
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Challenge the future 

 

 

 

Mammoet Offshore Platform 

 

“Hydrodynamic Assessment & Motion 
Optimization of Mechanically Coupled 

Barges” 

 

Vasileios A. Mathios 

 



 



Mammoet Offshore Platform 
“Hydrodynamic Assessment & Motion Control of 

Mechanically Coupled Barges” 
 

MASTER OF SCIENCE THESIS 
 
 
 
 
 
 
 
 
 
 
 

For the degree of Master of Science in Offshore and Dredging Engineering  
Faculty of Mechanical, Maritime and Materials Engineering 

Delft University of Technology 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Vasileios A. Mathios 
4305507 

 
Delft, November 2015 

 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The work elaborated on this thesis was sponsored by Mammoet Global 
Engineering B.V. 
 
 

  



DELFT UNIVERSITY OF TECHNOLOGY 
DEPARTMENT OF OFFSHORE AND DREDGING 

ENGINEERING 
 

The undersigned hereby certify that they have read and recommend to the 
Faculty of Mechanical, Maritime and Materials Engineering for acceptance a 

thesis under the title 
 

MAMMOET OFFSHORE PLATFORM 
“HYDRODYNAMIC ASSESSMENT & MOTION 

CONTROL OF MECHANICALLY COUPLED 
BARGES” 

 
VASILEIOS A. MATHIOS 

 
in partial fulfillment of the requirements for the degree of 

 
MASTER OF SCIENCE 

OFFSHORE AND DREDGING ENGINEERING 
 
 

 
 
Chairman of Graduation Committee:     _________________________ 

Prof. Dr. A. V. Metrikine   
 
 
 

Company Supervisor (Mammoet BV)     _________________________ 
Ir. H. Jansen   
 
 
 

University Daily Supervisor:      _________________________ 
         Dr. Ir. J. W. van Wingerden 

 
 
 

University Thesis Counsellor:      _________________________ 
Ir. A. van der Stap   
 
 
 



 
    



Abstract

The decommissioning market expenditure is expected to grow further in the years to come due to
increasing number of platforms that near the end of their production cycle, mainly being �xed steel
structures (<4,000 [Te]) positioned in shallow waters (30 to 75 [m]). The risks of such operation
emerged the need for semi-submersible, heavy-lift vessel or ultimately catamaran vessel design (i.e
Pioneering Spirit), all being expensive concepts with high lifting capacities making a single-lift
option possible, also ensuring robust operating windows; however, these designs are tailored to be
project-speci�c and technically redundant.

Such way of thinking do not comply with the lean, modular and reusable engineering philoso-
phy Mammoet Global Engineering is introducing via its novel conceptual design counterproposal,
under the name Mammoet O�shore Platform (MOP); a twin barge concept with proper mechan-
ical couplings would create a modular and thus resusable, less sti� con�guration that achieves
operational robustness in irregular seas.

The technical challenge identi�ed is the asymmetric barge roll motion due to the eccentric topside
weight and the respective roll hydrodynamic loading. Roll motion in beam waves (90

0
angle of

attack) is expected to be the dominant design parameter and is addressed via the implementation
of a kinematic constraint so that barges and topside roll (f) is synchronized. Furthermore, the
barges are modeled to heave and pitch independently, therefore signi�cant di�erential motions in
the corresponding DOF (bank : ρ & flip : χ) are anticipated and need to be treated; the use of
a passive link, modeled as a spring-dashpot, has quali�ed while its structural parameters will be
optimized with the H∞ technique.

The research question in hand comprises of MOP concept technical feasibility study which will be
quantitatively assessed via the following Key Performance Indices (KPI):

• Steady-state dynamic behavior of MOP (constrained barges) against two free �oating barges
and a catamaran barge of identical geometry speci�cations, working entirely in the frequency
domain (modeling in linear potential solver Wamit)

• Steady-state dynamic behavior of MOP (constrained barges & link optimized in H∞) against
the model identi�ed in the previous analysis (state-space modeling and control in Matlab)

The frequency domain simulations for the case studies tabulate that the roll kinematic constraint
has successfully attenuated & shifted the peak response while the link structural properties opti-
mization has minimized the di�erential barge motions in heave and pitch ensuring wider operational
windows and verifying this work�ow as a proof of concept.
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Chapter 1

Introduction

1.1 North Sea Decommissioning

Projected North Sea decommissioning activity estimates vary, with the most conservative predict-
ing that the market will require more than 30 bn pounds of expenditure before 2040 in the UK
Continental Shelf (UKCS) alone (Sea (2014)). This estimation comes from the fact that oil &
gas companies operating in North Sea have been successfully producing o�shore since the 70's
so virtually all infrastructure put in place will require to be decommissioned within the next few
years (2015-2040; peaking at 2023) in a safe manner, a task that must be carried out in one of the
harshest marine environments (Jamieson (2013)).

Figure 1.1.1: Potential Decomissioning Expenditure (Year-by-Year & Cumulative) 2010-2040Jamieson (2013)

As for the technicalities implemented, the challenge that shapes the decommissioning market
needs lies within the heterogeneity of the types, designs and weights of the o�shore structures
present in the area, while the waterdepth and metocean also varies signi�cantly. However, one can
identify a pattern on a decommissioning sub-market comprised of platforms of certain type and
weight, positioned in shallow waters; more speci�cally, 4 out of 5 North Sea o�shore structures are
�xed with steel substructures in waterdepths ranging from 30 to 75[m] while weighing less than
4, 000 [mt], thus characterized as relatively light steel structures.
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(a) Installation Types in North Sea

(b) Topside & Sustructure Weights in North Sea

Figure 1.1.2: North Sea Installation Types & Weights (OSPAR c,)
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(a) Total Number of Installations

(b) Structures to be decommissioned

Figure 1.1.3: North Sea Installations & Decommissioning Prospects (OSPAR c,)
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The decommissioning approach taken is subject to a comparative assessment by the contrac-
tor, considering the technical feasibility, health, safety & environmental (HSE) impact, economic
implications of each approach, presented as follows:

• Piece-small: The installation is disassembled o�shore by getting cut into small sections that
can be shipped back to shore. This method requires the most o�shore resources (cranes,
lifting devices, automated cutters, tugs, transport barges etc) being time consuming mainly
due to the heavy workload of dismantling. Therefore, it only quali�es as a decommissioning
approach when the topside/substructrure structural integrity is in question. Additionally, it
is a method that may qualify in case that single lift operation is not possible or proper o�shore
equipment is not available.

• Reverse installation: the topside is seperated from the jacket and removed with a single
integrated lift or multiple module lifts by a specialized vessel (semi-sub crane & heavy lift
vessels) while (most of) the substructure is removed with a reverse �oat-over, ultimately
making the whole operation the exactly reversed process of an installation. This method
would require less manual labor o�shore but it still employs a lot of resources and manhours.
Examples of these semi-subs are Heerema's Balder and Thialf, Saipem's S7000 and as for the
heavy lift vessels Seaway's Stanislav Yudin etc.

(a) Balder (b) Stanislav Yudin

Figure 1.1.4: Examples of SSCV and HLV

• Single Lift: The topsides and substructure are removed in one piece and shipped back onshore
for decommissioning and recycling in the yard. Several companies have designs of single lift
decommissioning units but the only vessel being developed is Allseas's Pioneering Spirit, a
382x123m vessel as large as two super tankers and in catamaran shape, able to single lift up
to 48,000 tonnes.

(a) Pioneering Spirit (Catamaran De-
sign)

(b) Versabar (Multibody Concept)

Figure 1.1.5: Single Lift Solutions
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1.2 Research Motivation & Previous In-House Research

The stimulus for Mammoet Innovation department to start the engineering research for a decom-
missioning �oating unit was YME platform removal in 2012, a contract which was �nally awarded
to Allseas. The decommissioning operation will be carried out on a single lift by the Pioneering
Spirit, a gigantic catamaran structure with a capacity to lift more than twice the weight of YME
heavyweight platform (23,000 tonnes). Such engineering solutions are thus considered to be exces-
sively sti� and expensive for the current decommissioning market needs; furthermore, monolithic
structures like the Pioneering Spirit (catamaran) or the Versabar concept (multibody con�gura-
tion - refer to �gure 1.1.5b) serve decommissioning purposes only and cannot be reused in other
o�shore operations, a rationale that con�icts Mammoet philosophy on lean, modular and reusable
engineering multi-purpose solutions.

Its counterproposal, Mammoet O�shore Platform (MOP) complies to this philosophy by introduc-
ing a lighter con�guration consisting of relatively cheap cargo barges upon which hydraulic cranes
are mounted and simple (passive) structural components that couple the barges mechanically. This
solution is investigated under the research hypothesis that by �ne-tuning the structural properties
of the con�guration intermediate components the system hydrodynamic steady-state response will
be manipulated so that the desired operational conditions are met (robust system performance for
a design sea state).

Under that scope, Mammoet Global Engineering B.V. under Henk Jansen started a line of research
on the identi�cation of the wave e�ect on multibody structures, aiming to ultimately come up with
an innovative design that will be tailored for o�shore decommissioning applications. Janssen (2013)
was the �rst to suggest that the frequency domain hydrodynamic analysis carried out in-house
with the radiation-di�raction potential solver Wamit should be identi�ed (�tted) in a linear, time-
invariant state space model, a common tool by control engineers for fast time-domain simulations
and control algorithm synthesis. He accomplished to create a radiation force-to-motion system
subspace identi�cation MATLAB algorithm for multi-input, multi-output (MIMO) systems, such
as the vessel-wave model. The physical constraints (stability, passivity, low- and high-frequency
asymptotic behavior tending to zero) are imported to the algorithm as model properties that con-
strain the identi�ed model. This prior knowledge of the model was successfully enforced onto the
identi�ed radiation models via his constrained frequency-domain subspace identi�cation (CFDSI).

Janssen's line of work was succeded by Wang (2015) who recreated the CFDSI algorithm in Python
work�ow and also accomplished to enforce the model properties to the identi�ed state-space model
with improved accuracy. Wang also tested his algorithm to various case studies that were hydro-
dynamically modeled for the present study, namely one free barge, two mechanically uncoupled
and coupled barges, thus extending the script into multibody cases. Finally, he modeled the tran-
sient dynamics of the coupled topside-lift cylinders-barges system during lift-o�, coming to the
conclusion that if the barges roll is synchronized then the topside heave is attenuated resulting in
a quicker acquisition of the desired safety clearance between the jacket and the topside.
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Benne (2014) made his contribution by elaborating a topside removal market overview, de-
veloping an analysis tool of comparing the di�erent removal methods so to come with the two
qualifying; one would introduce the topside's selfweight as a roll moment via hydraulic cranes to
the barges whereas the other would transfer it to the barges center of gravity (COG) through
gantry beams. Both were hydrodynamically tested and Benne pointed out that the models are
successfully coupled mechanically but that the heave and pitch kinematic constraints (di�erential
heave and pitch motion attenuation) were judged to be "infeasible" for a design signi�cant wave
height of Hs = 1.0 [m].

(a) Scissors (b) Gantry

Figure 1.2.1: Two qualifying methods

1.3 MOP Concept Problem Description

The limiting operational issue identi�ed in the previous in-house research was the hydrodynamic
roll moment acting in asymetric fashion on the barges, resulting in signi�cant shear stresses and
bending moments on the topside when attached to the multibody con�guration. Additionally, in
100% load transfer, topside's weight would add vertical heave forcing on barges while its eccentric
centre of gravity with respect to the barges COG result in structural anti-phase roll moment, super-
imposed to the hydrodynamic heave and roll forces, respectively. The e�ect of the coupled topside
is forcing the barges to rotate into (roll) and drift away (sway) from each other as it is graphically
illustrated in �gure 1.3.1a. Hydrodynamic roll beam forces are expected to be the dominant design
parameter for the con�guration therefore the option of implementing a holonomic constraint to
the transverse direction is chosen by employing two rigid bars so to connect the twin barges. The
barges will therefore roll in a synchronized manner as visualized in �gure 1.3.1b.Throughout the
hydrodynamic analysis, the bars will just be utilized as kinematic constraints, thus being unsti�-
ened and undamped. The kinematic constraint is expected to attenuate and shift the peak roll
response in the frequency domain approach; however if the response is still considered high, proper
performance �lter componentWP will be designed so to properly address the excessive roll motion.
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(a) Assymetric roll moment treated by link (Wang (2015)) (b) Synchronized Roll

Figure 1.3.1: Assymetric Roll Moment & Kinematic Constraint

As for the heave and pitch force response amplitude operators (RAO), they are expected to
be relatively lower in magnitude (which correspond to lower spectral wave energy to be treated)
and dominant in quartering seas; the wave direction of 45 degrees is thus investigated. For theses
degrees, the application of a similar kinematic constraint similar to the one employed in roll degree
of freedom would not be recommended as this would result at an infeasible, sti� design Benne
(2014); alternatively, the di�erential heave normalized by the gap between the barges (abbr. ρ)
and di�erential pitch (abbr. χ), which from now on will be referred as bank and �ip, respectively,
will be treated by tuning the structural properties of the link bars; the link damping will be assumed
constant and will be estimated with respect to the radiation damping while the link sti�ness will
be properly optimized with H∞ synthesis techniques (refer to Chapter 3).

(a) Bank Topside Rotation (2D artist impression) (b) Link Structure

Figure 1.3.2: Bank Topside Rotation & Link Model Visualization
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1.4 Research Question & Thesis Objective

This Thesis poses the following research question: " Would an engineering solution like MOP
(twin crane barges kinematically constrained in roll and sti�ened in heave and pitch) be technically
feasible in terms of operability on a North Sea environment? ". Answering that question, the
interconnected barges-link-waves model will be built up in frequency domain (Phase A - Chapter
2) and state-space representation (Phase B - Chapter 3) where link structural parameters will be
optimized so that the system steady-state response is �tted to the operational requirements. More
speci�cally, MOP technical feasibility study will be assessed via the following Key Performance
Indices:

• Steady-state responce of MOP (without link bars) against two free �oating barges and a
catamaran barge of identical geometry speci�cations; the case study modeling is carried out
in linear potential solver Wamit;

• Steady-state response of MOP (link properties optimized in H∞ synthesis framework) against
the MOP model without the link; the state space modeling and optimization is carried out
in Matlab.

The objective is to successfully model the aforementioned case studies in Phase A and the intercon-
nected system in Phase B which requires the identi�cation of the waves-barges physical processes,
verify numerically that the roll kinematic constraint is reducing the barges peak roll amplitude and
the barges di�erential heave and pitch motion is minimized via the link properties optimization
by selecting the closed-loop transfer function to meet an admissible performance standard g. Ul-
timately, this numerical model work�ow will be veri�ed as a proof of the MOP concept and open
wider conversation for further development in the future.

1.5 Solution Approach & Report Format

For the method used for this application, 3 dual barge case studies will be modeled and simulated
in frequency domain linear radiation & di�raction potential solver Wamit, namely 2 free barges
(Case A1), one catamaran barge (Case A2 - borrowing the idea developed in the Pioneering Spirit
design) and 2 barges constrained in roll via kinematic constraint. The frequency-related output
(hydr. added mass A(jω) and damping B(jω)) will be employed so to derive the radiation and
di�raction state-space models using the subspace identi�cation algorithm (CFDSI) developed by
Janssen. Working entirely in linear, time-invariant, state-space framework, the interconnection be-
tween the wave e�ect, barges and link state-space models will be made. Finally, the link sti�ness
optimization will be delivered by utilizing the non-convex, non-smooth algorithm elaborated by
Apkarian and Noll (2006) and the e�ects of this passive element on the systems behavior will be
illustrated in postprocessing.
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Research Steps

• Model 3 diverse multibody case studies in linear radiation-di�raction solver Wamit; compare
and elaborate on their responses in frequency domain; verify the necessity of designing a
kinematic constraint in roll only;

• Identify the JONSWAP wave spectrum in state-space; the radiation and di�raction state-space
models by using the CFDSI algorithm; build up the state-space model describing the waves-
multibody con�guration interaction (generalized plant P); de�ne the passive link component
with tunable parameters C(θ);

• Apply the H∞ synthesis method to derive the link properties resulting in suboptimal system
performance γ; de�ne performance �lter control component Wp to treat the excessive roll if
needed;

• Simulate the dynamic response of the integrated barges-link model both in frequency and
time-domain.

Figure 1.5.1: Method of Approach Flowchart
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Chapter 2 illustrates the line of thinking behind the case studies modeling in frequency domain
via Wamit solver, determining the hydrodynamic coe�cients which will be the input data for the
identi�cation algorithm used later on and concluding by explaining the modeling choices made
with the help of the motion/force RAO plots produced in postprocessing. Chapter 3 presents the
state-space modeling process with all physical processes identi�ed, how the link is de�ned and the
H∞ optimization tool used; the respective conclusions are drawn with the simulation postprocessed
graphs. Finally, Chapter 4 summarizes the work done in both phases of analysis (hydrodynamics
and H∞ synthesis) and comes to the �nal research conclusions, recommending possible paths for
similar studies in the future.

In Appendices A & B the essential background one needs to cover on ship hydrodynamics and mo-
tion control is provided, in order for readers from di�erent disciplines to get aligned to the research
modeling and simulation (Chapters 2-3) carried out. Appendix A focuses on potential theory
assumptions and describing equations, ship kinematics and kinetics, introduction in multibody
hydrodynamic interactions, wave e�ect state-space identi�cation and model reduction. Appendix
B summarizes the fundamentals on classical feedback control (closed-loop transfer function, eval-
uating closed-loop stability and performance), the de�nitions of a matrix in�nite norm and weight
sensitivity in MIMO models and a synopsis of H∞ control, presenting the classical convex opti-
mization approach and paying more attention to the �xed-order, �xed-structure synthesis approach
used herein, essentially making the problem non-convex; its solution comes through a non-smooth
algorithm developed by Apkarian and Noll (2006).



Chapter 2

MOP Hydrodynamics

The scope of this section is to present the line of thinking leading to the �nal con�guration case
study in terms of system motions in vertical displacement (heave) and in- & out-plane rotations
(roll and pitch) degrees of freedom by ultimately designing a link mechanism with respect to the
following parameters :

• modularity ; the link shall be a separate module easily detachable from the barges, ensur-
ing their maximum independence for other operations and minimum complexity for barge's
optimum mobility;

• cost e�ectiveness ; the link should optimize the engineering compromise made between system
di�erential motions in the aforementioned degrees of freedom while being economically feasible
(minimum steel and damper usage);

• robustness ; the link should drastically broaden the system's operational windows (compared
to the two free barges case study) for a maximum sea state of H1/3 = 3[m], Tz = 9[sec].

At this point of analysis, 3 diverse multibody con�gurations will be modeled and their hydrody-
namic behavior in frequency domain will be evaluated and compared via the postprocessed motion
& force RAO. The goal of this comparison is to visualize the bene�cial e�ect of the roll constraint
to the systems response and also show graphically that the heave and pitch constraints as depicted
in the catamaran case study do not o�er the corresponding added value to a model's hydrody-
namic performance. Therefore, the point made is that a more �exible connection where barges
can heave and pitch independently would be more bene�cial in terms of cost/performance trade
o�. However, the di�erential heave and pitch de�ections are expected to be signi�cant and shall
therefore be treated with passive control (Chapter 3).

11
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2.1 Case Studies Description

First, the barge selection and its geometry dimensions and inertia properties along with the quali-
fying multibody shape con�guration will be brie�y presented. The hydrodynamic behavior of one
unmoored barge will be examined �rst (Run A0); for the sake of economy, the input data will
be shown only once since they will be utilized in all runs in an identical manner; any di�erences
in between runs, if encountered, will be duly noted. The hydrodynamic coupling in between two
identical, unmoored barges (12 DOF's) with an incorporated gap of 65 [m] will be modeled (Run
A1) and compared to the case A0. The objective is to quantitatively estimate the di�raction and
shielding e�ect due to the presence of a multibody con�guration and examine model's validity.

(a) A0 - One Free Barge (b) A1 - Two free barges

Figure 2.1.1: A0 - A1 case studies

The e�ect of mechanical coupling is researched on next; �rst a single-body catamaran barge
(run A2) will be modeled and its responses will be compared to the A1 multibody run. The
catamaran barge is practically a multibody con�guration with all rigid-body degrees of freedom
fully coupled mechanically; therefore the 12DOF system is automatically reduced to a 6DOF. The
added value of this comparison (Runs A1-A2) is that it will provide the upper and lower threshold
values of body amplitude for the �nal case study A3 - semi sti�ened barges, where two identical
unmoored bodies are fully constrained in roll plus all the horizontal DOFs; surge, sway and yaw
degrees of freedom and can vibrate independently to the remaining degrees of heave and pitch. The
�nal model will be a multibody, unmoored, constrained case study with 12 − 4 = 8 degrees of
freedom. The barge's state vector for the �nal case study with respect to a reference frame O
with its origin in the middle of the center line connecting the two barges COG in y axis would be:
b = (x, y, z1, z2, ϕ, θ1, θ2, ψ)T . Ultimately, the resulting RAO of both barges in the �nal case study
should be identical in the mechanically coupled DOFs, both in amplitude and phase, in order to
validate the success of the model process. The challenge in the modeling comes with the Wamit
V7.06 interface, since it does not allow the user to insert kinematic constraints to the system or
facilitate the researcher with a GUI interface (e.g. pick up objects and couple them mechanically
with 3D trusses or rod elements); although the hull geometry generation and interaction is based
on the fundamentals of �nite element method, the user interface is not modular and everything has
to be scripted with proper input �les. The method of imposing kinematic constraints in multibody
con�gurations (K∞ method) will be further elaborated in a separate section below.
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(a) A2 - Catamaran Barge (b) A3 - Semi sti�ened Barges

Figure 2.1.2: A2 - A3 case studies

2.2 Barge Speci�cations

The stimulus for this case study is based on the in-house enquiry for further research and develop-
ment on the topic of o�shore multibody dynamics in the last 2 years. An in-house market research
and preliminary conceptual study has been elaborated in order to come up with this �nal barge
speci�cation (basic dimensions and inertia-ballast properties) and multibody con�guration. Single
medium-sized barge was judged to perform under par, especially in lift o�. As for the di�erent
multibody con�gurations, the strength-weakness-opportunity-threat (SWOT) analysis quali�ed a
two barge con�guration positioned parallel to each other, which is easier to position underneath the
platform and in between the substructure piling and behaves more e�ciently in comparative hy-
drodynamic analysis (ballast & unloaded, ballast and fully loaded) when compared to a T-shaped
or L-shaped barge con�guration.

(a) Single barge with submerged ballast tanks
in Tshape

(b) Two barges in parallel with supporting sub-
merged ballast tanks

Figure 2.2.1: Previous in-house concepts

The con�gurations that were disquali�ed were experiencing resonant low-frequency responses
in roll, sway and pitch DOF when loaded whereas the U-shaped had a smoother and attenuated
response due to its con�guration symmetry, while the 2 �oating bodies provide broader waterplane
area which enhances the con�guration stabilization in vertical degrees of freedom, especially during
the lift-o� phase.

The latter concept suggested that the barges shall approach the supporting structure with their
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aft; this approach causes a high pitching arm, thus unsually high load introduction to the barge.
That operational issue would be overcome by adding extra ballast via submerged tanks attached
to the barges keel. The new concept of mechanically coupled barges with proper passive link
mechanism introduces a distance between the vessels which make it possible for them to properly
maneuver around and place the platform in the middle of the con�guration.

In terms of barge dimensions, the analyses were carried out for case study rectangular box-
shaped barges, based on the speci�cations of Saipem Castoro XI which is considered to be a LFS
(large �oating structure) with 150x40x9 [m]. At this point, the analysis comprises of the geometry
modeling of the con�gurations, solving the radiation/scatter problem in Wamit for the desired
frequency range and wave directionality (w, b) and compares the RAO of di�erent con�gurations
in the DOF of interest. On the table below the barge speci�cations used for the analysis and will
be universally applied in all runs are provided.

(a) Barge basic geometry speci�cations (b) Saipem Castoro XI

Figure 2.2.2: Saipem Castoro XI speci�cations
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2.3 Modeling - Results

2.3.1 Case A0 - One free barge & Case A1 - Two free barges

The one free barge Case A0, is the simplest of all analyses carried out in this framework and
is the basis for all comparisons and assumptions made in this section. The single barge will be
solved both for radiation and di�raction potentials in in�nite waterdepth for 57 discrete wave
periods ranging from 3.0[s] − 30[s] and 19 wave headings (0 − 270

o
) for all 6 rigid body modes.

The barge geometry is given explicitly as input to Wamit through proper FORTRAN subroutine.
The desired output shall be the hydrodynamic radiation added mass and damping coe�cients,
the hydrodynamic scatter (incoming & di�racted) loads, the hydrostatic sti�ness and the barge
motion/force RAO. Finally, bodies COG coordinates, free/�xed modes de�nition, full mass matrix
and external mass, sti�ness damping matrices are added in the force input �le (*.frc). The heave,
roll and pitch RAO are plotted in post processing and produce smooth curves fully corresponding
to a free barge behavior in waves.

Case A1 is based on A0 and the only change implemented is the incorporation of a second
barge with the exact same geometry and inertia properties at a horizontal distance of 65[m] to the
original barge. The heave response in 90o wave direction is slightly distorted due to wave scattering
and shielding e�ects when compared to the single barge case but naturally the amplitude pro�le
remain in the same range of magnitude. The distortion due to the same cause is also visible in the
pitch response in quartering seas (especially 60o). The response magnitude change signi�cantly
in the roll degree of freedom, proving the vessels increased sensitivity to the respective DOF.
Hydrodynamic coupling enhance roll peak response in beam waves by more than 30% although
the vessels distance is rather high but naturally does not shift the vessels fundamental roll period.
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(a) Heave RAO for single barge

(b) Roll RAO for single barge

(c) Pitch RAO for single barge

Figure 2.3.1: Heave, roll & pitch RAO for single barge - Case A0
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(a) Heave RAO for two barges

(b) Roll RAO for two barges

(c) Pitch RAO for two barges

Figure 2.3.2: Heave, roll & pitch RAO for two barges - Case A1
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It is true that the A1-multibody roll response in beam waves is presenting a few discrepancies
(discontinuities that result in narrow peaks) that is explained as follows: the irregularities in the
roll amplitude are explained by the sway, roll and yaw phase pro�les which are coupled according
to the following equation of motion:

a42ÿ + c42ẏ + k42y + (Ixx + a44)ϕ̈+ c44ϕ̇+ k44ϕ+ (−Ixz + a46)ψ̈ + c46ψ̇ + k46ψ = Xw4 (2.3.1)

The phase pro�le for all 3 degrees of freedom keep a constant trend in high period band (T > 12[s])
while signi�cant phase �uctuations are observed in the wave period band (T = 5 − 9[s]), fully
reasoning the phenomenon.
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(a) Sway phase pro�le

(b) Roll phase pro�le

(c) Yaw phase pro�le

Figure 2.3.3: Sway, roll & yaw phase pro�les in two free barges roll RAO in beam waves
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2.3.2 Case A2 - Catamaran barge & Case A3 - constrained barges

In Case A2 both barges hull characteristics remain the same, therefore the system waterplane area
and inertia properties are identical which in turn translates to the same results for the radiation
component of the problem. However, that is not the case in the scatter problem; the two hulls are
clamped with a plate structure on top. As a result, the catamaran roll response is greatly improved
peaking at 1.10[deg/m], merely 10% of the A1 response in the same spectra (9.24[deg/m]) in the
wave period range and the peak response (1.37[deg/m]) is shifted to lower periods Troll(A2) = 4[s]
and out of the wave frequency band Tz = 5 − 9[s]. This improved roll motion behavior however
comes at the expense of higher hydrodynamic loads which require the linking mechanism to be
much sti�er, making the con�guration less mobile and less feasible. This argument is further
elaborated in the coming subsection.
As for the heave response, a low-period spike in beam waves is encountered, a resonant-like behavior
due to the wave trapping in the gap between the catamaran hulls. Sun et al. (2010), explained
the phenomena for �rst-order analysis of resonant free surface responses in gap between adjacent
barges, coming to the conclusion that the resonances experienced in low periods are only visible
in beam waves since they correspond to a standing wave mode that is antisymmetric across the
gap and therefore cannot be excited in the symmetric case of head seas. This mode is causing
unrealistic RAO results in lower periods and this numerical divergence can be dealt with the use of
a free surface damper lid in the horizontal distance between the barges [refer to section A.5;Pauw
et al. (2007); Newman (2004)].Furthermore, at a wave period of Tz = 11[s], a near-zero motion
response is encountered both in heave and pitch for the catamaran at a 60o wave angle of attack
which is best described as the discrete wave period where the near-zero excitation is encountered.
The phenomenon is elaborated for the case of pontoon design for semi-submersible structures
[Newman and Lee (1999)]. The same phenomenon is also described in literature as cancellation
frequency near-resonance.
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(a) Heave RAO for catamaran barge

(b) Roll RAO for catamaran barge

(c) Pitch RAO for catamaran barge

Figure 2.3.4: Heave, roll and pitch RAO for catamaran barge - Case A2
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The modeling scope for the constrained barges - Case A3 is to initiate the creation of an
external sti�ness matrix which will represent the sti�ness added by the link mechanism to the
system. However, the need for absolute coupling of barges in all horizontal motions (surge, sway
& yaw) and roll indicates that the user shall impose identical motions to the respective DOF or,
to be more precise, the di�erential motion of barges in these DOF shall converge to zero. The
sti�ness values in the diagonal and o�-diagonal terms are thus needed to be su�ciently close to
in�nity for the following constraint equation to be met

k∞
d(xi,i−xi,i+6)

dω
= 0, ..for : i = 1, 2, 4, 6 (2.3.2)

The k∞value has no physical representation and is merely a way to impose kinematic link con-
straints in Wamit but it shall correspond (be proportional) to a sti�ness value characteristic of the
system. The sti�ness matrix built-up will be performed step by step by triggering a sti�ness value
proportional to the hydrostatic sti�ness in the vertical direction kz,hyd in every DOF separately,
starting with roll and moving on to the horizontal motions. This proportionality is dictated by a
magni�cation factor n de�ned by the user. The model is solved for the prescribed external sti�-
ness, e.g. in the roll DOF, and the user has to validate whether the RAO amplitude and phase of
both vessels matches completely. Only then the in�nite sti�ness implementation would be valid;
identical response for both barges in a certain sti�ened DOF depicts that there is no di�erential
motion in the respective degree of motion and therefore the (theoretically) k∞ does su�ce.
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Figure 2.3.5: Process �ow chart
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The �nal built-up for the pseudo 12x12 system (8 lines are identical and can subsequently be
deducted to 4 in the �nal system of equations) should look like the matrix tabulated in �gure 2.3.6:

Figure 2.3.6: Global sti�ness matrix assembly

The heave and pitch diagonal terms and their respective inter- and intra- couplings are tabulated
with a red color since they represent the barges-link sti�ness. The �rst value assigned to the
magni�cation factor is n = 10, a solution which was immediately dismissed since the RAO match
in surge/sway/yaw was not possible. However, the roll pro�les were matching (ϕ1 = ϕ2) for
kroll = 1.65e + 12[N/m]. This is a �rst indication that the surge/yaw sti�ness terms need to
be further magni�ed. Through iterations, the �nal value was decided to be n = 1000 which
corresponds to a k∞ = 6e + 10[N/m]. For that value of in�nite sti�ness, it is also con�rmed that
the complete match of surge, sway and yaw responses are identical (x1 = x2, y1 = y2, ψ1 = ψ2).
All discrete sti�ness terms are superimposed to a full matrix where once again a RAO match in
all DOF should occur simultaneously. However, the results for surge and yaw and its coupling
terms were showing a small discrepancy. The linear equation that stands by applying a unitary
displacement xi = 1 (displacement method) is the following:

k∞[(x1 − x2) +
b

2
(ψ1 + ψ2)] = 0

However in principle:

ψ1 = ψ2

At this stage the further magni�cation of the yaw sti�ness was iteratively determined at kψψ =
1.65e+ 16[N/m], which provided a perfect match both in amplitude and phase.
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2.3.3 General Case Studies Postprocessing

The A3 constrained case study was carried out considering that the asymmetric hydrodynamic
roll moments exerted on barges should ideally cancel out each other by imposing proper kinematic
constraint in roll degree of freedom (k∞ principle in Wamit framework). Moreover, di�erential
heave and pitch is expected to be also reduced and could be further treated with proper feedback
motion control (mass-spring-dashpot mechanism) in passive fashion. The roll motion and force
RAO for all cases are shown below and vividly depict the di�erences in response for the di�erent
case studies:

• The single barge case (A0-blue line) is responding in a smooth manner for all degrees of
freedom;

• Two free barges case (A1-red line) is experiencing minor distortions in roll in the wave fre-
quency range due to phase shifts in sway, roll and yaw degrees of freedom caused by the wave
di�raction e�ect while the roll peak response occurs in the same period (Troll(A0) = Troll(A1) =
7[s]) and for 30% higher amplitude as in the single barge case;

• The catamaran case (A2-purple line) is excited at 10% in roll compared to the one free barge
case, exhibiting close to zero motion response at a certain cancellation frequency in heave
and pitch degrees of freedom. This motion performance is highly desirable and exhibits the
necessity for mechanical roll synchronization of barges;

• In sti�ened barges (A3-green line) the roll peak response (5.03 deg/m − 45% lower than in
two free barges) occurs at the same fundamental period (Troll(A3) = Troll(A2) = 4[s]) as the
catamaran barge which validates that the holonomic constraint was successfully implemented
in Wamit. In such manner, by synchronizing the roll DOF, the fundamental roll period is
shifted out of the wave period range, eliminating the resonant behavior of the con�guration
due to the wave e�ect. Additionally, this structural property is achieved by designing a less
sti� mechanism which in turn experiences less hydrodynamic loading as one can see visualized
in the force RAO plots. Thus, the sti�ened con�guration combine the free barges �exibility
and the catamaran motion performance in roll making this solution technically optimized and
feasible.
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Figure 2.3.7: Motion roll RAO
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(a) Force Roll RAO for one single barge (A0),two free (A1) and two coupled (A3) barges

(b) Force roll RAO for catamaran (A2) barge

Figure 2.3.8: Force roll RAO for all cases (beam waves)

As for the heave and pitch, identical comparison plots for all models were made. The catamaran
structure (purple line) is again having near-zero cancellation periods (Tc = 11[s] in both degrees
of freedom) but it is obvious that within the wave frequency band of interest, the attenuation of
motions compared to the other cases is not that signi�cant than in roll DOF. Surprisingly, the
constrained barge (A3-green line) is having a lower pitch peak response compared to the catamaran.
These plots validate that by constraining the barges in heave and pitch degrees of freedom not
much (if any) value is added to the ultimate goal of improved motion performance while on the
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other hand making the link mechanism more cost ine�ective (more steel) and less mobile.

(a) Heave Motion RAO

(b) Heave Force RAO

Figure 2.3.9: Heave motion/force RAO for all case studies (45o of wave direction)



CHAPTER 2. MOP HYDRODYNAMICS 29

(a) Pitch Motion RAO

(b) Pitch Force RAO

Figure 2.3.10: Pitch motion/force RAO for all cases (45
o

of wave direction)
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Remark One has to analyze the numerical output of 3D radiation-di�raction solver with care
and caution. As already pointed out in section A.5, the undamped free surface of a linear (viscous
damping-free) model responds in a non-physical manner in certain eigenfrequencies refered as
irregular frequencies in related literature (Journèe and Massie (2001)). Leakage of the e�ect
of these irregular frequencies to its neighbouring frequency band is occuring due to the body
panel discretization; e�ective methods to reduce the e�ects of irregular frequencies are extensively
reported in the aforementioned section A.5. In this exercise, these irregular frequencies are 'taken
out' of the velocity potential and source strength direct calculation with a simultaneous automatic
free surface discretization.

A representative example of the irregular frequency e�ect is given herein. First, the multibody
simulations were carried out without taking the irregular frequency e�ect into consideration. The
results for a moderate distance in between vessels were indeed worrying but the researcher's full
trust into the (already proved) solver was the reason for trying to physically explain a non-physical
�ow which was simply a modeling error due to the linear assumptions taken (no viscous damping
considered). In an e�ort to validate the irregular frequencies e�ect to the numerical output the
following has been done: the roll RAO of a multibody model of vessels extremely distanced to each
other (260 m) where the hydrodynamic coupling shall be minimal to non-existent, was compared
to a single body roll RAO. The resulting transfer functions should be identical but the following
pro�le was produced tabulating graphically the irregular frequencies e�ect.

Figure 2.3.11: Irregular frequencies e�ect

That note is merely a reference to future research on the multibody hydrodynamic interac-
tions where a more sophisticated (damping 'lid') approach in irregular frequencies treatment is
recommended (refer to section A.5).
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2.4 MOP Hydro Summary

In order for the hydrodynamic assessment of MOP �nal con�guration to be made, motion/force
response analyses were carried out for 3 di�erent case studies. The main design parameters
which will shape the assessment process were presented; then the unique geometries and external
mass/sti�ness properties were given as input to the 3D radiation-di�raction linear solver for the
hydrodynamic added mass and damping coe�cients plus the scatter forces to be determined. More
speci�cally:

• One free barge (A0);

• Two free barges (A1), only hydrodynamically coupled;

• One catamaran barge (A2);

• Two mechanically coupled barges (A3), roll synchronization;

After postprocessing the RAO results the following conclusions are drawn:

• Even though the distance between barges is assumed to be rather high (65m) when compared
to the barges dimension in the transverse direction (40m), the hydrodynamic coupling in beam
waves (90o) in roll degree of freedom is signi�cant (approx.30% higher response). However,
this is not the case for heave and pitch degrees of freedom;

• Implementing motion synchronization in roll, the motion peak is attenuated by 45% while
shifting to lower periods and outside the wave period range, excluding the possibility of
resonant behavior of the con�guration. Furthermore, the use of transparent rigid 3D frame
makes the con�guration less sti� and more mobile when compared to the 100% monolithic
concept of the catamaran, resulting in lower hydrodynamic loading in roll. Finally, one can
see in �g. 2.3.8 that roll hydrodynamic loading is independent of the kinematic constraint
(comparing two free barges to two sti�ened barges) while the catamaran force RAO peak in
roll can be up to 2 orders of magnitude higher.

• Heave and pitch hydrodynamic loading is of the same order of magnitude irrespective of the
con�guration, showing that the, lower in magnitude but of equal importance, di�erential
heave and pitch motions shall be mitigated by an alternative approach.
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MOP Motion Optimization

In the system description so far, station in surge, sway and yaw degrees of freedom are treated via
the constraints employed in the �rst stage of the numerical frequency domain simulation, while
the link contribution to the system is provided solely through a kinematic constraint to the roll
degree of freedom, reducing in total the system order from a 12 to 8 rigid-body DOF. Referring
back to �g. 2.3.6, the heave and pitch sti�ness diagonal terms and their respective inter- and
intra-couplings highlighted in red are deliberately left blank in the hydrodynamic analysis. The
solution investigated in this thesis is the implementation of a passive spring-damper H∞ controller
which bounds the di�erential motions in the aforementioned DOF by minimizing the generalized
plant (structural model interacting with waves and external mooring forces) transfer function. The
theoretical background covered for the scope of this exercise is summarized in Appendix B, mainly
stimulated by the excellent textbooks of Aström and Murray (2010); Skogestad and Postlethwaite
(2007); Zhou et al. (1996); Perez (2006); its implementation to the concept-speci�c applications
are based to the work of Grigoriadis and Skelton (1998); Camino et al. (2003); van Solingen et al.
(2014); Burke et al. (2006); Apkarian et al. (2014) and can be found in section B.3.

In a quick preview, the hydrodynamic coe�cients (added mass A(ω) and damping B(ω)) and
the scatter RAO component for the case with the two constrained barges were utilized to identify
the radiation and scatter state-space model of the wave e�ect which excites the closed-loop system
consisting of the structural model interconnected with the passive H∞ controller which is a�ne to
tunable static parameter θ. The scope herein is to verify that under the current model formulation,
the passive control de�nition and optimization would attenuate the system steady-state response in
heave, roll and pitch to a minimal level. This can be investigated via a "grid search" for parameter
θ which is upon optimization under the criteria given in equations 3.0.1, 3.0.2. Parameter θ is a
non-negative scalar and its optimization shall be investigated within a discrete space. The case

32
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studies that will be simulated and presented in this Chapter are stated below:

• Preliminary case study: In an e�ort to get familiarized with the suggested methodology by
Camino and Apkarian, an elementary case was elaborated for solving an integrated control
and structure problem in the non-convex, non-smooth optimization framework. The case
consists of the structural parameter optimization of a 3-storey building under earthquake
excitation, resembling physically to the task on hand. Another argument for that case study
to be documented is the veri�cation of the numerical results obtained in comparison to the
simulation on the same structural model by Camino on his seminal paper.

• Final case study: Two coupled barges are synchronized in roll via holonomic kinematic con-
straint, while link frame sti�ness and damping parameters in heave and pitch degrees of
freedom are optimized for a prescribed system performance γ; the structural parameters up-
per bounds will be de�ned by the user in two di�erent approaches as explained in section
3.3. The link structural parameters Ks and Cs are extracted from the generalized plant and
become part of a block diagonal controller, a process which can be done by employing LFT
techniques (refer to B.4). This block diagonal controller is optimized via the minimization of
the transfer function Tzw by determining static, constrainted controller K

minK ‖Twz‖∞ < γ (3.0.1)

The notation Tzw expresses the transfer function mapping between the exogenous input and
output and is used as a minimization criteria in MIMO control design. Alternatively, a
mixed-sensitivity S/KS synthesis design approach is pursued, which is comprised of �nding
an admissible controller K which stabilizes the plant and minimizes the in�nite norm of the
following cost functions

minK

∥∥∥∥ WpS
WuKS

∥∥∥∥ < γ (3.0.2)

Findings of both approaches will be documented and compared in terms of optimization
downtime and system performance. Ultimately, structural and control system design are
integrated in the same analysis aiming for the derivation of jointly optimal workable solution
spaces.

(a) Final Case Study: Roll Sync (0% Load Transfer) (b) Final Case Study: Topside Coupling (100% Load Transfer)

Figure 3.0.1: Conceptual Case Study
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3.1 Camino Benchmark Case Validation

This case study is elaborated as an engineering exercise on the joint control and structural pa-
rameters optimization and in order to get familiarized with the essential commands of MATLAB
Robust Control Toolbox [Gu (2005),Gahinet and Apkarian (2011)], namely the parametrization
command realp, the plant-controller interconnection command lft, the H∞ synthesis command
hinfstruct which allows the user to optimize multiple �xed-order, �xed structure, centralized
MIMO controllers through an iterative algorithm based entirely on the bilinear matrix inequality
framework [Apkarian and Noll (2006)] e.t.c. The method allows the mass, damping and sti�-
ness matrices to be freely parameterized while the terms within the aforementioned matrices are
bounded in a realistic manner. The integrated structure and control design is shown to be equiv-
alent to a decentralized (block diagonal) feedback control problem [Camino et al. (2003)] which
consists of the interconnection of the generalized plant (determined by the equations of motion
expressed in state space form) and the �xed-structure controller. The design process is then a two
step approach; a nominal structure is de�ned with all its parameters free (or some of them, a choice
subject to the optimization criteria posed by the researcher); then the structure and the controller
which is a�ne to the structure properties are jointly optimized in iterative fashion according to
H∞ minimization (sub-optimal control).

Problem Statement The system considered in this case study is a 3-storey building modeled
by equal masses connected by spring-dampers to each other and the soil which is excited by a
generalized disturbing force f(t). One can clearly see the similarities between this case study to
the general problem treated in this thesis; in a geometry sense the case study is about 3 masses
connected in series while the �nal case study is about 3 masses connected in a triangle. As for
the external disturbance, the excitation simulates an earthquake since this is a structural design
model having the same e�ect as the hydrodynamic forces exerted on the barges in the �nal case
study.

Figure 3.1.1: Example & Final Case Study Arrangements

The equation of motion for the system described would be:

Mq̈ +Dq̇ + Sq = f(t) (3.1.1)
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where qεRν the vector of the system generalized displacements and velocities; M,D, S ε Rνnν the
mass,damping and sti�ness matrices respectively. The external force f(t) shall be decomposed to
the control input and the disturbance input actuating the system

f(t) = B̃uu(t) + B̃ww(t) (3.1.2)

where the control signal is the system unknown to be determined and the exogenous disturbance
is a white noise process. Changing the system representation in state space by introducing state
vector x = [q, q̇], [

I 0
0 M

]
ẋ =

[
0 I
−S −D

]
x+

[
0

B̃u

]
u+

[
0

B̃w

]
w (3.1.3)

Eẋ = Ax+Buu+Bww (3.1.4)

The building block of this approach shall be that all parameters (mass,damping & sti�ness) are
freely parameterized within certain bounds de�ned by the researcher. In this example all parameter
upper and lower bounds are 2.0 and 0.5 of the nominal values presented in Table 3.1.2. Therefore,
all system parameters have an a�ne representation

M(η) = M0 +
∑
s

ηsMs , D(β) = D0 +
∑
j

βjDj (3.1.5)

S(γ) = S0 +
∑
k

γkSk (3.1.6)

Introducing structural parameter aεR which contains the parameters above leaving the control
input u(t) to be independent, then the descriptor equation 3.1.4 becomes

E(a)ẋ = A(a)x+Buu+Bw(a)w (3.1.7)

Finally, the output nominal performance C0 is de�ned and now the full plant P in state space form
is complete (for simplicity matrix D assumed to be zero). The optimization problem consists in
�nding a �xed-structure 2-by-2 controller K such that the in�nite norm of the forward mapping
Twz is minimized.

Example Illustration The nominal structural parameters for the system presented in Table 3.1.2,
assuming B̃u = I , B̃w = (m1,m2,m3)

Tand the disturbance exogenous input to be a white noise
process with intensity W = 16[m2/s4].

Figure 3.1.2: Nominal Structural Parameters



CHAPTER 3. MOP MOTION OPTIMIZATION 36

Solving the system shown in left side of �gure 3.1.1, the mass matrix is block diagonal M =
diag(m1,m2,m3) and the damping, sti�ness matrices are given

D =

 d1 + d2 −d2 0
−d2 d2 + d3 −d3

0 −d3 d3

 ; S =

 k1 + k2 −k2 0
−k2 k2 + k3 −k3

0 −k3 k3

 (3.1.8)

The output vector C is given

C =


1 0 0 0 0 0
−1 1 0 0 0 0
0 −1 1 0 0 0
0 0 0 1 0 0
0 0 0 −1 1 0
0 0 0 0 −1 1

 (3.1.9)

1. Optimization of k2, d2 In the �rst example considered, the only parameters to be optimized are
the sti�ness and damping coe�cients for the second �oor. By simulating it with the script made
for the cause, a peak in�nite norm of ‖Twz‖∞ = 1.66 is reached after 91 iterations. The structural
parameter a equals to 3.0388 and the structural parameters under consideration have reached their
upper threshold values (k2 = 58186 [kN/m] , d2 = 116 [kN s/m]). The second order controller is
determined to be

K1 =
10009s2 − 1.46s+ 31540

s2 + 1.67s+ 5.81 ∗ 10−8

2. Optimization of all 9 nominal parameters Finally, all 9 structural parameters are set free within
the subset de�ned above. After 117 iterations a peak norm of ‖Twz‖∞ = 1.65 is reached and the
parameter a equals to 51.0877. All 9 parameters reach the upper maxima bound (2 times the
nominal value) and the second order controller along with the closed-loop transfer function bode
plot

K3 =
17620s2 − 21570s+ 29900

s2 + 1.61s− 9.47 ∗ 10−8

Conslusively, the theoretical basis of the methodology as introduced by Grigoriadis and further
elaborated by Camino has been successfully implimated in Matlab scripting, whose end product
is validated by reproducing the case study of mass, sti�ness and damping properties optimization
of a 3-storey building, the same study that was carried out in the seminal paper. The example
also demonstrates the advantage of simultaneous controller and strucural design; by bounding the
desired dynamic response of the structure via a control optimization method, the system performs
(sub)optimally even without the use of active control elements.
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(a) Controller 1 Bode Plot

(b) Controller 2 Bode Plot
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3.2 System Formulation & Structured H∞ Synthesis in Matlab

In this section, the case study closed-loop dynamics formulated in mathematical and block diagram
form (�g. 3.2.1) and modeled accordingly in MATLAB workspace will be presented.

Figure 3.2.1: System in block diagram form

The plant structure will be as follows: the reference input is a white noise signal which excites a
wave (JONSWAP) spectrum �lter, giving the wave elevation corresponding to the seastate at hand
as output (for this case study the analysis is carried out for the seastate Hs = 3.0[m], Tz = 9[s]).
The wave elevation process η(jω) excites the di�raction �lter which provides the di�raction force
vector (the wave force component due to the incoming wave meeting the water piercing body
surface), which in turn stimulates the mechanically coupled barges. The barges displacement and
velocity output signal [x, ẋ] switches on the radiation �lter and the controller (link structural sti�-
ness and damping parameters). In more detail, the generalized plant-controller system de�nition
is comprised of the following tasks:

3.2.1 System States De�nition

De�nition of the system state variables at the barges COG (hydrodynamic reference frame h) and
the full system COG (platform reference frame). The output feedback controller design aims at the
optimization of the link frame structural properties therefore both state system displacements and
velocities are of interest. The two barges heave and pitch degrees of freedom plus the synchronized
roll are adequately describing the full barges-link-platform model. The barges state vector with
respect to the platform-barges frame yx is now updated to:

x = (z1, θ1, z2, θ2, ϕ)T (3.2.1)

The platform in turn will experience a vertical lift plus a roll rotation around x-axis (due to
barges roll and di�erential heave) and a pitch rotation (average and di�erential pitch). Now
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the corresponding platform output state vector can also be de�ned with its parameters directly
correlated to the barges states:

y = (z, ρ, θ, χ, ϕ)T (3.2.2)

lift: z = 1
2
(z1+z2)

lp
(average heave, normalized)

bank: ρ = z1−z2
lp

(di�erential heave, normalized)

tilt: θ = 1
2
(θ1 + θ2) (average pitch)

�ip: χ = θ1 − θ2 (di�erential pitch)
roll: ϕ (synchronized roll)

Lift and bank are normalized by the distance lp between the two barges COG. The transformation
from barges-to-platform frame of reference relation can also be expressed in matrix form:

y = Hyxx (3.2.3)

Hyx =


1
2
l−1p 0 1

2
l−1p 0 0

l−1p 0 −l−1p 0 0
0 1

2
0 1

2
0

0 1 0 −1 0
0 0 0 0 1

 (3.2.4)

3.2.2 Wave Elevation Process

De�nition and identi�cation of the elevation process η(jω) which will be the system's exogenous
input. This wave elevation function η(jω) will be derived by white noise �ltering, the �lter being
a state-space identi�cation of the JONSWAP spectrum (refer to section A.2) as follows:

Hηw =

(
z

cz2 + 2bz + 1

)4

;
c = 1.121
b = −0.458

[Jansen, 2015]

ṡ = Anws+Bnww (3.2.5)

η = Cnws+Dnww (3.2.6)

3.2.3 Radiation and Di�raction Filter Subspace Identi�cation

State-space identi�cation of the radiation Hrx and di�raction Hdη problem via subspace system
identi�cation method (refer to section A.6 and equations A.6.8-A.6.11,A.6.12-A.6.14;Wang (2015))
and the necessary model reduction with balanced residualization techniques (refer to subsection
A.7). The need for exquisite subspace identi�cation state space model accuracy in the works of
Wang, resulted in the maximum use of the convex optimization solver capacity which can identify
up to 24 internal states per degree of freedom, leading to high order systems even for models of
moderate complexity. In this case, only 6 degrees of freedom are of interest (heave-roll-pitch for a
2-body model) leading to a hydrodynamic model of 265 internal states in total (121 describing the
di�raction hydr. force dynamics and 144 for the radiation force dynamics). The scope is therefore
to reduce the model state count without accuracy loss. The balanced residualization explained in
sub.A.7 results in the model reduction by 186 states as shown in the �gure below
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(a) Radiation model order reduction

(b) Di�raction model order reduction

Figure 3.2.2: Model reduction via balanced residualization methods
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3.2.4 Barges Second Order System

Formulation of the barge structural transfer function HxF , which receives the total hydrodynamic
force as input and provide the barge state variables (displacements and velocities) as output. The
barge equation of motion requires the derivation of the full mass and sti�ness matrix analytically
and the expression of the set of equations in state space form. In this case study, the barge
hydrostatic sti�ness is already a given through numerical solver Wamit therefore only the analytical
derivation of the mass matrix is required. Since the h-frame is inertial, the barge vector equation
of motion in this frame will be Perez (2006):

Mhξ̈ = τhhyd (3.2.7)

The matrix Mh is the generalized rigid-body matrix with respect to the hydrodynamic frame and
has been expressed in equation A.4.5. Finally, the second order system HxF in state space form:

ẋ =

[
0 I

−Kh/Mh −Ch/Mh

]
x+

[
0

I/Mh

]
Fr +

[
0

I/Mh

]
Fd (3.2.8)

where the hydrostatic sti�ness Kh and full mass matrix are non-zero terms already determined
while the damping matrix Ch is zero, describing the internal barge dynamics. The radiation and
di�raction wave forces will be fed as input to the barge state space model. The model outputs
are the barge displacements and velocities. The heave-roll hydrostatic coupling is shown in the
�gure below where the barge frequency response functions for the heave, roll and pitch degrees of
freedom have been plotted.

Figure 3.2.3: Heave, roll and pitch structural modes for 1 barge
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3.2.5 Controller K De�nition

De�ne diagonal controller K. The non-negative sti�ness and damping terms of the link positioned
in between the barges are extracted from the generalized equations of motion and become elements
of a decentralized, static, �xed-structured controller K. Depending on the engineering scope of
the optimization, the decision on which parameters are about to be free/�xed in the optimization
process is determined. Heave, roll and pitch are the DOF of interest for the scope of this con-
trol simulation therefore the 2-body structural model is a set of 6 ODE equations. However, the
sti�ness and damping terms of the link need to be explicitly expressed in the K matrix making
it a 12$ × $12. The roll synchronization has already been modeled in the hydrodynamic part of
the analysis as a holonomic kinematic constraint and the synchronous roll motion is proven to be
signi�cantly attenuated (1[deg/m] on contrast to the roll motion for the mechanically uncoupled
barges that reaches a resonant response of 9[deg/m] in the wave band of interest - Tz = 5− 9[s]).
Therefore, it is chosen to keep the link roll sti�ness and damping terms out of the optimization and
thus �xed. However, the heave-roll motion coupling dictates that the new, optimized system would
attenuate the di�erential heave motion which in turn result in a respective attenuation of the roll
motion. The 'strength' of this coupling will be depicted by the roll peak response attenuation in
the frequency response plots of the closed-loop transfer function PK(jω).

Furthermore, the parameter values need to be bounded so to be within the scale of the sys-
tem's physical quantities; i.e the maximum link sti�ness values will be determined with respect to
the hydrostatic sti�ness of one barge in the corresponding degree of freedom and the maximum
link damping will be shaped by using the logarithmic decrement method for the barge-radiation
model inteconnected system. This method is used so to measure the damping ratio for linear
underdamped models like the radiation �lter identi�ed for the scope of this reasearch. The decay
response in time can be casted in the form of

x(t) = Xexp(−ζωnt)sin(ωdt+ ϕ) (3.2.9)

where X is the amplitude in [m], ζ = c
2
√
km

is the damping ratio, ωd = ωn
√

1− ζ2 is the damped

frequency and �nally ϕ is the phase angle of the damped oscillations. The logarithmic decrement
δ is merely the logarithmic ratio of any two successive peaks of the time domain system transient
response due to initial conditions de�ned by the user

δ =
1

n
ln

(
x(t)

x(t+ nT )

)
, n : integer of successive peaks (3.2.10)

and the damping ratio can thus be calculated by the formula:

ζ =
1√

1 +
(
2π
δ

)2 (3.2.11)

Free vibrations in the barges heave and pitch degrees of freedom were carried out under the
following initial conditions:

• Heave: z0 = 1[m], ż0 = 0[m/s]

• Pitch: θ0 = 1[deg],θ̇0 = 0[deg/s]
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The transient response under the e�ect of the initial displacement and rotation is presented in the
�gure below. The damping ratio calculated via the equations 3.2.10-3.2.11 is ζheave = 0.9% ; ζpitch =
2.4% resulting in damping values of cheave = 2.15E6[Nm/s] and cpitch = 7.01E9[Nrad/s], respec-
tively.
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(a) Heave response to initial conditions z0 = 1[m], ż0 = 0[m/s]

(b) Pitch response to initial conditions θ0 = 1[deg], θ̇0 = 0[deg/s]

Figure 3.2.4: Free decay responce in heave & pitch
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3.2.6 Roll Performance Filter

Choice of appropriate weight function for closed-loop performance Wp. Refering to subsection
B.1, the de�nition and application of the band-pass �lter has been given (eq. B.1.16). Assuming
that the motion control mechanism attenuates e�ectively the bank and �ip rotation around the
platform reference frame but the system performance is still considered below par, a penalty can
be de�ned around the band of interest. For example, if system roll response needs to be further
reduced, a band-pass �lter of the form

Band Pass F ilter :

(
s

s2 + 2ωBζBs+ ω2
B

)n
(3.2.12)

could be imposed, where ωB shall be equal to the fundamental roll frequency of the structrure
(ωroll = 0.703 [rad/s]) and ζB the damping ratio regulating the maximum allowable roll response
around the resonant frequency. The choice of the �lter order (integer n) depends on how quick
roll-o� is required. The inverse bode plot of a 12-order band pass �lter for a damping ratio ζB = 0.3
is shown in the �gure below.

Figure 3.2.5: Band-pass �lter

The control e�ort �lter for heave and pitch DOF will be a scalar transfer function. The re-
maining steps comprised of the assembly of the aforementioned building blocks into the system
generalized plant P
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Figure 3.2.6: Radiation �lter (block diagram form)

, the generalized plant and controller interconnection into standardized representation also
refered to as Standard Form Gahinet and Apkarian (2011) and the implementation ofH∞ controller
synthesis (use of hinfstruct optimization algorithm, [Apkarian and Noll (2006)]) for the Twz and
the mixed-sensitivity cost functions.
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3.3 H∞ Motion Optimization for MOP

In this section the integrated structural and control design concept as formulated by Grigoriadis
will be incorporated in a Matlab numerical work�ow where the optimization process will be car-
ried out under the nonsmooth algorithm developed by Apkarian (hinfstruct - Robust Control
Toolbox). The generalized plant describing the kinematically constrained barges - waves interac-
tion as described and visualized in section 3.2 is now interconnected with the static, structured
controller C as de�ned in section B.2 which is de�ned as such to provide the optimized link struc-
tural parameters (sti�ness-damping) that correspond to a system allowable steady-state response
in the DOF of interest. The scope of this case study is to investigate the e�ect of a rigid link
connecting (sti�ening and damping out) the con�guration by comparing the system response to
the constrained barges case in the previous chapter (Case A3). The veri�cation of the bene�cial
e�ect of the link through this numerical modeling and simulation shall work as a proof of concept
for MOP design.

In the system de�nition, the roll kinematic holonomic constraint is implemented as follows

ϕ1 = ϕ2 (3.3.1)

where holonomic is considered to be any constraint whose expression can be integrated in the form
of displacements, i.e. dependent only in (x, t). In case that the (synchronous) roll response is still
higher than desired, a band pass WP �lter will be applied so to eliminate any resudual roll motion.
The link structural properties will be optimized entirely in the H∞ framework (refer to section
B.2) while the e�ect on the system steady-state de�ection will be tabulated both in the frequency
and time domain. A grid search on the system performance in terms of its cost functions in�nite
norm will be carried out for various sets of heave-pitch link sti�ness and the rationale towards the
optimum solution will be given.

The equation of motion describing the barges-link-waves interactions in the frequency domain
will be in the form

Mb ∗ ẍ(jω) + [CS + Cb] ∗ ẋ(jω) + FR(ẋ) + [KS +Kb] ∗ x(jω) = FD(η) + Fu + Fext (3.3.2)

where:
Mb: barge full mass matrix
CS: link structural damping
Cb : barge damping matrix
FR : radiation force state space model
KS: link structural sti�ness
Kb : barge-platform sti�ness matrix
FD: di�raction force state space model
Fu : actuator force (active controller)
Fext: external force vector (mooring forces, dynamic positioning e.t.c.)
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The barges full mass and hydrostatic sti�ness matrix are already determined via the hydrody-
namic Wamit simulation along with the scatter wave forces, properly identi�ed in state space for
postprocessing. The external force vector Fext would be relevant if the horizontal DOF were in the
optimization loop which is not the case in this study. However, the mooring forces could be also
treated in the provided framework for a full, non-linear simulation. The same point can be made
for the actuator force vector; an active control element for heave and pitch motion compensation
could be designed in the H∞ synthesis work�ow so to compensate for the dynamic ripple that ex-
cites the system in transient dynamics (lift-o�). In this case, the active compensation is assumed
to be taken of care by the cranes hydraulic lift cylinders attached on the barges deckspace and is
therefore not accounted for; nonetheless, the aforementioned case study has been already carried
out and documented in the work of Wang (2015).

Since the system has been formulated in state space form and implemented in Matlab script-
ing, a grid search for discrete values of the parameter θ is performed. It has to be noted that for
the visualization plots employed in this section, the link sti�ness value in heave and pitch is 35
times higher than the corresponding hydrostatic values in the respective degrees of freedom. It will
be later shown that this value (θ = 35) is arguably the optimum point in the link sti�ness-system
performance trade-o�. In �gure 3.3.1 the heave, roll and pitch frequency response functions are
plotted for two discrete solutions; �rst the "uncontrolled" scenario where the two barges are just
kinematically coupled in roll and is tabulated in blue color and then the "optimized" scenario
where the H∞ synthesis is applied (red curve). By pure inspection it is clear that by employing
su�cient sti�ness in heave degree of freedom (Kz = 2.1E9 [N/m]) the resonant heave response is
completely smoothed out, a fact that has an e�ect on the roll peak response as well due to hydro-
dynamic heave-roll coupling; by completely attenuating the dominant di�erential heave motion of
both barges the roll spectral peak is pushed down while the secondary peaks due to coupling are
extinguished completely, validating that the H∞ principle has been successfully implemented in
the MIMO cost function at hand.
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Figure 3.3.1: Heave, Roll & Pitch Frequency Response Function with and without link
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However, a time domain simulation may re�ect the soothing e�ect of the link more e�ciently.
In �gure 3.3.2 the time response of the linked barges in irregular wave excitation is presented.
The simulation sampling time is t = 200[s] and the heave, roll and pitch for each barge are the 6
responses shown, respectively. It can be readily concluded that in both roll responses (second and
�fth simulation) the "uncontrolled" and "controlled" scenario behavior is almost identical, showing
that the roll spectral peak attenuation due to the sti�ened link does not necessarily mean that the
roll amplitude will be seriously attenuated. The validation that the roll kinematic constraint is
successfully implemented is given via the di�erential roll response between barges (the roll that the
link is experiencing) in �gure 3.3.3. The di�erential roll in the "uncontrolled" case has a maximum
amplitude of 2.5E− 4, a number considered to be in the area of numerical error. It can be further
noted that the �rst (windward) barge is heaving more (approx. 0.5[m]) than the leeward barge
(less than 0.1[m]) as expected, while the leeward barge is pitching more due to wave trapping and
higher sensitivity to weathervaning, i.e. the passive change of heading of a �oating structure due
to environmental action.

Figure 3.3.2: System Response to Irregular Waves Hs = 3.0[m], T z = 9[s]

It has been already argued that during the decommissioning operation, the topside experiences
a rotational de�ection from static equilibrium as a result of the normalized di�erential heave (bank)
and di�erential pitch (�ip). In �gure 3.3.4, bank and �ip time simulation for both scenarios has
been visualized.
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Figure 3.3.3: Validation of Mechanical Roll Coupling

Figure 3.3.4: Bank - Flip Response to Irregular Waves Hs = 3.0[m], T z = 9[s]

As expected, the link added sti�ness causes a phase shift to the system response while the link
material damping (cheave = 2.15E6[Nm/s] and cpitch = 7.01E9[Nrad/s]) attenuates the topside
rotation due to barge de�ection to a minimal level. Therefore, in case that this scenario (θ = 35)
is adapted in next design phase, no further performance shaping of the heave and pitch transfer
function is required.
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As for the roll system response, the maximum dynamic response in a su�ciently long time in-
terval of 1000 [s], considering that the system fundamental roll period is around 9 [s], is somewhat
higher than 1.3 [deg/m] resulting in excessive topside rotation. This de�ection can be treated by
using proper band-pass �lter Wp

Wp =

(
s

s2 + 2 ∗ 0.703 ∗ 0.3 ∗ s+ 0.7032

)6

(3.3.3)

(refer back to �gure 3.2.5) with its peak frequency equal to the �rst roll frequency (ωB = ωroll,1 =
0.703 [rad/s]). The band-pass performance �lter e�ect in roll degree of freedom in both frequency
and time domain is depicted in the �gure below. It can be concluded that an performance �lter
whose dynamics are described by the given transfer function can e�ectively reduce the residual roll
response within acceptable levels (< 0.1 [deg/m]) while working entirely in the H∞ framework.

Figure 3.3.5: Synchronous Roll Response with Wp performance weight (Frequency and Time Domain)
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The results so far illustrate the sti�ness solution set of [Kz, Kθ] for the case where θ = 35.
Under the �rst optimization criterion, the system optimization is carried out for only one cost
function (that is the w → z white noise to platform motions forward mapping) and as a result
the system converges su�ciently fast (' 35 [sec]) to a local solution with good sub-optimal per-
formance (γ1 = 1.07). As for the second criterion, a S/KS mixed sensitivity stacked approach of
employing band-pass �ltering to roll DOF and control e�ort penalty in heave and pitch of each
barge is applied, resulting in a 'stack' of 5 cost functions that need to be optimized under the
H∞ synthesis method. The existence of multiple cost functions rises the computational time of
the optimization algorithm exponentially (in the area of 5-10 minutes), while the output system
is underperforming (γ2 = 2, 94) mainly due to the fact that the algorithm output provides an
admissible 'controller' where the heave material damping is zero (for computational results see the
table below). Therefore the latter approach is dismissed and the optimization of Twz with proper
bounding of parameters is qualifying.

Link Structural Properties (j=35)

C(i,i) Standard Approach (Twz) Mixed Sensitivity Approach (S/KS)
Kz1 2.10E+09 [N/m] 2.10E+09 [N/m]
Kθ1 3.92E+12 [N/rad] 2.23E+12 [N/rad]
Kz2 2.10E+09 [N/m] 4.06E+08 [N/m]
Kθ2 3.92E+12 [N/rad] 2.14E+11 [N/rad]
Cz1 2.15E+06 [Ns/m] 0
Cθ1 7.01E+09 [Ns/rad] 2.06E+09 [Ns/rad]
Cz2 2.15E+06 [Ns/m] 0
Cθ2 7.01E+09 [Ns/rad] 4.27E+09 [Ns/rad]

Table 3.1: Comparison of link structural properties output under di�erent solution approaches (θ = 35)
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The last point in the analysis work�ow concerns the system performance improvement (attenu-
ation of roll, bank and �ip response) for varying parameter θ, i.e. increasing link material sti�ness
connecting the two barges COG under the assumption that link material damping is kept con-
stant. As expected, for a 'soft' link design (θ ε [2, 8]) the barges are still behaving independently
resulting in poor system performance (γi = 7.94). However, as the link sti�ness a�ne parameter
becomes moderate (θ ε [10, 30]), a sharply improved performance is noted, interpreted in drasti-
cally improved system's de�ections in all DOF of interest. Finally, for values of θ > 35, the design
performance ‖Twz‖∞ stabilizes in a narrow performance band between 0.95 and 1.07, making it
technically infeasible to "go" for a design with sti�ness parameter values higher than the ones
tabulated in Table 3.1.

These optimized solution sets of [Kz, Kθ] with respect to the Twz in�nite norm could be percieved
as optimal design points that can all be go forward to design phase depending on the operational
market requirements and can ultimately be �tted in a solution curve, also know as Pareto optimal
e�ciency frontier, after Vilfredo Pareto (1848�1923). This frontier signi�es the optimal allocation
of resources, namely link structural design and system performance in terms of platform de�ections,
that can be engineered for a given problem. The illustration of this optimization �ow along with
the optimal design point corresponding to the parameter values of Table 3.1 is presented in Figure
3.3.6.

Figure 3.3.6: Grid Search for various Kz,Kθ solution sets (varying θ)
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Finally, the argument that the solution corresponding to θ = 35 is optimal can also be visualized
via the frequency response functions and time domain simulations for di�erent solutions, i.e. choice
of small (θ = 6), moderate (θ = 35) an high values (θ = 60) of the tunable parameter.

(a) Heave FRF for varying θ

(b) Roll FRF for varying θ

Figure 3.3.7: System Frequency Response Function for varying θ

In heave frequency response function, a 'weak' link connection would attenuate the peak re-
sponse but only for a moderate value the peak would be smoothed out (H∞ scope). However a
sti�er connection would barely contribute a change as shown by the 60x solution (purple curve).
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Similarly for the roll frequency response function, a weak spring-dashpot passive connection is only
slightly reducing the maximum roll amplitude amplitude but the optimum solution of θ = 35 can
cause the roll peak response to be rounded o� in the range of 1.3 [deg/m].

(a) Bank Response for varying θ

(b) Flip Response for varying θ

Figure 3.3.8: System Time Domain Simulations for varying θ
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Similar conclusions can be drawn via the time domain simulations of the topside bank and �ip
response where the θ = 35 solution is bringing a near-zero rotation for both states and obviously
a sti�er solution cannot contribute better station.

Conclusively, the system descriptor dynamics (JONSWAP wave spectrum, radiation and di�raction
wave e�ect subspace identi�cation, barge modeling and link de�nition as a structured, zero order,
decentralized "control" element) and kinematics (holonomic roll constraint for barge synchroniza-
tion) were implemented successfully in MATLAB work�ow along with the design of a performance
�lter element attenuating the residual �rst-order roll motion, described by a band-pass �lter WP ,
while the di�erential heave and pitch motion is reduced to a minimal level by adding a passive
link whose parameters are a�ne to tunable parameter θ, optimized entirely in the H∞ framework.
As a result, the �nal multibody con�guration ensures the required station keeping in steady state
conditions (phase just before lift cylinder pretension and just after the barges-topside transient
dynamics have been extinguished when fully coupled); the dynamics during lift-o� have been ex-
tensively studied and respective analysis have been carried out in the works of Wang (2015)).

The passive link structural properties as derived via the system optimization plus the roll per-
formance �lter is the suggested combination of solutions for the attenuation of the system steady
state response and their soothing e�ect has been veri�ed in postprocessing, making this numerical
work�ow a proof of the MOP concept.



Chapter 4

Summary, Conclusions &

Recommendations

In this Thesis a comprehensive approach on frequency domain analysis of mechanically coupled
barges is made. The �rst part of the analysis consists of modeling diverse multibody con�gurations
and compare their dynamic frequency response functions (FRF/RAO); more speci�cally the e�ect
of a roll kinematic constraint in between barges-Case A3 is presented while its FRF is compared
to the case of two freely �oating barges and that of a catamaran barge con�guration.
In the second part the barges-wave model is built up on a state space representation in Matlab; by
successfully identifying the radiation and di�raction wave e�ect via constrained subspace identi�-
cation algorithm tailored for this application by Janssen (2013), a new, linear time-invariant model
describing the barges-wave interaction has been developed. The main objective then is to mini-
mize the system steady-state response in (synchronized) roll, barges di�erential heave (denoted as
ρ; bank) and di�erential pitch (denoted as χ; �ip), the states that the topside will experience in
stationary phase of the decommissioning operation, when fully coupled to the �oating unit. To
do so, rigid bars linking the barges are introduced with their structural properties optimized and
their threshold values are derived as follows:

• link material damping is calculated by employing the logarithmic decrement method to the
barges-radiation �lter interconnection model; in other words, the link material damping is
designed with respect to the single barge radiation damping;

• link material sti�ness is up for optimization: a passive controller is de�ned within a static,
tunable, �xed structure format. The sti�ness values of this suboptimal algorithm are the
components of an admissible controller derived under the following cost function minimization
minK ‖Twz‖∞ < γ.

Based on the simulations presented in Chapters 2,3, the following research conclusions and recom-
mendations for future studies can be drawn:

4.1 Conclusions

1. In the frequency domain simulation of the 3 multibody case studies, one can see that the
hydrodynamic roll-roll coupling of the free �oating barges (due to wave di�raction) is rather
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strong, increasing the peak roll response by 30% in beam waves, compared to the correspond-
ing response of one free �oating barge, although the 65[m] distance between barges is rather
high. However, this is not the case for heave and pitch degrees of freedom; heave-heave and
pitch-pitch couplings are quite weak to non-existent as all simulations have very similar re-
sponses when compared to the one barge response. That conclusion was a �rst good indicator
that roll hydrodynamic loading is the single design limiting parameter in terms of operability.
The roll constraint is therefore deemed necessary.

2. The catamaran design is exhibiting very low roll motion response (10% of the roll response
of one freely �oating barge) as expected due to relatively higher con�guration sti�ness in
all DOF; also one has to point out that the close-to-zero response at a certain period (anti-
resonance or cancellation period in the literature) has also been veri�ed by the model simula-
tions, a desirable property of catamaran and semi-sub structures upon which its hull/pontoon
dimension design is based; however, due to its sti� design, the catamaran experiences higher
environmental forces (up to 2 orders of magnitude higher when compared to the other con�g-
urations), proving that this design requires more steel while making the design less agile and
di�cult to position between the jacket legs.

3. The roll constrained barges exhibit a roll motion response attenuated by 45% when compared
to the two free �oating barges but most importantly, the peak response is shifted to lower
periods and consequently out of the wave period range, thus excluding the possibility of
roll resonant responses throughout the operation while in steady-state. Conclusively, the
enforced roll synchronization results in roll motion optimization without adding extra sti�ness
to the model, resulting to a lighter design when compared to the catamaran concept which
experiences less environmental loading.

4. In the frequency domain postprocessing of the state-space model scripted in Matlab, the
system response optimization with respect to the link minimum material sti�ness has been
successfully implemented as shown in Figure 3.3.1; the barge peak heave response has been
completely smoothed and this has an e�ect also on the roll peak response which is hydrody-
namically coupled with heave.

5. In the time-domain postprocessing, one can once more validate the successful implementation
of the roll kinematic constraint (Fig.3.3.2) and di�erential heave and pitch motion attenuation
to a minimal level via adding the passive element optimized on H∞ framework (Fig.3.3.4).
Furthermore, the residual roll response (after synchronization) is just over 1.3[deg/m] and fur-
ther attenuation is required; a performance �lter component whose dynamics were described
by a band pass �lter tuned on the roll channel was successfully applied so to properly treat
these residual motions (Fig.3.3.5). Finally, a grid search was carried out so to determine the
optimal [θ, ‖Twz‖∞] trade-o� which correspond to the link material sti�ness values presented
in Table 3.1.

The roll kinematic constraint and respective performance band-pass �lter WP along with the bank
and �ip motion optimization via the H∞ algorithm, lead to a multibody con�guration with optimized
motion steady-state response, yielding robust operational windows for decommissioning purposes
and thus being a numerical proof of the MOP concept which can be further developed in-house.
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4.2 Recommendations

1. Wamit includes the capability to analyze generalized modes of body motion thus extending be-
yond the classical six degrees rigid-body degrees of translation and rotation; these generalized
modes can be de�ned so to describe and calculate structural deformations (applications on
hydroelasticity for very long structures where body deformation is of essense) and motions of
hinged bodies just like the case studied in this piece of research. Finally, the modeling imple-
mentation of a �exible damping lid in the free surface in between the vessels would account
for the viscous damping that the linear solver cannot capture, yielding realistic responses.
However, this approach requires deep knowledge of the Wamit software, good fundamentals
in FORTRAN programming and background on hydroelasticity and multibody dynamics;

2. The plant-controller model carried out in Matlab ensures minimal stability and performance
since no model uncertainty is considered; however the wave elevation signal derived from
white noise �ltering and transient dynamics during decommissioning lift-o� should de�nitely
pose uncertainty to the describing model. Therefore, the recreation of this linear model with
uncertainty is recommended to be elaborated in the future;

3. The generalized plant P is a 12 x 1 non-square matrix (one white noise input; heave, roll and
pitch displacement and velocity vector for each barge yielding a 12-channel output vector),
which is in principle non-invertible. Therefore the de�nition of the sensitivity and comple-
mentary sensitivity function can be accomplished via the use of the pseudoinverse matrix.
However, this approach may yield unrealistic system singular values in decomposition pro-
cess, also a�ecting the �nal result and weight choice. That is why a more conservative mixed
S/KS sensitivity approach is taken with a stack of 5 scalar cost functions. As a consequence
the �nal optimization result is a poor performance estimate while the script computational
time has risen exponentially. It is thus clear that S/KS mixed sensitivity approach shall be
recasted for more precise derivation (and thus more techniqually feasible) of link structural
properties.

4. The case studies catalogue shall be extended by simulating the dynamic response of the model
in transient lift-o� phase so to note how faster the system would reach steady state because
of the passive link added to the model or the e�ect of roll compensation so to attenuate
the residual roll motions; these dynamic simulation results could also be compared to the
respective simulations of Wang and validate that both approaches converge to the same end
result.



Appendix A

Ship Hydrodynamics

O�shore structures are experiencing external forcing induced either by the surrounding environ-
ment (waves, wind and current) or by engineering practices in order to keep the structure in course
for the desired operation (mooring con�guration or dynamic positioning for the horizontal excur-
sions and rotation, control forces by actuators for the vertical motions etc.). For the particular
barge structure under examination, the wave excitation is considered to be the dominant envi-
ronmental disturbance and it is necessary to explicitly describe the wave modeling approach both
analytically and numerically. This chapter aims in a brief but complete synopsis of the funda-
mental principles, assumptions and applications of 3-dimensional wave potential theory in section
A.1, the modeling of young and vigorous irregular seas which best describe the sea behavior in
North Sea (JONSWAP spectrum - section A.2), summarizing the essential background on ship
kinematics, which describe the geometry aspect of body motion in waves (section A.3) and ship
kinetics; the wave force e�ect to body motion (section A.4) distinguished and further explained in
the following two sub-problems:

• the radiation problem (or ship forced excitation in calm waters) which provides the potential
�ow hydrodynamic coe�cients, namely the added mass (Aij) and the potential damping (Bij)
and

• the scatter problem (or vessel response to incident & di�racted wave action when stationary)
which provides the generalized force vector to the inhomogeneous set of di�erential equations

Additionally, the theory behind the wave response amplitude operator (motion & force transfer
function known as RAO) is provided. Furthermore, the 3D potential theory implementation in
Wamit linear radiation/di�raction solver is presented and its main input-output �les will be in-
troduced and explained in order to familiarize the reader with the line of thinking narrated in the
main body of this report. The �les that will be presented are:

• Input �les: potential control �le (*.pot); geometry data �le (*.gdf); con�guration �le (*.cfg);
force control �le alternative forms 1 & 2 (*.frc)

• Output �les: intermediate data transfer �le (*.p2f); formatted output �le (*.out); auxiliary
�les for barge hydrostatic (*.hst) and inertia, damping and sti�ness properties (*.mmx)

In section A.5 the importance of simulating a full 3D radiation-di�raction model so to depict the
hydrodynamic interaction of bodies in proximity and the points that need special attention during
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the numerical implementation are highlighted. Finally, the subspace identi�cation approach used
for the derivation of radiation-di�raction state space models and the corresponding methods used
for their internal state reduction with no loss of information is presented in sections 2.6 & 2.7,
respectively.

A.1 Potential Theory Assumptions

The fundamental principle of potential �uid �ow is that the �owing material is considered to be
continuous, homogeneous, inviscid and incompressible (constant �uid density r), while the surface
tension may be neglected for a conservative system linear analysis. Therefore if a di�erential
�uid element with block dimensions dx, dy, dz is considered , the equation of conservation of mass
(continuity equation) will be:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (A.1.1)

where u,v and w are the components of the �uid velocity vector in x,y and z directions, respectively.
By introducing the velocity potential F, a parameter which has no physical representation to the
�uid �ow but is vital for the calculation of the �uid velocity vector later on in the analysis, with the
property that the velocity component in any direction is merely the derivative of the F function
to the very same direction:

u =
∂F

∂x
; v =

∂F

∂y
;w =

∂F

∂z
(A.1.2)

Then, if the velocity potential components are substituted to the continuity equation, the Laplace
Equation for potential �ows is derived:

∇2F = 0 (A.1.3)

Additionally, via the application of the inviscous �ow assumption to Newton's second law (
−→
f =

m ∗ −→a ), the Euler equations of �uid �ow are obtained:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −1

ρ

∂p

∂x
(A.1.4)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −1

ρ

∂p

∂y
(A.1.5)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −1

ρ

∂p

∂z
(A.1.6)

This assumption is valid for all stream lines except the ones within a small sublayer close to the
hull surface where nonlinear (viscous) e�ects take place. Finally by neglecting the friction within
the �uid elements constituting the �ow, no energy dissipation occurs (the system is conservative),
the Bernoulli equation for a stationary �ow along a stream line Y, is provided:

V 2

2g
+

p

ρg
+ z = constant (A.1.7)
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a formula which is used for the �uid pressure calculation on the structure (barge hull). The
integration of �uid pressure along the body hull with a higher order panel method results to the
hydrodynamic forces acting on the body used for the system equation of motion formulation in
frequency domain. Now that the �uid �ow assumptions are fully de�ned, it remains to de�ne how
this �uid interacts with its surroundings, namely the sea bed (z = −h), the free surface (z = 0)
and the �oating body by introducing proper boundary conditions in order to determine the wave
velocity potential space-dependent part P (z) which is yet unknown explicitly:

Fw(x, z, t) = P (z) ∗ sin(kx− ωt) (A.1.8)

At �rst, by substituting eq. A.1.8 in eq. A.1.3, a homogeneous linear di�erential equation of the
second order is yielded with a straightforward general solution:

d2P (z)

dz2
− k2P (z) = 0 =⇒ P (z) = C1e

kz + C2e
−kz (A.1.9)

Fw(x, z, t) = (C1e
kz + C2e

−kz) ∗ sin(kx− ωt) (A.1.10)

It stands that the seabed is impermeable to water particles and therefore it is valid to assume at
z = −h (seabed boundary condition):

∂Fw
∂z

= 0 (A.1.11)

Substituting the free surface boundary condition to the velocity potential de�nition the resulting
form is further simpli�ed:

Fw(x, z, t) = C ∗ cosh(h+ z) ∗ sin(kx− ωt) (A.1.12)

Additionally, the water pressure at the free surface z = 0 equals the atmospheric pressure. This
statement with proper manipulation of the Bernoulli equation (eq.A.1.7) yields the (linearized)
free surface dynamic boundary condition:

∂Fw
∂t

+ gζ = 0 (A.1.13)

Eq.A.1.13 is very important since it relates the wave elevation function with the velocity potential
which are in turn:

ζ = ζαcos(kx− ωt) ; ζα =
ωC

g
cosh(kh) (A.1.14)

Fw =
ζαg

ω

cosh(h+ z)

cosh(kh)
sin(kx− ωt) (A.1.15)

In deep waters (h→∞) the velocity potential becomes:

Fw =
ζαg

ω
ekzsin(kx− ωt) (A.1.16)



APPENDIX A. SHIP HYDRODYNAMICS 64

which is the generic form that will be used from now on to the analysis. Furthermore, the vertical
velocity component of a �uid particle in the free surface must be identical to the vertical velocity
of the free surface it self which yields the free surface kinematic boundary condition, which in turn
provide information for the wave kinematics, the well known dispersion relationship:

∂F

∂z
+
∂ζ

∂t
= 0 (A.1.17)

ω2 = kg ∗ tanh(kh) (A.1.18)

Eq.A.1.18 in deep water (tanh(kh) = 1) can be further simpli�ed while the relation between the
wave period and wave length in deep water is:

ω2 = kg (A.1.19)

λ =
g

2π
T2 (A.1.20)

Figure A.1.1: Boundary conditions in near and far-�eld

The boundary conditions mentioned above capture the �uid behavior in the near-�eld; as far
as the far-�eld is concerned, the velocity potential e�ect shall tend to zero in �su�ciently large"
distance R, known as the radiation condition:

limR→∞F = 0 (A.1.21)
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A.2 Modeling of Ocean Waves & Wave Spectra

In the previous section, the de�nitions describing regular waves of the linear potential theory are
given. It is however well known that regular waves are not met in nature; ocean waves are random
both in time and space and they should be more realistically described as a linear superposition
of regular harmonic waves with its unique characteristics (wavelength, frequency, amplitude and
directionality) to be modeled in a stochastic framework. It is usually assumed that the variations of
a stochastic nature of the sea are much slower that the variations of the sea surface itself; therefore
the sea elevation ζ(x, y, t) is considered a realization of a stationary and homogeneous zero-mean
Gaussian stochastic process [Perez (2006)].

The statistical properties of the wave surface elevation are summarized in the power spectral
density plot, best known as wave spectrum Sζ(ω), describing how the wave energy is distributed
in the frequency domain. In 1968 an extensive wave measurement program known as the Joint
North Sea Wave Project (abbr. JONSWAP) was carried out and it is still proven to be the
wave spectrum that best describes fetch-limited wind generated seas. Its power spectral density is
de�ned as follows:

Sζ(ω) =
320H2

1/3

T 4
p

ω−5exp(
−1950

T 4
p

ω−4)γA (A.2.1)

where:
Tp : peak period (Tp ' 1.2− 1.25 ∗ Tz)
H1/3 : characteristic wave height
γ = 3.3(peakednessfactor)

A = exp{−(
ω
ωp
−1

σ
√
2

)2}
σ = 0.07 for ω ≤ ωp; 0.09 for ω ≤ ωp

Figure A.2.1: JONSWAP spectrum for Hs = 3.0 [m], Tz = 9 [s]
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A.3 Ship Kinematics

In section A.3 the basic ship de�nitions on orientation, body-�xed and steadily translating (hy-
drodynamic) coordinate reference frames and body motion at COG and any point of the structure
will be given.

Ship Conventions

When on board, a ship looking toward the bow (front end) one is looking forward; the ship stern
is aft at the other end of the ship. As one looks forward, the starboard side is one's right and the
port side is one's left.

Body-�xed frame b The b-frame (ob, xb, yb, zb) is �xed on the hull, positive xb towards the bow,
yb towards starboard and zb pointing downwards. For marine motion analysis the origin of this
frame is conveniently chosen to be the body's center of gravity.

Steadily translating (hydrodynamic) frame h The h-frame (oh, xh, yh, zh) is not �xed to the hull;
it moves following the free surface motion; the xh, yb plane coincides with the mean water surface,
positive xh pointing forward, yh pointing towards starboard and zh pointing upwards. This frame
is considered in the hydrodynamic analysis to compute the wave induced motion/forces for ship
motion and motion control purposes.

Figure A.3.1: Body-�xed and hydrodynamic frame conventions

The harmonic 6 rigid body motions in the h-frame are de�ned by 3 translations and 3 rotations
of the body's COG (ob, xb, yb, zb) as follows:

Surge : x = xacos(ωt+ εxζ) (A.3.1)

Sway : y = yacos(ωt+ εyζ) (A.3.2)

Heave : z = zacos(ωt+ εzζ) (A.3.3)
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Roll : ϕ = ϕαcos(ωt+ εϕζ) (A.3.4)

Pitch : θ = θacos(ωt+ εθζ) (A.3.5)

Y aw : ψ = ψacos(ωt+ εψζ) (A.3.6)

Knowing the motions aroung the body's COG one can calculate the motions in any point on the
structure by employing the superposition principle. The transformation between the b-to-h frames
comes as the multiplication of three rotations around the principal axis:

Rh
b (Θhb) , Rz,ψRy,θRx,φ (A.3.7)

where

Rx,φ ,

 1 0 0
0 cφ −sφ
0 sφ cφ


Ry,θ ,

 cθ 0 sθ
0 1 0
−sθ 0 cθ

 (A.3.8)

Rz,ψ ,

 cψ −sψ 0
sψ cψ 0
0 0 1


Under the assumption of small angles of rotation (cosξ = 1; sinξ = ξ) which is necessary for the
matrix linearization which now becomes: x

y
z

 =

 1 −ψ θ
ψ 1 −ϕ
−θ ϕ 1

 .

 xb
yb
zb

 (A.3.9)

in which x,y,z,f,j,y are the body motions about the center of gravity. Using the eq. A.3.9 the
absolute harmonic motion of a certain point P (xb, yb, zb) can be determined.
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A.4 Ship Kinetics (3D Radiation - Scatter Theory)

The background covered in previous sections enclose the �rst order (linear) wave potential theory
and spectral statistics in frequency domain along with the kinematics of ship motion, i.e. the
geometrical aspect of motion: de�nition of system variables, reference frames and matrix trans-
formations. This section is about the kinetics of body motion; the study of hydrodynamic forces
acting on it and the motion response produced. With the formulation covered in sections A.3 and
A.4, one can derive the dynamic model of body in waves.

The velocity potential formulation is now determined which consequently leads to the calculation
of the �uid velocity vector and the corresponding hydrodynamic pressures exerted on the body
surface by utilizing the linearized Bernoulli equation. The direct integration of these pressures,
using complex source strength and Green's function, provide the hydrodynamic forces and moments
acting on the body. However, the physical representantion of these forces and moments is not
straightforward; di�erent phenomena are superimposed in order to synthesize the velocity potential
F which are needed to be described in detail. Therefore, a step back is taken in the de�nition of
the velocity potentials which now becomes:

F(x, y, z, t) = Frad + FFK + Fd (A.4.1)

where the terms represent the velocity potential components due to radiation, incoming and
di�racted waves, respectively. These e�ects are only wave frequency dependent, subject to en-
vironmental excitation of unitary (wave) amplitude and they can be treated as a body's inherent
frequency characteristic. Therefore, the way a body of known properties respond in external har-
monics over a frequency range can completely describe the body's behavior; it is a hydrodynamic
property. The explanation of all three phenomena is attempted herein. It is noted that second
order wave excitation forces (mean and slowly-varying drift forces) become quite signi�cant when
aiming in the system station on the horizontal degrees of freedom (surge, sway and yaw), namely
mooring analysis or dynamic positioning control. This falls out of the scope of this case study
and is therefore not explained in depth. Finally, the actuation forces induced on the system by a
control system design to counteract the e�ect of second order drift forces or di�erential motions
on multibody con�gurations is an issue properly addressed in Chapter B.

Figure A.4.1: Superposition of radiation and scatter in linear analysis
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Equations of Motion

The seakeeping theory is based on the use of the hydrodynamic reference frame h to describe the
body-�uid interaction. The equation of motion in the h frame will be

Mhξ̈ = τhhyd (A.4.2)

where ξ represents the generalized 6 rigid-body motions vector (eq. A.3.1-A.3.6). The components
of the right hand side vector τhyd are the generalized hydrodynamic forces acting on the body

τhyd = τr + τ1w + τ2w + τv + τhs (A.4.3)

where

• Radiation forces (τr), appearing due to change in momentum of the �uid because of the body
motion, further decomposed to added-mass forces (proportional to body's accelerations) and
damping forces (proportional to body's velocities) - subsection A.4

• First order wave scatter forces (τ1w), seperated to the incoming Froude-Krilo� forces and the
di�raction forces - subsection A.4

• Second order wave drift forces (τ2w), slowly varying (di�erence frequencies) and rapidly varying
(sum frequencies) wave loads.

• Viscous forces (τv), non-linear damping forces due to non-conservative phenomena of energy
dissipation (skin friction, �ow separation phenomena etc.)

• Hydrostatic forces (τhs), restoring 'spring' forces (proportional to body's translations and
rotations). The non-zero spring coe�cients are in heave roll and pitch, and their non-trivial
terms are namely:

ch33 = ρg

¨
Sb

n3dS = ρgAwl

ch35 = ch53 = −ρg
¨
Sb

xn3dS

ch44 = ρg

¨
Sb

y2n3dS + ρg∇zb −mgzg = ρg∇GM

ch55 = ρg

¨
Sb

x2n3dS + ρg∇zb −mgzg = ρg∇GML (A.4.4)

Finally M is the generalized mass matrix, all with respect to the h frame:

Mh =

[
m I3x3 −m S(rh)
m S(rh) Ih

]

=


m 0 0 0 mzhg −myhg
0 m 0 −mzhg 0 mxhg
0 0 m myhg −mxhg 0
0 −mzhg myhg Ihxx −Ihxy −Ihxz

mzhg 0 −mxhg −Ihyx Ihyy −Ihyz
−myhg mxhg 0 −Ihzx −Ihzy Ihzz


(A.4.5)
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where the vector rh = [xhg , y
h
g , z

h
g ] are the COG coordinates and S(.) is the skew-symmetric

matrix

S(rh) =

 0 −zhg yhg
zhg 0 xhg
−yhg −xhg 0

 (A.4.6)

The moments of inertia for the inertia tensor Ih can be calculated as follows:

Ixx =

ˆ
∇

[(yh)2 + (zh)2]ρdV Ixy = Iyx =

ˆ
∇

(yhxh)ρdV

Iyy =

ˆ
∇

[(zh)2 + (xh)2]ρdV Ixz = Izx =

ˆ
∇

(zhxh)ρdV

Izz =

ˆ
∇

[(yh)2 + (xh)2]ρdV Izy = Iyz =

ˆ
∇

(yhzh)ρdV (A.4.7)

Radiation E�ect

�The hydrodynamic forces are the total reaction forces of the �uid on the oscillating
cylinder, caused by this motion in (initially) still water", Newman [1977]

Newman identi�ed the radiation components by model basin decay tests where a body of known
properties is assumed to �oat in calm ideal-�uid water and let oscillate under external harmonic
excitation in a certain degree of freedom. The body will oscillate while this movement results
in the perturbation of the water surface; the body motions radiate waves. The body-to-waves
transfer of energy results to the body's motion dissipation; the radiation force has a damping
term (proportional to body velocity ξ̇) with a corresponding hydrodynamic damping coe�cient c
[Ns/m]. In addition to that, the body's inertia is interacting with the water particles around the
wetted surface of the body and are contributing (adding) to the body's inertia. This component

is proportional to body acceleration ξ̈ with a corresponding hydrodynamic added mass coe�cient
a [Ns2/m]. Finally, the body will react to the external excitation (Archimedes law) with restoring
linear spring terms which are present to heave, roll and pitch only with a hydrostatic sti�ness
coe�cient k [N/m]. Applying Newton's second law yields:

Frad = mξ̈ ⇒ (m+ a)ξ̈ + cξ̇ + kξ = 0 (A.4.8)

The radiation e�ect is now generalized to all 6 degrees of freedom and the radiation velocity
potential term F(x, y, z, t) is now separated to a space-dependent and time-dependent term with
(separation of variables):

Fi(x, y, z, t) = Re
{
fi(x)vi(t)

}
(A.4.9)

The wave velocity potential for deep waters is given by the following equation:

Fi =
−ζαg
ω

eκzsin(ωt− kx) (A.4.10)
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Hydrodynamic forces and moments can now be calculated from a direct pressure integration of
pressure p over the body wetted surface from the linearized Bernoulli equation as follows:

−→
Fr = ρ

ˆ ˆ
S

(
∂

∂t

6∑
i=1

fi(x)vi(t)

)
−→n dS (A.4.11)

Mr = ρ

ˆ ˆ
S

(
∂

∂t

6∑
i=1

fi(x)vi(t)

)
(−→r x−→n )dS (A.4.12)

De�ning the oscillatory motion (complex notation):

ξj = ξaje
−iωt

˙vj = ˙ = −iωξaje−iωtξj (A.4.13)

αj = ξ̈j = −ω2ξaje
−iωt

By substituting eq.A.4.13 in eq.A.4.11, radiation forces can now be written in the following format:

−−→
Fr,ji = Re

{
−ρω2ξji

ˆ ˆ
S

(ϕι)nidSe
−iωt
}

(A.4.14)

The time dependent part can now be deleted by equating eq.A.4.14 and eq.A.4.8 and hydrodynamic
added mass and damping coe�cients are determined for all 6 rigid body degrees of freedom:

aji = −ρRe
{ˆ ˆ

S

ϕιnidS

}
cji = −ρωIm

{ˆ ˆ
S

ϕιnidS

}
, i, j = 1..3 (A.4.15)

aji= − ρRe
{ˆ ˆ

s

ϕi(
−→r x−→n )idS

}
cji = −ρωIm

{ˆ ˆ
s

ϕi(
−→r x−→n )idS

}
, i, j = 4..6 (A.4.16)

Scatter Wave e�ect

The incoming and di�racted wave e�ect (scatter problem) is identi�ed experimentally by constrain-
ing the body in all 6 degrees of freedom and calculating the wave loads exerted on the body by
the generated waves. In the analytical formulation of the hydrodynamic potential added mass and
damping, the problem consisted of a set of homogeneous linear di�erential equations just by merely
assuming that the incoming wave velocity potential (F0) and the respective di�racted potential
(Φ7) are zero while the radiation force components migrated to the left side of the equation. In
this instance, the incoming wave (so-called Froude-Krilov force) and di�racted forces and moments
are non trivial and therefore treated separately. The r.h.s of eq.A.4.8 is now:
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FFK + Fd = −ρ
ˆ ˆ

S

(
∂ΦFK

∂t
+
∂Φd

∂t

)
~ndS (A.4.17)

By principle, the velocity potential on the hull of a restrained rigid body with zero forward speed
will be zero (no water pressure can penetrate the ship hull):

∂Φ

∂n
=
∂FFK
∂n

+
∂Fd
∂n

= 0 (A.4.18)

Where n the outward normal vector on the body surface S. Eq.A.4.18 is the sixth boundary
condition of the potential theory for rigid bodies which can be transformed to the following equation
after separation of variables in eq.A.4.9:

∂ϕFK
∂n

= −∂ϕd
∂n

(A.4.19)

Eq.A.4.19 is the so-called kinematic boundary condition on the body surface and makes the cal-
culation of the space dependent term of the di�raction potential possible, since the respective
incoming wave potential is well known from linear theory formulations (eq.A.1.16). With proper
algebraic manipulations, namely Green's second theorem application in eliminating the di�raction
potential term, the scatter wave load equals to the following:

Fsc = FFK + Fd = −iρωe−iωt
ˆ ˆ

s

(ϕFK
∂ϕrad
∂n

+ ϕrad
∂ϕFK
∂n

)dS (A.4.20)

Solving Potentials

The space-dependent part of the velocity potential ϕj (j = 1..7) as expressed in eq.A.4.9 at a
point on the mean wetted surface of the body S0 due to its motion in the radiation and di�raction
modes can be represented by a continuous distribution of pulsating sources on the hull surface,
also known as Green Function:

ϕj(x, y, z) =
1

4π

ˆ ˆ
S0

σj(x̂, ŷ, ẑ) G(x, y, z, x̂, ŷ, ẑ) dS0 j = 1..7 (A.4.21)

where:

• σj(x̂, ŷ, ẑ) is the complex source strength in an arbitrary point (x̂, ŷ, ẑ) on S0due to the body
motion in the corresponding mode

• G(x, y, z, x̂, ŷ, ẑ) is the Green's function of the source in an arbitrary point (x̂, ŷ, ẑ) on the
potential ϕj(x, y, z) in a point located at (x, y, z), singular for (x̂, ŷ, ẑ) = (x, y, z) satisfying
the linear potential theory assumptions (Laplace equation, seabed and free surface boundary
conditions along with the radiation condition in the far-�eld)

The unknown source strengths σj(x̂, ŷ, ẑ) are determined based on the normal velocity boundary
condition (Journee, 2001):

∂ϕj
∂n

= nj = −1

2
σj(x, y, z) +

1

4π

ˆ ˆ
S0

σj(x̂, ŷ, ẑ)
∂G(x, y, z, x̂, ŷ, ẑ)

∂n
dS0 (A.4.22)
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For the solution of the di�raction potential ϕ7 the body surface kinematic boundary condition (eq.
A.4.19) is employed.

System Response in Waves (Motion & Force RAO)

It is already mentioned that in an experimental setup, the researcher can specify the incoming wave
characteristics (amplitude and frequency) and with proper devices the radiation and wave e�ect
on the body (either in force or motion response) can also be determined. By choosing a wave of
unitary amplitude and for a selected range of incoming frequencies, the motion and force transfer
function of the body is speci�ed for di�erent headings. In that way, the Response Amplitude
Operator (RAO) of the body in the frequency domain is a frequency inherent characteristic of the
body which, if combined with the desired wave spectrum for di�erent operations, will provide the
motion/force responses for the particular sea state condition. First the wave elevation (eq.A.1.14),
body oscillation and external force equations are expressed in complex notation and its real part
is extracted:

ζ(t) = Re
{
ζ̃e−iωt

}
(A.4.23)

Fo(t) = Re
{
F̃oe

Fζe−iωt
}

(A.4.24)

ξ(t) = Re
{
ξ̃eξζe−iωt

}
(A.4.25)

Then the motion and force response amplitude operators for each degree of freedom expressed in
the frequency domain (only space dependent part) are de�ned:

RAOM =
ξ̃

ζ̃
eξζ (A.4.26)

RAOF =
F̃o

ζ̃
eFζ (A.4.27)

By equating the l.h.s of eq.A.4.8 and the r.h.s of eq.A.4.20, the frequency-equation of motion in
matrix notation at the hydrodynamic reference frame is obtained:

− ω2 ∗ [Mh + Ah(ω)] ∗ ξ̃ + ιωC(ω) ∗ ξ̃ +K ∗ ξ̃ = F̃o (A.4.28)
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A.5 Multibody Hydrodynamic Interaction

The multibody interactions of �oating units in side-by-side operations is becoming a critical topic
absorbing research attention by the industry and the o�shore related academia. These interactions
include the hydrodynamic coupling caused by the ampli�cation of body wave �elds when in close
proximity and the mechanical coupling caused by the human intervention either with mooring
lines or dynamic positioning for system station keeping or by the use of rigid-elastic connections
between bodies for relative motion attenuation.

The hydrodynamic interaction of bodies is more complex and requires a full radiation-di�raction
solution taking all bodies simultaneously into account; a laborious task which cannot be carried out
analytically therefore the use of numerical solvers is necessary. On the other hand, the mechanical
couplings can be introduced analytically in a straightforward manner by the use of kinematic
constraints and implementing them to the derived equations of motion for the �oating bodies,
reducing the system's independent degrees of freedom. The equation of motion for multiple bodies
is of the form:

M∑
m=1

{−ω2[Mij + A(ω)ij] + iω[Cs + C(ω)ij] +Khyd +Ks}ξj = Fj + Fext (A.5.1)

whereMij is the body full mass matrix, A(ω) and C(ω) the hydrodynamic added mass and damping
matrices as de�ned in eq. A.4.15-A.4.16, Khyd is the hydrostatic body sti�ness matrix and Cs, Ks

are the damping and sti�ness properties of the structural elements. Finally, the right hand side
is the generalized force vector, consisting of the wave scatter force vector and the external force
vector exerted to the system (mooring forces, dynamic positioning, actuation force etc.).

According to the excellent literature survey by Chen (2011), the term 'multibody' in hydrodynamics-
related literature is used to describe the presence of two or more �oating bodies in close proximity
(4 − 10[m]). As explained above, one single rigid body in waves is excited due to incoming sea
waves, whose components are di�racted due to the body presence and radiated due to body ex-
ternal excitation, all linearly superimposed under potential theory. In other words, each body in
waves has a motion response de�ned by its unique, near wave �eld. Adding a second body in
relevant proximity to the �rst, it is automatically exposed to the previously described wave �eld.
As a result, the second body in turn reacts by generating its own radiation and di�racted waves.
It is evident that these two wave �elds are superimposed to create a new, complicated wave �eld
which is ampli�ed when compared to the initial wave �elds. Therefore, the resulting body motions
are signi�cantly di�erent from the motions of the single body and these responses are also heavily
dependent on parameters like the wave directionality β (weather- and lee-ward bodies, exposed
or shielded respectively by the environmental excitation), distance of bodies Lgap, their geometry
dimensions and properties etc. The interaction between these �oating structures is called hydro-
dynamic coupling. Due to the aforementioned assumptions, viscous e�ects are neglected and the
multibody boundary value problem is readily solved in the potential theory framework, sometimes
leading to unrealistic kinematics of the free surface in the gap between the bodies, a problem whose
solution will be addressed later on.
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The motion/force behavior of bodies in close proximity is given by the RAO in all 6 ridig body
modes as described analytically in subsection A.4. For the scope of this exersice the hydrodynamic
analysis of multi-body systems is restricted to frequency domain assuming linear system behavior:

• Linear potential wave theory

• Rigid �oating bodies; no body deformations

• Quasi-static pretension before lift-o�

• Viscous damping neglected

• Horizontal degrees of freedom (surge, sway & yaw) out of the �nal optimization scope; no
mooring/dynamic positioning analysis for system station keeping is carried out

Therefore, although the radiation-di�raction problem is solved in full for all 6 rigid modes per
body, the vertical degrees of freedom, namely heave, roll and pitch, will be the ones investigated
in result postprocessing; in side-by-side o�shore operations, the vertical relative motions between
the bodies are the limiting operational and design criterion since these are strongly a�ected by the
hydrodynamic coupling.

Additionally, the linear radiation-di�raction solvers tend to overestimate the resonant behavior
of the free surface in the gap between the two vessels since the non-linear e�ects which in practice
contribute to the dissipation of these extreme wave elevations are not taken into account. A lot
of experimental studies and analytical approaches to that issue are carried out, especially in the
past decade; to hold the free surface motion to a realistic level, Buchner et al. (2001) developed
an analytical time-domain method based on visual observations from model testing by placing a
rigid lid in the gap between the two bodies for the accurate calculation of the drift forces. Buchner
also took the relative viscous damping into account for the correct prediction of the low-frequency
motion response and �nally used complete matrix of retardation functions (wave memory e�ect)
for the correct estimation of heave and pitch motions. The unrealistic kinematics are supressed
since it is impossible for the free surface to perturb when capped by a rigid lid, except the lid
ends where noticeable free surface wave elevation due to di�raction was observed. Huijsmans et al.
(2001) also contributed to that end by developing a robust linear potential solver for multibody
systems by using the very same lid technique to circumvent unrealistic high water velocities on the
ship's hull. The formulation of the 'rigid lid' approach to this problem is similar to the formulation
to suppress irregular frequencies [Journèe and Massie (2001)].
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Based on that novel approach, Newman (2003) introduces a �exible lid which allows the free
surface to perturb under proper damping coe�cient; that was possible by incorporating a set
of generalized modes simulating the free surface elevation as the movement of a '�exible mat'
to the numerical scheme. All methods described above require the input of 'arti�cial' damping
factors in order to surpress a numerical issue that was proven to occur by visual observation during
model testing. Chen (2005) further proposed a linear dissipation term ε to modify the free surface
equation. In the whole �uid domain an irrotational free damping force is introduced

F = µ∇F (A.5.2)

where µ is the damping parameter. By applying this damping force, the potentials are now only
a�ected by the free surface boundary condition which is now transformed into:

∂ϕ

∂z
− (1− iε)ω

2

g
ϕ = 0 (A.5.3)

where ε = µ/ω is the nondimensional damping parameter. The selection of ε shall be chosen by
comparing the numerical �rst or second order transfer functions to the experimental results. The
conventional no-lid free surface kinematic boundary condition along with the rigid lid approach
introduced �rst by Buchner and the damping lid approach by Chen are summarized in the table
below.

Conventional Rigid Lid [Buchner, Huijsmans] Damping Lid [Newman, Chen]

- Rigid Semi-permeable
Undamped wave elevation No wave elevation Damped, tuned wave elevation

∂ϕ
∂z −

ω2

g ϕ = 0 ∂ϕ
∂n = 0 ∂ϕ

∂z − (1− iε)ω
2

g ϕ = 0

Table A.1: Free surface boundary conditions

Pauw et al. (2007) tried to determine a method of tuning ε to the case of side-by-side moored
vessels in proximity by �tting the model basin results to the numerical model damped with proper ε.
First, the free surface wave RAO in the gap between the vessels when �xed showed an interesting
observation: superposition of incoming and di�racted waves result in cancellation in nodes at
certain frequencies. This motion cancellation depends on the ratio between the gap dimensions
(gap width in this case) and the wavelength. Figure A.5.1 shows the e�ect of wave cancellation
at frequencies between 0.5 − 0.8[rad/s]. Resonant peaks in the frequency range between 0.8 −
1.2[rad/s] are also observed; these are sloshing modes due to wave trapping in the gap. These
resonances are attenuated in practice by viscous damping e�ects which cannot be captured by
the linear radiation-di�raction solver; instead the nondimensional damping parameter ε is used to
account for that e�ect. Secondly, it was observed that in the force RAO comparing the numerical
and experimental results in the horizontal degrees of freedom, the calculated resonance peaks were
not in line to the experimental ones, also due to the non-linear e�ect in the experimental results
which is not captured by the solver.
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(a) Wave motion RAO in gap for �xed vessels (b) Experimental and numerical �rst order loads

Figure A.5.1: Damping lid e�ect in gap between vessels (Pauw et al. (2007))

Conclusively, the hydrodynamic coupling of vessels in close proximity require a full three dimen-
sional radiation di�raction solution in order to capture the complexity of the superimposed wave
�elds. However, special attention needs to be taken in the numerical output concerning the reso-
nant peaks due to sloshing by the di�racted waves trapped in the gap by adding proper damping
parameter to the free surface kinematic boundary condition. Since there is no universal method
of tuning parameter ε, the computed results should be compared to exprimental observations and
proper �tting should be carried out by employing various damping values. Only in case of large
gap distances (higher than 25m) it can be said that a unique value of ε can be determined [Fournier
et al. (2006)].
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A.6 Wave E�ect Identi�cation

The equation of motion for a rigid body under wave excitation has been expressed in frequency
domain in eq. A.5.1. It is however necessary to express that very equation in a linear, state-space
form for control design applications like the one investigated in this Thesis. The radiation-related
part of the EOM has been derived by Cummins (1962):

[M + A]ẍ(t) +

tˆ

0

K(t− τ)ẋdτ + Cx(t) = Fext(t) (A.6.1)

where the convolution term denotes the �uid memory e�ect, i.e. the correlation of the �uid
momentum gradient of subsequent time intervals. Ogilvie (1964) further elaborated on Cummins
�uid memory EOM in the frequency domain using the Fourier Transform and deriving the added
mass and damping matrices depending on the convolution integral as follows:

A(ω) = A(∞)− 1

ω

ˆ ∞
0

K(t) sin(ωτ) dτ (A.6.2)

B(ω) =

ˆ ∞
0

K(t) cos(ωτ) dτ (A.6.3)

In turn the retardation function can be expressed in time domain by employing the inverse Fourier
Transform

K(t) =
2

π

ˆ ∞
0

B(ω) cos(ωt) dω (A.6.4)

or equivalently

K(t) = − 2

π

ˆ ∞
0

ω(A(ω)− A(∞)) sin(ωt) dω (A.6.5)

Finally the retardation function which describes the �uid frequency response is of the form

K(jω) =

ˆ ∞
0

K(t)e−jωtdt = B(ω) + jω(A(ω)− A(∞)) (A.6.6)

The numerical modeling and direct calculation of a convolution integral for high-order and multi
degree of freedom systems is considered a laborious task so the investigation of an alternative rep-
resentation of the convolution term has been extensively investigated. The option which facilitates
the system control design of MIMO systems and therefore quali�es for the scope of this analysis
is the convolution term replacement by an equivalent state-space model of the form

ẋr = Arxr +Brξ ; Fr = Crxr +Drξ (A.6.7)

where xr is the radiation internal state vector and Ar, Br, Cr, Dr are the matrices that describe
the LTI system. The radiation �lter transfer function is assumed to be strictly proper (refer to sub-
section B.1) so Hrx(jω)→ 0 for ω →∞, corresponding to zero D matrix. The radiation problem
identi�cation is a Multiple-Input, Multiple-Output (MIMO) 6-input, 6-output closed-loop output
feedback system consisting of each corresponding barge heave,roll and pitch radiation forces. In
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principle, system pitch response is decoupled from the remaining two degrees of freedom and there-
fore the problem can be further simpli�ed in two subproblems with state vector rank of 4 and 2,
respectively. Both systems are identi�ed via a system identi�cation toolbox elaborated in-house
by Shaofeng Wang as a part of his own Thesis research topic, in Python programming software.

Radiation
˙xr1 = Ar1xr1 +Br1ξ̇ (heave− roll identification) (A.6.8)

˙xr2 = Ar2xr2 +Br2ξ̇ (pitch− pitch identification) (A.6.9)

FR1 = Cr1xr1 ; Fr2 = Cr2xr2 (A.6.10)

FR = (FRz1,MRϕ1,MRθ1, FRz2,MRϕ2,MRθ2)
T (A.6.11)

Di�raction state-space model

ż = Adηz +Bdnη (A.6.12)

FD = Cdηz +Ddnη (A.6.13)

FD = (FDz1,MDϕ1,MDθ1, FDz2,MDϕ2,MDθ2)
T (A.6.14)

The
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unknown state-space matrices are determined with system identi�cation. The objective of a sys-
tem identi�cation method is to obtain the lowest-order possible that is able to produce the system
behavior while maintaining stability of the resulting model (Taghipour et al. (2008)). The convo-
lution term is thus replaced by alternative models based on the following types of data:

• Complex hydrodynamic coe�cients A(jω) and B(jω)

• The retardation functions K(t) and its respective frequency response K(jω)

• The force-to-motion transfer function HFM(jω)

Knowing the hydrodynamic added mass and damping transfer functions in frequency domain, the
frequency-domain identi�cation is thus chosen for the determination of the force-to-motion transfer
function and the A, B, C, D state-space matrices.

Figure A.6.1: Identi�cation approaches Taghipour et al. (2008)

The properties of the retardation function K(t) and its frequency response K(jω) as summa-
rized by Perez and Fossen (2008) and how these properties are implemented as constraints in the
convex optimization process for the subspace system identi�cation method of A,B,C,D used for
this concept are excellently given in the work of (Wang (2015) - refer to Chapters 5-6). In an e�ort
for maximum accuracy in the data �tting, Wang used the capacity threshold of 24 states of the
convex optimization solver in the ideti�ed state space model. As for the di�raction problem, it
can be identi�ed as an unconstrained (no �uid memory e�ect on this phenomena) Single-Input,
Multiple-Output (SIMO) open-loop system where the wave elevation process η(jω) is properly
�ltered providing a 6-state output force vector.
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A.7 Wave Model Order Reduction

The maximum of 24 states per degree of freedom in the (radiation & di�raction) wave e�ect
identi�cation resulted in an accumulated wave model of 265 states. Additionally, the generalized
plant describing the wave-barge-topside interaction also has �lters for the wave elevation process
(JONSWAP) spectrum, the structural closed-loop modeling the barge-link interaction and the
output performance weight WP , making the system cummulative state vector close to 300, which
is considered techniqually infeasible for control system design purposes. Therefore, it is suggested
that the fast modes of the state-space realization (MIMO singular values of lowest magnitude
that a�ect less the system dynamics) to be taken out of the system. Given the fact that the
H∞ controller will be designed to have �xed-order and structure as it will be further described
in Chapter B, the order of the open-loop plant model is reduced prior to the controller design.
The model reduction problem as de�ned by Skogestad and Postlethwaite (2007) is that given a
high order LTI stable model P , �nd a low-order approximation Pa such that the in�nity norm of
the di�erence ‖P − Pa‖∞ is minimal and the error P − Pa is stable. The balance residualization
technique used will be presented herein.

(Minimal) Residualization

Assuming (A, B, C, D) is a minimal state-space realization of a stable plant model P (s), the aim
is to distinguish the state vector x in two subvectors where the latter x2 is the vector that contains
the fast (high-frequecy) modes that will be removed. After the proper linear algebra the A, B, C
matrices are partioned into

ẋ1 = A11x1 + A12x2 +B1u

ẋ2 = A21x1 + A22x2 +B2u (A.7.1)

y = C1x1 + C2x2 +Du

By setting ẋ2 = 0, thus residualizing state sub-vector x2 and solving for x2 and substituting the
result of x2 to the �rst equation, the resulting state-space representation and respective matrix
minimal realization would be

ẋ1 = (A11 − A12A
−1
22 A21)x1 + (B1 − A12A

−1
22 B2)u (A.7.2)

y = (C1 − C2A
−1
22 A21)x1 + (D − C2A

−1
22 B2)u (A.7.3)

Ar , A11 − A12A
−1
22 A21 (A.7.4)

Br , B1 − A12A
−1
22 B2 (A.7.5)

Cr , C1 − C2A
−1
22 A21 (A.7.6)

Dr , D − C2A
−1
22 B2 (A.7.7)

The reduced order model Pa(s) = (Ar, Br, Cr, Dr) is the residualization of the original plant
realization P (s) = (A, B, C, D). An important property of residualization is that it preserves
the steady-state system gain since the residualization process sets the x2 vector derivatives to zero
which are zero anyway at steady-state, making it clear that model reduction by residualization is
more appropriate for low-frequency modeling (Skogestad and Postlethwaite (2007)).
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Balanced Residualization

Using the same de�nition of minimal state-space realization as in subsection A.7, then (A, B, C, D)
is a balanced realization if the solutions to the following Lyapunov equations

AP + PAT +BBT = 0 (A.7.8)

ATQ+QA+ CTC = 0 (A.7.9)

are P = Q = diag(σ1, σ2, ..., σn) , S where σi, i = 1...n, is a model singular value in descending
order and P, Q are the controllability and observability Gramians de�ned as

P ,

∞̂

0

eAtBBT eA
T tdt (A.7.10)

Q ,

∞̂

0

eA
T tCTCeAtdt (A.7.11)

In a balanced realization each singular value is directly related to a state of the balanced system
and the magnitude of σi is a measure of the contribution of the correspoding state xi to the
system transfer function behavior. Therefore by sorting the singular values in descending order
and balancing the system making each system state as controllable as it is observable, the model
reduction occurs be merely removing the states which have little e�ect on the system's input-
output behavior Skogestad and Postlethwaite (2007). Assuming that the balanced realization
(A, B, C, D) of P (s) and the singular value diagonal Gramian matrix S are partitioned

A =

[
A11 A12

A21 A22

]
; B =

[
B1

B2

]
; C =

[
C1 C2

]
; S =

[
S1 0
0 S2

]
(A.7.12)

where S1 = diag(σ1, σ2, ...σκ), S2 = diag(σκ+1, ...σn) for σκ > σk+1. In the exact fashion as in
subsection A.7, the derivatives of the states corresponding to the S2 are set to zero, yielding the
balanced residualization of P (s), in the exact same form as tabulated in eq. A.7.4-A.7.7.
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A.8 Simulation in Wamit

Input �les

• Potential Control File (.pot): the user speci�es the operational water depth, whether both
problems (radiation & di�raction) should be solved and which modes are free to vibrate or stay
�xed; the modes which are de�ned as �xed produce a negative value in post-processed results
which stand for the corresponding reaction forces & moments (Force RAO). Furthermore, the
range of frequencies and wave headings are stated and �nally the coordinates of the body (or
bodies) with respect to the global coordinate system as shown in �gure A.8.2.

Figure A.8.1: Potential �le for 1 body run

Figure A.8.2: Global & local body coordinates; wave heading angle de�nition

• Force Control File (.frc): the user speci�es which are the desired outputs from the analysis.
In the present case study the added mass and damping coe�cients (.1) and body RAOs (.4)
are requested as output. Furthermore, the inertia properties of bodies can be given as input
through two di�erent forms; either as a 3x3 diagonal radii of gyration matrix (per body) or as a
6x6 diagonal full mass matrix (again, per body). In every single run made for all case studies,
the run was �rst performed with the �rst approach (alternative form 1) and subsequently
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the full mass matrix was generated by solving the FORCE subprogram of Wamit (the mass
matrix is given through .mmx output �le).

Figure A.8.3: Force �le alternative form 2 for 1 body run (mass in [tonnes])

Figure A.8.4: Full mass matrix (mass in [tonnes])

• Con�guration File (.cfg): the user add any extra parameters that must be speci�ed; which
form of .frc �le is being given as input, the input data for period or frequency range in the
.pot �le, the use of low-order or high-order panel method & the panel size concerning the
body geometry etc.

Figure A.8.5: Con�guration input �le for 1 body run
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• Geometry Date File (.gdf): the user can describe the body geometry in four di�erent ways,
namely:

� IGDEF=0: The geometry is a �at quadrilateral with patch coordinates issued in the gdf
�le explicitly. The low order panel method is utilized.

� IGDEF=1: The patch geometry is represented by B-splines (high order panel method).

� IGDEF=2: The geometry is given as input from a Multisurf1 (∗.ms2) �le.
� IGDEF>2: The geometry of each patch is represented explicitly by a special subroutine
scripted in FORTRAN with optional data in the GDF �le. In this case study the sub-
routine BARGE (IGDEF=-5) is utilized with two planes of symmetry (ISX=ISY=1) for
the Castoro XI geometry speci�cations.

Figure A.8.6: Geometry input �le for 1 body run

Output �les

Several outputs can be generated by WAMIT and the user speci�es the ones that are of importance
during result post processing by other software. The default WAMIT output �les consist of the
formatted output �le (*.out) which summarizes all input and output parameters of each run, the
(*.mmx) �le which summarizes the external full mass, sti�ness and damping matrices of the system,
the (*.hst) �le to output values of the hydrostatic matrix and other .log �les which contain remarks
or pointing out potential errors during the run. For this case study, the user is also requesting the
�les (*.1) and (*.4) which output the radiation added mass and damping matrices for all input
frequencies and headings and the motion/force RAO, respectively.

1http://aerohydro.com/?wpsc-product=multisurf-8-7-standard



Appendix B

Motion Control Design

This chapter aims to familiarize the reader with the fundamentals on the topics covered for the
scope of this Thesis; in section B.1 the essential background on feedback control design which is
provided, which is later refered to in the case studies implementation in Chapter 3. Section B.2
focuses on theH∞ suboptimal controller synthesis for a standard problem; the convexH∞ controller
synthesis and the corresponding nonconvex, nonsmooth synthesis are presented successively in
subsections B.2,B.2. Finally the concept of hybrid structural and control design as �rst introduced
by Grigoriadis and Wu (1997) is presented in section B.3.

B.1 Feedback Control

Closed-loop Transfer Function

Before taking multiple-input-multiple-output (MIMO) systems into consideration, it is deemed
neccessary to review a few fundamental concepts of classic feedback theory, well-proven for decades
in the development of design techniques for single-input-single-output (SISO) feedback control
systems, at least the ones who are thoroughly studied and utilized for the scope of this thesis
exercise. A control system main objective is to shape the behavior of the system's output y by
manipulating the plant G control input signal u. Thus, for a certain reference input r, the goal of a
control engineer is to minimize the control error e = y− r ; the algorithm for adjusting u based on
the information fed back to the system is the controller K [Skogestad and Postlethwaite (2007)].
The major issue in feedback control consists in plant uncertainty; the models may change is course
of time and therefore their deterministic modeling would be inaccurate, also a�ecting the feedback
loop robustness. At this point it needs to be pointed out that the modeling process followed
for this control system did not include uncertainty to its scope; thus no system robust stability
and performance can be guaranteed. Conclusively, the terms nominal stability NS (stable with
no model uncertainty) and nominal performance NP (system satisfying the performance criteria
without model uncertainty included in design) will be used later on in this report.

Furthermore, the systems are identi�ed and expressed in the linear, time-invariant state-space
form

ẋ = Ax+Bu (B.1.1)

86
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y = Cx+Du (B.1.2)

making extensive use of rational transfer functions G(s) of the form

G(s) =
βnzs

nz + ...+ β1s+ β0
sn + an−1sn−1 + ...+ a1s+ a0

(B.1.3)

in frequency domain for the design of the system's building blocks (radiation & di�raction �lters,
barge, topside and link structural model, H∞ controller), providing important advantages when
compared to state space models, namely:

• Important concepts like transfer function peaks, roll-o� frequency, phase margin, bandwidth
etc. provide invaluable insight in the system's properties shaping process;

• G(jω) is the the frequency response of the transfer function to a sinusoidal input of frequency
ω;

• A system series interconnection in frequency domain is merely the mutliplication of the in-
dividual transfer functions, avoiding the laborious convolution integral analytical derivation
required for systems expressed in time domain;

• System's fundamental properties (poles, gains & zeros) are explicitly evident via numerator-
denominator factorization, helping into avoiding undesirable phenomena during transfer func-
tion shaping (zero-pole cancellation, closed-loop instability etc.).

For proper system with n ≥ nz as de�ned below the transfer function can also be expressed as

G(s) = C(sI − A)−1B +D (B.1.4)

De�nition 3.1 - Proper Transfer Function. A system G(s) is called:

• Strictly proper if G(jω)→ 0 as ω →∞

• Semi-proper or bi-proper if G(jω)→ D 6= 0 as ω →∞

• A system G(s) either strictly or semi-proper is proper

• Improper if G(jω)→∞ as ω →∞

De�nition 3.2 - Frequency and bandwidth

• (Gain) crossover frequency: The frequency where the closed-loop frequency response GK(jω)
drops below the 1 db magnitude.

• (Phase) crossover frequency: The frequency where GK(jω) phase plot crosses the −180 deg.

• Bandwidth ωB: The frequency where |S(jω)|�rst crosses 3 db from below, or equivalently,

• Bandwidth ωBT : The highest frequency where |T (jω)| crosses 3 db from above.
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Evaluating Closed-Loop Stability & Performance

In principle, the implementation of high gains back to P may yield closed-loop instability; therefore
one has to use high feedback gains over the frequency range where the control process aims at,
while ensuring that the gains 'roll o�' in higher frequencies so to avoid instability. The closed-loop
design becomes more critical over the gain crossover frequency ωc. Two methods are widely used
to determine closed-loop stability:

• Closed-loop poles are evaluated either graphically or numerically; the system is stable if and
only if all poles are lying in the left-half plane (the roots real part is always non-positive).
Equivalently, the closed-loop PK poles are the state-space A matrix eigenvalues (matlab
commands damp and eig, respectively).

• Use of Nyquist stability criterion upon which GK, when plotted in the complex plane, the
number of open-loop unstable poles equals the number of contour encirclements around the
critical point -1. In general, the closeness of the curve GK(jω) to the point -1 in the complex
plane is a good measure of how close a stable closed-loop system is to instability [Skogestad
and Postlethwaite (2007)].

(a) closed-loop Pole Zero Plot (b) closed-loop Nyquist Plot

Figure B.1.1: Evaluating closed-loop Stability

Higher control gains in principle improve the system performance but as explained above, gains
above a certain threshold induce instability. Therefore, the stability in the expense of system per-
formance trade-o� is subject to optimization for the control engineer. The measures of quantitative
assessing performance are thus integral in the design of the system feedback properties are:

• Gain and phase margins: the gain margin is de�ned as the system gain obtained in between
the gain and phase crossover frequencies (see �g. B.1.2) whereas the phase margin de�ned as
the phase roll-o� of the closed-loop frequency response in the same frequency range:

GM =
1

|GK(jω180|
PM = ]GK(jωc) + 180

0

(B.1.5)
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Figure B.1.2: Bode Plot of GK(jw) with gain and phase margin (GM & PM)

• Sensitivity (S) and complementary sensitivity (T) function peaks: For a closed-loop transfer
function GK(s) the following terminology is used in the control literature:

S = (I +GK)−1 sensitivity function (B.1.6)

T = (I +GK)−1GK complementary sensitivity function (B.1.7)

where the S function is the forward transfer function from the disturbance to the output
while T function is the closed-loop transfer function mapping the input reference signal to
the output. It can be easily derived that:

S + T = I (B.1.8)

which in practice means that their singular values di�erence should never exceed 1. The
maximum S and T maximum peaks are de�ned as follows:

MS = maxω |S(jω)| MT = maxω |T (jω)| (B.1.9)

Large values ofMS orMT are an indicator of system poor performance and therefore an upper
bound for MT is a common design speci�cation in classic control applications. Similarly for
MS boundness, the S function is usually small at low frequencies but since proper plants
are considered, GK should roll-o� to 0 in higher frequencies or equivalently S → 1. In
the intermediate frequency range, it is unavoidable that MS > 1 so a measure of system
performance is how close to 1 is the MS value. A typical requirement (but not a general rule)
is that MS shall be less than 2 (6 db) and MT less than 1.25 (2 db). Conclusively, ωB and ωc
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are good performance indicators and optimally S function shall be as close to 0 as possible at
lower frequencies and close to 1 at intermediate frequencies.

Controller Design

The controller design methods can be distinguished in three basic designs: shaping of transfer
functions, signal-based approach and numerical optimization. In the �rst approach, the designer
speci�es the transfer function allowable amplitudes in certain frequencies and shapes admissible
controllers to reach that cause. It is a method that is based on the trial and error e�orts of the
control engineer who aims to obtain a closed-loop frequency response with the desirable proper-
ties. Therefore, loop shaping approach is a laborious task which is infeasible when considering
complicated MIMO systems. As for the numerical optimization approach, the user tries to di-
rectly optimize the closed-loop transfer function by manipulating system properties like the rise
time, stability margins etc. Computationally, such optimization problems may be di�cult to solve,
especially if one does not have convexity in the controller parameters; also including the system
performance evaluation and controller design in a single-step procedure, the problem formulation
is far more critical than in an iterative two-step approach [Skogestad and Postlethwaite (2007)].

The method mostly used in complicated MIMO plants, which is also employed in this exercise, is
the signal based approach which involves the closed-loop system optimization via the minimization
of the norm of a transfer function. This application considers a wave reference excitation and
therefore the input signal is harmonic; so a signal-based H∞ controller synthesis method has
quali�ed as the appropriate closed-loop optimization method. This approach may also add model
uncertainty for robust controller design, an application extension that would be of added value in
possible follow-up research. The theoretical background on H∞ controller synthesis is presented
in section B.2.

The H∞ controller design approach provide on hand all admissible (obeying to the engineer
speci�cations on order and structure) controllers K that bring closed-loop stability under certain
performance bound γ. Therefore, the only 'manual' task is the choice of proper weight functions
to further shape the closed-loop transfer function behavior.

H∞ Norm

By de�nition, the H∞ of a scalar transfer function is the peak value of the system frequency
response |G(jω)|

‖G(s)‖∞ , maxω |G(jω)|
The ' in�nite' symbol represents the maximum magnitude (singular value) over the frequency
domain written as

maxω |G(jω)| = limp→∞(

∞ˆ
−∞

|G(jω)|p dω)
1
p

and H stands for Hardy space [Zhou et al. (1996)]. H∞ conclusively represents the set of sta-
ble and proper transfer functions with bounded in�nite norm. In terms of performance, the H∞



APPENDIX B. MOTION CONTROL DESIGN 91

norm is the peak of the trasfer function magnitude and by introducing proper weights it can
be interpreted as the magnitude of a closed-loop transfer function relative to a speci�ed upper
bound. The H∞ norm is computed numerically from a state-space realization as the smallest
value of γ such that the Hamiltonian matrix H has no eigenvalues on the imaginary axis where

H =

[
A+BR−1DTC BR−1BT

−CT (I +DR−1DT )C −(A+BR−1DTC)T

]
(B.1.10)

for R = γ2I − DTD [Zhou et al. (1996)]. This process shall be iterative when one may start
with a large value of γ and reduce it until imaginary eigenvalues for H appear.

Weighted Sensitivity - Band Pass Filter

It has been concluded from subsection B.1 that the sensitivity function is a representative indicator
of the closed-loop system performance; furthermore only magnitude of S function is relevant and not
phase. The main speci�cations for the sensitivity function shall incorporate minimum bandwidth
frequency ωB and tracking error at selected frequencies, function shape over certain range and
maximum peak magnitude as analyzed in subsection B.1 [Skogestad and Postlethwaite (2007)].
All these loopshaping speci�cations may be captured at once by proper de�nition of all these
mixed sensitivity speci�cations.

Figure B.1.3: closed-loop transfer function in standard block diagram form

De�ning the standard control scheme in �g.B.1.3, featuring the open-loop system G, the con-
troller K, the measured output y, the control signal u and the tracking error e. Red signals are
inputs, ns for noise, d for disturbance input and r for reference signal. The blue signals are properly
weighted output signals namely ẽ = Wee , ũ = Wuu , ỹ = Wyy. But what is the objective of these
weight functions? For instance the transfer function We (or WP in Skogestad and Postlethwaite
(2007)) from reference r to error e

Tre = S = (I +GK)−1 (B.1.11)

is a performance channel describing how fast the system follows the reference (tracking error); the
WP �lter aims to minimize the in�nite norm of the sensitivity function

|S(jω)| < 1/ |wP (jω)| , for ωε(−∞,∞)
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⇔ |wPS| < 1, for ωε(−∞,∞)

⇔ ‖wPS‖∞ < 1 (B.1.12)

The transfer function Wu from reference r to control signal u

Tru = KS = K(I +GK)−1 (B.1.13)

is a 'penalty' �lter on the control e�ort exerted on the system (usually a scalar is used in practice).
Finally by penalizing the output signal, an upper bound is enforced on the desired bandwidth while
simultaneously specifying other closed-loop system performance properties like the steep roll-o� in
high and low frequency bandwidth. To do that the transfer function Wy(or WT in Skogestad) is
used to the mapping from reference r to output signal y

Try = T = GK(I +GK)−1 (B.1.14)

Any of the aforementioned performance weights shape depend on the application requirement;
essentially setting up a performance bound to any channel at a certain point of the system (ref-
erence to error, reference to output etc.) could be practically interpreted as setting a 'penalty' on
undesirable behavior of the closed-loop transfer function. For instance, if low-frequency activity is
required a high pass �lter is used; in order to provide better roll-o� in higher frequencies a low pass
�lter is employed. However, there are cases where both low- and high-frequency activity needs to
be rejected. By cascading a single low and a high pass �lter, a new �lter is created which passes
only a selected range or band of frequencies while attenuating all the others.

High Pass F ilter :
s2 + 2ωHζHs+ ω2

H

s2 + 2ω∗Hζ
∗
Hs+ ω2∗

H

; Low Pass F ilter :
ω2
L

s2 + 2ωLζLs+ ω2
L

(B.1.15)

Band Pass F ilter :
s

s2 + 2ωBζBs+ ω2
B

(B.1.16)

where ω is the bandwidth frequency and β the damping ratio used. If further performance im-
provement is needed, a higher order �lter is required so to achieve a steeper slope. To properly
adress and combine all speci�cations at once with the H∞ framework, a mixed-sensitivity approach
is followed where the overall optimization criterion can be expressed as follows

‖T‖∞ = maxωσ̄(N(jω)) < 1 ; N =

[
WPS
WuKS

]
(B.1.17)

In an e�ort to visualize the generalized setting of such system, the mixed-sensitivity problem can
be expressed as in the �gure below, where a single exogenous input exists and de�ning an output
vector z = [z1 z2]

T , where z1 = Wpy is the shaped by band-pass �lter WP reference tracking signal
and z2 = Wuu the shaped control signal. The augmented generalized plant P (s) now becomes z1

z2
v

 =

 Wp −WpG
0 Wu

I −G

[ w
u

]
(B.1.18)
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Figure B.1.4: S/KS mixed sensitivity minimization in Standard Form

The weights are now the tuning parameters, meaning that the system performance according
to the desired speci�cations requires some hand tuning of the weight coe�cients. Similarly, an
S/KS/T mixed cost function can be de�ned in the same context in case that reference tracking
is also desired, an S/T stacked approach when the control e�ort is not required to be bounded
etc. It has to be noted that by adding cost functions to the stacked approach, the shaping of the
closed-loop transfer function becomes more di�cult to converge to a local solution mainly because
of the design trade-o�s that have to be made simultaneously.
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B.2 H∞ Control

Introduction

The �rst paper upon which the later work on the H∞ framework based to came by Zames (1981);
a state-space formulation of H∞ optimal control theory in an input-output setting. In 1984, Doyle
'solved' the H∞ problem focusing on 2 x 2 block problems but the problem was casted in several
algebraic Ricatti equations (ARE) of increasing dimension, adding the complexity of computation
even for small problems. Limebeer and Halikias (1988) later showed that, for problems trans-
formable to 2 x 1 problems, a minimal realization of the controller has state dimension no greater
than that of the generalized plant P , introducing the idea that there may exist optimal controllers
of lower dimension for multivariable system case studies. Doyle et al. (1989) derived simple state-
space formulas for all controllers solving the 'simple' case of H∞ problem. He showed that for a
given performance vector γ > 0, a controller exists if and only if the unique stabilizing solutions to
two algebraic Riccati equations (ARE) are positive de�nite and the spectral radius of their product
is less than γ2. Zhou and Khargonekar (1988) showed that the H∞ norm of the closed-loop transfer
function can be completely casted within one algebraic Riccati equation; he was also the �rst to
solve the H∞ optimization problem by introducing static (zero order) gains to the state feedback
law. A new approach in control design was suggested by Gahinet and Apkarian (1994) who based
his solution on the linear matrix inequalities (LMI) framework, reducing the problem formulation to
one inequality. Unfortunately, all aforementioned approaches (ARE, LMI) of solving the problem
between the 80's up until early '00s lead to full order, convex, 'unstructured' controllers; the signi�-
cant computational e�ort required made it infeasible for these premature optimization solutions to
be implemented in practice to the control industry, which prefers 'simple' tuning control solutions
like PIDs or control architectures combining PIDs with performance �lters which are structured.

De�nition 4.3
A controller K of the form (state-space and matrix form):

K : { ẋk = Akxk +Bky
u = Ckxk +Dky

; K(s) =

[
Ak Bk

Ck Dk

]
(B.2.1)

is called structured if the state-space matrices Ak, Bk, Ck, Dk depend smoothly on a design
parameter vector θ varying in its parameter space Rn or a constrained subset of Rn, where θ
denotes the vector of free tunable parameters.

The main problem that arises when constraining the structure and order of the controller is that the
optimization problem becomes nonconvex and NP (nondeterministic polynomial time),van Solin-
gen et al. (2014). Several approaches for �xed-structure controller design has emerged since the
bilinear matrix inequality (BMI) techniques are used in conjuction with nonsmooth cost functions
minimization by Apkarian and Noll (2006) being the one presented in this Thesis.

H∞ General Control Problem Formulation

It would be quite useful to have a generic standardized problem formulation upon which all op-
timization problems can be casted. The H∞ problem can then be stated as follows: given a real
rational transfer matrix P (s) called the generalized plant, determining the forward mapping be-
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tween the weighted exogenous inputs (w) and outputs (z) to manipulated control signals (u) and
sensed outputs (v) which interconnect the plant with the controller K(s) as de�ned in eq. B.2.1.
The closed-loop system is optimized so to �nd all the admissible controllers K as follows

Figure B.2.1: General control con�guration (no model uncertainty)

Optimal H∞ Control: Find the (solution space of) all admissible controllers K(s) such
that the highest singular value in the forward LFT (refer to Appendix A - B.4) mapping
from w to z ‖Tzw‖∞ is minimized, where the objective function is the lower LFT

Twz(s) = Fl(P,K) = P11 + P12K(I − P22K)−1P21, (B.2.2)

In theory, an optimal solution space subject to prescribed parameter boundaries is all a researcher
should ultimately aim at. For instance, in subsection 3.1, an optimal H∞ controller is calculated
for the recreation of the case study formulated in the works of Camino et al. (2003) and the
possibility of a joint structural-control design framework is investigated. In practice however, a
solution via optimal H∞ controller synthesis is unique in MIMO systems and is considered to be
an �expensive� solution both in modeling and numerical implementation. On the other hand, a
controller that provide internal stability and output performance below a certain upper bound γ is
a more e�cient approach which sometimes provide a controller with better properties (e.g. lower
bandwidth, quicker roll o� in high frequency band).

Sub optimal H∞ Control: For some prescribed constant γ for the system output
performance, �nd all admissible controllers K(s) under which

‖Tzw‖∞ < γ

subject to K stabilizes P internally (B.2.3)

K ε Kκ

The plant P (s) has a state-space and matrix representation of the form

P :

 ẋ = Ax+B1w +B2u
z = C1x+D11w +D12u
y = C2x+D21w +D22u

; P (s) =

 A B1 B2

C1 D11 D12

C2 D21 D22

 (B.2.4)
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where x ε Rnp is the system states, u ε Rnu the control states, y ε Rny the measured output, w ε Rnw

the exogenous input and z ε Rnz the regulated output. As soon as D22 = 0, the closed-loop transfer
objective function has the state-space representation

Twz =

[
A(K) B(K)
C(K) D(K)

]
(B.2.5)

and the state dimension of the interconnected closed-loop transfer function is np + k. When
working in the convex framework (Kfull: full-order controllers) the total order would be N :=
n2
p+np(ny +nu)+nynu, making the solution process relatively 'easy' (essentially convex), however

making the Kfull infeasible to handle in practice. When smaller (�xed-structure and �xed-order)
controller spaces are required the problem in eq.B.2.3 becomes 'harder' (nonconvex and sometimes
NP) to solve. For the sake of completion, both the convex solution as given by Doyle et al.
(1989); Zhou et al. (1996) solved in the ARE and LMI framework, respectively, and the nonconvex,
nonsmooth approach by Apkarian and Noll (2006) are described; the latter will be essentially
adopted and implemented in this assignment's application through a script employing the function
hinfstruct based on that very work by Apkarian, Noll and Gahinet, available in Matlab Robust
Control Toolbox.
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Convex H∞ Synthesis

Assumptions on P

This section presents the assumptions taken on the generalized plant P de�ned in eq. B.2.4 that
will be used in the H∞ control case and how does the the K matrix is being derived so to minimize
Twz. K is constrained so to provide internal stability, meaning that states of P and K go to
zero when the exogenous input w = 0. The assumptions that K is proper, real, rational transfer
function, detectable and stabilizable is assumed throughout these two subsections; therefore by
using the term 'controller' it means that these properties are always ful�lled. This is the de�nition
of an admissible controller as given by Zhou et al. (1996) (refer to Lemma 16.1, p.415). The
realization of the generalized plant P for the 'simple' H∞ case is of the form:

P :=

 A B1 B2

C1 0 D12

C2 D21 0

 (B.2.6)

The following assumptions are made in the H∞ problem:

1. (A, B1) is stabilizable and (C1, A) is detectable

2. (A,B2) is stabililizable and (C2, A) is detectable

3. D12 and D21 have full rank

4.

[
A− jωI B2

C1 D12

]
has full column rank for all w

5.

[
A− jωI B1

C2 D21

]
has full row rank for all w

6. DT
12[C1 D12] = [0 I] and [B1 D21]

TDT
21 = 0

Assumption [1] along with [2] guarantees that the two Hamiltonian matrices (H∞ and J∞ for the
H∞ problem) belong to Dom(Ric) (refer to Appendix A - B.4). This assumption simplify the
problem statements and proofs but if it is relaxed it can be properly modi�ed so to still stand
correct. An important simpli�cation that comes from [1] is that internal stability is equivalent to
input-output stability (Twz ε RH∞). Assumption [2] is necessary and su�cient for P to be internally
stabilizable, but not needed to prove the equivalence of internal stability and Twz ε RH∞ [Doyle
et al. (1989)]. Supposing that assumptions [1],[2] and [6] simultaneously hold then the controller
K is admissible if Twz ε RH∞ [Zhou et al. (1996)]. Assumption [3] is su�cient to ensure that the
controllers are proper and hence realizable. Assumptions [4], [5] ensure no zero-pole cancellations
on the imaginary axis which in turn cause closed-loop instability. Two additional assumptions
that are implicit in the assumed realization for P (s) are that D11 = D22 = 0. By relaxing these
formulas and especially D11, the formulas are getting substantially more complicated.

H∞ suboptimal case

The problem considered is already presented in subsection B.2: �nd all admissible K so that
‖Tzw‖∞ < γ. Let γmin := min{‖Tzw‖∞ : K(s) admissible} be the optimal system performance
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level. By de�nition γ > γmin in order for suboptimal controllers to exist. The H∞ solutions involve
the Hamiltonian matrices

H∞ =

[
A γ−2B1B

T
1 −B2B

T
2

−CT
1 C1 −AT

]
; J∞ =

[
AT γ−2CT

1 C1 − CT
2 C2

−B1B
T
1 −A

]
(B.2.7)

The important di�erence when compared to the general H2 case is that the (1, 2)-blocks are not
sign de�nite so it is not guaranteed that H∞ ε Dom(Ric) or Ric(H∞) = 0. It needs to be noted
that by using the term (1, 2)- blocks a combination of the expressions from the H∞ norm and the
H2 synthesis de�nition [Zhou et al. (1996)] is meant. This can be solved using the algorithm of
[Doyle et al. (1989)]:

Theorem 4.1: H∞ suboptimal control
There exists an admissible controller such that ‖Tzw‖ < γ if the following conditions hold

1. H∞ ε Dom(Ric) and X∞ = 0 is a solution to the ARE

ATX∞ +X∞A+ CT
1 C1 +X∞(γ−2B1B

T
1 −B2B

T
2 )X∞ = 0 (B.2.8)

such that Re{jωi[A+ (γ−2B1B
T
1 −B2B

T
2 )X∞]} < 0 , for all i

2. J∞ ε Dom(Ric) and Y∞ = 0 is a solution to the ARE

AY∞ + Y∞A
T +B1B

T
1 + Y∞(γ−2CT

1 C1 − CT
2 C2)Y∞ = 0 (B.2.9)

such that Re{jωi[A+ Y∞(γ−2CT
1 C1 − CT

2 C2)]} < 0 , for all i

3. ρ(X∞Y∞) < γ2

Moreover, when these conditions hold, all admissible controllers are then given by K = Fl(Kc, Q)
where

Kc(s) =

 A∞ −Z∞L∞ Z∞B2

F∞ 0 I
−C2 I 0

 (B.2.10)

F∞ = −BT
2 X∞ , L∞ = −Y∞CT

2 , Z∞ = (I − γ−2Y∞X∞)−1 (B.2.11)

A∞ = A+ γ−2B1B
T
1 X∞ +B2F∞ + Z∞L∞C2 (B.2.12)

and Q(s) any stable, proper transfer function such that ‖Q‖∞ < γ. For Q(s) = 0 it holds that

K(s) = KC11(s) = −F∞(sI − A∞)−1Z∞L∞ (B.2.13)

This is the 'central' controller that has the same order (number of states) as the generalized plant
P (s)
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Nonconvex, Nonsmooth H∞ Synthesis

Nonconvex H∞ Control Problem Statement

The convex controller synthesis method which was investigated and ultimately solved between
late 80's to mid-90's provided unstructured controllers whose order was at best equal to those of
the generalized plant, making it impossible to be implemented in practice for medium to large
scale systems (the state space model describing the hydrodynamic loading of coupled barges alone,
examined in Chapter 3 has state order of 265 if no model reduction techniques are applied - also
refer to section A.7). This incompatibility between H∞ theory and control engineering practice
is highlighted by the extensive use of control tuning techniques, i.e. PID control. Therefore, the
controller design techniques based on linear matrix inequalities (LMI) and algebraic Ricatti equa-
tions (ARE) may provide sound controllers which are however unstructured and thus inapplicable
in practice. The need to optimize �xed-structure feedback controllers with the possibility to also
address challenging design problems, e.g. static/�xed-order, decentralized control, optimization of
PID control, simultaneous design and stabilization problems etc., emerged the investigation of H∞
synthesis via bilinear matrix inequalities (BMIs) which are by de�nition nonconvex problems.

Computing a reduced �xed-order H∞ controller is signi�cantly more complicated than com-
puting the full-order controller. Assuming the order of controller K to be �xed at k < np, where
np is the number of states of the generalized plant P . This controller would have the following
structure:

Kκ = {K : K as in B.2 with size(AK) = κ x κ}
The vector of tunable elements is θ = (vec(Ak), vec(Bk), vec(Ck), vec(Dk)) of total dimension
n = k2 + k(ny + nu) + nynu. This structure is obviously of lower order when compared to the
full-order controller which has nfull = n2

p + np(ny + nu) + nynu tunable elements. By considering
the lower-order model, instead of solving two decoupled Ricatti equations (eq. B.2.8,B.2.9), four
coupled Riccati equations need to be solved; a task which is already formulated. One therefore
obtains an LMI coupled with a rank constraint, a nonconvex problem which is equivalent to a
BMI.

Nonsmooth Optimization

Optimization code for BMI problems has been developed by several groups; the novel work of
[Apkarian and Noll (2006)] will be presented herein and cited throughout this report. Apkar-
ian has concluded that the BMI approach runs into numerical di�culties even for moderate size
problems (described by less than 100 states). This is mainly due to the presence of Lyapunov
variables whose number grow quadratically with the number of states implemented. He thus came
up with an approach which do not employ Lyapunov variables, leading to moderate size optimiza-
tion even for large scale problems (order of several hundreds of states). This approach comes at
the expense of de�ning nonsmooth cost functions which require special optimization techniques.
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Nonsmooth optimization of the H∞ norm
Assuming that �xed-structure controller is a�ne to parameter θ ε Rn, the closed-loop transfer
function Twz has the following representation:

Twz(P,K(θ)) :=

[
A(K(θ)) B(K(θ))
C(K(θ)) D(K(θ))

]
The suboptimal H∞ control problem (eq.B.2.3) then becomes

f(θ) := ‖Twz(P,K(θ))‖∞ = maxωσ̄(C(K(θ))(jωI − A(K(θ)))−1B(K(θ)) +D(K(θ))) (B.2.14)

a nonsmooth, nonconvex function. Its domain Df = {θ ε Rn : f(θ) <∞} contains the internally
stabilizing set

Ds = {θ ε Rn : K(θ) stabilizes P internally}

The H∞ controller is synthesized via the Hamiltonian bisection algorithm, further used to char-
acterize and compute the Clarke subdi�erential of f function. This allows to formulate necessary
optimality conditions which are in turn used to compute descent steps, a novel method by [Ap-
karian and Noll (2006)] to characterize locally optimal solutions of eq.B.2.3. In an e�ort to reduce
the literature complexity to the absolute essentials, the analytical formulation of the �rst-order
nonsmooth algorithm is not presented and one shall be refered to section VI of the seminal paper.

Subdi�erential of H∞ Norm The method formulation begins by characterizing the subdi�erential
of the H∞ norm and deriving the expressions for the Clarke subdi�erential of several nonconvex
functions f(x) = ‖G(x)‖∞, where G is a smooth operator de�ned on Rn space. Considering the
well-known H∞ norm of G transfer function‖G‖∞ = maxωσ̄(G(jω)) with G stable, let G(jω) =
USV H be the singular value decomposition of the transfer function. By picking e.g. u to be
the �rst column of U and v the �rst column of V , that is, u = G(jω)v/ ‖G‖∞. Then the linear
functional ϕ = ϕu,v,ω de�ned as follows

ϕ(H) = Re{uHH(jω)v}

= ‖G‖−1∞ Re{Tr[vvHG(jω)HH(jω)]} (B.2.15)

= ‖G‖−1∞ Re{Tr[G(jω)HuuHH(jω)]}
continuous on H∞ space of stable transfer functions and a subgradient of ‖.‖∞ at G. Assuming
that the columns of Qu form an orthonormal basis of the eigenspace of G(jω)G(jω)H associated
with the largest eigenvalue

l1(G(jω)G(jω)H) = σ̄(G(jω))2 (B.2.16)

and that the columns ofQv form an orthonormal basis of the eigenspace ofG(jω)HG(jω) associated
with the same eigenvalue, then for all complex Hermitian matrices Yu, Yv ε B holds that,

ϕ(H) = ‖G‖−1∞ Re{Tr[QvYvQ
H
v G(jω)HH(jω)]} (B.2.17)

‖G‖−1∞ Re{Tr[G(jω)HQuYuQ
H
u H(jω)]}
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a subgradient of ‖.‖∞ at G. Finally, with G(s) rational and assuming there exist �nitely many
frequencies where ‖G‖∞ = maxωσ̄(G(jω)) holds, all subgradients are of the form

ϕ(H) = ‖G‖−1∞ Re{
∑

Tr[G(jω)HQvYvQ
H
v H(jω)]} (B.2.18)

Assuming now that Gs is a smooth operator mapping into the H∞ space of stable transfer functions
G, the composite function f(x) = ‖G(x)‖∞ is Clarke di�erentiable at x with

∂f(x) = G
′

s ∗ [∂ ‖.‖ (Gs(x))] (B.2.19)

where ∂ ‖.‖∞ is the subdi�erential of the H∞ norm, and where G
′
s is the adjoint of Gs.

Clarke Subdi�erentials in Closed-Loop Moving forward in formulating the Clarke subdi�erentials
in closed-loop transfer function and using the known generalized plant P partition

P (s) :=

[
P11(s) P12(s)
P21(s) P22(s)

]
(B.2.20)

our aim is the subdi�erential ∂f(K) of f := ‖.‖∞ o Twz at K. The derivative of the closed-loop
forward mapping would be of the form

T
′

wz(K)δK := G12δKG21

where δK is an element of the same matrix space as K and with the de�nitions[
Twz(K, s) G12(K, s)
G21(K, s) ∗

]
:=

[
P11 + P12K(I − P22K)−1P21 P12(I −KP22)

−1

(I − P22K)−1P21 ∗

]
(B.2.21)

and the closed-loop state space data

A(K) := A+B2KC2 B(K) := B1 +B2KD21

C(K) := C1 +D12KC2 D(K) := D11 +D12KD21 (B.2.22)

Now let ϕ = ϕY be a subgradient of ‖.‖∞ at Twz of the form (eq. B.2.17) and with ‖Twz(K)‖∞
attained at frequency w. According to the chain rule, the subgradients FY of f at K are of the
form FY := T

′
wz(K) ∗ ϕY ε Mm2,p2. Consequently, for a static K, the Clarke subdi�erential of

f(K) := ‖Twz‖∞ at K consists of all subgradients FY of the form

FY = ‖Twz(K)‖−1∞ Re(G21(K, jω)Twz(K, jω)HQY QHG12(K, jω))T (B.2.23)

FY is now an element of the same matrix space as K and acts on test vectors δK through
�FY , δK� = Tr(FTY δK). Expression B.2.23 is generic and can be implemented to problems of
practical interest. For instance, this theory is going to be used for decentralized control, i.e. all
controller gains in the diagonal are freely parameterized whereas the o�-diagonal terms are zero.
Considering a pattern matrix W with binary structure where Wij = 0 when the controller gain is
o�-diagonal and �xed and where Wij = 1 for i=j, the Clarke subdi�erential of f = ‖.‖∞ oF at K
is then of the form

W � FY

where FY ε ∂ ‖.‖∞ (F (K)) and where symbol � stands for Schur's product.
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Descent Method Considering the problem of minimizing f(x) = ‖Gs(x)‖∞, a necessary condition
for optimality is 0 ε ∂f(x) = G′s(x) ∗ ∂ ‖.‖∞ (Gs(x)). It is therefore reasonable to consider the
program

d = − g

‖g‖
g = argmin{‖ϕY ‖ : Y = (Y1, ..., Yq)} (B.2.24)

which either shows that 0 ε ∂f(x), or produces the direction of the steepest descent at x if 0 /∈
∂f(x). By vectorizing y = vec(Y ), then we may represent ϕY by a matrix vector product, ϕY = Fy.
Program of eq. B.2.24 would then be equivalent to the following semi-de�nite programming

minimize t

subject to

[
t yTFT

Fy tI

]
< 0 (B.2.25)

Yi < 0, i = 1..., q

eTy = 1

where eTy = 1 encodes the constraint
∑

i Tr(Yi) = 1. The direction d of steepest descent at x is
then obtained as d = −Fy/‖Fy‖, where (t,y) is solution of eq. B.2.25.

De�nition 4.4: Nonsmooth technique for H∞ norm optimization algorithm.
Conclusively the steepest descent method for the H∞ norm can be summarized as follows:

1. If 0 ε ∂f(x), stop the iteration, else

2. Solve eq. B.2.25 and determine the direction d of the steepest descent at x

3. Perform a line search and �nd a descent step x+ = x+ td

4. Replace x by x+and start again

Apkarian points out that this preliminary approach to the nonsmooth optimization may not con-
verge due to function f nonsmoothness, he therefore further develops this algorithm into a more
sophisticated �rst-order descent method which is not disclosed herein. Finally, the nonsmooth
algorithm of minimizing the constrained H∞ norm is numerically tested and compared to the full-
order H∞ norm and to other iterative methods for reduced-order control, namely the Frank and
Wolfe (FW) and the augmented Lagrangian (AL) methods. The nonsmooth algorithm converge to
a local minima for large scale systems whereas FW and AL seem unable to converge to a solution.
However, for moderate systems (less than 100 states) NS and AL achieve more or less the same
performance at the same K, yielding the same result.
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B.3 Integrated H∞ Structural & Control Design

In section B.2 the investigation of structured H∞ synthesis for �xed-structured, �xed-order con-
troller K has been presented, covering the theoretical background in B.2 and its numerical appli-
cation in section 3.2; however what is going to be optimized is yet unspeci�ed. Possible approaches
would be to optimize the static gain parameters of a PID controller under the problem formulated
in B.2.3 or even go for an observer-based controller. However, the concept of simultaneously de-
signing the behavior of the structural model included in the generalized plant (barges-topside in
the scope of the Thesis) along with the controller parameters (link in between barges) and satisfy
the prescribed performance speci�cations as �rst developed by Grigoriadis and Wu (1997) was
considered appealing. By extracting the sti�ness and damping scalar parameters of the link diag-
onal members from the generalized plant and making them tunable terms of a diagonal controller
K(s), we achieve to compute the sti�ness and damping values which correspond to system's sub-
optimal performance. [Grigoriadis and Wu (1997); Grigoriadis and Skelton (1998)] work preceded
[Apkarian and Noll (2006)] nonsmooth algorithm and consequently employs instead an iterative
two-step procedure by splitting one nonconvex to two convex problems; successively a controller
design and a plant/controller redesign step.More speci�cally, assuming that the plant state-space
parameters (eq. B.2.4) are all a�ne functions of a design parameter θ ε R so the generalized plant
is now of the form

P (s) =

 A(θ) B1(θ) B2(θ)
C1(θ) 0 D12(θ)
C2(θ) D21(θ) 0

 (B.3.1)

the optimization can be casted on two steps.

• Step 1: Fix θ so for determined A(θ), B1(θ), C1(θ) solve the minimization problem ‖Twz‖∞ <

γ and get the output feedback controlled data Âk, B̂k, Ĉk, D̂k.

• Step 2: Fix symmetric matrices R, S > 0 and solve the optimization problem again subject to
the new controller data, so to obtain a new value of θ and controlled values Âk, B̂k, Ĉk, D̂k.
This iteration stops when |γi+1 − γi| < ε, where ε is a prescribed iteration tolerance. Nominal
performance is thus achieved by solving each step by an LMI as shown in Theorem 4.2 below.
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Theorem 4.2 Integrated H∞ Plant/Controller Design via two-step successive LMIs
Considering a n-order LTI system with the state space representation ẋ

e
y

 =

 A(θ) B1(θ) B2(θ)
C1(θ) 0 D12(θ)
C2(θ) D21(θ) 0

 x
w
u


Then the following statement hold: there exist symmetric matrices R, S > 0 such that[

NR 0
0 I

]T  AR +RAT RCT
1 B1

C1R −γI 0
BT

1 0 −γI

[ NR 0
0 I

]
< 0

[
NS 0
0 I

]T  SA+ ATS SB1 CT
1

BT
1 S −γI 0
C1 0 −γI

[ NS 0
0 I

]
< 0

[
R I
I S

]
= 0

where NR, Ns denote the null spaces of
[
BT

2 DT
12

]
and [C2 D21] respectively.

Based on the idea of Grigoriadis, [Camino et al. (2003)] further extended the integrated structural
and control design by introducing a 'convexifying' function so to make the structural constraint
convex and solve the convergence problem for lower-order controllers, since by that time, all algo-
rithms were formulated entirely in the LMI/ARE framework, making the nonconvex optimization
problems intractable in yielding a local minima. This convexifying function disappears at a saddle
point of one iteration and gets updated for the next step. Camino also argues that his method-
ology can incorporate di�erent types of performance constraints (i.e. system control e�ort and
output upper bound) while the algorithm does not �x the Lyapunov matrices (matrices R, S in
Theorem 4.2 just formulated above), making the tuning of the mass matrix possible along with
the sti�ness and damping matrices. For further information on the formulation of the convexifying
function, one may refer to Camino et al. (2003); De Oliveira et al. (2000). Finally, the algorithm
is being numerically tested for a simple structural model simulating the behavior of a 3-storey
building to earthquake excitation. Various successive examples of letting structural parameters
free to optimization are presented along with comparison of the algorithm performance to the
various examples. In an e�ort to validate these results, a simplifying recreation of his aforemen-
tioned case study is carried out by incorporating Apkarian's nonsmooth algorithm in section 3.1,
yielding similar sti�ness and damping output values and showing that the nonsmooth approach
can be well implemented numerically in the concept of integrated structural & control design via
the hinfstruct algorithm in Matlab.
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B.4 Essential de�nitions on Motion Control

Linear Fractional Transformation

De�nition A mapping F : C 7→ Cof the form:

F (s) =
a+ bs

c+ ds
(B.4.1)

with a,b,c and d ε Cis called a linear fractional transformations (abbrev. LFT). If c 6= 0 then
F (s) = α + βs(1 − γs)−1. The same concept can be applied in matrix algebra, considering a
complex matrix

P =

(
P11 P12

P21 P22

)
(B.4.2)

and another complex matrixK of compatible size (the structural controller). A lower and a upper
LFT can be de�ned as follows, provided that the LFT de�nition is well-posed (inverse matrices
exist, Zhou et al. (1996) ):

Fl(P,K) = P11 + P12K(I − P22K)−1P21 (B.4.3)

Fu(P,K) = P22 + P21K(I − P11K)−1P12 (B.4.4)

Application A feedback control system can be rearranged as an LFT and is widely used as a
method to standardize block diagrams for robust control analysis and design. Referring back to
�g B.2.1, the block diagram formulation is transformed in matrix notation[

z
v

]
=

[
P11 P12

P21 P22

] [
w
u

]
, u = Kv (B.4.5)

and its respective LFT would have the following form:

Tzw = Fl(P,K) = P11 + P12K(I − P22K)−1P21 (B.4.6)

Hamiltonian Matrix

A Hamiltonian matrix is a 2n x 2n matrix A such that JA is symmetric, where J is the skew
symmetric matrix

J =

[
0 In
−In 0

]
and Inthe n x n identity matrix. In other words, A is Hamiltonian if and only if (JA)T = JA.
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The Riccati Operator

Let A,Q,R be real n x n matrices with Q and R symmetric. De�ne the 2n x 2n Hamiltonian
matrix

H :=

[
A R
Q −A′

]
(B.4.7)

Assume H has no eigenvalues on the imaginary axis. Then it must have n eigenvalues in Re(s) < 0
and n in Re(s) > 0. Consider the two n- dimensional spectral subspaces Φ−(H) and Φ+(H) :
the former is the invariant subspace corresponding to eigenvalues in Re(s) < 0; the latter to
eigenvalues in Re(s) > 0. Finding a basis for Φ−(H), stacking the basis vectors up to form a
matrix and partitioning it we get

Φ−(H) = Im

[
X1

X2

]
(B.4.8)

where X1, X2 ε R
nxn. If X1is nonsingular or equivalently the two subspaces

Φ−(H), Im

[
0
I

]
(B.4.9)

we can set X := X2X
−1
1 . Then X is uniquely determined by H → X which is a function denoted

as Ric; thus X = Ric(H). We will take the domain of Ric, denoted Dom(Ric) to consist of
Hamiltonian matrices H with two properties, namely H has no eigenvalues in the imaginary axis
and the two subspaces in B.4.9 are complementary, hence refered to as stability and complementary
properties, respectively. The following results give some properties of X as well as veri�able
conditions under which H belongs to Dom(Ric). The de�nition given above and the following
Lemmas on the Riccati operator can also be found in Doyle et al. (1989).

Lemma 1 (Bounded Real Lemma) Suppose H ε Dom(Ric) and X = Ric(H). Then:

• X is symmetric;

• X satis�es the following algebraic Riccati equation

A′X +XA+XRX +−Q = 0

• A+RX is stable.

Lemma 2 Suppose H has no imaginary eigenvalues, R is either positive semide�nite or negative
semide�nite and (A,R) is stabilizable. Then H ε Dom(Ric)

Lemma 3 Suppose H has the form

H =

[
A −BB′
−C ′C −A′

]
with (A,B) stabilizable and (C,A) detectable (denote the unobservable subspace by Φ). Then
H ε Dom(Ric), X = Ric(H) = 0, and ker(X) ⊂ Φ.
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Computing the H∞ Norm

For the transfer function G(s), with A stable and γ > 0, de�ne the Hamiltonian matrix

H :=

[
A γ−2BB′

−C ′C −A′
]

Lemma 4 The following conditions are equivalent (the proof of Lemma 4 is given in Boyd et al.
(1989))

• ‖G‖∞ < γ

• H has no eigenvalues on the imaginary axis

• H ε Dom(Ric)

• H ε Dom(Ric) and Ric(H) = 0 (Ric(H) > 0 if (C,A) is observable)

The equivalence of b and c follows from Lemma 2, while the equivalence of c and d follows from
Lemma 1. Equivalently for the calculation of the H∞norm the next Lemma can be used (its proof
is given in Zhou et al. (1996)).

Lemma 5 Let γ > 0 and

G(s) =

[
A B
C D

]
ε RL∞

Then ‖G‖∞ < γ if and only if σ(D) < γ and H has no eigenvalues in the imaginary axis where

H =

[
A+BR−1DTC BR−1BT

−CT (I +DR−1DT )C −(A+BR−1DTC)T

]
(B.4.10)

for R = γ2I −DTD.
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