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Abstract

The orbit insertion maneuver is, besides the launch, the most intensive maneuver in terms
of propellant mass. In 1995 the Galileo spacecraft arrived at the Jovian system and when
it did, it performed a first flyby with Io to decrease the required Δ𝑉 for orbit insertion with
175 m/s (i.e. down to 644 m/s). This technique is generally known as ”satellite-aided plan-
etary capture”. The Galileo spacecraft proved that this technique could be beneficial. Much
research has been conducted on it. In most of it, Io was used as a flyby moon. Although Io
is a perfect candidate for employing satellite-aided planetary capture, it lies within Jupiter’s
harsh radiation zone. This thesis report aims to investigate the capabilities of low-radiation
satellite-aided capture trajectories. These would exclude the use of Io and are therefor left
with Europa, Ganymede and Callisto as flyby candidates. These orbit Jupiter at a much
higher orbital radius. The orbit insertion that follows would then be executed at a much
higher perijove and become less efficient. Therefore, this report will combine these low-
radiation capture trajectories with low-thrust propulsion and see what performance improve-
ments can be achieved, compared with direct impulsive orbit insertion and ”conventional”
satellite-aided capture.

First, insights into the Tisserand parameter was gained by deriving it from the circular re-
stricted three-body problem. Then Tisserand graphs were constructed for the Solar System
and the Jovian system. The Tisserand graph theory was employed in optimizations to find
the most optimal sequences for satellite-aided planetary capture in the Jovian system. A brief
but thorough investigation was performed on the best tuning settings for the optimization
algorithm, that is, Differential Evolution.

Then, to include low-thrust legs in the capture trajectories, a fast and robust method was
developed. A second-order Taylor expansion method for the Modified Equinoctial Elements
appeared to be the best option considering the transition from high to low orbital energy. This
second-order Taylor series expansion was combined in the satellite-aided planetary capture
optimizations to investigate low-thrust satellite-aided planetary capture capabilities.

Results from both optimizations were compared and the first conclusions could be taken on
the capabilities of these low-thrust capture sequences. In addition, this thesis research also
focused on what promising sequences are for mission planning. For this, the phasing prob-
lem that treated the locations of the moons under consideration was solved. An ephemerides
search supplied both a date and initial perijove distribution for each possible sequence. With
this combined, conclusions could be taken with respect to mission planning.

The result was that the addition of low-thrust propulsion along a capture trajectory could be
beneficial, but, not for all sequences. For these, it was concluded that it is better to employ a
conventional satellite-aided capture trajectory. The minimum Δ𝑉 for conventional satellite-
aided planetary capture was 255 m/s. This minimum was achieved with a Ganymede-JOI-
Europa-Callisto capture sequence. The addition of low-thrust to this further lowered the
impulsive Δ𝑉 towards 157 m/s.
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𝑅ፒፎፈ Radius of SOI [m]

𝑆ፚ,፛ Synodic period between body a and b [s]

𝑇ፚ Orbital period of body a [s]

𝑇፩ Tisserand parameter [-]

𝑡ኻኼ Time of flight between first two flybys [s]

𝑡ኽኾ Time of flight from second to third moon [s]

𝑇፩ፚ፭፭፞፫፧,ፂፚዅፄ፮ Pattern repeat period between Ganymede and Europa [s]

𝑇፰።፧፝፨፰,ፂፚዅፆፚ Flyby-window repeat period between Callisto and Ganymede [s]

𝑇፰።፧፝፨፰,ፆፚዅፄ፮ Flyby-window repeat period between Ganymede and Europa [s]
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𝑢 Argument of latitude [rad]

𝑉 Velocity [m/s]

𝑉ᖣ Velocity of third body in CR3BP [m/s]

𝑉ዄ Spacecraft velocity with respect to central body after flyby [m/s]

𝑉ዅ Spacecraft velocity with respect to central body before flyby [m/s]

𝑉፩ Velocity at pericenter/perijove [m/s]

𝑉ጼ Hyperbolic excess velocity [m/s]

𝑉 ፱፡ፚ፮፬፭ Exhaust velocity [m/s]

𝑉።,ፆ Mutation method notation [-]

𝑉፩፥ፚ፧፞፭ Velocity of planet [m/s]

𝑊 Weight factor [-]

𝑋 Decision vector [-]

𝑥 x-coordinate in non-rotating reference frame [m]

𝑥ᖣ x-coordinate in rotating reference frame [m]

𝑥ፚ x-coordinate in asymptotic frame [m]

𝑦 y-coordinate in non-rotating reference frame [m]

𝑦ᖣ y-coordinate in rotating reference frame [m]

𝑦ፚ y-coordinate in asymptotic frame [m]

𝑍 z-coordinate [m]





Chapter 1

Introduction

This first chapter serves as an introduction to the subject of this master thesis research:
”low-thrust satellite-aided planetary capture”. Section 1.1 elaborates on the relevance of the
problem. Section 1.2 presents a short outline of the report.

1.1 Background
Inserting a spacecraft in orbit around another planet requires a significant amount of Δ𝑉.
Because of this, rather than flying a direct transfer, a (sequence of) gravity assist(s) can be
used to lower mission requirements in terms of Δ𝑉 and propellant mass that the spacecraft
itself should deliver. These propellant savings could lower the spacecraft’s overall mass or
provide extra mass for the spacecraft’s payload. Historical missions such as Cassini [6],
Voyager 1 and 2 [4] and Galileo [8] have already reached the outer planets and beyond (Voy-
ager) through sequences of planetary gravity assists. Besides the launch of the spacecraft,
the orbit insertion maneuver is the most intensive part of the mission in terms of propel-
lant mass. From this, the idea came of using one or more gravity assists to lower the Δ𝑉
requirements on the orbit insertion maneuver. This is to be achieved by performing close
flybys (gravity assists) with the target planet’s natural satellites. This is often referred to as
”satellite-aided planetary capture” [18] and much research has already been conducted on
this subject. It could lead to significant propellant savings and/or extending the planned
mission duration. Obviously, this can only be the case when performed successfully. As an
example, the Galileo mission used this technique to insert itself in orbit around Jupiter. This
was done through a gravity assist with Io. Because of the relatively massive Galilean moons,
the Jovian system is very attractive for employing satellite-aided planetary capture trajecto-
ries. That is why most of the research on the subject is conducted for the Jovian system. The
challenges of designing satellite-aided capture trajectories lie in finding good sequences with
natural satellites and see if they are in line with a foregoing interplanetary trajectory. Also,
in recent years numerous missions have used low-thrust electric propulsion. For example,
the BepiColombo spacecraft [1] is currently on its way to Mercury. On its heliocentric tra-
jectory, the spacecraft has used and will use multiple low-thrust propulsive trajectory legs.
This is done in combination with several planetary gravity assists to reach Mercury. When
it reaches Mercury, it will again use low-thrust propulsion to lower its relative velocity with
respect to the planet such that it could even be captured in orbit around Mercury without
the use of any impulsive orbit insertion maneuver. This master thesis report aims to use the
technique of satellite-aided planetary capture in combination with low-thrust propulsion to
capture a spacecraft in orbit around Jupiter. Moreover, it aims to finding the best sequences
for mission planning. When considering mission planning, clearly the phasing of the moons
is of great importance. A certain sequence could look very promising for mass savings, but if
the Galilean moons almost never align properly, this sequence could possibly never be flown.

7



8 1. Introduction

The thesis research was conducted by means of answering the following research question:

What are the performance improvements of using low-radiation satellite-aided planetary
capture trajectories in the Jovian system compared to a purely impulsive capture maneuver
and how could these further be improved by incorporating low-thrust electric propulsion?

This research question can be split up into three sub-questions:

• What are the potential propellant mass savings for low-radiation satellite-aided plane-
tary capture trajectories compared to purely impulsive capture trajectories?

• What are the potential propellant mass savings for low-radiation satellite-aided plane-
tary capture trajectories when low-thrust propulsion along the trajectory is added?

• Which of the promising trajectories could be considered most useful with respect to
mission panning?

1.2 Structure of the report
This master thesis is divided into ten chapters. The first one is this introduction. Chapter 2
presents the heritage of a past mission and earlier research. This chapter also presents the
problem statement that outlines the motivation for the thesis topic with the actual research
problem, research question and research procedure. The next chapter starts with the ba-
sics of investigating multiple gravity assist trajectories. This is done through the Tisserand
parameter and constructing a Tisserand graph for the Jovian system. In Chapter 4 this
technique is used in optimizations for finding the most optimal conditions for particular cap-
ture sequences in the Tisserand graph. Results from these optimizations will give the first
insights into what particular sequences are good candidates for planetary capture. Chap-
ter 5 will present a fast method for including low-thrust legs on the Tisserand graph. The
importance of this fast technique becomes clear in Chapter 6 where it is combined with the
optimizations from Chapter 4 to find optimal low-thrust satellite-aided capture trajectories
in the Tisserand graph. Results from this chapter will present the capabilities of low-thrust
satellite-aided planetary capture trajectories. Up to this point all calculations and optimiza-
tions have been performed without taking into account the locations of the moons. In other
words the phasing of the moons was not yet considered. The methodology of solving the
phasing problem for both the low-thrust and ballistic satellite-aided capture trajectories is
presented in Chapter 7. The results obtained in Chapters 4 and 6 are then fed to this phas-
ing problem and results are presented and summarized in Chapter 8. The verification and
validation efforts are outlined in Chapter 9. Finally Chapter 10 presents the conclusions that
are based on the results of Chapter 8.



Chapter 2

Heritage

Satellite-aided planetary capture is a unique technique of capturing a spacecraft around a
target planet and is the research topic in this Master of Science thesis. This chapter starts
with a brief outline of the heritage on this subject. This includes a mission that already
employed this technique and has proven its benefits. This is further expanded with earlier
research on this topic with the purpose of indicating a knowledge gap for this thesis research.
The problem statement in Section 2.2 then outlines this knowledge gap. The actual research
problem on which this thesis research is centered is presented in Subsection 2.2.1, this also
includes the research questions and research procedure.

2.1 Heritage
This section serves as a more elaborate introduction into the topic of this thesis research. It
starts with the Galileo mission that already used the technique of satellite-aided planetary
capture. Then an outline of earlier research on the topic will explain on how the author
directed his research.

2.1.1 Galileo
The Galileo spacecraft was launched in October 1989 and after a sequence of planetary grav-
ity assists by Venus and Earth it arrived at the Jovian system in December 1995. The space-
craft consisted of an orbiter and an entry probe, which was first released into Jupiter’s at-
mosphere upon arrival at the Jovian system. The most important mission objectives were
to investigate the structure of Jupiter’s magnetosphere and the chemical composition of the
atmospheres of Jupiter and its moons. It made multiple close encounters (flyby’s) with the
Galilean moons (e.g., Io, Europa, Ganymede and Callisto). The mission was initially planned
to last for 24 months. However, the mission was extended twice (once to 1999 and later to
2003) [8].
When it arrived at the Jovian system, the spacecraft performed its first flyby with Io at an
intended altitude of 1000 km (actually 892 km). When doing so, it reduced the amount of
Δ𝑉 required for Jupiter orbit insertion (JOI) by 175 m/s (satellite-aided planetary capture)
[8]. Due to the harsh radiation environment, this was the closest flyby that the spacecraft
performed with Io. Right after the flyby, the orbiter relayed the data from the probe back
to Earth before the actual orbit insertion manoeuvre was initiated. An illustration of the Io
flyby, the probe entry and JOI is presented in Figure 2.1a.
Apart from the gravity assist manoeuvre with Io, the transfers from one moon to another
within the Jovian system also happened by means of gravity assists in order to save propel-
lant. The initially planned tour (up to 1997) for the Galileo orbiter through the Jovian system
is shown in Figure 2.1b. As mentioned earlier in this section, the mission was extended twice
up to 2003 when it dived into Jupiter’s atmosphere, in order to prevent it to contaminate the

9
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(a) Galileo orbit insertion manoeuvre using gravity
assist of Io and probe entry into Jupiter’s
atmosphere[9].

(b) Complete (initially planned) tour of the Galileo orbiter
up to 1997 [8].

Figure 2.1: Illustration of Galileo orbit ensertion and intended tour through the Jovian system.

Jovian moons with terrestrial bacteria.

2.1.2 Earlier research
This subsection expands the earlier research conducted on satellite-aided planetary capture.
The purpose of this section is finding a knowledge gap that can be filled by this thesis re-
search.
Jerry K. Cline performed the first research on single satellite-aided capture trajectories [5].
He used a patched-conics approach on which one of the planet’s natural satellite aided in
the planetary capture. Furthermore, he applied it to multiple planet-satellite systems: Earth-
Moon, Jupiter-Ganymede, Jupiter-Callisto, Saturn-Titan and Neptune-Triton. His first as-
sumption was coplanar circular planetary orbits around the Sun. From this, he investigated
three sources of bodies to be captured, namely: spacecraft launched from Earth, bodies en-
tering the Solar System from interstellar space, and bodies already in orbit around the Sun
such as asteroids or space dust. From his analysis it followed that the Neptune-Triton system
had the best capabilities for both capturing an interstellar object and capturing a spacecraft
from Earth. All other planet-moon systems could only capture an object that was already in
orbit around the Sun (considering appropriate conditions). Cline’s investigation was limited
to purely ballistic capture only, so no orbit insertion maneuvers were incorporated.
Cline showed what the capabilities were for employing satellite-aided capture. Due to the
raising interest in exploring the Jovian system and the presence of the massive Galilean
moons, most of the future work around satellite-aided capture was restricted for a mission
to the Jovian system.
The Galileo mission proved that employing a Jupiter orbit insertion maneuver in combination
with a flyby saved a significant amount of propellant mass that could be used for mission ex-
tension or even extra scientific payload. With this in mind, numerous research expanded the
idea towards double- [24],[28], triple-[18] [16] and even (although limited) quadruple-aided
capture sequences [17]. [27] investigated the capabilities of solar electric propulsion along
the interplanetary trajectory to lower the relative velocity when arriving at the Jovian system.
In combination with one, two or three flybys with the Galilean moons this would not require
any impulsive orbit insertion.
Most of the research mentioned above used an Io flyby in the capture sequence. However
as was mentioned in Subsection 2.1.1 during its Io flyby, the Galileo spacecraft experienced
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Jupiter’s harsh radiation environment. Therefor it never came closer to Io as that first flyby.

2.2 Problem statement
The Galileo mission and the earlier research mentioned in the previous section proved that
satellite-aided planetary capture sequences could be very beneficial for missions to the Jo-
vian system. Not only to lower the impulsive orbit insertion maneuver but also for low-thrust
interplanetary trajectories.

Keeping in mind that most of the research used flybys with Io because of it’s significant orbital
velocity, which generally is beneficial for performing flybys. However, the author argues that
all Io-aided (single or multiple) capture sequences would imply that they would pass through
Jupiter’s harsh radiation environment. Therefor either the spacecraft should be equiped with
severe radiation shielding material or after the capture sequences a perijove raise maneuver
would be required. Both of these diminish the positive effects of an Io flyby upon entry. So
from this came the motivation to investigate the possibilities of low-radiation capture trajec-
tories.

[27] proved solar electric propulsion along an interplanetary trajectory combined with satellite-
aided capture trajectories would not require an impulsive maneuver for planetary capture.
The author further argued that missions to the Jovian system are generally equiped with
low-thrust propulsion. Choosing low-thrust propulsion over high-thrust propulsion can sig-
nificantly extend the lifetime of a mission. Or as an alternative, due to the mass savings that
come along with low-thrust propulsion, the spacecraft’s payload mass could be increased.

The preceding findings triggered the idea of combining low radiation satellite-aided capture
trajectories with low-thrust propulsion. This would imply flybys with one, two or three of
the Galilean moons (excluding Io), an impulsive orbit insertion maneuver at the perijove and
low-thrust propulsion along the capture trajectory.
From the discussion presented in this section, the author created the following research
problem, explained in the next section.

2.2.1 Research problem
The research problem of this thesis research is illustrated in Figure 2.2. A spacecraft coming
from a heliocentric trajectory arrives at the Sphere Of Influence (SOI) of Jupiter when it is
at its apocenter of the heliocentric Hohmann transfer trajectory. Therefore it arrives with
𝑉ፚ፩፨፜፞፧፭፞፫ < 𝑉ፉ፮፩. Thus the spacecraft enters Jupiter’s SOI with a certain excess velocity. As-
suming proper interplanetary trajectory optimization, the angle of the hyperbolic approach
velocity upon entering the SOI of Jupiter, and the velocity vector of Jupiter is assumed to
be close to 180∘. The magnitude of the hyperbolic excess velocity corresponds to a heliocen-
tric Hohmann transfer from Earth to Jupiter. The desired final conditions for the capture
trajectory are taken as a highly eccentric long-period (200 days) orbit, avoiding the harsh
radiation environment of Jupiter (Figure 2.2). A long period is desired because long-periodic
orbits have significant orbital energy. This orbital energy can then be conserved during the
scientific tour through the Jovian system.
The challenge now is to look for possible optimal flyby sequences with the Galilean moons,
incorporating low-thrust, that match (or come in the vicinity of) both the initial and final
conditions.

2.2.2 Research question
The research problem stated in the previous section will be investigated by answering the
general research question:
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Figure 2.2: Illustration of a satellite-aided planetary capture trajectory in the Jovian system on a Jupiter-fixed reference frame.
The schematic shows the approach hyperbolic trajectory as a result of a interplanetary Hohmann transfer from Earth, gravity
assist with three of the Galilean moons, the Jupiter orbit insertion (JOI) and the 200 day periodic capture orbit.

What are the performance improvements of using low-radiation satellite-aided planetary
capture trajectories in the Jovian system compared to a purely impulsive capture maneuver
and how could these further be improved by incorporating low-thrust electric propulsion?

This research question can be split up into three sub-questions:

• What are the potential propellant mass savings for low-radiation satellite-aided plane-
tary capture trajectories compared to purely impulsive capture trajectories?

• What are the potential propellant mass savings for low-radiation satellite-aided plane-
tary capture trajectories when low-thrust propulsion along the trajectory is added?

• Which of the promising trajectories could be considered most useful with respect to
mission panning?

The investigation of the first two sub-question will be done by searching for optimal trajecto-
ries in terms of Δ𝑉 and/or propellant mass without considering the required locations of the
moons. This implies an investigation on a purely energetic basis.
The third sub-question takes the positions of the moons into account. By means of an
ephemerides search valid dates of arriving in the Jovian system (or performing the first flyby)
are to be identified. With these the author can reflect upon which sequences are most at-
tractive, if possible at all.

2.2.3 Research procedure
To answer the research questions from the previous section the following research procedure
was used. The author used this procedure to ensure that scientific knowledge would build
up steadily towards the last step.

1. Construct the Tisserand graph for the Jovian system that both incorporates hyperbolic
and elliptic planetocentric orbits. Validate this methodology by constructing the Tis-
serand graph for the Solar System and compare it with literature [26].
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2. Identify optimal satellite-aided capture trajectories in the Tisserand graph for the Jovian
system. Validate optima by reproducing results from literature [24].

3. Create an efficient method for including low-thrust legs in the Tisserand graph. Verifi-
cation of the method is done by comparing the orbital radius with a reference trajectory.

4. Identify optimal low-thrust satellite-aided capture trajectories in the Tisserand graph
for the Jovian system.

5. Create a robust method to solve the phasing problem by incorporating time-of-fight of
the spacecraft.

6. Feed results from the phasing problem to an ephemerides search between 2023 and
2065 using a database [24].

7. Evaluate on findings with respect to the research questions.





Chapter 3

Tisserand graph

This chapter discusses the Tisserand parameter and Tisserand graph. It starts with a brief
explanation of the origins of the Tisserand parameter. Section 3.2 explains the derivation
of the Tisserand parameter from the Jacobi energy integral. The following section discusses
the physics of gravity assists. Section 3.4 presents alternative techniques on how to obtain
the Tisserand parameter. These will become useful in Subsection 3.5.1, on how to construct
a so-called Tisserand graph and how it can be useful for designing multiple gravity assist
trajectories. The chapter closes with a discussion on the limitations of a Tisserand graph
and parameter in Subsection 3.5.3.

3.1 Tisserand parameter
The French astronomer Félix Tisserand first derived the Tisserand parameter in 1889 [29,
p478]. Its purpose was to verify whether a comet observed from Earth is the same comet
observed earlier but perturbed due to a close approach with one of the outer planets. By
determining the Tisserand parameter for both observations and checking if the quantity was
the same, he could conclude that both observations were the same comet. Nowadays, the
Tisserand graph provides physical insights into the characteristics of possible flyby trajecto-
ries. Due to the fact that the Tisserand parameter is conserved in the three-body problem,
it serves as an excellent tool to determine the effect of a close approach (e.g., gravity assist)
on the orbit of a spacecraft. The following section presents the derivation of this Tisserand
parameter.

3.2 Derivation
The Tisserand parameter derivation starts from the Jacobi energy integral. This is defined
in the Circular-Restricted Three-body Problem (CR3BP) [29]. The CR3BP holds the following
assumptions:

• The CR3BP consists out of three bodies with masses 𝑚ኻ, 𝑚ኼ and 𝑚ኽ.

• Two of the masses (𝑚ኻ and 𝑚ኼ) are comparable and one (𝑚ኽ) is considered negligible.
This arranges the three masses in the following way: 𝑚ኻ ≥ 𝑚ኼ ≫ 𝑚ኽ.

• The only forces acting on the bodies are the mutual gravitational forces between the
bodies.

• The two massive bodies (with masses 𝑚ኻ and 𝑚ኼ) are moving in a circular orbit about
their common barycenter with constant angular velocity 𝑛.

15
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Following these assumptions, the Jacobi energy of the third body (with mass 𝑚ኽ) is derived
as [29]:

𝐶ፉ = 2𝐺 (
𝑚ኻ
𝑟ኻ
+ 𝑚ኼ𝑟ኼ

) + 𝑛ኼ (𝑥ᖣኼ + 𝑦ᖣኼ) − 𝑉ᖣኼ (3.1)

The usage of the prime in Equation 3.1 indicates that the (Cartesian) coordinates in 𝑥ᖣ and
𝑦ᖣ direction are defined in a rotating reference frame, with its origin at the barycenter. This
rotating frame has the same angular velocity as the two massive bodies (with masses 𝑚ኻ and
𝑚ኼ) around their mutual center of gravity. Due to this, they appear stationary in this rotating
frame. The distances between the third and the first and the third and the second body are
𝑟ኻ and 𝑟ኼ, respectively. 𝑉ᖣ is the third body’s velocity, again, in this rotating frame. 𝐺 is the
universal gravitational constant. The Jacobi constant is derived in terms of inertial coordi-
nates. This latter demands the above equation also to be expressed in inertial coordinates.
For brevity, this process is not repeated here. Equation 3.2 presents the final result. For
more information, the reader is referred to [20].

𝐶ፉ = 2
𝜇ኻ
𝑟ኻ
+ 2𝜇ኼ𝑟ኼ

+ 2𝑛(𝑦̇𝑥 − 𝑥̇𝑦) − 𝑉ኼ (3.2)

For convenience, the bodies’ gravitational parameter, 𝜇። replaces the product of the universal
gravitational constant with each of the masses of the bodies (e.g., 𝜇። = 𝐺 ∗ 𝑚።). Also, notice
the dot above the coordinates, which indicates the first derivative with respect to time. As
all coordinates are now inertial coordinates, the primes are omitted in Equation 3.2. One
can also define the Jacobi constant in terms of Kepler elements. From the definition of
Kepler elements, this essentially assumes that two-body dynamics can express the third
body’s motion. In other words, bodies 𝑚ኼ and 𝑚ኽ both move in a Kepler orbits around body
𝑚ኻ. Assuming the preceding makes the force exerted by body 𝑚ኼ on body 𝑚ኽ essentially
a perturbation. Therefore, we change the assumption that the masses 𝑚ኻ and 𝑚ኼ are of
comparable magnitude even if the mass of the second body 𝑚ኼ is also negligible compared to
the first body’s mass 𝑚ኻ. When the distance between the second and third bodies is small
enough, the second body’s gravitational force acting on the third body will become bigger
than that of the first body. So, as long as the distance between the second and third bodies
is large, both the second and third bodies can be assumed to have a Kepler orbit around the
first body. Kepler orbits are expressed in terms of Kepler elements. For more explanation
on these elements, the reader is referred to [12]. The following equations substitute these
Kepler elements in Equation 3.2. Note that Equation 3.3 up to Equation 3.6 represent orbital
elements of the third body. Equation 3.7 represents the angular velocity of the second body
around the first body when the mass 𝑚ኼ is assumed to be negligible (which is also equal to
the rotational rate of the rotating reference frame considered in Equation 3.1).

𝑉ኼ = 𝜇ኻ (
2
𝑟ኻ
− 1𝑎) (3.3)

𝐻፳ = (𝑦̇𝑥 − 𝑥̇𝑦) (3.4)

𝐻፳ = 𝐻 cos 𝑖 (3.5)

𝐻 = √(1 − 𝑒ኼ) 𝑎𝜇ኻ (3.6)

𝑛 = √𝜇ኻ𝑟ኽ (3.7)

The vis-viva equation (Equation 3.3) relates the velocity of the third body to its position 𝑟ኻ and
semi-major axis 𝑎. All with respect to the first body. The specific angular momentum 𝐻 is
given by Equations 3.4, 3.5 and 3.6. The subscript 𝑧 corresponds to the z-component of this
quantity. Other orbital elements used are the inclination 𝑖 of the third body (measured with
respect to the second body’s orbital plane), 𝑒 is the eccentricity and 𝑟 refers to the second
body’s orbital radius. After substituting the above equations in Equation 3.2 the result is the
following:

𝐶ፉ =
𝜇ኻ
𝑎 + 2𝑛√(1 − 𝑒ኼ) 𝑎𝜇ኻ cos 𝑖 + 2

𝜇ኼ
𝑟ኼ

(3.8)
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As mentioned before, considering a significant distance (𝑟ኼ) between the third and second
body, the last term on the right-hand side becomes negligible. From literature [29], it is
known that a distance equal to the radius of the SOI [12] is large enough to make this as-
sumption valid. The equation for determining this sphere of influence is given by:

𝑅ፒፎፈ = 𝑎 (
𝑚ኼ
𝑚ኻ
)
ኼ/኿

(3.9)

where 𝑎 is the semi-major axis of the second body around the first. Applying the foregoing to
Equation 3.8, the equation reduces to Equation 3.10. Here, the notation 𝑇፩ is introduced as
the Tisserand parameter. Because the Tisserand parameter is derived from the Jacobi energy
integral, it in general is a measure of the three-body energy of the third body. From [12] it is
known that three-body orbital energy is conserved in one three-body system. So even a close
approach with the second body would not change this quantity (determined when the third
body is out of the SOI of the second body).

𝑇፩ =
𝜇ኻ
𝑎 + 2𝑛√(1 − 𝑒ኼ) 𝑎𝜇ኻ cos 𝑖 (3.10)

3.3 Gravity assist
The previous section shows that the Tisserand parameter is conserved within the CR3BP after
a close encounter with a secondary body. Such a close encounter is often referred to in this
thesis report as a gravity assist or flyby. This section will discuss the physical characteristics
of an unpowered (purely ballistic) gravity-assist trajectory. A ballistic gravity assist only
considers gravitational attraction, thus ruling out all other forces such as atmospheric effects
or rocket thrusting. This latter essentially means that a Kepler orbit can describe such a
trajectory. A gravity-assist trajectory is a hyperbolic trajectory around the flyby body. A
schematic of such an orbit is presented in Figure 3.1 considering a planet as a flyby body.

Figure 3.1: Schematic of a gravity-assist trajectory around a flyby planet in a planet-centered inertial reference frame [10].
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In this thesis report, the flyby body will mostly be a moon (natural satellite). Still, a planet
orbiting the Sun is used here to explain the physics of gravity-assist trajectories. In literature,
one often refers it to as the secondary orbiting the primary or central body in the CR3BP.
For the gravity-assist trajectory to be a hyperbola, the planet should move in a straight linear
motion. Considering the time that the spacecraft is within the SOI of the flyby planet and
comparing it with the orbital period of the planet’s heliocentric orbit, this is considered a
valid assumption. Due to this latter, one can assume a gravity assist as an instantaneous
velocity change applied to the heliocentric trajectory. From Figure 3.1, one can create a vector
diagram that further illustrates the effects of gravity assists on the velocity. Figure 3.2 shows
this vector diagram.

Figure 3.2: Vector diagram of the velocity vectors to be considered for gravity assist trajectories [10].

In this figure, the quantities 𝑉ዅ and 𝑉ዄ represent the spacecraft’s velocities with respect to
the Sun, respectively before and after the flyby. In both Figure 3.1 and Figure 3.2, 𝑉፩፥ፚ፧፞፭
is the velocity vector of the planet with respect to the Sun, 𝑉ዅጼ and 𝑉ዄጼ the hyperbolic excess
velocity vectors of the spacecraft before and after the flyby (infinity far away from the planet,
i.e., effectively at the sphere of influence of the planet). These are defined with respect to the
flyby planet. The pump angles 𝛼ዄ/ዅ are measured between the velocity of the planet and the
velocities 𝑉ዄ/ዅጼ .
Now considering this pump angle, when 𝛼ዄ = 0, the velocity of the spacecraft w.r.t. the Sun
(e.g. 𝑉ዄ) is maximal and visa versa when 𝛼ዄ = 𝜋, 𝑉ዄ is minimal. Therefore, both angles 𝛼ዄ/ዅ
indicate the orbital energy with respect to the Sun. The effect of a gravity assist is generally a
change in the pump angle from 𝛼ዅ to 𝛼ዄ by a quantity 𝛿, which is the turning/bending angle
(𝛼ዄ = 𝛼ዅ − 𝛿). The turning angle often expresses the Δ𝑉 as a result of the gravity assist (Δ𝑉ፆፀ
in Figure 3.2). Combining this with the property of a hyperbolic trajectory that the velocities
𝑉ዄ/ዅጼ are the same, one can calculate Δ𝑉ፆፀ using the following relation.

Δ𝑉ፆፀ = 2 sin(𝛿/2)𝑉ጼ (3.11)

The vis-viva equation (Equation 3.3) determines the velocity with respect to the Sun before
the flyby. The planet’s orbital radius gives the position vector 𝑟. The velocity of the spacecraft
after the gravity assists is calculated using the cosine rule:

(𝑉ዄ)ኼ = 𝑉ኼplanet + 𝑉ኼጼ + 2𝑉planet𝑉ጼ cos (𝛼ዄ) (3.12)

Note that Equation 3.12 also holds for the situation before the gravity assist (𝑉ዅጼ ), by substi-
tuting the pump angle before the flyby (𝛼ዅ). Now to know the pump angle after the flyby, the
turning angle needs to be determined. This turning angle is related to the pericenter radius,
the velocities(s) 𝑉ዄ/ዅጼ , and the gravitational parameter of the flyby planet 𝜇፩.

sin𝛿/2= 1
1+ ፕᎴᐴᒑ

ᑣᑡ

(3.13)

Then the hyperbolic excess velocity 𝑉ጼ is determined. Up to this point, no assumptions on
three-dimensional or two-dimensional geometry were taken. Throughout this thesis report,
only two-dimensional flybys (no relative inclination) are considered. The three-dimensional
case further complicates the problem geometrically and is left for future recommendations.
For the two-dimensional case, the velocity 𝑉ጼ is calculated using the following relation:
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𝑉ኼጼ = 𝑉ኼ፩፥ፚ፧፞፭ + (𝑉ዅ)
ኼ − 2𝑉፩፥ፚ፧፞፭𝑉ዅ cos 𝛾 (3.14)

Equation 3.14 introduces the flight path angle 𝛾 (𝜖 in Figure 3.2). This angle is determined
before the gravity assist with the angular momentum 𝐻, the orbital radius of the flyby planet
𝑟 and the heliocentric velocity 𝑉ዅ:

cos 𝛾 = 𝐻
𝑟 𝑉ዅ (3.15)

This concludes that the entire (two-dimensional) hyperbolic flyby trajectory can be expressed
by Equations 3.12 up to 3.15.

3.4 Variations of the Tisserand parameter
This section introduces three different ways to calculate the Tisserand parameter (apart from
the original one given by Equation 3.10). These will become useful when constructing the
so-called Tisserand graph in Section 3.5.

3.4.1 Orbital energy and pericenter radius
A handy set of parameters to calculate the Tisserand parameter is the orbital energy and
pericenter radius. When using the semi-major axis and eccentricity, the resulting Tisserand
graph shows asymptotic behavior (semi-major axis goes to infinity) around 𝑒 = 1, which is
challenging to interpret. The advantage of using orbital energy and pericenter radius is that
they are both defined for every Kepler orbit type. Note that the pericenter radius is given
by Equation 3.16 and the orbital energy by Equation 3.17. After substitution of these two
equations in Equation 3.10 the Tisserand parameter is expressed in terms of orbital energy
and pericenter radius:

𝑟፩ = 𝑎(1 − 𝑒) (3.16)

𝐸 = −𝜇
2𝑎 (3.17)

𝑇፩ = −2𝐸 + 2𝑛√2𝑟ኼ፩ 𝐸 + 2𝑟፩𝜇 cos 𝑖 (3.18)

Note that Equation 3.18 still considers the inclination. For the purely two-dimensional case,
this would be equal to zero and the resulting cosine would be equal to one.

3.4.2 Orbital energy and angular momentum
From the derivation of the Tisserand parameter, it is known that the second term on the right-
hand side is the z-component of the angular momentum (Equations 3.4 and 3.5). Therefore
one can express the Tisserand parameter in terms of energy and angular momentum as
shown in Equation 3.19. Again, note the presence of the inclination in the equation.

𝑇፩ = −2𝐸 + 2𝑛𝐻 cos 𝑖 (3.19)

3.4.3 Hyperbolic excess velocity

The hyperbolic excess velocities 𝑉ዄ/ዅጼ , similar to the Tisserand parameter, are conserved dur-
ing a purely ballistic gravity-assist trajectory. Moreover, literature [13] has proven that it is
possible to construct a Tisserand graph without the use of the Tisserand parameter. More-
over, it suggests that the hyperbolic excess velocity and the Tisserand parameters are equiva-
lent. Consider Equation 3.14, the velocity of the planet around the Sun is assumed constant
and equal to the circular velocity (Section 3.2). This circular velocity is given by Equation 3.20
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with 𝜇፬ the gravitational parameter of the Sun and 𝑟 the orbital radius of the planet (for cir-
cular orbits, equal to the semi-major axis).

𝑉ኼplanet =
𝜇፬
𝑟 (3.20)

Substituting the above equation for the circular velocity, the vis-viva equation for the helio-
centric velocity before the flyby 𝑉ዅ and the equation for the flightpath angle 𝛾 (e.g. Equations
3.20, 3.3 and 3.15) in Equation 3.14 for the hyperbolic excess velocity, one can rewrite this
to the following new equation for the angular momentum:

𝐻 = −(𝑉ኼጼ −
3𝜇ኻ
𝑟 + 𝜇ኻ𝑎 )

1
2 cos 𝑖

√𝑟
ኽ

𝜇ኻ
(3.21)

Note that the constant angular velocity of the planet around the Sun is given by Equation 3.7.
Now combining this equation with Equations 3.17 and 3.18 gives a new equation (3.22) for
the Tisserand parameter in terms of hyperbolic excess velocity. An important consideration
of this equation is that although the inclination is not present in the equation, it holds for all
inclinations.

𝑇፩ =
3𝜇ኻ
𝑅ኼ

− 𝑉ኼጼ (3.22)

3.5 Tisserand graph
The previous sections showed that there are multiple ways to express or calculate the Tis-
serand parameter. These are useful when constructing the actual Tisserand graph. Because
the Tisserand parameter is constant throughout a gravity assist, it is possible to build a
graph considering multiple flyby planets and hyperbolic excess velocities that is very useful
in designing multiple gravity-assist trajectories. First, the algorithm of constructing the Tis-
serand graph is explained, then the Tisserand graph of the outer Solar System is shown with
an explanation of how it is used.

3.5.1 Construction
The inputs of a Tisserand graph are the pump angle 𝛼, the hyperbolic excess velocity 𝑉ጼ and
the physical characteristics of the flyby bodies and central body (gravitational parameter,
orbital radius and physical radius). Only the two-dimensional (coplanar) Tisserand graph is
discussed here, so no inclinations are considered. A single point on the Tisserand graph is
created in the following steps:

1. Determine the spacecraft’s velocity with respect to the central body at the orbital radius
of the flyby body Equation 3.12.

2. Use the vis-viva equation (3.3) to obtain the semi-major axis.

3. Calculate the orbital energy using Equation 3.17.

4. Calculate the Tisserand parameter using Equation 3.22.

5. Determine the angular momentum using Equation 3.19.

6. Calculate eccentricity by solving Equation 3.10.

7. Calculate the pericenter radius using Equation 3.16.

As said at the beginning of this subsection, the inputs of a Tisserand graph (apart from the
physical characteristics of the central body and flyby bodies) are the pump angle and the
hyperbolic excess velocity. For a full graph instead of a single point, a range for the pump
angle from 0 to 180∘is taken and for the hyperbolic excess velocities 𝑉ጼ most often steps of one
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km/s are taken. Then the algorithm is repeated for each hyperbolic excess velocity and every
flyby body. In theory, there is no bound for the maximum hyperbolic excess velocity, but the
effect of a single flyby will become smaller for large hyperbolic excess velocities. Moreover,
large values for the hyperbolic excess velocity will result in a negative angular velocity. A
negative angular velocity means a retrograde orbit around the central body. Considering
the subject of this thesis report, retrograde orbits are not useful and thus excluded. The
additional benefit of this is that the graph becomes clearer.
A full Tisserand graph consists of multiple contour lines representing a different value of
hyperbolic excess velocity and flyby body. Figure 3.3 presents such a Tisserand graph of the
outer Solar System.

Figure 3.3: Tisserand graph of the outer Solar System. Thick marks on the contour lines illustrate the effect of a single gravity
assist with the planet considered taking into account the maximum bending angle as a result of the minimum flyby altitude (six
Jupiter radii for Jupiter, three Saturn radii for Saturn, and two planetary radii for Uranus and Neptune). Increments for the
hyperbolic excess velocity are set to 2 km/s increasing from lower right to upper left.

The algorithm of the Tisserand graph was implemented in C++, tested for the Solar Sys-
tem and compared with results from literature [12, p.46] in Section 9.1. This is shown in
a later chapter on verification and validation. Both results fully overlap and therefore is
the algorithm considered validated. Then the physical characteristics of the Jovian system
are implemented in the algorithm, taking into account the four Galilean moons (Io, Europe,
Ganymede and Callisto) and Jupiter. Running the algorithm for this system resulted in the
Tisserand graph presented in Figure 3.4. Other variations of the Tisserand graph also exist.
For example, the orbital period or apocenter radius can be put on the y-axis instead of the
orbital energy. This implies the same algorithm as outlined above but with an additional
step of calculating the orbital period using Equation 3.23 or Equation 3.24. The downside of
these versions of the Tisserand graph is that they can only be used for orbits that are closed
around the central body (elliptical). Regarding the thesis topic in this report that treats the
transition from open to closed orbits, these are less useful and therefore excluded from this
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Figure 3.4: A Tisserand graph of the Jovian system taking into account the four large Galilean moons. The spacing between
the tick marks illustrates a single flyby’s effect with that particular moon, with that specific excess velocity at a flyby altitude of
300 km. Increments for the hyperbolic excess velocity are set to 1 km/s increasing from lower right to upper left.

report.

𝑇 = 2𝜋√𝑎
ኽ

𝜇 = 𝜋√ 𝜇ኼ
2𝐸ኽ (3.23)

𝑟ፚ = 𝑎(1 + 𝑒) (3.24)

3.5.2 Using the Tisserand graph
A Tisserand graph is a useful tool for designing multiple gravity-assist trajectories. How this
works precisely will be explained in this section employing an Earth-Venus-Earth-Earth-
Jupiter or short EVEEJ trajectory. For this, a new Tisserand graph for the planets Venus up
to Jupiter is created and shown in Figure 3.5.
By observing the Tisserand graph, one notices that some of Earth’s contours intersect with
other planets’ contours. Such an intersection suggests that a spacecraft with that particu-
lar orbit (orbital energy and pericenter radius) can reach that particular planet’s orbit. This
makes it possible for the spacecraft to perform a flyby with that planet (considering the hyper-
bolic excess velocity specified by the contour of that planet). Each flyby (with minimum flyby
radius) alters the orbit of the spacecraft to reach other planets without the use of propellant.
Figure 3.6 illustrates this for the EVEEJ sequence.
Figure 3.6 shows the contour lines used for this particular sequence. The arrows in the graph
indicate the orbital changes as a result of a single flyby and the cross marks the initial point.
First, performing a flyby with Earth at a hyperbolic excess velocity of 3 km/s to reach the
orbit of Venus. Then a flyby with Venus at 𝑉ጼ of 5 km/s to reach the orbit of Earth again. This
does not violate energy conservation in the three-body problem since the spacecraft switches
between two three-body systems and thus exchanges energy with another secondary (e.g.
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Figure 3.5: A Tisserand graph of planets Venus up to Jupiter. Thick marks on the contour lines illustrate the effect of a single
gravity assist with the planet considered taking into account the maximum bending angle resulting from the minimum flyby
altitude (200 km for Venus and Mars, 500 km for Earth and six Jovian radii for Jupiter). Increments for the hyperbolic excess
velocity are set to 1 km/s.

Figure 3.6: An EVEEJ multiple gravity-assist trajectory to the Jovian system. Cross indicates the initial point in Tisserand graph
after launch from Earth.
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planet). The spacecraft then performs two more flybys at a 𝑉ጼ of 9 km/s to reach the Jovian
system at a 𝑉ጼ of 7 km/s.

3.5.3 Limitations
In the previous sections, both the Tisserand parameter and Tisserand graph have been de-
rived and introduced. While doing so, several assumptions were made that influence the
usage of the Tisserand graph. It is vital for the following chapters that the reader is aware of
these as it will be reflected upon.
All Tisserand graphs considered so far do not include any form of thrust. The trajectories
considered are purely ballistic, no intermediate maneuvers are considered. However, it has
been proven [23] that including such an intermediate maneuver could significantly reduce the
total mission cost. Powered gravity assists (Oberth maneuver [12, p.43]) are not considered.
These change the 𝑉ጼ during the gravity assist what could positively affect the overall mission
performance. However, the gains from these powered flyby’s are much smaller than those
resulting from intermediate maneuvers. From the Tisserand graph, one observes the change
in orbital energy and pericenter radius due to a flyby. The Tisserand graph however does not
give any insight into the moons’ location, also called the phasing, which will be discussed in
a later chapter. This could mean that a particular sequence only occurs once in a very long
time but is possible from a purely energetic perspective. It is essential to consider that the
lines on the Tisserand graphs shown so far illustrate how the Tisserand parameter can be
used to construct multiple gravity-assist trajectories. In reality, a point that lies in between
the lines represents an orbit with a specific 𝑉ጼ with respect to a particular flyby body. Of
course, if the pericenter radius lies beyond the flyby body’s orbital radius, the spacecraft can
not perform a flyby with it.



Chapter 4

Capture trajectories in the Tisserand
graph

This chapter investigates the possibilities of ballistic satellite-aided planetary capture in the
Jovian system. Starting, a brief description of the basic principle of capturing a spacecraft
into a closed orbit is given in Section 4.1. Then Section 4.2 explains the optimization routine
used to find ballistic capture trajectories on the Tisserand graph. This holds the creation
of a fitness function, choice of the optimization algorithm, and the algorithm’s tuning. In
Section 4.3 the results of single-, double- and triple-aided capture trajectories are presented
and discussed. The chapter closes with some concluding remarks with respect to the result
and methodology of this chapter.

4.1 Capturing a spacecraft
When a spacecraft arrives at the Jovian system with a hyperbolic excess velocity and orbital
energy (𝐸 > 0) resulting from the foregoing heliocentric trajectory, it must lower its orbital
energy towards the closed orbit (elliptic) regime (𝐸 < 0). This fundamental difference in orbital
energy is illustrated in Figure 4.1.

Figure 4.1: Fundamental difference in orbital energy between open and closed orbits.

25
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From the three-body problem, [12, p27] it is known that a purely ballistic permanent capture
around a planet in a Sun-planet-spacecraft three-body system is impossible. The reason for
this is that almost every particle will pass arbitrary close to its initial position in phase-space.
Therefore it will, at some point, escape the target planet again. For that reason, some sort of
mechanism is required to close the orbit of the spacecraft permanently. The most straightfor-
ward way to do this is to perform an impulsive rocket thrusting or JOI maneuver (optimally
performed at perijove of the hyperbolic trajectory), which closes the orbit and captures the
spacecraft around Jupiter. However, this rocket thrusting requires a significant amount of
propellant mass compared to the spacecraft’s total mass. By performing a (sequence of) grav-
ity assist(s) with one (or more of) the massive moon(s) of Jupiter, the orbital energy of the
spacecraft could already be lowered such that the total propellant mass required for the JOI
would be less. The greatest advantage of this is that these mass savings could be used for
extra scientific payload, or for mission extensions.

4.2 Identifying capture trajectories in Tisserand graph
This section explains the methodology used to find the best satellite-aided planetary capture
trajectories in the Jovian system. It starts with creating a fitness function that quantifies to
what extent a particular trajectory is a good candidate to be used as satellite-aided capture
trajectory. The fitness function uses the methodologies of the Tisserand parameter. From
previous chapter it is known that the Tisserand parameter and moreover the Tisserand graph
is a good tool for identifying multiple gravity assist trajectories. Earlier research [18],[16] uses
a more simple patched conics approach without specifically using the Tisserand parameter.
Then Subsection 4.2.4 briefly explains the choice of the optimization algorithm. This is fur-
ther extended in Subsection 4.2.6 where the optimizer’s tuning settings are discussed. A
good selection of these tuning settings ensures fast convergence behavior of the optimizer,
which is beneficial in terms of calculation time.

4.2.1 Fitness function
A fitness function or objective function summarizes to what extent a particular trajectory
achieves a specific set of goals. Concerning satellite-aided planetary capture, this depends
on the preferred captured orbit. For ensuring a long scientific lifetime of a mission to the Jo-
vian system, it is beneficial to preserve as much orbital energy as possible. From literature
[12] it becomes clear that a highly eccentric and long-periodic orbit (200 days) are satisfactory
for this. Such an orbit has considerable orbital energy that can be preserved during the sci-
entific part of the mission. In theory, there is no limit on the captured orbit period; however,
longer than 200 days could result in perturbations acting on the spacecraft becoming rela-
tively too large compared to Jupiter’s gravitational acceleration and too long times of flights.
Alternatively, it is also possible to capture the spacecraft into a shorter-period orbit. How-
ever, this requires a trade-off between reducing the flight time against increasing the JOI
velocity increment (e.g., Δ𝑉ፉፎፈ). As explained earlier, satellite-aided planetary capture uses
flyby(s) with one or more of Jupiter’s massive moons (e.g., Galilean moons) combined with
an impulsive JOI to lower the spacecraft’s orbital energy and close the orbit around Jupiter.
These are steps towards the satisfactory capture orbit. To investigate the possibilities of this,
the following objective function is created.

1. Obtain the initial perijove of the hyperbolic approach trajectory from the parameter vec-
tor. Together with the initial orbital energy, this makes the first point on the Tisserand
graph.

2. Calculate the initial eccentricity using Equation 3.16.

3. Obtain the flyby moon from the preset flyby sequence. If the preset sequence demands
a JOI, proceed to step 12.

4. Calculate the velocity 𝑉ዅ with respect to Jupiter using the vis-viva equation.
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5. Calculate the mean angular motion of the flyby moon around Jupiter using Equa-
tion 3.7.

6. Determine the Tisserand parameter for the initial point (orbital energy and perijove) on
the Tisserand graph using Equation 3.18.

7. Using the Tisserand parameter, calculate the angular momentum with Equation 3.19.

8. Obtain the hyperbolic excess velocity with respect to the flybymoon using Equation 3.14.

9. Obtain the minimum flyby altitude from the parameter vector and use it to calculate
the turning angle with Equation 3.13.

10. Calculate the increment in orbital energy for this turning angle.

11. Update the orbital energy, semi-major axis, eccentricity and perijove. Proceed to step
15.

12. Calculate the velocity at perijove 𝑉፩ using the vis-viva equation.

13. Obtain Δ𝑉ፉፎፈ from the parameter vector; subtract Δ𝑉ፉፎፈ from 𝑉፩.

14. Update the orbital energy using the vis-viva equation, semi-major using Equation 3.17
and eccentricity using Equation 3.16.

15. Repeat steps 2 up to 14 for the whole preset flyby sequence.

After the sequence is completed through the algorithm above, the fitness as a result of the
parameter vector is defined by the last parameter in the parameter vector, that is Δ𝑉ፉፎፈ plus
the absolute difference in orbital energy from that of the desired 200-day periodic captured
orbit. (Equation 4.1). A weight factor 𝑊 of 1000 was added to ensure faster convergence.
Due to the order of magnitude of the orbital energy compared to that of Δ𝑉ፉፎፈ no weighting
for the absolute difference in orbital energy was needed.

𝐽 = Δ𝑉ፉፎፈ ∗ 𝑊 + Δ𝐸 (4.1)

The fitness function in Equation 4.1 is the basic fitness function. It does not yet hold penal-
ties. Penalties indicate that a particular set of parameters results in a faulty region in the
solution space. Two cases for which a penalty is added are as follows:

𝑃 ፛ A first penalty (flyby penalty) is added when the parameter vector leads to a point on the
Tisserand graph where a subsequent flyby with the flyby moon in the preset sequence
is not possible. This occurs if the spacecraft’s perijove (with respect to Jupiter) is larger
than the orbital radius of that moon. Because the perijove is the minimum radius with
respect to Jupiter it is impossible for the spacecraft to reach the orbit of that particular
moon. Therefore the results following would be undesired. The penalty is added and the
algorithm above is broken to prevent the optimization to use the corresponding settings
for the decision vector again.

𝑃፫ፚ፝ A second penalty is given when the resulting perijove of the spacecraft reaches the
harsh radiation environment of Jupiter as a result of a flyby (radiation penalty). Lower
radiation capture trajectories have a minimum perijove of eight Jupiter radii [18]. Being
closer to Jupiter results in a more intense radiation dose that could harm scientific
equipment or increase spacecraft’s mass due to radiation shielding material. Due to
the orbital radius of Io, this penalty excludes possible flybys with Io.

For both cases the penalties are equal to 10ኻኼ and are added to the fitness function in Equa-
tion 4.1, and arrive at the complete fitness function:

𝐽 = Δ𝑉ፉፎፈ ∗ 𝑊 + Δ𝐸 + 𝑃 ፛ + 𝑃፫ፚ፝ (4.2)
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4.2.2 Initial conditions
In the algorithm described above, the flyby sequence is preset. A previous version where
this was not the case was also examined. However, this extended the search domain for the
parameter vector to such an extent that the solutions found for a particular seed number
initiation did not overlap with that of another seed number. Furthermore, the algorithm re-
quired too much function evaluations to get to a converged solution. Therefore, the author
chose to preset flyby sequences. This gave the benefits that the potential gains for each pos-
sible flyby sequence could be investigated separately. The initial orbital energy is a result of
a foregoing heliocentric trajectory. This thesis research assumed a direct Hohmann transfer
from Earth. Figure 4.2 gives a schematic of such a trajectory. By assuming coplanar, circular

Figure 4.2: Illustration of interplanetary Hohmann transfer.

planetary orbits, the spacecraft arrives at Jupiter with a relative velocity of 5.65 km/s. This
relative velocity is equal to the hyperbolic excess velocity in the Jovian system. From this
follows the initial condition for orbital energy. Equation 4.3 calculates the semi-major axis
of this hyperbolic approach trajectory. Then Equation 4.3 gives the initial orbital energy as
16.347 km2/s2. Note the minus sign in Equation 4.3 as a result of the negative semi-major
axis of a hyperbolic trajectory.

𝑉ጼ = √
−𝜇
𝑎 (4.3)

Another version was developed that did not preset the initial orbital energy but instead let
the optimizer chose a value within a range of 13.005 and 19.006 km2/s2. The motivation
for this was to investigate if an initial orbital energy higher than the nominal value could
result in more effective flybys with particular moons, resulting in a larger orbital energy
increment. The result was that all solutions converged towards the lower limit of the range.
The author argued that this only increased the required function evaluations without any
scientific benefits. Therefore, the initial orbital energy was preset to 16.347 km2/s2 which is
the nominal value resulting from a foregoing interplanetary Hohmann transfer from Earth.
From the 200 day period for the desired capture orbit, the semi-major axis 𝑎፜ was calculated
using Equation 3.23 and Equation 3.17 gives a desired orbital energy of −6.4251 km2/s2.
Note this is a final condition, but it seemed convenient for the author to include it here.

4.2.3 Parameter vector
The parameter vector contains the initial perijove radius of the hyperbolic approach trajectory
in the Jovian system, the flyby altitudes for each flyby and the Δ𝑉ፉፎፈ. For completeness, the
parameter vector is illustrated here for a triple-aided sequence:

𝑋̄፩ = {𝑅፩, ℎኻ, ℎኼ, ℎኽ, Δ𝑉ፉፎፈ} (4.4)
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The search domain for the initial perijove is set to 8𝑅ፉ to 30𝑅ፉ to ensure that it includes the
orbital radius of Europa (9.39𝑅ፉ), Ganymede (14.97𝑅ፉ) and Callisto (26.34𝑅ፉ). This excludes
Io, but the section on penalties had already explained this. The flyby altitudes are allowed to
vary between a range of 500 and 4000 km. The motivation for this 500 km minimum flyby
altitude is because of navigational concerns and ephemeride errors. As the Galilean moons
orbit Jupiter at high velocity, an error in ephemerides at which the flyby is executed results in
a deviation from the nominal flyby altitude. This error is then propagated towards following
flybys, resulting in even larger errors. Therefore the minimum flyby altitude is set at 500
km, where the effects of these deviations are relatively small (acceptable). It is expected that
optimal solutions will approach the lower limit of this flyby altitude because of the orbital
energy increment dependency on the minimum flyby radius. However, it will become clear
in the discussion on the results that it is of additional value to investigate the possibility of
flyby altitudes other than the minimum. The domain for Δ𝑉ፉፎፈ is set from zero to 1100 m/s.
The lower limit of this is quite straightforward. The upper limit lies close to the required JOI
when no flybys are used and the spacecraft is only captured by means of the JOI itself (i.e.
1069 m/s).

4.2.4 Optimization algorithm
This subsection explains the motivation for the choice of the optimization algorithm. It will
not give an overview of all possible optimization algorithms. For more information on this
the reader is referred to [12].
The optimization intends to find a global optimum in terms of required Δ𝑉ፉፎፈ to insert the
spacecraft in a desired (highly eccentric 200-days periodic orbit) as a result of the initial
perijove radius of the hyperbolic approach trajectory and flyby altitudes. One could use a
local optimizer when the search space is smooth, possibly even combined with multi-start
methods. However, for a gravity-assist problem in the Tisserand graph, the search space
is considered irregular [10] because the problem is of a higher order (e.g., more extended
parameter vector). Therefore, global optimization is deemed the best choice.
A simple Monte Carlo or grid search optimizer requires an enormous sample size to arrive at
a reliable optimum. This generally results in investigating parts of the search space that are
not interesting, leading to unnecessary large numbers of function evaluations. Therefore the
author chooses not to use this method for conducting the research.
Considering the (meta)heuristic methods with global search methods, the choice is made by
considering availability and previous experiences with the algorithm. To cut down the time
spent on programming and testing, the Parallel Global Multi-objective Optimizer (PaGMO)
toolbox [2] was chosen. It holds most of the modern metaheuristic algorithms such as Differ-
ential Evolution (DE), Particle Swarm Optimization (PSO), Genetic Algorithm (GA) and Sim-
ulated Annaling (SA). Earlier research [22] concluded that DE outperforms PSO and GA al-
gorithms. SA is, in most cases, not considered due to the fact that it does not handle widely
varying solution spaces very well and often, because of this, does not converge towards the
correct global optimum. Therefore DE is considered the best choice.

4.2.5 Differential Evolution
The previous section explained the choice for DE algorithm. Now the working principle of
the DE is explained. DE is a population-based (meta-)heuristic optimization algorithm. A
heuristic method uses the knowledge available from previous objective function evaluations
to direct the parameter vector where to look in the search space for creating new populations.
Because the algorithm uses a random component to make new populations, it is called a
meta-heuristic algorithm. Furthermore, it is population-based because it uses a set of trail
solutions or, in a word, a population.
The DE algorithm originates from [25] where concepts of evolution theory were used to solve
the fitting Chebychev polynomials problem. Figure 4.3 gives an illustration of the DE algo-
rithm through a flowchart. The terms used here originate from evolution theory. NP is the
size of the population and P the population itself.
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Figure 4.3: Flowchart of a simple DE algorithm [15].

The DE algorithm’s essential steps illustrated in Figure 4.3 are the mutation, crossover, and
selection. Therefore a brief explanation on these follows. One last thing to note is that the
optimization problem is always a minimization problem. Optimizations that require maxi-
mization of the fitness can simply invert the fitness function (𝐹𝑖𝑡𝑛𝑒𝑠𝑠ዅኻ).

Mutation

The mutation step creates a mutant or a donor vector using a base vector and a number of
difference pairs. The following equation gives a random method with one difference pair. Ten
different mutation methods will be tested in Subsection 4.2.6.

𝑉።,ፆ = 𝑋፫ᑚᎳ ,ፆ + 𝐹 (𝑋፫ᑚᎴ ,ፆ − 𝑋፫ᑚᎵ ,ፆ) (4.5)

In Equation 4.5 𝑋 is a decision vector of the population. The three 𝑋, indicated by the 𝑟 sub-
script, are mutually exclusive random samples of the population. 𝐺 indicates the generation
number. The subscript 𝑖 of 𝑋። indicates the parent vector for which the mutant is made.
Lastly, 𝐹 is the mutation scale factor, a tuning parameter that generally has a large influence
on the DE algorithm’s overall performance. Typical values for the scale factor 𝐹 are within
the interval [0.4, 1.0].
In earlier research [23] it was concluded that using the best-known decision vector instead of
𝑋፫ᑚᎳ in Equation 4.5 can be beneficial. However, a strategy based on the best-known solution
generally converges towards a sub-optimum rather than the overall optimum. Therefore, the
random strategy is preferred over the best-known solution strategy.

Crossover

The mutant vector explained above needs to be combined with the parent vector to obtain
the trail vector. The selection process then uses this trail vector. The notation of the trial
vector is 𝑈።,ፆ. Both in PaGMO and the DE algorithm’s original paper, two strategies for the
crossover are considered. The first one is exponential crossover, which combines part of the
mutant vector with the parent vector. The second strategy is binomial crossover, where every
single element of the mutant vector has a probability of being placed in the trail vector. The
difference between the two is illustrated in Figure 4.4. From [14] it is known that the binomial
crossover should be at least as good as the exponential crossover, in some cases even better.
Concerning the optimization problem described in this chapter, binomial crossover seems
to be the better choice. However, this will still be investigated in Subsection 4.2.6. The
parameter 𝐶፫ defines the probability of crossover or simply ”crossover rate”. Similar as the
mutation scale factor 𝐹, this has a strong influence on DE’s overall performance. Typical
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Figure 4.4: The difference between exponential and binomial crossover [25].

values of the crossover rate lie within the interval [0, 1.0]. The crossover rate is always smaller
than 1, suggesting that there is only a minimal probability that no crossover will happen at
all. When this is the case, none of the mutant vector elements are present in the trail vector.
Therefore, the DE algorithm is designed to have at least one element from the mutant vector
present in the trail vector. In Subsection 4.2.6 different settings for the crossover rate and
scale factor and different mutation strategies are tested.

Selection

The selection step is the most straightforward in the algorithm. It follows the principle of
”survival of the fittest”. The objective function value (fitness) of the parent and the trail vec-
tor are compared with one another and the vector with the lowest fitness is added to the new
generation. When it is the case that the fitnesses are equal, the trail vector is used to prevent
the algorithm from getting stuck on a flat plane (equal fitness) in the search space. This
strategy is named 𝐷𝐸/𝑟𝑎𝑛𝑑/1/𝑏𝑖𝑛. The notation 𝑟𝑎𝑛𝑑 refers to the fact that the base vector
𝑋፫ᑚᎳ ,ፆ is chosen randomly. Other variations are 𝑏𝑒𝑠𝑡, which takes the best or 𝑟𝑎𝑛𝑑 − 𝑡𝑜 − 𝑏𝑒𝑠𝑡,
the integer 1 sets the number of difference pairs, and 𝑏𝑖𝑛 is short for the binomial crossover
strategy (𝑒𝑥𝑝 for exponential). Other variations for the mutation strategy are presented in
Table 4.1 and tested in Subsection 4.2.6. The notation 𝑏𝑒𝑠𝑡 refers to the best known decision
vector instead of 𝑋፫ᑚᎳ in Equation 4.5. The 𝑟𝑎𝑛𝑑 − 𝑡𝑜 − 𝑏𝑒𝑠𝑡 notation combines both the 𝑏𝑒𝑠𝑡
and 𝑟𝑎𝑛𝑑 methods. In a DE iteration, the new members of the population are not inserted
back into the old populations, but a secondary population is used to store the new members.
Note that if the parent vector was better, the new members could also be the old members.
So during a single iteration, the population does not change. An iteration is finalized when
all members of the population have been a parent vector. This means that for each iteration
of the DE algorithm, the objective function is calculated 𝑁𝑃 times and members of the popu-
lation are stored with their respective fitness value. After a prescribed number of iterations
(e.g., generations), the DE algorithm ends. There is also the possibility to use a criterion
that decides that the optimization has converged. In the implementation of DE in PaGMO,
there are two different criteria. The first one is a condition of the difference between all the
members of a population. This refers to the maximum distance in the search space that
should be smaller than a prescribed value (criterion). The second criterion checks the differ-
ence in fitness between the worst and best members of the population. If this difference is
smaller than a prescribed value (criterion) the optimization is terminated. For the optimiza-
tions considered in this chapter, both stopping criteria are not used and one simply presets
the total number of generations. This is done by simply setting both stopping criteria values
too stringent.



32 4. Capture trajectories in the Tisserand graph

1. DE/best/1/exp 6. DE/best/1/bin

2. DE/rand/1/exp 7. DE/rand/1/bin

3. DE/rand-to-best/1/exp 8. DE/rand-to-best/1/bin

4. DE/best/2/exp 9. DE/best/2/bin

5. DE/rand/2/exp 10. DE/rand/2/bin

Table 4.1: Different selection methods of DE algorithm tested for best tuning parameters.

4.2.6 Optimizer settings
The previous subsection explained the three main steps of a DE algorithm and how to tune
them. In this subsection, one aims to find the best possible settings for these three steps.
In Table 4.1 the different settings for 𝐷𝐸/𝑥/𝑦/𝑧 are presented. 𝑥 refers to the method of
selecting the base vector, 𝑦 indicates the number of pairs used, and 𝑧 indicates the crossover
method used. Apart from the different selection methods presented in the table above, four
combinations of two different values (0.33 and 0.67) for 𝐶𝑟 and 𝐹 are investigated for each
of the methods presented in Table 4.1. The algorithm is tested for a Callisto-Ganymede-
Europa-JOI triple-flyby sequence. The number of generations is set to 200, each with 5000
individuals to ensure convergence for each combination of tuning parameters. These high
numbers are taken because there was no real restriction on computation time due to the
analytical nature of the problem. Figure 4.5 shows the convergence behavior for each of the
settings. Each plot holds the four combinations of 𝐶𝑟 and 𝐹 for a single method of the ones
presented in Table 4.1 and indicated by the method number. To make the plots more clear
the fitness will be plotted from the 20th generation onwards. The two convergence criteria
are set to half of a percentage of the final fitness above and below the final fitness value.
Convergence is said to be reached when the fitness is (and stays) between these two lines
and the aim is to find tuning parameters that converge fastest.
From the results presented in Figure 4.5 one can conclude that methods one and six com-
pete to have the best convergence behavior. Comparing both of these plots in more detail,
the author concluded that method six with 𝐶𝑟 = 0.67 and 𝐹 = 0.33 has the best convergence
behavior. The results shown in Figure 4.5 were generated using a seed number of 2222. The
number of generations required to reach the optimal settings was 36. The author is aware
that the difference between the first and sixth methods is only in the exponential or binomial
crossover strategy. Moreover, the preset seed number could influence the convergence be-
havior. Therefore it was tested for three different seed numbers (2222, 3333 and 1234). The
result was that although the number of generations needed to reach the convergence criteria
could differ, the optimal settings for the tuning parameters stayed the same (method six with
𝐶𝑟 = 0.67 and 𝐹 = 0.33). Therefore these settings are used throughout the remainder of this
chapter. For convenience all settings are summarized in Table 4.2.

Tuning parameter Notation Setting

Number of generations Gi 200
Number of individuals NP 5000
Mutation scale factor F 0.33
Crossover rate Cr 0.67
Selection method DE/x/y/z DE/best/1/bin

Table 4.2: Summary of the tuning parameters for the DE optimization algorithm for a triple satellite-aided capture sequence.
These are used for all the optimizations in this chapter.

To better illustrate the convergence of the optimization Figure 4.6 shows the fittest solution
for every generation. As the number of generations increases, the solutions’ lines start to
overlap such that they appear as one line. The hyperbolic excess velocity for each flyby,
the minimum flyby altitude and the flyby moon are also shown in the plot (only for the last
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(a) Method 1 (b) Method 2 (c) Method 3

(d) Method 4 (e) Method 5 (f) Method 6

(g) Method 7 (h) Method 8 (i) Method 9

(j) Method 10

Figure 4.5: Convergence behaviour for different settings of the tuning parameters for a preset Callisto-Ganymede-Europa-JOI
sequence.
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generation). The final optimum presented in Figure 4.6 results in a final orbital energy of

Figure 4.6: Optimal solution per generation for a Callisto-Ganymede-Europa-JOI satellite-aided planetary capture trajectory in
Tisserand graph. Thick linewidth indicates the final solution, horizontal red line represents the desired capture orbit and the
vertical red line the minimum allowable perijove radius due to the harsh radiation environment.

−6.425 km2/s2, referring to the 200-day periodic capture orbit. Again as mentioned earlier in
this section, the settings were tested for a Callisto-Ganymede-Europa-JOI capture sequence.
This resulted in an impulsive Δ𝑉ፉፎፈ of 275 m/s injected at the perijove of the trajectory and in
the opposite direction of the spacecraft’s velocity vector. The graph presented in Figure 4.6
will be repeated in Section 4.3 but only for the converged solution.

4.3 Results
This section presents the results for the satellite-aided planetary capture trajectory optimiza-
tion in the Tisserand graph. Better solutions are the ones where the JOI is smaller. Important
to consider is that no phasing considerations are applicable at this moment. The results are
organized such that first the single-aided sequences are explained, then the double-aided
and finally the triple-aided. The section closes with a summarizing table (Table 4.3) and con-
clusions in Section 4.4.
The results show the effect of the flybys in blue and the JOI in pink. Thinner lines in the
plots indicate the complete Tisserand contours from Figure 3.4 for specific values of 𝑉ጼ, on
which the flyby is flown. The colors of the Tisserand contours are arranged similar to Fig-
ure 3.4. The sequence is indicated in the title of the plot with the first letter of the moon
under consideration and the JOI with J.

4.3.1 Single-aided
The most simple satellite-aided capture trajectories are the ones that only imply a single flyby
with one moon. Considering the orbital parameters of the Galilean moons and the minimum
perijove radius due to the harsh radiation environment around Jupiter, it was already con-
cluded that Io should not be used for a satellite-aided capture trajectory and is therefor not
considered. For Callisto, Ganymede and Europa, the results present both a JOI before and
after the flyby.

Callisto

Figure 4.7 presents the two optima for a Callisto-aided planetary capture sequence. The first
thing to notice is that with a single Callisto flyby, the spacecraft can not be captured in a
closed orbit around Jupiter without the use of an impulsive JOI. The JOI is always inserted at



4.3. Results 35

the perijove, which makes the flyby either inbound or outbound. Both options are presented
in Figures 4.7a and 4.7b. Inbound flybys refer to the situation that the spacecraft is moving
closer to Jupiter and on its path perfroms a flyby with one of the moons. Contrary, outbound
flybys mean that the spacecraft is moving further away from Jupiter. This latter means that
after the JOI is executed, all subsequent flybys are outbound. The results suggest that it is

(a) Optimal Callisto-JOI planetary capture sequence
in Tisserand graph.

(b) Optimal JOI-Callisto planetary capture sequence
in Tisserand graph.

Figure 4.7: Results for Callisto-aided planetary capture trajectories.

better to perform the flyby first (hence lowering the perijove and orbital energy), followed by
a JOI of 902 m/s. The initial perijove (around 9𝑅ፉ) is such that after the flyby, the perijove
is decreased to its minimum allowable value (e.g. 8𝑅ፉ). It is well known that an impulsive
maneuver performs best when implemented when the spacecraft’s velocity is maximum (e.g.,
the perijove). On the other hand, from the relations in Section 3.3 one learned that the ef-
fects of a gravity assist maximize when it is performed at zero flight-path angle 𝛾 and lowest
relative velocity with respect to the flyby moon (Equations 3.3, 3.14, 3.12 and 3.13). From
the optima presented in Figure 4.7a one can conclude that the combined effect of a JOI at
perijove and a Callisto flyby is governed by more efficient impulsive JOI’s at lower perijoves.
The same reasoning holds when the JOI is implemented before the flyby (Figure 4.7b). This
lowers the spacecraft’s relative velocity with respect to the flyby moon, making flybys more
effective and thus lowering the required JOI. However, the more efficient JOI at perijove re-
sults in an optimal perijove around 9.2𝑅ፉ such that room is left in terms of perijove to perform
the flyby. This results in an increase of the JOI to 926 m/s.
Following the reasoning above, it is concludes that in the case of a Callisto-aided plane-
tary capture trajectory, Callisto’s high orbital radius makes the optima dominated by more
efficient JOI’s at lower perijoves.

Ganymede

The results of Ganymede-aided planetary capture trajectories are presented in Figure 4.8.
Like Callisto, a gravity assist with Ganymede only is incapable of capturing the spacecraft
in a closed orbit around Jupiter. A JOI is still inevitable and can be implemented before
(Figure 4.8b) or after (Figure 4.8a) the flyby.
From the optima one can conclude that a JOI before the flyby results in the lowest Δ𝑉 of 643
m/s. This is due to a lower relative velocity with respect to Ganymede that makes the flyby
more effective. Both optima have a perijove equal to the orbital radius of Ganymede right
before the flyby. Thus the flyby is performed at the perijove with flight-path angle 𝛾 equal to
zero and minimal relative velocity with respect to Ganymede. This makes the final perijove
far above the radiation safety belt of 8𝑅ፉ. A higher perijove at which the JOI is executed
means a less efficient impulsive maneuver. The author concludes that more effective flybys
govern a Ganymede-aided capture trajectory instead of a more efficient JOI at lower perijove.
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(a) Optimal Ganymede-JOI planetary capture
sequence in Tisserand graph.

(b) Optimal JOI-Ganymede planetary capture
sequence in Tisserand graph.

Figure 4.8: Results for Ganymede-aided planetary capture trajectories.

This is opposite to the optima found for the Callisto-aided sequences.

Europa

Similar to the Callisto and Ganymede optima, the results of both inbound- and outbound
Europa flybys are given in Figure 4.9. This implies that a JOI is also inevitable for a Europa-
aided capture trajectory. The outbound flyby has the lowest possible JOI of 788 m/s because
of the lower relative velocity with respect to Europa. Both optima have a perijove equal to the

(a) Optimal Europa-JOI planetary capture sequence
in Tisserand graph.

(b) Optimal JOI-Europa planetary capture sequence
in Tisserand graph.

Figure 4.9: Results for Europa-aided planetary capture trajectories.

orbital radius of Europa right before the flyby. Therefore setting the flight-path angle to zero
and the relative velocity to a minimummakes the flyby most effective. The final captured orbit
lies about 1.2𝑅ፉ above the radiation safety belt. The JOI could theoretically be performed at
lower perijove. However, from the optima in Figure 4.9 one learns that the minimal Δ𝑉 for the
JOI is dominated by more effective Europa flybys instead of a more efficient JOI. The same
was concluded for the Ganymede-aided planetary capture trajectories.
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4.3.2 Double-aided
Slightly more complicated satellite-aided planetary capture trajectories are the ones that
include two flybys in the sequence. Two gravity assists with a Galilean moon could lower the
orbital energy towards the limit value of closed and open orbits (e.g., zero orbital energy or
a parabolic orbit). However, capturing the spacecraft in the desired captured orbit around
Jupiter would still require an impulsive JOI. Therefore, the results of double-aided capture
trajectories are organized in three groups, each representing four possible combinations of
two of the three Galilean moons with a JOI at perijove (excluding Io due to the radiation
safety). First the Callisto-Ganymede, second the Ganymede-Europa and last the Callisto-
Europa sequences are presented here.

Inbound-outbound

As explained in the paragraph above, each combination of two moons hold four possible
sequences due to the arbitrary location of the JOI. In theory, six possible sequences could be
investigated. However, these two additional sequences have no physical meaning due to the
inbound-outbound problem. The inbound-outbound problem is illustrated in Figure 4.10
for a hypothetical JOI-Callisto-Ganymede sequence. Because the JOI is always executed at
perijove, all subsequent flyby are outbound flybys. Referring to the fact that the spacecraft is
mover further away from Jupiter. So, for the hypothetical JOI-Callisto-Ganymede sequence,
after the JOI is executed the spacecraft can perform a flyby with Callisto. A subsequent
Ganymede flyby is then geometrically impossible because Ganymede orbits Jupiter at smaller
orbital radius and the spacecraft will therefore never reach the orbit of Ganymede.

Figure 4.10: Illustration of the inbound-outbound problem by means of a hypothetical JOI-Callisto-Ganymede sequence.

Callisto-Ganymede

The results of the Callisto-Ganymede aided planetary capture trajectories are given in Fig-
ure 4.11. They hold four possible sequences due to arbitrary locations of the JOI in the
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sequence. The required Δ𝑉ፉፎፈ varies between 359 m/s for the sequence when the JOI is in-
serted before the flybys and 433 m/s when it is done after. So the effect of having smaller
relative velocities before the flybys as was explained in Subsection 4.3.1 is also valid for
Callisto-Ganymede-aided planetary capture trajectories. Considering the orbital radius of

(a) Optimal Callisto-Ganymede-JOI planetary capture
sequence in Tisserand graph.

(b) Optimal Callisto-JOI-Ganymede planetary capture
sequence in Tisserand graph.

(c) Optimal JOI-Ganymede-Callisto planetary capture
sequence in Tisserand graph.

(d) Optimal Ganymede-JOI-Callisto planetary capture
sequence in Tisserand graph.

Figure 4.11: Optimal for Callisto-Ganymede-aided planetary capture trajectories in Tisserand graph.

Ganymede, one can observe that the optima converge to a perijove equal to Ganymede’s or-
bital radius for every sequence thus performing the Ganymede flyby with zero flight-path
angle. This makes the JOI and final captured orbit lie far above the radiation safety belt.
Therefore, the author argues that the optima for all Callisto-Ganymede capture sequences
are governed by more effective flybys at lower relative velocity with respect to the flyby moons
and a zero flight-path angle with the most inner flyby moon.

Ganymede-Europa

With Δ𝑉ፉፎፈ ranging from 455 to 491 m/s (Figure 4.13), the Ganymede-Europa-aided planetary
capture trajectories perform worse (in terms of Δ𝑉ፉፎፈ) than Callisto-Ganymede-aided trajec-
tories. This is mainly due to Europa being less massive than Callisto, although the orbital
velocity of Europa is far larger than that of Callisto.
The optima are again bound to the orbital radius of the most inner moon Europa instead
of a more efficient JOI at a lower perijove. The absolute minimum for JOI is found for the
JOI-Europa-Callisto sequence holding only outbound flybys. Thus similar to the case for
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Callisto-Ganymede, optima are dominated by more effective flybys due to lower relative ve-
locities and zero flight-path angle.

(a) Optimal Ganymede-Europa-JOI planetary capture
sequence in Tisserand graph.

(b) Optimal Ganymede-JOI-Europa planetary capture
sequence in Tisserand graph.

(c) Optimal JOI-Europa-Ganymede planetary capture
sequence in Tisserand graph.

(d) Optimal Europa-JOI-Ganymede planetary capture
sequence in Tisserand graph.

Figure 4.12: Optimal for Ganymede-Europa-aided planetary capture trajectories in Tisserand graph.

Callisto-Europa

The optimal Callisto-Europa-aided planetary capture trajectories are given in Figure 4.13.
Δ𝑉ፉፎፈ varies from 582 to 638 m/s what makes them the worst from all three possible combi-
nations of the double-aided sequences. The large difference in orbital radius between Cal-
listo and Europa worsens the effectiveness of (one of) the flybys. Every optimum converged
towards a perijove equal to the orbital radius of Europa right before the Europa flyby. Con-
sequently, enlarging the flight-path angle and relative velocity at the Callisto flyby makes it
less effective.
The reasoning for the Ganymede-Europa sequences also applies to the Callisto-Europa-JOI-
and Callisto-JOI-Europa sequences (e.g., Figures 4.13a and 4.13b). Therefore, it will not be
repeated here for brevity. In short, the more effective flybys (flight-path angle and relative
velocity) govern the optima found for a Callisto-Europa-aided planetary capture trajectory.
For the JOI-Europa-Callisto and Europa-JOI-Callisto sequences in Figures 4.13c and 4.13d
the optima in terms of more efficient JOI at lower perijove and a more effective Europa flyby
at Europa’s orbital radius seem to coincide. Therefore the final perijove of the captured orbits
lies exactly on the radiation safety belt of 8𝑅ፉ.
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(a) Optimal Callisto-Europa-JOI planetary capture
sequence in Tisserand graph.

(b) Optimal Callisto-JOI-Europa planetary capture
sequence in Tisserand graph.

(c) Optimal JOI-Europa-Callisto planetary capture
sequence in Tisserand graph.

(d) Optimal Europa-JOI-Callisto planetary capture
sequence in Tisserand graph.

Figure 4.13: Optimal for Callisto-Europa-aided planetary capture trajectories in Tisserand graph.

4.3.3 Triple-aided

Figures 4.14 and 4.15 present the results of all possible triple-aided planetary capture tra-
jectories. Triple-aided capture trajectories could potentially capture a spacecraft in a closed
orbit. However, the captured orbit would have a very long orbital period that is generally not
desired regarding the time of flight. As stated earlier, a desired captured orbit would have
an orbital period of 200 days (indicated by the red line in the graphs). Therefore also for
triple-aided capture trajectories, a JOI is demanded. With JOI’s ranging from 258 to 374
m/s it makes the triple-aided capture trajectories perform best.

Like the double-aided sequences, the optimum lies at perijoves equal to the orbital radius
of the most inner moon right before the flyby with that inner moon. For the triple-aided
sequences that is always Europa. Europa’s orbital radius of 9.4𝑅ፉ has a downside though.
With the radiation safety belt set to 8𝑅ፉ, there is only a small region in perijove to incorporate
flybys. Flybys with Callisto and Ganymede have more effect on the perijove in this region
on the Tisserand graph compared to Europa flybys. Therefore it is better to place Callisto
and Ganymede in front of the sequence. This results in optima with larger final perijoves,
meaning that a larger range of initial perijoves (smaller than the optimum) can potentially be
flown.
For the JOI-Europa-Ganymede-Callisto and Europa-JOI-Ganymede-Callisto sequence, the
Callisto flyby is not flown at the minimum flyby altitude of 500 km. Both cases have a
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(a) Optimal JOI-Europa-Ganymede-Callisto planetary
capture sequence in Tisserand graph.

(b) Optimal Ganymede-JOI-Europa-Callisto planetary
capture sequence in Tisserand graph.

(c) Optimal Callisto-JOI-Europa-Ganymede planetary
capture sequence in Tisserand graph.

(d) Optimal path for a Europa-JOI-Ganymede-Callisto
planetary capture sequence in Tisserand graph.

(e) Optimal Callisto-Europa-JOI-Ganymede planetary
capture trajectory in Tisserand graph.

(f) Optimal path for a Ganymede-Europa-JOI-Callisto
planetary capture sequence in Tisserand graph.

Figure 4.14: Optimal triple-aided planetary capture trajectories in Tisserand graph (part 1).

Callisto flyby altitude above 3300 km. This is to limit the perijove increment delivered by the
Callisto flyby. However, this also limits the energy increment and thus causes an increase
in the required JOI. This is why these two sequences have a higher Δ𝑉ፉፎፈ result than all other
triple-aided scenarios.
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(a) Optimal Callisto-Ganymede-JOI-Europa planetary
capture trajectory in Tisserand graph.

(b) Optimal path for a Callisto-Ganymede-Europa-JOI
planetary capture trajectory in Tisserand graph.

Figure 4.15: Optimal triple-aided planetary capture trajectories in Tisserand graph (part 2).

4.3.4 Summary
The results of all sequences are summarised in Table 4.3. The table shows the required JOI
in terms of Δ𝑉ፉፎፈ and propellant mass. The required propellant mass is calculated using the
well-known “Tsiolkovsky rocket equation” [7] including only high-thrust (Equation 4.6).

𝑀፩፫፨፩ = 𝑀።፧።፭።ፚ፥ (1 − 𝑒
ዅ ᏺᑍᑁᑆᑀ
ᑘᎲᑀᑤᑡ,ᐿᑋ ) (4.6)

The above equation uses the following values. The initial spacecraft mass, 𝑀።፧።፭።ፚ፥ is set to
4000 kg, the high-thrust specific impulse equal to 300 s and the gravitational acceleration
at the surface of Earth, 𝑔ኺ = 9.81 m/s2.

Single-aided planetary capture sequence required propellant for the JOI ranging from 785
kg for a JOI-Ganymede to 1080 kg for a JOI-Callisto sequence. The propellant mass for
Europa-aided capture lies in between these two. Compared with not-aided capture, this
already meant potential mass savings from 138 to 433 kg (11 to 35%). The orbital radius of
the flyby moon was the primary cause of this wide range. Nonetheless, this already showed
that a single flyby upon capture could lead to significant mass savings for the spacecraft.
The addition of an extra flyby to fly double-aided capture sequences further lowered the over-
all propellant needs. Combining Callisto and Ganymede performed best: with required pro-
pellant masses going from 460 kg for JOI-Ganymede-Callisto to 547 kg for Callisto-Ganymede-
JOI. Compared with the reference of 1218 kg, these are mass savings from 671 to 758 kg.
That is 55 to 62% of the propellant mass for not-aided capture. Other combinations per-
formed (slightly) less with mass savings from 603 to 645 kg (49 to 53%) for Ganymede-Europa
and 438 to 501 kg (36 to 41%) for Callisto-Europa.
The triple-aided capture sequence lowered the propellant mass even further. The Europa-
JOI-Ganymede-Callisto sequence required a propellant mass of 477 kg, saving up to 741 kg
(60%). The best triple-aided sequence was the Ganymede-JOI-Europa-Callisto that required
331 kg propellant, and with it, saving of 887 kg ( or 73%).
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Δ𝑉ፉፎፈ [m/s] 𝑀፩፫፨፩,፦።፧ [kg] %Mprop,direct [-]

Direct
- 1069 1218 100

Single-aided
Callisto
CJ 902 1056 87
JC 926 1080 89

Ganymede
GJ 735 945 78
JG 643 785 64

Europa
EJ 837 990 81
JE 788 939 77

Double-aided
Callisto-Ganymede:
CGJ 433 547 45
CJG 379 484 40
JGC 359 460 38
GJC 408 517 42

Ganymede-Europa
GEJ 491 615 50
GJE 461 580 48
JEG 455 573 47
EJG 481 603 50

Callisto-Europa
CEJ 638 780 64
CJE 600 738 61
JEC 582 717 59
EJC 616 755 62

Triple-aided
CGEJ 275 357 29
CGJE 258 336 28
CEJG 283 366 30
CJEG 267 347 28
GEJC 270 351 29
GJEC 255 331 27
EJGC 374 477 39
JEGC 355 454 37

Table 4.3: Summary of the results of all double- and triple-aided capture sequences. Results hold the amount of ጂፕᑁᑆᑀ and
propellant mass for the JOI.

4.4 Conclusions
This chapter implemented the methodology and theory of the Chapter 3 to investigate the
possibilities of satellite-aided planetary capture trajectory within the Jovian system. This
was done through a fitness function that evaluates the required Δ𝑉ፉፎፈ. A short evaluation
of optimization algorithms suggested that the differential evolution algorithm (DE) was the
best option. Additionally, the DE algorithm was tuned in its settings for the mutation (F),
crossover (CR) and the selection method to guarantee the fastest convergence behavior. As
a result the combiniation, CR=0.67, F = 0.33 and selection method six (DE/x/y/z) came out
as the best option.
Three cases were investigated: single-, double- and triple satellite-aided capture trajectories.
One conclusion was that a spacecraft arriving at the Jovian system due to an interplanetary
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Hohmann transfer could not properly capture itself in the Jovian system through one-, two
or three gravity assists alone. This implies that an impulsive JOI would always be required.
For singe-aided trajectories, a Ganymede flyby would serve as the best solution to lower the
required JOI maneuver. When considering two gravity assists, the combinations of Callisto
and Ganymede perform best.
A trajectory incorporating three flybys can capture the spacecraft into a closed orbit around
Jupiter without the use of any JOI. However, to insert it into the desired 200-day periodic,
high eccentric orbit around Jupiter, an impulsive JOI is still required. Overall the triple-aided
trajectories perform better than the double-aided trajectories. Sequences that have Europa
as the first flyby have the problem of reaching beyond the radiation safety belt. An increase in
flyby altitude prevents this. The best option for conventional satellite-aided capture trajectory
would be the Ganymede-JOI-Europa-Callisto sequence with a JOI of only 255 m/s which
requires only 27% of the propellant for direct capture.



Chapter 5

Low-thrust Tisserand graph

This chapter presents a fast method to include low-thrust legs in the Tisserand graph. It
starts with the characteristics of low-thrust (electric) propulsion in Section 5.1. This is quan-
titatively extended with the equations of motion in Section 5.3. Then in Section 5.4 reference
trajectories are created to verify the method in this chapter. This section also explains the
effects of low thrust on the Tisserand graph. Section 5.5 presents the actual method (Taylor-
series expansion) for the inclusion of low-thrust legs in the Tisserand graph. The chapter
closes with some concluding remarks that are relevant for the following chapter.

5.1 Characteristics of low-thrust electric propulsion
A low-thrust electric propulsion system typically referes to a propulsion system that is only
capable of producing very low thrust levels (in the order of mN) and comes with a separate
electrical power unit. This power unit could be a solar array, which generally refers to a
Solar-Electric-Propulsion system or short, SEP. The thrust capabilities of a SEP are therefore
related to the solar power available. Another option for the power unit might be a nuclear
fission reactor. This then refers to a Nuclear-Electric-Propulsion system or short NEP. For
missions to the outer planets where the power available from the Sun diminishes with the
orbital radius of the target planet, a NEP system is preferred over a SEP.
The advantage of a low-thrust propulsion system comes from the very high exhaust velocity
𝑉 ፱፡ፚ፮፬፭. A very high 𝑉 ፱፡ፚ፮፬፭ results in a very high specific impulse through Equation 5.1. In
this equation, 𝑔ኺ is equal to the gravitational acceleration on Earth at sea level. For example,
the BepiColombo [1] spacecraft’s thrusters have a specific impulse of 4022 s compared to
only 300 s for the Messenger spacecraft [19].

𝐼፬፩ =
𝑉 ፱፡ፚ፮፬፭
𝑔ኺ

(5.1)

A low-thrust electrical propulsion system typically has three methods of accelerating the
propellant. The first one is by electrical heating, which refers to an electrothermal propulsion
system. Another technique is an electrostatic propulsion system. By letting ionized atoms
pass through a static electric field, a strong Coulomb force is created that accelerates these
atoms to high exhaust velocities. The third method for accelerating the propellant mass
is using a magnetic field. This uses the Lorentz force to accelerate the atoms, referring
to an electromagnetic propulsion system [29]. As mentioned above, a very high efficiency
comes from the very high exhaust velocity. However, this is at the cost of very low thrust
levels and thus, long thrust times to reach a certain amount of Δ𝑉. Again, the BepiColombo
spacecraft has a maximum thrust level of around 270 mN (Section 5.2) against 670 N for the
Messenger spacecraft. This is a very significant difference in thrust level. However, due to
the high specific impulse of low-thrust propulsion and very low propellant mass flow, low-
thrust propulsion systems allow for very long thrusting times. This makes the modeling of
low-thrust trajectories more challenging compared to that of high thrust trajectories. An

45
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example of a low-thrust propulsive trajectory modelled in the Solar System for 1.5 years
is given in Figure 5.1. A constant thrust acceleration of 10ዅኾm/s2 is assumed, resulting
in a constant mass of the spacecraft. How this trajectory is modeled is explained in the
following section. Concerning this thesis report’s topic, that is low-thrust natural satellite-
aided planetary capture in the Jovian system: a NEP system is considered the best option due
to limited solar power available. A NEP propulsion system can then also be used throughout
the scientific phase of the mission.

Figure 5.1: Example of low-thrust trajectory in modelled in the Solar System for 1.5 year. Initial conditions are taken to match
(circular) orbit of Earth and the thrust acceleration is set at ኻኺᎽᎶ m/s2.

5.2 BepiColombo
An example of a low-thrust propulsive mission is the BepiColombomission. The BepiColombo
mission was the first European mission to employ SEP in combination with seven flybys (one
with Earth, two with Venus and four with Mercury) to reach an inner planet (Mercury). It
was launched on an Ariane 5 rocket from Kourou, French Guiana at 01:45:28 UT on 20
October 2018 [1]. It was first intended to be launched on 9 July 2014. The baseline of
this intended interplanetary transfer is shown in Figure 5.2. The figure shows the orbits
of Earth, Venus and Mercury. Black lines represent coasting arcs (SEP turned off) and red
lines represent thrusting arcs (SEP turned on). After the four Mercury flybys the spacecraft
performed six final low-thrust arcs to lower the relative velocity with respect to Mercury. This
had the advantage that if the planned impulsive Mercury Orbit Insertion (MOI) should fail,
the spacecraft would still be weakly captured around Mercury.
The basic characteristics of the SEP of BepiColombo are presented in Table 5.1.
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Figure 5.2: An example of a low-thrust mission is the BepiColombo mission. Red arcs in the graph represent trajectory legs
where solar electric propulsion is turned on [1].

Characteristic Value Unit

Initial mass 4100 kg
Thrust level 261 to 290 mN
Specific impulse 4100 s
Acceleration 0.7 × 10ዅ4 m/s2
Total Δ𝑉ፋፓ 4.254 km/s

Table 5.1: Characteristics of BepiColombo SEP (and spacecraft initial mass) [1].

5.3 Equations of motion
The previous section briefly explained the characteristics of low-thrust propulsion. Due to
the very low thrust levels, the accelerations are very small. However, they are still an order
of magnitude larger than the perturbing accelerations [12]. This is why when modeling low-
thrust trajectories, the assumption that these perturbing accelerations can be neglected is
valid. With this in mind, the equations of motion read:

̈𝑟̄ + 𝜇
𝑟ኽ 𝑟̄ = 𝑎̄ፓ (5.2)

The vector 𝑟̄ represents the radius to the central body, 𝜇 is the gravitational parameter of
that central body. The thrust acceleration is given by the vector ̄𝑎ፓ. Vectors are indicated by
means of the bar above the symbol and the double derivatives (w.r.t. time) by the double dots.
Equation 5.2 is in general always valid. The downside of it is that a very high-order integra-
tion method is needed to ensure trustworthy results for many problems. Therefore another
approach that uses information that is already known about the orbit could be beneficial. As
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was explained in Section 5.1, the levels of accelerations are low. Because of this, the effects
of these accelerations on the shape of the orbit are small. Some literature suggests that a
low-thrust acceleration could be regarded as a perturbing acceleration, despite the fact that
they are an order of magnitude larger than these natural perturbing accelerations. From
[29] it is known that the effects of perturbations on orbital elements can be modeled using
the Gauss form of planetary equations, or short the Gauss equations. These expressions in
terms of Kepler elements are given here from Equation 5.3 to 5.8.

𝑑𝑎
𝑑𝑡 =

2𝑒 sin(𝜃)
𝑛√1 − 𝑒ኼ

𝐹ፑ +
2𝑎√1 − 𝑒ኼ

𝑛𝑟 𝐹᎕ (5.3)

𝑑𝑒
𝑑𝑡 =

√1 − 𝑒ኼ
𝑛𝑎 [sin(𝜃)𝐹ፑ + (cos(𝜃) +

𝑒 + cos(𝜃)
1 + 𝑒 cos(𝜃))𝐹᎕] (5.4)

𝑑𝑖
𝑑𝑡 =

𝑟 cos(𝑢)
𝑛𝑎ኼ√1 − 𝑒ኼ

𝐹ዊ (5.5)

𝑑Ω
𝑑𝑡 =

𝑟 sin(𝑢)𝐹ዊ
𝑛𝑎ኼ√1 − 𝑒ኼ sin(𝑖)

(5.6)

𝑑𝜔፩
𝑑𝑡 = √1 − 𝑒ኼ

𝑛𝑎𝑒 [− cos(𝜃)𝐹ፑ +
2 + 𝑒 cos(𝜃)
1 + 𝑒 cos(𝜃) sin(𝜃)𝐹᎕] −

𝑟 sin(𝑢)
𝐻 tan(𝑖)𝐹ዊ (5.7)

𝑑𝜃
𝑑𝑡 = √

𝜇
𝑝ኽ (1 + 𝑒 cos𝜃)

ኼ + √1 − 𝑒
ኼ

𝑛𝑎𝑒 cos(𝜃)𝐹ፑ −
√1 − 𝑒ኼ
𝑛𝑎𝑒

2 + 𝑒 cos(𝜃)
1 + 𝑒 cos(𝜃)𝐹᎕ (5.8)

For the thrust accelerations, 𝐹ፑ is directed along the radius vector and its positive direction
points outwards. 𝐹᎕ lies in the orbital plane and points in the direction of motion of the
spacecraft. 𝐹ዊ is perpendicular to the orbital plane and points in the direction of the angular
momentum vector. From [12] it is known that Kepler elements have the disadvantage that
they contain singularities at 𝑖 = 0∘ or 𝑖 = 180∘ and at 𝑒 = 0 or 𝑒 = 1. A solution for avoiding
these is to use the Modified Equinoctial Elements (MEE) [29] [12]. These MEE are defined
from the conventional Kepler elements by means of Equations 5.9 to 5.14.

𝑝 = 𝑎 (1 − 𝑒ኼ) (5.9)

𝑓 = 𝑒 cos (𝜔፩ + Ω) (5.10)

𝑔 = 𝑒 sin (𝜔፩ + Ω) (5.11)

ℎ = tan(𝑖/2) cosΩ (5.12)

𝑘 = tan(𝑖/2) sinΩ (5.13)

𝐿 = Ω + 𝜔፩ + 𝜃 (5.14)

It is possible to combine these MEE with the Gauss planetary equations and so create the
Gauss equations in MEE. These are given by Equations 5.15 to 5.20:

𝑑𝑝
𝑑𝑡 = √

𝑝
𝜇
2𝑝𝐹Ꭹ
𝐶ኻ

(5.15)
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𝑑𝑓
𝑑𝑡 = √

𝑝
𝜇 [𝐹ፑ sin(𝐿) +

[(𝐶ኻ + 1) cos(𝐿) + 𝑓] 𝐹Ꭹ
𝐶ኻ

− 𝑔(ℎ sin(𝐿) − 𝑘 cos(𝐿))𝐹ዊ𝐶ኻ
] (5.16)

𝑑𝑔
𝑑𝑡 = √

𝑝
𝜇 [−𝐹ፑ cos(𝐿) +

[(𝐶ኻ + 1) sin(𝐿) + 𝑔] 𝐹Ꭹ
𝐶ኻ

− 𝑓(ℎ sin(𝐿) − 𝑘 cos(𝐿))𝐹ዊ𝐶ኻ
] (5.17)

𝑑ℎ
𝑑𝑡 = √

𝑝
𝜇
𝐶ኼ𝐹ዊ
2𝐶ኻ

cos(𝐿) (5.18)

𝑑𝑘
𝑑𝑡 = √

𝑝
𝜇
𝐶ኼ𝐹ዊ
2𝐶ኻ

sin(𝐿) (5.19)

𝑑𝐿
𝑑𝑡 = √𝑝𝜇 (

𝐶ኻ
𝑝 )

ኼ
+√

𝑝
𝜇
(ℎ sin(𝐿) − 𝑘 cos(𝐿))𝐹ዊ

𝐶ኻ
(5.20)

In these equations, 𝐶ኻ is given by 𝐶ኻ = 𝑝/𝑟 = 1+ 𝑓 cos(𝐿) + 𝑔 sin(𝐿) and 𝐶ኼ by 𝐶ኼ = 1+ ℎኼ + 𝑘ኼ.
Although the MEE prevent the singularities occurring in the conventional Kepler elements,
they have the major disadvantage that they do not give a direct or easy insight into what
is happening in a certain model. This is because they do not represent a physical quantity
(except for the semi-latus rectum and true longitude) such as the Kepler elements. Therefore,
the use of Kepler elements is still preferred if the nature of the problem allows it. With
respect to the thesis topic in this report where the eccentricity is expected to go through the
singularity of 𝑒 = 1, it is strongly encouraged to use the MEE.

5.4 Reference trajectory
In order to get an idea of what the effects are of low-thrust propulsion in the Tisserand
graph, some reference trajectories are integrated forward in time using the Gauss planetary
equations which are available and ready to use in Tudat. These same initial conditions will
be used to verify a method of creating low-thrust legs in the Tisserand graph that does not
require integration in time but rather in true longitude. This will speed up the calculation
time in the optimizations of Chapter 6.

5.4.1 Relations for tangential thrust
The first thing to mention is that all initial conditions used in the integration hold an incli-
nation, Right Ascension of the Ascending Node, argument of pericenter and true anomaly
(thus also the true longitude, Equation 5.14) set to zero. Then only the eccentricity (𝑒) and
semi-major axis (𝑎) remain. These are also the only quantities required to create a Tisserand
graph. The exact values of them are given in Table 5.2. For these reference trajectories a
constant thrust acceleration of 10ዅኾm/s2 was assumed which implies a constant mass of the
spacecraft. Whether this assumption is valid will be shown in later sections. The correspond-
ing thrust level has been proven to be achievable in earlier missions (Section 5.1). Also, it is
assumed that the thrust acts only in tangential direction. This is to reduce the complexity
of the method developed in Section 5.5. Because the thrust is acting parallel to the velocity
vector (tangential) its direction is dependent on the flight-path angle (𝛾). Figure 5.3 gives an
illustration of how this flight-path angle is defined along a trajectory within the orbital plane.
By means of Equations 5.21 and 5.22 the flight-path angle can be defined as a function of
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Figure 5.3: The flight-path angle defined in the orbital plane of a trajectory [10].

Kepler elements.

𝑉 sin 𝛾 = 𝑉፫ = √
𝜇
𝑝(𝑒 sin𝜗) (5.21)

𝑉 cos 𝛾 = 𝑉ፓ = √
𝜇
𝑝(1 + 𝑒 cos𝜗) (5.22)

As stated before, the use of MEE is preferred over conventional Kepler elements because
they avoid the singularities around zero inclination and eccentricities close to zero and one.
Therefore Equations 5.21 and 5.22 are converted into MEE:

𝑉ኼ = 𝜇 (2𝑟 −
1
𝑎) = 𝜇 (

2(1 + 𝑓 cos 𝐿 + 𝑔 sin 𝐿)
𝑝 − 1 − 𝑓

ኼ − 𝑔ኼ
𝑝 ) (5.23)

𝑟 = 𝑝
1 + 𝑒 cos𝜗 =

𝑝
1 + 𝑓 cos 𝐿 + 𝑔 sin 𝐿 (5.24)

𝑒 sin𝜗 = √𝑓ኼ + 𝑔ኼ sin(𝐿 − tanዅኻ
𝑔
𝑓 )

= √𝑓ኼ + 𝑔ኼ⎛

⎝

sin 𝐿

√[፠፟ ]
ኼ
+ 1

+
፠
፟ cos 𝐿

√[፠፟ ]
ኼ
+ 1

⎞

⎠
= 𝑓 sin 𝐿 − 𝑔 cos 𝐿

(5.25)

Now that the flight-path angle is expressed in terms of MEE, the two components of the
tangential thrust acceleration that are used in the Gauss planetary equations (Equations 5.3
to 5.20) are given by Equations 5.26 and 5.27.

𝐹ፑ = 𝐹ፓ sin 𝛾 (5.26)

𝐹Ꭹ = 𝐹ፓ cos 𝛾 (5.27)
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5.4.2 Integrator

The integrator used for creating the reference trajectories is a Runge-Kutta 4 (RK4) method.
It has a comparable accuracy of a fourth-order Taylor expansion [21]. Although the RK4
integrator is generally not known as the most efficient one to use, it performs well enough
to provide reference orbits against which the method developed in Section 5.5 (accurate up
to second-order polynomial) can be tested. The main advantages of using the RK4 method
are that it is a straightforward method to implement, produces results very quickly, and is
already available in Tudat. The RK4 integrator is a fixed step size method. This implies that
faster dynamics will be the main source of the integration error. Considering that the only
disturbing force acting on the spacecraft is the thrust, none of these faster dynamics (for
example, a gravity assist) are expected to be present during the reference trajectory integra-
tion. Also, using the MEE instead of cartesian coordinates avoids the presence and severity
of faster dynamics.
Before creating the reference orbits, it is worth investigating what a good accuracy might be
for them. The first thing to consider is the error that arises during the integration due to the
time steps of the numerical integration. This error is shown in Figure 5.4. The figure shows
the relative difference in radial position with respect to a 10 s time step integration of the
trajectory that is shown in Figure 5.1 (1.5 sidereal year).

Figure 5.4: Relative difference in orbital radius for nine different time steps compared with a reference with 10 seconds time
step.

By observing Figure 5.4, it is concluded that there is no need to choose time steps smaller
than 50000 seconds in terms of accuracy. However, it is argued here that having a significant
number of data points for verifying the methods presented further in this chapter is of great
importance. A smaller time step would require morememory on the computer and is therefore
avoided. After a brief evaluation of the different time steps, the author concluded that a time
step of 300 s is the best choice. This was also concluded after a similar investigation in [10].
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5.4.3 Integration results
The relations explained in Subsection 5.4.1 and the integration scheme described in the
previous section need six initial conditions that will be integrated forward in time. Three
different values for the semi-major axis are taken that will result in three different energy
regions in the Tisserand graph; and two values for the eccentricity. Combining these results
in six different reference trajectories on the Tisserand graph. The precise values for the
eccentricity and semi-major axis are presented in Table 5.2.

Eccentricity [-] Semi-major axis [AU]

IC1 0.1 1.05
IC2 0.4 1.05
IC3 0.1 2.8
IC4 0.4 2.8
IC5 0.1 3.8
IC6 0.4 3.8

Table 5.2: Initial conditions (IC) of the reference trajectories in terms of eccentricity and semi-major axis.

Figure 5.5 shows the result on the Tisserand graph. Note that the initial conditions five and
six are integrated five sidereal years forward in time and the other four only for two sidereal
years. This was done because integrating them only for two sidereal years would not visualize
the effects of low-thrust propulsion on the Tisserand graph. On the other hand, integrating
the other four initial conditions for five sidereal years would make the graph too chaotic to
be used for proper comparison with the method developed in Section 5.5.

Figure 5.5: Integrated low-thrust trajectories on the Tisserand graph. Integration was done by RK4 with 300 seconds step size.

Observing Figure 5.5 one notices a curved shape in each line. To better explain these, the
second initial condition 𝑅𝐾ኼ and the subsequent trajectory is plotted separately in Figure 5.6
with indications for the true anomaly on it. The true anomaly gives more direct insight into
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where the spacecraft is located along the orbit. In Figure 5.6 the black stars indicate a true

Figure 5.6: Separate plot of initial condition 2 from Figure 5.5 including extra indications for the true anomaly.

anomaly of 0∘ or 360∘, thus the start of a new orbit (w.r.t. the initial orbit). The purple
stars indicate a true anomaly of 180∘. Using these two, one can distinguish two parts of
a trajectory. The first one is located close to the pericenter, where the energy increases,
but the pericenter radius does not. This results in the vertical sections of the lines on the
Tisserand graph. The second part is located close to the apocenter, indicated by the purple
stars. The pericenter radius increases relatively faster around these points than the orbital
energy, which translates into more horizontal sections of the lines on the Tisserand graph.
The point where the transition between these two parts occurs is known to be difficult and
case dependent. In Figure 5.6, two angles per bent are indicated. These two angles indicate
two true anomalies in between which the bend usually occurs. The first two are 90∘ and
135∘. The reversed transition (bend) usually occurs at 225∘ and 270∘. Again, finding a general
rule for the location at which this bend occurs is challenging. Between the true anomalies
mentioned in this paragraph, the spacecraft passes the semi-minor axis of the trajectory.
One could argue that the true anomaly corresponding with the bend also corresponds with
the true anomaly of semi-minor axis passage. However, this does not hold for higher orbital
energies.
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5.5 Taylor-series expansion of orbital elements
This section presents a simple and computationally fast method to include low-thrust propul-
sive legs in a Tisserand plot. The aim is to reproduce the same trajectories as shown in
Figure 5.5. As discussed in the foregoing section, one can separate three parts in a full rev-
olution on the Tisserand plot. The first part is around the pericenter where the energy is
increased and the pericenter radius stays approximately the same. A second part is around
the apocenter where the increase in pericenter occurs relatively fast with a small increase
in orbital energy. The third part is the transition between these, also known as the ”bend”.
It is expected that a second-order Taylor expansion should be able to model this ”bend” ac-
curately enough. Ideally, it should be possible to resolve a trajectory analytically using only
one Taylor-series expansion for all three parts. One full revolution would then consist of 5
parabolas. A first for the initial pericenter passage, a second for the first bend, a third for
the apocenter passage, a fourth for the second bend and the fifth from the bend to the next
pericenter passage. By patching these together, an approximation of a low-thrust trajectory
(one full revolution) on the Tisserand graph is created. The method will be developed us-
ing a second-order Taylor-series expansion of the relevant Gauss planetary equations. The
reason for choosing a second-order Taylor-series expansion instead of a direct numerical in-
tegration lies in the computational speed. The next chapter will combine this method with
the optimizations from Chapter 4 to find optimal low-thrust satellite-aided planetary capture
trajectories. A direct numerical integration would result in much longer computational time
and is therefor avoided. In [10] three different Taylor-series expansions were investigated:
one using conventional Kepler elements, a second using the argument of latitude and the
last based on the MEE. First a brief discussion follows on the motivation of using the MEE
instead of the Kepler elements with true anomaly or argument of latitude as running param-
eter. For brevity, only the motivation will be given in this report and the reader is referred to
[10] for a quantitative explanation and relations when using the Kepler elements. Then the
relevant equations are derived for the MEE and results are compared with those from RK4
integration in Subsection 5.5.4.

5.5.1 Limitations using Kepler elements
The limitations of conventional Kepler elements were already mentioned before. The first is
that circular orbits cannot be integrated. This, however, does not seem to be a problem for
satellite-aided planetary capture trajectories on the Tisserand graph since the orbits consid-
ered would be far beyond circular. Moreover, a Tisserand graph is a useful tool for designing
multiple gravity assist trajectories under the forgoing assumption of the Tisserand parameter
that the orbits of the secondary bodies are all circular. Therefore, if the orbit of the spacecraft
would be circular, no combination of the orbital radius of the spacecraft and the secondary
could suggest a proper gravity assist. This is also the region where no 𝑉ጼ lines are defined
on the Tisserand graph (e.g., the region in the lower right corner). Another limitation is that
conventional Kepler elements are singular for the transition between closed and open orbits
(e.g., parabolic orbits). Concerning low-thrust satellite-aided planetary capture trajectories,
this is a region of great interest. Moreover, as was shown in Figure 3.3, there are possible
sequences of gravity assists where the spacecraft gets orbital energy greater than zero (i.e.
an open orbit). Even more important is that these trajectories have already been flown in
the past by the Voyager (one and two) spacecraft [3]. The last and most important limitation
of using the conventional Kepler elements for the Taylor-series expansion is that the true
anomaly at a certain point could start to decrease due to the increasing argument of peri-
center. When this occurs, the Taylor-series is no longer valid and is stopped. This problem
often occurs at higher orbital energy levels or for nearly circular orbits. Considering the high
orbital energy levels of a low-thrust satellite-aided planetary capture trajectory and the or-
bital energies of the Galilean moons used in the previous chapter, it is expected that this last
limitation of conventional Kepler elements will raise problems. Because conventional Kepler
elements will not be used in the Taylor-series expansion due to the limitations mentioned
above, the relations will not be mentioned in this report for brevity. For more information
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the reader is referred to [10].

5.5.2 Limitations using argument of latitude
The previous section explained the limitations of using the Kepler elements in a Taylor expan-
sion describing low-thrust trajectories. The most crucial problem was that the true anomaly
does not always increase under the influence of thrust. This is due to a fast-changing argu-
ment of periapsis, which at its turn occurs for nearly circular orbits or long thrust periods at
the apocenter. When these long thrust periods occur, the orbit considered becomes circular
before becoming elliptic again, which means that the apocenter and pericenter have switched
places. In the Tisserand graph this corresponds to curves that are closely located to the re-
gions where the Tisserand graph is not defined (e.g. circular orbits for the spacecraft). A
solution to this problem is to combine (Equation 5.28) the true anomaly with the argument
of pericenter and so create the Argument Of Latitude (AOL). Because the argument of latitude
is defined with respect to a fixed point in space, it is always increasing. Therefore using the
AOL as the running parameter will ensure that no maximum is reached and thus that the
Taylor-series expansion is valid in more regions of the Tisserand graph.

𝑢 = 𝜃 + 𝜔፩ (5.28)
In [10] the accuracy of using the AOL as running parameter was investigated and it became
clear that it performed better for orbits at higher energies under the influence of tangential
thrust. However, for nearly circular orbits, the error in pericenter radius and orbital energy
still becomes large [10]. Because the Taylor-series expansion using the AOL as running
parameter uses the conventional Kepler elements, singularities arise at energies close to zero
(e.g., parabolic orbits). A Tisserand graph does not indicate any limitations on the orbital
energy and concerning low-thrust satellite-aided planetary capture, this region is of great
interest. Therefore, a method that is both more accurate and valid in all energy regions is
preferred. Because conventional Kepler elements with the AOL as running parameter will not
be used in the Taylor-series expansion due to the limitations mentioned above, the Taylor-
series expansions will also not be mentioned in this report for brevity. For more information,
the reader is referred again to [10].

5.5.3 Taylor-series expansion using MEE
The singularities that occur when using the Kepler elements (true anomaly or AOL as run-
ning parameter) around parabolic orbital energies are critical regarding this thesis report’s
topic. Low-thrust satellite-aided planetary capture trajectories go from a positive to a nega-
tive energy regime. In other words, they go through the regions where the Kepler elements
become singular. Therefore the use of MEE is considered the only possible approach for
implementing them in the Taylor-series expansion. In the MEE the true longitude (𝐿) is the
running parameter. By assuming that there is no out-of-plane thrust the true longitude be-
haves in the same way as the AOL does, which avoids that the derivatives become negative.
This already clears out the problems of using the true anomaly as the running parameter.
First, the Gauss equations in MEE of the relevant parameters are repeated here. Because no
out-of-plane thrust is considered (𝐹ዊ = 0) the only relevant parameters are 𝑝, 𝑓, 𝑔 and 𝐿. The
other two MEE have zero derivatives when only applying thrust in the orbital plane and are
therefore not repeated here.

𝑑𝑝
𝑑𝑡 = √

𝑝
𝜇
2𝑝𝐹Ꭹ
𝐶ኻ

(5.29)

𝑑𝑓
𝑑𝑡 = √

𝑝
𝜇 [𝐹ፑ sin(𝐿) +

[(𝐶ኻ + 1) cos(𝐿) + 𝑓] 𝐹Ꭹ
𝐶ኻ

] (5.30)

𝑑𝑔
𝑑𝑡 = √

𝑝
𝜇 [−𝐹ፑ cos(𝐿) +

[(𝐶ኻ + 1) sin(𝐿) + 𝑔] 𝐹Ꭹ
𝐶ኻ

] (5.31)
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𝑑𝐿
𝑑𝑡 = √𝑝𝜇 (

𝐶ኻ
𝑝 )

ኼ
(5.32)

where:
𝐶ኻ = 𝑝/𝑟 = 1 + 𝑓 cos(𝐿) + 𝑔 sin(𝐿) (5.33)

The first-order derivatives with respect to the true longitude are obtained by dividing the
appropriate Gauss equations in MEE. In other words, dividing Equations 5.29,5.30 and 5.31
by 5.32. Then the second order total derivatives are given by:

𝑑
𝑑𝐿 (

𝑑𝑝
𝑑𝐿) =

𝜕
𝜕𝐿 (

𝑑𝑝
𝑑𝐿) +

𝑑𝑝
𝑑𝐿

𝜕
𝜕𝑝 (

𝑑𝑝
𝑑𝐿) +

𝑑𝑓
𝑑𝐿

𝜕
𝜕𝑓 (

𝑑𝑝
𝑑𝐿) +

𝑑𝑔
𝑑𝐿

𝜕
𝜕𝑔 (

𝑑𝑝
𝑑𝐿) (5.34)

𝑑
𝑑𝐿 (

𝑑𝑓
𝑑𝐿) =

𝜕
𝜕𝐿 (

𝑑𝑓
𝑑𝐿) +

𝑑𝑝
𝑑𝐿

𝜕
𝜕𝑝 (

𝑑𝑓
𝑑𝐿) +

𝑑𝑓
𝑑𝐿

𝜕
𝜕𝑓 (

𝑑𝑓
𝑑𝐿) +

𝑑𝑔
𝑑𝐿

𝜕
𝜕𝑔 (

𝑑𝑓
𝑑𝐿) (5.35)

𝑑
𝑑𝐿 (

𝑑𝑔
𝑑𝐿 ) =

𝜕
𝜕𝐿 (

𝑑𝑔
𝑑𝐿 ) +

𝑑𝑝
𝑑𝐿

𝜕
𝜕𝑝 (

𝑑𝑔
𝑑𝐿 ) +

𝑑𝑓
𝑑𝐿

𝜕
𝜕𝑓 (

𝑑𝑔
𝑑𝐿 ) +

𝑑𝑔
𝑑𝐿

𝜕
𝜕𝑔 (

𝑑𝑔
𝑑𝐿 ) (5.36)

Now, the quotient rule gives the partial derivatives that occur in these equations. Please note
that 𝑑 is referred to as a total derivative and 𝜕 a partial derivative. The partial derivatives are
given here in Equations 5.37 to 5.48.

𝜕
𝜕𝐿 (

𝑑𝑝
𝑑𝐿) =

𝜕
𝜕𝐿 [(

𝑑𝐿
𝑑𝑡 )

ዅኻ
⋅ 𝑑𝑝𝑑𝑡 ] = (

𝑑𝐿
𝑑𝑡 )

ዅኻ
⋅ 𝜕𝜕𝐿 (

𝑑𝑝
𝑑𝑡 ) −

𝑑𝑝
𝑑𝑡 ⋅ (

𝑑𝐿
𝑑𝑡 )

ዅኼ
⋅ 𝜕𝜕𝐿 (

𝑑𝐿
𝑑𝑡 ) (5.37)

𝜕
𝜕𝐿 (

𝑑𝑓
𝑑𝐿) =

𝜕
𝜕𝐿 [(

𝑑𝐿
𝑑𝑡 )

ዅኻ
⋅ 𝑑𝑓𝑑𝑡 ] = (

𝑑𝐿
𝑑𝑡 )

ዅኻ
⋅ 𝜕𝜕𝐿 (

𝑑𝑓
𝑑𝑡 ) −

𝑑𝑓
𝑑𝑡 ⋅ (

𝑑𝐿
𝑑𝑡 )

ዅኼ
⋅ 𝜕𝜕𝐿 (

𝑑𝐿
𝑑𝑡 ) (5.38)

𝜕
𝜕𝐿 (

𝑑𝑔
𝑑𝐿 ) =

𝜕
𝜕𝐿 [(

𝑑𝐿
𝑑𝑡 )

ዅኻ
⋅ 𝑑𝑔𝑑𝑡 ] = (

𝑑𝐿
𝑑𝑡 )

ዅኻ
⋅ 𝜕𝜕𝐿 (

𝑑𝑔
𝑑𝑡 ) −

𝑑𝑔
𝑑𝑡 ⋅ (

𝑑𝐿
𝑑𝑡 )

ዅኼ
⋅ 𝜕𝜕𝐿 (

𝑑𝐿
𝑑𝑡 ) (5.39)

𝜕
𝜕𝑝 (

𝑑𝑝
𝑑𝐿) =

𝜕
𝜕𝑝 [(

𝑑𝐿
𝑑𝑡 )

ዅኻ
⋅ 𝑑𝑝𝑑𝑡 ] = (

𝑑𝐿
𝑑𝑡 )

ዅኻ
⋅ 𝜕𝜕𝑝 (

𝑑𝑝
𝑑𝑡 ) −

𝑑𝑝
𝑑𝑡 ⋅ (

𝑑𝐿
𝑑𝑡 )

ዅኼ
⋅ 𝜕𝜕𝑝 (

𝑑𝐿
𝑑𝑡 ) (5.40)

𝜕
𝜕𝑝 (

𝑑𝑓
𝑑𝐿) =

𝜕
𝜕𝑝 [(

𝑑𝐿
𝑑𝑡 )

ዅኻ
⋅ 𝑑𝑓𝑑𝑡 ] = (

𝑑𝐿
𝑑𝑡 )

ዅኻ
⋅ 𝜕𝜕𝑝 (

𝑑𝑓
𝑑𝑡 ) −

𝑑𝑓
𝑑𝑡 ⋅ (

𝑑𝐿
𝑑𝑡 )

ዅኼ
⋅ 𝜕𝜕𝑝 (

𝑑𝐿
𝑑𝑡 ) (5.41)

𝜕
𝜕𝑝 (

𝑑𝑔
𝑑𝐿 ) =

𝜕
𝜕𝑝 [(

𝑑𝐿
𝑑𝑡 )

ዅኻ
⋅ 𝑑𝑔𝑑𝑡 ] = (

𝑑𝐿
𝑑𝑡 )

ዅኻ
⋅ 𝜕𝜕𝑝 (

𝑑𝑔
𝑑𝑡 ) −

𝑑𝑔
𝑑𝑡 ⋅ (

𝑑𝐿
𝑑𝑡 )

ዅኼ
⋅ 𝜕𝜕𝑝 (

𝑑𝐿
𝑑𝑡 ) (5.42)

𝜕
𝜕𝑓 (

𝑑𝑝
𝑑𝐿) =

𝜕
𝜕𝑓 [(

𝑑𝐿
𝑑𝑡 )

ዅኻ
⋅ 𝑑𝑝𝑑𝑡 ] = (

𝑑𝐿
𝑑𝑡 )

ዅኻ
⋅ 𝜕𝜕𝑓 (

𝑑𝑝
𝑑𝑡 ) −

𝑑𝑝
𝑑𝑡 ⋅ (

𝑑𝐿
𝑑𝑡 )

ዅኼ
⋅ 𝜕𝜕𝑓 (

𝑑𝐿
𝑑𝑡 ) (5.43)

𝜕
𝜕𝑓 (

𝑑𝑓
𝑑𝐿) =

𝜕
𝜕𝑓 [(

𝑑𝐿
𝑑𝑡 )

ዅኻ
⋅ 𝑑𝑓𝑑𝑡 ] = (

𝑑𝐿
𝑑𝑡 )

ዅኻ
⋅ 𝜕𝜕𝑓 (

𝑑𝑓
𝑑𝑡 ) −

𝑑𝑓
𝑑𝑡 ⋅ (

𝑑𝐿
𝑑𝑡 )

ዅኼ
⋅ 𝜕𝜕𝑓 (

𝑑𝐿
𝑑𝑡 ) (5.44)

𝜕
𝜕𝑓 (

𝑑𝑔
𝑑𝐿 ) =

𝜕
𝜕𝑓 [(

𝑑𝐿
𝑑𝑡 )

ዅኻ
⋅ 𝑑𝑔𝑑𝑡 ] = (

𝑑𝐿
𝑑𝑡 )

ዅኻ
⋅ 𝜕𝜕𝑓 (

𝑑𝑔
𝑑𝑡 ) −

𝑑𝑔
𝑑𝑡 ⋅ (

𝑑𝐿
𝑑𝑡 )

ዅኼ
⋅ 𝜕𝜕𝑓 (

𝑑𝐿
𝑑𝑡 ) (5.45)

𝜕
𝜕𝑔 (

𝑑𝑝
𝑑𝐿) =

𝜕
𝜕𝑔 [(

𝑑𝐿
𝑑𝑡 )

ዅኻ
⋅ 𝑑𝑝𝑑𝑡 ] = (

𝑑𝐿
𝑑𝑡 )

ዅኻ
⋅ 𝜕𝜕𝑔 (

𝑑𝑝
𝑑𝑡 ) −

𝑑𝑝
𝑑𝑡 ⋅ (

𝑑𝐿
𝑑𝑡 )

ዅኼ
⋅ 𝜕𝜕𝑔 (

𝑑𝐿
𝑑𝑡 ) (5.46)

𝜕
𝜕𝑔 (

𝑑𝑓
𝑑𝐿) =

𝜕
𝜕𝑔 [(

𝑑𝐿
𝑑𝑡 )

ዅኻ
⋅ 𝑑𝑓𝑑𝑡 ] = (

𝑑𝐿
𝑑𝑡 )

ዅኻ
⋅ 𝜕𝜕𝑔 (

𝑑𝑓
𝑑𝑡 ) −

𝑑𝑓
𝑑𝑡 ⋅ (

𝑑𝐿
𝑑𝑡 )

ዅኼ
⋅ 𝜕𝜕𝑔 (

𝑑𝐿
𝑑𝑡 ) (5.47)

𝜕
𝜕𝑔 (

𝑑𝑔
𝑑𝐿 ) =

𝜕
𝜕𝑔 [(

𝑑𝐿
𝑑𝑡 )

ዅኻ
⋅ 𝑑𝑔𝑑𝑡 ] = (

𝑑𝐿
𝑑𝑡 )

ዅኻ
⋅ 𝜕𝜕𝑔 (

𝑑𝑔
𝑑𝑡 ) −

𝑑𝑔
𝑑𝑡 ⋅ (

𝑑𝐿
𝑑𝑡 )

ዅኼ
⋅ 𝜕𝜕𝑔 (

𝑑𝐿
𝑑𝑡 ) (5.48)
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These equations also contain other partial derivatives. The ones derived with respect to the
true longitude are given by Equations 5.49 to 5.52:

𝜕
𝜕𝐿 (

𝑑𝑝
𝑑𝑡 ) = √

𝑝
𝜇
2𝑝
𝐶ኼኻ
(𝑓 sin 𝐿 − 𝑔 cos 𝐿)𝐹Ꭹ (5.49)

𝜕
𝜕𝐿 (

𝑑𝑓
𝑑𝑡 ) =√

𝑝
𝜇 [𝐹ፑ cos 𝐿 +

𝐹Ꭹ
𝐶ኻ
(𝑔 cos(2𝐿) − 𝑓 sin(2𝐿) − 2 sin(𝐿))

+
[(𝐶ኻ + 1) cos(𝐿) + 𝑓] 𝐹Ꭹ

𝐶ኼኻ
(𝑓 sin(𝐿) − 𝑔 cos(𝐿))]

(5.50)

𝜕
𝜕𝐿 (

𝑑𝑔
𝑑𝑡 ) =√

𝑝
𝜇 [𝐹ፑ sin 𝐿 +

𝐹Ꭹ
𝐶ኻ
(𝑔 sin(2𝐿) + 𝑓 cos(2𝐿) + 2 cos(𝐿))

+
[(𝐶ኻ + 1) sin(𝐿) + 𝑔] 𝐹Ꭹ

𝐶ኼኻ
(𝑓 sin(𝐿) − 𝑔 cos(𝐿))]

(5.51)

𝜕
𝜕𝐿 (

𝑑𝐿
𝑑𝑡 ) = −2√

𝜇
𝑝ኽ𝐶ኻ(𝑓 sin(𝐿) − 𝑔 cos(𝐿)) (5.52)

Following up, the partial derivatives with respect to 𝑝 are given by:

𝜕
𝜕𝑝 (

𝑑𝑝
𝑑𝑡 ) = 3√

𝑝
𝜇
𝐹Ꭹ
𝐶ኻ

(5.53)

𝜕
𝜕𝑝 (

𝑑𝑓
𝑑𝑡 ) =

1
2𝑝
𝑑𝑓
𝑑𝑡 (5.54)

𝜕
𝜕𝑝 (

𝑑𝑔
𝑑𝑡 ) =

1
2𝑝
𝑑𝑔
𝑑𝑡 (5.55)

𝜕
𝜕𝑝 (

𝑑𝐿
𝑑𝑡 ) = −

3
2√

𝜇
𝑝኿𝐶

ኼ
ኻ (5.56)

The ones with respect to 𝑓 are given by:

𝜕
𝜕𝑓 (

𝑑𝑝
𝑑𝑡 ) = −2

√𝑝
ኽ

𝜇
𝐹Ꭹ
𝐶ኼኻ

cos 𝐿 (5.57)

𝜕
𝜕𝑓 (

𝑑𝑓
𝑑𝑡 ) = √

𝑝
𝜇
𝐹Ꭹ
𝐶ኻ
[1 + cosኼ 𝐿 −

([𝐶ኻ + 1] cos(𝐿) + 𝑓) cos(𝐿)
𝐶ኻ

] (5.58)

𝜕
𝜕𝑓 (

𝑑𝑔
𝑑𝑡 ) = √

𝑝
𝜇
𝐹Ꭹ
𝐶ኻ
[12 sin(2𝐿) −

([𝐶ኻ + 1] sin(𝐿) + 𝑔) cos(𝐿)
𝐶ኻ

] (5.59)

𝜕
𝜕𝑓 (

𝑑𝐿
𝑑𝑡 ) = 2√

𝜇
𝑝ኽ𝐶ኻ cos(𝐿) (5.60)

and the ones with respect to 𝑔 are given by:

𝜕
𝜕𝑔 (

𝑑𝑝
𝑑𝑡 ) = −2

√𝑝
ኽ

𝜇
𝐹Ꭹ
𝐶ኼኻ

sin 𝐿 (5.61)



58 5. Low-thrust Tisserand graph

𝜕
𝜕𝑔 (

𝑑𝑓
𝑑𝑡 ) = √

𝑝
𝜇
𝐹Ꭹ
𝐶ኻ
[12 sin(2𝐿) −

([𝐶ኻ + 1] cos(𝐿) + 𝑓) sin(𝐿)
𝐶ኻ

] (5.62)

𝜕
𝜕𝑔 (

𝑑𝑔
𝑑𝑡 ) = √

𝑝
𝜇
𝐹Ꭹ
𝐶ኻ
[1 + sinኼ 𝐿 −

([𝐶ኻ + 1] sin(𝐿) + 𝑔) sin(𝐿)
𝐶ኻ

] (5.63)

𝜕
𝜕𝑔 (

𝑑𝐿
𝑑𝑡 ) = 2√

𝜇
𝑝ኽ𝐶ኻ sin(𝐿) (5.64)

With all the partial derivatives combined to create the total derivatives of all the relevant
MEE, one can write down the second-order Taylor-series expansion of 𝑝, 𝑓 and 𝑔.

𝑝፧(𝐿) = 𝑝፧ዅኻ +
d𝑝
d𝐿 (𝐿፧ − 𝐿፧ዅኻ) +

𝑑
𝑑𝐿 (

𝑑𝑝
𝑑𝐿)

(𝐿፧ − 𝐿፧ዅኻ)ኼ
2 (5.65)

𝑓፧(𝐿) = 𝑓፧ዅኻ +
d𝑓
d𝐿 (𝐿፧ − 𝐿፧ዅኻ) +

𝑑
𝑑𝐿 (

𝑑𝑓
𝑑𝐿)

(𝐿፧ − 𝐿፧ዅኻ)ኼ
2 (5.66)

𝑔፧(𝐿) = 𝑔፧ዅኻ +
d𝑔
d𝐿 (𝐿፧ − 𝐿፧ዅኻ) +

𝑑
𝑑𝐿 (

𝑑𝑔
𝑑𝐿 )

(𝐿፧ − 𝐿፧ዅኻ)ኼ
2 (5.67)

All these expressions are implemented in Tudat and use the same initial conditions as in Fig-
ure 5.5 to create the same reference trajectories on the Tisserand graph. The result is shown
in Figure 5.7. All the curves in the figure represent low-thrust legs with initial conditions as
stated in Table 5.2. The dashed lines represent the results of the second-order Taylor-series
expansion and the full lines are the same results of the RK4 integration as presented in Fig-
ure 5.5. In Figure 5.7 one notices that there is a very good overlap in the beginning of the
propagation. Depending on the initial condition, there is an increasing difference between the
Taylor-series expansion and the RK4 integration. This is further quantified in the following
section on accuracy. For now, the most important thing to notice is the smooth transition
from a closed orbit (with negative orbital energy) towards an open orbit (with positive orbital
energy). This is important with respect to this thesis research topic and the aim of using the
MEE elements instead of Kepler elements.
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Figure 5.7: Trajectories with tangential thrust with initial conditions equal to Figure 5.5. Result of both the RK4 integration and
Taylor-series expansion in terms of MEE are shown.

5.5.4 Accuracy
The Taylor expansion method results are plotted using Matlab to give a simple comparison
between the results of the RK4 integration. This is done by sampling 100 values of the
true longitude. This holds a range from zero to the final true longitude. This final true
longitude is different for all initial conditions but in general corresponds to the time frame
of two sidereal years. For initial conditions one and two the final true longitude is cut of at
six to make the graph more clear. Since different initial conditions correspond to a different
orbital period, the maximum values for true longitude of each initial condition propagated
forward in time will be different. For all values of the true longitude (100 points), the radius
is calculated using the MEE resulting from the Taylor-series expansion. The same is done
with the results from the RK4 integration and the difference between them is calculated and
presented in Figure 5.8. The errors shown a representation of the differences between the
dashed- and full lines of Figure 5.7. The colors used for each initial condition are the same
as in Figure 5.7. From both Figures 5.7 and 5.8 one learns that initial conditions holding a
higher eccentricity behave less than lower eccentricities. Different initial orbital energies (e.g.,
semi-major axis) do not seem to have a large impact on the accuracy. Figure 5.8 also shows a
relatively large increase of the error in radius for initial condition four. A radial error of 0.16
AU for an orbit with a pericenter at 4.25 AU is a relative error of 3.76%. This, however, is an
error that arises after two sidereal years. This error will not be of any concern with respect
to low-thrust satellite-aided planetary capture trajectories since these trajectories usually
hold much shorter propagation times (order of days instead of years). Therefore the author
expects that the second-order Taylor-series expansion can be combined with the method
from Chapter 4 for analyzing low-thrust satellite-aided planetary capture trajectories in the
Tisserand graph.
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Figure 5.8: Comparison of radius using second-order Taylor-series expansion with RK4 results.



Chapter 6

Low-thrust capture sequences

This chapter combines the ballistic satellite-aided planetary capture trajectory optimization
with low-thrust legs in the Tisserand graph. Section 6.1 presents the fitness function. Then
the initial conditions are reevaluated and the results are presented similarly as in Chapter 4.
The chapter closes with some concluding remarks in Section 6.4.

6.1 Fitness function
By combining the method for low-thrust legs presented in the previous chapter with the
ballistic fitness function explained in Subsection 4.2.1 it is possible to find optimal flyby
sequences in the Tisserand graph with forgoing, intermediate, and subsequent low-thrust
legs. This section explains this new fitness function. Note that the acceleration of the low-
thrust propulsion system is 10ዅኾm/s2 and the spacecraft’s initial mass is 4000 kg, equal to
the characteristics used in the previous chapter.

1. Obtain initial perijove of the hyperbolic approach trajectory from parameter vector. To-
gether with the initial orbital energy, this creates the first point on the Tisserand graph.

2. Calculate the initial eccentricity using Equation 6.3

3. Create a range for the true longitude with the initial value set to -0.95 times the hyper-
bolic limit value. Set the number of data points equal to 10000.

4. Obtain the flyby moon from the preset flyby sequence. If the preset sequence demands
a JOI, proceed to step 7.

5. Propagate the trajectory over the range in true longitude using the low-thrust propulsion
Taylor-series expansion and check if the spacecraft’s radial position along the trajec-
tory comes in the vicinity (SOI) of the orbital radius of the flyby moon. The radius is
calculated using Equation 5.24.

6. When the spacecraft enters the SOI of the flyby moon, calculate the new orbital elements
resulting from the flyby using steps 3 to 10 in the algorithm from Subsection 4.2.1.

5.1 Calculate the velocity 𝑉ዅ with respect to Jupiter using the vis-viva equation.
5.2 Calculate the mean angular velocity of the flyby moon around Jupiter using Equa-

tion 3.7.
5.3 Determine the Tisserand parameter using Equation 3.18.
5.4 Using the Tisserand parameter, calculate the angularmomentumwith Equation 3.19.
5.5 Obtain the hyperbolic excess velocity with respect to the flyby moon using Equa-

tion 3.14.
5.6 Obtain the minimum flyby altitude from the parameter vector and use it to calculate

the maximum turning angle with Equation 3.13.

61
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5.7 Calculate the increment in orbital energy for this maximum turning angle.
5.8 Update the orbital energy and obtain semi-major axis and eccentricity, thus updat-

ing perijove.
5.9 Return to step 4.0.

7. Propagate the trajectory towards the perijove and calculate the perijove velocity 𝑉፩ using
the vis-viva equation.

8. Obtain Δ𝑉ፉፎፈ from the parameter vector and subtract it from 𝑉፩.
9. Update the orbital energy using the vis-viva equation, semi-major using Equation 3.17

and eccentricity using Equation 3.16.

10. Return to step 4.0 for the rest of the sequence.

11. Propagate the trajectory until the limit value of the true longitude. Note that when the
trajectory is closed along the sequence, the limit value for true longitude is 2𝜋 radian.
The propagation also ends when the perijove approaches the radiation belt safety value
(8𝑅ፉ).

As was stated earlier in this section, the algorithm described above is a combination of the
earlier used algorithm from Subsection 4.2.1 and the second-order Taylor-series expansion
for low-thrust legs in the Tisserand graph. Thus also including the same penalties from
Subsection 4.2.1. These will therefore not repeated here; only the complete fitness function
is given here in Equation 6.1.

𝐽 = Δ𝑉ፉፎፈ ∗ 𝑊 + Δ𝐸 + 𝑃 ፛ + 𝑃፫ፚ፝ (6.1)

6.1.1 Initial conditions
The previous section’s algorithm uses the same initial conditions as the ballistic algorithm
from Subsection 4.2.1. The initial orbital energy resulting from the interplanetary trajectory
(Hohmann transfer) is still 16.347km2/s2. The minimal allowable flyby altitude is 500 km.
The motivation of this value is again due to navigational and ephemerides concerns. Again,
the author expects the optimization to converge towards this minimal flyby altitude since
this results in the largest energy increment. However, from the results in Chapter 4, it was
concluded that larger flyby altitudes hold the optimum for some sequences. The algorithm
described above mentioned that the range in true longitude starts at −0.95𝐿፥።፦።፭, where 𝐿፥።፦።፭
is determined by Equation 6.2 with 𝑒ኺ the initial eccentricity. This eccentricity is given by
Equation 6.3. Note that 𝑟፩ and 𝑎 are the initial perijove as set by the parameter vector and the
initial semi-major axis is set by the initial orbital energy due to the foregoing interplanetary
trajectory.

𝐿፥።፦።፭ = 𝑎𝑐𝑜𝑠(−1/𝑒ኺ) (6.2)

𝑒ኺ = 1 −
𝑟፩
𝑎 (6.3)

There are two reasons for choosing this value for the initial true longitude. The first is because
low-thrust legs starting at 𝐿፥።፦።፭ of the incoming hyperbolic trajectory occur at infinity with
respect to Jupiter. This introduces large errors because the low-thrust legs considered close
to this 𝐿፥።፦።፭ represent very long thrusting periods compared to thrust legs performed at or
near the perijove. The second reason is to ensure that the spacecraft first properly enters
the SOI of Jupiter. This prevents solar radiation pressure or third-body perturbations acting
relatively intense on the trajectory of the spacecraft. Equation 6.4 determines the SOI of a
particular celestial body to a central body. In the Sun-Jupiter system, the SOI of Jupiter is
around 687 Jovian radii. The initial radial position of the incoming hyperbolic trajectory can
be calculated using Equation 5.24. The overall radial position corresponding to −0.95𝐿፥።፦።፭
is for all optimizations around 300 Jovian radii. With this in mind, the author expects that
this initial true longitude will create reliable results.
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6.1.2 Sphere of Influence
In the algorithm described at the beginning of this chapter, a flyby is initiated when the
spacecraft approaches the orbital radius of the flyby moon considered. With the expression
”in the vicinity”, it is meant that the spacecraft is located between the orbital radius of the
flyby moon plus and minus the SOI of that moon. The SOI of each moon is calculated using
Equation 6.4 and is presented for all four of the Galilean moons in Table 6.1. This equation
was already briefly mentioned by Equation 3.9, but for completeness repeated here. The
mass 𝑚ኻ is the mass of the moon under consideration, 𝑚ኼ the mass of Jupiter and 𝑎፦ is the
semi-major axis of the moon under consideration.

𝑅ፒፎፈ
𝑎፦

= (𝑚ኻ𝑚ኼ
)
ኼ/኿

(6.4)

Galilean moon 𝑅ፒፎፈ [km]

Io 7834
Europe 9722
Ganymede 24350
Callisto 37681

Table 6.1: Spheres of influences of the Galilean moons.

6.2 Optimizer settings
The optimizations of the low-thrust satellite-aided capture trajectories mostly use the same
optimizer settings as in Table 4.1. Due to the numerical nature of the second-order Taylor-
series expansion, the computation time drastically increased when using the same number
of generations and individuals per generation. Therefore, the number of generations and
individuals per generation was reduced to 120 and 1000, respectively. The mutation scale
factor, crossover rate and selection method were kept the same as Table 4.1. Table 6.2
summarizes the optimization settings used in this chapter.

Tuning parameter Notation Setting

Number of generations Gi 120
Number of individuals NP 1000
Mutation scale factor F 0.33
Crossover rate Cr 0.67
Selection method DE/x/y/z DE/best/1/bin

Table 6.2: Summary of the tuning parameters for the DE optimization algorithm for the low-thrust satellite-aided capture
trajectories. These are used for all the optimizations in this chapter.

6.3 Results
This section presents the optimal low-thrust satellite-aided planetary capture trajectories in
the Tisserand graph. First for the single-, secondly for a double- and last for the triple-aided
sequences. Direct trajectories that only incorporate low-thrust and an impulsive JOI are not
discussed because they hold no additional value with respect to the research sub-questions.
It is important to note that all the results and methods explained in this chapter do not
hold any accountability with the phasing of the moons. They are just a representation of
what could be possible from an energetic point of view. The next chapter treats the phasing
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problem for both ballistic and low-thrust capture trajectories. Both velocity increments as
results of low-thrust (Δ𝑉ፋፓ) and the impulsive JOI (Δ𝑉ፉፎፈ) are indicated above each graph.
Each graph consists of three different lines. The uppermost right point with the somewhat
curved shape represents the incoming hyperbola’s low-thrust leg. Then either a gravity assist
(sloped straight lines) or an impulsive JOI (straight vertical line) follow. There is also a short
thrusting phase for low-thrust propulsion between two gravity assists or a gravity assist and
JOI. Because these low-thrust legs are relatively short, they do not deliver significant energy-
and perijove increment. Therefore they are clearly not visible on the graphs, although they
are present.

6.3.1 Low-thrust single-aided

First, the most simple satellite-aided capture trajectories are discussed, now with low-thrust
incorporated. In other words, low-thrust single-aided capture trajectories. Similar to Chap-
ter 4, considering the orbital parameters of the Galilean moons and the radiation safety belt
Io is again not deemed feasible. The results for Europa, Ganymede and Callisto low-thrust
single-aided capture trajectories are presented here.

Callisto

(a) Optimal low-thrust Callisto-JOI planetary capture
sequence in Tisserand graph.

(b) Optimal low-thrust JOI-Callisto planetary capture
sequence in Tisserand graph.

Figure 6.1: Results for low-thrust Callisto-aided planetary capture trajectories.

The combination of low-thrust propulsion and a single Callisto flyby cannot capture a space-
craft in a (desired) closed orbit around Jupiter; thus, a JOI will still be required (710 or 728
m/s). A low-thrust Callisto-aided planetary capture trajectory takes full benefits from a high
initial perijove (around 49𝑅ፉ). Therefore, the spacecraft follows a longer trajectory, which
gives the low-thrust propulsion a longer time of flight to deliver Δ𝑉ፋፓ (938 and 946 m/s). The
presence of low-thrust propulsion along the trajectory lowers the required JOI around 200
m/s compared to the optima in Figure 4.7a. The low-thrust leg is followed by the Callisto
flyby (Figure 4.7a) or the JOI (Figure 6.1b). For both cases, the Callisto flyby does not occur
at the orbital radius of Callisto (or at zero flight-path angle 𝛾). This latter is similar for the
ballistic optima in Figure 4.7. In short, a JOI executed at a lower perijove has more advan-
tages than performing the Callisto flyby at the orbital radius of Callisto. This makes the JOI
for both cases to be initiated at the lowest possible perijove. Therefore, after both the JOI
and the Callisto flyby (independent of the order), the perijove lies at the radiation belt safety
altitude. Thus no extra low-thrust leg is needed or allowed. Also, note that both Callisto
flybys hold the minimum flyby altitude of 500 km.
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Ganymede

(a) Optimal low-thrust Ganymede-JOI planetary
capture sequence in Tisserand graph.

(b) Optimal low-thrust JOI-Ganymede planetary
capture sequence in Tisserand graph.

Figure 6.2: Results for low-thrust Ganymede-aided planetary capture trajectories.

Similar as for the low-thrust Callisto-aided results, capturing a spacecraft in a 200-day peri-
odic orbit using low-thrust propulsion and a Ganymede flyby still requires an impulsive JOI.
Figure 6.2 presents both results of a low-thrust Ganymede aided capture trajectory with the
JOI placed before or after the Ganymede flyby. The low-thrust propulsion lowers the amount
of Δ𝑉ፉፎፈ to 582 m/s for the inbound Ganymede flyby and 539 m/s for the outbound Ganymede
flyby. A low-thrust Ganymede-aided capture trajectory also takes many benefits of the higher
initial perijove that results in long thrusting times for the low-thrust propulsion. However,
the orbital radius of Ganymede restricts the maximum possible initial perijove. For both in-
bound and outbound flybys, the optimum does not converge towards flybys with Ganymede
at a perijove equal to Ganymede’s orbital radius. Instead, the Ganymede flyby is for both op-
tima executed at a perijove of around 13𝑅ፉ. This implies that the combination of low-thrust
propulsion, a Ganymede flyby and an impulsive JOI results in a more collaborative optimum
of more effective flybys, more efficient JOI and the energy increment due to low-thrust propul-
sion. Contrary to the low-thrust Callisto-aided results, after both the JOI and the Ganymede
flyby are executed, there is still room in terms of perijove. Therefore, an extra low-thrust leg
up to the radiation belt safety altitude that saves some extra Δ𝑉ፉፎፈ can be added. This is also
the reason that despite low-thrust Callisto-aided trajectories have higher initial perijove, a
low-thrust Ganymede-aided trajectory delivers more Δ𝑉ፋፓ.

Europa

A capture trajectory that combines low thrust and a Europa flyby also requires the additional
JOI. The presence of low-thrust propulsion along the trajectory lowers the required JOI to
720 m/s for the inbound (Figure 6.3a) and 679 m/s for the outbound (Figure 6.3b) flyby.
The initial perijove is for both cases around 13𝑅ፉ. This gives the low-thrust propulsion room
to lower the orbital energy and consequently also the perijove radius up to the orbital radius
of Europa. The combined effect of low-thrust propulsion, Europa flyby and impulsive JOI
converges towards the most effective Europa flyby. After both JOI and Europa flyby are
executed, the perijove lies above the radiation belt safety and thus a low-thrust leg that
further lowers the Δ𝑉ፉፎፈ can be added.



66 6. Low-thrust capture sequences

(a) Optimal low-thrust Europa-JOI planetary capture
sequence in Tisserand graph.

(b) Optimal low-thrust JOI-Europa planetary capture
sequence in Tisserand graph.

Figure 6.3: Results for low-thrust Europa-aided planetary capture trajectories.

6.3.2 Low-thrust double-aided
Now the results for low-thrust double-aided planetary capture trajectories are presented.
Again Io is not deemed as a feasible flyby candidate and will not be considered. First, all
Callisto-Ganymede sequences are presented and discussed, then Ganymede-Europa and
next Callisto-Europa. For each low-thrust combination, a JOI is required and each arbi-
trary location of this JOI in the sequence will be presented (four cases).

Callisto-Ganymede

The required JOI for the low-thrust Callisto-Ganymede-aided sequences varies from 285 m/s
for the low-thrust JOI-Ganymede-Callisto trajectory and 365 m/s for the low-thrust Callisto-
Ganymede-JOI. This latter indicates that first performing the JOI requires less Δ𝑉ፉፎፈ. The or-
bital radius of Ganymede limits the initial perijove to around 33−34𝑅ፉ. Similar to Figure 6.2
the optima do not converge towards a Ganymede flyby at the perijove equal to Ganymede’s
orbital radius. After the flybys and JOI are executed, there is still room in terms of peri-
jove towards the radiation belt safety, such that low-thrust propulsion can further limit the
required Δ𝑉ፉፎፈ. When Callisto is placed at the end of the sequence (Figures 6.4c and 6.4d),
this room in perijove is smaller and therefore less Δ𝑉ፋፓ could be delivered compared to when
Callisto is placed at the beginning of the sequence (Figures 6.4a and 6.4b).
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(a) Optimal low-thrust Callisto-Ganymede-JOI
planetary capture sequence in Tisserand graph.

(b) Optimal low-thrust Callisto-JOI-Ganymede
planetary capture sequence in Tisserand graph.

(c) Optimal low-thrust JOI-Ganymede-Callisto
planetary capture sequence in Tisserand graph.

(d) Optimal low-thrust Ganymede-JOI-Callisto
planetary capture sequence in Tisserand graph.

Figure 6.4: Optima for low-thrust Callisto-Ganymede-aided planetary capture trajectory in Tisserand graph.

Ganymede-Europa

Low-thrust Ganymede-Europa-aided capture trajectories require a JOI from 342 m/s for the
low-thrust Ganymede-JOI-Europa and 373 m/s for the low- thrust Europa-JOI-Ganymede
sequence, respectively. Placing the JOI first in the sequence does not provide the most opti-
mal trajectory in terms of Δ𝑉ፉፎፈ. Compared with the results from Figure 4.13 one concludes
that the low-thrust propulsion lowers the Δ𝑉ፉፎፈ with approximately 100-120 m/s, which indi-
cates the benefits that low-thrust propulsion could provide. The initial perijoves are limited
by a maximum of 14𝑅ፉ to ensure the spacecraft reaches the orbital radius of Europa along
the trajectory. Therefore less Δ𝑉ፋፓ can be delivered by the low-thrust propulsion compared
to a low-thrust Callisto-Ganymede sequence. The initial perijove limitation also implies that
all optima converge towards the most effective flyby at Europa. Similar to the low-thrust
Callisto-Ganymede sequences, there is a low-thrust leg after the JOI and two flybys are ex-
ecuted. The fact that the perijove after the JOI and flybys is above the radiation belt safety
allows for this later. Also observe smaller Δ𝑉ፋፓ for sequences with Ganymede placed at the
end (Figures 6.5c and 6.5d). The Ganymede flyby lowers the perijove and thus limits the
low-thrust leg at the end of the sequence.
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(a) Optimal low-thrust Ganymede-Europa-JOI
planetary capture sequence in Tisserand graph.

(b) Optimal low-thrust Ganymede-JOI-Europa
planetary capture sequence in Tisserand graph.

(c) Optimal low-thrust JOI-Europa-Ganymede
planetary capture sequence in Tisserand graph.

(d) Optimal low-thrust Europa-JOI-Ganymede
planetary capture sequence in Tisserand graph.

Figure 6.5: Optima for low-thrust Ganymede-Europa-aided planetary capture trajectory in Tisserand graph.

Callisto-Europa

Figure 6.6 presents the low-thrust Callisto-Europa-aided capture trajectories. With the re-
quired JOI from 478 m/s for the low-thrust Callisto-JOI-Europa sequence to 522 m/s for the
low-thrust Europa-JOI-Callisto sequence, the combination Europa-Callisto performs worst of
the three possible double-aided sequences. Compared to the ballistic optima (no low thrust),
the Δ𝑉ፉፎፈ is lowered by approximately 110-130 m/s, thus indicating the benefits of adding
low-thrust propulsion. Like Ganymede-Europa, the initial perijoves are limited by reaching
the orbital radius of Europa in the sequence. Moreover, the optima converge towards the
most effective Europa flyby (flight-path angle). Note that when the Callisto flyby occurs at
the end of the sequence, no room in terms of perijove is left to add an additional low-thrust
leg. This latter, combined with the lower initial perijove, explains the lower Δ𝑉ፋፓ.
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(a) Optimal low-thrust Callisto-Europa-JOI planetary
capture sequence in Tisserand graph.

(b) Optimal low-thrust Callisto-JOI-Europa planetary
capture sequence in Tisserand graph.

(c) Optimal low-thrust JOI-Europa-Callisto planetary
capture sequence in Tisserand graph.

(d) Optimal low-thrust Europa-JOI-Callisto planetary
capture sequence in Tisserand graph.

Figure 6.6: Optima for low-thrust Ganymede-Europa-aided planetary capture trajectory in Tisserand graph.

6.3.3 Low-thrust triple-aided

From the results in Section 4.3, one learned that it is possible to capture a spacecraft in
a closed orbit around Jupiter through three flybys. However, to reach the desired 200-day
periodic orbit, an impulsive JOI is still required. For the results presented in this section,
one is interested in the extent to which the low-thrust propulsion reduces this JOI.

The optima of every possible low-thrust triple-aided capture trajectories are presented in
Figures 6.7 and 6.8. The Δ𝑉ፉፎፈ differs from 123 m/s for a low-thrust Callisto-Ganymede-JOI-
Europa sequence to 286 m/s for a low-thrust Europa-Ganymede-Callisto sequence. Placing
the JOI at the beginning of the sequence even performs second-worst (273 m/s). The reason
for the relatively large Δ𝑉ፉፎፈ for the low-thrust JOI-Europa-Ganymede-Callisto and Europa-
JOI-Ganymede-Callisto sequences lies in the (much) higher minimal flyby altitude of the Cal-
listo flyby. The argumentation for this is the same as explained for the ballistic case and will
not be repeated here. All six other sequences have flybys with the minimum altitude equal to
500 km and therefore much smaller Δ𝑉ፉፎፈ. The initial perijoves are again limited by ensuring
the spacecraft can reach the orbital radius of Europa to perform a flyby with it. Moreover,
the Europa flyby is always such that the most considerable energy (and perijove) increment
can be delivered (zero flight-path angle). The amount of Δ𝑉ፋፓ also varies significantly for the
different sequences. A higher initial perijove and a low-thrust leg after the sequence in-
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(a) Optimal low-thrust JOI-Europa-Ganymede-Callisto
planetary capture sequence in Tisserand graph.

(b) Optimal low-thrust Ganymede-JOI-Europa-Callisto
planetary capture sequence in Tisserand graph.

(c) Optimal low-thrust Callisto-JOI-Europa-Ganymede
planetary capture sequence in Tisserand graph.

(d) Optimal low-thrust Europa-JOI-Ganymede-Callisto
planetary capture sequence in Tisserand graph.

(e) Optimal low-thrust Callisto-Europa-JOI-Ganymede
planetary capture trajectory in Tisserand graph.

(f) Optimal low-thrust Ganymede-Europa-JOI-Callisto
planetary capture sequence in Tisserand graph.

Figure 6.7: Optimal low-thrust triple-aided planetary capture trajectories in Tisserand graph (part 1).

crease the Δ𝑉ፋፓ. This latter reduces the required Δ𝑉ፉፎፈ thus declaring that the best low-thrust
triple-aided capture sequences are given by the low-thrust Callisto-Ganymede-JOI-Europa
and Callisto-Ganymede-Europa-JOI sequences (Figures 6.8a and 6.8b).
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(a) Optimal low-thrust Callisto-Ganymede-JOI-Europa
planetary capture trajectory in Tisserand graph.

(b) Optimal path for a Callisto-Ganymede-Europa-JOI
planetary capture trajectory in Tisserand graph.

Figure 6.8: Optimal low-thrust triple-aided planetary capture trajectories in Tisserand graph (part 2).

6.3.4 Summary
The results of all low-thrust capture trajectories are presented in Table 6.3. The amounts of
Δ𝑉ፋፓ and Δ𝑉ፉፎፈ shown and combined in the propellant mass using the following equation:

𝑀፩፫፨፩ = 𝑀።፧።፭።ፚ፥ (1 − 𝑒
ዅ ᏺᑍᐿᑋ
ᑘᎲᑀᑤᑡ,ᐿᑋ

ዅ ᏺᑍᑃᑋ
ᑘᎲᑀᑤᑡ,ᑃᑋ ) (6.5)

In the equation above, 𝐼፬፩,ፇፓ and 𝐼፬፩,ፋፓ represent the specific impulse of the high-thrust and
low-thrust propulsion respectively. 𝑀።፧።፭።ፚ፥ is the initial spacecraft mass and 𝑔ኺ is the grav-
itational acceleration on Earth (at the surface). The same values as in Chapter 6 are used
here but extended with the low-thrust specific impulse of 4000 seconds.

Low-thrust single-aided capture sequences demand a total propellant mass from 749 kg for
JOI-Ganymede up to 950 kg for JOI-Callisto. Compared to the not-aided capture, this repre-
sents a decrease of 22 to 39% in propellant mass. This is slightly more than the conventional
single-aided results. Hence the benefits of using low-thrust propulsion along the trajectory.
A second flyby is added to investigate low-thrust double-aided capture. Here Callisto-Ganymede
and Ganymede-Europa performed comparably: a propellant mass of 450 kg for JOI-Ganymede-
Callisto saving 768 kg or 63% against not-aided. However, only 10 kg extra savings com-
pared to a conventional JOI-Callisto-Ganymede sequence were observed. Thus the benefits
of adding low thrust are rather limited for this sequence. Moreover, for the Callisto-JOI-
Ganymede sequence, the addition of low-thrust propulsion requires an extra propellant mass
of 40 kg. The author argues that this is due to the nature of the problem. The spacecraft
entered the SOI of Jupiter with a very high initial perijove (32𝑅ፉ), resulting in a very long
flight time. The methodology in the low-thrust satellite-aided planetary capture optimiza-
tions assumed that the low-thrust engine was turned on along the whole trajectory. The
Δ𝑉ፉፎፈ did become smaller compared to the ballistic double-aided sequence. However, the low-
thrust propellant mass due to the 884 m/s velocity increment becomes of significance (89 kg,
considering only low-thrust) and therefore diminishes the effect of lower Δ𝑉ፉፎፈ. The best low-
thrust Ganymede-Europa sequence was Ganymede-JOI-Europa: a propellant mass of 480
kg, saving 738 kg or 61% against the impulsive capture and an extra 100 kg against the bal-
listic Ganymede-JOI-Europa capture. Like the ballistic case, the low-thrust Callisto-Europa
sequences performed worst of the (low-thrust) double-aided cases. With 640 kg for Callisto-
JOI-Europa, saving 578 kg (47%) against not-aided capture and an extra 98 kg compared to
ballistic.
Again, adding a third flyby to the (low-thrust) sequence further lowered the total propellant
mass. The low-thrust Europa-JOI-Ganymede-Callisto sequence again performed worst of all
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triple-aided sequences. A propellant mass of 398 kg meant saving 820 kg or 67 % against the
not-aided capture and an extra mass saving of 79 kg against ballistic triple-aided. Callisto-
Ganymede-JOI-Europa was the best low-thrust triple sequence. A propellant mass of 213
kg meant saving 1005 kg or 83% and 123 kg compared to ballistic Callisto-Ganymede-JOI-
Europa-aided capture.

Δ𝑉ፋፓ [m/s] Δ𝑉ፉፎፈ [m/s] Mprop,min [kg] %Mprop,direct [-]

Single-aided
Callisto
CJ 946 710 932 76
JC 938 728 950 78

Ganymede
GJ 968 582 798 66
JG 950 539 749 61

Europa
EJ 436 720 903 74
JE 433 679 859 71

Double-aided
Callisto-Ganymede:
CGJ 919 365 548 45
CJG 908 345 524 43
JGC 884 285 450 37
GJC 886 306 475 39

Ganymede-Europa
GEJ 457 362 504 41
GJE 456 342 480 39
JEG 378 354 487 40
EJG 381 373 510 42

Callisto-Europa
CEJ 476 507 674 55
CJE 473 478 640 53
JEC 301 494 644 53
EJC 305 522 676 56

Triple-aided
CGEJ 505 130 222 18
CGJE 504 123 213 17
CEJG 422 161 253 21
CJEG 420 153 243 20
GEJC 327 165 249 20
GJEC 327 157 239 20
EJGC 298 286 398 33
JEGC 291 273 381 31

Table 6.3: Summary of the ጂፕ and total propellant mass results of all low-thrust satellite-aided capture sequences.
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6.4 Conclusion
This chapter combined two methods from the preceding chapters into a heuristic algorithm.
The first one is optimizing using gravity assists with one, two or three of the Galilean moons
(excluding Io) as explained in Chapter 4. The second method was to include low-thrust
propulsion in the Tisserand graph. Important to mention at the end of this chapter is that
all the methods and results presented in this chapter did not take the moons’ phasing into
account. They are just a representation of what is possible from an energetic point of view.
The phasing problem is treated in the following chapter. The combination of low-thrust
and a single gravity assist could not capture the spacecraft in a closed orbit and thus not
in the desired long-period high eccentric orbit. An impulsive JOI is still required but is
reduced due to the low-thrust propulsion. For low-thrust double-aided planetary capture
trajectories, some combinations of moons could potentially close the orbit and thus capture
the spacecraft. However, for the desired 200-day periodic orbit, the impulsive JOI is still
required. However, the presence of low-thrust propulsion reduces this JOI. This reduction
in JOI does not always translate itself into a decrease of propellant mass when compared
to conventional satellite-aided capture. Those sequences should best be flown without low-
thrust propulsion. For low-thrust triple-aided planetary capture trajectories, it is possible
to close the orbit around Jupiter without a JOI. However, for the 200-day periodic orbit, a
JOI is still inevitable (but reduced due to the presence of low-thrust). The best low-thrust
satellite-aided capture sequence is the Callisto-Ganymede-JOI-Europa scenario. With a Δ𝑉ፉፎፈ
of 213 m/s. Combined with the Δ𝑉ፋፓ this only requires 17% of the propellant mass for direct
capture.





Chapter 7

Phasing problem formulation

The previous chapters investigated the abilities of natural satellite-aided planetary capture
trajectories on a purely energetic base. This chapter will discuss the phasing problem of
such trajectories. The phasing problem generally deals with the location of the moons. In
order to actually fly the sequences found in previous chapters, the moons need to be correctly
aligned. This is done in two steps. First, the relative phasing is investigated in Section 7.1.
The relative phasing results are then transferred to an ephemerides search to investigate
when these trajectories can be flown.

7.1 Phase angles
The theory of phase angles lies at the heart of the phasing problem. A ”phase angle” is
the angle between two celestial bodies relative to a central body at a certain point in time.
With respect to this thesis research topic, the central body is Jupiter and the other celestial
bodies are the Galilean moons used for the capture sequences found in previous chapters
and the Sun. The point in time is always the time of flyby with the first moon. Please note

Figure 7.1: Illustration of the angle between two celestial bodies w.r.t. a central body at a certain point in time or in general, a
phase angle.

that just as for the optima found in the previous chapter (on a purely energetic base), no
retrograde capture trajectories are considered, only prograde trajectories. This is because all
Galilean moons orbit Jupiter in prograde directions. When considering retrograde capture
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trajectories, 𝑉ጼ would be too high and, therefore, diminish the effect of a flyby. In Figure 7.1
a schematic representation of a purely inbound capture trajectory is given. The figure shows
the location of the moons at the time that the flyby with that moon is executed. The JOI
maneuver is left out as the figure only serves to illustrate the physical meaning of a phase
angle.
The purpose of the phasing problem is finding the moons’ angular locations with respect to
the angular location (true longitude) of the first flyby moon at the time of the first flyby. This
essentially means backward propagating the moons under consideration to the point in time
that corresponds to the first flyby. Therefore, the first flyby location needs to be determined,
which goes hand in hand with determining the orientation of the incoming hyperbola.

7.2 Ballistic relative phasing
This section explains the methodology used for determining the relative phase angles for
(ballistic) satellite-aided planetary capture trajectories.

7.2.1 First flyby
In a simplified circular coplanar assumption, the phase angle is, by definition, the difference
in true longitude of the moons considered. The reason for using the true longitude instead of
the true anomaly is because the argument of perijove changes due to the flyby. This strongly
affects the true anomaly, leading to faulty phasing results. Using the true longitude instead,
which is with respect to a fixed reference in space, resolves this issue.
Consider the moment in time just before the first flyby. This point is said to be described in
space by the orbital elements 𝜃ኺ, 𝜔ኺ, 𝑎ኺ, 𝑒ኺ, Ωኺ and 𝑖ኺ. The out-of-plane elements Ωኺ and 𝑖ኺ are
assumed zero by the coplanar assumption. Therefor only 𝜃ኺ, 𝜔ኺ, 𝑎ኺ and 𝑒ኺ are of importance.
Combining the true anomaly, the argument of perijove and in theory also the right ascension
of the ascending node gives the true longitude of the first flyby.

𝐿ኺ = 𝜃ኺ + 𝜔ኺ +�Ωኺ (7.1)

7.2.2 Orientation of incoming hyperbola
To define the point of the first flyby in both time and space, an asymptotic body-fixed frame
is created. In an asymptotic Jupiter-fixed frame, the incoming asymptote of the hyperbolic
approach trajectory aligns with the negative x-axis. This is shown in Figure 7.2. The next
step is to determine the argument of perijove at the moment that the spacecraft enters the
SOI of Jupiter or at the moment of the first flyby. This latter is essentially the same for
ballistic satellite-aided planetary capture trajectories and given by Equation 7.2.

𝜔ኺ = 𝜋 + 𝑎𝑐𝑜𝑠 (
−1
𝑒ኺ
) (7.2)

Please note that the orientation of the incoming hyperbole and thus also the orientation of
the Jupiter-fixed asymptotic frame can still be arbitrary in the Jupiter-Sun frame.

7.2.3 Second flyby
Now using the patched-conics equations from Chapter 3, the first flyby with the first moon
is executed. This results in new orbital elements (𝜃ኻ, 𝜔ኻ, 𝑎ኻ and 𝑒ኻ ) that should, due to the
zero sphere of influence approximation ( patched-conics), still represent the same location
and point in time as the orbital elements right before the first flyby. Hence we recognize
the motivation of using the true longitude instead of the true anomaly for calculating phase
angles. However, consider the true longitude (and thus the point in space) just after the
first flyby defined by 𝐿ኻ = 𝜃ኻ + 𝜔ኻ +�Ωኻ. Propagating the trajectory towards the (orbit of the)
second moon, the true longitude is defined as 𝐿ኼ = 𝜃ኼ + 𝜔ኼ +�Ωኻ. Because the inter-moon
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Figure 7.2: Schematic of the orientation of approach hyperbola (ᎦᎲ) in the asymptotic frame.

trajectories are considered as purely conic sections, the argument of perijove stays constant
(𝜔ኻ = 𝜔ኼ). Therefore the angle between the two moons at two different points in time (first
flyby and second flyby) is defined by Equation 7.3. 𝜃ኻ and 𝜃ኼ are given by Equation 7.4. The
negative or positive sign on the righthand side of Equation 7.4 is defined by whether the
flyby is executed before or after (respectively) the JOI. As the JOI is always inserted at the
perijove, flyby’s following after JOI are always outbound and occur at true anomalies greater
than zero.

𝐿ኼኻ = 𝐿ኼ − 𝐿ኻ = 𝜃ኼ + 𝜔ኻ − (𝜃ኻ + 𝜔ኻ) = 𝜃ኼ − 𝜃ኻ (7.3)

𝜃፧ = ±𝑎𝑐𝑜𝑠 [
𝑎፧(1 − 𝑒ኼ፧) − 𝑎፦፨፨፧,፧

𝑒፧𝑎፦፨፨፧,፧
] (7.4)

Important to note is that 𝐿ኼኻ is not the phase angle. A phase angle is defined at one point in
time. Therefore, a time-of-flight correction needs to be added to account for the travel time
from flyby one to flyby two. When the spacecraft is in hyperbolic orbit, the time-of-flight of
the intermoon trajectory is given by Equations 7.5 and 7.6.

𝑡ኼኻ = √
−𝑎ኽኻ
𝜇ፉ

[(𝑒ኻ sinh𝐻፦፨፨፧,ኼ − 𝐻፦፨፨፧,ኼ) − (𝑒ኻ sinh𝐻፦፨፨፧,ኻ − 𝐻፦፨፨፧,ኻ)] (7.5)

𝐻፦፨፨፧ = − cosh(
𝑎ኻ − 𝑎፦፨፨፧
𝑎ኻ𝑒ኻ

) (7.6)

A different description applies if the intermoon trajectory has already become elliptic due to
flybys or impulsive JOI maneuver. In that case, the time of flight for the intermoon trajectory
is calculated by means of Equations 7.7 and 7.8.

𝑡ኼኻ = √
𝑎ኽኻ
𝜇ፉ
[(𝑒ኻ sin𝐸፦፨፨፧,ኼ − 𝐸፦፨፨፧,ኼ) − (𝑒ኻ sin𝐸፦፨፨፧,ኻ − 𝐸፦፨፨፧,ኻ)] (7.7)
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𝐸፦፨፨፧ = − cos(
𝑎ኻ − 𝑎፦፨፨፧
𝑎ኻ𝑒ኻ

) (7.8)

𝑛፦፨፨፧ = √
𝜇ፉ

𝑎ኽ፦፨፨፧
(7.9)

In the above equations, 𝜇ፉ is the gravitational parameter of Jupiter and 𝑎፦፨፨፧ the semi-
major axis or due to the circular coplanar assumption, the orbital radius of the moon under
consideration. 𝐻፦፨፨፧ and 𝐸፦፨፨፧ are the hyperbolic and eccentric anomaly respectively. Now
using the mean angular motion of the moon for which the time-of-flight correction needs to
be added (Equation 7.9, this equation was already mentioned in Chapter 3 by Equation 3.7
but repeated here for convenience), the relative phase angle of the second moon with respect
to the first moon, at the time of the first flyby (Δ𝐿ኼኻ) is given by:

Δ𝐿ኼኻ = (𝜃ኼ − 𝜃ኻ) − 𝑛፦፨፨፧,ኼ𝑡ኼኻ (7.10)

7.2.4 Third flyby
Adding a third flyby is done relatively straightforward but now with two correction terms for
the times of flight. The first one corrects for the angular motion of the third moon during
two inter-moon transfers; the second corrects for the angular motion of the second moon. If
this second correction term were not added, the phase angle would be defined with respect
to the location of the second moon at the time of the first flyby moon. Adding the time of
flight correction (now positive) of the second moon resolves this. Now the phase angle of the
third moon (Δ𝐿ኾኻ) is defined with respect to the location of the first moon at the time of the
first flyby moon.

Δ𝐿ኾኻ = (𝜃ኾ − 𝜃ኽ) − 𝑛፦፨፨፧,ኽ(𝑡ኼኻ + 𝑡ኾኽ) + 𝑛፦፨፨፧,ኼ𝑡ኼኻ (7.11)

The geometric definition of all the angles discussed in this section is shown in Figure 7.3.
The phase angles are positive in counterclockwise direction, meaning that both Δ𝐿ኼኻ and Δ𝐿ኾኻ
are negative for this case.

7.2.5 JOI
The impulsive JOI can be implemented at any location in the sequence by means of logic.
Consider two separate trajectory legs with the same 𝜔 but different 𝜃, 𝑎 and 𝑒. Two times of
flights (𝑡፧፩ and 𝑡፩,፧ዄኻ) can be calculated, one before the JOI and one after the JOI as illustrated
in Figure 7.4. The subscript 𝑝 indicates the perijove. These are then added to create the time-
of-flight correction term for the corresponding moon (e.g., n+1). Note that all flybys occurring
after the JOI are outbound flybys.

7.3 Low-thrust relative phasing
The optimizations of low-thrust satellite-aided capture trajectories from Chapter 6 use the
advantage of a second-order Taylor-series expansion with the true longitude as a running
parameter. By doing so, the computational time is reduced to a minimum while maintaining
reasonable accuracy. However, this raises problems for the low-thrust phasing problem
because nothing is known about the inter-moon time-of-flight. Moreover, since the trajectory
is not ballistic due to the low-thrust propulsion, Equations 7.7 and 7.5 cannot be used.
Therefor a similar second-order Taylor-series expansion is developed for time with the true
longitude as running parameter. This Taylor-series is presented in Equation 7.12. The total-
and partial derivatives in the equation are given by Equations, 7.13-7.16. In Equation 7.12,
the first-order derivative is simply given by the Gauss equation Equation 5.20. The second-
order derivatives are constructed using the same procedure as was applied for the other
second-order derivatives in Subsection 5.5.3.
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Figure 7.3: Schematic of the geometric definition of phase angles for a triple-aided Callisto-Ganymede-Europa-JOI capture
trajectory in the ፱ᑒ ዅ ፲ᑒ asymptotic Jupiter-centered reference frame. All angles are positive in counterclockwise direction.
This means that the phase angles ጂፋᎶᎳ and ጂፋᎴᎳ are negative in this case.
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Using Equation 7.12 the time can be integrated along with the three other elements 𝑝, 𝑓 and
𝑔 as a function of true longitude. To ensure a minimal error, the same integration procedure
as in Subsection 5.5.3 is used. This is shown in Equation 7.17 or in short in Equation 7.18.

𝑡፧(𝐿) = 𝑡፧ዅኻ +
𝑑𝑡
𝑑𝐿(𝐿፧ − 𝐿፧ዅኻ) +

𝑑
𝑑𝐿 (

𝑑𝑡
𝑑𝐿)

(𝐿፧ − 𝐿፧ዅኻ)ኼ
2 (7.17)

𝑡፧(𝐿) = 𝑡፧ዅኻ + Δ𝑡 (7.18)
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Figure 7.4: Illustration of how the time of flight is calculated for an intermoon trajectory leg with an intermediate JOI executed at
perijove.

By having the numerical progression of the time over the true longitude available now, the rel-
ative phasing for double- and triple low-thrust satellite-aided capture trajectories can easily
be solved by means of Equations 7.19 and 7.20.

Δ𝐿ኼኻ = (𝐿ኼ − 𝐿ኻ) − 𝑛፦፨፨፧,ኼ(𝑡ኼ − 𝑡ኻ) (7.19)

Δ𝐿ኾኻ = (𝐿ኾ − 𝐿ኽ) + 𝑛፦፨፨፧,ኽ(𝑡ኻኼ + 𝑡ኽኾ) − 𝑛፦፨፨፧,ኼ(𝑡ኼ − 𝑡ኻ) (7.20)

Again note that 𝐿ኺ is essentially assumed to have the value same as 𝐿ኻ. The same holds for
the other pair 𝐿ኼ and 𝐿ኽ. This was already explained earlier in this chapter and shown in Fig-
ure 7.3. The second-order Taylor-series expansion for time presented here also has another
use for itself. With the progression of time over longitude available, the (constant) thrust
acceleration 𝑎ፓ can also be integrated with 𝑝, 𝑓 and 𝑔. By doing so, the velocity increment of
the low-thrust propulsion (Δ𝑉ፋፓ) becomes available. This is shown during the verification of
the assumption of constant mass of the low-thrust propulsion in Subsection 9.4.4.

7.4 Absolute phasing
In the two previous sections of this chapter, the moons’ phase angles were determined relative
to the first flyby. All directions were defined in a Jupiter-centered asymptotic reference frame.
Note that this asymptotic frame is still oriented in an arbitrary way with respect to the Sun-
Jupiter frame. This implies that the approach hyperbola also might be arbitrary directed. To
ensure this approach hyperbola results from a heliocentric Hohmann transfer, the reference
for the relative phase angles, that is, the first flyby longitude (𝐿ኺ), should be defined with
respect to the Sun-Jupiter line.
A spacecraft arriving at the Jovian system from a heliocentric Hohmann transfer enters
Jupiter’s SOI before it’s velocity vector with a velocity that is slower than the velocity of
Jupiter. So the asymptote of the incoming hyperbola aligns with the velocity vector of Jupiter.
Assuming that Jupiter orbits the Sun in a circular orbit, Jupiter’s velocity vector and the Sun-
Jupiter line are perpendicular with respect to each other. Therefor, the true longitude of the
first flyby moon at the time of the first flyby (𝐿ኺ) should be increased by 90∘. This is to align
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the negative x-axis of the assymptotic frame with the velocity vector of Jupiter. The phase
angles of the subsequent moons are left the same since they are all calculated relative to 𝐿ኺ.
When doing so, all the angles required for an ephemerides search are available.

7.5 Ephemerides search
As stated at the end of the previous section, both relative and absolute phasing needs to be
solved. The goal now is to perform an ephemerides search over the time interval from 2025
to 2065. Its purpose is to find the times at which the proper phasing (relative and absolute)
of the moons occurs. In other words, the time windows at which the satellite-aided planetary
capture trajectories could actually be flown.

7.5.1 Ephemeris file
An ephemerides file jup310.bsp is available from [11]. It holds the locations of the Galilean
moons in a Jupiter-fixed reference frame. Figure 7.5 shows the propagation of them for a
time interval from January 1th 2024 up to May 1th 2024. This time window was chosen
arbitrarily with a reasonable length to ensure that the Sun’s position is also clearly visible.

Figure 7.5: Illustration of the data available in the ’jup310.bsp’ ephemeride file.

As explained in Section 7.4 for ensuring that the incoming trajectories result from a helio-
centric Hohmann transfer, the Jupiter-Sun line is of great importance. The advantage of the
ephemeride file available is that it also includes the location of the Sun with respect to the
Jupiter-centered reference frame.

7.5.2 Ephemerides phase angle
Using the position vectors of Callisto, Ganymede, Europa and the Sun it is possible to cal-
culate the phase angles through the following equations [18][16][17]:

Δ𝐿Ga,Ca,፞፩፡፞፦ = Sgn (n̂ • rCa × rGa) cosዅኻ (
rCa • rGa
‖rCa ⋅ rGa‖

) (7.21)
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Δ𝐿Ca,Sun,፞፩፡፞፦ = Sgn (n̂ ⋅ rSun × rCa) cosዅኻ (
rSun ⋅ rCa

‖rSun‖ ‖rCa‖
) (7.22)

In these equations Δ𝐿Ga,Ca,፞፩፡፞፦ and Δ𝐿Ca,Sun,፞፩፡፞፦ are the Ganymede-Callisto and Callisto-
Sun phase angles at a particular time (e.g. the time of the Callisto flyby or in general the first
subscript w.r.t. the second subscript), rSun, rCa and rGa are the Jupiter-centered position
vectors of the representative celestial body. The 𝑆𝑔𝑛 (Signum) function combined with the
triple scalar product make sure that the signs of the phase angles calculated are compatible
with Equations 7.10 and 7.11. Then the arccosine of the unit dot product is taken to de-
termine the actual magnitude of the phase angles. The orbital normal n̂ is easily calculated
using two successive positions of Ganymede (rGa,ኻ and rGa,ኼ differing 25 minutes). In reality,
one could calculate the orbital normal of all three moons considered in this thesis report (not
Io). The moons lie almost in the same orbital plane (within one degree with respect to each
other). Moreover, as stated before, the orbital normal is only used in the 𝑆𝑔𝑛 function to
ensure consistent signs for the phase angles. Therefore, the calculation of only the orbital
normal of Ganymede is considered enough and could be used for the other phase angles as
well [16]. To prove this latter, the orbital normal vectors of Callisto, Ganymede and Europa
are calculated and the three components (x,y,z) are plotted over each other in Figure 7.6. As
can be observed, they almost completely overlap. Therefore it is considered valid just to use
one of the orbital normal vectors.

n̂ =
rGa,ኻ × rGa,ኼ
‖rGa,ኻ × rGa,ኼ‖

(7.23)

It is important to keep in mind during calculation of phase angles from the ephemeride

Figure 7.6: Illustration of marginal differences between the orbital normal vectors of Callisto, Ganymede and Europa.

file that for the Ganymede-Callisto phase angle, Callisto is the first flyby moon. Thus, the
Callisto-Sun angle is of importance in the ephemerides search instead of the Ganymede-Sun
phase angle. The Ganymede-Sun angle becomes of interest when Ganymede is the first flyby
moon. When a third flyby is considered (Europa), Europa-Callisto phase angles need to be
calculated as well. The phase angles assuming Callisto, Ganymede and Europa as the first
flyby moon are plotted from January 5th, 2020 to February 4th, 2020 in Figure 7.7. One can
observe that opposite phase angles (e.g., Callisto-Ganymede vs. Ganymede-Callisto) evolve
in the opposite direction. The Sun-moon phase angle always evolves in positive direction.
This is the result of all three moons having prograde orbits around Jupiter. Furthermore,
when Callisto is the first flyby moon as in Figure 7.7a, all three phase angles evolve in a
positive direction. The Callisto-Sun due to Callisto’s prograde orbit but the Europa-Callisto
and Ganymede-Callisto because Ganymede and Europe orbit much closer to Jupiter and
thus have shorter orbital periods. This theory also works the other way around. Observ-
ing Figure 7.7c where Europa is the first flyby moon, the Europa-Sun phase angle evolves
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in positive direction due to Europa’s prograde orbit but the Callisto-Europa and Ganymede-
Europa evolve in negative direction because Ganymede and Callisto have much longer orbital
periods and will therefore always lack the orbit of Europa. The combined effect of this can be
observed in Figure 7.7b where again the Ganymede-Sun phase angle propagates in positive
direction due to the prograde orbit of Ganymede around Jupiter. The Callisto-Ganymede
phase angle matures in negative direction because the longer orbital period of Callisto com-
pared to Ganymede. It is the other way around for the Europa-Ganymede phase angle due
to the shorter orbital period of Europa compared to Ganymede.

(a) Phase angles for Callisto as first flyby moon. (b) Phase angles for Ganymede as first flyby moon.

(c) Phase angles for Europa as first flyby moon.

Figure 7.7: Phase angles considering Sun and Callisto, Sun and Ganymede and Sun and Europa as reference. Phase angles
are calculated from position vectors given by the ’jup310.bsp’ file with dates ranging from January 5th 2020 up to February 4th
2020 as illustration.

7.5.3 Synodic period
Geometrically speaking, a particular phase angle between two moons only occurs every syn-
odic period. This is the time that the phase angles evolve from 0 to 2𝜋. The synodic period is
calculated using Equation 7.24.

𝑆 = 2𝜋
𝑛ኻ − 𝑛ኼ

(7.24)

In Equation 7.24, S represents the synodic period in days, 𝑛ኻ the mean angular motion of
the innermost moon, and 𝑛ኼ the mean angular motion of the outer moon. This has to be
arranged in this way to ensure a positive sign for the outcome of the synodic period. The
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synodic periods for the three sequences relevant in this thesis research (excluding Io) are
given in Table 7.1.

Sequence 𝑇ኻ
[days]

𝑛ኻ
[deg/day]

𝑇ኼ
[days]

𝑛ኼ
[deg/day]

S
[days]

Europa-Ganymede 3.552 101.375 7.155 50.317 7.051
Europa-Callisto 3.552 101.375 16.689 21.571 4.511
Ganymede-Callisto 7.155 50.317 16.689 21.571 12.523
Europa-Sun 3.552 101.375 4332.589 0.083 3.555
Ganymede-Sun 7.155 50.317 4332.589 0.083 7.167
Callisto-Sun 16.689 21.571 4332.589 0.083 16.962

Table 7.1: Synodic periods between Callisto, Ganymede, Europa and the Sun. These numbers are also indicated in Figure 7.7.

This synodic period is indicated in Figure 7.7. Moreover, the individual orbital periods should
nearly match the ”synodic” period between the first flyby moon and the Sun. Therefore it is
also indicated in Figure 7.7. It serves as a verification method to gain more confidence in the
methodology used to calculate the ephemerides phase angles. It will not be repeated in the
chapter on verification and validation because it is already included here.

7.5.4 Ephemerides search
The ephemerides search is performed between 2025 and 2065. This 40-year interval is di-
vided into 20 two-year intervals with timesteps of one minute. This division into two-year
intervals was necessary because of the limiting array length in Matlab. An interval of two
years holds about 1.05 million minutes. This times 20 years equals 21 million minutes to be
analyzed. Therefore it is emphasized to choose proper logic that limits useless calculations
and data loading.
The ephemerides search starts with the phasing of the first flyby moon. Using Equation 7.22
calculates the location of the first moon (in the case of Equation 7.22 it is Callisto) with re-
spect to the Jupiter-Sun line. A Matlab script iterates over al 8.4 million minutes and checks
when this first phase angle is satisfied. The first phasing is said to be satisfied when it is
within a range of one hour (3600 seconds) times the angular velocity of the moon under con-
sideration. It is emphasized that for the first moon the foregoing interplanetary Hohmann
transfer allows for some trajectory correction maneuvers (TCM). TCMs generally alter the
time of arrival at the first moon. Since the Galilean moons orbit at different orbital radii,
their velocity and thus angular velocity is different. Taking the same angular range that the
moon should be in for every moon would not give thrust-worthy results.
The phasing criterion of the first moon immediately eliminates a large portion of the time
interval that is investigated. For the moments in time when this desired first phasing is
found, the algorithm proceeds into checking if the second phasing is satisfied as well (Equa-
tion 7.21). If not, the algorithm proceeds to the next epoch for which the first phasing was
satisfied. For the second (and possibly third) moon, a time window of only a half hour (1600
seconds) is taken. This time window is smaller because of the limiting times of flight between
the moons wherein TCMs could be implemented.
This also eliminates a large portion of the epochs for which the first phasing was satisfied.
When a third phasing is added, an extra phasing check is performed in the same way as the
second phasing, reducing the number of valid epochs even further. In the end, the complete
time interval of 40 years will be reduced to only a few dates. It goes without saying that the
solution space holding the valid epochs would be more extensive for double flyby sequences
compared to the triple flyby sequences. Generally, the more moons added to the sequence,
the more severe the geometrical constraints are.
From the optimizations performed in Chapter 4 it was learned that it would most often con-
verge towards an initial perijove that results in a zero flight-path angle and smallest relative
velocity when at that most inner flyby moon. This implies that the flyby with the most in-
ner moon is performed at the perijove of the spacecraft’s trajectory. In other words, the
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spacecraft’s perijove just before the flyby with the most inner moon is performed equals the
orbital radius of that moon. Therefore, the phasing problem was fed a range in perijove from
[0.9𝑅፩ᑠᑡᑥ , 1.0𝑅፩ᑠᑡᑥ] with 30 steps. The result would be a much wider solution space in terms
of valid first flyby epochs instead of just searching for the optima found in Chapter 4. The
range of initial perijove is limited to only 30 steps to limit the amount of computational time.
However, the author expects that this would suffice to get insight into the effects of vary-
ing perijove on available first flyby times for performing (low-thrust) satellite-aided planetary
capture trajectories.





Chapter 8

Phasing results

This chapter presents the results of the methodologies discussed in the previous chapter.
First, the ballistic case (satellite-aided) results are given in Section 8.1, and then the case
incorporating low-thrust along the trajectory in Section 8.2. Some of the sequences are not
discussed in this chapter because they would hold the same reasoning as forgoing sequences.

8.1 Satellite-aided results
This section will present the results of the phasing problem of the satellite-aided planetary
capture trajectories. This holds the combination of flybys with two or three of Jupiter’s
Galilean moons combined with a JOI. For brevity, only sequences with the JOI first will be
discussed. Results of other sequences are presented in Appendix A. In general the results
hold the required JOI maneuver in terms Δ𝑉 and propellant mass and the dates for which
the flyby sequence can be flown. All results are given for a range of initial perijoves. A third
graph presenting the flyby altitudes is also included when relevant.

8.1.1 Double-aided
Here the results for double satellite-aided planetary capture trajectories are presented. It
starts with the combination Callisto-Ganymede, then Ganymede-Europa and finally Callisto-
Europa.

Callisto-Ganymede

In Figure 8.1 the required JOI for a JOI-Ganymede-Callisto capture sequence is presented.
This JOI is given in terms of Δ𝑉 and propellant mass. The JOI ensures that when the full
sequence is flown, the spacecraft is captured in a (highly eccentric) 200-day periodic orbit.
The JOI is plotted for the range of initial perijove for which the phasing problem is sampled
and solutions were found for in the ephemerides search. Because the impulsive JOI is the
only contribution to propellant mass, the progressions of both Δ𝑉 and propellant mass are
similar.
In Figure 8.1 one can notice the decreasing behavior of the JOI as the initial perijove ap-
proaches its optimum. This optimum is the same optimum as was found in the optimiza-
tions of Chapter 4. It corresponds with a perijove equal to Ganymede’s orbital radius just
before the Ganymede flyby is executed. At higher perijoves the spacecraft would not reach
the orbit of Ganymede and perform a flyby. Conventionally, a JOI executed at a lower peri-
jove would require less propellant. That is for the case that no flybys are used and the JOI is
the only mechanism that ensures the spacecraft is captured in the desired orbit. When fly-
bys are used and the initial perijove is decreased beyond its optimum, the JOI would indeed
be implemented at a lower perijove. However, due to the increasing flight-path angle (angle
between the velocity vector of Ganymede and spacecraft) and relative velocity at the point
where the flyby with Ganymede is executed, the effect (orbital energy and perijove increment)
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Figure 8.1: Required JOI maneuver in terms of ጂፕ and propellant mass considering a JOI-Ganymede-Callisto capture
sequence for varying initial perijove.

of the flyby decreases. So, as was concluded from the results in Chapter 4, the combined
effect of decreasing perijove and less effective flybys is dominated by the less effective flyby’s
and therefore results in increasing Δ𝑉 and propellant mass for the JOI. From Figure 8.1 one
also learns that for every perijove value that was sampled, all flyby’s were performed with
minimum flyby altitude. This means that trajectories holding lower initial perijoves do not
have the problem that their perijove decreases beyond the radiation safety belt (e.g., 8𝑅ፉ). If
this would be the case, one or both flyby altitudes could be increased to prevent this. This
would result in less effective flybys for lower perijoves. The effect would be noticeable as
changing slopes for both Δ𝑉 and propellant mass. This phenomenon will become clear in the
discussion of a Europa-Ganymede capture sequence.
Figure 8.2 presents the ephemerides results of a JOI-Ganymede-Callisto capture sequence
for the range of initial perijoves sampled through the phasing problem. The first thing to
notice is the (almost) vertical arrangement of the results. These arrangements are called
flyby windows. They indicate a range of dates for which the desired phasing is found in
the ephemerides search. The more vertical these windows are, the more strict the launch-
and arrival dates are to the flyby sequence. One notices that for higher initial perioves, the
desired phasing occurs later than for smaller initial perijove. This slightly narrows the gap
between two flyby windows, making it easier to fly the sequence in terms of dates, but also
makes the perijove requirement more strict. For mission planning, it is most desired to have
both a wide perijove and date distribution.
The theory for these flyby windows lies in the dynamics of Callisto and Ganymede. The
orbital period of Callisto (16.69 days), the synodic period of Callisto and Ganymede (12.52
days), and the orbital period of Ganymede (7.155 days) are very close to a 3:4:7 resonance
or so-called ”near-orbital resonance”. This near-orbital resonance has a (near) resonance
period of approximately 50.3 days (3𝑇ፂፚ or 7𝑇ፆፚ). Near-orbital resonance implies that there
is a mismatch. This mismatch, 𝑀ፂፚዅፆፚ, per (near) resonance period can be calculated using
Equation 8.1 [18]. Here 𝑆ፂፚዅፆፚ is the synodic period between Callisto and Ganymede in days,
𝑇ፂፚ the orbital period of Callisto in days and 𝑛ፆፚ the angular velocity of Ganymede in degrees
per day.

𝑀ፂፚዅፆፚ = (4𝑆ፂፚዅፆፚ − 3𝑇ፂፚ)𝑛ፆፚ = 0.50317∘/resonanceperiod (8.1)
In that same amount of time, Jupiter orbits around the Sun with an orbital period of 𝑇ፉ፮፩ =
4332.589days, resulting in an additional mismatch:

𝑀ፒ፮፧ =
360∘3𝑇ፂፚ
𝑇ፉ፮፩

= 4.15∘/resonanceperiod (8.2)

One can conclude that the mismatch between flyby’s for a Callisto-Ganymede sequence is
governed by Jupiter’s orbit around the Sun. The total mismatch is calculated by subtracting
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Figure 8.2: Ephemerides results within the 2025-2065 time interval considering a JOI-Ganymede-Callisto capture sequence for
varying initial perijove. The vertical patterns represent four flyby windows that repeat every 13.523 years.

one from another:

𝑀፭፨፭ = 𝑀ፒ፮፧ −𝑀ፂፚዅፆፚ = 3.6468∘/50.3days = 0.07294∘/day (8.3)

This implies that when a flyby window has just occurred, a full 360∘of mismatch needs to
be filled to make the flyby window occur again. Or in other words, the flyby window repeat
period, 𝑇፰።፧፝፨፰,ፂፚዅፆፚ which is calculated using Equation 8.4.

𝑇፰።፧፝፨፰,ፂፚዅፆፚ =
360∘
𝑀፭፨፭

= 4935.7935 days = 13.523 years (8.4)

Observing Figure 8.2 one may notice that these flyby windows occur much more often than
once every 13.523 years. However, one (near) resonance period holds four synodic periods.
This means that from the definition of the synodic period, the desired relative phasing of
Callisto and Ganymede occurs four times during one (near) resonance period. One should
simply wait until one of them coincides with the absolute phasing. Observing Figure A.6, the
four most left flyby windows each reoccur after 13.523 years.

A JOI-Ganymede-Callisto capture sequence offers great advantages in terms of required JOI.
Due to both Callisto and Ganymede’s orbital radius, a wide range of initial perijoves hold
valid satellite-aided planetary capture trajectories. In terms of valid dates at which the se-
quence could actually be flown, one should consider if a certain flyby window coincides with
a particular interplanetary Hohmann transfer. This is highly dependent on forgoing mis-
sion planning. Because the flyby windows are not too strict (not completely vertical), a JOI-
Ganymede-Callisto sequence could be attractive for mission planning as well.

Ganymede-Europa

The required JOI considering a JOI-Europa-Ganymede capture sequence for various initial
perijove is shown in Figure A.11. They hold the sample points for which solutions were found
in the ephemerides search. Similar as for a JOI-Callisto-Ganymede capture sequence, the
JOI decreases as it approaches the optimum initial perijove. This is due to the combined
effect of a less efficient JOI at higher perijove and more efficient flybys; governed by the more
efficient flybys. For a JOI-Europa-Ganymede capture sequence one notices that for lower
initial perijove the slope of the sample points differs from that of higher initial perijove. The
reason for this lies in the flyby altitudes at which flybys are executed. For convenience these
are shown in Figure 8.4. For lower initial perijoves the flyby altitudes differ from theminimum
allowable altitude (500 km). This is to prevent the final captured orbit from having a perijove
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Figure 8.3: Required JOI maneuver in terms of ጂፕ and propellant mass considering a JOI-Europa-Ganymede capture
sequence for varying initial perijove.

Figure 8.4: Flyby altitudes for a JOI-Europa-Ganymede capture sequence.

smaller than the radiation safety belt. However, it also limits the amount of orbital energy
increment that one flyby could deliver (less effective flybys). This results in a more significant
JOI to capture the spacecraft into the desired capture orbit above the earlier mentioned effect
of increasing flight-path angles. Thus we obtain a more steep slope for these sample points.
Again because the JOI is the only contribution in propellant mass, the progression of both
Δ𝑉 and propellant mass is comparable. Figure 8.5 shows the ephemerides results of a JOI-
Europa-Ganymede capture sequence. In this case, one can again see that dates at which the
sequence can be flown coincide with certain flyby windows. Although these flyby windows
appear to be more strict than for the JOI-Ganymede-Callisto sequence, they occur often. For
that, it is worth taking a look into the dynamics of Ganymede and Europa.
Ganymede and Europa are in a 2:1 orbital resonance. Their synodic period and resonance
period are both equal to Ganymede’s orbital period, which means that every combination
of phase angles only occurs once during every resonance period. With the orbital periods
of both Ganymede and Europa, the mismatch can be calculated using Equation 8.5. Here
𝑇ፄ፮ and 𝑇ፆፚ is the orbital period of Europa and Ganymede, respectively and 𝑛ፄ፮ the angular
velocity of Europa.

𝑀ፆፚዅፄ፮ = (2𝑇ፄ፮ − 𝑇ፆፚ)𝑛ፄ፮ = −0.72246∘/resonanceperiod (8.5)



8.1. Satellite-aided results 91

Figure 8.5: Ephemerides results within the 2025-2065 time interval for varying perijove considering a JOI-Europa-Ganymede
capture sequence for varying initial perijove. The vertical patterns represent four flyby windows that repeat every 1.224 year.

Combining this with the mismatch due to Jupiter’s orbit around the Sun:

𝑀ፒ፮፧ =
360∘𝑇ፆፚ
𝑇ፉ፮፩

= 0.5945∘/resonanceperiod (8.6)

𝑀፭፨፭ = 𝑀ፒ፮፧ −𝑀ፆፚዅፄ፮ = 5.7646∘/resonanceperiod = 0.8057∘/day (8.7)

So when a certain flyby window gets at its end, the time it takes for Ganymede and Europa
to phase themselves again correctly is given by:

𝑇፰።፧፝፨፰,ፆፚዅፄ፮ =
360∘
𝑀፭፨፭

= 446.8287days = 1.2242 year (8.8)

This 1.2242 year gap is clearly visible in Figure 8.5. Unlike Callisto and Ganymede, the proper
relative phasing of Callisto and Ganymede only occurs once every resonance period, which
is equal to the synodic period. The foregoing also holds for all other sequences that combine
Europa and Ganymede in a capture sequence. These are not discussed here for brevity but
shown in Appendix A.

In general, a JOI-Ganymede-Europa capture sequence offers fewer advantages than a Callisto-
Ganymede capture sequence in terms of Δ𝑉 and propellant mass. For lower initial perijoves,
higher flyby altitudes are required to prevent the final capture orbit from reaching below
the radiation safety belt. In terms of valid dates on which the sequences can be flown, a
Ganymede-Europa capture sequence offers more flyby windows that could align with a pre-
ceding interplanetary Hohmann transfer. Keep in mind that these flyby windows are more
strict (vertical) than for a JOI-Ganymede-Callisto sequence.

Callisto-Europa

Figure 8.6 presents the required JOI for a JOI-Europa-Callisto capture sequence. Similar to
the JOI-Europa-Ganymede scenario, one notices the decreasing progression towards its op-
timum initial perijove in two slopes. Therefore the flyby altitudes are presented in Figure 8.7.
At the lowest initial perijove, both flyby altitudes approach the maximum (4000 km). The
idea of increasing the flyby altitude(s) has its limits. When the flyby altitudes are increased
such that they approaches their maximum value (4000 km) but the spacecraft is still cap-
tured in an orbit that has its perijove lower than the radiation safety belt, the sampling of
this particular initial perijove is not fed to the phasing problem. This reduces the number of
sampling points that appear in Figure 8.6.
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Figure 8.6: Required JOI maneuver in terms of ጂፕ and propellant mass considering a JOI-Europa-Callisto capture sequence.

Figure 8.7: Flyby altitudes for a JOI-Europa-Callisto capture sequence

In Figure 8.8 the ephemerides results of the JOI-Europa-Callisto sequence are shown. Con-
trary to the Callisto-Europa and Callisto-Ganymede sequences, there appear to be no vertical
alignments as in Figures 8.2 and 8.5. For JOI-Europa-Callisto, there is a more continuous
behavior of possible dates on which the sequence can be flown. Also, there are multiple initial
perijoves at which the trajectories could be flown at these particular dates. So we observe
both a good date and initial perijove distribution for a JOI-Europa-Callisto sequence.
Observing Figure 8.8 closer, one can notice some periodicity in the pattern. For the JOI-
Europa-Callisto sequence, this pattern appears in the ”no solution” areas. However, for each
time the pattern returns on later dates it is shifted a bit towards higher initial perijoves
although the shape is more or less the same. The author of this thesis research argues that
this shifting is because of some long-periodic mechanism. Due to the limited time interval
on which the ephemerides search is performed, there was no thorough investigation of this.
However, the return of the pattern or the so-called ”short periodicity” will be investigated by
estimating how long this ”short” period is. Multiple combinations of the orbital period with
synodic periods, orbital period with orbital period and synodic period with synodic periods
were tested in this estimate. It turned out that the combination of two synodic periods gave
the best result. Considering the Sun-Callisto, 𝑆ፒ፮፧ዅፂፚ and Callisto-Europa 𝑆ፂፚዅፄ፮ synodic
periods from Table 7.1. One can observe that they are close to a rather long 37:10 resonance:

𝑆ፒ፮፧ዅፂፚ
𝑆ፂፚዅፄ፮

= 3.714 ≈ 37
10 (8.9)
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Figure 8.8: Ephemerides results within the 2025-2065 time interval considering a JOI-Europa-Callisto capture trajectory for
varying initial perijove. A short and long periodicity are observed in the patterns. The short periodicity repeats every 12.2 years.

Similar to the Callisto-Ganymede and Ganymede-Europa sequences, a mismatch is calcu-
lated:

𝑀ፂፚዅፄ፮ =
37𝑆ፂፚዅፄ፮ − 10𝑆ፒ፮፧ዅፂፚ

10𝑆ፒ፮፧ዅፂፚ
𝑛ፒ፮፧ዅፂፚ = −0.0809∘/day (8.10)

Because the synodic period between Callisto and the Sun already takes the mismatch due to
Jupiter’s orbit around the Sun, it is not required to take it into account here. Therefore the
period for the short-periodic pattern appearing in Figure 8.8 is given by:

𝑇፩ፚ፭፭፞፫፧,ፂፚዅፄ፮ =
360∘
𝑀ፂፚዅፄ፮

= 4452.2355days = 12.1979 years (8.11)

This 12.1979 years can also be seen in Figure 8.8.

In general, a Callisto-Europa capture sequence offers less advantages in terms of Δ𝑉 and pro-
pellant mass. Most of the sequences require higher flyby altitudes to stay above the radiation
belt of Jupiter. In terms of ephemerides results, a more continuous behavior of opportunities
arises for both dates and initial perijoves. Contrary to the case that flyby windows appear,
an interplanetary Hohmann transfer will generally always align with a possible phasing. Al-
though at a particular date, not all initial perijoves will find solutions in the ephemerides
search. This makes the requirements on the initial perijove slightly stricter.

8.1.2 Triple-aided
Here the results of a JOI-Europa-Ganymede-Callisto (triple)-aided capture sequence are pre-
sented. Figure 8.9 shows very strong dependency on the initial perijove for the JOI and
propellant mass (860 to 460 kg). Also notice the different slopes that indicate changing flyby
altitudes. The progression of these flyby altitudes is shown in Figure 8.10. However one
important aspect to notice is the limited number of sample points that appear in the graph.
From the 30 initial perijoves sampled, only ten of them have a solution in the ephemerides
search. There are two reasons for this. The first one is due to the strong geometrical con-
straints that arise for a triple flyby sequence. The second is the orbital radius of Europa and
the radiation safety belt that limit the range in which initial perijoves can be sampled. This
latter was already argued in the discussion of the results from Chapter 4.
In terms of JOI, a triple flyby sequence can further decrease the amount of Δ𝑉 and thus
propellant mass. However, due to the limiting range in initial perijove, navigational issues
might become so severe that intense TCMs will be needed when flying the sequence.
Figure 8.11 shows the ephemerides results for the JOI-Europa-Ganymede-Callisto sequence.
One can notice the vertical arrangements of the solutions that indicate the presence of flyby
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Figure 8.9: Required JOI maneuver in terms of ጂፕ and propellant mass considering a JOI-Europa-Callisto capture sequence
for varying initial perijove.

Figure 8.10: Flyby altitudes for a JOI-Europa-Ganymede-Callisto capture sequence.

Figure 8.11: Ephemerides results within the 2025-2065 time interval considering a JOI-Europa-Ganymede-Callisto capture
trajectory for varying initial perijove.
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windows. Compared to the double flyby sequences, one concludes that the strong geometrical
constraints given by a third flyby limit the number of dates on which the triple flyby sequence
can be flown. The similar method as for double-aided sequences was used to investigate the
periodicity of these triple-aided sequences.

𝑆ፂፚ,ፆፚ
𝑆ፆፚ,ፄ፮

= 1.77606 ≈ 1.777.. = 16
9 (8.12)

𝑀ፂፚ,ፆፚ,ፄ፮ = (16𝑆ፆፚ,ፄ፮ − 9𝑆ፂፚ,ፆፚ)𝑛ፂፚ = 2.3512∘/resonanceperiod = 0.020841∘/day (8.13)

𝑇፰።፧፝፨፰,ፂፚ,ፆፚ,ፄ፮ =
360∘

𝑀ፂፚ,ፆፚ,ፄ፮
= 17273.2719𝑑𝑎𝑦𝑠 = 47.32 years (8.14)

The synodic period of the two systems Callisto-Ganymede and Ganymede-Europa is given
by:

𝑆ፂፚ,ፆፚ,ፄ፮ = 2𝜋
ኼ᎝

ፒᐾᑒ,ᐼᑦ −
ኼ᎝

ፒᐺᑒ,ᐾᑒ
= 16.13 days (8.15)

One resonance period is given by 16𝑆ፆፚ,ፄ፮ = 112.816 days. This implies that there are
112.816/16.13 = 7 synodic periods in one near-orbital resonance period, or seven flyby win-
dows in 𝑇፰።፧፝፨፰,ፂፚ,ፆፚ,ፄ፮. The time between two of these seven flyby windows is equal to 6.714
years. This is approximately the separation between the vertical arrangements in Figure 8.11.
Although a good estimation was made here, a wider time interval needs to be examined to be
sure. The author leaves this latter for future work and recommendations.
In general, a third flyby can further lower the required JOI. However, because of the orbital
radius of Europa and radiation safety belt, the range of initial perijove in which the flybys can
be flown is rather limited. Lower initial perijoves require flybys at higher altitude, making
them less effective. Due to a third flyby, the geometrical events required from the ephemerides
search are very strict. Therefore, the number of dates at which the flybys could be flown is
very limited. It is emphasized that a triple flyby sequence will require more TCMs. The Δ𝑉
required for this might overshadow the benefits of a third flyby. Therefore, at this point, the
author of this thesis research argues that a double flyby sequence looks more promising.

8.1.3 Summary of satellite-aided results
The results of all satellite-aided planetary capture sequences are summarized in Table 8.1.
The table is essentially an extension of Table 4.3. Δ𝑉ፉፎፈ is left out and two phasing grades are
added: One that reflects upon the date distribution (0-5) in the results of the ephemerides
search and one upon the perijove distribution (0-5). Both are added up to a total phasing
score. By evaluating both the propellant mass and phasing, one could estimate what partic-
ular sequences are attractive in mission planning.

The not-aided and single-aided all score very well for phasing, because they hold almost
no geometrical constraints. The constraint there is the initial perijove due to the orbital
radius of the moon. However, they perform worst in terms of propellant mass. For single-
aided capture, it appears that a JOI-Ganymede clearly requires the least propellant mass and
therefore, the author argues that this sequence should be preferred (between all single-aided
trajectories).
For the double aided scenario, the Callisto-Europa sequences perform worst of the three
possible combinations (of two moons). Moreover, their phasing score is also marginal. Thus,
these should not be preferred. The Callisto-Ganymede and Ganymede-Europa sequences
have comparable phasing scores. However, the Callisto-Ganymede-sequences clearly require
the least amount of propellant mass. The author argues that a Callisto-Ganymede sequence
should be preferred for a double-aided trajectory, moreover, a JOI-Ganymede-Callisto se-
quence.
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Mprop,min [kg] Date [0-5] Perijove [0-5] Total [0-10]

Direct
- 1218 5 5 10

Single-aided
Callisto
CJ 1056 5 5 10
JC 1080 5 5 10

Ganymede
GJ 945 5 4 9
JG 785 5 4 9

Europa
EJ 990 5 3 8
JE 939 5 3 8

Double-aided
Callisto-Ganymede:
CGJ 547 3 4 7
CJG 484 3.5 4 7.5
JGC 460 3.5 4 7.5
GJC 517 3 4 7

Ganymede-Europa
GEJ 615 4 4 8
GJE 580 4 4 8
JEG 573 4 3 7
EJG 603 4 3 7

Callisto-Europa
CEJ 780 1.5 3 4.5
CJE 738 3.5 3 6.5
JEC 717 5 3 8
EJC 755 4 3.5 7.5

Triple-aided
CGEJ N/A 0 0 0
CGJE 378 0.5 2 2.5
CEJG N/A 0 0 0
CJEG 396 0.5 1.5 2
GEJC 404 0.5 1.5 2
GJEC 337 0.5 0.5 1
EJGC 545 2 2 4
JEGC 478 2.5 1.5 4

Table 8.1: Results of all satellite-aided capture trajectories. Two grades reflecting on the valid dates and perijove distribution to
reflect upon the advantages for mission planning. The sequence is indicated with the first letters of the flyby moons and J for
the JOI.

Triple-aided trajectories were all given a low phasing score due to the strict geometrical con-
straints that come with a third flyby. Both Callisto-Europa-JOI-Ganymede and Callisto-
Ganymede-JOI-Europa had no solutions in the ephemerides search. Therefore they received
a phasing score of zero, and the propellant mass was set at N/A. The highest phasing score
that was granted for the triple aided was for the sequences with Europa in the beginning. Al-
though comparing the propellant mass with the Callisto-Ganymede double-aided sequences,
the author argues that one should not want to fly a triple-aided capture sequence. Also note
that for some of the sequences, the ephemerides search could not find solutions for the op-
timum found in Chapter 4. This is why for some of the sequences the minimum propellant
mass in Table 8.2 differs from that presented in Table 4.3.
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8.2 Low-thrust satellite-aided results
This section discusses the phasing results of low-thrust satellite aided planetary capture tra-
jectories. That is, combining two or three flybys, a JOI maneuver and low-thrust propulsion
along the trajectory. Similar to the ballistic case from the previous section, the results hold
two or three graphs, one for the Δ𝑉 (low-thrust and JOI) and total propellant mass, one for
the ephemerides results and if necessary, a third graph that shows the flyby altitudes. First,
the low-thrust double-aided results are given, then the low-thrust triple-aided trajectories
and the section closes with a summary of all results and conclusions.

8.2.1 Low-thrust double-aided
The low-thrust double-aided results are given in the same order as for the ballistic results.
First the combination Callisto-Ganymede, then Ganymede-Europa and finally, Callisto-Europa.

Low-thrust Ganymede-Callisto

In Figure 8.12 the Δ𝑉 and propellant mass results are shown for a JOI-Ganymede-Callisto
low-thrust capture sequence.

Figure 8.12: Required JOI and low-thrust ጂፕ combined in total propellant mass considering a low-thrust JOI-Ganymede-
Callisto capture sequence for varying initial perijove.

In the figure, one can see that the progression of the required Δ𝑉ፉፎፈ is constant around 290
m/s. This suggests no (strong) dependency of the JOI on the initial perijove, which is contra-
dictory to the ballistic case (Figure 8.1). 290 m/s is generally smaller than any of the results
for the ballistic case. The presence of low-thrust along the trajectory further decreases the
required Δ𝑉ፉፎፈ. The Δ𝑉ፋፓ shows an increase from 840 to 880 m/s along with increasing initial
perijoves. This due to the spacecraft flying a longer trajectory giving the low-thrust propul-
sion more time to deliver Δ𝑉ፋፓ. As mentioned earlier, these two Δ𝑉’s are combined in one
total propellant mass for the whole trajectory which slightly varies from 453.5 to 449.8 kg.
This could be interesting for mission planning, considering possible deviations from nomi-
nal initial perijoves. Note that the minimum amount of propellant mass does not coincide
with the optimum initial perijove in terms of Δ𝑉ፉፎፈ. The minimum propellant mass lies at 32
𝑅ፉ; increasing this with one 𝑅ፉ gives the low-thrust propulsion a longer trajectory and thus
more time to insert Δ𝑉. This has no effect on Δ𝑉ፉፎፈ. Hence the small increase in propellant
mass after 32𝑅ፉ. The ephemerides results of the JOI-Ganymede-Callisto low-thrust capture
sequence are presented in Figure 8.13. One notices the presence of flyby windows. These
were also observed in the ballistic case (Figure 8.2) but now slightly shifted to later dates.
A second difference from the flyby windows in Figure 8.2 is that the flyby windows over the
full range of initial perijove are more compressed (e.g., vertical patterns are more vertical).
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Figure 8.13: Ephemerides results within the 2025-2065 time interval for varying perijove considering a low-thrust
JOI-Ganymede-Callisto capture sequence. The vertical patterns represent four flyby windows that repeat every 13.523 years.

This could be beneficial when a spacecraft arrives at the planned date but the initial perijove
differs from its nominal. However, this increases the gap between two flyby windows, which
is generally not beneficial for mission planning. The periodicity at which these flyby win-
dows occur is independent of the type of flown trajectory (e.g. with or without low-thrust).
Ephemerides are only dependent on the dynamics of the moons considered. Therefore, the
estimation of the periodicity obtained in Subsection 8.1.1 also holds here and will not be
repeated.
In general, one can conclude that a JOI-Ganymede-Callisto low-thrust capture trajectory fur-
ther decreases the JOI compared to the ballistic case. There appears to be no dependency
of the JOI on the initial perijove and thus, the required propellant mass only slightly varies
for different perijoves. The dynamics of Ganymede and Callisto and the low-thrust phas-
ing requirements result in more compressed flyby windows. These need to coincide with a
foregoing interplanetary trajectory to actually fly the sequence.

Low-thrust Ganymede-Europa

A JOI-Europa-Ganymede low-thrust capture trajectory shows a strong dependence on the
initial perijove for both the impulse JOI (Δ𝑉ፉፎፈ) and the low-thrust (Δ𝑉ፋፓ). Consequently, there
is a strong dependency of the total propellant mass on the initial perijove (ranging from 590
to 490 kg in Figure 8.14).
The impulsive JOI shows the same behavior as for the ballistic case. It decreases towards the
optimum initial perijove in two slopes as a result of increasing flyby altitude. This increase
in flyby altitudes is shown in Figure 8.15. Δ𝑉ፋፓ increases towards the optimal initial perijove
due to the increasing time of flight. Because of the high specific impulse of the low thrust,
an increase in Δ𝑉ፋፓ has minimal effect on the total propellant mass. A strong dependence of
the propellant mass (due to increasing Δ𝑉ፉፎፈ) on the initial perijove is generally less desired
for mission planning.
Figure 8.16 shows the ephemerides results. The implementation of low-thrust on a JOI-
Europa-Ganymede capture sequence appears to have a marginal influence on the flyby win-
dows. This was concluded by comparing Figures 8.5 and 8.14.
A JOI-Europa-Ganymede low-thrust capture sequence is less attractive for mission planning
when considering propellant mass (compared to other low-thrust double-aided sequences).
In terms of dates at which the sequence can be flown, there is hardly any difference from the
ballistic case (flyby windows and periodicity).
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Figure 8.14: Required JOI and low-thrust ጂፕ combined in total propellant mass considering a low-thrust
JOI-Europa-Ganymede capture sequence for varying initial perijove.

Figure 8.15: Flyby altitudes considering a low-thrust JOI-Europa-Ganymede capture sequence for varying initial perijove.

Figure 8.16: Ephemerides results within the 2025-2065 time interval considering a low-thrust JOI-Europa-Ganymede capture
sequence for varying initial perijove. The vertical arrangements represent four flyby windows that repeat every 1.224 year.
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Low-thrust Europa-Callisto

The Δ𝑉 results and total propellant mass for a JOI-Europa-Callisto capture sequence are
shown in Figure 8.17. The impulsive JOI shows a strong dependence on the initial peri-
jove (decreasing towards the optimum initial perijove), which is considered undesirable for
mission planning. Δ𝑉ፋፓ is less dependent on the initial perijove and, together with its high
specific impulse, makes the Δ𝑉ፋፓ have minimal influence on the progression of total propellant
mass. Therefore, identical to the JOI-Europa-Ganymede low-thrust sequence, a JOI-Europa-
Callisto low-thrust sequence shows a strong dependency of the total propellant mass on the
initial perijove (815 to 630 kg). The presence of low thrust decreases the amount of propellant
mass compared to the ballistic JOI-Europa-Callisto. Still, a JOI-Europa-Callisto low-thrust
sequence performs worse than both a JOI-Ganymede-Callisto- and JOI-Europa-Ganymede
low-thrust capture trajectory. This latter was also concluded for the ballistic case.

Figure 8.17: Required JOI and low-thrust ጂፕ combined in total propellant mass considering a low-thrust JOI-Europa-Callisto
capture sequence for varying initial perijove.

Considering the flyby altitudes of a JOI-Europa-Callisto sequence, Figure 8.17 does not show
any multiple slopes for Δ𝑉ፉፎፈ and total propellant mass. This suggests that each flyby is
flown at minimum flyby altitudes. However, plotting both the Europa and Callisto flyby
altitudes (Figure 8.18) one observes that the Callisto flyby altitude decreases over the whole
range of approach perijove. This explains the strong dependence on the initial perijove for
both Δ𝑉ፉፎፈ and propellant mass. Contradictory to the ballistic JOI-Europa-Callisto sequence,
the flyby altitudes do not reach their maximum allowable value. Figure 8.19 shows the
ephemerides results of the JOI-Europa-Callisto low-thrust capture sequence. Apart from
higher initial perijoves as in Figure 8.8 due to low thrust, no real differences can be observed
in both graphs. Therefore, the reasoning on the ephemerides results from Section 8.1.1 also
holds here. For mission planning, a JOI-Europa-Callisto low-thrust capture sequence is
less beneficial in terms of Δ𝑉ፉፎፈ (and thus also propellant mass) compared to the other low-
thrust sequences. However, the presence of low-thrust shows its benefits over the ballistic
sequence. Moreover, due to low thrust, the ephemerides results show a wider range of initial
perijoves. For valid dates on which the sequences could be flown, a more continuous behavior
is observed. However, not every date holds solutions for the full range of initial perijoves
sampled.

8.2.2 Low-thrust triple-aided
Figure 8.20 shows the Δ𝑉 and propellant mass result for a JOI-Europa-Ganymede-Callisto
low-thrust capture sequence. Similar to the ballistic triple-aided results, only a limited num-
ber of sample points appear in the graph: only nine of the 30 initial perijoves sampled gave
results in the ephemeride search. From this one can conclude the same as for the triple bal-
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Figure 8.18: Flyby altitudes considering a low-thrust JOI-Europa-Callisto capture sequence for varying initial perijove.

Figure 8.19: Ephemerides results within the 2025-2065 time interval considering a JOI-Europa-Callisto capture trajectory for
varying initial perijove.

listic sequences, that due to a third flyby, the geometrical constraints are simply too strict.
Moreover the orbital radius of Europa and the radiation belt safety narrow down the range in
which the initial perijove can be sampled. Compared to the ballistic JOI-Europa-Ganymede-
Callisto sequence, the presence of low thrust does show its benefits in terms of minimum
propellant mass. The progression of Δ𝑉ፋፓ is rather constant over the initial perijoves. Be-
cause of decreasing flyby altitudes towards increasing perijove, Δ𝑉ፉፎፈ and total propellant
mass show a strong decrease. To clarify this, the three flyby altitudes are presented in Fig-
ure 8.21. Please note that around initial perijove of 12.65𝑅ፉ, Figure 8.21 shows an outlier.
This is also visible for in Figure 8.20. The reader should be aware that this is due to the
numerical nature of the problem.
Figure 8.22 presents the ephemeride results of the JOI-Europa-Ganymede-Callisto low-thrust
capture sequence. Compared to the ballistic ephemerides results in Figure 8.11, less solu-
tions were found by the ephemeride search. The number of dates at which the sequence could
be flown stays approximately the same, but the requirements on initial perijove become very
strict.
In general, the presence of low-thrust propulsion could further lower the total propellant
mass compared to a ballistic JOI-Europa-Ganymede-Callisto sequence. However, in terms
of phasing, the low-thrust phasing requirements become more strict compared to the ballistic
triple-aided trajectories. For mission planning, a low-thrust triple-aided capture trajectory
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Figure 8.20: Required JOI and low-thrust ጂፕ combined in total propellant mass considering a low-thrust
JOI-Europa-Ganymede-Callisto capture sequence for varying initial perijove.

Figure 8.21: Flyby altitudes for a JOI-Europa-Ganymede-Callisto low-thrust capture sequence.

Figure 8.22: Ephemerides results within the 2025-2065 time interval considering a JOI-Europa-Ganymede-Callisto capture
trajectory for varying initial perijove.
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should not be preferred over a low-thrust double-aided trajectory.

8.2.3 Low-thrust satellite-aided results

Mprop,min [kg] Date [0-5] Perijove [0-5] Total [0-10]

Single-aided
Callisto
CJ 932 5 5 10
JC 950 5 5 10

Ganymede
GJ 798 5 4 9
JG 749 5 4 9

Europa
EJ 903 5 3.5 8.5
JE 859 5 3.5 8.5

Double-aided
Callisto-Ganymede:
CGJ 548 3 4 7
CJG 524 3.5 4 7.5
JGC 450 3 4.5 7.5
GJC 475 3 4 7

Ganymede-Europa
GEJ 505 4 4 8
GJE 480 4 4 8
JEG 487 4 3 7
EJG 510 4 3 7

Callisto-Europa
CEJ 677 1.5 3 4.5
CJE 640 3.5 3 6.5
JEC 649 5 3 8
EJC 673 4 3.5 7.5

Triple-aided
CGEJ N/A 0 0 0
CGJE 258 0.5 3 3.5
CEJG N/A 0 0 0
CJEG 243 0.5 0.5 1
GEJC 273 0.5 0.5 1
GJEC 238 1 1 2
EJGC 422 1 1 2
JEGC 378 2.5 1 3.5

Table 8.2: Results of all low-thrust satellite-aided capture sequences. Two grades reflecting on the valid dates and perijove
distribution to reflect upon the advantages for mission planning.

The results of all low-thrust satellite-aided planetary capture sequences are presented in
Table 8.2. Again, all sequences were given a phasing score based on the date and perijove
distribution. The direct low-thrust trajectory was not examined.
All low-thrust single-aided trajectories have a relatively high phasing score. The only geo-
metrical constraint that arises here is that the orbital radius of the flyby moon limits the
initial perijove. This is why Callisto has a maximum phasing score and Europa only an 8.5.
However in terms of propellant mass, sequences with Callisto score worst and Europa best.
For mission planning the JOI-Ganymede low thrust sequence scores best. This was also
the case for the ballistic case and the author suggests that this sequence should again be
preferred.
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For low-thrust double-aided capture, the Callisto-Europa combinations score worst in terms
of propellant mass. Also the orbital radius of Europa limits the initial perijove and there-
fore these sequences should not be preferred. The low-thrust Callisto-Ganymede and and
Ganymede-Europa sequence again have comparable phasing score. This is observed against
a lower propellant mass for Callisto-Ganymede. Thus the author suggests that for low-thrust
double-aided capture, the Callisto-Ganymede sequences should first be considered. This was
also concluded for the ballistic double-aided capture results.
The low-thrust triple-aided trajectories score overall score best in terms of propellant mass.
However, they are all granted a very low phasing score. The Callisto-Ganymede-JOI-Europa-
and Callisto-Ganymede-Europa-JOI sequences again did not find solutions in the ephemerides
search. Therefor they can not be considered and the lowest phasing score (zero) was given
to them. Comparable to the ballistic case, the sequences with Europa placed first in the
sequence or right after the JOI (which is then the first) could be considered. Other than
the ballistic triple-aided sequences, these have a lower propellant mass. For the low-thrust
JOI-Europa-Ganymede-Callisto sequence this could save 72 to 170 kg in propellant mass
compared to the low-thrust Callisto-Ganymede sequences. However a phasing score of three
is still considered very low and the author argues again that a low-thrust triple-aided capture
sequence should not be preferred.



Chapter 9

Verification and Validation

This chapter explains the verification and validation methods used throughout the thesis
research. Some verification efforts were already shown through the report and, therefore,
not repeated here. First, the methodology of the Tisserand graph is validated in Section 9.1.
Then the ballistic optimization algorithm is verified and validated in Section 9.2. Then some
verification efforts on the low-thrust optimizations in Section 9.4.

9.1 Tisserand graph
Here the methodology of creating a Tisserand graph is validated by means of comparison.
First the Tisserand from Figure 3.3 will be repeated here in Figure 9.1 for convenience. The
graph includes the planets from Jupiter up to Neptune. The same Tisserand graph was
found in [26]. Only here Pluto is also included. Besides from that, the two plots show that
the algorithm from Subsection 3.5.1 produces the correct Tisserand graph.

9.2 Ballistic optimization
This section explains the verification and validation efforts for the optimizations of Chapter 4.
This is crucial to gain confidence in the methodologies in Chapter 4 and the results of the
optimizations.

9.3 Verification of ballistic optimization algorithm
Three efforts are taken for verification. First, the algorithm is tested for zero flybys, then
results from different seed numbers are compared with each other and lastly, for all three
seed numbers, a short investigation of the perijove penalty.

9.3.1 Direct
As a first attempt of testing the optimization algorithm, it is tested towards the case that no
flybys are used to capture the spacecraft in the desired orbit around Jupiter. This implies
that the Jupiter orbit insertion is the only mechanism that ensures this. The amount of Δ𝑉ፉፎፈ
required to insert the spacecraft into the desired orbit is calculated using Equation 9.1. In
this equation, 𝑟፩ is the initial perijove. This is also the final perijove since an impulsive JOI
at perijove generally does not change the initial perijove. It is known that an impulsive ma-
neuver is most efficient at lower perijoves. Thus taking into account the radiation belt safety,
𝑟፩ should be equal to 8𝑅ፉ. The eccentricity of the approach hyperbola 𝑒 is calculated using
Equation 6.3 which is repeated here in Equation 9.2 for convenience. 𝑎። is the initial semi-
major axis of the approach hyperbola and given by Equation 9.3. The same for Equation 3.23
in Equation 9.4 that gives the semimajor axis of the 200-day periodic capture orbit.

105
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Figure 9.1: Tisserand graph of the outer Solar System. Thick marks on the contour lines illustrate the effect of a single gravity
assist with the planet considered taking into account the maximum bending angle as a result of the minimum flyby altitude ( six
Jupiter radii for Jupiter, three Saturn radii for Saturn, and two planetary radii for Uranus and Neptune). Increments for the
hyperbolic excess velocity are set to 2 km/s increasing from right at 1 km/s below to the upper left.

Δ𝑉ፉፎፈ = √
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𝑟፩
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(9.4)

Using the above equations and the initial conditions from Subsection 4.2.2, a non-aided
planetary capture trajectory requires 1069.42 m/s for the impulsive JOI. Setting the num-
ber of flybys in the fitness function of Subsection 4.2.1 equal to zero gave the same result.
Moreover, the initial perijove also converged toward the minimum allowable, that is, eight
Jupiter radii.

9.3.2 Different seed numbers

The results from three different seed numbers are compared for three different triple-aided
capture sequences. A seed number is initialized at the beginning of the optimization and its
purpose is to guarantee the reproduciblity of the results in the future. To better visualize any
possible differences, the linewidth is set thinner than in the actual results of Chapter 4.
By observing Figure 9.3 one concludes that there are no visual differences between the solu-
tions. This excellent overlap gave confidence in the results of the optimizations in Chapter 4.
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Figure 9.2: Tisserand graph of the outer Solar System from literature. This was included to validate the results of Figure 3.3 by
means of comparison.

9.3.3 Penalties
The algorithm explained in Subsection 4.2.1 holds that a penalty is added in some cases to
prevent the optimization from approaching non-favorable results. This penalty is in all cases
1000 km/s for the Δ𝑉ፉፎፈ required to insert the spacecraft in the desired capture orbit. This
was chosen after a brief investigation of the convergence behavior with different values for the
penalty. When the penalty should be added, the loop over the preset flyby sequence breaks
out and the resulting fitness will be the difference in orbital energy plus the penalty.
The purpose of the penalty is to guide the optimization out of non-favorable regions on the
Tisserand graph. When plotting the number of times a penalty is granted against the number
of generations, one should see a decrease in it. This is exactly what can be seen in Figure 9.4
for the same three seeds as in Figure 9.3. After this, one is confident that the penalty works
appropriately.

9.3.4 Validation of ballistic optimization
Validation of the methodologies in Chapter 4 is done by reproducing results from earlier re-
search. In [24] they used interplanetary trajectory constraints and combined that with a
high-fidelity, double-aided satellite capture design algorithm. The motion of the spacecraft
was numerically integrated by a system of second-order equations of motion. The character-
istics of two solutions from [24] are presented in Tables 9.1 and 9.2. These are a Callisto-
JOI-Ganymede and Callisto-JOI-Europa capture sequences, respectively. Keep in mind that
in the high-fidelity numerical model, they did not assume a coplanar assumption and per-
fect circular orbits for the Galilean moons. Therefore, the solutions in [24] are expected
to differ from the solutions obtained with the methodologies in Chapter 4. However, the
differences should be within a reasonable order of magnitude. The solutions presented in
Figures 9.5 and 9.6 are created by narrowing down the parameters in the decision vector
in the algorithm from Subsection 4.2.1 such that the JOI-perijove (e.g. rp,JOI) and flyby alti-
tudes are equal to the value of the high fidelity solution. When doing so, the validity of the
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(a) Seed comparison for
Callisto-Ganymede-Europa-JOI capture sequence

(b) Seed comparison for
Callisto-Ganymede-JOI-Europa capture sequence

(c) Seed comparison for
JOI-Europa-Ganymede-Callisto capture sequence

Figure 9.3: Comparison of the optima from three different seeds for three different triple-aided capture sequences.

algorithm in Subsection 4.2.1 can be tested. Please note the differences in capture orbits
period and second flyby altitude for both cases. For the Callisto-JOI-Europa sequence solu-
tion, the radiation belt safety was temporarily not considered but still shown in Figure 9.6.

Parameter Value Units

E0 16.348 km2/s2
Flyby moon 1 Callisto [-]
Flyby altitude 1 500 km
rp,JOI 9.2 RJ
JOI 674 m/s
Flyby moon 2 Ganymede [-]
Flyby altitude 1000 km
Capture period 190 days
Capture orbital energy -6.665 km2/s2

Table 9.1: Characteristics of Callisto-JOI-Ganymede capture
solution resulting from a high fidelity satellite-aided capture
design in [24].

Figure 9.5: Solution of Callisto-JOI-Ganymede capture
sequence resulting from methodologies in Chapter 4.
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(a) Number of penalties assigned per generation for a
Callisto-Ganymede-Europa-JOI sequence optimization.

(b) Number of penalties assigned per generation for a
Callisto-Ganymede-JOI-Europa sequence optimization.

(c) Number of penalties assigned per generation for a
JOI-Europa-Ganymede-Callisto sequence optimization.

Figure 9.4: Number of penalties assigned per generation for three different capture sequence optimizations. Results are shown
for the same seeds from Figure 9.3.

Parameter Value Units

E0 16.348 km2/s2
Flyby moon 1 Callisto [-]
Flyby altitude 1 500 km
rp,JOI 6.5 RJ
JOI 688 m/s
Flyby moon 2 Europa [-]
Flyby altitude 500 km
Capture period 200 days
Capture orbital energy -6.425 km2/s2

Table 9.2: Characteristics of Callisto-JOI-Europa capture
solution resulting from a high fidelity satellite-aided capture
design in [24].

Figure 9.6: Solution of Callisto-JOI-Europa capture sequence
resulting from methodologies in Appendix A.
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Comparing the high-fidelity solution with the patch conics solution from Chapter 4 one
notices some differences (11 m/s for Callisto-JOI-Ganymede and 22 m/s for Callisto-JOI-
Europa). The author argues that the results are expected to be less favorable by considering
relative inclinations compared to the coplanar case. Furthermore, in [24] they added the
note with the results that for the particular launch period they considered, they assumed the
worst-case values over the entire launch period. From this one concludes that the results
from [24] are a bit over-designed.
The author concludes that considering the assumptions taken for the methodology in Chap-
ter 4, the solutions are comparable with those found in [24]. Differences between the solu-
tions can be explained due to limitations set by the assumptions.

9.4 Low-thrust optimization
This section explains the verification and validation efforts for the optimizations of Chapter 6.
This is crucial to gain confidence in the methodologies and justify any evaluations on the
results obtained with the methods from Chapter 6.

9.4.1 Verification of low-thrust optimization algorithm

The low-thrust optimization algorithm’s verification efforts consist of comparing the optima
resulting from different seed numbers and counting the number of penalties for each gener-
ation to see if the optimization pushes its solutions away from unfavorable regions.

9.4.2 Different seed number

(a) Seed comparison for low-thrust
Callisto-Ganymede-Europa-JOI capture sequence

(b) Seed comparison for low-thrust
Callisto-Ganymede-JOI-Europa capture sequence

Figure 9.7: Comparison of the optima from three different seeds for two different low-thrust triple-aided capture sequences.

Similar as was done in Subsection 9.3.2, the optimization of low-thrust satellite-aided cap-
ture trajectories is repeated for three different seed numbers and three low-thrust triple-aided
capture trajectories. The optima are plotted over each other on the Tisserand graph and the
result is shown in Figure 9.7.
As can be seen, there are no visual differences between the optima origin from different seed
settings. The author is motivated that this overlap gives more confidence in the results from
Section 6.3.
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Figure 9.8: Seed comparison for low-thrust JOI-Europa-Ganymede-Callisto capture sequence

(a) Number of penalties assigned per generation for a
low-thrust Callisto-Ganymede-Europa-JOI sequence
optimization.

(b) Number of penalties assigned per generation for a
low-thrust Callisto-Ganymede-JOI-Europa sequence
optimization.

(c) Number of penalties assigned per generation for a
low-thrust JOI-Europa-Ganymede-Callisto sequence
optimization.

Figure 9.9: Number of penalties assigned per generation for three different low-thrust capture sequence optimizations. Results
are shown for the same seeds from Figure 9.7.
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9.4.3 Penalty
The allocation of penalties for the low-thrust optimizations is also verified in the same way
as in Subsection 9.3.3. The results are shown in Figure 9.4. Figure 9.9 shows a decrease of
the number of penalties for each sequence optimization. This indicates that the penalty also
works for the low-thrust optimization algorithm.

9.4.4 Constant mass
All low-thrust legs in presented in this report assume a constant mass for the spacecraft. In
other words, the mass expelled by the low-thrust propulsion is considered negligible. The
mass ratio (𝑚፟።፧ፚ፥/𝑚።፧።፭።ፚ፥) of the spacecraft is calculated along a hyperbolic trajectory in the
Jovian system to prove that this is a reasonable assumption. This is usually done through
the rocket equation (Equation 9.8) and the velocity increment delivered by the low-thrust
propulsion Δ𝑉ፋፓ. Before doing so, the Δ𝑉ፋፓ delivered by the low-thrust propulsion is calculated
using Equation 9.5.

Δ𝑉ፋፓ = ∫
፭ᑗᑚᑟᑒᑝ

፭ᑚᑟᑚᑥᑚᑒᑝ
𝐹ፓ𝑑𝑡 (9.5)

This raises problems since time is not used as a running parameter in the second-order
Taylor series expansion. Instead, the true longitude is used. Therefore, Equation 9.5 is
rewritten into Equation 9.6 to hold the true longitude as running parameter.

Δ𝑉ፋፓ = ∫
ፋᑗᑚᑟᑒᑝ

ፋᑚᑟᑚᑥᑚᑒᑝ
𝑎ፓ (

d𝑡
d𝐿)d𝐿 (9.6)

Since Equation 9.6 has the problem that is cannot be solved analytical, the second-order
Taylor expansion for time, developed in Section 7.3 is used here again and by assuming a
constant thrust acceleration 𝑎ፓ, it is possible to rewrite Equation 9.6 into Equation 9.7.

Δ𝑉ፋፓ = 𝑎ፓΔ𝑡 (9.7)

Now the acceleration, 𝑎ፓ is integrated simultaneously with the other three orbital elements 𝑝,
𝑓 and 𝑔. Knowing the velocity increment delivered by the low-thrust propulsion, the relative
mass with respect to the spacecraft’s initial mass can be calculated by means of the well
known ”Tsiolkovsky rocket equation” (e.g., Equation 9.8). This relative mass is shown for a
low-thrust hyperbolic trajectory in Figure 9.10 with respect to both time and true longitude.

Δ𝑉ፋፓ = 𝑔ኺ𝐼፬፩𝑙𝑛(
𝑚።፧።፭።ፚ፥
𝑚፟።፧ፚ፥

) (9.8)

The shape of the curves differs from each other because of the propagating over the true
longitude. When a spacecraft orbiting Jupiter with an eccentricity other than zero is relatively
shorter at its perijove than regions located away from its perijove. In other words, sections of
true longitude further away represent longer time steps than a section at the perijove, which
means that more mass can be expelled.

From this figure, one learns that after the full range in true longitude is executed, the
amount of mass that the spacecraft expelled is around two percent of the spacecraft’s total
mass. With this in mind, the author expects that constant mass assumption during low-
thrust legs is valid.

Note that this says nothing about the mass expelled due to the impulsive JOI maneu-
ver. This was not taken into account in the optimizations and was due to limited time not
examined. The effect of this would be a slightly different low-thrust acceleration after the
JOI maneuver. The author is aware that this ”mistake” is present and leaves this for future
recommendations.
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Figure 9.10: relative mass of the spacecraft along a low-thrust hyperbolic trajectory as a function of the true longitude. Initial
spacecraft mass was ኾኺኺኺ kg.

9.4.5 Validation of low-thrust optimization
The combination of satellite-aided planetary capture trajectories considering an impulsive
JOI at perijove and low-thrust propulsion along its trajectory was not thoroughly investigated
before. Solutions from earlier research could not be found. The algorithm in Section 6.1 could
therefore not be validated. However, both methods from which the low-thrust satellite-aided
capture design consists are separately validated. The verification-validation of low-thrust
propulsion was done by means of a reference trajectory in Chapter 5. Differences using the
Taylor series expansion were considered to be within a reasonable range. The satellite-aided
capture design is validated in the previous section. With These two and the verification efforts
in the previous subsection, the author expects that the low-thrust satellite-aided capture
design works therefore and adequately justifies any evaluation on the results with respect to
the research questions presented in Subsection 2.2.2.





Chapter 10

Conclusions and recommendations

This chapter is the final chapter of this thesis report and gives the conclusions with respect
to the research question from Subsection 2.2.2. Recommendations are also mentioned as a
propose to improve the research and methodologies.

10.1 Conclusions
This thesis research was centered around low-radiation, low-thrust satellite-aided planetary
capture trajectories in the Jovian system. More specifically, the goal was to investigate how
the addition of low thrust along a capture trajectory could be beneficial. This was investigated
by means of a central research problem that was presented in Subsection 2.2.1. The results
followed from comparing the low-thrust performance with both purely impulsive capture
and conventional satellite-aided capture. For this, the following research question and sub-
questions were created:

What are the performance improvements of using low radiation satellite-aided planetary
capture trajectories in the Jovian system compared to a purely impulsive capture maneuver
and how could these further be improved by incorporating low-thrust electric propulsion?

This research question was split up into three sub-questions:

• What are the potential propellant mass savings for low-radiation satellite-aided plane-
tary capture trajectories compared to purely impulsive capture trajectories?

• What are the potential propellant mass savings for low-radiation satellite-aided plane-
tary capture trajectories when low-thrust propulsion along the trajectory is added?

• Which of the promising trajectories could be considered most useful with respect to
mission panning?

The thesis work started with a study on the Tisserand parameter and the Tisserand graph.
Using the Tisserand graph for the Jovian system, a fitness function was created to identify
potential optimal satellite-aided capture sequences in terms of Δ𝑉ፉፎፈ and propellant mass for
all possible combinations of the three moons Europa, Ganymede and Callisto. One of the
objectives of this thesis research was to aim for low-radiation capture. Consequently, Io was
excluded as a possible flyby moon. These first optimizations did not yet incorporate low-
thrust propulsion; only a JOI in combination with one, two or three flybys with the Galilean
moons was considered. Moreover, the positions of the moons with respect to Jupiter were
also not considered. This first study aims to investigate the capabilities of satellite-aided
planetary capture on an energy base solely.

Table 4.3 summarizes the results of this first study. As a reference, the not-aided (purely
impulsive) capture is also included in the table. The Δ𝑉ፉፎፈ executed at the border of the radia-
tion safety belt (8𝑅ፉ) is equal to 1069 m/s and in terms of propellant mass, that corresponds
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to 1218 kg.

The single-aided results showed that it is not possible to capture the spacecraft into a closed
orbit around Jupiter and thus also not into the desired 200-day period orbit. However, single-
aided capture trajectories do lower the required propellant mass for the JOI with 11 to 35%
of the propellant mass needed for direct capture.
Double-aided capture sequences would also require a JOI for properly capturing the space-
craft around Jupiter. Although they lower the propellant mass for the JOI. Best mass savings
appear for the JOI-Ganymede-Callisto scenario (62%) and worst for the Callisto-Europa-JOI
scenario (36%). The double-aided results also showed the effects of placing the JOI at the
beginning of the sequence. When doing so, the JOI already lowered the relative velocity of
the spacecraft with respect to the flyby moon what made the flyby more effective.

The location of the JOI had a different effect on the optima for the triple-aided sequences.
Both the Europa-JOI-Ganymede-Callisto- and JOI-Europa-Ganymede-Callisto sequences had
the problem that they ended up below the radiation safety belt when flown at a minimum
allowable flyby altitude for the Callisto flyby (500 km). An increase of the Callisto flyby al-
titude solved this. However, this translated into a more significant JOI maneuver and thus
more propellant mass. Therefore contrary to the double-aided case, the best triple-aided se-
quence was not the one with the JOI placed in the beginning. The best option for conventional
satellite-aided planetary capture is a Ganymede-JOI-Europa-Callisto sequence with a JOI of
only 255 m/s which requires only 27% of the propellant mass for direct capture. This first
study on (conventional) satellite aided planetary capture answered the first research sub-
question. However, the results also serve as a second reference for the low-thrust satellite-
aided planetary capture trajectories.

The second study of this thesis research was to expand the foregoing towards low-thrust
satellite-aided planetary capture trajectories. A fast (second-order Taylor-series expansion)
method could represent low-thrust legs in the Tisserand graph. The method needed to be
fast because it was combined with the (conventional) ballistic satellite-aided capture opti-
mizations. When doing so, it created a new fitness function for the low-thrust satellite-aided
planetary capture optimizations. Results of these are summarized in Table 6.3. One of the
objectives of the second research sub-question objectives was to compare low-thrust capa-
bilities with both the direct capture and aided capture.
Low-thrust single-aided capture trajectories all require a JOI to close the orbit around Jupiter
and moreover, to capture it in the desired long-periodic orbit. The presence of low-thrust
propulsion along the trajectory further lowers the total propellant mass. The best low-thrust
single-aided trajectory is the JOI-Ganymede scenario with 749 kg of propellant mass, that is
a decrease of 39% of the propellant mass for direct capture. Which means saving an extra
3% due to the presence of low-thrust. The worst low-thrust single-aided capture sequence is
the JOI-Callisto scenario. With a propellant mass of 950 kg, it saves 22 % of the propellant
mass for direct transfer which is an extra 11% due to low-thrust.
Low-thrust double-aided planetary capture trajectories could potentially close the orbit around
Jupiter and thus capture the spacecraft. However, to reach the desired 200-day periodic or-
bit, the impulsive JOI is still required. The presence of low-thrust propulsion reduces this
JOI. This reduction in JOI does not always translate itself into a decrease of propellant mass
when compared to conventional satellite-aided capture. Those sequences should best be
flown without low-thrust propulsion. The best low-thrust double-aided sequence is the JOI-
Ganymede-Callisto scenario. With a total propellant mass of 450 kg it saves up to 63% of
the propellant mass for direct capture which is generally an additional 1% due to low-thrust
propulsion. The worst low-thrust double aided is the Europa-JOI-Callisto scenario. With
676 kg of total propellant mass it saves up to 44% which is an extra 6% due to low-thrust
propulsion.
Low-thrust triple-aided planetary capture trajectories, could close the orbit around Jupiter
without a JOI. However, for the 200-day periodic orbit, a JOI is still inevitable but reduced due
to the presence of low-thrust. The best scenario for low-thrust triple-aided capture is Callisto-
Ganymede-JOI-Europa with a total propellant mass of only 17% of that for direct capture.
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This is an extra saving of 11% due to low-thrust propulsion. The worst low-thrust triple-
aided capture sequence is Europa-JOI-Ganymede-Callisto. Requiring 33% of the propellant
mass for direct capture which is an extra reduction of 6% due to low-thrust.
Both optimization results (ballistic and low-thrust) concluded the first two research sub-
question. The third research sub-question focuses on the phasing of the moons and more
specifically, on mission planning. A particular sequence can look promising in terms of pro-
pellant mass. Flying the sequence would demand that the moons are aligned properly. This
is where the phasing problem comes in line. This was solved for both the ballistic (analytical)
and the low-thrust (numerical) satellite-aided capture sequences. From the phasing prob-
lem followed the relative and absolute locations of the moons to fly a certain sequence. These
were fed to an ephemerides search to find proper epochs (e.g., dates) between 2025 and 2065.
Then one could evaluate when and how often particular sequences could be flown. The phas-
ing problem was fed a range of initial perijoves, and therefore one could also evaluate how
strict the initial perijove requirements were. Both of these criteria were given a grade from
one to five. These are added up with each other to a total phasing grade that reflects upon
mission planning.
Both the ballistic and low-thrust satellite-aided capture sequences are summarized in Ta-
ble 8.1 and Table 8.2 respectively. Comparing both results concludes that there was no
significant difference in the date distribution between ballistic and low-thrust satellite-aided
capture. Although some arrangements of flyby windows were shifted to later dates.
Single-aided (with or without low-thrust) were granted a very high phasing score. The phas-
ing of these trajectories is only dependent on the period of the moon under consideration.
Therefore there are no real restrictions for them. However, Europa’s orbital radius lies rel-
atively close to the radiation safety belt. This limits the range in initial perijove at which
Europa-aided trajectories could be flown. Therefore, the total phasing score for the single-
aided trajectories was solely influenced by the moon’s orbital radius. All single-aided (ballistic
and low-thrust) trajectories are considered useful for mission planning. Although they pro-
vide limited propellant mass savings.

The date distribution of double-aided sequences was highly dependent on the dynamics of
the two moons under consideration. Europa and Ganymede are in orbital resonance; more-
over, Ganymede and Callisto are in near-orbital resonance. Due to this, the date distribution
appeared into flyby windows. Flyby windows are generally good for perijove distribution since
a wide range of initial perijove could be flown when arriving at the Jovian system. Although
depending on the kind of orbital resonance, these flyby windows could occur often or less.
The dynamics of Europa-Ganymede translated itself in flyby windows that occur every 1.22
years. Because of Europa’s orbital radius, the range in initial perijove is rather strict but
not too strict. Therefore all Ganymede-Europa sequences (with or without low thrust) are
beneficial for mission planning. Considering the extra mass savings that low thrust could
deliver, one should certainly consider using low-thrust propulsion for all Ganymede-Europa-
aided capture sequences. The most promising is the low-thrust Ganymede-JOI-Europa sce-
nario. The near-orbital resonance of Ganymede-Callisto showed that every 3.4 years a flyby
window opens. Therefore the date distribution is less beneficial than Ganymede-Europa se-
quences. The perijove distribution of Callisto-Ganymede was slightly better than Ganymede-
Europa. The overall phasing score of Callisto-Ganymede ended up to to be slightly less than
Ganymede-Europa. When a Callisto-Ganymede sequence is demanded it is better not to
consider low-thrust propulsion due to the limiting mass savings or even negative mass sav-
ings. For Callisto and Europa, the date and perijove distribution strongly differ between
all four sequences. For mission planning, the JOI-Europa-Callisto and Europa-JOI-Callisto
should be preferred, with the absolute preference of JOI-Europa-Callisto. Then considering
the extra mass saving that low-thrust propulsion can deliver, it should also be considered.
Between all (low-thrust) double-aided sequences, the author’s most favorite goes to a low-
thrust Ganymede-JOI-Europa capture sequence.

Ephemerides results for triple-aided capture sequences show little or sometimes even no
results. Therefore they are all given a very low phasing score. The author argues that despite
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their potential propellant mass savings, they should not be considered or preferred.
To summarise, a satellite-aided planetary capture trajectory could result in great mass sav-
ings for the spacecraft. However, these mass savings could differ significantly between the
moons under consideration. The addition of low-thrust has proven to be beneficial for most
sequences. Although, if the orbital radius of the flyby moon(s) is large, the mass saving could
diminish due to the propellant mass of the low-thrust propulsion itself. From all results and
the discussion above, the author argues that a low-thrust Ganymede-JOI-Europa sequence
should be preferred.

10.2 Future work and recommendations
This thesis research represents an analysis of the capabilities (low-thrust) satellite-aided
planetary capture trajectories. However, some elements and methodologies could have been
done different and improved this thesis research. These are briefly described here.

• Inclination: The techniques used in the optimizations and moreover the Tisserand
graphs itself considered the coplanar case. It is, however, possible to include the in-
clination in the Tisserand graph. This would make the 𝑉ጼ lines in the Tisserand graph
appear as contours. Reading and understanding these Tisserand graphs would be chal-
lenging. However it might be possible to include the inclination in the optimizations.

• Thrust vector: The thrust acceleration in the optimizations always acts along the ve-
locity vector of the spacecraft. By considering the three-dimensional case that takes
into account the inclination the thrust could also act in arbitrary direction. This would
however significantly complicate the problem.

• Thrust acceleration: The low-thrust satellite-aided planetary capture optimizations
assumed a constant mass for the spacecraft. This is a reasonable assumption for the
low-thrust propulsion as was shown in Chapter 9. An impulsive JOI would expel a
fair amount of propellant mass and change the low-thrust acceleration when constant
thrust (force) is assumed. Due to a limited time at the closure of this thesis research,
this was not anymore taken into account.

• Time frame: Finding periodicity in the ephemerides results of triple-aided capture se-
quences was not successful. The author argues that investigating a wider time frame
would maybe better visualize any patterns.

• Thrust on/off: The optimizations considered that the low-thrust propulsion was always
be turned on. If this would not be the case, a spacecraft could avoid thrusting close to
apojove. This could limit the decrease in perijove and thus better avoiding the radiation
safety belt.

• Future missions: By investigating how future missions will arrive at the Jovian system
( for example, JUICE), the theory could be practical more practical.

• Launch date: Linking In this report one assumed that the spacecraft arrived from a
foregoing Hohmann transfer. However, other trajectories could also arrive at the Jovian
system. It might be worth it to make an effort when these (Hohmann) trajectories should
be flown.



Appendix A

Ballistic phasing results

A.1 Double-aided

Figure A.1: Required JOI maneuver in terms of ጂፕ and propellant mass considering a Ganymede-JOI-Callisto capture
sequence for varying initial perijove.

Figure A.2: Ephemerides results within the 2025-2065 time interval for varying perijove considering a Ganymede-JOI-Callisto
capture sequence. The vertical patterns represent four flyby windows that repeat every 13.523 years.
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Figure A.3: Required JOI maneuver in terms of ጂፕ and propellant mass considering a Callisto-JOI-Ganymede capture
sequence for varying initial perijove.

Figure A.4: Ephemerides results within the 2025 2045 time interval for varying perijove considering a Callisto-JOI-Ganymede
capture sequence. The vertical patterns represent four flyby windows that repeat every 13.523 years.

Figure A.5: Required JOI maneuver in terms of ጂፕ and propellant mass considering a Callisto-Ganymede-JOI capture
sequence for varying initial perijove.
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Figure A.6: Ephemerides results within the 2025 2045 time interval for varying perijove considering a Callisto-Ganymede-JOI
capture sequence. The vertical patterns represent four flyby windows that repeat every 13.523 years.

Figure A.7: Required JOI maneuver in terms of ጂፕ and propellant mass considering a Ganymede-JOI-Europa capture
sequence for varying initial perijove.

Figure A.8: Ephemerides results within the 2025-2065 time interval for varying perijove considering a Ganymede-JOI-Europa
capture sequence. The vertical patterns represent one flyby window that repeats every 1.22 year.
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Figure A.9: Required JOI maneuver in terms of ጂፕ and propellant mass considering a Europa-JOI-Ganymede capture
sequence for varying initial perijove.

Figure A.10: Ephemerides results within the 2025-2065 time interval for varying perijove considering a Europa-JOI-Ganymede
capture sequence. The vertical patterns represent one flyby window that repeats every 1.22 year.

Figure A.11: Required JOI maneuver in terms of ጂፕ and propellant mass considering a Ganymede-Europa-JOI capture
sequence for varying initial perijove.
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Figure A.12: Ephemerides results within the 2025-2065 time interval for varying perijove considering a Ganymede-Europa-JOI
capture sequence. The vertical patterns represent one flyby window that repeats every 1.22 year.

Figure A.13: Required JOI maneuver in terms of ጂፕ and propellant mass considering a Callisto-JOI-Europa capture sequence
for varying initial perijove.

Figure A.14: Ephemerides results within the 2025-2065 time interval for varying perijove considering a Callisto-JOI-Europa
capture sequence. Short periodic pattern repeats every 12.20 years.
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Figure A.15: Required JOI maneuver in terms of ጂፕ and propellant mass considering a Europa-JOI-Callisto capture sequence.

Figure A.16: Ephemerides results within the 2025-2065 time interval for varying perijove considering a Europa-JOI-Callisto
capture sequence. Short periodic pattern repeats every 12.20 years.

Figure A.17: Required JOI maneuver in terms of ጂፕ and propellant mass considering a Callisto-Europa-JOI capture sequence.
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Figure A.18: Ephemerides results within the 2025-2065 time interval for varying perijove considering a Callisto-Europa-JOI
capture sequence. Short periodic pattern repeats every 12.20 year.

A.2 Triple-aided

Figure A.19: Required JOI maneuver in terms of ጂፕ and propellant mass considering a Callisto-Europa-JOI-Ganymede
capture sequence.
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Figure A.20: Ephemerides results within the 2025-2065 time interval for varying perijove considering a
Callisto-Europa-JOI-Ganymede capture sequence.

Figure A.21: Required JOI maneuver in terms of ጂፕ and propellant mass considering a Callisto-JOI-Europa-Ganymede
capture sequence.

Figure A.22: Ephemerides results within the 2025-2065 time interval for varying perijove considering a
Callisto-JOI-Europa-Ganymede capture sequence.
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Figure A.23: Required JOI maneuver in terms of ጂፕ and propellant mass considering a Ganymede-Europa-JOI-Callisto
capture sequence.

Figure A.24: Ephemerides results within the 2025-2065 time interval for varying perijove considering a
Ganymede-Europa-JOI-Callisto capture trajectory.

Figure A.25: Required JOI maneuver in terms of ጂፕ and propellant mass considering a Ganymede-JOI-Europa-Callisto
capture sequence.
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Figure A.26: Ephemerides results within the 2025-2065 time interval for varying perijove considering a
Ganymede-JOI-Europa-Callisto capture trajectory.

Figure A.27: Required JOI maneuver in terms of ጂፕ and propellant mass considering a Europa-JOI-Ganymede-Callisto
capture sequence.

Figure A.28: Ephemerides results within the 2025-2065 time interval for varying perijove considering a
Europa-JOI-Ganymede-Callisto capture trajectory.
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Low-thrust phasing results

B.1 Low-thrust double-aided

Figure B.1: Required JOI maneuver in terms of ጂፕ and propellant mass considering a Ganymede-JOI-Callisto low-thrust
capture sequence for varying initial perijove.

Figure B.2: Ephemerides results within the 2025-2065 time interval for varying perijove considering a Ganymede-JOI-Callisto
low-thrust capture sequence. The vertical patterns represent four flyby windows that repeat every 13.523 years.
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Figure B.3: Required JOI maneuver in terms of ጂፕ and propellant mass considering a Callisto-JOI-Ganymede low-thrust
capture sequence for varying initial perijove.

Figure B.4: Ephemerides results within the 2025 2045 time interval for varying perijove considering a Callisto-JOI-Ganymede
low-thrust capture sequence. The vertical patterns represent four flyby windows that repeat every 13.523 years.

Figure B.5: Required JOI maneuver in terms of ጂፕ and propellant mass considering a Callisto-Ganymede-JOI low-thrust
capture sequence for varying initial perijove.
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Figure B.6: Ephemerides results within the 2025 2045 time interval for varying perijove considering a Callisto-Ganymede-JOI
low-thrust capture sequence. The vertical patterns represent four flyby windows that repeat every 13.523 years.

Figure B.7: Required JOI maneuver in terms of ጂፕ and propellant mass considering a Ganymede-JOI-Europa low-thrust
capture sequence for varying initial perijove.

Figure B.8: Ephemerides results within the 2025-2065 time interval for varying perijove considering a Ganymede-JOI-Europa
low-thrust capture sequence. The vertical patterns represent one flyby window that repeats every 1.22 year.
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Figure B.9: Required JOI maneuver in terms of ጂፕ and propellant mass considering a Europa-JOI-Ganymede low-thrust
capture sequence for varying initial perijove.

Figure B.10: Ephemerides results within the 2025-2065 time interval for varying perijove considering a Europa-JOI-Ganymede
low-thrust capture sequence. The vertical patterns represent one flyby window that repeats every 1.22 year.

Figure B.11: Required JOI maneuver in terms of ጂፕ and propellant mass considering a Ganymede-Europa-JOI low-thrust
capture sequence for varying initial perijove.
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Figure B.12: Ephemerides results within the 2025-2065 time interval for varying perijove considering a Ganymede-Europa-JOI
low-thrust capture sequence. The vertical patterns represent one flyby window that repeats every 1.22 year.

Figure B.13: Required JOI maneuver in terms of ጂፕ and propellant mass considering a Callisto-JOI-Europa low-thrust capture
sequence for varying initial perijove.

Figure B.14: Ephemerides results within the 2025-2065 time interval for varying perijove considering a Callisto-JOI-Europa
low-thrust capture sequence. Short periodic pattern repeats every 12.20 years.
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Figure B.15: Required JOI maneuver in terms of ጂፕ and propellant mass considering a Europa-JOI-Callisto low-thrust capture
sequence.

Figure B.16: Ephemerides results within the 2025-2065 time interval for varying perijove considering a Europa-JOI-Callisto
low-thrust capture sequence. Short periodic pattern repeats every 12.20 years.

B.2 Low-thrust triple-aided
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Figure B.17: Required JOI maneuver in terms of ጂፕ and propellant mass considering a Callisto-Europa-JOI capture sequence.

Figure B.18: Ephemerides results within the 2025-2065 time interval for varying perijove considering a Callisto-Europa-JOI
low-thrust capture sequence. Short periodic pattern repeats every 12.20 year.

Figure B.19: Required JOI maneuver in terms of ጂፕ and propellant mass considering a Callisto-Europa-JOI-Ganymede
low-thrust capture sequence.
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Figure B.20: Ephemerides results within the 2025-2065 time interval for varying perijove considering a
Callisto-Europa-JOI-Ganymede low-thrust capture sequence.

Figure B.21: Required JOI maneuver in terms of ጂፕ and propellant mass considering a Callisto-JOI-Europa-Ganymede
low-thrust capture sequence.

Figure B.22: Ephemerides results within the 2025-2065 time interval for varying perijove considering a
Callisto-JOI-Europa-Ganymede low-thrust capture sequence.
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Figure B.23: Required JOI maneuver in terms of ጂፕ and propellant mass considering a Ganymede-Europa-JOI-Callisto
low-thrust capture sequence.

Figure B.24: Ephemerides results within the 2025-2065 time interval for varying perijove considering a
Ganymede-Europa-JOI-Callisto low-thrust capture trajectory.

Figure B.25: Required JOI maneuver in terms of ጂፕ and propellant mass considering a Ganymede-JOI-Europa-Callisto
low-thrust capture sequence.
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Figure B.26: Ephemerides results within the 2025-2065 time interval for varying perijove considering a
Ganymede-JOI-Europa-Callisto low-thrust capture trajectory.

Figure B.27: Required JOI maneuver in terms of ጂፕ and propellant mass considering a Europa-JOI-Ganymede-Callisto
low-thrust capture sequence.

Figure B.28: Ephemerides results within the 2025-2065 time interval for varying perijove considering a
Europa-JOI-Ganymede-Callisto low-thrust capture trajectory.
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