to implement. It works by the
assumption that stock prices fluctuate, following a geometric
Brownian motion with a drift. The value of a stock at some
moment can be modeled as the following:
Vg1 = Vee! 39 H0X ©)
In Eq. 9, V; is the value of a stock at time ¢, with risk-free
interest rate r, volatility o, and a standard normal random
variable X. An example of simulating the price of an Amer-
ican put option using a Monte-Carlo method is demonstrated
below.

Figure 2: A numerical solution for an example of am American put
option using Monte-Carlo simulation. The option is described by
K =100, » = 0.05 and o = 0.1. The simulation was computed
using Eq. 9. It shows the value u at time ¢ and underlying stock
price S.

Here in Figure 2, u denotes the price of the option over
time ¢ and underlying value S.
The initial and boundary conditions for American put op-
tions are the following:
P0,t) = K
P(S,t)=0 when S — o0 (10)
P(S,T) = max(K — S,0)
Here, P(S,t) is the value of the American put option.
Again, note that the last boundary is the initial boundary.
The main difference that the American put problem intro-
duces is the free boundary problem [9]. It is the problem
of deciding on a price low enough to exercise the put option
before the expiration. The answer to this problem is approx-
imated by B(t) using a neural network. This neural network
has its own loss function and the initial condition is:

B(T)= K (11
The free boundary also has Dirichlet and Neumann bound-
ary conditions, these are respectively:
P(B(t),t) = K — B(t)
oprP 12)
—(B(t),t) =—1
5 (B0,

3 Experimental setup

This section covers the experimental setup, which first ex-
plains how the general results were produced in Section 3.1.
Secondly, Section 3.2 explains the implementation of the
RAD sampling method. Finally, Sections 3.3 and 3.4 illus-
trate the setups for European call and American put options.

3.1 General

Throughout this experiment, the work was supported by the
PyTorch machine learning library [24], a widely used library
that allows for automatic differentiation. All PINNs in the ex-
periments used a feed-forward neural network with four lay-
ers in total. The input layer consists of two nodes, which rep-
resent the underlying price S and time ¢. These are then fed
through layers two and three, which both contain 16 hidden
nodes. The output layer has a single node for the approxi-
mated price. The current size of the network should be large
enough to handle the complexity while training efficiently.
For all layers, the biases are initialized to zero, which is a
common starting point [10]. The weights are initialized ac-
cording to the uniform Xavier initialization [10], which draws
each weight from a random uniform distribution and ensures
stable training. The activation function that is used for the
input and hidden layers is the tangent hyperbolic (tanh) func-
tion [8]. The tanh function is used for approximating continu-
ous and non-linear functions, and thus suitable for the Black-
Scholes equation (Eq. 6). According to Xavier et al. [10],
tanh networks perform well in combination with Xavier ini-
tialization.

Each loss component is measured using the MSE function,
as shown in Eq. 2. The model was trained using the Adam
optimizer [18], which can be considered a standard, 0.001 is
the value used as the learning rate.

The following option parameters were used in the experi-
ments:

K =100 S €[80,160]
r=0.05 tel0,1] (13)
oc=0.1

Initially, the PINNs start with a mesh of shape 2 x 2000
which represents the residual points. The mesh is filled with
pseudo-random values that span the domains of S and ¢. The
initial and boundary conditions all have a shape 2 x 200, and
span either S or ¢, but not both. The initial condition is at ma-
turity 7" (also ¢ = 1), the first boundary condition is S = 0,
and the second boundary is when S — oco. The weights as-
sociated with the PDE loss w4, and the boundary conditions
Wpnq are equal and set to Wyde, Wyng = 1.

3.2 Residual-based Adaptive Distribution
sampling

There are three hyperparameters for the RAD sampling

method, the default values are:

k=1 c¢=1, =50 (14)
Here, rf (resampling frequency) is the number of training
iterations between RAD resampling steps. Wu et al. [30] re-

sample either every 1000 or 2000 iterations. In this research



however, we consider multiple possible resampling frequen-
cies. These resampling frequencies range from 25 to 1000
iterations, lower than in Wu et al. [30] because they use
more training iterations. There is an additional mesh of resid-
ual points, which uniformly spans the domains of S and ¢
with the shape 2 x 10000. RAD resampling starts by run-
ning the network on this large mesh. Subsequently, calculate
p(x) using Eq. 5 for each point. Using the probabilities from

the PDF, construct a probability mass function P(z) = Lj)

where A = > p(z). Finally, the original mesh (with shape
2 % 2000) is replaced by picking 2000 samples from the large
mesh according to the probability mass function.

Each experiment is run for 16,000 iterations. The perfor-
mance of the network is evaluated for each iteration using
uniform residual, initial, and boundary points. A threshold
is used to discard training runs that do not converge, because
these runs give a skewed view of the results. The threshold is
equal to half of the starting loss. A run with a final loss higher
than the threshold will be discarded and rerun. This

3.3 European call problem

In each iteration of training, the loss is computed according
to Eq. 1 with the initial and boundary conditions for the Eu-
ropean call options from Eq. 7.

3.4 American put problem

The American put problem requires an additional neural net-
work for the free boundary problem. The network struc-
ture itself is similar to that of the PINN. Like the network
mentioned above, it uses uniform Xavier initialization for the
weights, biases initialized to zero, the tanh activation function
and the Adam optimizer. The difference is that the input has
one input (¢) and the network contains only a single hidden
layer of eight nodes. Because this is a less complex problem,
the network can be smaller compared to the network for the
PINN.

While training the American put problem, there are two
loss terms, one for determining the price v and a second one
for the free boundary problem B(t). Firstly, the loss is com-
puted similar to Eq. 1 where the initial and boundary condi-
tions are described in Eq. 10. For the free boundary problem,
the loss Ly,,4 is calculated with the initial condition from Eq.
11 and boundary conditions from Eq. 12. Upon ending each
training iteration, both networks adopt the Adam optimizer.

4 Results

The following section shows the results of the experiment.
The general goal is to show the performance of the RAD
sampling method, compared to non-adaptive random sam-
pling. To show this, the loss is initially analyzed in several
combinations of values for £ and c. Following with the best-
performing combination of k£ and c, the loss is reviewed at a
few resampling frequencies. With the best values for &, ¢ and
the resampling frequency, the performance is tested against a
non-adaptive random sampling strategy.

This method for testing performance is applied to both Eu-
ropean call and American put options as shown in Sections
4.1 and 4.2 respectively.

4.1 European call options

European call options are the first type of pricing problem
for which the RAD sampling method is compared to the non-
adaptive random sampling. RAD sampling requires two im-
portant hyperparameters k and c each resampling step. Wu et
al. [30] advise to use the combination ¥ = 1 and ¢ = 1 as
default. Additionally, they demonstrate values between 1 and
2 for k and between 0 and 1 for ¢ performing well in differ-
ent cases. For this reason, all integer combinations of these
values are assessed on their performance. During training,
the residual points are resampled every 50 training iterations.
The MSE loss is computed by running each combination of k
and c 10 separate times for 16,000 training iterations. Finally,
the average of 10 runs is computed and plotted in Figure 3.

—— RAD sampling k=1 c=1

RAD sampling k=1 c=0
—— RAD sampling k=2 c=1
—— RAD sampling k=2 ¢=0
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Figure 3: The comparison of MSE loss with different values for k
and c using the RAD sampling method. Each combination is an
average of 10 runs. With the MSE loss in a log scale and the number
of training iterations on the horizontal axis.

k c loss std dev
1 1 121.29 19.68
1 0 124.73 15.59
2 1 134.41 17.96
2 0 123.64 21.84

Table 1: The average loss and standard deviation (std dev) of the loss
for the combinations of values for k and c¢. Where each combination
is trained 10 individual times.

Table 1 reveals that the combination of k = 1l and ¢ = 1 is
the best performing out of the four. However, the difference
in the loss from other combinations of k and c is small.

The following hyperparameter that needs to be tuned is the
resampling frequency. The chosen range of frequencies lies
between 25 and 1000, Wu et al. [30] resampled every 1000
iteration, however they trained the PINNs for 100.000 iter-
ations. Figure 4 shows the MSE loss for each resampling
frequency.



—— RAD sampling every 25 iterations
RAD sampling every 50 iterations
—— RAD sampling every 250 iterations

—— RAD sampling every 1000 iterations
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Figure 4: The comparison of MSE loss with different values for the
resampling frequency using the RAD sampling method. Each loss
curve resembles the average of 10 runs. With the MSE loss in a log
scale and the number of training iterations on the horizontal axis.

rf loss std dev

25 128.08 17.69

50 116.55 15.33
250 118.22 16.63
1000 126.03 20.04

Table 2: The average loss and standard deviation (std dev) of the
loss for different resample frequencies (rf). Where each instance is
trained for 10 runs.

Here, Table 2 shows that, with ¥ = 1 and ¢ = 1, the
best performing resampling frequency is 50. Additionally,
the standard deviation for rf = 50 was the lowest out of the
different frequencies.

Lastly, to assess the performance of the RAD sampling
method versus the non-adaptive random sampling, the RAD
model with k£ = 1, ¢ = 1 and rf = 50 is run along the random
sampling. Both the sampling strategies are trained 10 times
and the average MSE loss is visualized in Figure 5.

—— RAD sampling
Random sampling
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Figure 5: The comparison of MSE loss for RAD and non-adaptive
random sampling. Each loss curve resembles the average of 10 runs.
With the MSE loss in a log scale and the number of training itera-
tions on the horizontal axis.

loss std dev

128.21  22.25
138.72  14.57

RAD sampling
Random sampling

Table 3: The average loss and standard deviation (std dev) of the loss
for RAD and non-adaptive random sampling. Where each instance
is trained for 10 runs.

Figure 5 and Table 3 show an improvement in performance
with the RAD strategy. The average loss for RAD sampling is
7.57% lower than the non-adaptive random sampling. How-
ever, the standard deviation is higher with RAD sampling.

4.2 American put options

The second type of option pricing problem is the American
put option. The RAD sampling method is evaluated against
the non-adaptive random sampling, following a similar ap-
proach as described in Section 4.1. Starting with the hyper-
parameters k and c. Using the integer combinations of k rang-
ing from 1 to 2, and c ranging from 0O to 1. While training the
residual points, the points are resampled every 50 iterations.
The loss is computed by training each combination of £ and ¢
10 times, with each run containing 16,000 iterations. Lastly,
for each combination, the average of 10 runs is computed and
visualized in Figure 6.

104 4 —— RAD sampling k=1 c=1
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Figure 6: The comparison of MSE loss with different values for k
and c using the RAD sampling method. Every combination is an
average of 10 runs. With the MSE loss in a log scale and the number
of training iterations on the horizontal axis.

k c loss std dev
1 1 4066.82 3025.97
1 0 3980.89 3126.39
2 1 6533.48 0.02

2 0 3962.87 3148.35

Table 4: The average loss and standard deviation (std dev) of the loss
for the combinations of values for k and c¢. Where each combination
is trained 10 individual times.

Table 4 shows that the combination of £k = 2 and ¢ = 0
is the best performing values for k£ and c. With these chosen
values, the subsequent hyperparameter that needs to be tuned



is the resampling frequency. The selected values for this fre-
quency are 25, 50, 250 and 1000. Figure 7 shows the loss for
each resampling frequency.

10% —— RAD sampling every 25 iterations
RAD sampling every 50 iterations

—— RAD sampling every 250 iterations

—— RAD sampling every 1000 iterations
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Figure 7: The comparison of MSE loss with different values for the
resampling frequency using the RAD sampling method. Each loss
curve resembles the average of 10 runs. With the MSE loss in a log
scale and the number of training iterations on the horizontal axis.

rf loss std dev

25 3972.76 3136.26

50 6533.52 0.05
250 3965.82 3144.74
1000 6533.51 0.02

Table 5: The average loss and standard deviation (std dev) of the
loss for different resample frequencies (rf). Where each instance is
trained for 10 runs.

Table 5 shows that, using k¥ = 2 and ¢ = 0, the best per-
forming resampling frequency is 250. To assess the perfor-
mance of the RAD sampling method versus the non-adaptive
random sampling, the RAD model with £ = 2, ¢ =
0, rf = 250 is run along the random sampling. Both the
sampling strategies are trained 10 times and the average loss
is visualized in Figure 8.
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Figure 8: The comparison of MSE loss for RAD and non-adaptive
random sampling. Each loss curve resembles the average of 10 runs.
With the MSE loss in a log scale and the number of training itera-
tions on the horizontal axis.

loss std dev

3964.15 3146.88
6533.51 0.04

RAD sampling
Random sampling

Table 6: The average loss and standard deviation (std dev) of the loss
for RAD and non-adaptive random sampling. Where each instance
is trained for 10 runs.

Figure 8 and Table 6 show a substantial improvement in
performance with the RAD strategy. The average loss for
RAD sampling is 39.33% lower than the non-adaptive ran-
dom sampling. However, the standard deviation is again
higher with RAD sampling.

5 Responsible Research
5.1 Ethics

One of the key ethical aspects of this research is the trans-
parency of the models. To ensure fair option markets, knowl-
edge on pricing options should be as transparent as possible.
Specifically, it should be transparent to option writers (the
party that creates an option) and the option buyer. In the case
where a selective group is able to more accurately determine
the value of an option, this information asymmetry can lead to
imbalanced option markets. In these markets, there is more
potential for parties with more knowledge. To address this,
research should be available for all market participants, en-
suring that there is balance.

Although research on option pricing models is more pub-
licly available, the financial data required to use these models
is expensive. This causes small parties to be held back from
competing in the option markets. PINNs, needing consider-
ably less data, could create the possibility for smaller players
to compete.

Since the current model does not adopt historical data,
there is no observational bias. These observational biases
may lead to generalizing performance [16]. Conversely,
the model does introduce an inductive bias from the Black-
Scholes model and a learning bias from PINN achitecture.

5.2 Scientific Integrity

Throughout this research, Writefull' and ChatGPT? are used
solely for the purposes of checking spelling, grammar and
showing synonyms.

5.3 Reproducibility

The methods applied throughout this research, including
background on PINNS, residual sampling and option pricing,
are thoroughly described in Section 2. Subsequently, the de-
tails on the structure of the experiment are explained in Sec-
tion 3. This also includes the parameters, functions and the
order of execution. In addition to the methodology (Section
2) and the experimental setup (Section 3), the code used for
the research is available and can be found in Section 7.

"https://www.writefull.com/
*https://openai.com/index/chatgpt/



6 Discussion

The first part of this section discusses the results from Sec-
tion 4. Secondly, it considers possible limitations of the re-
search. Finally, future improvements and additions are men-
tioned and discussed.

6.1 Results

The European option results shown in Section 4.1 are the re-
sults from the less complex problem. The experiments show
that the combination of ¥ = 1, ¢ = 1 and rf = 50 is the
best performing out of the combinations that were consid-
ered. Although there were a few alternatives, including £ = 2
and ¢ = 0 or rf = 250, that performed similar. Conversely,
the performance of RAD sampling compared to random sam-
pling shows a greater improvement.

On the other hand, the American put options show a more
diverse performance for the different values of k, ¢ and rf.
The best recorded performance is with £k = 2, ¢ = 0 and
rf = 250. Alternative hyperparameters perform substan-
tially worse, though the better performing parameters show
a greater standard deviation. The RAD strategy outperforms
the non-adaptive random sampling with a drop in MSE loss
of 39.33%.

6.2 Limitations

One of the limitations of the European call option model is
the small difference in the loss for the experiments. There is
a small difference in the average loss, while the standard de-
viation is large. This suggesting that retraining could show
different results. Combined with small differences in the av-
erage loss, it is difficult to draw strong conclusions. A sec-
ond limitation is that some of the loss curves seem not fully
converged. Longer training could improve the performance
and increase the difference in loss for different hyperparame-
ters. However, it could also result in the differences becoming
smaller.

Inspecting the American put loss curves, the difference in
outcome is profound. The cases where the loss is lower com-
pared to competing strategies (e.g. Figure 6), have a stan-
dard deviation which is much greater. This suggests that these
cases converge only occasionally. Finding a way to make the
model more consistent would be a big improvement. The last
limitation is the drop and sudden incline in loss which is vi-
sualized in Figure 8. This is uncommon behavior in neural
networks and makes the result less reliable.

6.3 Future work

Future work could include multi-asset options, similar to the
work by Gatta et al. [9]. Multi-dimensional underlying op-
tions are a beneficial area of study because they introduce
diversification and reduce risk [14].

A second future addition could be an inverse version of the
model, which could be used for calculating the Greeks for
options [27].

7 Conclusion

Concluding this research, its main objective has been to in-
vestigate the effect of RAD sampling on the performance of

PINNS s for option pricing. Specifically solving Black-Scholes
for both European call and American put options. For both
type of option the same path is taken to asses the performance
of RAD against non-adaptive random sampling. Firstly, vari-
ous combinations of the RAD hyperparameters k and ¢ were
tested for their performance. Secondly, using the preferred
values for k and c, the loss of different resampling frequen-
cies rf are assessed. Finally, with these values for k, ¢ and
rf, the performance of the RAD sampling method has been
matched against non-adaptive random sampling.

For the European call option £ = 1, ¢ = 1 and rf = 50 are
the best performing hyperparameters. Here, the RAD strategy
shows a drop of 7.57% in loss compared to the non-adaptive
methods. On the other hand, the American put options have
achieved the best results with & = 2, ¢ = 0 and rf = 250.
The American put option showed a greater improvement with
a decrease of 39.33% in loss using RAD sampling compared
to non-adaptive sampling. However, the outcomes and per-
formance of the PINNs for American put options are less pre-
dictable.

Ultimately, there is a considerable improvement in perfor-
mance using RAD sampling over non-adaptive random sam-
pling. This increase in performance is already shown with
European call options, the improvement is even more promi-
nent in American put options. Expanding the problem to
multi-asset options would be the next step to test RAD sam-

pling.

Code

The code from this paper can be found on: https://github.com/
hidde8erberg/CSE3000-PINN's
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