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Summary

The Kalman filter is a recursive algorithm that estimates the state of a dynamic system subject to
measurement and model noise. If all noise terms affecting the system are white Gaussian noise with
known mean and variance, and all noise terms are independent of each other, then the Kalman filter is
the optimal estimator for the state variable. When measurements are collected from multiple sources,
the covariance between these sources should be known or the sources should be independent to
ensure that the estimatemade by the Kalman filter is optimal. When the covariance between dependent
measurement sources is not known, various methods exist which provide a solution to this problem.
This thesis discusses two methods: the H∞ filter and covariance intersection.

1. The H∞ filter can be used instead of the Kalman filter, and is a generalisation of the Kalman
filter. TheH∞ filter does not pose any constraints on the noise, therefore the correlation structure
between the measurement sources does not need to be known. The H∞ filter is not guaranteed
to be optimal, but the estimation error is bounded.

2. Covariance intersection is used in addition to the Kalman filter and consists of two steps. First,
each measurement source is used to calculate a partial estimate of the state. Second, these
estimates and their covariances are fused using a linear combination. This method is consistent,
which means that the estimated covariance matrix minus the error covariance matrix is positive
semi-definite. This prevents overconfidence in the estimate of the state. Covariance intersection
also converges as long as the constant controlling the linear combination is optimised for every
time step.

The Kalman filter and the H∞ filter can be formulated in both discrete and continuous time. However,
covariance intersection is only suited for the discrete time Kalman filter, because the constant controlling
the linear combination between the the partial estimatesmust be optimised for every time step to ensure
convergence. The overall aim of this thesis is to formulate covariance intersection such that it can be
applied to the continuous Kalman filter. This aim is partially achieved. To this end, three different topics
are discussed in this thesis:

1. The proof showing the consistency of covariance intersection, first given by S. J. Julier and J. K.
Uhlmann, is investigated. This proof makes the assumption that a Kalman filter step with informa-
tion from only one measurement source is consistent, but this is neither trivial nor proven. This
work highlights this assumption and explores it. Additionally, the proof given by S. J. Julier and
J. K. Uhlmann does not use conditional expectations and conditional covariances, even though
the estimates that are being fused are conditional expectations. This work contains a reformula-
tion of the proof in the literature so that it does include conditional expectations and conditional
covariances where appropriate.

2. Covariance intersection is reformulated to fuse the covariancematrices of themeasurement noise
instead of the partial estimates of the state and their covariances, without changing the result.
This means that covariance intersection can be rewritten as a Kalman filter with slightly altered
input. This alternative formulation therefore removes the need to calculate partial estimates. This
reduces the number of Kalman filter applications from one per measurement source to one in
total per time step when applying covariance intersection to the Kalman filter. Since a continuous
Kalman filter exists, this fusion step can be included into the continuous Kalman filter. However,
the constant that controls the linear combination still needs to be optimised at every time step
to ensure that the algorithm converges. This work suggests a starting point for further research
aimed at finding a method to optimise the constant in continuous time.

3. This work also includes a H∞ generalisation of the Kalman filter with covariance intersection
applied to it. This has no practical use because it imposes an additional constraint on the inputs of
theH∞ filter, limiting the opportunity for tuning the filter without improving the estimate. However,
because theH∞ filter can also be formulated in continuous time, it offers another avenue to make
covariance intersection applicable to the continuous time Kalman filter.
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1
Introduction

At the start of the Second World War, a military project was set up in the USA to develop an estimator
that could predict the future position of fast-moving aircraft using noisy radar tracking data. The aircraft
would drops bombs over targets while flying at high speed. To improve the hit rate, it was necessary to
know the future position of the aircraft so that this could be taken into account when aiming. Norbert
Wiener, as part of the programme, was taskedwith developing an optimal estimator of the future position
of aircraft. What he came up with was an estimator that minimised the mean squared prediction error
using power spectral densities to characterise the statistical properties of the dynamic system. Andrei
Kolomogorov developed the same theory around the same time, so this estimator became known as
the Wiener-Kolomogorov filter. In the late 1950s, Rudolf Kalman built on this foundation. During a
train journey, he came up with the idea of using state variables in the Wiener-Kolmogorov filter. State
variables describe the dynamics of the systemwhose future state is to be estimated. The state variables
describe the system without external forces, such as measurements. This idea led to the development
of the Kalman filter [1]. The Kalman filter was first used in the Apollo space programme in the early
1960s [13]. Since then, the Kalman filter has been applied to other fields and is particularly widely used
in the field of navigation [1].

In terms of terminology, the term ’filter’ may seem unusual for an estimator. Historically, filters separated
unwanted components of gas-liquid-solid mixtures and later referred to analogue circuits that filtered
electronic signals by frequency. In the 1930s and 1940s, the concept was extended to the separation of
signal from noise using power spectral densities developed by Kolmogorov and Wiener. With Kalman
filtering, the term evolved to include the solution of inversion problems that estimate the independent
variables as an inverted function of the measurements [1].

The Kalman filter is a recursive estimator that minimises the mean square prediction error and is used
to estimate the (future) state of a dynamic system. The dynamic system consists of a state variable
and measurements. The state variable is modelled with an additional white noise term, which accounts
for undescribed model characteristics. The measurements are a linear function of the state variable
perturbed by white noise. The recursive estimation process consists of two steps: first, a prediction is
made based on the current state. Second, the state is updated to incorporate the latest measurement to
correct the prediction. If the noise of the dynamic system and themeasurements are Gaussian, then the
Kalman filter is the optimal estimator. However, if the noise is not Gaussian, then the Kalman filter is the
best linear estimator. Note that the noise of the dynamic system and the noise of the measurements are
assumed to be independent of each other [2]. The Kalman filter also has a continuous time form, but this
is rarely used in practice because modern measurement equipment produces discrete measurements.
The continuous Kalman filter is still useful, however, because in some cases it is easier to analyse the
effects of mathematical variations on the design of the filter in its continuous form than in its discrete
one.

The Kalman filter can also incorporate multiple measurement sources, but the full covariance matrix
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between these sources should be known, or preferably the sources should be independent. For exam-
ple, the acceleration of a vehicle can be measured using the Doppler effect. Another way of measuring
its acceleration would be to carry a weight, suspended on springs, on the vehicle, and measuring the
compression of the springs. Because these two measurements do not share the same error source,
they are independent and can therefore be used in the Kalman filter.

In practice, errors in measurements from different sources are often correlated, and the full correlation
structure is usually not known. An example is a GPS location calculation by two different devices
that are located in the same place, using an overlapping set of satellites. If the data from one of the
shared satellites is flawed because of, for example, atmospheric interference, the location estimate
produced by both devices will have a correlated error. Many solutions of varying rigour and efficiency
have been proposed. I will highlight three methods of dealing with measurement correlations: tuning
of the covariance matrix, the H∞ filter, and covariance intersection.

1. The most rudimentary solution of these three is tuning of the covariance matrix of the estimate. It
does so by treating the measurements as independent when applying the Kalman filter. Having
dependent measurements means that part of one measurement is ‘contained’ in the other mea-
surement. This means that having dependent measurements generates less information than
independent measurements. Thus assuming that the measurements are independent while they
are actually dependent fictitiously increases the amount of information available. This makes the
covariance matrix of the estimate smaller than it should be. The underestimation of the covari-
ance matrix can be remedied by tuning the covariance matrix, which will ensure consistency of
the algorithm under certain conditions. Consistency means than the estimated covariance matrix
minus the error covariance matrix is positive definite. Thus ensuring that the confidence in the
estimate of the state is not unreasonably large. But the filter can no longer be considered optimal
and does not guarantee that the estimate is consistent in general [8].

2. Another solution to the problem of unknown correlated measurements is the use of the H∞ filter.
This filter can be seen as a generalisation of the Kalman filter. It makes no assumptions about
the noise and therefore it does not matter whether the noise is correlated or not. The downside to
this relaxation of assumptions is that the filter is no longer guaranteed to be optimal. Instead, the
maximum error of the estimate is bounded. The H∞ filter contains a trade-off. It allows the user
to consider whether it is better to reduce the covariance matrix of the estimate by increasing the
bound on the maximum error or to reduce the maximum error at the cost of a larger covariance
matrix of the estimate.

3. The last solution discussed in this thesis that can be used to deal with unknown correlations be-
tween measurements is covariance intersection, introduced by Simon Julier and Jeffrey Uhlmann.
Covariance intersection consists of two steps. First, partial estimates per dependent measure-
ment source are calculated, using the Kalman filter. Second, these estimates are fused using a
linear combination. This means that the number of applications of the Kalman filter scales with
the number of dependent error sources. The constant controlling the linear combination needs to
be optimised at each time step to ensure non-divergence [7]. The resulting estimate is consistent
[9].

Fusing the partial estimates for every time step, as in covariance intersection, clearly requires the
existence of discrete time steps. Covariance intersection in its current form can therefore not be applied
to the continuous Kalman filter. The overall aim of this thesis is to formulate covariance intersection
in such a way that it can be applied to the continuous Kalman filter. To this end, three topics are
explored. First, this thesis investigates the proof given by S. J. Julier and J. K. Uhlmann which proves
that covariance intersection is consistent. This thesis points out two issues with this proof.

1. Julier and Uhlmann’s proof does not use conditional expectations even though all estimates and
covariance matrices in the Kalman filter are conditional expectations. This thesis contains a
rewritten proof that does include conditional expectations where appropriate.

2. Julier and Uhlmann’s proof assumes that the partial estimates are all consistent. This assumption
is neither trivial nor proven. This thesis highlights this assumption and shows why this assumption
does not hold in general. An alternative assumption is proposed: that the partial estimates are
consistent in expectation over many time steps, rather than for each time step individually.
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The second topic this thesis addresses is a reformulation of covariance intersection. This reformulation
fuses the covariance matrices of the measurements noise rather than the covariance matrices of the
estimates. This means that the Kalman filter only has to be applied once to this fused covariance
matrix instead of as often as there are dependent measurement sources, while the result remains the
same. This reformulation allows covariance intersection - except for the optimising of the constant that
controls the linear combination - to be written into the algorithm of the Kalman filter. This means that
the fusion of the partial estimates can be translated to the continuous time Kalman filter if a differential
equation of the constant is provided. However, the optimisation problem that needs to be solved for
every time step has not yet been reformulated such that it is possible to find a differential equation for
this constant. A starting point for further research is suggested to also solve this last barrier to applying
covariance intersection to the continuous time Kalman filter.

The last topic discussed in this thesis is how the H∞ filter can be adjusted such that it becomes a
generalisation of the Kalman filter with covariance intersection applied to it. This adjustment impairs
the performance of the H∞, because additional requirements are posed on the input matrices of the
H∞ filter. However, this adjustment provides a different way of arriving at a continuous Kalman filter
with covariance intersection applied to it, as there also exists a continuous time version of the H∞ filter.

The outline of this thesis is as follows. Chapter 2 provides the mathematical background of both the
discrete and continuous time Kalman filter. Section 2.1 derives the discrete Kalman filter. This section
also contains several frequently used formulations of the Kalman filter. Section 2.2 derives the continu-
ous time Kalman filter as a limit of the discrete time Kalman filter. Chapter 3 introduces theH∞ filter; the
discrete form can be found in Section 3.1 and the continuous form in Section 3.2. The Kalman filter and
the H∞ filter are compared in Section 3.3. Section 3.4 investigates whether the H∞ filter can be seen
as a Kalman filter with non zero noise terms. This does not turn out to be possible. Chapter 4 focusses
on the subject of covariance intersection, starting with an introduction to the concept in Section 4.1.
Section 4.2 gives the definition of consistency and investigates the proof of the consistency of covari-
ance intersection, given by S. J. Julier and J. K. Uhlmann. This section also highlights and discusses
the assumption that the partial estimates used in covariance intersection are consistent. Section 4.3
formulates a method which fuses the covariance matrices of the measurement noise instead of the
covariance matrices of the estimates, as covariance intersection does. It is shown that this formulation
leads to the same estimate as covariance intersection, provided that the constant which controls the
linear combination is the same. Chapter 5 adjusts the H∞ filter such that the H∞ filter becomes a
generalisation of the Kalman filter with covariance intersection applied to it. This provides a different
path to make covariance intersection applicable to the continuous time Kalman filter. The conclusion
of this work is contained in Chapter 6. Section 6.1 contains recommendations for future work.



2
Kalman filter

This chapter contains a mathematical derivation of both the discrete and the continuous Kalman filter.
The discrete Kalman filter will be derived using the Bayes’ method combined with moment generating
functions. The discrete Kalman filter is a recursive algorithm consisting of two steps. The first step is
the prediction step, which is derived in Section 2.1. The second step is the update step. To derive this
step, some background on moment generating functions is needed which is provided in Subsection
2.1.1. Subsection 2.1.2 derives the update step of the Kalman filter. Subsection 2.1.3 contains sev-
eral reformulations of the solution of the Kalman filter, which will be used throughout this thesis. The
continuous Kalman filter is derived in Section 2.2 as a limit of a discrete Kalman filter.

2.1. Derivation of discrete Kalman filter
There are many ways to derive the discrete Kalman filter. This section will the derive the discrete
Kalman filter by using Bayes’ theorem and moment generating functions, which is based on a paper
written by H. M. Masnadi-Shirazi et al. [12]. We consider the following dynamic system:

Xk = Fk−1Xk−1 +Wk−1,

Yk−1 = Hk−1Xk−1 + Vk−1,
(2.1)

where Xk ∈ Rn is the state vector, this vector is a random variable; Fk ∈ Rn ×Rn is the state transition
matrix, which can describe the physics underlying the process that is modelled; Wk ∈ Rn is Gaussian
white noise with covariance matrix Qk ∈ Rn × Rn. Therefore, Wk ∼ N(0, Qk). Wk can be used to
compensate for unmodelled factors. Yk ∈ Rm represents the measurement at time k, Hk ∈ Rm ×
Rn provides a linear connection between the state vector and the measurement vector. Vk ∈ Rm is
Gaussian white measurement noise with covariance matrix Rk ∈ Rm × Rm. Thus Vk ∼ N(0, Rk). Wk

and Vk are assumed to be independent. If Vk and Wk are Gaussian, the Kalman filter is the optimal
estimator, otherwise the Kalman filter is the best linear estimator. The derivation of the discrete filter in
this section uses that these two noise terms are Gaussian. Different derivations exist that do not need
this assumption.

An example where the Kalman filter can be applied is in modelling the course of a ship. In this case,
Xk represents the vector describing the ship’s coordinates and velocity. Yk could then represent GPS
measurements of these coordinates and velocity, while Hk serves as a projection onto Xk.

Let us define the sigma algebra Fn = σ(Y1, . . . , Yn), which is generated by the observations up until
and including time n. We will denote the density of Xk given the sigma algebra Fn as fXk|Fn

.

The Kalman filter minimises the the mean square error between the true state and its estimate. The
mean square error is conditioned on the sigma algebra Fn to account for the measurements up until

4



2.1. Derivation of discrete Kalman filter 5

and including time n. We thus need to find the following estimator:

x̂k|n = argmin
x̂

E[(Xk − x̂)T (Xk − x̂)|Fn]. (2.2)

The solution to this estimation problem is given in the following lemma.

Theorem 2.1.1. [2] Assume that x̂T x̂ is integrable. Then the solution to the minimisation problem of
Equation (2.2) is the conditional mean E[Xk|Fn].

This theorem is proved later in this section.

From now on, the estimate ofXk given the observations up until and including time n will be denoted by
x̂k|n = E[Xk|Fn]. The error covariance matrix of this estimate is denoted by Pk|n = E[(Xk− x̂k|n)(Xk−
x̂k|n)

T |Fn]. Note that x̂k|n and Pk|n are the mean and variance of fXk|Fn
. Typically, when using the

Kalman filter, we are interested in finding x̂k|k and Pk|k. To this end, we need to find fXk|Fk
which

reflects a belief in the state Xk given Fk. The following theorem shows how fXk|Fk
can be found.

Theorem 2.1.2. Given the dynamic system in Equation (2.1). Then:

fXk|Fk−1
(x) =

∫
fXk|Xk−1

(x)fXk−1|Fk−1
(w) dw,

fXk|Fk
(x) =

fYk|Xk
(y)fXk|Fk−1

(x)∫
fYk|Xk

(y)fXk|Fk−1
(x) dx

.

Theorem 2.1.2 is proven below.

Remark 2.1.3. Theorem 2.1.2 shows that it is possible to derive the density of fXk|Fk
, called the pos-

terior from fXk−1|Fk−1
via fXk|Fk−1

, which is called the prior. This means that fXk|Fk
can be calculated

recursively, by first finding the prior and then the posterior. The calculation of the mean and the covari-
ance matrix of the prior and the posterior are called the prediction step and the update step, respectively.

To find the estimate of the states x̂k|k−1 and x̂k|k the means of the prior and posterior need to be found.
The error covariance matrices Pk|k−1 and Pk|k are found by calculating the covariance matrices of the
prior and posterior, respectively. We start with deriving the mean and covariance matrix of the prior.

Theorem 2.1.4 (Prediction step of Kalman filter). Given the dynamic system in Equation (2.1), we find:

x̂k|k−1 = Fk−1x̂k−1|k−1,

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 +Qk−1.

This theorem is proved below. The next theorem gives the update step, by deriving the mean and
covariance matrix of the posterior.

Theorem 2.1.5 (Update step of Kalman filter). Consider the dynamic system of Equation (2.1). Then:

x̂k|k = (I −KXk,Yk
Hk)xk|k−1 +KXk,Yk

yk

= xk|k−1 +KXk,Yk
(yk −Hkxk|k−1),

Pk|k = (I −KXk,Yk
Hk)Pk|k−1(I −KXk,Yk

Hk)
T +KXk,Yk

RkK
T
Xk,Yk

,

where
KXk,Yk

= Pk|k−1H
T
k P

−1
Yk

, PYk
= HkPk|k−1H

T +Rk.

Some background on moment generating function and auxiliary results are needed to prove this theo-
rem. The background on moment generating functions can be found in Subsection 2.1.1. The auxiliary
results and proof can be found in Subsection 2.1.2.
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In conclusion, we find the following algorithm to estimate the state of the dynamic system of Equation
(2.1). The algorithm starts with x̂0|0 and P0|0, where P0|0 should reflect the certainty with which x̂0|0 was
chosen. The exact starting point does not matter as long as P0|0 is not the zero matrix. Note that from
now on, we will denote KXk,Yk

as Kk for brevity. As mentioned before, first a prediction step is made,
which was derived in Theorem 2.1.4:

x̂k|k−1 = Fk−1x̂k−1|k−1,

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 +Qk−1.

After which the update step takes place, which was derived in Theorem 2.1.5:

x̂k|k = x̂k|k−1 +Kk(yk −Hkx̂k|k−1),

Pk|k = (I −KkHk)Pk|k−1(I −KkHk)
T +KkRkK

T
k ,

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk)

−1.

Kk is often called the Kalman gain and Ik = yk −Hkx̂k|k−1 is called the innovation, which is the differ-
ence between the observation and the a priori estimate of the measurements, ŷk|k−1 = E[Yk|Fk−1] =
Hkx̂k|k−1. The solution of the Kalman filter can be rewritten into multiple forms. These reformulations
of the solution of the Kalman filter are derived in Subsection 2.1.3.

We now prove the above results, starting with Theorem 2.1.1.

Proof of Theorem 2.1.1. We prove this theorem by setting the gradient of the mean square error to
zero. Before deriving the gradient of the mean squared error, we find a bound for |(Xk − x̂)T (Xk − x̂)|:

0 ≤ |(Xk − x̂)T (Xk − x̂)| = |XT
k Xk −XT

k x̂− x̂TXk + x̂T x̂|.

Note that XT
k x̂ ∈ R, so it is equal to its transpose:

0 ≤ |XT
k Xk − 2x̂TXk + x̂T x̂|

= XT
k Xk + 2|x̂TXk|+ x̂T x̂. (2.3)

We bring |x̂TXk| to the left, to obtain:

|x̂TXk| ≤
1

2
(XT

k Xk + x̂T x̂).

We use the above expression in Equation (2.3), to find:

|(Xk − x̂)T (Xk − x̂)| ≤ XT
k Xk +XT

k Xk + x̂T x̂+ x̂T x̂

= 2XT
k Xk + 2x̂T x̂.

We define Z = 2XT
k Xk + 2x̂T x̂. Since we assumed that x̂T x̂ is integrable and since Xk has a normal

distribution, we conclude that Z is an integrable random variable which bounds |(Xk − x̂)T (Xk − x̂)|
from above. We continue to rewrite the gradient of the mean square error. By the definition of the
gradient:

∇x̂E[(Xk − x̂)T (Xk − x̂)|Fn] =


∂

∂x̂1
E[(Xk − x̂)T (Xk − x̂)|Fn]

...
∂

∂x̂n
E[(Xk − x̂)T (Xk − x̂)|Fn]

 .

To avoid long derivations in matrix notation, we show that it is possible to interchange the partial deriva-
tive with respect to xi and the expectation. To this end, we define ei = [0, . . . , 0, 1, 0, . . . , 0] where the 1
is on the ith position. Then using the definition of partial derivatives:

∂

∂x̂i
E[(Xk − x̂)T (Xk − x̂)|Fn]

= lim
h→0

1

h

(
E[(Xk − (x̂+ hei))

T (Xk − (x̂+ hei))|Fn]− E[(Xk − x̂)T (Xk − x̂)|Fn]
)

= lim
h→0

E

[
1

h

(
(Xk − (x̂+ hei))

T
(Xk − (x̂+ hei))− (Xk − x̂)T (Xk − x̂)

)
|Fn

]
.
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We have seen that |E[(Xk − x̂)T (Xk − x̂)|Fn]| ≤ Z, thus using conditional dominated convergence, we
are allowed to interchange the limit and the expectation:

∂

∂x̂i
E[(Xk − x̂)T (Xk − x̂)|Fn]

= E

[
lim
h→0

1

h

(
(Xk − (x̂+ hei))

T
(Xk − (x̂+ hei))− (Xk − x̂)T (Xk − x̂)

)
|Fn

]
= E

[
∂

∂x̂i
(Xk − x̂)T (Xk − x̂)|Fn

]
.

Thus we conclude:

∇x̂E[(Xk − x̂)T (Xk − x̂)|Fn] = E[∇x̂(Xk − x̂)T (Xk − x̂)|Fn]

= 2E[Xk − x̂|Fn]

= 2(E[Xk|Fn]− x̂) = 0.

Clearly, this only holds when x̂ = E[Xk|Fn].

We need a preliminary result before we can prove Theorem 2.1.2.

Lemma 2.1.6 (Bayes Theorem). [6] LetX,Y ∈ Rd be two continuous random variables with probability
densities fX(x) and fY (y), respectively. We assume fY (y) > 0. Let fX,Y (x, y) be the joint probability
function of the random vector (X,Y ). Then,

fX|Y (x) =
fY |X(y)fX(x)

fY (y)
.

This result is proven at the end of the section.

Proof of Theorem 2.1.2. We start with the derivation of the prior. Using the definition of conditional
probability functions, we find:

fXk|Fk−1
(x) =

fXk,Fk−1
(x, y)

fFk−1
(y)

=

∫
fXk−1,Xk,Fk−1

(w, x, y) dw
fFk−1

(y)

=

∫
fXk|Xk−1,Fk−1

(x)fXk−1|Fk−1
(w)fFk−1

(y) dw
fFk−1

(y)

=

∫
fXk|Xk−1,Fk−1

(x)fXk−1|Fk−1
(w) dw.

Using that conditioningXk onXk−1 and Fk−1 is the same as only conditioning onXk−1, because Fk−1

has been used to calculate Xk−1, so Fk−1 is redundant information, gives:

fXk|Fk−1
(x) =

∫
fXk|Xk−1

(x)fXk−1|Fk−1
(w) dw.

We derive the probability function of the posterior. Using Bayes theorem, see Lemma 2.1.6, we obtain:

fXk|Fk
(x) = fXk|Yk,Fk−1

(x)

=
fYk|Xk,Fk−1

(y)fXk|Fk−1
(x)

fYk|Fk−1
(y)

.

Again, using that conditioning on Fk−1 is redundant when conditioning on Xk, gives:

fXk|Fk
(x) =

fYk|Xk
(y)fXk|Fk−1

(x)

fYk|Fk−1
(y)

.
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We use the definition of conditional probability to rewrite fYk|Fk−1
(y) as follows:

fYk|Fk−1
(y) =

∫
fXk,Yk|Fk−1

(x, y) dx

=

∫
fYk|Xk,Fk−1

(y)fXk|Fk−1
(x) dx.

Using that Fk−1 is redundant when conditioning on Xk gives:

fYk|Fk−1
(y) =

∫
fYk|Xk

(y)fXk|Fk−1
(x) dx.

Proof of Theorem 2.1.4. It is possible to derive the mean and covariance matrix of fXk|Fk−1
by writing

out the integral of the prior in Theorem 2.1.2. This is, however, a tedious process and can be done
more easily by using basic rules of conditional expectations. We use the latter method. We start with
deriving the mean of the prior:

x̂k|k−1 = E[Xk|Fk−1] = E[Fk−1Xk−1 +Wk−1|Fk−1]

= Fk−1E[Xk−1|Fk−1] + E[Wk−1|Fk−1]

= Fk−1x̂k−1|k−1.

We continue to derive the covariance matrix of the prior:

Pk|k−1 = Var(Xk|Fk−1) = Var(Fk−1Xk−1 +Wk−1|Fk−1)

= Fk−1Var(Xk−1|Fk−1)F
T
k−1 + Var(Wk−1|Fk−1) + 2Fk−1Cov(Xk−1,Wk−1|Fk−1)

= Fk−1Pk−1|k−1F
T
k−1 +Qk−1.

This concludes the claim.

We proceed with the proof of Theorem 2.1.5, whose main idea is to derive the moment generating
function of the posterior that we found in Theorem 2.1.2. Since the moment generating function deter-
mines the distribution of a random variable uniquely, this will then give us the distribution, mean and
covariance matrix. The proof of Theorem 2.1.5 is split over two subsections. Subsection 2.1.1 will give
the definition and some basic properties of moment generating functions. Subsection 2.1.2 will then
use moment generating functions to derive the distribution of the posterior.

Before moving on to Subsection 2.1.1, we prove the preliminary result.

Proof of Lemma 2.1.6. We prove this lemma via the definition of conditional density functions:

fX|Y (x) =
fX,Y (x, y)

fY (y)

=

fX,Y (x,y)
fX(x) fX(x)

fY (y)

=
fY |X(y)fX(x)

fY (y)
.

This concludes the claim.

2.1.1. Moment generating functions

This subsection contains the definition of moment generating functions and some basic properties. We
start with the definition of a moment generating function.
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Definition 2.1.7 (Moment generating function). [11] Let X be a random vector on Rn and t a vector on
Rn. Then the moment generating function is defined as:

MX(t) = E
[
e⟨t,X⟩

]
,

provided that the right-hand side exists on some open neighbourhood of 0.

Remark 2.1.8. For the moment generating function to exist, there must be a δ ∈ R such that if ∥t∥ < δ

then E
[
e⟨t,X⟩

]
< ∞. The name of the moment generating function comes from the fact that if the

moment generating function of a random variable exists on an open neighbourhood around 0, then all
its moments are finite and can be computed by partial differentiation.

Some basic properties of the moment generating function will be shown in Lemma 2.1.9.

Lemma 2.1.9 (Basic properties of moment generating functions). Let X1 and X2 be two independent
Rn valued random variables for which the moment generating functions MX1

and MX2
exist on an

open neighbourhood of 0. Let A : Rn → Rn be a linear map and let b ∈ Rn. Then for t ∈ Rn in the
neighbourhood where MX1

and MX2
exist:

(a) MAX1+b(t) = e⟨t,b⟩MX1
(AT t), where AT is the transpose of A,

(b) MX1+X2
(t) = MX1

(t)MX2
(t).

Let X = (X1, X2) and t = (t1, t2) with t1 ∈ Rn and t2 ∈ Rn in the neighbourhood where MX1 and MX2

exist, respectively. Then:

(c) MX(t) = MX1
(t1)MX2

(t2).

This result is proven later in this section.

A very important and useful property of the moment generating function is that the moment generating
function uniquely determines the distribution. We state the relevant theorem without proof.

Theorem 2.1.10 (Uniqueness theorem for moment generating functions). [11] If for some δ > 0,
MX(t) = E[e⟨t,X⟩] < ∞ and MX(t) = MY (t) for all t such that ∥t∥ < δ, then X and Y have the
same distribution.

In Theorem 2.1.2 we derived the probability functions for the prior and posterior. These probability
functions are conditional probability functions and therefore, it is necessary to know the dynamics of
conditional moment generating functions.

Lemma 2.1.11 (Conditional moment generating function). Let (X,Y ) be a random vector with moment
generating function MX,Y (t1, t2) = E[e⟨t1,X⟩+⟨t2,Y ⟩] for t1 ∈ Rn and t2 ∈ Rm with n = dim(X) and
m = dim(Y ), such that the moment generating functionMX,Y exits. We define the probability measure
Pt1 for Y as

dPt1

dP
(y) :=

MX|Y=y(t1)

MX(t1)
. (2.4)

Then the moment generating function MY,t1 of Y under the measure Pt1 is given by:

MY,t1(t2) := Et1 [e⟨t2,Y ⟩] =
MX,Y (t1, t2)

MX(t1)
. (2.5)

This lemma is proven below. To find the distribution of Xk|Fk, we will use Equation (2.4) and Equation
(2.5) and we therefore need themoment generating functions of the vector (Xk, Yk) and ofXk. Because
we assumed the noise to be Gaussian, Xk and Yk have a normal distribution and we thus need the
moment generating function of a normal distribution. The moment generating function of a normal
distribution will be derived in Lemma 2.1.12.
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Lemma 2.1.12 (Moment generating function of normal distribution). The following three statements
are true:

(a) Let X ∼ N(0, 1), then MX(t) = e 1
2 t

2 for t ∈ R.
(b) Let X ∼ N(0, I) be a vector of n independent standard normal random variables, then MX(t) =

e 1
2∥t∥

2 for t ∈ Rn.
(c) Let X ∼ N(µ,Σ) on Rn. Then for t ∈ Rn,

MX(t) = E
[
e⟨t,X⟩

]
= e⟨t,µ⟩+

1
2 ⟨t,Σt⟩.

This lemma is proven at the end of this section. Below we prove the results of this section.

Proof of Lemma 2.1.9. We prove the above statements as follows:

(a) MAX1+b(t) = E
[
e⟨t,AX1+b⟩

]
= E

[
e⟨t,b⟩e⟨AT t,X1⟩

]
= e⟨t,b⟩E

[
e⟨AT t,X1⟩

]
= e⟨t,b⟩MX1

(AT t),

(b) MX1+X2
(t) = E

[
e⟨t,X1+X2⟩

]
= E

[
e⟨t,X1⟩e⟨t,X2⟩

]
= E

[
e⟨t,X1⟩

]
E
[
e⟨t,X2⟩

]
= MX1

(t)MX2
(t),

(c) MX(t) = E
[
e⟨t,X⟩

]
= E

[
e⟨(t1,t2),(X1,X2)⟩

]
= E

[
e⟨t1,X1⟩e⟨t2,X2⟩

]
= E

[
e⟨t1,X1⟩

]
E
[
e⟨t2,X2⟩

]
= MX1

(t1)MX2
(t2).

Proof of Lemma 2.1.11. Fix t1. By the law of total expectation,

MX,Y (t1, t2) = E
[
e⟨t1,X⟩+⟨t2,Y ⟩

]
= E

[
e⟨t1,X⟩e⟨t2,Y ⟩

]
= E

[
E
[
e⟨t1,X⟩e⟨t2,Y ⟩|Y

]]
= E

[
E
[
e⟨t1,X⟩|Y

]
e⟨t2,Y ⟩

]
= E

[
MX|Y (t1)e⟨t2,Y ⟩

]
=

E
[
MX|Y (t1)e⟨t2,Y ⟩

]
MX(t1)

MX(t1)

= Et1

[
e⟨t2,Y ⟩

]
MX(t1).

Diving both sides by MX(t1) concludes the proof.

Proof of Lemma 2.1.12. We prove the statements as follows:

(a) We use tx− 1
2x

2 = 1
2 t

2 − 1
2 (x− t)2 to obtain:

MX(t) = E
[
e⟨t,X⟩

]
=

1√
2π

∫
etxe−

1
2x

2

dx = e
1
2 t

2 1√
2π

∫
e−

1
2 (x−t)2 dx = e

1
2 t

2

.

(b) This is an immediate consequence of Lemma 2.1.9(c) and Lemma 2.1.12(a).
(c) By definition X = AY + µ with Y ∼ N(0, I) for some map A such that Σ = AAT . Note that it

is possible to write Σ = AAT because Σ is a covariance matrix. The result immediately follows
from Lemma 2.1.9 (a) and Lemma 2.1.12 (b).

This concludes the theory on moment generating functions necessary to continue the derivation of the
distribution of the posterior. The following subsection will derive this distribution.
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2.1.2. Distribution of posterior

This subsection uses the theory discussed in Subsection 2.1.1 to derive the distribution of the posterior.
To this end, the following lemma will derive the distribution of a vector (X,Y ) with similar properties to
the vector (Xk, Yk).

Lemma 2.1.13. Let X ∈ Rn and let V ∈ Rm with X ∼ N(µX ,ΣX) and V ∼ N(0,ΣV ) independent. Let
Y ∈ Rm such that Y = HX + V with H ∈ Rm × Rn a linear map. Then,(

X
Y

)
∼ N

((
µX

HµX

)
,

(
ΣX ΣXHT

HΣX HΣXHT +ΣV

))
.

This result is proven at the end of the section.

In the following lemmawewill derive the distribution of a normal random variable conditioned on another
normal random variable with a given covariance structure. This will be used as a stepping stone to
derive the distribution of Xk|Fk.

Lemma 2.1.14. Let (X,Y ) be a normal distribution with mean µ = (µX , µY ) and block-covariance
matrix Σ given by

Σ =

[
ΣX ΣX,Y

ΣY,X ΣY

]
.

Let KX,Y = ΣX,Y Σ
−1
Y . Then (X|Y = y) ∼ N(µX +KX,Y (y − µY ),ΣX −KX,Y ΣY K

T
X,Y ).

This result is proven below.

The following lemma combines Lemma 2.1.13 with Lemma 2.1.14, to obtain the mean and covariance
matrix of a conditional distribution that has the same properties as the distribution of Xk|Fk.

Lemma 2.1.15. Let X ∈ Rn be a random vector with X ∼ N(µX ,ΣX). Let Y ∈ Rm with Y = HX + V
for some linear map H ∈ Rm × Rn and V ∈ Rm a normal random variable such that V ∼ N(0,ΣV ).
Assume that X and V are independent. Then:

µX|Y=y = (I −KX,Y H)µX +KX,Y y,

ΣX|Y=y = (I −KX,Y H)ΣX(I −KX,Y H)T +KX,Y ΣV K
T
X,Y ,

where
KX,Y = ΣX,Y Σ

−1
Y = ΣXHTΣ−1

Y .

The proof of this lemma can be found at the end of this section. Finally, enough background is estab-
lished to prove Theorem 2.1.5.

Proof of Theorem 2.1.5. This result is directly obtained by applying Lemma 2.1.15 to the dynamic sys-
tem of Equation (2.1).

The auxiliary results of this section are proven below.

Proof of Lemma 2.1.13. The mean and covariance matrix of X are already given. We calculate the
mean and variance of Y :

E[Y ] = E[HX + V ] = HE[X] + E[V ] = HµX ,

Var(Y ) = Var(HX + V ) = Var(HX) + Var(V ) + 2Cov(HX,Y )

= HΣXHT +ΣV .
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What remains is the covariance between X and Y :

Cov(X,Y ) = E[(X − E[X])(Y − E[Y ])T ]

= E[XY T ]− E[XE[Y ]T ]− E[E[X]Y T ] + E[E[X]E[Y ]T ]

= E[XY T ]− E[X]E[Y ]T = E[X(HX + V )T ]− µXµT
XHT

= E[XXTHT +XV T ]− µXµT
XHT = E[XXT ]HT + E[X]E[V ]− µXµT

XHT

= ΣXHT + µXµT
XHT − µXµT

XHT = ΣXHT .

Note that Y has a normal distribution because it is a linear combination of normal random variables.
This concludes the claim.

Proof of Lemma 2.1.14. Let n = dim(X) and m = dim(Y ). Let t1 ∈ Rn and t2 ∈ Rm such that the
moment generating function MX,Y (t1, t2) = E[e⟨t1,X⟩+⟨t2,Y ⟩] exists. By Lemma 2.1.11, the moment
generating function of Y under the measure Pt1 is given by:

Et1

[
e⟨t2,Y ⟩

]
=

MX,Y (t1, t2)

MX(t1)
=

exp
[
⟨t, µ⟩+ 1

2 ⟨t,Σt⟩
]

exp
[
⟨t1, µX⟩+ 1

2 ⟨t1,ΣXt1⟩
]

=
exp

[
⟨t1, µX⟩+ ⟨t2, µY ⟩+ 1

2

(
⟨t1,ΣXt1⟩+ ⟨t1,ΣX,Y t2⟩+ ⟨t2,ΣY,Xt1⟩+ ⟨t2,ΣY t2⟩

)]
exp

[
⟨t1, µX⟩+ 1

2 ⟨t1,ΣXt1⟩
]

= exp
[
⟨t2, µY ⟩+

1

2

(
⟨t1,ΣX,Y t2⟩+ ⟨t2,ΣY,Xt1⟩+ ⟨t2,ΣY t2⟩

)]
.

Using that ΣY,X = ΣT
X,Y and thus ⟨t1,ΣX,Y t2⟩ = ⟨t2,ΣY,Xt1⟩, gives:

Et1

[
e⟨t2,Y ⟩

]
= exp

[
⟨t2, µY +ΣY,Xt1⟩+

1

2
⟨t2,ΣY t2⟩

]
.

In the last line we can recognise the moment generating function of the normal distribution. Thus
by Theorem 2.1.10, Y under the measure Pt1 has a normal distribution with mean µY + ΣY,Xt1 and
covariance ΣY . We write this distribution as fY,t1(y) = fµY +ΣY,Xt1,ΣY

(y). Equation (2.4) gives:

MX|Y=y(t1) =
dPt1

dP
(y)MX(t1)

=
fµY +ΣY,Xt1,ΣY

(y)

fµY ,ΣY
(y)

MX(t1).

Because all terms on the right are in terms of an exponential, we compute the factor of the exponential
by taking the logarithm of MX|Y=y(t1):

log(MX|Y=y(t1)) = −1

2
⟨y − µY − ΣY,Xt1,Σ

−1
Y (y − µY − ΣY,Xt1)⟩+

1

2
⟨y − µY ,Σ

−1
Y (y − µY )⟩

+ ⟨t1, µX⟩+ 1

2
⟨t1,ΣXt1⟩

= −1

2
⟨ΣY,Xt1,Σ

−1
Y ΣY,Xt1⟩+ ⟨ΣY,Xt1,Σ

−1
Y (y − µY )⟩+ ⟨t1, µX⟩+ 1

2
⟨t1,ΣXt1⟩

= ⟨t1, µX +ΣX,Y Σ
−1
Y (y − µY )⟩+

1

2
⟨t1, (ΣX − ΣX,Y Σ

−1
Y ΣY Σ

−1
Y ΣY,X)t1⟩.

Using the definition of KX,Y and that (ΣX,Y Σ
−1
Y )T = Σ−1

Y ΣY,X , gives:

log(MX|Y=y(t1)) = ⟨t1, µX +KX,Y (y − µY )⟩+
1

2
⟨t1, (ΣX −KX,Y ΣY K

T
X,Y )t1⟩.

In the last line we recognise the exponent of the moment generating function of a normal distribution
with mean µX +KX,Y (y − µY ) and variance ΣX −KX,Y ΣY K

T
X,Y . This concludes the claim.



2.1. Derivation of discrete Kalman filter 13

Proof of Lemma 2.1.15. First we derive the mean ofX|Y = y. We use that µY = HµX , which is shown
in Lemma 2.1.13. Applying Lemma 2.1.14, we find:

µX|Y=y = µX +KX,Y (y − µY ) = µX −KX,Y HµX +KX,Y y = (I −KX,Y H)µX +KX,Y y.

We continue with the covariance. By Lemma 2.1.14, we find:

ΣX|Y=y = ΣX −KX,Y ΣY K
T
X,Y .

Adding and subtracting KX,Y ΣY K
T
X,Y and using that KX,Y ΣY K

T
X,Y = KX,Y ΣY,X = ΣX,Y K

T
X,Y gives:

ΣX|Y=y = ΣX −KX,Y ΣY,X − ΣX,Y K
T
X,Y +KX,Y ΣY K

T
X,Y .

Using ΣY,X = HΣX and ΣY = HΣXHT +ΣV , which was derived in Lemma 2.1.13, gives:

ΣX|Y=y = ΣX −KX,Y HΣX − ΣXHTKT
X,Y +KX,Y HΣXHTKT

X,Y +KX,Y ΣV K
T
X,Y

= (I −KX,Y H)ΣX(I −KX,Y H)T +KX,Y ΣV K
T
X,Y .

This concludes the claim.

2.1.3. Alternative formulations of the solution of the Kalman filter

Throughout this thesis, different formulations of the Kalman filter will be used. This subsection contains
a derivation of several formulations. The following lemma states the reformulations commonly used.

Theorem 2.1.16 (Rewritten solution of Kalman filter). The solution of the Kalman filter can be rewritten
in the following way:

Prediction step:

x̂k|k−1 = Fk−1x̂k−1|k−1,

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 +Qk−1.

Update step:

x̂k|k = x̂k|k−1 +Kk(yk −Hkx̂k|k−1),

Pk|k = (I −KkHk)Pk|k−1(I −KkHk)
T +KkRkK

T
k

= (I −KkHk)Pk|k−1

= (P−1
k|k−1 +HT

k R
−1
k Hk)

−1,

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk)

−1

= Pk|kH
T
k R

−1
k . (2.6)

Note that when using the second definition of the Kalman gain, the third definition of the covariance
matrix should be used. Otherwise, the Kalman gain is needed to calculate Pk|k, while Pk|k is also
needed to calculate the Kalman gain.

To prove Theorem 2.1.16, we need a preliminary result called the Woodbury matrix identity. It is also
sometimes called the Woodbury formula, matrix inversion lemma or Sherman-Morrison-Woodbury for-
mula.

Lemma 2.1.17 (Woodbury matrix identity). The Woodbury matrix identity is given by:

(A+ UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1,

provided the above matrix products and inverses exist.
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This result is proven below.

Proof of Theorem 2.1.16. We start with deriving the second formulation of the covariance matrix Pk|k,
starting from the first:

Pk|k = (I −KkHk)Pk|k−1(I −KkHk)
T +KkRkK

T
k

= Pk|k−1 − Pk|k−1H
T
k K

T
k −KkHkPk|k−1 +KkHkPk|k−1H

T
k K

T
k +KkRkK

T
k

= (I −KkHk)Pk|k−1 − Pk|k−1H
T
k K

T
k +Kk(HkPk|k−1H

T
k +Rk)K

T
k .

Using the first definition of the Kalman gain, gives:

Pk|k = (I −KkHk)Pk|k−1 − Pk|k−1H
T
k K

T
k + Pk|k−1H

T
k (HkPk|k−1H

T
k +Rk)

−1(HkPk|k−1H
T
k +Rk)K

T
k

= (I −KkHk)Pk|k−1 − Pk|k−1H
T
k K

T
k + Pk|k−1H

T
k K

T
k

= (I −KkHk)Pk|k−1.

Next the third characterisation of the covariance matrix is derived, starting from the second formulation.
Using the first definition of the Kalman gain, we find:

Pk|k = (I −KkHk)Pk|k−1 = (I − Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk)

−1Hk)Pk|k−1

= Pk|k−1 − Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk)

−1HkPk|k−1.

Applying the Woodbury matrix identity, see Lemma 2.1.17, we find:

Pk|k = (P−1
k|k−1 +HT

k R
−1
k Hk)

−1.

We shift our focus to the Kalman gain. This derivation is based on a similar derivation in the book
written by Y. Bar-Shalom et al. [2]. To make notation easier we use Sk = HkPk|k−1H

T
k +Rk. Thus:

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk)

−1

= Pk|k−1H
T
k S

−1
k

= Pk|k−1H
T
k S

−1
k RkR

−1
k .

Adding and subtracting HkPk|k−1H
T
k to Rk, gives:

Kk = Pk|k−1H
T
k S

−1
k (HkPk|k−1H

T
k +Rk −HkPk|k−1H

T
k )R

−1
k

= Pk|k−1H
T
k S

−1
k (Sk −HkPk|k−1H

T
k )R

−1
k

= (Pk|k−1H
T
k − Pk|k−1H

T
k S

−1
k HkPk|k−1H

T
k )R

−1
k .

Using Kk = Pk|k−1H
T
k S

−1
k , we find:

Kk = (Pk|k−1H
T
k −KkHkPk|k−1H

T
k )R

−1
k

= (I −KkHk)Pk|k−1H
T
k R

−1
k .

Using the second definition of Pk|k, we obtain:

Kk = Pk|kH
T
k R

−1
k .

This concludes the claim.

Proof of Lemma 2.1.17. We prove the formula directly by multiplying both sides by A+ UCV .

(A+ UCV )(A−1 −A−1U(C−1 + V A−1U)−1V A−1)

= I − U(C−1 + V A−1U)−1V A−1 + UCV A−1 − UCV A−1U(C−1 + V A−1U)−1V A−1

= I + UCV A−1 − (U + UCV A−1U)(C−1 + V A−1U)−1V A−1

= I + UCV A−1 − UC(C−1 + V A−1U)(C−1 + V A−1U)−1V A−1

= I + UCV A−1 − UCIV A−1

= I

This concludes the claim.
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2.2. Derivation of continuous Kalman filter
This section contains a derivation of the continuous times Kalman filter. The continuous time Kalman
filter will be derived as a limit of the discrete time Kalman filter.

The derivation in this section is based on the book ‘Optimal and robust estimation’ written by F. L.
Lewis et al. [10] and the book ‘Estimation with applications to tracking and navigation’ written by Y.
Bar-Shalom et al. [2]. We consider the following continuous dynamic system:

dX(t)

dt
= A(t)X(t) +D(t)W (t), (2.7a)

Y (t) = C(t)X(t) + V (t), (2.7b)

where W : R+ → Rn and V : R+ → Rm are continuous Gaussian white noise and are independent
of each other. The intensity of W (t) is Q : R+ → Rn × Rn and the intensity of V (t) is R(t), with
R : R → Rm × Rm. Engineers use the word ‘intensity’ for the variance of Brownian noise. From
here on, ‘intensity’ will be used when the random variable is continuous and variance will be used
when the random variable is discrete. Note that A,C and D are continuous linear functions for fixed
t. A : R+ → Rn × Rn, C : R+ → Rm × Rn, D : R+ → Rn × Rn. X : R+ → Rn and Y : R+ → Rm are
continuous random variables.

Theorem 2.2.1 derives the solution of the continuous time Kalman filter.

Theorem 2.2.1. The solution to the dynamic system given in Equation (2.7) is:

dx̂(t)
dt

= A(t)x̂(t) + P (t)C(t)TR(t)−1[y(t)− C(t)x̂(t)]

= A(t)x̂(t) +K(t)[y(t)− C(t)x̂(t)],

dP (t)

dt
= A(t)P (t) + P (t)A(t)T +D(t)Q(t)D(t)T − P (t)C(t)TR(t)−1C(t)P (t)

= A(t)P (t) + P (t)A(t)T +D(t)Q(t)D(t)T −K(t)C(t)P (t)

= A(t)P (t) + P (t)A(t)T +D(t)Q(t)D(t)T −K(t)R(t)K(t)T ,

K(t) = P (t)C(t)TR(t)−1.

To prove this theorem, two auxiliary results are needed. Lemma 2.2.2 discretises the system given
in Equation (2.7). Then Lemma 2.2.4 finds the discrete Kalman solution to the discretised system of
Lemma 2.2.2. Theorem 2.2.1 is proven by taking the limit over the time step size of the solution of
Lemma 2.2.4. It is also possible to derive the continuous Kalman filter directly, but this is not shown in
this work.

Lemma 2.2.2. Discretising the system with time step length∆ given by Equation (2.7) gives the follow-
ing dynamic system:

X(tk) = (I +A (tk−1)∆)X(tk−1) + W̃ (tk−1),

Y (tk−1) = C(tk−1)X(tk−1) + Ṽ (tk−1),
(2.8)

with W̃ (tk−1) = ∆D(tk−1)W (tk−1) and Ṽ (tk−1) = 1
∆

∫ tk−1+∆

tk−1
V (τ) dτ . The covariance of W̃ and Ṽ

are then given b:

Q̃(tk−1) = Cov(W̃ (tk−1)) = ∆D(tk−1)Q(tk−1)D(tk−1)
T ,

R̃(tk−1) = Cov(Ṽ (tk−1)) =
1

∆
R(tk−1),

respectively.

This lemma will be proven at the end of this subsection.
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Remark 2.2.3. It may seem contradictory that Cov(W̃ (tk−1)) = ∆D(tk−1)Q(tk−1)D(tk−1)
T while

Cov(Ṽ (tk−1)) =
1
∆R(tk−1) as these differ a factor∆2. It may also seem strange that as∆ gets smaller,

the covariance of the noise R̃(t) grows. Since V (t) is discretised by averaging over an interval, the
longer the interval, the closer the average will be to zero (since the noise is centred around zero).
Therefore, by averaging over a smaller interval (∆ goes to zero), the average will be further from zero.
This is reflected in an increasing variance, see Figure 2.1.

W (t) is discretised by the Euler Maruyama method, which is the stochastic extension of the Euler
method or the first order Taylor expansion. W̃ (tk) is the accumulated noise of W (t) over an interval of
length∆, because the noise has an accumulative effect on the state variable. By integrating overW (tk),
W̃ (tk) accounts for all the noise in the interval of length ∆. The integral over W (t) is approximated by
multiplying W (tk) with ∆. When ∆ goes to zero, the error of this approximation goes to zero. When
∆ goes to zero, the area of ∆W (tk) also decreases. Thus W̃ (t) decreases, which means that the
variance of W̃ (t) also decreases. For a visual interpretation, see Figure 2.1.

Lemma 2.2.4. When applying the Kalman filter to the system given in Equation (2.8) we find:

Prediction step:

x̂(tk|tk−1) = (I +A(tk−1)∆)x̂(tk−1|tk−1),

P (tk|tk−1) = (I +A(tk−1)∆)P (tk−1|tk−1)(I +A(tk−1)∆)T +∆D(tk−1)Q(tk−1)D(tk−1)
T .

Update step:

x̂(tk|tk) = x̂(tk|tk−1) +K(tk)[y(tk)− C(tk)x̂(tk|tk−1)],

P (tk|tk) = (I −K(tk)C(tk))P (tk|tk−1),

K(tk) = P (tk|tk−1)C(tk)
T

(
C(tk)P (tk|tk−1)C(tk)

T +
R(tk)

∆

)−1

.

Figure 2.1: This figure shows the discretisation of the process and measurement noise. All figures show continuous time
Gaussian white noise in blue in the background with the red dots representing the discrete approximation of the continuous
noise. The process noise is discretised by approximating the integral over the the Euler Maruyama discretisation, which is
shown in figure a) and b). Figure a) shows the discretisation with ∆ = 0.5 and figure b) uses ∆ = 0.1. It is clear that the
variance of the discrete process noise decreases when ∆ decreases. Figure c) and d) show the discretisation of the

measurement noise with ∆ = 0.5 and ∆ = 0.1, respectively. The measurement noise is discretised by calculating the mean
over intervals of length ∆. It is clear that the variance of the noise increases when ∆ decreases.

This result is proven below. We have enough background to prove Theorem 2.2.1 by taking the limit
over the time step size of the solution given in Lemma 2.2.4.
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Proof of Theorem 2.2.1. We start by taking the limit of ∆ → 0 of the Kalman gain of the discretised
solution from Lemma 2.2.4:

lim
∆→0

K(tk) = lim
∆→0

P (tk|tk−1)C(tk−1)
T

(
C(tk−1)P (tk|tk−1)C(tk−1)

T +
R(tk−1)

∆

)−1

.

Taking ∆ out of the brackets gives:

lim
∆→0

K(tk) = lim
∆→0

∆P (tk|tk−1)C(tk−1)
T
(
∆C(tk−1)P (tk|tk−1)C(tk−1)

T +R(tk−1)
)−1

= 0.

To obtain the differential equation for the a priori covariance, the difference equation of the a priori
covariance matrix is derived. We then take the limit of ∆ → 0 of the difference equation to obtain the
differential equation. To this end, we rewrite the expression for P (tk|tk−1) by working out the brackets
in the definition of P (tk|tk−1):

P (tk|tk−1) = P (tk−1|tk−1) + ∆[A(tk−1)P (tk−1|tk−1) + P (tk−1|tk−1)A(tk−1)
T

+D(tk−1)Q(tk−1)D(tk−1)
T +∆A(tk−1)P (tk−1|tk−1)A(tk−1)

T ].

Using the expression for P (tk−1|tk−1), we obtain:

P (tk|tk−1) = (I −K(tk−1)C(tk−1))P (tk−1|tk−2) + ∆[A(tk−1)(I −K(tk−1)C(tk−1))P (tk−1|tk−2)

+ (I −K(tk−1)C(tk−1))P (tk−1|tk−2)A(tk−1)
T +∆D(tk−1)Q(tk−1)D(tk−1)

T

+∆A(tk−1)(I −K(tk−1)C(tk−1))P (tk−1|tk−2)A(tk−1)].

We subtract P (tk−1|tk−2) from both sides and divide both sides by ∆ to find:

1

∆
(P (tk|tk−1)− P (tk−1|tk−2)) = − 1

∆
K(tk−1)C(tk−1)P (tk−1|tk−2)

+A(tk−1)(I −K(tk−1)C(tk−1))P (tk−1|tk−2) + (I −K(tk−1)C(tk−1))P (tk−1|tk−2)A(tk−1)
T

+D(tk−1)Q(tk−1)D(tk−1)
T +∆A(tk−1)(I −K(tk−1)C(tk−1))P (tk−1|tk−2)A(tk−1)

T .

Working out the brackets gives:

1

∆
(P (tk|tk−1)− P (tk−1|tk−2)) = − 1

∆
K(tk−1)C(tk−1)P (tk−1|tk−2) +A(tk−1)P (tk−1|tk−2)

−A(tk−1)K(tk−1)C(tk−1)P (tk−1|tk−2) + P (tk−1|tk−2)A(tk−1)
T

−K(tk−1)C(tk−1)P (tk−1|tk−2)A(tk−1)
T +D(tk−1)Q(tk−1)D(tk−1)

T . (2.9)

Before taking the limit of ∆ → 0 of this difference equation, we calculate the limit of 1
∆K(tk) when

∆ → 0:

lim
∆→0

1

∆
K(tk) =

1

∆
P (tk|tk−1)C(tk)

T

(
C(tk)P (tk|tk−1)C(tk)

T +
R(tk)

∆

)−1

.

Taking ∆ out of the brackets gives:

lim
∆→0

1

∆
K(tk) = lim

∆→0
P (tk|tk−1)C(tk)

T (∆C(tk)P (tk|tk−1)C(tk)
T +R(tk))

−1

= P (tk|tk−1)C(tk)
TR(tk)

−1.

Using lim∆→0 K(tk) = 0 and the above result in Equation (2.9) and taking the limit of ∆ to zero, gives:

dP (t)

dt
= lim

∆→0

1

∆
(P (tk|tk−1)− P (tk−1|tk−2))

= A(t)P (t) + P (t)A(t)T +D(t)Q(t)D(t)T − P (t)C(t)TR(t)−1C(t)P (t).

Note that we can drop the subscripts k and k + 1 of t because A, C, D, P, R and Q are all continuous
functions. We left out notation to indicate that this is the differential equation for the a priori covariance



2.2. Derivation of continuous Kalman filter 18

because we will show that the differential equation for the a priori and a posteriori covariance matrices
are equal. To do this we take a look at the difference between the a posteriori and the a priori covariance:

P (tk|tk)− P (tk|tk−1) = (I −K(tk)C(tk))P (tk|tk−1)− P (tk|tk−1)

= −K(tk)C(tk)P (tk|tk−1)

= −K(tk)C(tk)
(
(I +A(tk−1)∆)P (tk−1|tk−1)(I +A(tk−1)∆)T

+∆D(tk−1)Q(tk−1)D(tk−1)
T
)

= −K(tk)C(tk)P (tk−1|tk−1)−∆K(tk)C(tk)P (tk−1|tk−1)A(tk−1)
T

−∆K(tk)C(tk)A(tk−1)P (tk−1|tk−1)−∆2K(tk)C(tk)A(tk−1)P (tk−1|tk−1)A(tk−1)
T

−∆K(tk)C(tk)D(tk−1)Q(tk−1)D(tk−1)
T .

We take the limit over this difference with ∆ → 0. Because lim∆→0 K(tk) = 0 we find:

lim
∆→0

P (tk|tk)− P (tk|tk−1) = 0.

From this, we conclude that the differential equation for the a priori and the a posteriori covariance are
the same. We can rewrite the differential equation of the covariance matrix to find the expression for
K(t):

dP (t)

dt
= A(t)P (t) + P (t)A(t)T +D(t)Q(t)D(t)T − P (t)C(t)TR(t)−1C(t)P (t)

= A(t)P (t) + P (t)A(t)T +D(t)Q(t)D(t)T − P (t)C(t)TR(t)−1R(t)R(t)−1C(t)P (t)

= A(t)P (t) + P (t)A(t)T +D(t)Q(t)D(t)T −K(t)R(t)K(t)T ,

with
K(t) = P (t)C(t)TR(t)−1.

We continue the proof by finding the differential equation for the state estimate. We do this in a similar
way to the covariance matrix. So we start with rewriting the formula for x̂(tk|tk) by working out the
brackets:

x̂(tk|tk) = (I +A(tk−1)∆)x̂(tk−1|tk−1) +K(tk)[y(tk)− C(tk)(I +A(tk−1)∆)x̂(tk−1|tk−1)]

= x̂(tk−1|tk−1) + ∆A(tk−1)x̂(tk−1|tk−1) +K(tk)[y(tk)− C(tk)x̂(tk−1|tk−1)]

−∆K(tk)C(tk)A(tk−1)x̂(tk−1|tk−1).

We subtract x̂(tk−1|tk−1) from both sides and divide by ∆ to obtain:

1

∆
(x̂(tk|tk)− x̂(tk−1|tk−1)) = A(tk−1)x̂(tk−1|tk−1) +

1

∆
K(tk)[y(tk)− C(tk)x̂(tk−1|tk−1)]

−K(tk)C(tk)A(tk−1)x̂(tk−1|tk−1).

We take the limit ∆ → 0 using lim∆→0 K(tk) = 0 and lim∆→0
1
∆K(tk) = P (t)C(t)TR(t)−1, we find:

dx̂(t)
dt

= A(t)x̂(t) + P (t)C(t)TR(t)−1[y(t)− C(t)x̂(t)] (2.10)

We can again drop the subscripts of t because all functions involved are continuous. Finally, we show
that the a priori and a posteriori differential equations of state are equal by calculating the difference
between the a priori and a posteriori estimate:

x̂(tk|tk)− x̂(tk|tk−1) = x̂(tk|tk−1) +K(tk)[y(tk)− C(tk)x̂(tk|tk−1)]− (I +A(tk−1)∆)x̂(tk−1|tk−1)

= (I +A(tk−1)∆)x̂(tk−1|tk−1) +K(tk)[y(tk)− C(tk)(I +A(tk−1)∆)x̂(tk−1|tk−1)]

− (I +A(tk−1)∆)x̂(tk−1|tk−1)

= K(tk)[y(tk)− C(tk)(I +A(tk−1)∆)x̂(tk−1|tk−1)]

= K(tk)y(tk)−K(tk)C(tk)x̂(tk−1|tk−1)−∆K(tk)C(tk)A(tk−1)x̂(tk−1|tk−1).
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Taking the limit of ∆ → 0 to zero over this difference and using lim∆→0 K(tk) = 0 gives:

lim
∆→0

(x̂(tk|tk)− x̂(tk|tk−1)) = 0.

This concludes the proof.

Below we prove the auxiliary results.

Sketch of proof of Lemma 2.2.2. We will discretise Equation (2.7a) using the Euler-Maruyama method.
This gives:

X(tk) = (I +A(tk−1)∆)X(tk−1) + W̃ (tk−1),

Y (tk−1) = C(tk−1)X(tk−1) + Ṽ (tk−1).

We derive W̃ (tk−1) and Ṽ (tk−1) and their perspective covariances. W̃ (tk−1) is discretised by the Euler
Maruyama method along with the rest of the state equation. So we find:

W̃ (tk−1) = lim
∆→0

∫ tk−1+∆

tk−1

(I +A(τ)∆)D(τ)W (τ) dτ.

When ∆ is sufficiently small I +A(τ)∆ tends to the identity matrix, so we find:

W̃ (tk−1) ≈ lim
∆→0

∫ tk−1+∆

tk−1

D(τ)W (τ) dτ

≈ ∆D(tk−1)W (tk−1).

We continue to derive the covariance of W̃ (tk−1):

Q̃(tk−1) = E[W̃ (tk−1)W̃ (tk−1)
T ]

= E

[(∫ tk−1+∆

tk−1

D(τ1)W (τ1) dτ1
)(∫ tk−1+∆

tk−1

D(τ2)W (τ2) dτ2
)T]

.

Using Fubini’s theorem, we find:

Q̃(tk−1) =

∫ tk−1+∆

tk−1

∫ tk−1+∆

tk−1

E[D(τ1)W (τ1)(D(τ2)W (τ2))
T ] dτ1 dτ2

=

∫ tk−1+∆

tk−1

∫ tk−1+∆

tk−1

D(τ1)Q(τ1)D(τ2)
T δ(τ1 − τ2) dτ1 dτ2

=

∫ tk−1+∆

tk−1

D(τ)Q(τ)D(τ)T dτ

≈ ∆D(tk−1)Q(tk−1)D(tk−1)
T ,

where δ(t) is the Dirac-delta function. Note that Q̃(tk−1) is the covariance, not the intensity because the
dynamic system is discrete. Equation (2.7b) is discretised by taking the average over a small interval,
so Ṽ (tk−1) is discretised in the same manner. We thus obtain:

Ṽ (tk−1) = lim
∆→0

1

∆

∫ tk−1+∆

tk−1

V (τ) dτ.

We continue to derive the covariance of Ṽ (tk−1):

R̃(tk−1) = E[Ṽ (tk−1)Ṽ (tk−1)
T ]

= E

[( 1

∆

∫ tk−1+∆

tk−1

V (τ1) dτ1
)( 1

∆

∫ tk−1+∆

tk−1

V (τ2) dτ2
)T]

.
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Applying Fubini’s theorem, we obtain:

R̃(tk−1) =
1

∆2

∫ tk−1+∆

tk−1

∫ tk−1+∆

tk−1

E[V (τ1)V (τ2)
T ] dτ1 dτ2

=
1

∆2

∫ tk−1+∆

tk−1

∫ tk−1+∆

tk−1

R(τ1)δ(τ1 − τ2) dτ1 dτ2

=
1

∆2

∫ tk−1+∆

tk−1

R(τ) dτ ≈ 1

∆
R(tk−1).

Proof of Lemma 2.2.4. The solution is directly obtained by applying the discrete Kalman filter to the
dynamic system in Equation (2.8).



3
H∞ filter

This chapter introduces the H∞ filter. Unlike the Kalman filter, the H∞ filter does not require any
statistical properties of the noise. The cost of this relaxation is that the H∞ filter does not provide an
optimal estimate. However, it does ensure that the maximum error is bounded. The H∞ filter involves
a trade-off: either the maximum error can be kept small, resulting in a large error covariance of the
estimate, or the error covariance can be reduced at the expense of a larger maximum error. Since the
H∞ filter does not rely on knowledge of noise characteristics, it is particularly useful in situations where
error covariances are unknown. One example is estimating a location using satellites, where the extent
to which the satellite signal is disturbed by cosmic radiation is uncertain.

Section 3.1 explains the background of the discrete H∞ filter through the perspective of game theory.
Section 3.2 gives a brief introduction into the continuous H∞ filter. Section 3.3 compares the H∞
filter with the Kalman filter. In this section, it becomes apparent that the H∞ filter can be viewed as
a generalisation of the Kalman filter. Finally, in Section 3.4 the Kalman filter is derived for non zero
mean noise in an attempt to view the H∞ filter as a Kalman filter with the mean of the noise shifted. It
becomes clear that it is not correct to interpret the H∞ filter that way.

3.1. Discrete H∞ filter
This section will explain the discreteH∞ filter using game theory. TheH∞ filter requires no assumptions
on the statistics of the noise terms. The H∞ filter minimises the worst case estimation error, whereas
the Kalman filter minimises the mean squared error. The consequence is that the H∞ filter is not
necessarily the optimal filter in the least square sense. We consider the following dynamic system:

xk = Fk−1xk−1 + wk−1,

yk−1 = Hk−1xk−1 + vk−1,
(3.1)

where wk ∈ Rn and vk ∈ Rm are the noise terms. These noise terms do not need to satisfy any
conditions. The noise terms can, for example, be deterministic, they may have a non-zero mean and
the covariance matrices need not be known. Small letters are used instead of capital letters to indicate
that these noise terms are not necessarily random variables. xk ∈ Rn is the state variable. yk ∈ Rm

represents the measurements. Fk ∈ Rn×Rn describes the model dynamics. Hk ∈ Rm×Rn provides a
linear connection between the state variable and the measurements. The H∞ filter estimates a linear
combination of the state, zk = Lkxk. Lk ∈ Rn × Rn can be any full rank matrix. It is also possible to
choose Lk = I to estimate the state itself. Lk can be used to estimate any linear combination of the
state. This may be useful when it is already known that the variable of interest is a linear combination
of the state. We will explain the H∞ filter according to the game theory approach, as in [14]. To this

21
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end, we define the cost function:

J1 =

∑N−1
k=0 ∥zk − ẑk∥2Sk

∥x0 − x̂0∥2P−1
0

+
∑N−1

k=0

(
∥wk∥2Q−1

k

+ ∥vk∥2R−1
k

) , (3.2)

where P0, Sk, Qk ∈ Rn × Rn and Rk ∈ Rm × Rm are all symmetric positive definite matrices. The
vector norm is defined as ∥x∥2A = xTAx. The idea of the game with the above cost function is that our
opponent chooses the starting point x0 and the noise terms vk and wk, with the goal to maximise J1
and therefore zk − ẑk. By choosing a large vk and wk, zk − ẑk will be large. However, since vk and wk

are in the denominator, our opponent can not choose vk and wk arbitrarily large. We try to minimise J1
and therefore zk − ẑk. Thus this game can be written down as the following minimax problem:

min
ẑk

max
wk,vk,x0

J1. (3.3)

Note that P0, Sk, Qk and Rk are chosen in accordance with a specific problem. If information about
the noise terms is known, this information can be incorporated into these matrices. If, for example, the
covariance would be known and the noise is zero mean, then P0,Qk andRk should be chosen to be the
covariance matrices. It is unfortunately not tractable to minimise J1 directly, therefore a performance
bound is chosen such that J1 < 1

θ , where θ > 0 is the performance bound. Using this performance
bound gives the following variant on Equation (3.2) and Equation (3.3):

J = −1

θ
∥x0 − x̂0∥2P−1

0
+

N−1∑
k=0

[
∥zk − ẑk∥2Sk

− 1

θ

(
∥wk∥2Q−1

k

+ ∥vk∥2R−1
k

)]
< 1, (3.4)

the minimax problem then becomes:
J⋆ = min

ẑk
max

wk,vk,x0

J.

Since yk = Hkxk + vk we find vk = yk −Hkxk. So the minimax problem can be rewritten as:

J⋆ = min
ẑk

max
wk,yk,x0

−1

θ
∥x0 − x̂0∥2P−1

0
+

N−1∑
k=0

[
∥zk − ẑk∥2Sk

− 1

θ

(
∥wk∥2Q−1

k

+ ∥yk −Hkxk∥2R−1
k

)]
. (3.5)

The solution to this minimax problem is the H∞ filter. We will not derive the solution, but we will state
it in the following theorem.

Theorem 3.1.1 (H∞ filter). The solution to the dynamic system given in Equation (3.1) by theH∞ filter
is given by:

Prediction step:

x̂k|k−1 = Fk−1x̂k−1|k−1,

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 +Qk−1.

Update step:

S̄k = LT
k SkLk,

x̂k|k = x̂k|k−1 +Kk(yk −Hkx̂k|k−1),

Pk|k = Pk|k−1[I − θS̄kPk|k−1 +HT
k R

−1
k HkPk|k−1]

−1,

Kk = Pk|k−1[I − θS̄kPk|k−1 +HT
k R

−1
k HkPk|k−1]

−1HT
k R

−1
k . (3.6)

provided that at each time step the following holds:

Pk|k−1 − θS̄k +HT
k R

−1
k Hk ≻ 0. (3.7)
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Remark 3.1.2. Even though the noise terms are allowed to be deterministic, the covariance matrices
Qk and Rk cannot be the zero matrix, because they need to be positive definite. So, even if the noise
is deterministic, the noise is modelled with a small variance.

The condition in Equation (3.7) ensures that the solution found is a minimum for ẑk. In the proof of
Theorem 3.1.1, see [14], another condition arises to ensure that the H∞ filter is a maximum for yk.
This condition is:

Rk −HkPk|kH
T
k ≻ 0.

In the derivation given in [14], this condition is considered only relevant for academic purposes. Do
note however, that when this additional condition is not satisfied, the H∞ filter is strictly speaking not a
solution to the optimisation problem in Equation (3.5).

In theH∞ filter, it is not necessary to know the statistics of the noise. In case these statistics are known,
they can be incorporated. The choice of Qk and Rk influences the quality of the filter, even though the
maximum error is bounded [16]. Qk and Rk should therefore always be tuned before using the filter.
This could in a sense be seen as estimating Qk and Rk. Of course, the tightness of the bound on
the error is dependent on the choice of θ. Choosing a large θ will lead to a tighter bound on the error,
however, this will increase the variance of the estimate. Thus there is a trade-off between the tightness
of the bound error of the estimate and the size of the variance of the estimate. Also θ can not be chosen
infinitely large because Pk|k−1 − θS̄k +HT

k R
−1
k Hk ≻ 0 needs to hold for every time step. Choosing θ

too large will violate this condition.

From a game theory perspective it is interesting to see whether is it possible to interchange theminimum
and maximum. Being allowed to switch the order of the minimum and the maximum means that it does
not matter whether our opponent or we choose our position in the game first. It is unfortunately not
possible to use the minimax theorem from von Neumann since ẑk, wk, x0 ∈ Rn and yk ∈ Rm and Rn and
Rm are not compact spaces. There is however an generalisation of the minimax theorem, which can
be found in the book ‘Convex Analysis and Variational Problems’ written by I. Ekeland and R. Téman
[4]. This generalisation gives rise to the following proposition.

Proposition 3.1.3. The minimax problem given in Equation (3.5) can be generalised in de following
way:

min
ẑk

sup
x0,wk,yk

− 1

θ
∥x0 − x̂0∥2P−1

0
+

N−1∑
k=0

[
∥zk − ẑk∥2Sk

− 1

θ

(
∥wk∥2Q−1

k

+ ∥yk −Hkxk∥2R−1
k

)]
= max

x0,wk,yk

inf
ẑk

−1

θ
∥x0 − x̂0∥2P−1

0
+

N−1∑
k=0

[
∥zk − ẑk∥2Sk

− 1

θ

(
∥wk∥2Q−1

k

+ ∥yk −Hkxk∥2R−1
k

)]
.

To prove this proposition, some definitions and a theorem are needed.

Definition 3.1.4 (Convex set). [4] Let V be a vector space. If u, v ∈ V , u and v are called the end
points of the line-segment denoted by [u, v], where

[u, v] = {λu+ (1− λ)v | 0 ≤ λ ≤ 1}.

A set A ⊂ V is convex if and only if for every pair of elements (u, v) of A the line-segment [u, v] is
contained in A.

Definition 3.1.5 (Reflexive Banach space). [4] A Banach space is a complete normed vector space.
A Banach space is reflexive if its unit ball is compact in the weak topology. This implies that every
bounded sequence admits a weakly converging subsequence.

Note that every finite dimensional normed space is a reflexive Banach space.

Definition 3.1.6 (Lower semi-continuous function). [4] A function F : V → R is said to be lower semi-
continuous on V if it satisfies the two equivalent conditions:
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(a) ∀a ∈ R, {u ∈ V |F (u) ≤ a} is closed,
(b) ∀ū ∈ V, limu→ū F (u) ≥ F (ū).

F is called upper semi-continuous if −F is lower semi-continuous. A function is continuous if it is both
upper and lower semi-continuous.

Theorem 3.1.7 (Generalisation of minimax theorem). [4] Let V and Z be two reflexive Banach spaces.
Let A ⊂ V and B ⊂ Z both convex, closed and non-empty. If the function L : A×B → R satisfies:

(a) ∀u ∈ A,w → L(u,w) is concave and upper semi-continuous,
(b) ∀w ∈ B, u → L(u,w) is convex and lower semi-continuous,

such that ∃w0 ∈ B such that:
lim
u∈A

∥u∥→∞

L(u,w0) = +∞,

and ∃u0 ∈ A such that:
lim
w∈B

∥w∥→∞

L(u0, w) = −∞.

Then L possesses at least one saddle point and

min
u∈A

sup
w∈B

L(u,w) = max
w∈B

inf
u∈A

L(u,w).

For the proof we refer to [4]. Enough background is established to prove Proposition 3.1.3.

Proof of Proposition 3.1.3. To apply Theorem 3.1.7 to the cost function of Equation (3.5) we define the
vector ck ∈ R(2n+m) as ck = [x0, wk, yk]

T . We rewrite Equation (3.5) as follows:

J⋆ = min
ẑk

max
ck

−1

θ
∥ck − ĉk∥2P̃−1

0
+

N−1∑
k=0

[
∥zk − ẑk∥2Sk

− 1

θ

(
∥ck∥2Q̃−1

k

+ ∥ck − H̃kx̃k∥2R̃−1
k

) ]
= min

ẑk
max
ck

F (ẑk, ck).

We define dm ∈ Rm as a zero vector, we also define dn ∈ Rn in the same fashion. Dnn ∈ Rn × Rn is a
zero matrix, similarly for Dmm ∈ Rm × Rm, Dnm ∈ Rn × Rm and Dmn ∈ Rm × Rn. Then,

ĉk = [x̂0, dn, dm]T , P̃0 =

 P0 Dnn Dnm

Dnn Dnn Dnm

Dmn Dmn Dmm

 ,

H̃k = [Dnn, Dnn,Hk]
T , Q̃k =

Dnn Dnn Dnm

Dnn Qk Dnm

Dmn Dmn Dmm

 ,

R̃k =

Dnn Dnn Dnm

Dnn Dnn Dnm

Dmn Dmn Rk

 .

If we equip Rn and R(2n+m) with any matrix norm, then Rn and R(2n+m) are reflexive Banach spaces.
Then clearly, ∀ck ∈ R(2n+m) F (ẑk, ck) is convex and continuous and therefore lower semi-continuous.
Similarly, ∀ẑk ∈ Rn F (ẑk, ck) is concave and continuous and therefore upper semi-continuous. Note
that this only holds if θ is indeed positive. Let c0 ∈ R(2n+m) be the zero vector. Then,

lim
ẑk∈Rn

∥ẑk∥→∞

F (ẑk, c0) = +∞,
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and of course if ẑ0 ∈ Rn is the zero vector, then:

lim
ck∈R(2n+m)

∥ck∥→∞

F (ẑ0, ck) = −∞.

Thus we conclude with Theorem 3.1.7 that:

min
ẑk

sup
ck

F (ẑk, ck) = max
ck

inf
ẑk

F (ẑk, ck),

⇔ min
ẑk

sup
x0,wk,yk

−1

θ
∥x0 − x̂0∥2P−1

0
+

N−1∑
k=0

[
∥zk − ẑk∥2Sk

− 1

θ

(
∥wk∥2Q−1

k

+ ∥yk −Hkxk∥2R−1
k

)]
= max

x0,wk,yk

inf
ẑk

−1

θ
∥x0 − x̂0∥2P−1

0
+

N−1∑
k=0

[
∥zk − ẑk∥2Sk

− 1

θ

(
∥wk∥2Q−1

k

+ ∥yk −Hkxk∥2R−1
k

)]
.

Note that it is not possible to replace the supremum with a maximum and the infimum with a minimum,
because Rn and R(2n+m) are not compact.

3.2. Continuous H∞ filter
There also exists a continuous version of theH∞ filter. This section will briefly introduce the continuous
H∞ filter. Note that the H∞ filter is not applied in its continuous form. It is, however, very useful to
analyse the filter. We do not derive the continuous filter. The filter is cited from [14].

We consider the following continuous dynamic system:

dx
dt

= A(t)x(t) + w(t),

y(t) = C(t)x(t) + v(t),

z(t) = L(t)x(t).

(3.8)

for t ∈ [0, T ], with T . Note again that we use small letters for x : R → Rn, w : R → Rn, y : R → Rm

and v : R → Rm, because these are not necessarily continuous random variables, and might be
continuous functions instead. We again estimate a linear combination of the state, where z : R → Rn

with L : R → Rn×Rn. A and C are continuous linear functions. A : R → Rn×Rn and C : R → Rm×Rn.
We define a continuous version of the cost function:

J1 =

∫ T

0
∥z(t)− ẑ(t)∥2S(t) dt

∥x(0)− x̂(0)∥2
P−1

0

+
∫ T

0
(∥w(t)∥2Q(t)−1 + ∥v(t)∥2R(t)−1 dt

,

where P0 ∈ Rn×Rn, S : R → Rn×Rn, Q : R → Rn×Rn and R : R → Rm×Rm. The matrices S(t), Q(t)
and R(t) must be positive definite for every t ∈ R.

In continuous time it is also not tractable to minimise J1 directly, so we set J1 < 1
θ . We can rewrite this

to:

J = −1

θ
∥x(0)− x̂(0)∥2

P−1
0

+

∫ T

0

∥z(t)− ẑ(t)∥2S(t) −
1

θ

(
∥w(t)∥2Q(t)−1 + ∥v(t)∥2R(t)−1

)
dt < 1.

The continuous H∞ gives the solution to the following optimisation problem:

J⋆ = min
ẑ(t)

max
w(t),v(t),

x0

J.

The H∞ filter is given in the following theorem.
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Theorem 3.2.1. Given the dynamic system of Equation (3.8). The H∞ filter is given by:

dx̂(t)
dt

= A(t)x̂(t) +K(t)(y(t)− C(t)x̂(t).

dP (t)

dt
= A(t)P (t) + P (t)A(t)T +Q(t)−K(t)C(t)P (t) + θP (t)L(t)TS(t)L(t)P (t),

K(t) = P (t)C(t)TR(t)−1,

ẑ(t) = L(t)x̂(t),

provided that P (t) ≻ 0 for t ∈ [0, T ].

Remark 3.2.2. Note that P (t) ≻ 0 for t ∈ [0, T ] does not automatically hold, because Q(t) and R(t) are
not necessarily the intensity of w(t) and v(t), respectively. So, Q(t) and R(t) can be chosen such that
P (t) ≻ 0 for t ∈ [0, T ] does not hold. In practice, for the H∞ filter to behave as desired the covariance
matrix calculated by the H∞ filter will be larger than the covariance matrix calculated by the Kalman
filter. This reflects the extra uncertainty added by not knowing the intensities Q(t) and R(t). Because
the covariance matrix calculated by the Kalman filter is positive definite, in practice the covariance
matrix calculated by the H∞ filter is expected to be positive definite as well.

3.3. Comparison Kalman filter and H∞ filter
In this section we compare the Kalman filter with the H∞ filter. We start comparing the discrete filters
in Subsection 3.3.1 and then move on to the continuous filters in Subsection 3.3.2.

3.3.1. Discrete filters

This subsection compares the discrete Kalman filter with the discrete H∞ filter. At first glance, it is not
clear how these two filters are related. Therefore, we rewrite the solution of the H∞ filter so that the
differences become apparent. We do so in the following lemma.

Lemma 3.3.1 (Rewritten solution of the H∞ filter). The solution of the H∞ can be rewritten in the
following way:

Prediction step:

x̂k|k−1 = Fk−1x̂k−1|k−1,

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 +Qk+1.

Update step:

S̄k = LT
k SkLk,

x̂k|k = x̂k|k−1 +Kk(yk −Hkx̂k|k−1),

Pk|k = Pk|k−1(I − θS̄kPk|k−1 +HT
k R

−1
k HkPk|k−1)

−1 (3.9a)
= (P−1

k|k−1 − θS̄k +HT
k R

−1
k Hk)

−1 (3.9b)

= (I −KkHk)(P
−1
k|k−1 − θS̄k)

−1, (3.9c)

Kk = Pk|k−1[I − θS̄kPk|k−1 +HT
k R

−1
k HkPk|k−1]

−1HT
k R

−1
k (3.9d)

= Pk|kH
T
k R

−1
k (3.9e)

= (P−1
k|k−1 − θS̄k)

−1HT
k [(Hk(P

−1
k|k−1 − θS̄k)

−1HT
k +Rk]

−1, (3.9f)

provided that at each time step the following hold:

Pk|k−1 − θS̄k +HT
k R

−1
k Hk ≻ 0.

Note that the second definition of Pk|k only goes together with the second definition of Kk.



3.3. Comparison Kalman filter and H∞ filter 27

This lemma is proven later in this subsection.

Proposition 3.3.2. Given the dynamic system in Equation (3.1), withwk ∼ N(0, Qk) and vk ∼ N(0, Rk),
whereQk andRk are covariancematrices, sending θ → 0, makes theH∞ filter equivalent to the Kalman
filter.

This proposition is proven later in this section.

Remark 3.3.3. The Kalman filter does not include the matrix Sk like theH∞ filter does. The role of this
matrix is eliminated when sending θ → 0 however, the role of this matrix is different in the Kalman filter
and H∞ filter. In the H∞ filter, the choice of Sk influences the outcome, but as θ → 0 all terms with Sk

disappear, making the choice of Sk irrelevant in the limit. The Kalman filter minimises the Sk-weighted
sum for any symmetric matrix Sk, as shown in Lemma 3.3.4, which explains why the choice of the
matrix Sk is irrelevant in the limit.

Note that sending θ → 0 essentially sets the bound on the maximum error to infinity. So the Kalman
filter can be seen as a H∞ filter where the covariance matrices of the noise are known and there is
no guaranteed bound on the estimation error [16]. However, the Kalman filter is still the best (linear)
estimator.

Lemma 3.3.4. Let Sk ∈ Rn × Rn be a symmetric matrix. Assume that x̂TSkx̂ is integrable. Then the
solution to the following optimisation problem:

x̂k|n = argmin
x̂

E[∥Xk − x̂∥2Sk
|Fn] = argmin

x̂
E[(Xk − x̂)TSk(Xk − x̂)|Fn]

is the conditional mean E[Xk|Fn].

This lemma is proven below. We prove the results of this subsection, starting with the proof of Lemma
3.3.1.

Proof of Lemma 3.3.1. The reformulations are proven one by one, starting with Equation (3.9b).

Proof of Equation (3.9b): Using the Woodbury matrix identity, see Lemma 2.1.17, we find:

Pk|k = Pk|k−1(I − θS̄kPk|k−1 +HT
k R

−1
k HkPk|k−1)

−1

= Pk|k−1

(
(I − θS̄kPk|k−1)

−1

− (I − θPk|k−1)
−1HT

k (Rk +HkPk|k−1(I − θPk|k−1)
−1HT

k )
−1HkPk|k−1(I − θPk|k−1)

−1
)

= Pk|k−1(I − θS̄kPk|k−1)
−1 − Pk|k−1(I − θS̄kPk|k−1)

−1HT
k ×

(Rk +HkPk|k−1(I − θS̄kPk|k−1)
−1HT

k )
−1HkPk|k−1(I − θS̄kPk|k−1)

−1.

Again, using the Woodbury matrix identity, see Lemma 2.1.17, gives:

Pk|k = ((Pk|k−1(I − θS̄kPk|k−1)
−1)−1 +HT

k R
−1
k Hk)

−1

= ((I − θS̄kPk|k−1)P
−1
k|k−1 +HT

k R
−1
k Hk)

−1

= (P−1
k|k−1 − θS̄k +HT

k R
−1
k Hk)

−1.

To derive Equation (3.9c), we need Equation (3.9f). So we continue to rewrite the Kalman gain.

Proof of Equation (3.9e): Using Equation (3.9a), we obtain:

Kk = Pk|k−1[I − θS̄kPk|k−1 +HT
k R

−1
k HkPk|k−1]

−1HT
k R

−1
k

= Pk|kH
T
k R

−1
k .

Proof of Equation (3.9f): Using Equation (3.9b), we find:

Kk = (P−1
k|k−1 − θS̄k +HT

k R
−1
k Hk)

−1HT
k R

−1
k .
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Applying the Woodbury matrix identity, see Lemma 2.1.17, gives:

Kk =
(
(P−1

k|k−1 − θS̄k)
−1

− (P−1
k|k−1 − θS̄k)

−1HT
k [Rk +Hk(P

−1
k|k−1 − θS̄k)

−1HT
k ]

−1Hk(P
−1
k|k−1 − θS̄k)

−1
)
HT

k R
−1
k

=
(
(P−1

k|k−1 − θS̄k)
−1HT

k

− (P−1
k|k−1 − θS̄k)

−1HT
k [Rk +Hk(P

−1
k|k−1 − θS̄k)

−1HT
k ]

−1Hk(P
−1
k|k−1 − θS̄k)

−1HT
k

)
R−1

k .

Wemultiply (P−1
k|k−1−θS̄k)

−1HT
k with I = [Rk+Hk(P

−1
k|k−1−θS̄k)

−1HT
k ]

−1[Rk+Hk(P
−1
k|k−1−θS̄k)

−1HT
k ],

to obtain:

Kk =
(
(P−1

k|k−1 − θS̄k)
−1HT

k [Rk +Hk(P
−1
k|k−1 − θS̄k)

−1HT
k ]

−1[Rk +Hk(P
−1
k|k−1 − θS̄k)

−1HT
k ]

− (P−1
k|k−1 − θS̄k)

−1HT
k [Rk +Hk(P

−1
k|k−1 − θS̄k)

−1HT
k ]

−1Hk(P
−1
k|k−1 − θS̄k)

−1HT
k

)
R−1

k .

We take (P−1
k|k−1 − θS̄k)

−1HT
k [Rk +Hk(P

−1
k|k−1 − θS̄k)

−1HT
k ]

−1 out of the brackets, to find:

Kk =
(
(P−1

k|k−1 − θS̄k)
−1HT

k [Rk +Hk(P
−1
k|k−1 − θS̄k)

−1HT
k ]

−1[Rk +Hk(P
−1
k|k−1 − θS̄k)

−1HT
k

−Hk(P
−1
k|k−1 − θS̄k)

−1HT
k ]
)
R−1

k

=
(
(P−1

k|k−1 − θS̄k)
−1HT

k [Rk +Hk(P
−1
k|k−1 − θS̄k)

−1HT
k ]

−1Rk

)
R−1

k

= (P−1
k|k−1 − θS̄k)

−1HT
k [Rk +Hk(P

−1
k|k−1 − θS̄k)

−1HT
k ]

−1.

Proof of Equation (3.9c): Using the Woodbury matrix identity, see Lemma 2.1.17, we obtain:

(P−1
k|k−1 − θS̄k +HT

k R
−1
k Hk)

−1

= (P−1
k|k−1 − θS̄k)

−1 − (P−1
k|k−1 − θS̄k)

−1HT
k (Rk +Hk(P

−1
k|k−1 − θS̄k)

−1HT
k )

−1Hk(P
−1
k|k−1 − θS̄k)

−1

=
(
I − (P−1

k|k−1 − θS̄k)
−1HT

k (Rk +Hk(P
−1
k|k−1 − θS̄k)

−1HT
k )

−1Hk

)
(P−1

k|k−1 − θS̄k)
−1.

Using Equation (3.9f), we find:

(P−1
k|k−1 − θS̄k +HT

k R
−1
k Hk)

−1 = (I −KkHk)(P
−1
k|k−1 − θS̄k)

−1.

This concludes the claim.

Proof of Proposition 3.3.2. The reformulation of the H∞ filter in Lemma 3.3.1 makes it clear that given
the statistics of the noise are known and used in the H∞ filter, there are two differences between the
Kalman filter and the H∞ filter. First, the term θS̄kPk|k−1 in the calculation of the covariance matrix
Pk|k, which is removed by sending θ → 0. Second, the condition Pk|k−1 − θS̄k +HT

k R
−1
k Hk ≻ 0. This

condition is satisfied for every time step when sending θ → 0, because both Pk|k−1 and HT
k R

−1
k Hk are

positive definite matrices. Thus sending θ → 0 eliminates the difference between the Kalman filter and
the H∞ filter.

Proof of Lemma 3.3.4. We prove this theorem by setting the gradient of the mean square error to zero.
Before deriving the gradient of the mean squared error, we find a bound for |(Xk − x̂)T (Xk − x̂)|:

0 ≤ |(Xk − x̂)TSk(Xk − x̂)| = |XT
k SkXk −XT

k Skx̂− x̂TSkXk + x̂TSkx̂|.

Note that XT
k Skx̂ ∈ R, so it is equal to its transpose:

0 ≤ |XT
k SkXk − 2x̂TSkXk + x̂TSkx̂|

= XT
k SkXk + 2|x̂TSkXk|+ x̂TSkx̂. (3.10)
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We bring |x̂TSkXk| to the left, to obtain:

|x̂TSkXk| ≤
1

2
(XT

k SkXk + x̂TSkx̂).

We use the above expression in Equation (3.10), to find:

|(Xk − x̂)TSk(Xk − x̂)| ≤ XT
k SkXk +XT

k SkXk + x̂TSkx̂+ x̂TSkx̂

= 2XT
k SkXk + 2x̂TSkx̂.

We define Z = 2XT
k SkXk +2x̂TSkx̂. Since we assumed that x̂TSkx̂ is integrable and Xk has a normal

distribution, we conclude that Z is an integrable random variable which bounds |(Xk − x̂)TSk(Xk − x̂)|
from above. We continue to rewrite the gradient of the mean square error. By the definition of the
gradient:

∇x̂E[(Xk − x̂)TSk(Xk − x̂)|Fn] =


∂

∂x̂1
E[(Xk − x̂)TSk(Xk − x̂)|Fn]

...
∂

∂x̂n
E[(Xk − x̂)TSk(Xk − x̂)|Fn]

 .

To avoid long derivations in matrix notation, we show that it is possible to interchange the partial deriva-
tive with respect to xi and the expectation. To this end, we define ei = [0, . . . , 0, 1, 0, . . . , 0] where the 1
is on the ith position. Then using the definition of partial derivatives:

∂

∂x̂i
E[(Xk − x̂)TSk(Xk − x̂)|Fn]

= lim
h→0

1

h

(
E[(Xk − (x̂+ hei))

TSk(Xk − (x̂+ hei))|Fn]− E[(Xk − x̂)TSk(Xk − x̂)|Fn]
)

= lim
h→0

E

[
1

h

(
(Xk − (x̂+ hei))

T
Sk(Xk − (x̂+ hei))− (Xk − x̂)TSk(Xk − x̂)

)
|Fn

]
.

We have seen that |E[(Xk − x̂)TSk(Xk − x̂)|Fn]| ≤ Z, thus using conditional dominated convergence,
we are allowed to interchange the limit and the expectation:

∂

∂x̂i
E[(Xk − x̂)TSk(Xk − x̂)|Fn]

= E

[
lim
h→0

1

h

(
(Xk − (x̂+ hei))

T
Sk(Xk − (x̂+ hei))− (Xk − x̂)TSk(Xk − x̂)

)
|Fn

]
= E

[
∂

∂x̂i
(Xk − x̂)TSk(Xk − x̂)|Fn

]
.

Thus we conclude:

∇x̂E[(Xk − x̂)TSk(Xk − x̂)|Fn] = E[∇x̂(Xk − x̂)TSk(Xk − x̂)|Fn]

= 2SkE[Xk − x̂|Fn]

= 2Sk(E[Xk|Fn]− x̂) = 0.

Clearly, this only holds when x̂ = E[Xk|Fn]. Thus, the Kalman filter minimizes the Sk weighted sum for
any choice of a symmetric matrix Sk.

3.3.2. Continuous filters

After comparing the discrete Kalman filter and the discrete H∞ filter, this subsection compares the
continuous version of these two filters. We used a slightly different dynamical system for the continuous
Kalman filter in Section 2.2 than for the continuous H∞ filter in Section 3.2. To compare the solutions
of the filters, we will use the dynamical system given in Equation (3.8). So we use D(t) = I in the
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dynamic system of Equation (2.7). The continuous Kalman filter then becomes:

dx̂(t)
dt

= A(t)x̂(t) +K(t)(y(t)− C(t)x̂(t),

dP (t)

dt
= A(t)P (t) + P (t)A(t)T +Q(t)−K(t)C(t)P (t),

K(t) = P (t)C(t)TR(t)−1.

It is now immediately clear that the difference between the continuous Kalman filter and the continuous
H∞ filter is the term θP (t)L(t)TS(t)L(t)P (t) in the differential equation for the covariance matrix. So
we see again that sending θ → 0 in the continuousH∞ filter gives the continuous Kalman filter provided
the known statistics of the noise are used in the H∞ filter.

Note that when the known statistics of the noise are used in the H∞ filter, P (t) is positive definite for
every t ∈ [0, T ]. This is because P (t) is positive definite in the Kalman filter, and the corresponding
P (t) in the H∞ is larger than or equal to its Kalman filter counterpart, making it positive definite as well.

3.4. Kalman filter with non zero mean noise
This section attempts to formulate a different interpretation of the H∞ filter by viewing it as a Kalman
filter with non zero mean noise. The idea for this interpretation arises because the terms containing
the measurement noise in the cost function of the H∞ filter looks like the relative entropy between two
random normal variables. The relative entropy in this context can be seen as the error that arises from
using a normal distribution with a shifted mean instead of a normal distribution with zero mean, with the
same covariance matrix. What remains of the cost function is similar to the cost function used in the
Kalman filter. This could mean that the H∞ filter is a Kalman filter where the noise is allowed to have a
shifted mean, for which the relative entropy compensates. However, this interpretation is shown to be
incorrect. Thereto, the definition of relative entropy is given and the relative entropy of two Gaussian
random variables is derived. Then the Kalman filter is derived for non zero mean noise. We start with
the definition of relative entropy, also called the Kullback-Leibler divergence or distance.

Definition 3.4.1 (Relative entropy). [3] Let p and q be two probability distributions defined on the same
support, with p absolutely continuous with respect to q, meaning p(x) = 0 whenever q(x) = 0. The
relative entropy between distribution p(x) and q(x) is then defined as:

DKL(p∥q) = Ep

[
log p(x)

q(x)

]
.

Intuitively, relative entropy can be seen as the error of using distribution q instead of distribution p, while
the actual distribution is p. This will then be denoted by DKL(p∥q). Note that the relative entropy is
always non-negative and only 0 if p = q. However, the relative entropy is not a metric, because it is not
symmetric and it does not satisfy the triangle inequality.

To continue, we need the relative entropy between two Gaussian random variables. This will be derived
in the following lemma.

Lemma 3.4.2 (Relative entropy for two Gaussian random variables). Suppose we have two normal
distributionsX1 ∼ N(µ1,Σ1) andX2 ∼ N(µ2,Σ2). WithX1, X2, µ1, µ2 ∈ Rn and Σ1,Σ2 ∈ Rn×Rn. The
relative entropy between these two Gaussian distributions is:

DKL(X1∥X2) =
1

2

(
tr(Σ−1

2 Σ1)− n+ (µ2 − µ1)
TΣ−1

2 (µ2 − µ1) + log
(
detΣ2

detΣ1

))
.

If Σ1 = Σ2 then,
DKL(X1∥X2) =

1

2
∥µ2 − µ1∥2Σ−1

1
.
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This lemma is proven below.

Remember the cost function of the H∞ filter, see Equation (3.4):

J = −1

θ
∥x0 − x̂0∥2P−1

0
+

N−1∑
k=0

[
∥zk − ẑk∥2Sk

− 1

θ

(
∥wk∥2Q−1

k

+ ∥vk∥2R−1
k

)]
.

The last term − 1
θ

(
∥wk∥2Q−1

k

+ ∥vk∥2R−1
k

)
can remind us of the relative entropy between two Gaussian

random variables with the same covariance matrix and different mean. The term 1
θ∥wk∥2Q−1

k

would
then be the relative entropy between Z1 ∼ N(0, Qk) and Z2 ∼ N(wk, Qk). 1

θ∥vk∥
2
R−1

k

would then
be the relative entropy between Z3 ∼ N(0, Rk) and Z4 ∼ N(vk, Rk). Note that wk and vk are not
random variables in this context, but constants. The intuitive interpretation of this reformulation would
be that the H∞ filter is essentially a Kalman filter where the mean of the noise is shifted. The term
− 1

θ

(
∥wk∥2Q−1

k

+ ∥vk∥2R−1
k

)
would then compensate for mistakenly using that the noise is zero mean

as the Kalman filter assumes. θ would then determine the degree of compensation for the shifted
mean of the noise. We will derive the Kalman filter where the noise has a shifted mean to check this
interpretation.

Theorem 3.4.3. Given the following dynamic system:

Xk = FkXk−1 +Wk−1,

Yk−1 = Hk−1Xk−1 + Vk−1,

where Xk ∈ Rn is the state vector; Fk ∈ Rn × Rn is the state transition matrix; Wk ∈ Rn is shifted
Gaussian white noise with covariance matrix Qk ∈ Rn × Rn; Yk ∈ Rm represents the measurement at
time k; Hk ∈ Rm × Rn provides a linear connection between the state vector and the measurement
vector; Vk ∈ Rm is shifted Gaussian white noise with covariance matrix Rk ∈ Rm × Rm. Wk and Vk

are assumed to be independent. Furthermore, E[Wk] = wk; E[Vk] = vk; Qk = Var(Wk) = E[WkW
T
k ]−

E[Wk]E[Wk]
T = Q̃k − wkw

T
k and Rk = Var(Vk) = E[VkV

T
k ] − E[Vk]E[Vk]

T = R̃k − vkv
T
k , with wk ∈ Rn;

vk ∈ Rm and Q̃k ∈ Rn × Rn; R̃k ∈ Rm × Rm.

The Kalman filter is given by:

Prediction step:

x̂k|k−1 = Fk−1x̂k−1|k−1 + vk,

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 +Qk.

Update step:

x̂k|k = x̂k|k−1 +Kk(yk − (Hkx̂k|k−1 + wk)),

Pk|k = [I −KkHk]Pk|k−1,

Kk = Pk|k−1H
T
k [HkPk|k−1H

T
k +Rk]

−1.

Remark 3.4.4. Note that for this interpretation to work, the noise should have a normal distribution and
the covariance matrices should be known. So this interpretation could only work for a specific case of
theH∞ filter. It is, however, immediately clear that this solution has a different structure than the solution
of the H∞ filter for any choice of θ. In the H∞ filter, Pk|k−1 is replaced by (P−1

k|k−1 − θSk)
−1. Shifting

the mean of the noise in the Kalman filter does not result in the same change. In the adjusted Kalman
filter, Pk|k−1 remains unchanged. The terms that are changed by shifting the mean of the noise in the
Kalman filter are x̂k|k−1 and x̂k|k. We must therefore conclude that viewing 1

θ

(
∥wk∥2Q−1

k

+∥vk∥2R−1
k

)
as a

relative entropy to compensate for using the Kalman filter without a shifted mean of the measurement
noise it not correct.

We prove the results in this section below, starting with the proof of Lemma 3.4.2.
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Proof of Lemma 3.4.2. We write out DKL(X1∥X2) when X1 ∼ N(µ1,Σ1) and X2 ∼ N(µ2,Σ2):

DKL(X1∥X2) = EX1

[
log

(2π)−n/2 det(Σ1)
−1/2 exp(− 1

2 (x− µ1)
TΣ−1

1 (x− µ1))

(2π)−n/2 det(Σ2)−1/2 exp(− 1
2 (x− µ2)TΣ

−1
2 (x− µ2))

]

= EX1

[
1

2

(
log

(
det(Σ2)

det(Σ1)

)
− (x− µ1)

TΣ−1
1 (x− µ1) + (x− µ2)

TΣ−1
2 (x− µ2)

)]

=
1

2

(
log

(
det(Σ2)

det(Σ1)

)
− EX1 [(x− µ1)

TΣ−1
1 (x− µ1)] + EX1 [(x− µ2)

TΣ−1
2 (x− µ2)]

)
.

(3.11)

Let X ∼ N(µ,Σ) with X,µ ∈ Rn and Σ ∈ Rn × Rn. For a matrix A ∈ Rn × Rn and a vector b ∈ Rn we
have

E[(X − b)TA(X − b) = E[XTAX −XTAb− bTAX + bTAb].

Since XTAb ∈ R it is equal to its transpose. Thus:

E[(X − b)TA(X − b) = E[XTAX − 2XTAb+ bTAb]

= E[XTAX]− E[2XT ]Ab+ bTAb

= µTAµ+ tr(AΣ)− 2µTAb+ bTAb

= (µ− b)TA(µ− b) + tr(AΣ).

Using the above in Equation (3.11), we find:

DKL(X1∥X2) =
1

2

(
log

(
det(Σ2)

det(Σ1)

)
− (µ1 − µ1)

TΣ−1
1 (µ1 − µ1) + tr(Σ−1

1 Σ1)

+ (µ2 − µ1)
TΣ−1

2 (µ2 − µ1) + tr(Σ−1
2 Σ1)

=
1

2

(
log

(
det(Σ1)

det(Σ2)

)
− tr(I) + (µ2 − µ1)

TΣ−1
2 (µ2 − µ1) + tr(Σ−1

2 Σ1)
)

=
1

2

(
tr(Σ−1

2 Σ1)− n+ (µ2 − µ1)
TΣ−1

2 (µ2 − µ1) + log
(
detΣ2

detΣ1

))
.

Setting Σ1 = Σ2, we find:

DKL(X1∥X2) =
1

2

(
tr(I)− n+ (µ2 − µ1)

TΣ−1
1 (µ2 − µ1) + ln

(
detΣ1

detΣ1

))
=

1

2

(
n− n+ (µ2 − µ1)

TΣ−1
1 (µ2 − µ1) + ln(1)

)
=

1

2
(µ2 − µ1)

TΣ−1
1 (µ2 − µ1)

=
1

2
∥µ2 − µ1∥2Σ−1

1
.

This concludes the proof.

Proof of Theorem 3.4.3. This proof is a modified version of the method used in [2]. We start with deriv-
ing the expression for the conditional mean:

x̂k|k−1 = E[Xk|Fk−1] = E[Fk−1Xk−1 +Wk−1|Fk−1]

= Fk−1E[Xk−1|Fk−1] + E[Wk−1|Fk−1]

= Fk−1x̂k−1|k−1 + wk−1.
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We derive the conditional error covariance Pk|k−1:

Pk|k−1 = E[(Xk − x̂k|k−1)(Xk − x̂k|k−1)
T |Fk−1] = E[(Fk−1(Xk−1 − x̂k−1|k−1) +Wk−1 − wk−1)×

(Fk−1(Xk−1 − x̂k−1|k−1) +Wk−1 − wk−1)
T |Fk−1]

= Fk−1E[(Xk−1 − x̂k−1|k−1)(Xk−1 − x̂k−1|k−1)
T |Fk−1]F

T
k−1

+ Fk−1E[Xk−1 − x̂k−1|k−1|Fk−1]E[(Wk−1 − wk−1)
T |Fk−1]

+ E[Wk−1 − wk−1|Fk−1]E[(Xk−1 − x̂k−1|k−1)
T |Fk−1]F

T
k−1

+ E[(Wk−1 − wk−1)(Wk−1 − wk−1)
T |Fk−1].

Using that E[Xk−1 − x̂k−1|k−1|Fk−1] = 0 gives:

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 + E[Wk−1W

T
k−1]− E[Wk−1]w

T
k−1 − wk−1E[W

T
k−1] + wk−1w

T
k−1

= Fk−1Pk−1|k−1F
T
k−1 + Q̃k−1 − wk−1w

T
k−1

= Fk−1Pk−1|k−1F
T
k−1 +Qk−1.

We derive the estimator for yk conditioned on Fk−1:

ŷk|k−1 = E[Yk|Fk−1] = E[HkXk + Vk|Fk−1]

= Hkx̂k|k−1 + vk.

We derive the covariance of the error of the measurement estimation:

Bk = E[(Yk − ŷk|k−1)(Yk − ŷk|k−1)
T |Fk−1]

= E[(Hk(Xk − x̂k|k−1) + Vk − vk)(Hk(Xk − x̂k|k−1) + Vk − vk)
T |Fk−1]

= Hk−1E[(Xk − x̂k|k−1)(Xk − x̂k|k−1)
T |Fk−1]H

T
k

+HkE[(Xk − x̂k|k−1)|Fk−1]E[(Vk − vk)
T |Fk−1]

+ E[Vk − vk|Fk−1]E[(Xk − x̂k|k−1)
T |Fk−1]H

T
k−1 + E[(Vk − vk)(Vk − vk)

T |Fk−1]

= HkPk|k−1H
T
k + E[VkV

T
k ]− E[Vk]v

T
k − vkE[V

T
k ] + vkv

T
k

= HkPk|k−1H
T
k + R̃k − vkv

T
k

= HkPk|k−1H
T
k +Rk.

Finally, we derive the cross covariance between the error of the state estimation and the error of the
measurement estimation:

E[(Xk − x̂k|k−1)(Yk − ŷk|k−1)
T |Fk−1] = E[(Xk − x̂k|k−1)(Hk(Xk − x̂k|k−1) + Vk − vk)

T |Fk−1]

= E[(Xk − x̂k|k−1)(Xk − x̂k|k−1)
T |Fk−1]H

T
k + E[Xk − x̂k|k−1|Fk−1]E[(Vk − vk)

T ]

= Pk|k−1H
T
k ,

which leads to the following Kalman gain:

Kk = E[(Xk − x̂k|k−1)(Yk − ŷk|k−1)
T |Fk−1]B

−1
k

= Pk|k−1H
T
k B

−1
k

= Pk|k−1H
T
k [HkPk|k−1H

T
k +Rk]

−1.

This concludes the proof.



4
Covariance Intersection

Up until now, we have only included one measurement source in the dynamic systems. In this chapter,
we add another measurement source. The Kalman filter can also be applied to multiple measurement
sources provided that all correlations between these sources are known. However, in practice these
correlations are often not known. There exist multiple methods that calculate a state estimate when
the correlations between measurement sources are not known. This chapter describes one possible
method, namely covariance intersection.

Section 4.1 provides an introduction to covariance intersection. Covariance intersection is essentially a
linear combination between two partial estimates. Covariance intersection is consistent, which means
that the method does not underestimate the covariance of the estimate. The formal definition of con-
sistency is given in Section 4.2. The consistency of covariance intersection is proven by S. J. Julier
and J. K. Uhlmann. This proof contains two issues. First, it does not use conditional expectations
even though the estimates made by the Kalman filter are conditional expectations. Second, Julier and
Uhlmann’s proof assumes that the partial estimates are all consistent. This assumption is neither trivial
nor proven. Section 4.2 rewrites the proof to include conditional expectations where appropriate and
discusses the assumption made in this proof. A reformulation of covariance intersection is presented in
Section 4.3. This reformulation makes it possible to translate the fusion step of covariance intersection
into the continuous Kalman filter. In Chapter 5 it will be shown that this reformulation can easily be
added to the structure of the H∞ filter.

4.1. Introduction to covariance intersection
We consider the following dynamic system with two measurement sources A and B:

Xk+1 = FkXk +Wk,

Yk = HkXk + Vk,
(4.1)

with

Yk =

[
Y A
k

Y B
k

]
, Vk =

[
V A
k

V B
k

]
,

Hk =

[
HA

k

HB
k

]
, Rk =

[
RA

k ΣAB
k

ΣBA
k RB

k

]
,

(4.2)

where Xk ∈ Rn is the random state vector; Fk ∈ Rn × Rn is the state transition matrix, which can
describe the physics underlying the process that is modelled; Wk ∈ Rn is white noise with the following
distribution: Wk ∼ N(0, Qk), with Qk ∈ Rn × Rn; Wk can be used to compensate for factors not
included in the linear combination of the state variable. Y A

k ∈ Rm represents the measurements from

34
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source A at time k; HA
k ∈ Rm × Rn provides a linear connection between the state vector and the

measurement vector for measurement source A; V A
k ∈ Rm is Gaussian white measurement noise, so:

V A
k ∼ N(0, RA

k ), with RA
k ∈ Rm × Rm. Measurement source B is allowed to have different dimensions,

so Y B
k ∈ Rq, HB

k ∈ Rq × Rn, V B
k ∈ Rq, V B

k is also Gaussian white noise, so V B
k ∼ N(0, RB

k ), with
RB

k ∈ Rq × Rq. ΣAB
k = (ΣBA

k )T ∈ Rm × Rq represents the cross-covariance between V A
k and V B

k . Wk

is assumed to be independent from both V A
k and V B

k . Note that it is possible to add as many sources
of measurements as desired, but for the sake of simplicity we use two measurement sources.

If all matrices are known, the Kalman filter can be applied as seen in Chapter 2. Unfortunately, ΣAB
k

is often not known in practice. One possible solution is the H∞ filter, which can be found in Chapter
3. Another solution to this problem is provided by covariance intersection, which was first suggested
by J. K. Uhlmann in his PhD thesis [15]. Covariance intersection consists of two steps which calculate
an alternative update step for the Kalman filter, without knowing the full covariance matrix between the
measurement sources:

1. Partial update steps are calculated by applying the Kalman filter with a partial covariance matrix
for each measurement source separately.

2. These estimates are fused together using a linear combination. This step requires the optimisa-
tion of the constant that controls the linear combination.

The details of covariance intersection are given in Definition 4.1.1. In the rest of this chapter, we will
use the following sigma algebras:

Fn = σ(Y A
1 , Y B

1 , . . . , Y A
n , Y B

n ), (4.3a)
FA

n = σ(Fn−1, Y
A
n ), (4.3b)

FB
n = σ(Fn−1, Y

B
n ). (4.3c)

In words, Fn contains information from the measurement sources A and B up until and including time
n. FA

n contains the information of both measurement sources up until and including time n − 1 and
additionally contains information about the measurement from source A at time n. FB

n has the same
interpretation as FA

n except that information from measurement source B is available at time n.

Definition 4.1.1 (Covariance intersection). Given the dynamic system of Equation (4.1) with unknown
cross correlationsΣAB

k = (ΣBA
k )T . Let (x̂CI

k|k−1, P
CI
k|k−1) be an a priori estimate of the mean and variance

of the random variableXk. We define the following partial a posteriori estimate for measurement source
A, using the sigma algebra FA

n as described in Equation (4.3b):

x̂A
k|k = E[Xk|FA

k ] = x̂CI
k|k−1 +KA

k (yAk −HA
k x̂CI

k|k−1),

PA
k|k = E[(Xk − x̂A

k|k)(Xk − x̂A
k|k)

T |FA
k ]

= ((PCI
k|k−1)

−1 + (HA
k )T (RA

k )
−1HA

k )−1,

KA
k = PA

k|k(H
A
k )T (RA

k )
−1.

(4.4)

Note that this is the standard Kalman update step except that all information on measurement source
B is left out. An analogous partial a posteriori estimate is calculated for measurement source B, using
FB

n as described in Equation (4.3c). Then these two partial a posteriori estimates are fused in the
following way:

(PCI
k|k)

−1 = ω(PA
k|k)

−1 + (1− ω)(PB
k|k)

−1, (4.5a)

x̂CI
k|k = PCI

k|k(ω(P
A
k|k)

−1x̂A
k|k + (1− ω)(PB

k|k)
−1x̂B

k|k), (4.5b)

with
ω = argmin

ω
ϕ(χ(ω, PCI

k|k−1, x̂k|k−1, yk,Hk, R̃k)) ∈ [0, 1], (4.6)

where R̃k = [RA
k , R

B
k ]

T , ϕ : Rn × Rn → R is some measure and χ maps its input to a matrix of size
Rn × Rn.

Figure 4.1 depicts a schematic representation of the covariance intersection algorithm.
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Remark 4.1.2. The literature chooses χ such that χ(ω, PCI
k|k−1, x̂k|k−1, yk,Hk, R̃k) = PCI

k|k . Remark
4.3.6 discusses the possibility of different choices for χ. There is no consensus in the literature on
which measure for ϕ is best. [9] claims that the Kalman filter with covariance intersection applied to it
converges as long as ω is optimised for every time step, ensuring that the updated estimate is smaller
than or equal to the previous estimate. Define C = χ(ω, PCI

k|k−1, x̂k|k−1, yk,Hk, R̃k). Common choices
for ϕ include:

• ϕ(C) = det(C) [15],
• ϕ(C) = tr(C) [7],
• ϕ(C) = ∥C∥ [9].

It is not clear which choice for ϕ should be preferred, except that the trace and matrix norms are convex
functions with respect to ω guaranteeing a unique minimum [7]. The determinant is neither concave
nor convex, but is still used.

4.2. Consistency of covariance intersection
Covariance intersection is claimed to be consistent, which means that the covariance matrix of the esti-
mate is ‘large enough’, thereby mitigating the risk of overconfidence in the algorithm. This section gives
the formal definition of consistency. The consistency of covariance intersection is proven by S. J. Julier
and J. K. Uhlmann. This section contains a rewritten version of their proof so that it includes conditional
expectations where appropriate. This section also highlights and discusses the assumptions made in
this proof. The contents of this section are loosely based on [5] and [7].

Definition 4.2.1. Given x ∈ Rn, Σ ∈ Rn × Rn a positive definite matrix, and F a sigma algebra. The
estimate (x̂,Σ) is called consistent for the random variable X|F if:

Σ ⪰ E[(X − x̂)(X − x̂)T |F ], (4.7)

where ⪰ means that the left-hand side minus the right-hand side is a positive (semi-)definite matrix.

Remark 4.2.2. According to bias-variance decomposition:

E[(X − x̂)(X − x̂)T |F ] = ΣX + (x̂− E[X|F ])(x̂− E[X|F ])T ,

where ΣX = E[(X − E[X|F ])(X − E[X|F ])T |F ]. Using this in Equation (4.7) gives:

Σ ⪰ ΣX + (x̂− E[X|F ])(x̂− E[X|F ])T . (4.8)

Remark 4.2.3. Note that an estimate (x̂k|k, Pk|k−1) made by the Kalman filter, when all assumptions
are satisfied, is always consistent for Xk|Fk. This follows directly from x̂k|k = E[Xk|Fk] and Pk|k =
E[(Xk − E[Xk|Fk])(Xk − E[Xk|Fk])

T |Fk], as seen in Chapter 2.

The following theorem proves the consistency of covariance intersection, provided that the partial a
priori estimates are consistent.

Theorem 4.2.4 (Consistency of covariance intersection). Given the partial a posteriori estimates
(x̂A

k|k, P
A
k|k) and (x̂B

k|k, P
B
k|k), as in Equation (4.4). Given an estimate by covariance intersection

(x̂CI
k|k, P

CI
k|k), as described in Definition 4.1.1. Assume that (x̂A

k|k, P
A
k|k) and (x̂B

k|k, P
B
k|k) are consistent

for the random variable Xk|Fk. If this assumption is satisfied, then (x̂CI
k|k, P

CI
k|k) is consistent for Xk|Fk

for every choice of ω ∈ [0, 1].

This theorem is proved later in this section.

Remark 4.2.5 (On the consistency of the partial a posteriori estimates). Theorem 4.2.4 uses that the
partial a posteriori estimates are consistent. Using the definition of PA

k|k, see Equation (4.5a), and the
definition of consistency, see Equation (4.7), we see that if (x̂A

k|k, P
A
k|k) is consistent forXk|Fk following

needs to hold:

PA
k|k = E[(Xk − x̂A

k|k)(Xk − x̂A
k|k)

T |FA
k ] ⪰ E[(Xk − x̂A

k|k)(Xk − x̂A
k|k)

T |Fk]. (4.9)
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We define the following random variable:

Dk = E[(Xk − x̂A
k|k)(Xk − x̂A

k|k)
T |FA

k ]− E[(Xk − x̂A
k|k)(Xk − x̂A

k|k)
T |Fk]. (4.10)

If Equation (4.9) is true, thenDk must be a non-negative random variable, which is not necessarily true.
So Equation (4.9) can not hold in general. However, we can show that E[Dk|FA

k ] = 0. Using the tower
rule we can rewrite PA

k|k as follows:

PA
k|k = E[(Xk − x̂A

k|k)(Xk − x̂A
k|k)

T |FA
k ] = E[E[(Xk − x̂A

k|k)(Xk − x̂A
k|k)

T |Fk]|FA
k ].

Using this expressing in Equation (4.10), we find:

Dk = E[E[(Xk − x̂A
k|k)(Xk − x̂A

k|k)
T |Fk]|FA

k ]− E[(Xk − x̂A
k|k)(Xk − x̂A

k|k)
T |Fk].

If we take the expectation conditioned on FA
k of Dk, then:

E[Dk|FA
k ] = E[E[(Xk − x̂A

k|k)(Xk − x̂A
k|k)

T |Fk]|FA
k ]− E[(Xk − x̂A

k|k)(Xk − x̂A
k|k)

T |Fk]|FA
k ]

= E[E[(Xk − x̂A
k|k)(Xk − x̂A

k|k)
T |Fk]|FA

k ]− E[E[(Xk − x̂A
k|k)(Xk − x̂A

k|k)
T |Fk]|FA

k ] = 0.

Based on this realisation, we formulate conjecture.

Conjecture 4.2.6. Given the partial a posteriori estimates (x̂A
k|k, P

A
k|k) and (x̂B

k|k, P
B
k|k), as in Equa-

tion (4.4). Given an estimate by covariance intersection (x̂CI
k|k, P

CI
k|k), as described in Definition 4.1.1.

(x̂A
k|k, P

A
k|k) and (x̂B

k|k, P
B
k|k) are consistent in expectation for the random variable X|Fk. This means

that, on average, the terms preventing consistency for every time step approach zero. This implies that
(x̂CI

k|k, P
CI
k|k) is consistent in expectation for the random variable Xk|Fk.

Remark 4.2.7. If this conjecture turns out to be true, covariance intersection would not be consistent
for every time step, but would be consistent over many time steps, creating consistent behaviour in
practice.

We need an auxiliary lemma to simplify the proof of Theorem 4.2.4.

Lemma 4.2.8. Let A,B ∈ Rn × Rn be two invertible matrices. Let ω ∈ (0, 1). We define:

C =
(
ωA−1 + (1− ω)B−1

)−1
.

And we define:

L = ωCA−1,

M = (1− ω)CB−1.

Then L+M = I.

Below we prove the results of this section.

Proof of Theorem 4.2.4. We first show consistency for ω = 0 and ω = 1. Let us fix ω = 0. Using the
definitions of PCI

k|k and x̂CI
k|k, given in Equations (4.5a) and Equation (4.5b) we find:

PCI
k|k = PB

k|k,

x̂CI
k|k = PCI

k|k(P
B
k|k)

−1x̂B
k|k

= x̂B
k|k.

By assumption, this estimate is consistent for the random variable Xk|Fk. A similar result can be
obtained for ω = 1. We will now prove consistency for ω ∈ (0, 1). Definition 4.2.1 gives us what we
need to show to prove the consistency of covariance intersection:

PCI
k|k ⪰ E[(Xk − x̂CI

k|k)(Xk − x̂CI
k|k)

T |Fk].
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A
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B
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CI
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step
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date step
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Kalman filter Kalman filter with CIKalman filter Kalman filter with CI

Figure 4.1: This figure shows a schematic representation of the Kalman filter on the left and covariance intersection applied to
the Kalman filter on the right. The Kalman filter starts with an a posteriori estimate for time step k − 1, (x̂k−1|k−1, Pk−1|k−1).

Using a prediction step, an a priori estimate is calculated: (x̂k|k−1, Pk|k−1). Then with the update step, an a posteriori
estimate is calculated for time step k: (x̂k|k, Pk|k). On the right it can be seen that, when applying covariance intersection to
the Kalman filter, we start with an a posteriori estimate for the mean and variance for time step k − 1: (x̂CI

k−1|k−1
, PCI

k−1|k−1
).

Using the prediction step of the Kalman filter, an a priori estimate is calculated: (x̂CI
k|k−1

, PCI
k|k−1

). Then two partial a posteriori
updates are calculated for time step k, both conditioned on one measurement source. This gives (x̂A

k|k, P
A
k|k) and

(x̂B
k−1|k−1

, PB
k−1|k−1

). Finally, these two a posteriori estimates are fused to one a posteriori estimate for time step k with the
fusion rule given in Definition 4.1.1: (x̂CI

k|k, P
CI
k|k). The horizontal arrows indicate what is needed for covariance intersection to

be consistent. This means that if Xk−1|Fk−1 is consistent for the random variable Xk−1|Fk−1, then both the prediction and
the update step should be consistent for the relevant random variables. This work only proofs the consistency of (x̂CI

k|k, P
CI
k|k),

provided that the partial estimates made by covariance intersection are consistent for the random variable Xk|Fk. This is
proven in Theorem 4.2.4.

Subtracting E[(Xk − x̂CI
k|k)(Xk − x̂CI

k|k)
T |Fk] from both sides, we find:

PCI
k|k − E[(Xk − x̂CI

k|k)(Xk − x̂CI
k|k)

T |Fk] ⪰ 0. (4.11)

For brevity we will use the following notation in this proof:

P̄CI
k|k = E[(Xk − x̂CI

k|k)(Xk − x̂CI
k|k)

T |Fk],

P̄A
k|k = E[(Xk − x̂A

k|k)(Xk − x̂A
k|k)

T |Fk],

P̄B
k|k = E[(Xk − x̂B

k|k)(Xk − x̂B
k|k)

T |Fk],

P̄AB
k|k = E[(Xk − x̂A

k|k)(Xk − x̂B
k|k)

T |Fk],

P̄BA
k|k = E[(Xk − x̂B

k|k)(Xk − x̂A
k|k)

T |Fk].

(4.12)

Using this notation we can rewrite Equation (4.11) as follows:

PCI
k|k − P̄CI

k|k ⪰ 0. (4.13)
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We will use Lemma 4.2.8 to rewrite Xk − x̂CI
k|k. To this end, define:

LCI
k = ωPCI

k|k(P
A
k|k)

−1,

MCI
k = (1− ω)PCI

k|k(P
B
k|k)

−1.
(4.14)

By Lemma 4.2.8, we know LCI
k +MCI

k = I. Using the definition for x̂CI
k|k, see Equation (4.5b), we can

rewrite Xk − x̂CI
k|k as follows:

Xk − x̂CI
k|k = (LCI

k +MCI
k )Xk − PCI

k|k(ω(P
A
k|k)

−1x̂A
k|k + (1− ω)(PB

k|k)
−1x̂B

k|k)

= (LCI
k +MCI

k )Xk − (LCI
k x̂A

k|k +MCI
k x̂B

k|k)

= LCI
k (Xk − x̂A

k|k) +MCI
k (Xk − x̂B

k|k).

Using the above in the definition of P̄CI
k|k , see Equation (4.12), we find:

P̄CI
k|k = E[(Xk − x̂CI

k|k)(Xk − x̂CI
k|k)

T |Fk]

= E[(LCI
k (Xk − x̂A

k|k) +MCI
k (Xk − x̂B

k|k))(L
CI
k (Xk − x̂A

k|k) +MCI
k (Xk − x̂B

k|k))
T |Fk].

By writing out the definitions of LCI
k and MCI

k , see Equation (4.14), we obtain:

P̄CI
k|k = E

[(
PCI
k|k
(
ω(PA

k|k)
−1(Xk − x̂A

k|k) + (1− ω)(PB
k|k)

−1(Xk − x̂B
k|k)
))

×(
PCI
k|k
(
ω(PA

k|k)
−1(Xk − x̂A

k|k) + (1− ω)(PB
k|k)

−1(Xk − x̂B
k|k)
))T

|Fk

]
.

Using the notation in Equation (4.12) and that PA
k|k and PB

k|k are symmetric, we find:

P̄CI
k|k = PCI

k|k

(
ω2(PA

k|k)
−1P̄A

k|k(P
A
k|k)

−1 + ω(1− ω)(PA
k|k)

−1P̄AB
k|k (PB

k|k)
−1

+ ω(1− ω)(PB
k|k)

−1P̄BA
k|k (PA

k|k)
−1 + (1− ω)2(PB

k|k)
−1P̄B

k|k(P
B
k|k)

−1
)
PCI
k|k .

Then the left hand side of Equation (4.13) can be rewritten as:

PCI
k|k − P̄CI

k|k = PCI
k|k − E[(Xk − x̂CI

k|k)(Xk − x̂CI
k|k)

T |Fk] = PCI
k|k − PCI

k|k

(
ω2(PA

k|k)
−1P̄A

k|k(P
A
k|k)

−1

+ ω(1− ω)(PA
k|k)

−1P̄AB
k|k (PB

k|k)
−1 + ω(1− ω)(PB

k|k)
−1P̄BA

k|k (PA
k|k)

−1

+ (1− ω)2(PB
k|k)

−1P̄B
k|k(P

B
k|k)

−1
)
PCI
k|k .

When multiplying both sides from the left and the right with (PCI
k|k)

−1, we find:

(PCI
k|k)

−1 − (PCI
k|k)

−1P̄CI
k|k(P

CI
k|k)

−1 = (PCI
k|k)

−1 − ω2(PA
k|k)

−1P̄A
k|k(P

A
k|k)

−1 − ω(1− ω)(PA
k|k)

−1P̄AB
k|k (PB

k|k)
−1

− ω(1− ω)(PB
k|k)

−1P̄BA
k|k (PA

k|k)
−1 − (1− ω)2(PB

k|k)
−1P̄B

k|k(P
B
k|k)

−1.

(4.15)

By assumption (x̂A
k|k, P

A
k|k) is a consistent estimate for Xk|Fk. Note that this assumption is not proven,

see Remark 4.2.5. If (x̂A
k|k, P

A
k|k) is a consistent estimate for Xk|Fk the following needs to hold:

PA
k|k = E[(Xk − x̂A

k|k)(Xk − x̂A
k|k)

T |FA
k ] ⪰ E[(Xk − x̂A

k|k)(Xk − x̂A
k|k)

T |Fk].

Using the definition of P̄CI
k|k , see Equation (4.12), in Equation (4.9), we find:

PA
k|k ⪰ P̄A

k|k.

Multiplying from the left and the right with (PA
k|k)

−1 gives:

(PA
k|k)

−1 ⪰ (PA
k|k)

−1P̄A
k|k(P

A
k|k)

−1.
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We find a similar expression for measurement source B: (PB
k|k)

−1 ⪰ (PB
k|k)

−1P̄B
k|k(P

B
k|k)

−1. These can
be used to rewrite (PCI

k|k)
−1, as defined in Equation (4.5a):

(PCI
k|k)

−1 = ω(PA
k|k)

−1 + (1− ω)(PB
k|k)

−1

⪰ ω(PA
k|k)

−1P̄A
k|k(P

A
k|k)

−1 + (1− ω)(PB
k|k)

−1P̄B
k|k(P

B
k|k)

−1.

We use the above to continue to rewrite Equation (4.15):

(PCI
k|k)

−1 − (PCI
k|k)

−1P̄CI
k|k(P

CI
k|k)

−1 ⪰ ω(PA
k|k)

−1P̄A
k|k(P

A
k|k)

−1 + (1− ω)(PB
k|k)

−1P̄B
k|k(P

B
k|k)

−1

− ω2(PA
k|k)

−1P̄A
k|k(P

A
k|k)

−1 − ω(1− ω)(PA
k|k)

−1P̄AB
k|k (PB

k|k)
−1

− ω(1− ω)(PB
k|k)

−1P̄BA
k|k (PA

k|k)
−1 − (1− ω)2(PB

k|k)
−1P̄B

k|k(P
B
k|k)

−1

= ω(1− ω)(PA
k|k)

−1P̄A
k|k(P

A
k|k)

−1 + ω(1− ω)(PB
k|k)

−1P̄B
k|k(P

B
k|k)

−1

− ω(1− ω)(PA
k|k)

−1P̄AB
k|k (PB

k|k)
−1 − ω(1− ω)(PB

k|k)
−1P̄BA

k|k (PA
k|k)

−1

= ω(1− ω)
(
(PA

k|k)
−1P̄A

k|k(P
A
k|k)

−1 − (PA
k|k)

−1P̄AB
k|k (PB

k|k)
−1 − (PB

k|k)
−1P̄BA

k|k (PA
k|k)

−1

+ (PB
k|k)

−1P̄B
k|k(P

B
k|k)

−1
)
.

We use the definitions of P̄A
k|k, P̄

B
k|k, P̄

AB
k|k and P̄BA

k|k , see Equation (4.12) to find:

(PCI
k|k)

−1 − (PCI
k|k)

−1P̄CI
k|k(P

CI
k|k)

−1 = ω(1− ω)E
[
((PA

k|k)
−1(Xk − x̂A

k|k)− (PB
k|k)

−1(Xk − x̂B
k|k))×

((PA
k|k)

−1(Xk − x̂A
k|k)− (PB

k|k)
−1(Xk − x̂B

k|k))
T |Fk

]
⪰ 0,

because the expression on the right hand side is a square. Thus we conclude that covariance intersec-
tion is consistent for Xk|Fk every choice of ω ∈ [0, 1], provided that the partial a posteriori estimates
(x̂A

k|k, P
A
k|k) and (x̂B

k|k, P
B
k|k) are consistent for the random variable Xk|Fk.

Proof of Lemma 4.2.8. We rewrite L as follows:

L = ωCA−1 = ω
(
ωA−1 + (1− ω)B−1

)−1
A−1

=

(
1

ω
A
(
ωA−1 + (1− ω)B−1

))−1

=

(
I +

1− ω

ω
AB−1

)−1

.

We use I =
(

1
1−ωB

)(
1

1−ωB
)−1

and take
(

1
1−ωB

)−1

out of the brackets to obtain:

L =

((
1

1− ω
B +

1

ω
A

)
(1− ω)B−1

)−1

=
1

1− ω
B

(
1

1− ω
B +

1

ω
A

)−1

.

We can similarly rewrite M :

M = (1− ω)CB−1 = (1− ω)
(
ωA−1 + (1− ω)B−1

)−1
B−1

=

(
1

1− ω
B
(
ωA−1 + (1− ω)B−1

))−1

=

(
ω

1− ω
BA−1 + I

)−1

.

We use I =
(
1
ωA
) (

1
ωA
)−1 and take

(
1
ωA
)−1 out of the brackets to obtain:

M =

((
1

1− ω
B +

1

ω
A

)
ωA−1

)−1

=
1

ω
A

(
1

1− ω
B +

1

ω
A

)−1

,



4.3. Covariance intersection on covariance matrices of measurement noise 41

then

L+M =
1

1− ω
B

(
1

1− ω
B +

1

ω
A

)−1

+
1

ω
A

(
1

1− ω
B +

1

ω
A

)−1

=

(
1

1− ω
B +

1

ω
A

)(
1

1− ω
B +

1

ω
A

)−1

= I,

establishing the claim.

4.3. Covariance intersection on covariance matrices of measure-
ment noise

This section provides a reformulation of covariance intersection. Covariance intersection is essentially
a linear combination between the partial estimates calculated by conditioning on part of the measure-
ments. In this section we define a method that applies the linear combination that is used in covariance
intersection to the covariance matrices of the noise. Then we prove that this method gives the same
result as covariance intersection described in Section 4.1 for a fixed ω. The advantage of this refor-
mulation is that the fusion step is done before the Kalman filter is applied, instead of breaking up the
Kalman filter as in the standard approach to covariance intersection. This makes it possible to trans-
late the fusion step and the Kalman filter separately to continuous time. The lemma below presents
the reformulation of covariance intersection.

Lemma 4.3.1 (Reformulation of covariance intersection). Given the dynamic system of Equation (4.1).
For ω ∈ [0, 1], define a matrix (RRCI

k )−1 as follows:

(RRCI
k )−1 =

[
ω(RA

k )
−1 0

0 (1− ω)(RB
k )

−1

]
.

Applying the Kalman filter to the dynamic system of Equation (4.1), using matrix (RRCI
k )−1 instead of

matrix (Rk)
−1, gives an estimate for the state and its covariance, denoted by (x̂RCI

k|k , PRCI
k|k ). Using the

definitions given in Equation (4.2), this estimate is calculated by the following variation of the Kalman
filter:

Prediction step:

x̂RCI
k|k−1 = Fk−1x̂

RCI
k−1|k−1,

PRCI
k|k−1 = Fk−1P

RCI
k−1|k−1F

T
k−1 +Qk−1.

Update step:

x̂RCI
k|k = x̂RCI

k|k−1 +KRCI
k (yk −Hkx̂

RCI
k|k−1)

= x̂RCI
k|k−1 + ωPRCI

k|k (HA
k )T (RA

k )
−1(yAk −HA

k x̂RCI
k|k−1) + (1− ω)PRCI

k|k (HB
k )T (RB

k )
−1(yBk −HB

k x̂RCI
k|k−1),

PRCI
k|k =

(
(PRCI

k|k−1)
−1 +HT

k (R
RCI
k )−1Hk

)−1

=
(
(PRCI

k|k )−1 + ω(HA
k )T (RA

k )
−1HA

k + (1− ω)(HB
k )T (RB

k )
−1HB

k

)−1

,

KRCI
k = PRCI

k|k HT
k (R

RCI
k )−1

=

[
ωPRCI

k|k (HA
k )T (RA

k )
−1

(1− ω)PRCI
k|k (HB

k )T (RB
k )

−1

]T
.

(4.16)

This lemma is proven below.
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Remark 4.3.2. RRCI
k is defined such that:[

ω(RA
k )

−1 0
0 (1− ω)(RB

k )
−1

]
⪯
[
RA

k ΣAB
k

ΣBA
k RB

k

]−1

.

To see this, we define the vectors Ṽ A
k = [V A

k , 0]T and Ṽ B
k = [0, V B

k ]T . Also define:

R̃A
k =

[
RA

k 0
0 0

]
R̃B

k =

[
0 0
0 RB

k

]
Clearly, (0, R̃A

k ) and (0, R̃B
k ) are consistent estimates for Ṽ A

k and Ṽ B
k , respectively. Then for ω ∈ (0, 1),

RRCI
k = 1

ω R̃
A
k + 1

1−ω R̃
B
k . By Lemma 4.3.7, (0, RRCI

k ) is conservative for Ṽ A
k + Ṽ B

k = [V A
k , V B

k ]T for
ω ∈ (0, 1). For ω ∈ {0, 1}, it is clear that R̃A

k ⪯ Rk and R̃B
k ⪯ Rk. Thus we conclude for ω ∈ [0, 1]:[

ω(RA
k )

−1 0
0 (1− ω)(RB

k )
−1

]
⪯
[
RA

k ΣAB
k

ΣBA
k RB

k

]−1

.

Of course, changing the covariance matrix of the measurement noise like in Lemma 4.3.1 violates the
conditions to apply the Kalman filter. This change therefore impairs the optimality of the Kalman filter.
Note that in this situation this is not a problem, because we aim to reformulate covariance intersection.
Covariance intersection also impairs the optimality of the Kalman filter. In Theorem 4.3.3 we will show
that the Kalman filter with the adjustment of Lemma 4.3.1 is the same as covariance intersection, as
given in Definition 4.1.1 for a fixed ω.

Theorem 4.3.3. Given the dynamic system of Equation (4.1), covariance intersection described in
Definition 4.1.1 and the method described in Lemma 4.3.1 are the same algorithm for a fixed ω ∈ [0, 1].

The proof of this theorem is given at the end of this section.

Remark 4.3.4. The reformulation given in Lemma 4.3.1 removes the need to calculate two partial
estimates and fuse them together, because it fuses the covariancematrices of the noise before applying
the Kalman filter. This reduces the number of times that the Kalman filter needs to be applied compared
with the method described in Definition 4.1.1 while obtaining the same result for a fixed ω ∈ [0, 1],
see Theorem 4.3.3. Furthermore, it means that it is possible to apply covariance intersection to the
continuous time Kalman filter by changing the input in a similar manner as in the discrete case. Thus,
if it is possible to fuse the intensities of the measurement noise from source A and B, then covariance
intersection can be applied to the continuous Kalman filter.

Along with the calculation of the a priori and a posteriori steps of covariance intersection, the calculation
of ω can also we rewritten. This is done in Theorem 4.3.5.

Theorem 4.3.5. Theminimisation problem of Equation (4.6)with χ(ω, PCI
k|k−1, x̂k|k−1, yk,Hk, R̃k) = PCI

k|k
is equivalent to:

ω = argmin
ω

ϕ

((PCI
k|k−1

)−1

+

[
HA

k

HB
k

]T [ 1
ωR

A
k 0

0 1
(1−ω)R

B
k

]−1 [
HA

k

HB
k

])−1
 .

This theorem is proven below.

Remark 4.3.6. Applying covariance intersection to the continuous time Kalman filter requires contin-
uous optimisation of ω. The optimisation of ω is needed to ensure the convergence of covariance
intersection. Thus ω must influence the convergence rate. Since there is no consensus in the literature
on which measure for ϕ leads to the fastest convergence rate, it might be possible to change the map χ
without impairing the convergence rate. It is possible that there exists a map χ that is a linear function
of ω, (HA

k )T (RA
k )

−1HA
k and (HB

k )T (RB
k )

−1HB
k , which makes it possible to translate the optimisation of

ω to continuous time and to apply covariance intersection to the continuous time Kalman filter. Note
that this would lead to a different algorithm than covariance intersection described in Definition 4.1.1.
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Below the lemma used in Remark 4.3.2 is given.

Lemma 4.3.7. LetX1, X2 be two Rd valued random variables. Let (x1,Σ1) and (x2,Σ2) be conservative
for X1 and X2 respectively. Let ω ∈ (0, 1) and let

U ⪰ 1

ω
Σ1 +

1

1− ω
Σ2

Then (x1 + x2, U) is conservative for X1 +X2.

This lemma is proven later in this section.

We start by proving the results of this section.

Proof of Lemma 4.3.1. Changing the covariance matrix of the measurement noise does not change
the expressions for the a priori steps, because the covariance matrix of the measurement noise is
not involved in those steps. For the a posteriori steps, we will start with the covariance matrix of the
estimate PRCI

k|k . By Equation (2.6) the expression of PRCI
k|k is:

PRCI
k|k =

(
(PRCI

k|k−1)
−1 +HT

k (R
RCI
k )−1Hk

)−1

=

(
(PRCI

k|k−1)
−1 +

[
HA

k

HB
k

]T [ 1
ωR

A
k 0

0 1
1−ωR

B
k

]−1 [
HA

k

HB
k

])−1

=
(
(PRCI

k|k )−1 + ω(HA
k )T (RA

k )
−1HA

k + (1− ω)(HB
k )T (RB

k )
−1HB

k

)−1

.

We continue with the Kalman gain, again starting from the expression in Equation (2.6):

KRCI
k = PRCI

k|k HT
k (R

RCI
k )−1

= PRCI
k|k

[
HA

k

HB
k

]T [ 1
ωR

A
k 0

0 1
1−ωR

B
k

]−1

=

[
ωPRCI

k|k (HA
k )T (RA

k )
−1

(1− ω)PRCI
k|k (HB

k )T (RB
k )

−1

]T
.

Lastly, we derive the expression of x̂RCI
k|k starting from the expression in Equation (2.6):

x̂RCI
k|k = x̂RCI

k|k−1 +KRCI
k (yk −Hkx̂

RCI
k|k−1)

= x̂RCI
k|k−1 +

[
ωPRCI

k|k (HA
k )T (RA

k )
−1

(1− ω)PRCI
k|k (HB

k )T (RB
k )

−1

]T ([
yAk
yBk

]
−
[
HA

k

HB
k

]
x̂RCI
k|k−1

)

= x̂RCI
k|k−1 +

[
ωPRCI

k|k (HA
k )T (RA

k )
−1

(1− ω)PRCI
k|k (HB

k )T (RB
k )

−1

]T [
yAk −HA

k x̂RCI
k|k−1

yBk −HB
k x̂RCI

k|k−1

]
= x̂RCI

k|k−1 + ωPRCI
k|k (HA

k )T (RA
k )

−1(yAk −HA
k x̂RCI

k|k−1) + (1− ω)PRCI
k|k (HB

k )T (RB
k )

−1(yBk −HB
k x̂RCI

k|k−1).

Proof of Theorem 4.3.3. We denote the estimates calculated by covariance intersection, as given in
Definition 4.1.1, by (x̂CI

k|k, P
CI
k|k). The estimates calculated by the method described in Lemma 4.3.1 are

denoted by (x̂RCI
k|k , PRCI

k|k ). Fix ω ∈ [0, 1]. We prove that these two estimates are equal using induction.
We start with the base step and then continue to the induction step.

Base step: Both algorithms have the same starting position, thus:
• Covariance of state estimate: PCI

0|0 = PRCI
0|0 ,
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• Estimate of the state: x̂CI
0|0 = x̂RCI

0|0 .
This concludes the base step.

Induction step: Assume x̂CI
k|k = x̂RCI

k|k and PCI
k|k = PRCI

k|k . We derive the induction step for the a priori
and a posteriori estimates separately.

• A priori covariance of state estimate:

PCI
k+1|k = Fkx̂

CI
k|kFk +Qk

= Fkx̂
RCI
k|k Fk +Qk

= PRCI
K+1|k.

• A priori estimate of the state:

x̂CI
k+1|k = Fkx̂

CI
k|k

= Fkx̂
RCI
k|k

= x̂RCI
k+1|k.

• A posteriori covariance of state estimate:

PCI
k+1|k+1 = (ω(PA

k+1|k+1)
−1 + (1− ω)(PB

k+1|k+1)
−1)−1.

We use the expression of PA
k+1|k+1 and PB

k+1|k+1 as in Equation (4.4):

PCI
k+1|k+1 = (ω((PCI

k+1|k)
−1 + (HA

k+1)
T (RA

k+1)
−1HA

k+1) + (1− ω)((PCI
k+1|k)

−1 + (HB
k+1)

T (RB
k+1)

−1HB
k+1)

−1

= ((PCI
k+1|k)

−1 + ω(HA
k+1)

T (RA
k+1)

−1HA
k+1) + (1− ω)(HB

k+1)
T (RB

k+1)
−1HB

k+1)
−1.

We use PCI
k+1|k = PRCI

k+1|k:

PCI
k+1|k+1 = ((PRCI

k+1|k)
−1 + ω(HA

k+1)
T (RA

k+1)
−1HA

k+1) + (1− ω)(HB
k+1)

T (RB
k+1)

−1HB
k+1)

−1

= PRCI
k+1|k+1.

• A posteriori estimate of the state:

x̂CI
k+1|k+1 = PCI

k+1|k+1(ω(P
A
k+1|k+1)

−1x̂A
k+1|k+1 + (1− ω)(PB

k+1|k+1)
−1x̂B

k+1|k+1)

= ωPCI
k+1|k+1(P

A
k+1|k+1)

−1x̂A
k+1|k+1 + (1− ω)PCI

k+1|k+1(P
B
k+1|k+1)

−1x̂B
k+1|k+1).

We use the expression of x̂A
k+1|k+1 and x̂B

k+1|k+1 of Equation (4.4):

x̂CI
k+1|k+1 = ωPCI

k+1|k+1(P
A
k+1|k+1)

−1(x̂CI
k+1|k + PA

k+1|k+1(H
A
k+1)

T (RA
k+1)

−1(yAk+1 −HA
k+1x̂

CI
k+1|k)

+ (1− ω)PCI
k+1|k+1(P

B
k+1|k+1)

−1(x̂CI
k+1|k + PB

k+1|k+1(H
B
k+1)

T (RB
k+1)

−1(yBk+1 −HB
k+1x̂

CI
k+1|k)

= (ωPCI
k+1|k+1(P

A
k+1|k+1)

−1 + (1− ω)PCI
k+1|k+1(P

B
k+1|k+1)

−1)x̂CI
k+1|k

+ ωPCI
k+1|k+1(H

A
k+1)

T (RA
k+1)

−1(yAk+1 −HA
k+1x̂

CI
k+1|k)

+ (1− ω)PCI
k+1|k+1(Hk + 1B)T (Rk + 1B)−1(yBk+1 −HB

k+1x̂
CI
k+1|k).

Using Lemma 4.2.8 with LCI
k = ωPCI

k+1|k+1(P
A
k+1|k+1)

−1 andMCI
k = (1−ω)PCI

k+1|k+1(P
B
k+1|k+1)

−1

such that LCI
k +MCI

k = I, we find:

x̂CI
k+1|k+1 = x̂CI

k+1|k + ωPCI
k+1|k+1(H

A
k+1)

T (RA
k+1)

−1(yAk+1 −HA
k+1x̂

CI
k+1|k)

+ (1− ω)PCI
k+1|k+1(H

B
k+1)

T (RB
k+1)

−1(yBk+1 −HB
k+1x̂

CI
k+1|k).

We use x̂CI
k+1|k = x̂RCI

k+1|k:

x̂CI
k+1|k+1 = x̂RCI

k+1|k + ωPRCI
k+1|k+1(H

A
k+1)

T (RA
k+1)

−1(yAk+1 −HA
k+1x̂

RCI
k+1|k)

+ (1− ω)PRCI
k+1|k+1(H

B
k+1)

T (RB
k+1)

−1(yBk+1 −HB
k+1x̂

RCI
k+1|k)

= x̂RCI
k+1|k+1.



4.3. Covariance intersection on covariance matrices of measurement noise 45

In conclusion, for a fixed omega, covariance intersection can be rewritten as in Lemma 4.3.1.

Proof of Theorem 4.3.5. We will start with Equation (4.6) and rewrite it using the expressions of PCI
k|k ,

PA
k|k and PB

k|k, given in Equations (4.5a) and Equation (4.4) respectively:

ω = argmin
ω

ϕ
(
PCI
k|k

)
= argmin

ω
ϕ

((
ω
(
PA
k|k

)−1

+ (1− ω)
(
PB
k|k

)−1
)−1

)

= argmin
ω

ϕ

((
ω

((
PCI
k|k−1

)−1

+
(
HA

k

)T (
RA

k

)−1
HA

k

)
+ (1− ω)

((
PCI
k|k−1

)−1

+
(
HB

k

)T (
RB

k

)−1
HB

k

))−1
)

= argmin
ω

ϕ

(((
PCI
k|k−1

)−1

+ ω
(
HA

k

)T (
RA

k

)−1
HA

k + (1− ω)
(
HB

k

)T (
RB

k

)−1
HB

k

)−1
)

= argmin
ω

ϕ

((PCI
k|k−1

)−1

+

[
HA

k

HB
k

]T [ 1
ωR

A
k 0

0 1
(1−ω)R

B
k

]−1 [
HA

k

HB
k

])−1
 .

This establishes the claim.

Proof of Lemma 4.3.7. We aim to establish:

U − E
[
(X1 +X2 − (x1 + x2)) (X1 +X2 − (x1 + x2))

T
]
⪰ 0.

Working out the expectation, we have:

E
[
(X1 +X2 − (x1 + x2)) (X1 +X2 − (x1 + x2))

T
]

= E
[
(X1 − x1) (X1 − x1)

T
]
+ E

[
(X2 − x2) (X2 − x2)

T
]

+ E
[
(X1 − x1) (X2 − x2)

T
+ (X2 − x2) (X1 − x1)

T
]
.

Set γ =
√

1−ω
ω to simplify the computation below. Using the definition of U and the properties of (x1,Σ1)

and (x2,Σ2) we obtain:

U − E
[
(X1 +X2 − (x1 + x2)) (X1 +X2 − (x1 + x2))

T
]

⪰ 1− ω

ω
Σ1 +

ω

1− ω
Σ2 − E

[
(X1 − x1) (X2 − x2)

T
+ (X2 − x2) (X1 − x1)

T
]
.

Using that if (x,Σ) is consistent for X, then Σ ⪰ E[(X − x)(X − x)T ] gives:

U − E
[
(X1 +X2 − (x1 + x2)) (X1 +X2 − (x1 + x2))

T
]

⪰ γ2E
[
(X1 − x1) (X1 − x1)

T
]
+ γ−2E

[
(X2 − x2) (X2 − x2)

T
]

− E
[
(X1 − x1) (X2 − x2)

T
+ (X2 − x2) (X1 − x1)

T
]

= E
[(
γ (X1 − x1)− γ−1 (X2 − x2)

)2]
⪰ 0.

This concludes the claim.



5
Covariance intersection in H∞ filter

In Section 5.1 we modify the cost function of the H∞ filter such that it is a generalisation of covariance
intersection applied to the Kalman filter. Since a continuous version of theH∞ filter exists, this approach
offers a different method to extend the fusion step of covariance intersection to continuous time.

5.1. Covariance intersection in H∞ filter
We consider the following dynamic system with two measurement sources A and B:

xk+1 = Fkxk + wk,

yAk = HA
k xk + vAk ,

yBk = HB
k xk + vBk ,

(5.1)

where xk ∈ Rn is the state vector; Fk ∈ Rn × Rn is the state transition matrix, which can describe
the physics underlying the process that is modelled; wk ∈ Rn is the noise term. yAk ∈ Rm represents
the measurements from source A at time k; HA

k ∈ Rm × Rn provides a linear connection between the
state vector and the measurement vector for measurement source A; vAk ∈ Rm is the measurement
noise. Measurement source B is allowed to have different dimensions, so yBk ∈ Rq, HB

k ∈ Rq × Rn,
and vBk ∈ Rq. The noise terms wk, v

A
k and vBk do not have to satisfy any assumptions and may even be

deterministic. Note that it is possible to add as many sources of measurements as desired, but for the
sake of simplicity we use two measurement sources.

Remember the cost function of the H∞ filter, given in Equation (3.2):

J = −1

θ
∥x0 − x̂0∥2P−1

0
+

N−1∑
k=0

[
∥zk − ẑk∥2Sk

− 1

θ
∥wk∥2Q−1

k

− 1

θ
∥vk∥2R−1

k

]
,

with Sk ∈ Rn × Rn; P0 ∈ Rn × Rn; Qk ∈ Rn × Rn and Rk ∈ Rm × Rm positive semi-definite matrices.
The vector norm is defined as ∥x∥2A = xTAx. To introduce the structure of covariance intersection to
the H∞ filter, the term containing vk is split as follows:

∥vk∥2R−1
k

= ∥vAk ∥2(RA
k )−1 + ∥vBk ∥2(RB

k )−1 ,

where RA
k ∈ Rm × Rm and RB

k ∈ Rq × Rq are positive semi-definite matrices. The two terms on the
right hand side get their own different θ, which will take on the role that ω has in covariance intersection,
see Definition 4.1.1. Note that this split essentially constrains the allowed structure of the Rk matrix

in the original H∞ filter. If we write Rk =

[
RA

k RAB
k

RBA
k RB

k

]
, then this split forces RAB

k = RBA
k = 0. This

46
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reflects that covariance intersection treats the measurement noise as independent until fusing the two
estimates. Forcing this structure on the matrix Rk negatively impacts the performance of the H∞ filter,
because it reduces the opportunity for tuning. The split of ∥vk∥2R−1

k

gives rise to the following cost
function, for θ, θRA

k
, θRB

k
> 0:

J = −1

θ
∥x0 − x̂0∥2P−1

0
+

N−1∑
k=0

[
∥zk − ẑk∥2Sk

− 1

θ
∥wk∥2Q−1

k

− 1

θRA

∥vAk ∥2(RA
k )−1 −

1

θRB

∥vBk ∥2(RB
k )−1

]
= −1

θ
∥x0 − x̂0∥2P−1

0
+

N−1∑
k=0

[
∥xk − x̂k∥2S̄k

− 1

θ
∥wk∥2Q−1

k

− 1

θRA

∥yAk −HA
k xk∥2(RA

k )−1

− 1

θRB

∥yBk −HB
k xk∥2(RB

k )−1

]
= φ(x0) +

N−1∑
k=0

Lk(xk, wk, y
A
k , y

B
k ),

(5.2)

where S̄k = LT
k SkLk. Theorem 5.1.1 derives the H∞ filter belonging to this cost function.

Theorem 5.1.1. Given the dynamic system of Equation (5.1) and the cost function defined in Equation
(5.2). As well as θ, θRA

k
, θRB

k
> 0. Using the following notation:

Hk =

[
HA

k

Hk
k

]
, Rk =

[
θRA

θ RA
k 0

0
θRB

θ RB
k

]
, yk =

[
yAk
ykk

]
,

the solution to the following optimisation problem:

min
xk

max
x0,wk,

yA
k ,yB

k

J, (5.3)

is given by:

Prediction step:

S̄k = LT
k SkLk,

x̂k|k−1 = Fk−1x̂k−1|k−1,

Pk|k−1 = Fk−1Pk−1|k−1Fk−1 +Qk−1.

Update step:

x̂k|k = x̂k|k−1 +Kk(yk −Hkx̂k|k−1)

= x̂k|k−1 + Pk|k

(
θ

θRA

(HA
k )T (RA

k )
−1(yAk −HA

k x̂k|k−1) +
θ

θRB

(HB
k )T (RB

k )
−1(yBk −HB

k x̂k|k−1)

)
,

Pk|k = (P−1
k|k−1 − θS̄k +HT

k R
−1
k Hk)

−1

=

(
P−1
k|k−1 − θS̄k +

θ

θRA

(HA
k )T (RA

k )
−1HA

k +
θ

θRB

(HB
k )T (RB

k )
−1HB

k

)−1

,

Kk = Pk|kH
T
k R

−1
k

= Pk|k

[
θ

θRA
(HA

k )T (RA
k )

−1

θ
θRB

(HB
k )T (RB

k )
−1

]T
,

(5.4)
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provided that:

P−1
k|k−1 − θS̄k +HT

k R
−1
k Hk ≻ 0,

RA
k − θ

θRA

HA
k Pk|k(H

A
k )T ≻ 0,

RB
k − θ

θRB

HB
k Pk|k(H

B
k )T ≻ 0.

The proof of this theorem can be found in Appendix A.

In the solution given in Theorem 5.1.1 three different θ’s arise. The following proposition shows that it
is possible to choose these such that we find the Kalman filter with covariance intersection applied to
the measurement covariance matrices.

Proposition 5.1.2. Given the dynamic system in Equation (5.1) with vk, wA
k and wB

k Gaussian white
noise such that vk ∼ N(0, Qk), wA

k ∼ N(0, RA
k ) and wB

k ∼ N(0, RB
k ) and vk independent of wA

k and wB
k .

The algorithm given in Lemma 4.3.1 can be obtained with two additional constraints from the algorithm
given in Theorem 5.1.1 by choosing:

θRA =
θ

ω
,

θRB =
θ

1− ω
,

and sending θ → 0. The additional constraints to the algorithm in Lemma 4.3.1 are:

RA
k − ωHA

k Pk|k(H
A
k )T ≻ 0,

RB
k − (1− ω)HB

k Pk|k(H
B
k )T ≻ 0.

Remark 5.1.3. It is important that vk, wA
k and wB

k are Gaussian white noise with the correct covariance
matrices. If these noise terms are not white noise, then the Kalman filter will not be obtained when
sending θ → 0. The choice of Sk is unrestricted, because as θ → 0, the role of Sk disappears. This can
also be seen from Lemma 3.3.4, where it is shown that the Kalman filter minimises the mean square
error of the Sk weighted sum for every symmetric Sk. Note that the additional constraints arise from
the structure of the H∞ filter.

Proof of Proposition 5.1.2. For Pk|k in Equation (5.4) to be equal to Pk|k in Equation (4.16), we need
θ

θRA
= ω. This is obtained when θRA = θ

ω . The reasoning is similar for the choice of θRB .

With these choices, we are left with the following algorithm:

Prediction step:

S̄k = LT
k SkLk,

x̂k|k−1 = Fk−1x̂k−1|k−1,

Pk|k−1 = Fk−1Pk−1|k−1Fk−1 +Qk−1.

Update step:

x̂k|k = x̂k|k−1 +Kk

[
yAk −HA

k x̂k|k−1

yBk −HB
k x̂k|k−1

]
,

Pk|k =
(
P−1
k|k−1 − θS̄k + ω(HA

k )T (RA
k )

−1HA
k + (1− ω)(HB

k )T (RB
k )

−1HB
k

)−1

,

Kk = Pk|k

[
ω(HA

k )T (RA
k )

−1

(1− ω)(HB
k )T (RB

k )
−1

]T
.

(5.5)
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The only difference between Equation (5.5) and (4.16) is the term θS̄k in the expression for Pk|k. When
sending θ → 0, this term vanishes and the two expressions are the equal.

To ensure that both the minimum and the maximum of the optimisation problem in Equation (5.3) are
attained, we need:

P−1
k|k−1 − θS̄k +HT

k R
−1
k Hk ≻ 0,

RA
k − θ

θRA

HA
k Pk|k(H

A
k )T ≻ 0,

RB
k − θ

θRB

HB
k Pk|k(H

B
k )T ≻ 0.

The first equation is automatically satisfied when sending θ → 0. The last two equations turn into the
following when θ

θRA
= ω and θ

θRB
= 1− ω:

RA
k − ωHA

k Pk|k(H
A
k )T ≻ 0,

RB
k − (1− ω)HB

k Pk|k(H
B
k )T ≻ 0.

This concludes the claim.



6
Conclusion

This thesis studied the Kalman filter with observations from one and multiple measurement sources. A
problem arises when the correlation between multiple measurement sources is not known when using
the Kalman filter. There exist multiple solutions to this problem. The solutions discussed in this work
are the H∞ filter, see Chapter 3, and covariance intersection, see Chapter 4. The overall aim of this
thesis was to investigate whether it is possible to apply covariance intersection to the continuous time
Kalman filter. To this end three topics were discussed:

• Section 4.2 highlights the assumption made in the proof of the consistency of covariance inter-
section given by S. J. Julier and J. K. Uhlmann. It is found that this assumption which is treated
as trivial in the literature is found to be non-trivial. For this assumption to hold, the a posteriori
Kalman filter steps must be consistent. This is likely not true in general. However, the assumption
made in the proof probably holds in expectation over many time steps. So in practice covariance
intersection behaves as a consistent algorithm.

• In Section 4.3, the linear combination in covariance intersection is applied to the covariance ma-
trices of the measurement noise rather than to the covariance matrices of the estimates. This
reformulation essentially changes the input of the Kalman filter. This means that the Kalman fil-
ter only needs to be applied once per time step rather than once per dependent measurement
source per time step. It also means, that if this change in input can be translated to continuous
time, then the continuous Kalman filter can be used with the altered input, making it possible to
apply covariance intersection to the continuous time Kalman filter.

• In Section 5.1, the fact that the H∞ filter is a generalisation of the Kalman filter is used to include
the limit case of covariance intersection described in Section 4.3 in the H∞ filter. While this
has no practical application, the ability to formulate the H∞ filter in continuous time provides a
different path to formulate covariance intersection such that it can be applied to the continuous
time Kalman filter.

6.1. Recommendations for future work
In Section 4.2 we saw that the assumption made in the proof of the consistency of covariance inter-
section given by S. J. Julier and J. K. Uhlmann, is neither trivial nor proven. Does assumption does
not hold in general, but it probably holds in expectation. A possible avenue for further research is to
show that the terms preventing consistency for every time step approach zero on average. This would
explain why there are no problems with consistency when applying covariance intersection in practice.

The literature on covariance intersection states that covariance intersection is consistent for every ω ∈
[0, 1], but that the optimisation of ω to an indifferent (convex) measure is needed to ensure convergence.
It would be interesting to investigate why the algorithm converges for every (convex) measure. Does
the measure influence the convergence rate of covariance intersection?
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6.1.1. Possible extensions to continuous time

To apply covariance intersection to the continuous time Kalman filter, the fusion of the covariance ma-
trices of the measurement noise should be formulated in continuous time. A possible way of doing
this, is by changing the map χ in the optimisation problem for ω. Perhaps χ can be chosen as linear
map of ω, (HA

k )T (RA
k )

−1HA
k and (HB

k )T (RB
k )

−1HB
k such that it is possible to find a differential equation

for ω. It is however, not clear what the consequences of this change would be. Covariance intersec-
tion will remain consistent (in expectation), because this property is not dependent on the value of ω.
However, ω controls the convergence of covariance intersection, as convergence is ensured only by
optimizing ω at each time step. Therefore, the map χ should be chosen such that convergence is still
ensured. Investigating possible choices for the map χ such that covariance intersection converges will
likely make it possible to formulate covariance intersection such that it can be applied to the continuous
time Kalman filter.
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A
Proof of Theorem 5.1.1

This appendix proves Theorem 5.1.1. The proof in this appendix is based on the derivation of the H∞
filter given in [14]. Before proving Theorem 5.1.1 a preliminary result is needed. Lagrange multipliers
are used to solve constrained optimisation problems. The constraints are assumed to be constant over
time. In the context of the H∞ filter, the constraints have the following form: xk+1 = Fkxk + wk, which
means that the constraint might change for every time step. We use a sequence of Lagrangemultipliers,
instead of a constant Lagrange multiplier to account for the time varying constraints. Lemma A.0.1
shows that the method of Lagrange multipliers can be extended in this way. This extended method of
Lagrange multipliers is then used to prove Theorem 5.1.1.

Lemma A.0.1. Given the following process dynamics:

xk+1 = Fkxk + wk, (A.1)

with xk ∈ Rn, wk ∈ Rn and Fk ∈ Rn × Rn. For some differentiable function ϕ : Rn → R and some
differentiable function Lk : R2n → R define the following cost function:

J(xk, wk) = ϕ(x0) +

N−1∑
k=0

Lk(xk, wk).

The cost function can be augmented with a sequence of Lagrange multipliers to obtain:

Jλ = ϕ(x0) +

N−1∑
k=0

(
Hk(xk, wk)− λT

k xk

)
− λT

NxN + λT
0 x0,

with Hk(xk, wk) = Lk(xk, wk) + λT
k+1(Fkxk + wk), which is called the Hamiltonian. The Hamiltonian

is analogous to the Lagrangian except that λ is a sequence instead of a constant. The necessary
conditions of the stationary points for the following constrained optimisation problem:

max
x0,wk

J(xk, wk)

s.t. xk+1 = Fkxk + wk,
(A.2)

are:

λT
0 +

∂ϕ

∂x0
(x0) = 0, (A.3a)

−λT
N = 0, (A.3b)

∂Hk

∂wk
(xk, wk) = 0, (k = 0, . . . , N − 1), (A.3c)

λk =
∂Hk

∂xk
(xk, wk), (k = 0, . . . , N − 1). (A.3d)
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Proof. We intent to find the necessary constraints for the stationary points for the constraint optimisation
problem defined in Equation (A.2). We add the constraint posed by the dynamic system via the method
of Lagrange multipliers. This gives:

Jλ(xk, wk) = ϕ(x0) +

N−1∑
k=0

[Lk(xk, wk) + λT
k+1(Fkxk + wk − xk+1)]

= ϕ(x0) +

N−1∑
k=0

[Lk(xk, wk) + λT
k+1(Fkxk + wk)]−

N−1∑
k=0

λT
k+1xk+1.

Adding and subtracting λT
0 x0 gives:

Jλ(xk, wk) = ϕ(x0) +

N−1∑
k=0

[Lk(xk, wk) + λT
k+1(Fkxk + wk)]−

N∑
k=0

λT
k xk + λT

0 x0.

We define the Hamiltonian:

Hk(xk, wk) = Lk(xk, wk) + λT
k+1(Fkxk + wk).

We use the Hamiltonian to rewrite the cost function:

Jλ(xk, wk) = ϕ(x0) +

N−1∑
k=0

Hk(xk, wk)−
N∑

k=0

λT
k xk + λT

0 x0

= ϕ(x0) +

N−1∑
k=0

Hk(xk, wk)−
N−1∑
k=0

λT
k xk − λT

NxN + λT
0 x0

= ϕ(x0) +

N−1∑
k=0

(Hk(xk, wk)− λT
k xk)− λT

NxN + λT
0 x0. (A.4)

Just like when using a constant λ the following conditions need to be satisfied for the constrained
stationary point:

∂Jλ
∂xk

(xk, wk) = 0, (k = 0, . . . , N), (A.5a)

∂Jλ
∂wk

(xk, wk) = 0, (k = 0, . . . , N − 1), (A.5b)

∂Jλ
∂λk

(xk, wk) = 0, (k = 0, . . . , N). (A.5c)

Equation (A.5c) turns out to be superfluous, because in this context the first two equations give enough
information to solve the constrained optimisation problem. We start with rewriting Equation (A.5a) using
the definition of the cost function defined in Equation (A.4). For k = 1, . . . , N − 1, we find:

∂Jλ
∂xk

(xk, wk) =
∂Hk

∂xk
(xk, wk)− λk = 0,

⇔ λk =
∂Hk

∂xk
(xk, wk). (A.6)

For k = N Equation (A.5a) can be rewritten as:

∂Jλ
∂xN

(xN , wN ) = −λT
N = 0.

For k = 0 Equation (A.5a) becomes:

∂Jλ
∂x0

(x0, w0) =
∂ϕ

∂x0
(x0) +

∂H0

∂x0
(x0, w0)− λ0 + λ0 = 0,

⇔ λ0 +
∂ϕ

∂x0
(x0) = −∂H0

∂x0
(x0, w0)− λ0.
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Note that this last equality holds when both sides are 0. So we add k = 0 to the constraint in Equation
(A.6). And we add the constraint:

λ0 +
∂ϕ

∂x0
(x0) = 0.

Using the definition of Jλ(xk, wk) of Equation (A.4), Equation (A.5b) can be rewritten for k = 0, . . . N−1:

∂Jλ
∂wk

(xk, wk) =
∂Hk

∂wk
(xk, wk) = 0.

So in conclusion we find the following constraints:

λT
0 +

ϕ

∂x0
(x0) = 0,

−λT
N = 0,

λk =
∂Hk

∂xk
(xk, wk), (k = 0, . . . , N − 1),

∂Hk

∂wk
(xk, wk) = 0, (k = 0, . . . , N − 1).

We move on to the proof of Theorem 5.1.1.

A.1. Proof of Theorem 5.1.1
Proof of Theorem 5.1.1. This proof will consist of the following steps:

1. Finding x0 and wk that satisfy the constraints of Equations (A.3a) through (A.3d), see Subsection
A.1.1.

2. Incorporating the equations found from the constraints of Equations (A.3a) through (A.3d) into
the cost function defined in Equation (5.2), see Subsection A.1.2.

3. Calculating the partial derivatives of the cost function defined in Equation (5.2) with respect to xk,
yAk and yBk to find the stationary points with respect to xk, yAk and yBk , see Subsection A.1.3.

4. Finding the conditions such that the stationary points found are a minimum for xk and a maximum
for yAk and yBk , see Subsection A.1.4.

A.1.1. Satisfying necessary conditions

Before solving the conditions of Equation (A.3) we change the Lagrange multiplier slightly. This will not
change the solution, but makes the calculations easier. We use 2λk+1

θ instead of λk+1. Note that θ is
different from θRA and θRB . The Hamiltonian then becomes:

Hk(xk, wk) = Lk(xk, wk, y
A
k , y

B
k ) +

2λT
k+1

θ
(Fkxk + wk).

From the condition of Equation (A.3a) we obtain:

2λ0

θ
− 2

θ
P−1
0 (x0 − x̂0) = 0.

Multiplying from the left with P0 and dividing by 2
θ gives:

P0λ0 − (x0 − x̂0) = 0,

⇔ x0 = x̂0 + P0λ0. (A.7)
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Equation (A.3b) gives:
λN = 0. (A.8)

Satisfying Equation (A.3c) requires:

−2

θ
Q−1

k wk +
2λk+1

θ
= 0.

Multiplying from the left by Qk and dividing by 2
θ gives:

wk = Qkλk+1. (A.9)

Equation (A.9) can be substituted into the process dynamics of Equation (A.1) to obtain:

xk+1 = Fkxk +Qkλk+1. (A.10)

The fourth condition given in Equation (A.3d) gives:

2λk

θ
= 2S̄k(xk − x̂k) +

2

θRA

(HA
k )T (RA

k )
−1(yAk −HA

k xk) +
2

θRB

(HB
k )T (RB

k )
−1(yBk −HB

k xk) +
2

θ
FT
k λk+1,

λk = θS̄k(xk − x̂k) +
θ

θRA

(HA
k )T (RA

k )
−1(yAk −HA

k xk) +
θ

θRB

(HB
k )T (RB

k )
−1(yBk −HB

k xk) + FT
k λk+1.

(A.11)

To move forward, we have to make an assumption. From Equation (A.7) we know that x0 is a linear
function of λ0, so we will assume that xk is a linear function of λk. Thus:

xk = µk + Pkλk, (A.12)

for all k = 0, . . . , N , where µk and Pk are some vector and matrix to be determined, with P0 given, and
the initial condition:

µ0 = x̂0. (A.13)
This assumption may or may not turn out to be valid. Substituting Equation (A.12) into Equation (A.10)
gives:

µk+1 + Pk+1λk+1 = Fkµk + FkPkλk +Qkλk+1. (A.14)
Substituting Equation (A.12) into Equation (A.11) gives:

λk = FT
k λk+1 + θS̄k(µk + Pkλk − x̂k) +

θ

θRA

(HA
k )T (RA

k )
−1(yAk −HA

k (µk + Pkλk))

+
θ

θRB

(HB
k )T (RB

k )
−1(yBk −HB

k (µk + Pkλk)),

(A.15a)

⇔ λk − θS̄kPkλk +
θ

θRA

(HA
k )T (RA

k )
−1HA

k Pkλk +
θ

θRB

(HB
k )T (RB

k )
−1HB

k Pkλk

= FT
k λk+1 + θS̄k(µk − x̂k) +

θ

θRA

(HA
k )T (RA

k )
−1(yAk −HA

k µk) +
θ

θRB

(HB
k )T (RB

k )
−1(yBk −HB

k µk),

⇔ λk = [I − θS̄kPk +
θ

θRA

(HA
k )T (RA

k )
−1HA

k Pk +
θ

θRB

(HB
k )T (RB

k )
−1HB

k Pk]
−1[FT

k λk+1 + θS̄k(µk − x̂k)

+
θ

θRA

(HA
k )T (RA

k )
−1(yAk −HA

k µk) +
θ

θRB

(HB
k )T (RB

k )
−1(yBk −HB

k µk)].

(A.15b)

Substituting Equation (A.15b) into Equation (A.14) gives:

µk+1 + Pk+1λk+1 = Fkµk

+ FkPk

[
I − θS̄kPk +

θ

θRA

(HA
k )T (RA

k )
−1HA

k Pk +
θ

θRB

(HB
k )T (RB

k )
−1HB

k Pk

]−1

×[
FT
k λk+1 + θS̄k(µk − x̂k) +

θ

θRA

(HA
k )T (RA

k )
−1(yAk −HA

k µk) +
θ

θRB

(HB
k )T (RB

k )
−1(yBk −HB

k µk)

]
+Qkλk+1.
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Bringing all terms with µk to the left hand side gives:

µk+1 − Fkµk

− FkPk

[
I − θS̄kPk +

θ

θRA

(HA
k )T (RA

k )
−1HA

k Pk +
θ

θRB

(HB
k )T (RB

k )
−1HB

k Pk

]−1

×[
θS̄k(µk − x̂k) +

θ

θRA

(HA
k )T (RA

k )
−1(yAk −HA

k µk) +
θ

θRB

(HB
k )T (RB

k )
−1(yBk −HB

k µk)

]
=

[
− Pk+1 + FkPk

[
I − θS̄kPk +

θ

θRA

(HA
k )T (RA

k )
−1HA

k Pk +
θ

θRB

(HB
k )T (RB

k )
−1HB

k Pk

]−1

FT
k

+Qk

]
λk+1.

(A.16)

This equation is satisfied if both sides are zero. Setting left hand side to zero gives:

µk+1 = Fkµk + FkPk

[
I − θS̄kPk +

θ

θRA

(HA
k )T (RA

k )
−1HA

k Pk +
θ

θRB

(HB
k )T (RB

k )
−1HB

k Pk

]−1

×[
θS̄k(µk − x̂k) +

θ

θRA

(HA
k )T (RA

k )
−1(yAk −HA

k µk) +
θ

θRB

(HB
k )T (RB

k )
−1(yBk −HB

k µk)

]
,

with the initial condition given in Equation (A.13). Setting the right hand side of Equation (A.16) to zero
gives:

Pk+1 = FkPk[I − θS̄kPk +
θ

θRA

(HA
k )T (RA

k )
−1HA

k Pk +
θ

θRB

(HB
k )T (RB

k )
−1HB

k Pk]
−1FT

k +Qk. (A.17)

We define:

P̃k = Pk[I − θS̄kPk +
θ

θRA

(HA
k )T (RA

k )
−1HA

k Pk +
θ

θRB

(HB
k )T (RB

k )
−1HB

k Pk]
−1 (A.18)

= [P−1
k − θS̄k +

θ

θRA

(HA
k )T (RA

k )
−1HA

k +
θ

θRB

(HB
k )T (RB

k )
−1HB

k ]−1.

And we can thus write:
Pk+1 = FkP̃kF

T
k +Qk. (A.19)

From Equation (A.18) we see that if Pk, S̄k, and Rk are symmetric, then P̃k will be symmetric. We see
from Equation (A.17) that if Qk is also symmetric, then Pk+1 will be symmetric. So if P0, Qk, Rk, and
S̄k are symmetric for all k, then P̃k and Pk will be symmetric for all k. Note that P0, Qk, Rk are not
necessarily covariance matrices thus the symmetry of these matrices is not automatically guaranteed.

The necessary conditions to ensure that the constraints of the optimisation problem are satisfied can
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be summarised as follows:

x0 = x̂0 + P0λ0, (A.20a)
wk = Qkλk+1, (A.20b)
λN = 0, (A.20c)

λk =

[
I − θS̄kPk +

θ

θRA

(HA
k )T (RA

k )
−1HA

k Pk +
θ

θRB

(HB
k )T (RB

k )
−1HB

k Pk

]−1

×[
FT
k λk+1 + θS̄k(µk − x̂k) +

θ

θRA

(HA
k )T (RA

k )
−1(yAk −HA

k µk) +
θ

θRB

(HB
k )T (RB

k )
−1(yBk −HB

k µk)

]
,

(A.20d)

Pk+1 = FkPk

[
I − θS̄kPk +

θ

θRA

(HA
k )T (RA

k )
−1HA

k Pk +
θ

θRB

(HB
k )T (RB

k )
−1HB

k Pk

]−1

FT
k +Qk,

(A.20e)
µ0 = x̂0, (A.20f)

µk+1 = Fkµk + FkPk

[
I − θS̄kPk +

θ

θRA

(HA
k )T (RA

k )
−1HA

k Pk +
θ

θRB

(HB
k )T (RB

k )
−1HB

k Pk

]−1

×[
θS̄k(µk − x̂k) +

θ

θRA

(HA
k )T (RA

k )
−1(yAk −HA

k µk) +
θ

θRB

(HB
k )T (RB

k )
−1(yBk −HB

k µk)

]
.

(A.20g)

The next section will incorporate the relevant conditions into the cost function of Equation (5.2).

A.1.2. Incorporating necessary conditions into cost function

In this subsection the conditions of Equation (A.20a) through Equation (A.20f) will be incorporated
into the cost function of Equation (5.2). The condition in Equation (A.20g) is used to create the H∞
algorithm.

By incorporating these conditions the condition in Equation (A.20g) is also satisfied.

Using the condition of Equation (A.20a) and (A.20f) in Equation (A.12), we see that:

λk = P−1
k (xk − µk),

λ0 = P−1
0 (x0 − x̂0).

(A.21)

We therefore obtain:
∥x0 − x̂0∥2P−1

0
= (x0 − x̂0)

TP−1
0 (x0 − x̂0)

= (x0 − x̂0)
TP−T

0 P0P
−1
0 (x0 − x̂0)

= λT
0 P0λ0

= ∥λ0∥2P0
.

(A.22)

Therefore, Equation (5.2) can be written as:

J = −1

θ
∥λ0∥2P0

+

N−1∑
k=0

[
∥xk−x̂k∥2S̄k

−
(1
θ
∥wk∥2Q−1

k

+
1

θRA

∥yAk −HA
k xk∥2(RA

k )−1+
1

θRB

∥yBk −HB
k xk∥2(RB

k )−1

)]
.

(A.23)
Substituting the expression for xk from Equation (A.12) into Equation (A.23) gives:

J = −1

θ
∥λ0∥2P0

+

N−1∑
k=0

[
∥µk + Pkλk − x̂k∥2s̄k −

(1
θ
∥wk∥2Q−1

k

+
1

θRA

∥yAk −HA
k (µk + Pkλk)∥2(RA

k )−1

+
1

θRB

∥yBk −HB
k (µk + Pkλk)∥2(RB

k )−1

)]
.

(A.24)
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We rewrite the term ∥wk∥2Q−1
k

as follows:

∥wk∥2Q−1
k

= wT
k Q

−1
k wk.

Using the condition in Equation (A.20b) for wk gives:

∥wk∥2Q−1
k

= λT
k+1Q

T
kQ

−1
k Qkλk+1

= λT
k+1Qkλk+1

= ∥λk+1∥2Qk
.

Equation (A.24) can therefore be written as:

J = −1

θ
∥λ0∥2P0

+

N−1∑
k=0

[
∥µk + Pkλk − x̂k∥2s̄k − 1

θRA

∥yAk −HA
k (µk + Pkλk)∥2(RA

k )−1

− 1

θRB

∥yBk −HB
k (µk + Pkλk)∥2(RB

k )−1

]
− 1

θ

N−1∑
k=0

∥λk+1∥2Qk
.

(A.25)

Using the condition in Equation (A.20c), we can write:

0 =
N∑

k=0

λT
k Pkλk −

N−1∑
k=0

λT
k Pkλk

= λT
0 P0λ0 +

N∑
k=1

λT
k Pkλk −

N−1∑
k=0

λT
k Pkλk

= λT
0 P0λ0 +

N−1∑
k=0

λT
k+1Pk+1λk+1 −

N−1∑
k=0

λT
k Pkλk

= ∥λ0∥2P0
+

N−1∑
k=0

(
∥λk+1∥2Pk+1

− ∥λk∥2Pk

)
.

Dividing both sides by θ gives:

0 =
1

θ
∥λ0∥2P0

+
1

θ

N−1∑
k=0

(
∥λk+1∥2Pk+1

− ∥λk∥2Pk

)
.

We can add this zero term from the cost function of Equation (A.25) to obtain:

J = −1

θ
∥λ0∥2P0

+

N−1∑
k=0

[
∥µk + Pkλk − x̂k∥2S̄k

− 1

θRA

∥yAk −HA
k (µk + Pkλk)∥2(RA

k )−1

− 1

θRB

∥yBk −HB
k (µk + Pkλk)∥2(RB

k )−1

]
− 1

θ

N−1∑
k=0

∥λk+1∥2Qk

+
1

θ
∥λ0∥2P0

+
1

θ

N−1∑
k=0

(
∥λk+1∥2Pk+1

− ∥λk∥2Pk

)
.

(A.26)

Note that we can rewrite the matrix norm ∥µk + Pkλk − x̂k∥2S̄k
as follows:

∥µk + Pkλk − x̂k∥2S̄k
= (µk + Pkλk − x̂k)

T S̄k(µk + Pkλk − x̂k)

= (µk − x̂k)
T S̄k(µk − x̂k) + (µk − x̂k)

T S̄kPkλk + (Pkλk)
T S̄k(µk − x̂k)

+ (Pkλk)
T S̄kPkλk. (A.27)
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Since (Pkλk)
T S̄k(µk − x̂k) ∈ R it is equal to its transpose. Thus we find:

∥µk + Pkλk − x̂k∥2S̄k
= (µk − x̂k)

T S̄k(µk − x̂k) + 2(µk − x̂k)
T S̄kPkλk + (Pkλk)

T S̄kPkλk. (A.28)

Using similar reasoning we find:

1

θRA

∥yAk −HA
k (µk + Pkλk)∥2(RA

k )−1 =
1

θRA

(yAk −HA
k µk)

T (RA
k )

−1(yAk −HA
k µk)

− 2

θRA

(yAk −HA
k µk)

T (RA
k )

−1HA
k Pkλk +

1

θRA

λT
k Pk(H

A
k )T (RA

k )
−1HA

k Pkλk, (A.29a)

1

θRB

∥yBk −HB
k (µk + Pkλk)∥2(RB

k )−1 =
1

θRB

(yBk −HB
k µk)

T (RB
k )

−1(yBk −HB
k µk)

− 2

θRB

(yBk −HB
k µk)

T (RB
k )

−1HB
k Pkλk +

1

θRB

λT
k Pk(H

B
k )T (RB

k )
−1HB

k Pkλk. (A.29b)

Substituting Equations (A.27), Equation (A.29a) and Equation (A.29b) into Equation (A.26) and using
that Pk is symmetric gives:

J =

k−1∑
k=0

[
(µk − x̂k)

T S̄k(µk − x̂k) + 2(µk − x̂k)
T S̄kPkλk + λT

k PkS̄kPkλk

+
1

θ
λT
k+1(Pk+1 −Qk)λk+1 −

1

θ
λT
k Pkλk − 1

θRA

(yAk −HA
k µk)

T (RA
k )

−1(yAk −HA
k µk)

+
2

θRA

(yAk −HA
k µk)

T (RA
k )

−1HA
k Pkλk − 1

θRA

λT
k Pk(H

A
k )T (RA

k )
−1HA

k Pkλk

− 1

θRB

(yBk −HB
k µk)

T (RB
k )

−1(yBk −HB
k µk) +

2

θRB

(yBk −HB
k µk)

T (RB
k )

−1HB
k Pkλk

− 1

θRB

λT
k Pk(H

B
k )T (RB

k )
−1HB

k Pkλk

]
.

(A.30)

We consider the term λT
k+1(Pk+1 − Qk)λk+1 in the above expression. Substituting Pk+1 from the con-

dition in Equation (A.20e) in this term gives:

λT
k+1(Pk+1 −Qk)λk+1 = λT

k+1(FkP̃kF
T
k +Qk −Qk)λk+1

= λT
k+1FkP̃kF

T
k λk+1.

(A.31)

And from Equation (A.15a) (which is equivalent to the necessary condition in Equation (A.20d)) we see
that:

FT
k λk+1 = λk − θS̄k(µk + Pkλk − x̂k)−

θ

θRA

(HA
k )T (RA

k )
−1(yAk −HA

k (µk + Pkλk))

− θ

θRB

(HB
k )T (RB

k )
−1(yBk −HB

k (µk + Pkλk)).

(A.32)
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Substituting this expression for FT
k λk+1 into Equation (A.31) gives:

λT
k+1(Pk+1 −Qk)λk+1 =

[
λk − θS̄k(µk + Pkλk − x̂k)−

θ

θRA

(HA
k )T (RA

k )
−1(yAk −HA

k (µk + Pkλk))

− θ

θRB

(HB
k )T (RB

k )
−1(yBk −HB

k (µk + Pkλk))

]T
P̃k

[
λk − θS̄k(µk + Pkλk − x̂k)

− θ

θRA

(HA
k )T (RA

k )
−1(yAk −HA

k (µk + Pkλk))−
θ

θRB

(HB
k )T (RB

k )
−1(yBk −HB

k (µk + Pkλk))

]
.

Rewriting the brackets and working out the transposes gives:

λT
k+1(Pk+1 −Qk)λk+1 =

[
λT
k (I − θPkS̄k +

θ

θRA

Pk(H
A
k )T (RA

k )
−1HA

k +
θ

θRB

Pk(H
B
k )T (RB

k )
−1HB

k )

− θ(µk − x̂T
k )

T S̄k − θ

θRA

(yAk −HA
k µk)

T (RA
k )

−1HA
k − θ

θRB

(yBk −HB
k µk)

T (RB
k )

−1HB
k

]
P̃k×[

λT
k (I − θPkS̄k +

θ

θRA

Pk(H
A
k )T (RA

k )
−1HA

k +
θ

θRB

Pk(H
B
k )T (RB

k )
−1HB

k )− θ(µk − x̂k)
T S̄k

− θ

θRA

(yAk −HA
k µk)

T (RA
k )

−1HA
k − θ

θRB

(yBk −HB
k µk)

T (RB
k )

−1HB
k

]T
.

(A.33)

Note from Equation (A.18) that I − θPkS̄k + θ
θRA

Pk(H
A
k )T (RA

k )
−1HA

k + θ
θRB

Pk(H
B
k )T (RB

k )
−1HB

k =

PkP̃
−1
k . Substituting this in Equation (A.33) gives the following:

λT
k+1(Pk+1 −Qk)λk+1

=

[
λT
k PkP̃

−1
k − θ(µk − x̂k)

T S̄k − θ

θRA

(yAk −HA
k µk)

T (RA
k )

−1HA
k − θ

θRB

(yBk −HB
k µk)

T (RB
k )

−1HB
k

]
×

P̃k

[
λT
k PkP̃

−1
k − θ(µk − x̂k)

T S̄k − θ

θRA

(yAk −HA
k µk)

T (RA
k )

−1HA
k − θ

θRB

(yBk −HB
k µk)

T (RB
k )

−1HB
k

]T
.

Working out the brackets gives:

λT
k+1(Pk+1 −Qk)λk+1 = λT

k PkP̃
−1
k Pkλk − θ(µk − x̂k)

T S̄kPkλk − θ

θRA

(yAk −HA
k µk)

T (RA
k )

−1HA
k Pkλk

− θ

θRB

(yBk −HB
k µk)

T (RB
k )

−1HB
k Pkλk − θλT

k PkS̄k(µk − x̂k) + θ2(µk − x̂k)
T S̄kP̃kS̄k(µk − x̂k)

+
θ2

θRA

(yAk −HA
k µk)

T (RA
k )

−1HA
k P̃kS̄k(µk − x̂k) +

θ2

θRB

(yBk −HB
k µk)

T (RB
k )

−1HB
k P̃kS̄k(µk − x̂k)

− θ

θRA

λT
k Pk(H

A
k )T (RA

k )
−1(yAk −HA

k µk) +
θ2

θRA

(µk − x̂k)
T S̄kP̃k(H

A
k )T (RA

k )
−1(yAk −HA

k µk)

+
θ2

θ2
RA

(yAk −HA
k µk)

T (RA
k )

−1HA
k P̃k(H

A
k )T (RA

k )
−1(yAk −HA

k µk)

+
θ2

θRAθRB

(yBHk −HB
k µk)

T (RB
k )

−1HB
k P̃k(H

A
k )T (RA

k )
−1(yAk −HA

k µk)

− θ

θRB

λT
k Pk(H

B
k )T (RB

k )
−1(yBk −HB

k µk) +
θ2

θRB

(µk − x̂k)
T S̄kP̃k(H

B
k )T (RB

k )
−1(yBk −HB

k µk)

+
θ2

θRAθRB

(yAk −HA
k µk)

T (RA
k )

−1HA
k P̃k(H

B
k )T (RB

k )
−1(yBk −HB

k µk)

+
θ2

θ2
RB

(yBHk −HB
k µk)

T (RB
k )

−1HB
k P̃k(H

B
k )T (RB

k )
−1(yBk −HB

k µk).

(A.34)

Notice that the left hand side of the above expression is a scalar. Therefore, the right hand side must
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also be a scalar and thus every term on the right hand side must also be a scaler. The transpose of a
scalar is the scalar itself, so each term on the right hand side side is equal to its transpose. For example,
consider the second term on the right side. Since it is a scalar, we see that (µk − x̂k)

T S̄kPkλk =
λT
k PkS̄k(µk − x̂k). Where we use that Pk and S̄k are symmetric. Equation (A.34) can therefore be

written as:

λT
k+1(Pk+1 −Qk)λk+1 = λT

k PkP̃
−1
k Pkλk − 2θ(µk − x̂k)

T S̄kPkλk − 2θ

θRA

(yAk −HA
k µk)

T (RA
k )

−1HA
k Pkλk

− 2θ

θRB

(yBk −HB
k µk)

T (RB
k )

−1HB
k Pkλk + θ2(µk − x̂k)

T S̄kP̃kS̄k(µk − x̂k)

+
2θ2

θRA

(yAk −HA
k µk)

T (RA
k )

−1HA
k P̃kS̄k(µk − x̂k) +

2θ2

θRB

(yBk −HB
k µk)

T (RB
k )

−1HB
k P̃kS̄k(µk − x̂k)

+
θ2

θ2
RA

(yAk −HA
k µk)

T (RA
k )

−1HA
k P̃k(H

A
k )T (RA

k )
−1(yAk −HA

k µk)

+
2θ2

θRAθRB

(yBHk −HB
k µk)

T (RB
k )

−1HB
k P̃k(H

A
k )T (RA

k )
−1(yAk −HA

k µk)

+
θ2

θ2
RB

(yBHk −HB
k µk)

T (RB
k )

−1HB
k P̃k(H

B
k )T (RB

k )
−1(yBk −HB

k µk).

(A.35)

Equation (A.18) can be rewritten as follows:

P̃−1
k = (Pk[I − θS̄kPk +

θ

θRA

(HA
k )T (RA

k )
−1HA

k Pk +
θ

θRB

(HB
k )T (RB

k )
−1HB

k Pk]
−1)−1

= [I − θS̄kPk +
θ

θRA

(HA
k )T (RA

k )
−1HA

k Pk +
θ

θRB

(HB
k )T (RB

k )
−1HB

k Pk]P
−1
k

= [P−1
k − θS̄k +

θ

θRA

(HA
k )T (RA

k )
−1HA

k +
θ

θRB

(HB
k )T (RB

k )
−1HB

k ]PkP
−1
k

= P−1
k [I − θPkS̄k +

θ

θRA

Pk(H
A
k )T (RA

k )
−1HA

k +
θ

θRB

Pk(H
B
k )T (RB

k )
−1HB

k ].

We therefore see that:

λT
k PkP̃

−1
k Pkλk = λT

k [I − θPkS̄k +
θ

θRA

Pk(H
A
k )T (RA

k )
−1HA

k +
θ

θRB

Pk(H
B
k )T (RB

k )
−1HB

k ]Pkλk

= λT
k Pkλk − θλT

k PkS̄kPkλk +
θ

θRA

λT
k Pk(H

A
k )T (RA

k )
−1HA

k Pkλk

+
θ

θRB

λT
k Pk(H

B
k )T (RB

k )
−1HB

k Pkλk.

(A.36)
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Substituting Equation (A.36) into Equation (A.35) gives:

λT
k+1(Pk+1 −Qk)λk+1

= λT
k Pkλk − θλT

k PkS̄kPkλk +
θ

θRA

λT
k Pk(H

A
k )T (RA

k )
−1HA

k Pkλk +
θ

θRB

λT
k Pk(H

B
k )T (RB

k )
−1HB

k Pkλk

− 2θ(µk − x̂k)
T S̄kPkλk − 2θ

θRA

(yAk −HA
k µk)

T (RA
k )

−1HA
k Pkλk − 2θ

θRB

(yBk −HB
k µk)

T (RB
k )

−1HB
k Pkλk

+ θ2(µk − x̂k)
T S̄kP̃kS̄k(µk − x̂k) +

2θ2

θRA

(yAk −HA
k µk)

T (RA
k )

−1HA
k P̃kS̄k(µk − x̂k)

+
2θ2

θRB

(yBk −HB
k µk)

T (RB
k )

−1HB
k P̃kS̄k(µk − x̂k)

+
θ2

θ2
RA

(yAk −HA
k µk)

T (RA
k )

−1HA
k P̃k(H

A
k )T (RA

k )
−1(yAk −HA

k µk)

+
2θ2

θRAθRB

(yBHk −HB
k µk)

T (RB
k )

−1HB
k P̃k(H

A
k )T (RA

k )
−1(yAk −HA

k µk)

+
θ2

θ2
RB

(yBHk −HB
k µk)

T (RB
k )

−1HB
k P̃k(H

B
k )T (RB

k )
−1(yBk −HB

k µk).

(A.37)

We substitute Equation (A.37) into Equation (A.30). In the interest of brevity, we will immediately collect
the terms and leave out the terms that are cancelled out:

J =

k−1∑
k=0

[(µk − x̂k)
T (S̄k + θS̄kP̃kS̄k)(µk − x̂k)

+
2θ

θRA

(yAk −HA
k µk)

T (RA
k )

−1HA
k P̃kS̄k(µk − x̂k) +

2θ

θRB

(yBk −HB
k µk)

T (RB
k )

−1HB
k P̃kS̄k(µk − x̂k)

+
1

θRA

(yAk −HA
k µk)

T

(
θ

θRA

(RA
k )

−1HA
k P̃k(H

A
k )T (RA

k )
−1 − (RA

k )
−1

)
(yAk −HA

k µk)

+
1

θRB

(yBHk −HB
k µk)

T

(
θ

θRB

(RB
k )

−1HB
k P̃k(H

B
k )T (RB

k )
−1 − (RB

k )
−1

)
(yBk −HB

k µk)

+
2θ

θRAθRB

(yBHk −HB
k µk)

T (RB
k )

−1HB
k P̃k(H

A
k )T (RA

k )
−1(yAk −HA

k µk)].

A.1.3. Stationary points with respect to x̂k , yAk and yBk

We intent to find a stationary point with respect to x̂k, yAk and yBk . So we will take the partial derivative
of J with respect to x̂k, yAk and yBk and set them to 0. This gives us the following:

∂J

∂x̂k
= −2(S̄k + θS̄kP̃kS̄k)(µk − x̂k)−

2θ

θRA

(yAk −HA
k µk)

T (RA
k )

−1HA
k P̃kS̄k

− 2θ

θRB

(yBk −HB
k µk)

T (RB
k )

−1HB
k P̃kS̄k = 0,

∂J

∂yAk
=

2θ

θRA

(RA
k )

−1HA
k P̃kS̄k(µk − x̂k) +

2

θRA

(
θ

θRA

(RA
k )

−1HA
k P̃k(H

A
k )T (RA

k )
−1 − (RA

k )
−1

)
(yAk −HA

k µk)

+
2θ

θRAθRB

(yB −HB
k µk)

T (RB
k )

−1HB
k P̃k(H

A
k )T (RA

k )
−1 = 0,

∂J

∂yBk
=

2θ

θRB

(RB
k )

−1HB
k P̃kS̄k(µk − x̂k) +

2

θRB

(
θ

θRB

(RB
k )

−1HB
k P̃k(H

B
k )T (RB

k )
−1 − (RB

k )
−1

)
(yBk −HB

k µk)

+
2θ

θRAθRB

(RB
k )

−1HB
k P̃k(H

A
k )T (RA

k )
−1(yAk −HA

k µk) = 0.
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These equations are satisfied when:

x̂k = µk,

yAk = HA
k µk,

yBk = HB
k µk.

(A.38)

A.1.4. Type of stationary points

We of course want that x̂k minimises J and that yAk and yBk maximise J . So we want the second partial
derivative of J with respect to x̂k to be positive and the second partial derivative of J with respect to
yAk and yBk to be negative. We calculate the second partial derivatives:

∂2J

∂x̂2
k

= 2(S̄k + θS̄kP̃kS̄k) ≻ 0,

∂2J

∂(yAk )
2
=

2

θRA

(
θ

θRA

(RA
k )

−1HA
k P̃k(H

A
k )T (RA

k )
−1 − (RA

k )
−1

)
≺ 0,

∂2J

∂(yBk )2
=

2

θRB

(
θ

θRB

(RB
k )

−1HB
k P̃k(H

B
k )T (RB

k )
−1 − (RB

k )
−1

)
≺ 0.

Let us first analyse the second partial derivative with respect to x̂k. Note that S̄k is chosen such that
it is positive definite. So we conclude that ∂2J

∂x̂2
k
is positive definite if and only if P̃k is positive definite.

Thus we find:

[P−1
k − θS̄k +

θ

θRA

(HA
k )T (RA

k )
−1HA

k +
θ

θRB

(HB
k )T (RB

k )
−1HB

k ]−1 ≻ 0,

⇔ P−1
k − θS̄k +

θ

θRA

(HA
k )T (RA

k )
−1HA

k +
θ

θRB

(HB
k )T (RB

k )
−1HB

k ≻ 0.

We continue with analysing the second partial derivative with respect to yAk . Thus:

2

θRA

(
θ

θRA

(RA
k )

−1HA
k P̃k(H

A
k )T (RA

k )
−1 − (RA

k )
−1

)
≺ 0,

⇔ (RA
k )

−1 − θ

θRA

(RA
k )

−1HA
k P̃k(H

A
k )T (RA

k )
−1 ≻ 0,

⇔ (RA
k )

−1

(
RA

k − θ

θRA

HA
k P̃k(H

A
k )T

)
(RA

k )
−1 ≻ 0,

⇔ RA
k − θ

θRA

HA
k P̃k(H

A
k )T ≻ 0.

Of course we find a similar expression as a result of setting the second partial derivative with respect
to yBk to be negative definite. So in conclusion the following need to be satisfied for every time step:

P−1
k − θS̄k +

θ

θRA

(HA
k )T (RA

k )
−1HA

k +
θ

θRB

(HB
k )T (RB

k )
−1HB

k ≻ 0,

RA
k − θ

θRA

HA
k P̃k(H

A
k )T ≻ 0,

RB
k − θ

θRB

HB
k P̃k(H

B
k )T ≻ 0.

In conclusion, using Equation (A.38) in the conditions in Equation (A.20e) and Equation (A.20g), we
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find:

Pk+1 = FkPk

[
I − θS̄kPk +

θ

θRA

(HA
k )T (RA

k )
−1HA

k Pk +
θ

θRB

(HB
k )T (RB

k )
−1HB

k Pk

]−1

FT
k +Qk,

x̂k+1 = Fkx̂k + FkPk

[
I − θS̄kPk +

θ

θRA

(HA
k )T (RA

k )
−1HA

k Pk +
θ

θRB

(HB
k )T (RB

k )
−1HB

k Pk

]−1

×[
θ

θRA

(HA
k )T (RA

k )
−1(yAk −HA

k x̂k) +
θ

θRB

(HB
k )T (RB

k )
−1(yBk −HB

k x̂k)

]
,

with S̄k = LT
k SkLk. This can be rewritten as:

Pk+1 = FkP̃kF
T
k +Qk,

P̃k = Pk

[
I − θS̄kPk +

θ

θRA

(HA
k )T (RA

k )
−1HA

k Pk +
θ

θRB

(HB
k )T (RB

k )
−1HB

k Pk

]−1

x̂k+1 = Fkx̂k + FkP̃k

[
θ

θRA

(HA
k )T (RA

k )
−1(yAk −HA

k x̂k) +
θ

θRB

(HB
k )T (RB

k )
−1(yBk −HB

k x̂k)

]
.

Choosing Pk+1 = Pk+1|k; P̃k = Pk|k; x̂k+1 = x̂k|k gives us the H∞ filter:

Prediction step:

S̄k = LT
k SkLk,

x̂k|k−1 = Fk−1x̂k−1|k−1,

Pk|k−1 = Fk−1Pk−1|k−1Fk−1 +Qk−1.

Update step:

x̂k|k = x̂k|k−1 +Kk(yk −Hkx̂k|k−1)

= x̂k|k−1 + Pk|k

(
θ

θRA

(HA
k )T (RA

k )
−1(yAk −HA

k x̂k|k−1) +
θ

θRB

(HB
k )T (RB

k )
−1(yBk −HB

k x̂k|k−1)

)
,

Pk|k = (P−1
k|k−1 − θS̄k +HT

k R
−1
k Hk)

−1

=

(
P−1
k|k−1 − θS̄k +

θ

θRA

(HA
k )T (RA

k )
−1HA

k +
θ

θRB

(HB
k )T (RB

k )
−1HB

k

)−1

,

Kk = Pk|kH
T
k R

−1
k

= Pk|k

[
θ

θRA
(HA

k )T (RA
k )

−1

θ
θRB

(HB
k )T (RB

k )
−1

]T
,

provided that:

P−1
k|k−1 − θS̄k +HT

k R
−1
k Hk ≻ 0,

RA
k − θ

θRA

HA
k Pk|k(H

A
k )T ≻ 0,

RB
k − θ

θRB

HB
k Pk|k(H

B
k )T ≻ 0.
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