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Abstract

This thesis describes the implementation of available bandwidth link-

state update policies for Quality of Service routing. Periodic, threshold-

based and class-based policies are described and implemented in a QoS

router testbed, using Quagga and its OSPF-API for low-level communica-

tions. The implementation is thoroughly tested using unit tests and sim-

ulated traffic. A performance comparison of the link-state update policies

is done, using two different scenarios. The results of this comparison show

that determining the right parameters for the policy is more important

than the kind of policy used. The performance of the policies is generally

worse than in previous work, due to the absence of explicit flow admis-

sion control, which makes it impossible to account for traffic until after it

has been sent. The results also indicate that the use of a moving average

instead of a hold-down timer leads to less link-state updates, while not

impacting performance.
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1
Introduction

Quality of Service (QoS) is becoming increasingly important in current net-

works. While the Internet was originally built for the exchange of simple text

messages with no explicit performance requirements, the current use of multi-

media and real-time applications place strict requirements on network perfor-

mance. Each application has its own set of requirements; for example, voice

over IP applications expect low latency, whereas multiplayer games are espe-

cially sensitive to packet loss. The QoS forum, which was actively researching

QoS solutions for the Internet, used the following definition of QoS: “Quality of

Service is the ability of a network element to have some level of assurance that its

traffic and service requirements can be satisfied.” In the current Internet, explicit

QoS management is almost non-existent. Providers try to keep their service on

a high level, mostly through over-provisioning, but there is no solution that can

offer hard guarantees for a connection or let applications specify their QoS de-

mands. Critics even claim that QoS in the Internet is an utopian idea, and will

never be realized [27].

However, over the last decades, several standards have been proposed and

implemented to provide QoS in a network. Differentiated Services, or DiffServ,

described in RFC 2474 [30], is one of the most common standards for providing

QoS over IP networks. It is a coarse-grained solution, with several classes to

classify traffic. An application can choose, from low to high priority, for the

default behavior, assured forwarding or expedited forwarding. The priority is

communicated in the DS field of the IP header. This way, realtime traffic can be
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Chapter 1. Introduction

given priority over bulk traffic, without a lot of administrative overhead. Usually

ingress routers set the DS field. The information in the DS field is then used

by backbone routers to determine the priority of a packet. Because DiffServ

is based on per packet, per hop behavior, routers do not need to keep track

of traffic flows and no path setup protocol is necessary. However, DiffServ

is unable to provide any strict QoS guarantees: if too much traffic arrives, it

will be dropped anyway, even if it has a high priority. The current trend of

network convergence, where voice and data networks are combined into one IP

network, requires networks to be able to prioritize voice traffic. For this reason,

many core networks deploy QoS by using DiffServ (or MPLS priorities, which are

similar [17]). Also, company networks provide DiffServ support in order to give

priority to voice traffic.

Integrated Services, or IntServ, described in RFC 1633 [12], is the fine-

grained counterpart of DiffServ. Each flow is described using a traffic specifi-

cation and a request specification. The traffic specification describes the band-

width requirements of the traffic. The request specification describes whether

the traffic should be handled on a best effort, controlled load or guaranteed ba-

sis. Each flow has to be setup using a signaling protocol; the Resource Reserva-

tion Protocol (RSVP) [13] is normally used for this purpose. After setup of a flow

every router has to keep track of the flow and handle it in the way specified in the

traffic and request specification. The advantage of IntServ over DiffServ is that

once the flow has been setup, the application can be sure the bandwidth will be

available. This is because each router accepted the flow during the signalling

phase and has reserved resources for it. But because every router has to keep

track of each flow, IntServ does not scale well, and is seldom used in practice.

Multiprotocol Label Switching (MPLS) [33] is a label switching protocol,

where traffic labeled with a certain label is sent over a predefined label-switched

path (LSP). MPLS itself implements eight priority levels, which can be used to

provide QoS in a manner similar to DiffServ (but over predefined paths). RSVP -

Traffic Engineering (RSVP-TE) [8], an extension to RSVP, and the now deprecated

CR-LDP [21], both provide a mechanism to dynamically setup LSPs, adhering

to certain QoS constraints. This setup has the same disadvantage as IntServ:

each router has to keep track of every flow. MPLS priority levels are often used

by providers to offer customers prioritized treatment over other customers in

exchange for a higher fee. The problem with this approach is twofold: providers

can only guarantee the QoS within their own autonomous system, and different

applications of the same customer are unable to specify a different QoS.

Strict QoS provisioning imposes several requirements on the path between

the end-nodes. First, it is necessary that ample capacity can be reserved in order

to meet the QoS requirement. Second, a path selection algorithm is necessary.

2



1.1. Problem definition

IntServ and RSVP generally still use the shortest path available, which might not

provide the desired QoS. RSVP-TE and CR-LDP provide the opportunity to setup

explicit paths, but do not specify the routing algorithm to use.

To provide full QoS capabilities, routing algorithms have been developed

that take into account both the layout and the current state of the links in the

network, like SAMCRA [38]. Research over the last years has been focussed on

developing and testing these algorithms. In order to test the algorithms, testbeds

have been developed that make it possible to simulate traffic loads and test the

behavior of the QoS routing algorithms [7].

As said, most QoS routing algorithms need the current layout of the network

as well as the current state of the links in the network to operate. Distributing

the current network layout throughout the network is a problem that has been

solved a long time ago by link-state routing algorithms (e.g., OSPF or IS-IS).

Since this information is relatively static, all updates on network layout can

be distributed without performance issues. Distributing the exact link-state

information, like the current link delay, available bandwidth and amount of

packet loss, has proven to be a bigger problem. Because this information

is so dynamic by nature, distributing every available update would lead to

excessive updates and bad network performance. In the literature, various

policies to distribute link-state updates have been proposed. Most of these

policies have been examined theoretically and in network simulators, but none

of these policies have been implemented in real-life networks, which brings us

to our problem definition.

1.1 Problem definition

The Delft University of Technology employs a QoS routing testbed based on

the work of Avallone [7]. This testbed supports the use of various QoS routing

algorithms and has the ability to simulate traffics flows over a network. At this

moment, the testbed uses a centralized architecture, where a central component

(the Network Controller) has full knowledge of network state. For this reason, no

link-state update policies have been implemented into the network. In order

to support a more distributed routing setup, and to be able to compare the

performance of available link-state update policies, it is desirable to implement

support for link-state update policies in this network.

In this thesis project we will implement link-state update policies in the

QoS routing testbed. Also we will do a performance comparison between the

available link-state updates policies to see which policy performs best. We will

achieve these goals by completing the following subgoals:
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Chapter 1. Introduction

• Study existing literature on update policies and identify existing link-state

update policies.

• Study what network protocols are available to exchange link-state infor-

mation. Based on this information choose (or adapt) one of these proto-

cols to form the basis for our own implementation.

• Implement the network protocol to exchange link-state information in the

QoS router testbed.

• Implement the link-state update policies found in literature on top of the

developed network protocol.

• Verify the correctness of the network protocol and link-state update policy

implementations.

• Do performance measurements on the various policies (e.g., which policy

causes most update messages, which provides best accuracy).

• Integrate our implementation into the Network Controller of the testbed,

to make the link-state information available to the QoS routing algorithms

that are already available in the testbed.

1.2 Outline

The structure of this document is as follows. Chapter 2 discusses QoS measures

and link-state update policies in more detail. In Chapter 3, network protocols

available to exchange link-state information are discussed, and a software so-

lution is implemented that makes it possible to exchange available bandwidth

information through an OSPF network according to various policies. Verifica-

tion of the correctness of the software is done in Chapter 4. Chapter 5 compares

the performance of link-state update policies in several scenarios after which

we discuss these results in Chapter 6. We then conclude this thesis and discuss

some possibilities for future work in Chapter 7.

4



2
QoS measures and link-state update

policies

As explained in the previous chapter, most QoS routing algorithms depend on

accurate link-state information to provide good routes. The link-state informa-

tion consists of one or more QoS measures and has to be broadcasted through

the network to provide each QoS routing protocol instance with the necessary

information. In this chapter we discuss the available QoS measures in more de-

tail. We also discuss the link-state update policies available, which determine

when link-state is exchanged between nodes.

2.1 QoS measures

The Quality of Service of a certain connection can be classified using various

measures, e.g., bandwidth, delay, packet delay variation or packet loss. Depend-

ing on the needs of the application one or more of these measures must meet

some requirements. The QoS of a certain path is determined by combining the

measures of the individual links of the path. Some of the measures are additive

(e.g., delay), while others are multiplicative (e.g., packet loss) or min-max mea-

sures (e.g., available or used bandwidth) [7]. The most important measures will

be discussed here. Others exist (e.g., hop count or error rate), but those are either

not important to the end-user application (hop count) or can be incorporated

into the other measures (errors can be seen as packet loss, since the receiving
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Chapter 2. QoS measures and link-state update policies

host will discard packets with errors).

2.1.1 Bandwidth

The available bandwidth on a path is one of the most important QoS mea-

sures available. Insufficient bandwidth for a certain application will result in in-

creased delay, due to temporary queueing in intermediate hops, or packet loss,

due to queues overflowing.

The bandwidth necessary for a connection is normally specified by the rate

of the traffic (in bytes per second). Some standards, like IntServ, choose to add

a bucket depth in order to specify the burstiness of the traffic. This is because

some applications have a low average bandwidth requirement, but need to send

traffic bursts from time to time. The typical example is telephony: during

silences the application can save on bandwidth by not sending any packets,

resulting in less but burstier traffic.

Bandwidth is a minimum QoS measure: the link with the lowest available

bandwidth will be the bottleneck for the complete path.

2.1.2 Delay

Another important measure is end-to-end one-way delay, usually measured

in milliseconds. Realtime applications like video conferencing, telephony or

online gaming require a low delay in order to provide a good user experience.

The ITU-T Recommendation G.114 [19] recommends an end-to-end one-way

delay of less than 150 ms for interactive applications.

Delay consists of several components: propagation, serialization, queueing,

and processing delay. The propagation delay is the time it takes for the signal

to travel through the communication medium (e.g., fiber optic cable), and

accounts for the largest part of the delay in inter-network communication.

Depending on the distance between sender and receiver, and the medium used,

this delay can be anywhere from 1 to 200 ms. A typical value for the propagation

delay in fiber optic cable is 1 ms per 160 km [34].
The serialization delay is the time it takes to signal a packet to the medium.

Today’s fast communication channels have made this delay almost obsolete; a

1500 bytes packet is signalled in 12 µs when using a 1 Gbit/s link [34]. On slower

links the serialization delay can be of more influence in the total delay. For

instance, on a 1.544 Mbit/s DS-1 line it takes 7.7 ms to serialize a 1500 bytes

packet.

Queueing delay is incurred when a router receives multiple packets and has

to queue some of them while processing the other packets. When the buffer

6



2.1. QoS measures

is empty (i.e., the link is lightly loaded) or for high priority packets (which

get queued in front of the other packets), the queueing delay is at most the

serialization delay of one packet (the one that the router might be already

transmitting). On heavily loaded links, queueing delay can become a great part

of the total delay, depending on buffer size, link speed, packet priority and router

configuration.

Processing delay is the time it takes for all hosts on the path to process the

contents of the packet (e.g., checksum verification, routing decisions, packet

creation and interpretation). The typical router only needs a fraction of a mi-

crosecond for this processing [34]. Depending on the application and protocols

in use, the delay incurred for packet creation and interpretation on the send-

ing and receiving host can vary wildly. Since the application can determine the

packet creation and interpretation delay itself (by using different protocols or

algorithms) we will not further consider this delay.

Looking at the various delays, we see processing and serialization delays

are generally small and cannot be influenced by the network routing protocols.

Queueing and propagation delay are the important delay components to con-

sider when talking about QoS. On heavily loaded networks, where queueing de-

lays are high, certain packets should be given priority to provide the right QoS

level. On long-distance, international connections, propagation delays may be

high. Also, multiple paths may be available, each with their own propagation de-

lay. A QoS routing algorithm can choose between these paths, to provide each

flow with a delay that is within their QoS requirements.

Delay is an additive QoS measure: the total delay of a path is the delay of

the individual propagation, serialization, queueing and processing delay com-

ponents combined.

2.1.3 Packet delay variation

Packet delay variation (PDV), sometimes also called jitter, is another QoS mea-

sure of importance to certain application. Specified in more detail in RFC

3393 [15], PDV concerns the difference in delay between arriving packets of the

same flow. This difference can be measured in several ways, like averaging the

absolute value of all differences together, or by determining the variance. A high

PDV may also cause packets to be received out of order.

Most delay sensitive applications also depend on a low packet delay vari-

ation. Other applications, like video streaming, are able to cope with PDV by

using their buffers.

Depending on the unit and measurement method chosen, the packet delay

variation can be an additive QoS measure (ie., when a proper random variable

7
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describing the PDV can be constructed). But sometimes it is harder to determine

the PDV of a path from the PDV of the individual links. For instance, when the

absolute value of the variations is used, it is non-trivial to determine the PDV of

the path from its individual links.

2.1.4 Packet loss

Packet loss considers packets that get lost during transmission. This can occur

for various reasons, like congestion, packet corruption or signal degradation.

Packet loss is measured as the percentage of packets that get lost.

When packet loss is experienced, application performance suffers. TCP

connections will have to retransmit packets, which causes a delay because the

retransmission timer has to expire before a packet is retransmitted. UDP-based

applications, like video, audio and gaming applications, will miss some of their

data. The user will experience this as an interruption in the signal.

Packet loss is a multiplicative QoS measure: multiplying the percentage

of packets that arrive on individual links gives the percentage of packets that

arrive on the complete path. The measure can be converted to an additive QoS

measure by using the logarithm of the values.

2.2 Link-state update policies

Link-state update policies (LSUPs) consider the distribution of link-state infor-

mation (e.g., available bandwidth or delay) through the network. Most QoS rout-

ing algorithms base their routing decisions on the latest link-state information

available. Up-to-date information is therefore important in order to make sound

decisions. However, distributing link-state information through the network

places a load on the network and routers. A good tradeoff has to be found be-

tween the frequency of the updates (staleness of the information) and the load

on the network.

In literature, many link-state update policies have been proposed. Most of

these policies concern themselves with the available bandwidth measure, be-

cause it is the most fluctuating metric. Other QoS measures are generally more

stable over time, which makes the link-state update policy used less important.

For this reason, we will focus ourselves on the available bandwidth measure. We

will now discuss the policies for distributing available bandwidth information in

more detail.

8
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Figure 2.1 – Example of a periodic update policy with an interval of 15 seconds.

2.2.1 Periodic policy

When using a periodic policy, the link-state will be updated on a set interval.

With this policy, the exact overhead caused by the updates is known beforehand.

An important limitation of this policy is that network conditions might change

in a much smaller interval than the update interval, which will cause stale infor-

mation because a periodic policy is not adaptive to the traffic situation. Shaikh

et al. have shown that a periodic policy can cause excessive route flapping and

can perform worse than best effort routing [36]. Figure 2.1 gives an example of

a periodic policy with an interval of 15 seconds. The black line indicates the ac-

tual available bandwidth, while the red line indicates the broadcasted available

bandwidth value.

2.2.2 Threshold-based policies

Threshold-based policies update link-state when the available bandwidth

changes by a predefined amount. This change can be either an absolute value,

or a percentage of the last announced bandwidth. Figure 2.2 gives an example

of threshold-based policies.

Absolute change

With an absolute change policy, the available bandwidth information is updated

when the last announced value, B ′, differs from the current value, B , by a certain

threshold, ta . This leads to the following equation:
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Figure 2.2 – Example of an absolute change policy with a required change of

1.5 Mbit/s and an relative change policy with a required change of 20%. Note

that the relative change policy does not update on the initial change in available

bandwidth (which is less than 20%), but does update on the later, smaller change

in bandwidth (which is more than 20%).

ta ≤ |B − B ′| (2.1)

It is also possible to use a percentage, tp , of the capacity, C , instead of an

absolute value, yielding:

tp ≤
|B − B ′|

C
(2.2)

Ariza et al. have shown that using an absolute change policy causes excessive

updates and worse routing performance than other update policies [6]. Basu

and Riecke concluded an absolute change policy leads to more rejects with the

same processor utilization than more advanced link-state update algorithms [9].

Relative change

Instead of using the absolute change in available bandwidth, it is also possible

to look at the relative change, tr , compared with the previous update:

tr ≤
|B − B ′|

B ′
(2.3)

This has the advantage that the updates are send out more frequently when

available bandwidth on a link gets low. Ariza et al., Basu and Riecke, and Shaik et

10



2.2. Link-state update policies

al. all have shown a relative change policy leads to less updates than a periodic

policy and less blocking than periodic and absolute change policies [6, 9, 36].

2.2.3 Class-based policies

Class-based policies divide the bandwidth in classes and send out an update

when the available bandwidth passes a class boundary. In order to limit the

amount of updates when the available bandwidth fluctuates around a class

boundary, Apostolopoulos et al. have proposed a hysteresis mechanism where

an update is only send out when available bandwidth falls below the middle

value of the new class [4]. They also introduced the idea of sending a quantized

value in order to give better routing performance [3]. Another solution for

the excessive update problem is to only send an update when the available

bandwidth has passed more than one class boundary or to use a hold-down

timer (see Section 2.2.4).

Equal-sized classes

An equal-sized classes policy divides the capacity, C , of a link in Ne q equal-sized

classes:

�

0,
C

Ne q

�

,

�

C

Ne q
,

2C

Ne q

�

, . . . ,

�

(Ne q −1)C
Ne q

,C

�

(2.4)

Figure 2.3 gives an example of an equal-sized class-based update policy.

Since all classes have an equal size, this policy looks a lot like an absolute

change policy, and also has some of the same disadvantages. Yuan et al. have

shown that an equal-sized classes policy nevertheless can be a useful policy

since algorithms like safety-based routing [4] can take the fixed class size into

account [39].

Exponential-sized classes

An exponential-sized class-based LSUP uses geometrically increasing class

sizes. First, the size of the base class is determined using a base factor b (b < 1).

Next, the class boundaries can be determined using a growth factor f ( f > 1):

h

0,Cb
�

,
h

Cb , (1+ f )Cb
�

,
h

(1+ f )Cb , (1+ f + f 2)Cb
�

, . . . (2.5)

Figure 2.4 gives an example of an exponential-sized class-based update

policy. Due to the increasing class size the link-state information will be less

precise when more bandwidth is available. This is comparable with the relative

change policy. Apostolopoulous et al. have shown that an exponential-sized

11
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Figure 2.3 – Example of an equal-sized class-based update policy with Ne q = 4 on

a 10 Mbit/s link.

class-based policy achieves roughly similar routing performance as a relative

change policy [4].

2.2.4 Hold-down timer

In order to limit the number of updates and prevent excessive updates many

people have suggested implementing a hold-down timer on link-state updates.

Most routing protocols (e.g. BGP, OSPF, RIP) already implement a hold-down

timer to prevent route flapping and network instability. The same approach

can be used for LSUPs. When using a hold-down timer, after an update has

been sent, no updates will be send out for a certain amount of time. Yuan and

Zheng have shown that a hold-down timer introduces random imprecision in

the data [39].

2.2.5 Moving average

Instead of a hold-down timer, Lekovic and Van Mieghem suggest to use a moving

average [24]. The bandwidth utilization is smoothened by computing the mean

of several successive values, and using that mean value in the various update

policies. They show that using a moving average instead of a hold-down timer

leads to less updates, smaller update error and less blocking.
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3
Implementation of a link-state update

protocol

As we have seen in Chapter 2, various link-state update policies (LSUPs) have

been suggested in the literature. Most of these policies have either been judged

theoretically or using various simulation applications. Although some simula-

tions use extensive setups, emulating complete routers including their links in

software [5], real world experience is also necessary in order to compare the per-

formance of different LSUPs.

The current QoS router testbed at Delft University of Technology does not

have support for link-state updates. The testbed runs on Fedora Linux1 and uses

the Quagga2 OSPF implementation to provide the network with interior routing.

Also SNMP [14] services are available throughout the network. The testbed uses

a central node, the Network Controller (NC), that possesses the complete state

information of the network. In larger setups, this centralized approach might

not scale well enough. Also, traffic that is not explicitly managed by the NC is

currently invisible to the QoS routing process. For these reasons, and because

one of our research goals is to compare link-state update policies, we will extend

the current QoS router testbed with link-state updates. This implementation

should give the user the option to select between LSUPs and choose the various

parameters for the policies.

1 http://fedoraproject.org
2 http://www.quagga.net
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Chapter 3. Implementation of a link-state update protocol

For most QoS routing algorithms, complete link-state information on all

the links in the network is necessary. But without communicating with other

hosts, a host only knows the state of its own links, since measurements are done

locally. Because of this, a communication protocol is necessary to distribute

the link-state information throughout the network. To develop this protocol, we

will compare the features, advantages and disadvantages of existing protocols.

We will then implement one of these protocols in the testbed, or create a new

protocol if the current protocols do not suffice.

This chapter will first discuss the various protocols available to exchange

link-state information. Next, the protocol used for our implementation will be

determined and documented. We then discuss the link-state update library that

has been developed and the accompanying client application. We conclude by

explaining the integration of the library with the existing QoS router testbed.

3.1 Link-state update protocols

In Section 2.2 different link-state update policies have been discussed. However,

these policies alone are not enough to implement the exchange of link-state

information in a network. In order to exchange and distribute the information

throughout the network, a communication protocol has to be developed.

When it comes to monitoring link-state, both pull-based and push-based

protocols are available. With pull-based protocols, like the Simple Network

Management Protocol (SNMP) [14], clients can retrieve interface state informa-

tion on demand. With push-based protocols, new information is pushed (i.e.,

flooded) to the clients when it is available.

An advantage of the pull-based approach is that no flooding or distribution

protocol has to be developed, which saves development time. However, there

are some disadvantages to pull-based protocols. First of all, pull-based proto-

cols do not scale well in a distributed routing environment. The current QoS

router testbed implementation has a central Network Controller that handles

the QoS routing process. As long as this is the case, scalability will be fine be-

cause only this Network Controller needs to know the network state. However,

for various reasons (e.g. availability, performance) a distributed routing setup

can be desirable. In this case, the routers need to make QoS routing decisions

themselves, and thus need state information. To retrieve the state information

N nodes will have to poll N −1 nodes, leading to excessive network load.

An even more important disadvantage is that clients can only know the link-

state after explicitly asking for an update. This conflicts with link-state update

policies that are threshold or class-based. When using a pull-based protocol,
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we can therefore only implement a periodic update policy. Since the main goal

of our research is to implement and compare several different link-state update

policies, pull-based monitoring is not a viable option for our approach.

For that reason, we will now focus ourselves on existing push-based pro-

tocols. The possibilities and limitations of these protocols will be discussed in

more detail. In order to limit our search scope and guarantee a good integration

in the existing testbed, we will keep the current QoS router testbed implemen-

tation and its capabilities in mind during our search.

3.1.1 OSPF

Open Shortest Path First (OSPF) [29] is an interior, link-state routing protocol for

IPv4 networks. Since OSPF is already concerned with communicating the link-

state updates to the routers in the network, it seems like a logical choice to add

the QoS measures to these updates.

OSPF router link-state advertisements (LSAs) contain an entry for each

OSPF-enabled interface of a router. Every interface defines a cost metric, spec-

ifying the administrative cost of the link. One of the possibilities for a link-state

update protocol is to use the cost metric to communicate a QoS measure. How-

ever, this approach has some important disadvantages. First of all, only one QoS

measure can be communicated since there is only one metric field. This means

no multi-constraint QoS routing can be done. Also, when reusing the cost metric

this way, we lose the existing (administrative) meaning of the cost metric. Non-

QoS aware routers use the same metric, which might lead to strange routing

behavior when QoS aware routers are combined with non-QoS aware routers in

the same network. Because each OSPF router sends only one router LSA that

contains all of its links in a certain area, a change in one of the link states will

send out an update for all links. This causes unnecessary network traffic. For

these reasons using the administrative cost metric of the OSPF protocol is not a

good solution.

3.1.2 QOSPF

In the original OSPF proposal [28], each link also defined several Type of Service

(TOS) metrics. The idea of these metrics was to be able to provide a different

link cost for traffic carrying a certain value in the TOS field of the IP header.

Each OSPF router would then run a separate shortest path calculation and

keep a different routing table for each TOS value. Since RFC2474 [30] defined

a Differentiated Services (DS) field in the Internet Protocol, replacing the TOS

field, the TOS metrics were deprecated in the final OSPF standard, but the fields

17



Chapter 3. Implementation of a link-state update protocol

are still present. Also, the TOS-bit, which indicates if a router supports TOS

metrics, is still part of the OSPF Options field.

An option for a link-state update protocol would be to reuse the TOS fields

in the OSPF protocol, since these are currently not used. The OSPF extension for

QoS routing mechanisms (QOSPF), defined in RFC2676 [5], is an experimental

proposal for reusing the TOS-bit as a QoS-bit. Also, the TOS metrics in the OSPF

router LSAs are reused to communicate available bandwidth and link delay

information.

QOSPF tries to take care of backwards compatibility with routers supporting

TOS. This is done by encoding the QoS metrics in a such a way, that routers

that still support the old OSPF TOS specification will route minimum delay or

maximize throughput traffic over links with the lowest delay or highest available

bandwidth. Incompatibilities may still arise though, since the TOS metrics are

normally not used in practice because they are deprecated. Quagga for instance,

handles TOS metrics incorrectly in the user interface code, which might lead

to administrative issues, because it is unable to display LSAs with TOS metrics

correctly in the administrative interface (vtysh).

Since QOSPF information is sent in the router LSAs, a change in one of

the metrics of one of the links will cause an update of all metrics of all links

of a certain router. This may cause unnecessary traffic or route recalculations,

leading to a higher overall load on the network.

In the RFC only the available bandwidth and delay metrics were specified,

but since the TOS field supports 32 different types, more QoS measures (e.g.,

jitter or reliability) can be specified in the future.

3.1.3 OSPF-TE

Traffic Engineering extensions to OSPF (OSPF-TE), defined in RFC3630 [23],
provide exchange of QoS information over an OSPF network. OSPF-TE uses

area-local opaque LSAs [10] to distribute the information through the network.

For this reason, OSPF-TE only functions within an OSPF area and autonomous

systems spanning multiple areas are not supported.

OSPF-TE defines an area-local opaque LSA type, the Traffic Engineering

LSA (TE LSA), with identifier 1, which carries the TE information through the

network. See Figure 3.1 for an example of an LSA header. The information is

carried in Type-Length-Value (TLV) triplets for extensibility. Each TLV starts

with a two octets type field, followed by a two octets length field. The length field

specifies the length of the value part of the TLV, without padding, in octets. After

the type and length the value portion follows, padded to four-octet alignment.

An example of a TLV can be seen in Figure 3.2.
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LS age Options
0 1 4 5 6 7
0

0 1
1 3

2 3 8 9 0 1 4 5 6 72 3 8 9 0 1 4 5 6 72 3 8 9
2

10 (LSA Type)
1 (Opaque Type) Instance

Advertising Router
LS sequence number

LS checksum Length

bit

Figure 3.1 – LSA header layout for an OSPF-TE LSA.

Type Length
0 1 4 5 6 7
0

0 1
1 3

2 3 8 9 0 1 4 5 6 72 3 8 9 0 1 4 5 6 72 3 8 9
2

Value...

bit

Figure 3.2 – Packet layout of a Type-Length-Value triplet.

Two TLV types have been defined, along with several sub-TLV types. The

first TLV type is the Router Address TLV, which carries a stable IP address of the

advertising router (e.g., a local loopback address). A Router Address TLV should

be present in exactly one TE LSA originated by a router3.

The second TLV type is the Link TLV. A Link TLV consists of various sub-TLVs

and describes a link of a router. Each TE LSA should only carry one Link TLV, in

order to make it possible to update the link-state of an individual link without

updating the state of all other links.

Each Link TLV has two mandatory Link sub-TLVs: Link Type and Link ID.

All other sub-TLVs are optional. The Link Type sub-TLV specifies if the link is a

point-to-point or multi-access link. The Link ID sub-TLV specifies the Router

ID of the neighbor (for point-to-point links) or the interface address of the

designated router (for multi-access links)4.

The other sub-TLVs describe local and remote interface addresses, an ad-

ministrative TE metric, the maximum bandwidth, maximum reservable band-

width and unreserved bandwidth of a link and the administrative group.

3 Note that Quagga implements this incorrectly and sends the Router Address TLV in every

TE LSA. Since this only generates some unnecessary data, it does not cause problems in

practice.
4 Note that Quagga implements this incorrectly and always sends the network address of a

link as Link ID. Since we do not need the designated router address in our implementation,

this causes no problems.
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RFC5786 [1] defines an additional TLV type, the Node Attribute TLV, which

contains all local addresses of a node not available through the Router Address

TLV or Link TLVs.

3.1.4 OSPF-xTE

The Experimental Extension to OSPF for Traffic Engineering (OSPF-xTE), de-

fined in RFC4973 [37], has been developed as a successor of OSPF-TE. Currently,

the IETF OSPF working group is at the position that, although the OSPF-xTE

proposal has some useful properties, OSPF-TE is sufficient for the traffic engi-

neering needs of the community. We will nevertheless describe OSPF-xTE here,

to give a complete overview on the OSPF Traffic Engineering extensions.

Unlike the Opaque LSA approach used by OSPF-TE, OSPF-xTE uses a new

set of OSPF LSAs to distribute TE information. A separate TE link-state database

(LSDB) is used, whereas OSPF-TE uses the same LSDB for TE and non-TE

traffic. OSPF-xTE also supports multiple areas and can thus be used in larger

autonomous systems. The capability advertisements specified in RFC4970 [26]
are used to announce the OSPF-xTE support of a router.

When using OSPF-TE every node receives all link-state update traffic be-

cause area-local Opaque LSAs are used. OSPF-xTE only sends update traffic to

TE-capable nodes, limiting useless traffic to non-TE capable nodes. Incremen-

tal updates of the LSDB are supported through separate incremental LSA types.

It is also possible to specify a link as carrying only TE or non-TE traffic.

The above reasons make clear that OSPF-xTE certainly has some advantages

over OSPF-TE. However, in the end, the exchanged TE information is the same.

OSPF-xTE is more cumbersome to implement, because of the new LSA types

and the separate LSDB.

3.1.5 Other protocols

Some other protocols that are relevant in the context of traffic engineering have

been defined. RFC5329 [20] defines IPv6 support for OSPF-TE. The RFC expands

OSPF-TE with some new sub-TLVs and a new TLV that define IPv6 versions of

their IPv4 equivalents. Since our QoS router testbed is operating on IPv4, these

additions are not necessary at this time.

RFC5305 [25] specifies TE extensions for IS-IS [31], another common interior

routing protocol. The features of these extensions mirror those of OSPF-TE.

Since the QoS router testbed already uses OSPF and the IS-IS extensions do not

provide any new features compared to OSPF-TE, we have not further considered

the IS-IS TE extensions.
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3.2 Our own link-state update protocol

The goal of our project is to extend the QoS router testbed with the exchange of

QoS measure information using various link-state update policies. The current

testbed already uses OSPF for interior routing. We can either choose to extend

this OSPF implementation, or create a protocol stack from scratch. If we choose

to create an own protocol stack, we will not be compatible with any existing

implementations. Also, we will have to do all the work ourselves (e.g., low-

level packet creation and communication, flooding of updates, link monitoring,

determining when to send an update). On the other hand, using the Quagga

OSPF-API, it is possible to extend the current OSPF implementation. We can

then reuse the existing OSPF flooding mechanisms, and only have to cater for

the exact packet contents. This will save us a lot of work. Since OSPF opaque

LSAs give us the opportunity to fully define the data we want to transmit, there

are no real disadvantages to this approach. For these reasons, extending the

current OSPF implementation seems like the best solution. Next, we will have

to define what will be the exact contents of the packets we exchange.

Looking at the metrics that have to be exchanged, QOSPF is the only solution

capable of distributing available bandwidth and delay information. Unfortu-

nately QOSPF requires changes in the core OSPF protocol and implementation.

This might introduce incompatibilities with existing routers and requires major

changes in the complex core Quagga OSPF code.

Implementing OSPF-xTE would require some extension of the protocol with

QoS metric information. Next to this, various new LSA types would have to be

implemented in the Quagga code. These changes would be both complex and

extensive due to the amount of new LSA types and the complexity of the Quagga

code. Also, OSPF-xTE is not an industry standard, and probably never will be

since the IETF OSPF WG chose not to enter the standards track.

OSPF-TE on the other hand is an IETF standard and implemented in most

router software, including Quagga. It is easily extendible with new Link sub-

TLVs to include available bandwidth or delay information. Due to the use of

Opaque LSAs, the implementations of the flooding mechanism and the packet

creation and interpretation are uncoupled.

In the end, we chose to implement a new protocol, which is an extension

of the current OSPF-TE protocol. This way, we can develop our implementa-

tion separately from the Quagga core code and do not require any changes in

the Quagga code. Communication with the Quagga core can be done through

the OSPF-API. We could also have chosen to extend the Quagga OSPF-TE im-

plementation, but then we would have had to change the Quagga codebase

directly, which ties our implementation to a specific Quagga version. Experi-
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LS age Options
0 1 4 5 6 7
0

0 1
1 3

2 3 8 9 0 1 4 5 6 72 3 8 9 0 1 4 5 6 72 3 8 9
2

10 (LSA Type)
128 (Opaque Type) Instance

Advertising Router
LS sequence number

LS checksum 48 (Length)

1 (Type, Link Type sub-TLV) 1 (Length)
Link Type

2 (Type, Link ID sub-TLV) 4 (Length)
Link ID

32768 (Type, Available Bandwidth sub-TLV) 4 (Length)
Available Bandwidth

2 (Type, Link TLV) 24 (Length)

Padding

bit

Figure 3.3 – Link-state protocol packet.

mental opaque type 128 was chosen as identifier for the new protocol and ex-

perimental Link sub-TLV type 32768 was chosen for exchange of available band-

width information. Other new sub-TLVs can be added in the future, for exchange

of other QoS measures like delay or jitter information.

Only Link TLVs are exchanged and each Link TLV has the same required

sub-TLVs, Link Type and Link ID, as in the original OSPF-TE protocol. The new

Available Bandwidth sub-TLV contains a 4 octets IEEE single precision float [18]
as the value part, which indicates the available bandwidth on a link in bytes per

second. The exact packet layout can be seen in Figure 3.3.

3.3 Implementation

In Chapter 2, we described the available link-state update policies. In the

first part of this chapter, we created a network protocol to distribute link-state

updates. We will now combine this research to implement link-state updates in

the QoS router testbed. Several choices were made during the implementation.

We will first describe the global choices we made (e.g., chosen programming

language), after which the various parts of the implementation will be described

in more detail. Together with the source code documentation, it should be

possible to understand and improve the code further in the future.

This solution was developed in the C programming language [2]. C was

chosen because Quagga is written in C, the OSPF-API is available in C, and the

QoS router testbed is written in C++. Using C, it is little effort to integrate

with the existing infrastructure of the QoS router testbed. Also, the low-level
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memory access possibilities of C make it easy to compose network packets and

implement a network protocol.

All code has been documented using Doxygen5-style comments. Using the

Doxygen program it is possible to generate documentation pages in several

formats that describe all functions and files of the application. This is similar

to the more well-known Javadoc application for the Java platform.

Multiple programming paradigms exist, like procedural, object-oriented

and functional programming. Each paradigm has its own advantages and draw-

backs, which we will not fully describe here, but it is well known that the use

of procedural languages, like C, can easily lead to spaghetti code, which leads to

applications that are hard to maintain and improve. Although C is used as the

language for our applications, a more object-oriented approach is possible. In

that case each file should be handled as a separate unit, and any object instance

related data (e.g., interface information) should be passed with a pointer to a

struct. Private methods are possible by defining the corresponding procedures

as being static, which makes them inaccessible from outside the file scope. We

chose this approach to keep the code clear and maintainable.

The application can be split into several parts. First, a library was developed

that can be used by other programs to provide link-state updates in a Quagga

OSPF powered network. This library is the largest part of the work, and takes

care of both the implementation of the link-state update policies as well as the

implementation of the network protocol and the communication with Quagga.

To use the developed library, a command-line application and an extension

to the Network Controller of the QoS router testbed were developed. Using the

application or the extension, the library can be initialized and activated to send

and receive link-state updates. Figure 3.4 gives an overview of the applications

and their components. The developed library, application and extension will

now be discussed in more detail, describing their possibilities, architecture and

components.

3.3.1 Link-state update library

The link-state update library takes care of everything necessary to distribute

link-state updates through the network. This includes the link-state update pol-

icy algorithms, the network protocol used to distribute the updates, measuring

the bandwidth currently available and communication with Quagga. The library

consists of five parts: the library interface, communication with the OSPF-API,

interface management, packet creation, and logging. A global overview of the

5 http://www.doxygen.org
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Figure 3.4 – Library and application architecture. The library is shown in green, the

Quagga components are shown in orange and the user applications are shown in

yellow.

different parts of the library is given in Figure 3.4. Every part of the library will

now be discussed separately.

Library interface

The interface of the library, which is used by other applications to communicate

with the library, is defined in libospfteclient.h. Some additional methods

are defined in interface.h. Applications can include these header files and

link the library to be able to read and transmit link-state information. All non-

static method names are prefixed with ospftecl_ to prevent name clashes.

An application begins by calling various setter functions in the library, to

define the link-state update policy parameters or configure logging. It will then
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call ospftecl_init() which sets up internal data structures and connects to

the OSPF-API. After connecting the application can register various callbacks.

These callbacks will be called by the library when a certain event happens. The

full list of callbacks available is:

• Callback on receipt of a new OSPF-TE LSA.

• Callback on deletion of an OSPF-TE LSA from the link-state database.

• Callback on change in available bandwidth of an interface (by OSPF Link

ID).

• Callback on change in available bandwidth of an interface (by Link Ad-

dress).

The interfaces for which link-state updates should be transmitted should

be defined by calling ospftecl_add_interface(). Finally, the application

calls ospftecl_run() to start the processing of packets and monitoring of

link-state. This method enters a loop, reading and writing network packets,

and never returns. Figure 3.5 contains a sequence diagram describing how

applications can use the library.

Communication with the OSPF-API

The Quagga OSPF-API6 provides the possibility to communicate with Quagga

through a socket to read the OSPF link-state database and send Opaque LSAs.

The API is included in Quagga when the --enabled-opaque-lsa flag is given

during the Quagga compilation process, which is true for most binary Quagga

distributions. The API can then be enabled by giving the -a flag as a startup

parameter to the ospfd process.

Unfortunately, there is not a lot of documentation on the API available.

In the end we resorted to reading the OSPF-API implementation source code

to understand the API. ospf_apiclient.h contains the various API func-

tions. The basic idea is to connect to the API, register some callbacks for asyn-

chronous messages, sync the link-state database, register an opaque type, and

start a read loop. These function calls can be seen in ospftecl_init() in

libospfteclient.c. All communication with the OSPF-API is done in this

file. Figure 3.6 shows the exact sequence of function calls made to the OSPF-

API.

6 http://wiki.quagga.net/index.php/Main/OspfApi
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Application Library

ospftecl_set_*()

ospftecl_init()

ospftecl_set_te_lsa_update_cb()

ospftecl_run()

Callback

ospftecl_set_te_lsa_delete_cb()

ospftecl_set_av_bw_cb()

Incoming updates

ospftecl_add_interface()

Figure 3.5 – Sequence diagram of communication between applications and the

developed library. First, various setters are called that configure the library. Next,

the library is initialized, callbacks are set and interfaces are added. Finally, the run

loop is called, which calls the callbacks when new packets arrive.
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Figure 3.6 – Sequence diagram of communication with the Quagga OSPF-API. Both

the initialization, the sequence for incoming updates (event/select-based) and the

sequence for outgoing updates (timer-based) are shown.
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Interface management

All interface information is stored in a linked list, see

struct ospftecl_interface_list in interface.h. This list contains

information like the name and IP of the interfaces, their maximum bandwidth,

their interface state history and the last flooded value. Management of this list

is done by the methods available in interface.c.

The available bandwidth of an interface is determined by reading

/proc/net/dev. This file, provided by the Linux kernel, provides a counter

for incoming and outgoing traffic on interfaces. By comparing the current

and previous value of the counter, and the elapsed time, the current outgoing

traffic rate can be calculated. Together with the configured maximum band-

width, the currently available bandwidth can then be calculated by the method

ospftecl_get_available_bandwidth().

Since the update protocol requires specification of the Link ID, the IDs from

the LSDB are retrieved and cached by the interface management code. This

makes it possible to lookup a Link ID by local address and thus send out the

correct ID in updates.

Packet creation

Packet creation is handled in avbwtlv.c. Only Link TLVs containing a Link ID,

Link Type and Available Bandwidth sub-TLV have to be created. The LSA head-

ers are created by the OSPF-API. The method ospftecl_build_link_tlv()
first clears the given memory. Next it sets the TLV header and then creates the

sub-TLVs. In this process all values are converted to network byte order, which

is big-endian in IP networks [32].

Logging

The library provides the option to log the available bandwidth history for further

analysis. This logging is done to a round-robin database, using RRDTool7, or

to a comma-separated values (CSV) file. Both the last flooded value as well

as the actual value are logged to make it possible to compare the performance

of various link-state update policies. RRDTool provides options to graph and

analyze the data.

Integration with RRDTool is provided through wrapper methods in

rrdwrap.c. The methods in this file take care of invoking the RRDTool library

with the arguments in the right format.

7 http://www.mrtg.org/rrdtool/
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3.3.2 Monitoring and update daemon

To actually use the library, some application needs to include it, set the options

and call the execute loop. A small application was developed that exposes all

possibilities of the library as a simple command-line program. This application

makes it possible to debug and test the library outside of the QoS router testbed

(only a Quagga ospfd installation is required). Also, the application is used in

the actual testbed integration, more information on that integration is given

in the next section. This application, of which the sources are available in

ospfteclient.c, exposes all options of the library through a command-line

interface. All possible options can be retrieved by starting the program with the

-h parameter.

OSPF-TE integration

The library needs to know what interfaces it should monitor, and for this reason

interfaces have to be defined by specifying their local IP address and maximum

bandwidth on the command-line. Since this would be a tedious task in larger

networks, it is also possible to configure the interfaces dynamically using the

OSPF-TE configuration of the local interfaces.

To be able to use OSPF-TE to configure our library, we need the local IP ad-

dress and maximum bandwidth of an interface. In the Quagga implementation

of OSPF-TE, the local address sub-TLV has not been implemented. We wrote a

small patch for Quagga that adds local address support to their OSPF-TE imple-

mentation. Since the maximum bandwidth sub-TLV was already implemented

in Quagga, we can now use the OSPF-TE LSAs to configure the network inter-

faces in our library.

3.3.3 QoS router testbed integration

To test the QoS routing protocols available, a QoS router testbed is available.

This testbed has been extended to make it possible for QoS routing algorithms

to take advantage of the link-state information distributed by our library. Due to

our extension, the actual available bandwidth information is now available for

QoS routing algorithms in a list inside the Network Controller, which determines

the routing in the QoS router testbed. Actually using this information in the QoS

routing algorithms was left for future research.

Before describing how we integrated the link-state update library in the

testbed, we will first describe the layout and components of the QoS router

testbed. A full description of the testbed is available in the work of Avallone [7].
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Figure 3.7 – QoS router testbed architecture.

Testbed architecture

Figure 3.7 gives an overview of the QoS router testbed architecture. The testbed

uses a centralized approach, where the QoS router components like the Network

Controller or Service Manager only have one instance in the network. All com-

munication with the hosts and routers is done using rexec, a remote execution

client. The various parts that can be distinguished in the architecture are:

Network Controller Makes routing decisions and has full knowledge of the

network. Provides flow admission services and coordinates between the Service

and LSP Manager.

Service Manager Receives requests for QoS flows from the hosts and commu-

nicates the requests to the Network Controller. When a flow is admitted by the

Network Controller it will send this acknowledgement to the requesting host.

LSP Manager Sets up Label Switched Paths (LSPs) on request of the Network

Controller. Communicates with the (Linux based) routers and hosts to setup and

tear down LSPs and provide the traffic flows with their respective MPLS labels.

Topology Discovery Discovers the topology of the network using SNMP and

communicates that topology to the Network Controller.
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LER Label Edge Routers which provide the routing of QoS flows over the net-

work after a path has been setup by the LSP Manager.

Host End-user clients that request QoS flows at the Service Manager and send

and receive application traffic.

The Network Controller (NC) and Service Manager (SM) usually run on the

same host in the network, which is one of the LERs. To setup a flow, a host

contacts the SM, which will send this request to the NC. The NC then runs its

configured routing algorithm to determine if a path is available for the requested

flow, and will inform the LSP Manager if the flow is available. The LSP Manager

will setup the path, after which the NC will acknowledge the flow to the SM,

which will communicate this acknowledgement to the host.

Changes made for testbed integration

For our integration, the NC needs the available bandwidth information from

the LERs. This is because the NC runs the routing algorithms and the LERs have

the interfaces that need to be monitored. The LSP Manager takes care of the

communication with the LERs, so in order to provide link-state updates in the

network, both the NC and LSP Manager will have to be extended. Figure 3.8

shows how the various components work together to provide link-state updates

in the network. We will now describe this figure in more detail.

First, the NC connects directly to its local Quagga installation using our

library and sets the requested LSUP parameters. The local Quagga installation is

available since the NC runs on one of the LERs. It will also register a callback that

saves the available bandwidth information in a list. Access to the list is protected

by a mutex to provide thread-safety, since the library callbacks will be done in a

separate thread.

Next the NC will loop through the list of interfaces available in the network.

For local interfaces it will add the interface using the library call. For interfaces

on other hosts it will send an INITCAPmessage to the LSP Manager, which starts

the command-line client on the host to monitor the interfaces and send out

updates. The format of this INITCAP message is as follows:

INITCAP <interface ip> <interface speed in bytes/s> ...
<interface ip> <interface speed in bytes/s>
<other arguments for command-line program>

After this setup phase, the NC will create a new thread using pthreads and

call ospftecl_run(). This new thread will then receive available bandwidth
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Figure 3.8 – Interaction between the Network Controller, local copy of the link-

state update library, the LSP Manager and the command-line client on the Label

Edge Routers.
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updates and invoke the callback on each update, which stores the available

bandwidth in the list.

Integration of the available bandwidth information in the QoS routing algo-

rithms is left for future work. We have focussed on implementing the LSUPs and

making the information available to the NC.
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4
Verification of the software

Verification of the software is an important step. Without verification it would

not be possible to trust the measurement results of the developed tools. For

this reason, unit tests have been implemented. Also, an extensive suite of real-

life tests was run. In this chapter we first discuss the performance criteria for

our software. We then proceed to our unit testing setup, after which we define

various test scenarios for real-life tests. In the end we present the results of our

verification process.

4.1 Requirements and performance criteria

Before we are able to test our software, the exact requirements and performance

criteria for the software have to be determined. Several software development

methodologies exist. With classic methodologies, like the waterfall model, re-

quirements of the software are determined upfront. In our case, an agile model

was used, where requirements (or user stories) and new features were added

during multiple development cycles of the software. For instance, the back-

ground daemon code and the option to specify IP and bandwidth pairs on the

command-line were not added until they were necessary for the integration with

the Network Controller. Also, the various update policies were implemented and

extended as new policies were ‘discovered’ in literature. For this reason, we will

now first give an overview of all the user stories that were implemented, and the

exact requirements and performance criteria the software must meet in order to
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be able to do reliable tests comparing link-state update policies.

The software implements five link-state update policies: timer-based up-

dates, updates on an absolute change in available bandwidth, updates on an

relative change in available bandwidth, equal sized class-based updates, and

exponential sized class-based updates. Each of these policies has to be tested

for correct functionality. For a description of the functionality we refer to Chap-

ter 3. Every policy has its own set of possible parameters. The list of parameters

is given in Table 4.1 and the specific parameters of the policies are detailed in

Table 4.2.

Parameter description

C Check interval in seconds

H Holddown timer in seconds

M Moving average over last n measurements

A Absolute amount of change required before broadcast (in bits/s)

R Relative amount of change required before broadcast (in %)

D Number of class boundaries to cross before broadcast

N Number of classes

B Base factor to determine class boundaries

G Growth factor to determine class boundaries

Table 4.1 – Parameters available for the link-state update policies.

Link-state update policy C H M A R D N B G

Periodic • • •

Absolute change • • • •

Relative change • • • •

Equal classes • • • • •

Exponential classes • • • • • •

Table 4.2 – Parameters used by the link-state update policies. The letter coding can

be found in Table 4.1.

Apart from update policies there are also some other features in the software

that have to be verified, including logging, interface management and general

application behavior. This concerns the following features:

• Daemonize after startup.

• Automatic interface management using OSPF-TE.
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• Manual interface management by specifying IP/bandwidth pairs on the

command-line.

• Log data to a round robin database.

• Log data to CSV files.

• Show help text.

Next to the features of the program we also have some performance criteria.

These criteria do not reflect actual functional requirements, but merely define

the technical specifications the application should adhere to. We can define the

following criteria:

• Stability: the application should not crash, dump core or have any mem-

ory leaks.

• Reliability: link-state updates should be transmitted reliably and should

not be lost. The link-state should always be the same on all hosts (after

the flooding time), and no updates may be lost. Since OSPF is used

as data carrier, and the OSPF specification specifies a reliable flooding

algorithm, we can assume this criteria is met (by assuming the correctness

of Quagga).

• Speed: update flooding should not take a significant longer time than

normal routing protocol (OSPF) updates. This criteria is met since OSPF

LSAs are used as the flooding mechanism. Shaikh and Greenberg have

shown LSA processing and distribution takes about 30 to 40 milliseconds

on a common router [35], so updates should generally be available within

a second even on large OSPF networks.

• Accuracy: the flooded information should be sufficiently accurate to form

the basis for routing decisions. In practice this means that flooded avail-

able bandwidth numbers should not differ significantly (> 1%) from their

actual values. This way, small rounding and floating point errors are per-

mitted.

Now the requirements of the application have been defined, we can define

the way the application is tested. First, the application will be unit tested, to con-

firm the correct working of the basic functionality of the program. Afterwards,

we will define the test scenarios that we will run in our lab.
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4.2 Unit testing

Unit testing tests the functionality of the smallest building blocks of programs:

units. When using the programming language C [2], these units generally refer to

the various procedures of the program. By applying unit testing, we can verify

the correctness of separate parts of the program, and locate errors faster and

easier. Since unit testing only tests small parts of the program at a time, more

testing is necessary to ensure correctness of the complete program. For that

reason we will also run the program in various real-life scenarios later on.

In order to assist unit testing, several frameworks have been developed. The

most well known framework is JUnit for Java1. Also for the C programming lan-

guage unit testing frameworks have been developed. We compared the available

frameworks on their features and impact on the overall project source. Some

frameworks, like Check2, have extensive features, such as segmentation fault

detection, various output methods and fixtures. Unfortunately these features

come with a downside. Check is quite a large package, needs a separate library

and is tightly integrated with autotools, a build system that is not used by our

application. Since our application is quite small, the number of test cases is lim-

ited, and a full-fledged framework like Check seems overkill. The same seemed

true for CUnit3.

For this reason we started looking at smaller frameworks. CuTest4 proved to

be a simple and concise framework. It does not provide features like segmenta-

tion fault detection, but those are not really necessary: it is also possible to test

the return code of the test suite to detect such an error. CuTest consists of one

source file and one header file. Tests can be created together with the source of

the application, or in a separate source file. With a small shell script it is possi-

ble to automatically find the test cases in the source code and write a wrapper

application for them. The application shows the progress of the test suite and

reports any faults.

An other option would have been to not use a framework at all, but just

define some preprocessor macros. This would have been possible, but then

we would have probably ended up reproducing something like CuTest, which

is essentially the same: some small assertion procedures and preprocessor

macros.

In the end 15 unit tests were implemented. Not all functionality of the ap-

plication could be unit tested. For instance, parts of the application concerned

1 http://junit.sourceforce.net
2 http://check.sourceforge.net
3 http://cunit.sourceforge.net
4 http://cutest.sourceforge.net
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with communication with Quagga and the rest of the network cannot be unit

tested since we would then be testing the complete functionality of Quagga in-

stead of just a small unit of our application. In fully object-oriented languages,

mockups would be used to overcome this problem, but the C programming lan-

guage does not offer such features in an easy way.

The tests that were implemented test the following features:

• Interface management (adding and removing of interfaces).

• Available bandwidth calculations.

• Determining bandwidth in use.

• Calculating the current bandwidth class in case of class-based update

mode.

• Mapping of interface addresses to interface names.

• The various update policies (when to update or not to update).

• Memory allocation and reallocation.

To check for memory leaks and other programming errors all tests were run

using the tool Valgrind5. Valgrind detects memory leaks and incorrect use of

pointers and prints a report after the program completes. No memory leaks or

other problems were found.

As said, not all parts of the application can be tested using unit testing.

To test the complete functionality of the application, some real-life tests are

necessary. In the next sections these tests will be defined and executed.

4.3 Test scenarios

In order to test the functionality of the application, several test scenarios were

defined. Every link-state update policy is tested at least twice, with different

parameters (except for the periodic, timer based update policy, which does not

have any parameters). That way an incorrect implementation of the parameter

processing or the algoritm should come to light. Also various check intervals and

holddown timers are tested, and some experimenting is done with the moving

average parameter. The exact parameters used are shown in Table 4.3. When

choosing the parameters, equivalence partitioning was used. This is a standard

software testing technique, where the input is divided into equal classes to limit

5 http://valgrind.org/
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# LSUP Check Holddown Parameters

1 Periodic 1 5 -

2 Periodic 1 5 Average: 10

3 Periodic 5 20 -

4 Absolute 1 5 Threshold: 1,000,000

5 Absolute 1 5 Threshold: 3,000,000

6 Relative 1 5 Threshold: 10%

7 Relative 1 5 Threshold: 30%

8 Equal class 1 5 Nr. of classes: 5

9 Equal class 1 5 Nr. of classes: 5; Change required: 3

10 Equal class 1 5 Nr. of classes: 15

11 Exp. class 1 5 Base fact.: 0.1; Growth fact.: 1.2

12 Exp. class 1 5 Base fact.: 0.2; Growth fact.: 1.4

Table 4.3 – Link-state update policy parameters for software verification. Check

indicates the traffic measurement interval in seconds. Holddown indicates the

holddown timer in seconds.

the number of test cases. For instance, by testing a check timer of 1 second,

and a check timer of 5 seconds for the periodic policy, we cover all check timers

values for all policies, since the check timer behavior is not policy specific.

The network used for the tests is a simple hub-and-spoke network, shown in

Figure 4.1. The network has two groups of two end nodes, and two core nodes.

The capacity of the links on the path between nodes 1 and 2 is 100 Mbit/s, while

the links on the path between nodes 5 and 6 have 10 Mbit/s capacity. This dif-

ference is to test if the application can handle multiple link speeds correctly.

During the tests data is generated using the D-ITG traffic generator [11]. Some

adjustments to the D-ITG code were necessary to solve bugs in the multithread-

ing code. Data flows from node 1 over 3 to 2, and from 5 over 4 to 6. The amount

of data changes every 15 seconds. For the first flow traffic rates will be 0, 5, 15,

30, 80, 90, 80, 30, 15, 5 and 0 Mbit/s. This way, the behavior of the application

on narrowing and widening links is tested. For the second flow, which is on a

10 Mbit/s link, we will use the following traffic rates: 0, 0.5, 1.5, 3, 8, 9, 8, 3, 1.5,

0.5 and 0 Mbit/s. Because both small and large steps in available bandwidth are

made, all update policies will be triggered to send an update. D-ITG parameters

for both flows can be found in Tables 4.4 and 4.5. A constant packet size of 1

Kbyte (958 bytes of data, 8 bytes of UDP headers, 20 bytes of TCP headers and 14

bytes of Ethernet headers) is used, combined with a changing packet rate. The

flows are modelled in D-ITG by sending multiple flows after each other, where
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Figure 4.1 – Verification network setup. The green arrows indicate the traffic flow

of the generated traffic.

Traffic (Mbit/s) Packets/s Packet size Duration (ms)

5 625 958 15,000

15 1,875 958 15,000

30 3,750 958 15,000

80 10,000 958 15,000

90 11,250 958 15,000

80 10,000 958 15,000

30 3,750 958 15,000

15 1,875 958 15,000

5 625 958 15,000

Table 4.4 – D-ITG parameters for 100 Mbit/s links.

each flow has a duration of 15 seconds. The first flow starts immediately, the

second flow starts after 15 seconds delay, et cetera.

4.4 Results

The results of the twelve measurement runs can be seen in Figure 4.2. The

graphs show the actual and broadcasted available bandwidth (in Mbit/s) on the

100 Mbit/s link from node 3 to 2 and on the 10 Mbit/s link from node 4 to 6. The

solid black line indicates the actual available bandwidth on the link, while the

red and green lines indicate the broadcasted available bandwidth.

All graphs were manually verified for correctness. This was done by checking

the actual available bandwidth history with the algorithm descriptions of Chap-
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Traffic (Mbit/s) Packets/s Packet size Duration (ms)

0.5 63 958 15,000

1.5 188 958 15,000

3 375 958 15,000

8 100 958 15,000

9 1,125 958 15,000

8 1,000 958 15,000

3 375 958 15,000

1.5 188 958 15,000

0.5 63 958 15,000

Table 4.5 – D-ITG parameters for 10 Mbit/s links.

ter 2. For instance, in scenario 6 (relative policy, threshold 10%), we know the

broadcasted value should not change after 5 seconds (change from 100 Mbit/s
to 95 Mbit/s available bandwidth, which is 5%), but should change after 20 sec-

onds (when the available bandwidth changes to 85 Mbit/s, a difference of 15 %).

Looking at Figure 4.2e we can see this indeed happens. We can do this verifi-

cation for every algorithm and all expected broadcasts of (changes in) available

bandwidth.

Some of the policies required inspection of the logfiles to see if updates were

sent at the right moments. For instance, scenario 1 and 2 update every 5 sec-

onds, which is hard to see in the graphs because the available bandwidth dis-

played in the graph does not change every 5 seconds. After manual verification

we were able to conclude that all policies are correctly implemented and up-

dates are sent out at the right moments.

Other features of the program, like daemonizing, logging to RRD files and in-

terface configuration from the command-line, were tested manually by running

the command-line application with the corresponding parameters, and were

found to be functioning correctly.
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(c) Scenario 3 & 4: 100 Mbit/s link
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(d) Scenario 3 & 4: 10 Mbit/s link
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(e) Scenario 5 & 6: 100 Mbit/s link
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(f ) Scenario 5 & 6: 10 Mbit/s link

Figure 4.2 – Results of verification measurements. The solid black line shows

the actual available bandwidth, while the red and green lines show the available

bandwidth as broadcasted through the network. Figure continues on the next page.
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(j) Scenario 9 & 10: 10 Mbit/s link
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Figure 4.2 – —continued—
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5
Comparison of link-state update policies

In the preceding chapters, we have built a solution to distribute link-state up-

dates through a network according to several policies. This gives us the oppor-

tunity to compare the performance of the link-state update policies and to try

to find an optimal policy. In this chapter we will first present a test setup and

discuss the performance metrics we use to compare link-state update policies.

Multiple scenarios will be defined, using real-life traffic, to measure the perfor-

mance of the policies. Finally, the results of the comparison will be presented.

5.1 Performance metrics

To compare the available link-state update policies, some performance metrics

have to be defined. These metrics have to measure the quality and the quantity

of the updates. A higher update quality will lead to more accurate link-state

information in the network, which in turn might lead to more accurate routing.

A higher update quantity will lead to more updates being flooded through the

network, which causes a higher processing load on the routers.

Past research has been mainly focussing on the simulation of complete QoS

networks. This made it possible to measure the quality of the link-state updates

by looking at call (or flow) acceptance and setup rates. These numbers give a

complete picture of the performance of a certain network, which can certainly

be an advantage. In our case, only link-state updates were implemented, and

a full QoS network that uses these updates is not (yet) available. Also, we
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specifically want to compare the link-state update policies, and leave out any

bias caused by the use of a certain QoS routing algorithm. For these reasons,

only the direct measurement data is used: actual available bandwidth at time

interval t to t + 1, Bt , and the available bandwidth last flooded through the

network at time t , B ′t . Using this data we can define the following variables:

absolute link-state update error= ea = |B ′t − Bt |

relative link-state update error= er = |
B ′t − Bt

Bt
|

The relative link-state update error tries to take into account that flows

normally only get rejected when a link is full. An error in the link-state update

value is therefore less important when a link has ample bandwidth left. Both

the mean and standard deviation of these values will be taken into account

when we discuss the results. Because the absolute value is used, no difference

is made between a negative and positive error. The reason for this is twofold.

First of all, because we are not testing a full QoS routing setup, but only the link-

state update policies, it is hard to predict the exact influence of the link-state

update error on the network. If the broadcasted available bandwidth value is

too low (compared to the actual available bandwidth), this will lead to routing

failures. A too high value for the available bandwidth will lead to setup failures.

The exact influence of these routing and setup failures on the efficiency of the

network depends on the network layout and routing algorithms in use [16].
Also, previous work has used the same absolute error performance metrics [24].
Reusing these metrics makes it possible to compare the results.

Note that there will always be an offset between the currently available

bandwidth and the last flooded value. This is because the value flooded in time

interval t to t + 1 is based on the actual available bandwidth measured in time

interval t − 1 to t . With dynamic traffic patterns, this offset might lead to link-

state update policies performing differently from previous experiments by other

researchers. Most, if not all, previous work was done under the assumption of

flow-based measurements, where new link-state updates are sent on admission

of a new flow. Since our test setup does not use explicit flow admission control,

we are unable to determine the bandwidth a flow uses until after the traffic has

been sent.

To measure the quantity of the updates, we simply use the average time

between updates. In our measurements we will try to find the parameters for the

link-state update policies that result in the same link-state update error. We can

then compare the average time between updates to see which policy performs

best.

46



5.2. Test setup

5.2 Test setup

For the comparison we will reuse the network from the previous chapter, as

shown in Figure 4.1. This network provides a simple 100 Mbit/s and 10 Mbit/s
path. We will stream traffic from nodes 1 and 5 to, respectively, nodes 2 and 6

again. The measurements on the link-state update policies will be performed

on nodes 3 and 4. The reason we use this relatively simple network instead of a

complex one is twofold. First of all, a larger network would not add much value,

since part of our measurements consists of replaying and simulating traffic from

backbone links and all network dynamics are already captured in that traffic

pattern. Also, we want to focus on the link-state update policies, and not on

any QoS routing algorithms, which are necessary to route traffic over a more

complex network.

To generate traffic on the network, several options were considered. The first

option considered was using a traffic generator, such as D-ITG [11], to generate

the traffic on the links. A problem with this approach is that the burstiness

of the traffic is somewhat limited. Even with a large variance in inter-arrival

times, on a five second interval the traffic patterns still appear as a constant,

nonvarying load. This means no link-state updates will be generated, which

makes traffic generators unsuitable for comparing link-state update policies. To

generate more dynamic traffic using traffic generators, multiple instances of the

generator would have to be started, each representing its own flow. The starting

and stopping of these instances then determines the dynamics of the network

traffic. Problem with this approach is that is it hard to find a model that captures

a real-life situation. Often Poisson processes are used to model the flow start,

size and duration. However, for most Internet traffic it is still unclear if the traffic

can be modeled accurately this way [22]. For these reasons we looked at other

ways to generate realistic network traffic.

Another option to generate the traffic is the open source video player

VideoLAN (VLC)1. This player has the ability to stream a video over the network.

Combined with the right codecs, using a variable bit rate, this leads to dynamic

traffic patterns that can make a good comparison between link-state update

policies possible. Depending on the image size and codec type, the bit rate can

be varied between a few hundred kilobit per second and several megabits per

second.

A last option to generate realistic network traffic is replaying an already

captured traffic trace from an existing network link. This is possible using the

Tcpreplay suite of utilities2. First the existing traffic trace is modified using

1 http://www.videolan.org
2 http://tcpreplay.synfin.net
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tcprewrite. This tool makes it possible to inject the destination MAC address

of the next-hop router, and alter the source and destination IP addresses of

all flows in the capture. Also the packets are expanded to their original size,

since usually traffic traces only contain the headers of the packets. Next, the

altered traffic trace is replayed on the network using tcpreplay. Because existing

trace files are used, it is possible to generate network traffic similar to traffic on

backbone network links, by using only one link connecting two nodes in a test

setup.

5.3 Test scenarios

For the test scenarios we have to determine the actual link-state update policy

parameters we will use during our tests. Also we have to decide on the actual

traffic pattern we will play back over the links during the test.

The parameters chosen for the link-state update policies can be found in

Table 5.1. The values of the parameters are based on existing literature, like the

research of Lekovic and Van Mieghem [24]. For the check interval, the interval

on which our tool measures the available bandwidth and checks if an update

is necessary, we chose two fixed values of 1 and 5 seconds. Also, we always

enable a minimum hold-down timer of 5 seconds, since the OSPF specs do not

allow more frequent updates and Quagga employs a built-in hold-down timer

of 5 seconds. A smaller check interval should give a more accurate view of the

available bandwidth, but might also lead to less accurate updates, since updates

can only be distributed every 5 seconds. Check intervals higher than 5 seconds

will average the traffic rate so much that the link-state update policy used does

not make any difference anymore.

Some parameters, like the check interval, will be used for every link-state

update policy. Other parameters, like the number of classes in case of an equal-

sized classes policy, are specific to a policy. Also, some parameters exclude each

other: since the moving average parameter is meant as a replacement for the

hold-down timer, we will not use these parameters together. These parameters

amount to 228 test scenarios in total.

The traffic generated on the 100 Mbit/s link between node 1 and 2 consists of

a 15 minute trace on a backbone link of the WIDE project3. A graph of the traffic

on the link can be seen in Figure 5.1. This capture was taken from a 100 Mbit/s
connection in a Japanese research network on the 14th of October, 2006. The

average traffic rate is 43.26 Mbit/s, with a standard deviation of 7.49 Mbit/s
(when sampling every second). This traffic trace has been chosen because it

3 http://tracer.csl.sony.co.jp/mawi/
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5.3. Test scenarios

Parameter Min Max Step

Check interval (s) 1 5 4

Hold-down timer (s) 5 45 20

Moving average (# measurements) 0 15 5

Absolute change (100 Mb/s link) (B/s) 125,000 1,625,000 500,000

Absolute change (10 Mb/s link) (B/s) 12,500 162,500 50,000

Relative change (%) 10 50 10

Number of classes 5 20 5

Base factor 0.01 0.05 0.04

Growth factor 1.1 1.9 0.2

Classes change before update 1 2 1

Table 5.1 – Link-state update policy parameters used for the comparison. For each

parameter a minimum and maximum value is given, together with the step value

by which the parameter is increased.

is a very dynamic, bursty trace. This should make it possible to highlight the

differences between the link-state update policies well.

The traffic on the 10 Mbit/s link is generated by replaying a H.264 video

from the Blender Institute: Big Buck Bunny4. The movie has a resolution of

854x480 pixels, and a runtime of 9 minutes and 57 seconds. A graph of the

network traffic generated while playing the movie can be seen in Figure 5.2.

This movie has been chosen because it is freely available, and because the H.264

codec results in a dynamic traffic pattern. The other available codecs resulted

in a constant bitrate stream, which is not very useful for link-state update policy

measurements.

In the graph can be seen that the complete link is filled at the end of the

movie, between 530 and 560 seconds. This seems to be because the H.264 codec

cannot handle the credits very well and uses a high bit rate to encode them. Be-

cause a full link will only cause packet loss and interfere with our measurements,

we decided to use only the first 500 seconds of the movie for traffic generation.

The average traffic rate is 3.26 Mbit/s, with a standard deviation of 1.34 Mbit/s.

Of each measurement result, the first 75 and last 10 seconds are ignored.

The first 75 seconds are skipped because, when using a moving average, this is

the time necessary to fill the interface history. The last 10 seconds are skipped to

account for the fact that our test scripts cannot stop the link-state updates client

and the traffic generation at exactly the same moment.

4 http://www.bigbuckbunny.org
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Figure 5.1 – Traffic pattern generated while playing back the dump from the MAWI

Working Group of the WIDE project, measured on a 1 second interval.
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Figure 5.2 – Traffic pattern generated while playing back the movie Big Buck Bunny

in 480p quality, measured on a 1 second interval.
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Figure 5.3 – Absolute error versus update rate for 10 Mbit/s, 5 second check interval

scenario.

5.4 Results

In this section we will present the results of our measurements. Discussing these

results and relating them to previous work is left for the next chapter, although

some short explanations for the observed behavior will be given. We will first

present the results of the 10 Mbit/s scenario, where a video stream was played

back over the network. Next, the results of the 100 Mbit/s scenario, where a

traffic dump was replayed, will be presented. For each scenario, graphs will be

given that show the average absolute and relative error versus the update rate

for each test case, which results in 228 points per graph. Also, the influence of

the hold-down timer and moving average settings on the error is presented in

a table. Because of the large amount of measurements, only the highlights are

discussed. This includes the best and average results. The full result set can be

obtained from the author on request.

5.4.1 10 Mbit/s scenario

Figure 5.3 graphs the average absolute error versus the update rate for the

10 Mbit/s scenario. This scenario used a 5 second check interval. The graph

is divided according to the link-state update policy used. Figure 5.4, which

includes the average relative error instead of the absolute error, shows a pattern

that is comparable to the previous graph.

The lowest average absolute error found is 0.68 Mbit/s, using an equal-

sized classes policy. This policy generates an update, on average, every 85
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Figure 5.4 – Relative error versus update rate for 10 Mbit/s, 5 second check interval

scenario.

seconds, and has an average relative error of 12.5%. There are, however, a

lot of policies that do not generate any intermediate updates during the test.

Some of these policies perform on a level comparable to the best performing

policy. For instance, 9 different policies that do not generate any updates have

an average absolute error of 0.73 Mbit/s, which is only slightly above the best

performing policy. Figure 5.5 shows the detail graph for one of those policies.

From the graph can be seen that no updates are generated. Nevertheless, the

average absolute error is only 0.73 Mbit/s. If we compare this to a policy that

generated more updates, like the one in Figure 5.6, we might think the latter

provides a smaller average error. In reality, the average absolute error of the

second policy is 0.83 Mbit/s. Figures 5.7 and 5.8 show the error between the

actual and broadcasted value, and clearly show that the second policy does not

perform better than the first.

Because the rather large average error was suspected to be caused by the off-

set between the measurement of the available bandwidth and the distribution

of the link-state update (as already discussed in Section 5.1), it was decided to

repeat the measurements with a 1 second check interval. The results of these

measurements can be found in Figures 5.9 and 5.10.

Comparing Figure 5.3 to 5.9, we can see that the average absolute error

increases in the 1 second check interval scenario. The average absolute error

increases from 1.27 Mbit/s to 1.32 Mbit/s (+4.1%). Also, the minimum average

error increases to 0.91 Mbit/s. The best performing policy is an absolute change

policy that sends an update every 5 seconds. The average time between updates
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Figure 5.5 – Link-state updates in the 10 Mbit/s scenario, 5 seconds check interval.

Uses an exponential sized classes policy (b = 0.01, f = 1.5) and a moving average

over 10 measurements.
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Figure 5.6 – Link-state updates in the 10 Mbit/s scenario, 5 seconds check interval.

Uses an relative change policy (tr = 10%) and a hold-down timer of 5 seconds.
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Figure 5.7 – Absolute error (difference between actual and broadcasted band-

width) for Figure 5.5.
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Figure 5.8 – Absolute error (difference between actual and broadcasted band-

width) for Figure 5.6.
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Figure 5.9 – Absolute error versus update rate for 10 Mbit/s, 1 second check interval

scenario.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 5  10  100

A
v

e
ra

g
e

 r
e

la
ti

v
e

 e
rr

o
r 

(%
)

Average time between updates (s)

Periodic
Absolute

Relative
Equal-class

Exp-class

Figure 5.10 – Relative error versus update rate for 10 Mbit/s, 1 second check

interval scenario.
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decreases, from 142 seconds to 61 seconds (-57%). The average relative error

increases a lot more than the average absolute error, from 21.4% to 34.1%

(+59%). The reason that the update rate and the error increase, is twofold. First

of all, the traffic will be more dynamic, because measurements are done on a

one second instead of a five second scale. This makes it harder for the link-state

update policies to accurately broadcast the available bandwidth. At the same

time, the number of broadcasts is limited by the minimum hold-down timer

of the OSPF protocol, which is 5 seconds. This means that the traffic will be

more dynamic, but the algorithms will be unable to send more updates when

necessary. We will further explore this problem in the next chapter.

If we look at the performance of the difference policies, it is hard to find

a clear trend. All policies can perform well, if used with the right parameters.

This can also be seen in the graphs: all policies are able to get close to the

lowest average error, and can do so without generating excessive updates. This

underlines the fact that it is more important to find the right parameters for the

specific network traffic, than the right policy. Unfortunately, finding the right

parameters is still a manual process. To automate this, we would have to test

with more traffic patterns, model these traffic patterns in a statistical model, and

try to find a correlation between the traffic patterns and the link-state update

policy parameters. Even then, it it unsure if a correlation can be found. We will

further discuss these future research opportunities in Section 7.2.

Six different timing policies were used. In three cases a hold-down timer

was used, and in three cases a moving average was used. A comparison of the

policies can be found in Table 5.2. We either used a hold-down timer, or a

moving average, no combinations between those were made. Each data point

had an equal weight in the moving average. This corresponds to the way a

moving average was used in previous work [24]. Looking at the results, using

a moving average instead of a hold-down timer leads to a large decline in the

number of updates. The error does not seem to increase significantly. This

is because a moving average damps sudden, temporary changes in available

bandwidth, that would cause unnecessary updates to be sent when a hold-down

timer is used.

5.4.2 100 Mbit/s scenario

The 100 Mbit/s scenario is a longer, more stable scenario. Figures 5.11 and 5.12

show the average absolute and relative error of the generated link-state updates

in the 5 second check interval scenario. Compared with the previous measure-

ments, the error is relatively lower. While the average absolute error is higher

(7.5 Mbit/s versus 1.3 Mbit/s), the link speed also increased tenfold. The relative
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Hold-down timer Moving average

Parameter 5 25 45 5 10 15

Avg. absolute error (Mbit/s) 1.13 1.33 1.51 1.18 1.24 1.35

Avg. relative error (%) 23.0 25.7 32.4 27.1 27.6 30.7

Avg. time between updates (s) 39.1 60.1 66.4 91.5 170.1 183.0

Table 5.2 – Comparison of different timer policies in the 10 Mbit/s scenario. Both

the 1 and 5 second check interval measurements are combined.
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Figure 5.11 – Absolute error versus update rate for 100 Mbit/s, 5 second check

interval scenario.

error is therefore lower (13.5% versus 21.4%). The lower error is due to the lower

deviation in the traffic (the traffic is less bursty), as described in Section 5.3.

The distribution of the policies over the graph is comparable to the distri-

bution in the 10 Mbit/s scenario. Most policies generate an update every 10 to

20 seconds. Some policies generate only one update during the entire test, and

some policies update at the maximum rate (every 5 seconds).

The lowest average absolute error is found for the periodic policy that up-

dates every 5 seconds, and is 3.7 Mbit/s. However, just as in the other tests,

other policies come close. For instance, one of the policies manages an average

absolute error of 4.2 Mbit/s, with an average time between the updates of 65.8

seconds.

Also in this case, we repeated the measurements with an 1 second check

interval instead of a 5 second check interval. The results of these measurements

can be found in Figures 5.13 and 5.14.
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Figure 5.12 – Relative error versus update rate for 100 Mbit/s, 5 second check

interval scenario.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 5  10  100  1000

A
v

e
ra

g
e

 a
b

so
lu

te
 e

rr
o

r 
(M

B
it

/s
)

Average time between updates (s)

Periodic
Absolute

Relative
Equal-class

Exp-class

Figure 5.13 – Absolute error versus update rate for 100 Mbit/s, 1 second check

interval scenario.
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Figure 5.14 – Relative error versus update rate for 100 Mbit/s, 1 second check

interval scenario.

Hold-down timer Moving average

Parameter 5 25 45 5 10 15

Avg. absolute error (Mbit/s) 6.67 8.56 8.86 6.64 7.49 7.84

Avg. relative error (%) 12.4 15.8 16.4 12.5 14.1 14.6

Avg. time between updates (s) 157.9 132.5 166.8 251.6 325.5 398.9

Table 5.3 – Comparison of different timer policies in the 100 Mbit/s scenario. Both

the 1 and 5 second check interval measurements are combined.

When we compare these results to the 5 second check interval results, we see

the same differences as in the 10 Mbit/s scenario. The average absolute error

increases by 5.5% to 7.9 Mbit/s. The lowest absolute average error increases

to 4.6 Mbit/s. Also, the average time between updates decreases, from 325 to

153 seconds (-53%) and the average relative error increases from 13.5% to 15.1%

(+12%).

Just as with the 10 Mbit/s scenario, it is hard to find a “best” policy. All

policies can perform well, and the policies are spread across the graph. The

actual policy performance seems to be determined by the parameters, instead

of by the policy.

A comparison between the different timing parameters can be found in

Table 5.3. Again, the number of updates is lowered significantly by using a

moving average instead of a hold-down timer, while the average absolute error

does not seem to be affected.
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6
Discussion

In the previous chapter, the results of our performance comparison were pre-

sented. Some of these results ask for a more thorough explanation. Also, in pre-

vious work, similar research has been done, but in a different environment or

with different parameters. We begin this chapter by drawing some conclusions

from our presented results. Then we try to explain our results and conclusions,

and we will compare and connect our results to related work where possible.

6.1 Summary of performance comparison

Looking back at the results, the following observations can be made:

• High update error: if we look at the best case average relative error, which

uses a periodic policy in the 100 Mbit/s scenario, the error is still 6.8%,

with a high standard deviation of 6.6 percentage points. Other scenarios

show an even higher update error. With such an high update error, the

information may be unusable for the routing process.

• Lower check interval increases update error and rate: comparing the 5

second check interval measurements with the 1 second check interval

measurements, we clearly see that the lower check interval causes more

update and an higher update error.
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• Sending more updates does not lead to better performance: looking at the

performance graphs (see Figures 5.3, 5.9, 5.11 and 5.13), it is immediately

clear that for none of the scenarios more updates means a better perfor-

mance. All scenarios have one or more update policies and parameter

configurations that use only one update during the whole testrun, while

their update error does not differ significantly from the best performing

policy.

• No performance difference between policies: as stated in the last chapter,

we were unable to find a “best” policy. Every policy tends to be tunable to

the right update and error rate, by changing the parameters. In our case,

this tuning was done by running each policy multiple times, using 5 to 8

different parameter configurations (see Table 5.1).

• Lower average relative error for 100 Mbit/s scenario: compared to the

10 Mbit/s, the average relative error is lower in the 100 Mbit/s scenario.

The average absolute error increased.

• Use of a moving average decreases update rate with same performance:

when a moving average is used instead of the usual hold-down timer, the

number of updates goes down significantly. At the same time the update

error does not seem to be influenced a lot.

6.2 Discussion of the results

The observations that we just described will now be further discussed. We will

try to explain their root causes and will connect the observations to existing

previous work.

6.2.1 High update error

The update error is relatively high when compared to previous studies. For

instance, the 10 Mbit/s, 1 second check interval scenario shows a best case

average relative error of 20.0%. The exact impact of this large error on routing

quality depends on the QoS routing algorithm used, but it is clear that a lower

error will yield better routing results.

Unfortunately, most previous work does not mention the absolute or relative

update error achieved by the link-state update policies tested. Almost all work

concerns the simulation of flow-based QoS router networks, and only takes the

update rate and blocking probability of new connections in account. Lekovic

and Van Mieghem do mention the relative update error in their work [24]. Their
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Figure 6.1 – Link-state updates in the 100 Mbit/s scenario, 5 seconds check inter-

val. Uses an absolute change policy (a = 1, 000, 000 bits/s) and a hold-down timer

of 5 seconds.

relative error rates vary from 1 to 3 percent, and are much lower than the update

error rates we measured.

To explain the high update error, we take a look at Figure 6.1. This figure

shows one of the better performing policies in the 100 Mbit/s, 5 second check

interval scenario. From the graph can be seen that there is a delay between the

actual available bandwidth change and the link-state update. The broadcasted

available bandwidth value might look good at first sight, but Figure 6.2 reveals

the large error that is present in the value. This is because our solution can only

send a link-state update after the bandwidth has already changed, which intro-

duces a delay the size of the check interval. The broadcasted available band-

width changes frequently, due to the policy parameters, but it is nevertheless

always running behind on the actual available bandwidth. Previous work is al-

most exclusively based on full QoS networks, where flow signaling and admis-

sion is used. Since in that case every flow is signaled before its start, our problem

does not exist in those setups.

6.2.2 Lower check interval increases update error and rate

To decrease the discussed delay, we reran the test scenarios, this time with

a 1 second check interval. Theoretically, this should decrease the gap from

5 seconds to 1 second and thus improve the performance. In practice, the

performance did not improve but only got worse, due to the following two
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Figure 6.2 – Absolute error (difference between actual and broadcasted band-

width) for Figure 6.1.

reasons. First of all, a lower check interval means more of the traffic dynamics

are captured, so the measured traffic gets burstier. This makes it necessary to

send link-state updates more often. Indeed, we saw an increase by roughly

a factor of 2 in the number of updates. At the same time, the OSPF hold-

down timer of 5 seconds limits the number of updates, and this timer cannot

be lowered without violating the OSPF specifications. Because of this hold-

down timer, the link-state update policies cannot send all updates necessary

to capture the additional traffic dynamics, and performance gets worse. Future

research could try to remove the minimum 5 second hold-down timer, but that

would also require several changes to the default Quagga code and make the

OSPF implementation incompatible with existing routers.

6.2.3 Sending more updates does not lead to better performance

From our results, it is clear that sending more updates does not necessarily

improve the performance of the policies. For instance, the policy in Figure 5.5,

which does not do any intermediate link-state updates, belongs to the best

performing policies in the test. As mentioned earlier, there is a delay in our

updates that causes a high update error. Probably, more updates would lead

to better performance if this delay could somehow be removed, since the extra

updates that get sent by some policies now always lag behind the actual traffic.

Previous work is inconclusive about whether more updates should lead to

better performance. Most work uses blocking probability of new flows as a
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measure for performance. Shaikh et al. have shown that policies that generate

more updates decrease the amount of setup failures, but increase the amount

of routing failures and do not necessarily lead to better performance [36]. In the

research of Lekovic and Van Mieghem the update error does decrease slightly

with more updates, but the hold-down timer and moving average values seem to

affect the performance much more [24]. Yuan et al. do see a rather large increase

in blocking probability when updates are sent less often [39].

6.2.4 No performance difference between policies

While discussing the results, we already noted that every link-state update policy

can perform equally well by tuning the policy parameters. This is to be expected

given our scenarios. Normally, the relative change and exponential class-based

policies perform better than the absolute change and equal class-based policies,

since they send out more updates when the available bandwidth on a link gets

low [4, 6, 9]. Our scenarios are based on real-life traffic, where low available

bandwidth leads to packet loss and other issues. For this reason, we do not see

any low available bandwidth intervals in our tests and all policies can perform

equally well. If the testbed would be extended to use the link-state update

information in the QoS routing process, it would be possible to generate real-life

scenarios with a high network load, to test the behavior of the link-state update

policies under low available bandwidth conditions. This is left for future work.

Another reason for all policies performing equally well, is that a lot of dif-

ferent parameter configurations were tested. Most previous work tests only one

or two policies, with 5 to 10 different parameter configurations. In our tests, 228

different combinations of link-state update policies and parameters were tested,

which increases the chance that one of the combinations gives good results for

a certain policy. This does not mean that a certain combination will perform

good in all circumstances: more tests with more scenarios would be necessary

to confirm that.

We should keep in mind our earlier mentioned large update error. The delay

between the actual and broadcasted available bandwidth that causes this error,

will probably also have its effect on the performance differences between the

link-state update policies.

6.2.5 Lower average relative error for 100 Mbit/s scenario

The relative error in the 100 Mbit/s scenario is much lower than the relative error

in the 10 Mbit/s scenario (13.5%-15.1% versus 21.4%-34.1%), while the absolute

error is much higher (7.5-7.9 Mbit/s versus 1.3 Mbit/s). This can be explained
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by the looking at the traffic pattern. The traffic of the 100 Mbit/s scenario is

less bursty, because the chosen traffic trace is less dynamic than the traffic of

the chosen video (compare Figure 5.1 and Figure 5.2, and see the explanation

in Section 5.3). The standard deviation in available bandwidth is 7.49 Mbit/s
for the 100 Mbit/s scenario, and 1.34 Mbit/s for the 10 Mbit/s. Relatively, this

means the 10 Mbit/s scenario traffic is more bursty, and will therefore lead to a

higher error, since the link-state update policies have ‘more work to do’.

6.2.6 Use of a moving average decreases update rate with same per-
formance

From Tables 5.2 and 5.3 can be clearly seen that a moving average decreases the

update rate significantly. This is in line with the conclusions of Lekovic and Van

Mieghem [24]. A difference is that their work is flow-based, with the moving

average taken over a number of arriving flows, instead of over a certain time

interval. However, this difference does not seem to lead to different results.

The use of a moving average decreases the update rate by damping sud-

den changes in available bandwidth. If, for instance, the available bandwidth

changes for only one second, this will cause an update when a hold-down timer

is used (and thus a larger error for the remainder of the hold-down period). The

moving average will damp the sudden change, and suppress the update, which

leads to less updates while not increasing the error.

Future work might consider the use of a weighted or exponential moving

average, or combine the moving average with a hold-down timer.
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Conclusions and Future Work

7.1 Conclusions

In this work, we implemented link-state update policies by extending the OSPF

protocol and the QoS router testbed. First, an overview of link-state update

policies was given. Then, a protocol was designed to broadcast the link-state

information over OSPF. This protocol was implemented using the Quagga OSPF-

API and a connection between the update daemon and the Network Controller

of the QoS router testbed was made. The solution was then extensively tested

to guarantee it was functioning correctly. Finally, a comparison between the

available link-state update policies was made and the results were discussed.

Most previous work for link-state update policies has been done on poli-

cies for distributing available bandwidth information. We have built upon these

results and have tried to compare the available policies. Unfortunately, our ap-

proach, where traffic is measured on physical link level instead of by account-

ing for admitted flows, introduces a large update error. Further research should

prove if the information is nevertheless usable for QoS routing, or if the error is

too large to provide reliable routing. In a certain way, our research underlines

one of the big challenges in QoS routing research: most of the current research

is focused on flow-based QoS, where all network activity is captured in flows,

but not all applications will define their traffic in QoS flows (ie., there will prob-

ably always be non-QoS cross-traffic). This undermines the fundamentals of the

current QoS research.
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The “best” link-state update policy could not be found: it all depends on

the traffic patterns on the network and the demands of the operator and his

QoS routing algorithms. We did confirm the fact that hold-down timers cause

excessive updates in the case of link-state update policies, and that the use of a

moving average seems to provide better performance.

7.2 Future Work

There is a lot of work left for future research. Both some technical, implementa-

tion details still have to be solved, as well as some larger fundamental questions.

Since the actual link-state is now available in the Network Controller, the

QoS router testbed can be extended to actually use this information in its rout-

ing algorithms. This would give the opportunity to evaluate link-state update

policies on the same performance metric as previous work: flow blocking rate.

Only available bandwidth link-state updates were implemented, while more

QoS measures exist (e.g., delay, jitter). Since the protocol was designed with

extensibility in mind, it should not be too difficult to add these measures. There

is, however, no previous work on link-state update policies for these measures

available.

Determining the right parameter configuration for the link-state update

policies is still manual work, and the right configuration depends on the network

traffic patterns and wishes of the operators. Future research should try to come

up with a solution that, given the traffic pattern on a network, and the desired

maximum error and maximum update rate, is able to provide the right link-

state update policy and parameters. This is a hard problem, since it is not

easy to describe the traffic pattern on a network and the exact influence of

the various algorithm parameters is still unclear. By choosing one link-state

update policy, testing that LSUP with several parameter configurations in a

multitude of scenarios, and doing a factor analysis on the results, it should

be possible to gain more insight in the correlation between the performance

of an LSUP and its settings. Also it might prove useful to research additional

moving average methods (e.g., weighted, exponential) and combining the use

of a moving average with a hold-down timer.

On the technical side, our current implementation of link-state updates (and

the QoS router testbed) lacks multiple OSPF area support and IPv6 support.

These should be relatively easy to implement. Also, it is possible to show the

actual link-state in a nice web interface, which can be made using relatively little

effort, which would give administrators better real-time feedback on the state of

the network.
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The current QoS router testbed uses a centralized approach, with a cen-

tral Network Controller, Service Manager and LSP Manager. To provide fault-

tolerant routing as well as scalability, a distributed implementation will be nec-

essary. A distributed solutions will also be necessary to provide inter-AS routing.

Without inter-AS QoS routing, QoS on the Internet will always stay a utopian

idea. Many concepts and protocols have been proposed in the past, but none

have been able to generate widespread acceptance. Different opinions about

the definition of QoS, and what a QoS routing protocol should offer the Inter-

net, have slowed down the implementation of QoS on the Internet. Looking at

the speed of the current switchover to IPv6, which is “merely” about a simple ad-

dressing scheme, and what needs to be done to implement QoS in the Internet,

we can only conclude that full QoS support in the Internet is a though problem

that might never be solved.
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