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Abstract

Managing electrical distribution assets entails making the decision on how to pro-
ceed with an ageing asset. The three options that asset managers have are run to fail,
perform maintenance or repairs and lastly to replace.

This decision making process is becoming incrementally more important due to
the threat of replacement waves. This a phenomenon that comes forth from the
fact that a large portion of the assets were installed around the 1970’s, the so called
installation wave, combined with the fact that these assets have a life expectancy of
40 to 60 years. It is up to the asset managers to accurately asses the condition of these
assets and prioritize investments due to budget constrictions.

Asset management has been evolving from time based maintenance (TBM) to con-
dition based maintenance (CBM) and reliability centered maintenance (RCM). To
aid in the decision making process for the latter two methods, accurate condition
assessment and failure probability methods are needed.

At Stedin, one of the three largest network operators in The Netherlands, the asset
managers require a better condition assessment method for transformers, as the one
being used now lacks certain capabilities; trend analyses and proper prioritization
is difficult and time consuming.

Furthermore, there lies the question whether the condition of the transformer can
be used to improve the failure or survival probability model. The assumption is that
the condition indicators of an individual asset can be used to adjust the population
based probability models, which are then comprehensive and more accurate.

In this thesis, an improvement to the transformer condition assessment is imple-
mented and the effect of the condition indicators on the survival probability of the
transformer is studied.

Several condition assessment methods were reviewed, with the chosen method
being the so called health index (HI). The results from this method is accurately
reflected in the transformers which are to be replaced by Stedin. However, it has
become clear that using one single number for decision making is not recommended,
as the subsystems that are in moderate or bad condition might be masked by those
that aren’t. This can be compared to the analogy that a chain is only as strong as
its weakest link, and thus the condition of that link should not be masked by the
condition of the rest.

For the survival model, machine learning and classic statistical methods were re-
viewed. The chosen method was Cox’s Proportional Hazard Model, which has the
advantage of being applicable to situations in which the underlying probability dis-
tribution of the events is unknown.

Due to missing failure data, the survival model was used to model the effect of
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the condition indicators on the probability of corrective maintenances. Further con-
straints in the data quality lead to the confidence bands of the model’s parameters
to be relatively large. However, the univariate models do prove the significance of
the effect of these condition indicators. The conclusion is that there is a relationship
between the condition and the observed failures, but that proper documentation of
failures is necessary to increase the accuracy of the model.
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Chapter 1

Introduction

1.1 Problem Description

Stedin is a distribution system operator (DSO) of a large part of The Netherlands.
They have a big power transformer fleet that needs proper and careful management,
as they can account for up to 60% of the total investment costs for substations [1].
This falls in the field of asset management (AM) and requires many diagnostic tools
and strategic decisions. When a transformer is old or displaying faults, an asset
manager has to make a decision; run to fail, repair or replace?

Many inputs are used in this decision making process, one of which is the trans-
former’s condition. At the moment Stedin’s AM department uses a condition as-
sessment method which they wish to improve, as it is difficult to preform trend anal-
ysis and the data base is quite scattered.

Furthermore, the group would like to improve the information given to the risk
analysis group for predicting the risks concerning transformer maintenance and re-
placement, and thus improve the justifications behind their decision making. This
entails a transformer failure model which is specific for each individual, instead of
being optimized for the whole population

The goal of this thesis is thus twofold:

• Improve the condition assessment for power transformers.
• Develop a failure model which adapts to individual transformers.

1.2 Methods

As the first objective of this thesis is to develop a condition assessment method for
transformers, the characteristics that define the condition and the factors that change
it, should be reviewed. This condition assessment will be used for decision making
in a condition based maintenance (CBM) strategy. Prior to developing a CBM strat-
egy, it is important to know the following [2]:

• Function and criteria of performance standards
• Failure modes
• Causes and reasons for failures
• Consequences/importance of each type of failure

1
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• Techniques to prevent failures

Better results with higher perfomce standards can be achieved with CBM, provided
the fault is detected and properly diagnosed in its early stages [2].

Achievement of the first goal will require the use of transformer (diagnostic) data
that has been gathered over many years. This data can be used in existing determin-
istic models or a machine learning approach can be employed. There is an extensive
amount of literature covering the deterministic models and there are many libraries
containing deployable machine learning algorithms.

The second objective entails using an individual transformer condition assess-
ment, and perhaps other variables, to compute the failure probability. (Un)fortunately,
there are not many cases of transformer failures, especially well documented fail-
ures, and thus not much data is available. This means that information regarding
transformers that have survived should also be taken into account, to augment the
amount of useful data. This requires the theory of survival analysis.

1.3 Research Question and Scope

From the above listed goals, the following research question is proposed:

Can the condition of transformer be used as a reliable input for transformer failure
probability prediction?

Scope

• Only power transformers will be considered. These are transformers with a sec-
ondary voltage of more than 1 kV.
• Focus will lie on the individual transformer failure probability and not population

failure probability.
• When considering transformer failure, the interest lies more on the failure proba-

bility (to calculate risk) instead of the “technical” end of life.

Deliverables

• Implementation in R [3] of improved condition assessment model for HV trans-
formers compared to current model employed by Stedin.
• Improved information for risk analysis: condition based failure model for deter-

mining failure probability per transformer.

1.4 Thesis Outline

In chapter 2 an introduction is given to transformer functionality and its subsys-
tems and furthermore a discussion of how asset management has been evolving is
presented.

In chapter 3 a failure mode analysis is conducted to asses which subsystems are
critical to the condition assessment. Afterwards the subsystems are selected based
on its criticality and the availability of the corresponding condition data.
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In chapter 4 the transformer condition indicators are discussed along with the pos-
sible measurement possibilities.

In chapter 5 a review is given on today’s transformer condition assessment tech-
niques and the choice of the health indexing method is explained.

In chapter 6 a review is given of modern survival modelling methods and the
extensions of the basic models. The choice of the model is also thoroughly explained.

In chapter 7 the transformer population, input data and implementation details
are discussed.

In chapter 8 the results of the health index model and the survival probability
model is given.

This thesis is concluded with chapter 9 in which the research question is answered
and recommendations for future work is given.
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Chapter 2

Introduction to Transformers

Transformers play a crucial role in everyday power delivery to consumers. They
provide a means to transfer electrical power cost efficiently over long distances to
e.g. homes, businesses and factories, whose core activities are quite dependent on
electricity. Without backup power, these activities would come to a standstill if the
supplying transformer ceases to function.

Transformers are relatively complex systems with many subcomponents, due to
the situations that can occur if they are not designed, operated or managed properly.
In figure 2.1, such a situation is depicted. Transformers have multiple protection
mechanisms to prevent these types of situations from happening, and furthermore
manufacturers use clever mechanisms to lower the production and operating cost.
All of this in combination with the fact that they are designed for lifespans of up to
40 years, makes the transformer an interesting system to manage.

Figure 2.1: Transformer that failed [4].

This chapter is meant to give the
reader, if necessary, a physical under-
standing of the transformer as a system
and define the functions of the compo-
nents. In the first section a description
of transformer operation is discussed,
followed by the design characteristics in
the next. Transformer types will then be
discussed in order to define the scope
of the transformers covered by this re-
search. The chapter will end with a
discussion on some trends seen in as-
set management, to indicate some of the
problems with managing transformers
and other assets in general.

2.1 Transformer Working Principle

Transformers are electrical power devices that transfers electrical energy from one
circuit to another. The different circuits are magnetically coupled by a common mag-
netic field, but there is no direct electrical connection between the circuits (except for
certain types) [5]. A formal definition of a power transformer is given in an IEC
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standard [6] as "a static piece of apparatus with two or more windings which, by
electromagnetic induction, transforms a system of alternating voltage and current
into another system of voltage and current usually of different values and at the
same frequency for the purpose of transmitting electrical power". The term "static"
is however not well suited for transformers that have moving parts such as the load
tap changer (LTC), which will be discussed in section 2.2.3.

The phenomenon of magnetic coupling will be introduced first. When a current
runs through a conductor, a magnetic field is created around the conductor. This
magnetic field is a vector, thus has a magnitude and a direciton. The magnetic field
density is proportional to the current, I, that runs through the conductor. For a
straight wire, the magnitude is given by

B ∝ µ ∗ I (2.1)

Where µ is the magnetic permeability of the medium in which the magnetic field is
present. This value varies per material and is higher in e.g. ferromagnetic metals,
which means that when applying the same current, the magnetic field density will
be higher in a metal compared to e.g. air. This is an important property for using
metal cores in transformer design.

Magnetic fields can be used to induce voltages over a conductor. This phenomenon
is used to transfer power in wound up conductors (windings). The induced voltage
in a single winding depends on the rate of change of B and the area of the winding,
A and is given by

V =
d
dt
~B · ~A (2.2)

The term ~B · ~A is described as the magnetic flux Φ, which can be seen as the total
magnetic field. Equation 2.2 works both ways; when an alternating voltage is ap-
plied to a coil, an alternating magnetic flux is induced. This alternating magnetic
flux can consequently induce a voltage in another coil and if an eletrcal load is con-
nected to the terminals, then a current will flow; power transfer is achieved.

Equation 2.2 decribes the voltage and flux relationship for a single winding. Should
multiple windings be connected in series to form a single winding, then the equation
expands to

V =
d
dt

ΦN (2.3)

where N is the number of turns. This equation describes the basic working principle
for a transformer. Assuming no flux leakage, the flux Φ induced by one winding will
be equal to the flux that reaches another winding and should the two windings have
a different amount of turns N, the induced voltage will have a different value. The
relationship between two magnetically coupled windings can be derived by using
equation 2.3 for the two windings, which are indexed by the subscripts:

d
dt

Φ1 =
V1

N1

d
dt

Φ2 =
V2

N2

Φ = Φ1 = Φ2

6



Section 2.2. TRANSFORMER COMPONENTS

d
dt

Φ =
V1

N1
=

V2

N2

V1

V2
=

N1

N2
(2.4)

Equation 2.4 gives the voltage ratio between magnetically coupled coils. This means
that if the second coil has a higher number of the turns, the voltage will be higher.
This principle is used by transformers to increase or decrease the voltage from one
coil (primary side) to another coil (secondary side). The current ratio can also simply
be derived assuming that the power applied to the first coil is equal to the power
received by the second coil. It is given by

I1

I2
=

N2

N1
(2.5)

Thus an increase in voltage is paired with a decrease in current. This is the reason
that high power is transmitted at high voltages: lower current results in lower dis-
sipation losses as the power loss in power cables is given by Ploss = I2R, where I is
the current through the cable and R the resistance of the cable.

2.2 Transformer Components

2.2.1 Core

In transformers for high power applications, the magnetic coupling commonly hap-
pens via an iron or steel core. The reason for using electrical steels is because their
magnetic permeability µ can be three orders of magnitude higher than air [5]. Fur-
thermore, the steel also provides a pathway for magnetic coupling, see figure 2.2.
However, contrary to the depiction in figure 2.2, the primary and secondary wind-
ings are usually wound around the same leg of a core in order to achieve maximum
magnetic coupling.

Figure 2.2: Magnetic coupling via a steel core [5].
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There are differences in transformer’s core and winding configuration. In common
transformer design, the manufacturer has a choice between two concepts, core and
shell type, which are depicted in figure 2.3.

Figure 2.3: Core type (left) and shell type (right) transformers [7].

The configurations have no influence on the operational characteristics and the re-
liability of the transformer, the choice mainly lies in the preferred manufacturing
process [7].

The alternating magnetic field in the core produces eddy currents in the core, caus-
ing losses in the form of heat. To reduce the magnitude of these currents, the cores
are laminated. There are two common ways of doing this, wound and stacked. The
configurations can be seen in figure 2.4.

Figure 2.4: Types of core configurations [5]. Left is stacked and right is wounded

2.2.2 Insulation

In power transformers, the windings and other components are provided with elec-
trical insulation by two components:

• Solid insulation: the conductors are wounded with high density paper and press-
board between the windings. Cellulose, the main component in paper, has good
insulating properties [8]. The typical transformer contains 10-12 tons of paper [9].
• Liquid insulation: the transformer tank is filled with mineral oil, which has ex-

cellent and cost effective insulating and cooling properties [10], submerging the
windings and other internal subsystems. There have also been some studies on al-
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ternatives to mineral oil such as vegetable oil, which is more environment-friendly
and less flammable [11][12]. The typical transformer has 45 tons of oil [9].

The combination of the paper and oil results in an enhanced oil impregnated paper
with respect to insulating and cooling properties. The oil eliminates air from the
porous paper and pressboard to increase their resistance to dielectric breakdown
[10]. However, there are also dry type transformers that use vacuum instead of oil
as an insulating medium. They are usually applied in areas that require a higher fire
safety rating or have environmental contamination constraints, and are less common
in the transmission and distribution network.

2.2.3 On Load Tap-Changer

The winding ratio of a transformer dictates the voltage transformation, however,
the output voltage will vary as the load varies. Regulation of the voltage is thus
needed and this is done by changing the effective turn ratio of the transformer. The
windings are equipped with different taps that make it possible to alter the amount
of turns that are connected to the terminals of the transformer, see figure 2.5

(a) Winding taps (b) Tap terminals

Figure 2.5: Winding taps for altering the effective turn ratio.

The subsystem that is responsible for selecting the taps that are connected to the
output terminals is called the on load tap changer (LTC). This is the only actively
moving part of the transformer and is the source of most of its failures [13]. The LTC
selects other windings without interrupting the load and must therefore transfer the
load current from one contact to another. This operation will cause arcing and thus
LTC’s are equipped with an arcing switch. How this arcing switch is implemented
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varies per LTC type. There are two designs of LTC switching mechanisms that are
dominantly used:

• Selector switch type: An example of the construction of the selector switch type
is given in figure 2.6a. The bottom part is called the selector switch and does
small voltage corrections. The top part is called the change-over selector or coarse
selector, which expands the regulating range and does big voltage corrections.
The selector switch is the arcing switch in this design. The coarse selector doesn’t
break the current path during its switching cycle, by letting the selector switch do
that simultaneously with its cycle.

• Diverter switch type: A design example of the diverter switch type is given in
figure 2.6b, placed next to a selector switch type for comparison. The diverter type
is the same as the selector type, but the arcing switch functionality is take over by
an extra switch: the diverter switch. The diverter is responsible for switching the
load current whenever the fine tap selector or change over selector performs a
switching action.

(a) Selector type (b) Diverter type

Figure 2.6: LTC types [14].

In both designs, the movings contacts are connected by a shaft to a motor drive,
which is responsible for moving the contacts. See figure 2.8 for an example of the
rolling and stationary contacts.

The LTC is also submerged in transformer oil. The load switching components of
the LTC are always confined in a separate compartment in the transformer tank due
to the arcing. Arcing causes high temperatures and degrades the oil, resulting in
contaminants that are bad for cooling and insulating properties. The non-load com-
ponents are sometimes placed in a seperate compartment, but are usually placed in
the main tank along with the rest of the transformer’s inner parts [15][14]. There are
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Section 2.2. TRANSFORMER COMPONENTS

other types of LTC that are contained in a vacuum. The vacuum types are relatively
new and are not largely in use (yet).

(a) Rolling contacts (b) Stationary contacts

Figure 2.7: LTC contacts.

2.2.4 Tank

As mentioned before, the transformer tank is filled with oil. One of the purposes of
this oil is to cool the windings and so when the oil heats up, it expands and pres-
sure will build up in the tank. Extra space is provided by a conservator tank, which
also functions as an oil reservoir. oil can expand to this conservator tank and excess
air is pushed out through a valve, called a breather. When the oil cools down, air
enters through the same valve, however this air contains moisture and other con-
taminants that must be filtered out. The common filtering method is to add a silica
gel compartment to the breather.
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(a) Tank and conservator (out of service) (b) Silicagel breather

Figure 2.8: Transformer tank.

2.2.5 Bushings

Figure 2.9: Bushings

The cables running to the terminals of the trans-
former should not come into contact with the
transformer housing as defects in the insula-
tion may cause the transformer tank, which is
earthed, to cause a short circuit. The cables
enter the transformer through bushings, which
isolate the tank from the cables. These bushings
are sometimes filled with oil for its cooling and
dielectric properties [16]. In figure 2.9 a trans-
former bushing is depicted.

2.2.6 Protective and Auxiliary Devices

A transformer is equipped with some devices
to protect it from an oncoming or ongoing fault.
These devices detect an anomaly in the transformers operating conditions a correc-
tive action. Furthermore it has some auxiliary devices for monitoring important
conditions. The most common ones will be discussed here [5, 7]:

• Buchholz: Between the main tank and the conservator there is a relay which col-
lects gas bubbles and detects high values of oil flow, named a Buchholz relay. An
internal fault can produce free gas, due to the decomposition of the oil, and a well
calibrated relay can detect early stages of a fault. A serious fault will develop gas
so quickly that it will push the oil up to the conservator tank. This high rate of oil
flow will trip the Buchholz.
• Overvoltage protection: Most common method of overvoltage protection are surge

arresters. They protect the transformer from transient voltages by limiting the
voltage to a level that the transformer is designed to tolerate.
• Overcurrent protection: These protect the transformer from the short circuits.

They might be as simple as power fuses or more complex overcurrent relays.
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• Pressure relief: These device limit the pressure built up in the tank to prevent it
from rupturing. When tripped, the pressure is relieved through a valve.
• Thermometers: These usually measure the oil temperature in the top of the tank.

This can serve as an indication of the winding hot spot temperature.
• Oil level indicator: Low oil levels indicate that a leakage might be present. A

leakage results in not only lower oil levels, but also a pathway for moisture and
other contaminants to enter the transformer.
• Fans and pumps: Transformers are cooled externally by air and internally by oil.

The circulation of both can occur naturally, or forced. Air can circulate naturally
or forced with fans, and oil can circulate either naturaly by convection or forced
by pumps. The cooling types are given by ONAN (oil natural - air natural), OFAF
(oil forced - air forced), and combinations thereof.

Some transformers are equipped with the ability to relay some essential measured
parameters. These can be parameters such as key gases in oil, currents, voltages and
partial discharge activity.

2.3 Transformer Types

Transport of energy can be distinguished in two parts: transmission and distribu-
tion. These different parts also need different transormers. Here is an overview of
the most common types of transformers.

• Distribution transformers: transforms voltage to distribution level. These levels
are suitable for connections to residential consumers.
• Power transformers: transforms voltage to level suitable for transportation. These

levels are suitable for transmission over long distances. These transformers either
increase the voltage from a generator (generator step up transformer) or lower it
proportionally to the power being transmitted to a network branching from the
main transmission network.
• Autotransformers: are placed at point in the network at which the voltage has

dropped significantly due to long tranmission distances. These transformers trans-
form the voltage back up to the nominal voltage of the network it is in.
• Earthing transformers: provide a ground for a network which would otherwise

have no ground, e.g. a network supplied by a delta system.
• Choke: these transformers provide a latency effect during e.g. short circuit faults.

This thesis will focus on power transformers and autotransformers, as they are cur-
rently in the Stedin population under study.

2.4 History of Electrical Power Asset Management

The electrification of European countries grew steadily in the 20th century and by
the 60’s many households were dependent on electricity. This trend forced network
operators to upgrade their networks and much of the electrical infrastructure was
installed during the 60’s and 70’s. It was noticed that electrical assets were capital
intensive assets, i.e. that investment costs formed most of the life cycle costs. Yearly
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operational costs lie between 0.1% to 0.5% of the investment and the OPEX/CAPEX
ratio is between 1.3% and 11.1% [17].

The development of asset management is also dependent on the changes in the
network operators themselves. In the 60’s and 70’s, these companies were geograph-
ically divided in smaller area’s. There were specialized departments with relatively
small asset data bases that were manually manageable. Much knowledge of the as-
set population were known by the employees and long employment periods made
the transfer of knowledge simple and thus documentation was not highly needed
(M. Hooijmans, private communication. October 2017).

Now, many of the smaller network operators have fused and the asset data base
has become too big to be managed without proper documentation. The different
maintenance and design policies allow for differences between the way the assets
were managed. Combining these data was not always done uniformly and to this
day there are still some discrepancies in the data format for the same piece of infor-
mation within the same company.

At first there was relatively little attention paid to maintenance strategy as asset
life and performance up to that point were above expectations. Generally, electrical
assets have a long technical lifetime due to the fact that few moving parts are used.
The failure rates were low and corrective maintenance strategy was mainly used, ex-
cept for switchgear, protection and substation automation; preventive maintenance
was usually used for these. Furthermore, the replacement strategy was usualy run
to fail and replace failed part if possible. For many years, the goal of network own-
ers and operators was to supply electricity in the most reliable way. Although cost
effiency was also taken into consideration, reliability prevailed.

This maintenance and replacement strategy has been undergoing a change to CBM
and the preventive replacement of assets, respectively. This comes from the fact that
a significant part of the electrical infrastucture was installed in the 60’s and 70’s and
the average expected lifetime of the assets are 40 to 50 years. This means that many
assets are now beyond their nominal design life and network operators are faced
with three options for their assets:

• Consume: replacement after failure.
• Prolong: extension of the prevailing strategy with lifetime activities such as up-

dgrading and refurbishments.
• Replace: preventive replacement of assets.

Replacing the assets too early results in high investments costs with neglible grid
performance increase. Replacing the assets after failure results in a short period of
time in which all must be replaced, which is difficult due to financial constraints
(internally and due to revenue-capping regulating parties). This would result in the
so called replacement wave, see figure 2.10. A similar trend can be seen between the
two, and it can be assumed that a replacement wave is approaching (note that build
year and installation year are approximately the same for Stedins transformers).
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(a)

(b)

Figure 2.10: Comparison of typical installation/replacement waves and Stedin
transformer population.

To make a better and more objective decision, precise information of asset con-
dition is required and thus advanced diagnostic methods and condition assesment
are used to study the failure behaviour. Maintenance is unified across the assets and
aimed at the prevention of failures. However, there is some uncertainty in these con-
dition assessments and thus inputting them in decision making processes results in a
risk. When at first reliability prevailed, now the decision must take reliability, costs
and risks into account. The strategy of network operators shifts from maximizing
reliability to controlled risk, optimizing reliability and costs. The considerations to
achieve this can be seen in figure 2.11

Old transformers are starting to fail due to old age and the importance of replace-
ment strategies is rising. The challenge is to optomize the replacement strategy with
socially acceptable tariffs, while also pursuing the optimum from society’s point of
view [17]. Transformer life assessment is becoming an issue of reliability: there is no
definite point at which a transformer will fail, just an increase in fail probability [18].
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Presently, a program to identify transformer candidates for replacement and an
action plan for each unit is a crucial element of population management. Examining
the consequences of failure can make it possible to postpone the replacement of a
unit, if it has a small impact in case of a failure. The balance between likelihood of
failure and the consequences of that failure is at the heart of risk management [19].

Figure 2.11: Tangeible considerations for optimizing replacement strategy [17].
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Chapter 3

Failure Mode Analysis

A transformer has many components which can fail and each may have multiple
failure modes. A failure mode is defined as the manner by which a failure is ob-
served. To define, identify and eliminate these failures, a failure mode and effect
analysis (FMEA) can be conducted. FMEA is a method intended to perform the
following activities [20]:

1. Identify and recognize potential failures including their causes and effects.
2. Evaluate and prioritize the identified failure modes.
3. Identify and suggest actions that can eliminate or reduce the chance of the poten-

tial failures from occurring.

The goal of this FMEA is to assess which failure modes can and should be taken into
account in the condition assessment. This will be based on the available data at
Stedin and the consequences of the failure.

3.1 Failure Modes

Findings from [21], [22],[15] and [23] are combined in this section. The failure modes
are discussed per transformer subsystem and are categorized into dielectric, ther-
mal, mechanical and chemical faults.

3.1.1 Windings

Figure 3.1: Slightly deformed
windings

A winding failure is a state in which the winding of a
transformer does not effeciently conduct current for
magnetic coupling. The following faults are consid-
ered:

• Dielectric faults: the insulating medium between
the winding can not withstand the voltage ap-
plied, resulting in a dielectric breakdown causing
a short circuit between the windings. This can be
either because the insulating medium has been de-
teriorated or because the voltage surpasses the de-
sign specifications.
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The presense of cavities in the solid insulation or gas bubbles in the liquid insula-
tion decreases the dielectric strength between the conductors.

• Thermal faults: losses occur in the windings due to the resistance of the conduc-
tors. If the losses are too high, the heat might expand the conductor and deterio-
rate the insulating medium. This causes wear and tear of the conductor and de-
creases the physical strength of the conductor up to the point that it might break.
• Mechanical faults: displacement of the windings decrease the transformer perfor-

mance by creating more leakage flux. These displacements may occur radially or
axially due to short circuit currents introducing strong magnetic fields or during
the transportation of the transformer. The displacement might also rupture the
solid insulation, see figure 3.1.

3.1.2 Core

The core consists of laminations to reduce the eddy currents and the losses asoci-
ated with it. The lamination can become defected by poor maintenance, old oil or
corrosion. When the insulating coat between the laminations is damaged, the lam-
inations are shorted which causes larger eddy currents resulting in excesive heat.
Furthermore gaps between the laminations can result in partial discharge activity,
damaging the laminations. The following faults can thus occur in the core:

• Thermal faults: overheating of the core due to eddy currents heats up the solid
and/or liquid insulation, which speeds up the aging process.
• Dielectric faults: partial discharges between laminations, resulting in heat. The

heat might also form gases in the oil, causing damage elsewhere in the trans-
former.

3.1.3 Bushings

The bushings of a transformer should insulate the high and low voltage lines from
the transformer tank. The capacitance between the tank and bushing is what should
be perserved to prevent breakdowns, but this can deteriorate due to partial dis-
charges. The faults that can occur are as follows:

• Dielectric faults: high fault voltages may cause partial discharges, damaging the
bushing up to the point that complete breakdown can occur. Old oil or oil leakage
may also cause internal flashovers.
• Thermal faults: explosion due to overheating of the oil and pressure build up.
• Mechanical faults: loosening of conductors caused by transformer vibrations, re-

sulting in heat. Oil leakage due to mechanical wear.

3.1.4 Oil

Transformer oil has insulating and cooling properties which can be compromised.
When these properties are below a certain threshold, a failure mode can be defined.

The electrical properties degrades when high moisture or acidity is present. This
is a feedback mechanism; acidity and moisture increases the aging rate of the pa-
per insulation, resulting in more moisture. Increased acidity will increase the ageing
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rate of the oil, resulting in more acid. Acid comes from oxidation of the oil and
water can be introduced into the oil via the breathing system or via water holded
by the cellulose in the solid insulation. The water may form vapor bubbles when
heated which may come between the windings, reducing the dielectric strength be-
tween them. Gas bubbles are weak dielectrics and their presence can intensify the
discharge (corona) or initiate further breakdown in highly stressed regions [10].

The cooling property is degraded when the circulation of the oil is compromised
by sludge and/or bad viscosity of the oil. The following faults can thus occur:

• Dielectric faults: the dielectric properties of the oil has degraded down to the point
where the probability of flashover becomes high.
• Thermal faults: the cooling properties of the oil has degraded down to the point

where excessive heating is present in the transformer.
• Chemical faults: The acidity of the oil is above a treshold, which deteriorates the

paper insulation excessively.

3.1.5 LTC

Figure 3.2: Contact wear: grooves by the
rolling contacts.

The LTC is in charge of regulating the
output voltage and is one of the most
complex part of the tranformer. Fur-
thermore it is the only component in
the main tank with moving parts. The
LTC has two seperate compartments
and two different failure mechanisms
are dominant in each, covered in sec-
tion 4.2.4. This is due to the difference
in switching frequency and the pres-
ence/absence of arcing. A failure is de-
fined as a state in which the LTC can no
longer select another tap without inter-
rupting the load current. The following
failure modes are defined:

• Mechanical faults: contact interrup-
tion due to contact or spring wear.
Switching failures due to low switch
speed, blocking of the switch, motor
failure or drive axis rupture.
• Thermal faults: contact wear, causing

increased resistance and high losses,
see figure 3.2.

3.1.6 Tank

The tank of the transformer should protect the internal systems of the transformer
from mechanical damage, moisture and other contaminants. The two components of
the tank that are susceptible to ageing is the outer coating and the seals and gaskets.
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The ageing mechanisms are caused by environmental stresses, corrosion and high
humidity. The following failures can ocur:

• Mechanical faults: cracks in the tank walls or seals and gaskets, resulting in oil
leakage.
• Chemical faults: tank corrosion.

3.1.7 Protective systems

The protective systems of a transformer are devices that protect the transformer from
faults by detecting the presence of a fault and taking appropiate actions. If it cannot
fix a fault, it should isolate it to prevent damage to the transformer. The following
protection devices and faults are identified:

• Mechanical faults: the Buchholz relay doesn’t detect rapid oil expansion or low
oil levels. The pressure relief valve circuitry does not release the pressure fast
enough, mainly caused by the springs in the device becoming fragile over time.
• Dielectric faults: failure in the surge protector, which results in high voltages ap-

plied across the transformer, damaging it. Moisture, heat and corrosion result in
overheating and short circuits in the device, which are the main reasons of failure.

3.1.8 Cooling system

The cooling system consists of fans and/or pumps, which are optional in the design
of the transformer. The fans provide air circulation and the pumps circulate the oil
inside the tank. The following faults can occur:

• Mechanical faults: wear-out the fan motors.
• Chemical faults: leakage in oil/water pipes due to corrosion.

3.1.9 Overview

In appendix A, an overview of the failure modes can be seen along with the effect,
causes, detection method applied at Stedin, and the usual action taken by Stedin
for that failure mode. The causes of the failure modes will be further elaborated in
chapter 4. This table, along with the available data at stedin, will be used to select
the subsystems taken into account in the condition assessment.

3.2 Failure Statistics

Failure frequency of each subsystem is essential for calculating the associated risk.
In this section, some statistics are discussed.

Unfortunately, Stedin does not have a clear transformer failure data base, so in-
stead, the corrective maintenances were used. Corrective maintenances are carried
out after a failure has occurred, or if standard time based maintenance has pointed
out an issue that needs to be corrected. These corrective maintenances entails either
a repair or replacement of a subsystem.

To identify the failure cause, the data was imported in R and search terms were
used to extract a categorization from the free text fields. The categories are useful
for studying the effects on different subsystems, and comparing the distributions to
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other databases, see figure 3.3. In this case the other two databases are from a world
wide Cigre survey [24] and Continuon (now Liander) [25].

Figure 3.3: Failure cause statistics of world wide Cigre survey (±800 entries)[25],
Continuon failure database (±50 entries) [24], and Stedin corrective maintenance

database (470 entries).

Stedins database seems to agree with the other two distributions, with LTC and
leakage failures being the most frequent problems. However, the percentage of leak-
ages is quite higher compared to the other two. This might be due to the fact that
not all the leakages from the Stedin database resulted in a failure, as it was not possi-
ble to seperate these from the data. Furthermore, Stedin transformers seem to have
relatively low amount of bushing failures. This coincides with the experience of
Marcel Hooijmans, Stedin’s transformer asset manager, who recalls few problems
with transformer bushings.

In conclusion, it can be said that the LTC and windings are the primary subsystems
of concern.

3.3 Failure Modes Selection

Based on the severity of a subsystem failure and the available data at Stedin, and the
available condition assessment methods, the following subsystems are chosen to be
considered in the developed condition assessment.
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Table 3.1: Considered subsystems for condition assessment.

Subsystem Considered Reason

Core Yes DGA data present.
Windings Yes Furan data present. Failure effect entails trans-

former replacement
LTC arcing switch Yes LTC diagnostic data present. Failure effect is

severe.
LTC off-load switch Yes LTC diagnostic data present. Failure effect is

severe.
LTC drive No LTC diagnostic data present, but this only con-

siders motor speed/switching time
Bushing No Although the failure effect is severe, there is in-

sufficient diagnostic data present.

Oil Yes Oil diagnostic data present.
Tank No Oil contamination would appear in diagnos-

tic oil data, but insufficient maintenance data
present.

Cooling No Is corrected on sight during standard
maintenance.

Protective devices No Are corrected on sight during standard
maintenance.
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Chapter 4

Transformer Condition

The condition or health of an asset is defined as its ability to perform a function,
relative from its normal behaviour [23]. During a transformers lifetime it endures
different kind of extrinsic stresses which contributes to its degradation, causing a
change in its condition which can ultimately lead to lower performance, a fault or
end of life (EOL). In this chapter, factors that affect a transformer condition and its
indicators are discussed.

In section 4.1 the model of a condition change is discussed and the stresses im-
posed on a transformer are explored, to give an indication of what may be used as
additional variables for the condition assessment.

Assessing the condition of a transformer entails understanding which character-
istics of a transformer influences its functionality. These characteristics and their
degradation mechanisms are presented in section 4.2.

Once these characteristics are known, the diagnostic techniques used for assessing
the state of these can be discussed, as is done in section 4.3.

4.1 The Condition Change Process

The condition change process is a continous process which can describe the state of
a transformer. The change process proposed in [23] will be presented. The following
terms are defined to describe the process:

• The state of a system will be defined as a description of the current situation of
a system with all accessible quantities such as e.g. colour, weight and age of a
transformer.
• The running mode is defined as the mode of operation of a system. Examples of

running mode are: under maintenance, under load, overloaded and under trans-
port.
• The condition is defined as the ability of a system or component to perform its

specified function.

The condition change itself is a result of the current condition undergoing the con-
dition change process. The condition change process is a function that takes two
inputs: the running mode and external stimuli. The running mode includes relevant
operation modes that affect the condition, e.g. the level of loading of a transformer.
This factor is something which can be controlled by the system operator. The exter-
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nal stimuli are factors which can not be controlled continously, e.g weather, faults
and social environment. A schematic of the change process is given in figure 4.1.

Figure 4.1: A state change process [23].

The condition change can of course either have a positive or negative effect on the
condition. Maintenance work, which falls in the running mode, should improve the
condition.

If this proposed change process has a probablistic input it is in essence a Markov
process, specifically a Markov decision process (MDP), which can describe the change
process in conjunction with maintenance actions. The property of this probablistic
model is that the state change is dependent on the current state and the actions
applied.

An example schematic of a MDP is given in figure 4.2, which was presented in
[26]. In this schematic, D are set of system conditions, I is an inspection action, M
is a minor maintenance action, MM is a major maintenance action. The transition
from one state to another is probabilistic, however a maintenace action can alter
the probability of going to a certain state. Not given in the schematic are the state
transition probabilities.
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Figure 4.2: Application of the MDP [26].

4.1.1 Inputs of Condition Change Process

The changes in the condition of a transformer are a result of the stresses it endures.
These stresses contribute to the change processes and can ultimately lead to a fault
or end of life. The following classes are distinguished [23][27]:

1. Electrical: high voltage or electromagnetic fields can influence the insulation sys-
tem of the transformer negatively. E.g. should the applied voltage be greater than
the breakdown voltage of the insulation system, partial discharge (PD) or dielec-
tric breakdown (DB) will occur, which degrades the dielectric properties of the
insulation and cause high temperature rises.

2. Mechanical: the mechanical integrity of the transformer can be jeopardized due
to mechanical forces such as thermal expansion or contraction and deformation of
the windings due to electromagnetic forces caused by high short-circuit currents.

3. Thermal: thermal stresses contribute to changes in the chemical and mechanical
state of the transformer. High temperatures contribute to faster chemical reac-
tions, e.g. paper degradation, and mechanical stresses such as expansion and
contraction.

4. Chemical: in some instances chemical reactions are separated from thermal stresses,
even though thermal stress can speed up the these chemical processes. Examples
of these chemical stresses are rusting of iron and oil deterioration due to acids.

These classes can influence one another and can not be seen as independent. Fur-
thermore, a fault can be caused by a combination of these stresses, e.g insulating
material can degrade due to mechanical and thermal stress. However, classifica-
tion of these stresses identifies the sources of the various degradation processes and
provide suggestions of mitigation measures.
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4.2 Transformer Condition Indicators

The main subsystems of transformers which are exposed to degradation are [28]:

• Dielectric systems (oil, paper, windings)
• Magnetic circuit (core, clamping)
• LTC
• Mechanical parts (bushing, cooling, tank, etc.)

In this section we look further into the characteristics of a transformer that affect its
operation.

4.2.1 Condition of Paper Insulation

The transformers under consideration are oil submerged type with paper insulation
wrapped around the conductors. The condition of the paper depend on its dielectric
strength and its mechanical structure.

Its dielectric strength depends on the amount of water or other contaminants that
is present within the paper. Water is a product of cellulose ageing, which if absorbed
by the paper will increase its conductivity and the likelihood of forming gas bub-
bles, which reduces the thermal stability of the insulation system during overload
conditions [9].

The insulating properties may also be affected mechanically by displacement and
ageing. If the paper ruptures or disintegrates, a path for contaminants will be formed
which can result in a winding short circuit.

The mechanical tensile strength of the paper depends on the composition of its
molecules. The paper generally contains 90% cellulose, which is a polymer (chain)
of glucose. The average units of glucose molecules (monomer) connected in a cel-
lulose molecule (polymer) is called the degree of polymerisation (DP). In the paper
change process, this oil-impregnated paper will deteriorate over time due to ther-
mal, chemical and mechanical stresses. Acid-hydrolysis, pyrolisis and oxidation re-
sult in splitting of the cellulose chains (depolymerization). The degradation of paper
results in water, carbon monoxide, carbon dioxide and furans (chemical compound
containing furan rings).

When the paper is produced, the average amount of monomer units in a cellulose
molecule is 1200, however during manufacturing the structure is somewhat destruc-
ted, resulting in a DP of about 1000. For conventional Kraft paper the strength of the
paper is vritualy constant for DP’s between 950 to 500 , but below 500 the strength
is directly porportional to the DP, see figure 4.3 [29] [9].
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Figure 4.3: The relationship between tensile strength and the DP value of Kraft
paper [29]

For the time - DP relationship, it has been shown that over most of the aging range,
the relationship between time and the the logarithm of DP is linear [30]. However,
increased temperature, moisture and the presence of oxygen will increase the degra-
dation rate. The influence of temperature on the degradation rate is commonly de-
scribed by a halving of life by every 10 ◦C rise. The presence of air accelerates the
degradation by a factor of 2.5. The effect of water is a bit more complex because the
introduction of water is not only due to external penetrations, but degradation of
cellulose also produces water [27].

It has been found that under normal operating conditions (75 to 90 ◦C), the degra-
dation of the solid insulation is more affected by moisture than temperature [31].

The reaction rate of the DP degradation can be modelled using the Arrhenius equa-
tion.

k(t) = Aexp(− Ea

RgT
) (4.1)

Where A is a process constant expressing the probabililty that a reaction will take
place and is determined by the contamination content of cellulos (moisture, acid,
oxygen). E is the activation energy in kJ/mol, which determines the temperature
dependece, Rg is the universal gas constant in J/K/mol. T is the absolute tempera-
ture in K.

4.2.2 Condition of Insulating Oil

The main tank of a transformer is filled with mineral oil. There are other insulating
materials that may be better in terms of dielectric and thermal properties, however
none achieve equal or better performance at an equal or better price. Thus mineral
oil will continue to be used as a type of liquid insulation in electrical power equip-
ment.

The function of insulating oil is to act as an insulating and cooling medium sur-
rounding the conductors within the transformer. Heating of the windings can dam-
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age the windings and the solid insulation wrapped around it. The oil extracts heat
from the windings and transfers it to the surrounding area.

The oil also serves as a diagnostic tool. The chemical compounds in the oil can
indicate the presence of faults within the transformer, more on this will be discussed
in section 4.3.

The performance of mineral oil in an insulation system depends on some basic oil
characteristics, as given in IEC 60422 [32]. The properties of the oil that it needs to
posses to accomplish its tasks are:

• Sufficient dielectric strength to withstand electric stresses.
• Sufficient low viscosity to be able to circulate and transfer heat.
• Adequate low temperature properties in the lowest temperature expected at the

installation site.
• Resistance to oxidation to maximize service life.

The presence of conducting particles in the oil will reduce its dielectric strength.
An example of these particles is water, originating either from the breakdown of
solid insulation or by ingress through breathing valves. Gas particles with a lower
breakdown voltage can also come between conducting parts, causing partial dis-
charge or short circuits[10].

The breakdown of oil due to oxidation will produce sludge, which will increase
the viscosity of the oil. This increase in viscosity will lower the ability of the oil to
withdraw heat. High temperatures due to arcing will also produce sludge.

The oil temperature may drop to ambient temperatures when the transformer is
not loaded. Should the transformer then come under load, the oil will not cool suf-
ficiently if the temperature is below its pouring point, which is the temperature at
which a liquid loses its flow characteristics.

4.2.3 Condition of Magnetic Circuit

The magnetic circuit is the driving mechanism in the transformer. Defects in the cir-
cuit will negatively impact the transformer effeciency and will lead to extra heating,
which will increase the degradation of other systems. A good magnetic circuit is
characterised by maximum magnetic coupling with minimum heating due to eddy
currents within the core and outside of the core due to leakage flux.

The condition of te magnetic circuit changes due to the insulating layers between
the laminations being damaged or by gaps between the layers, as this causes an in-
crease in the eddy currents resulting in more heat. All types of deformations that
increase the leakage flux, e.g. winding deformation, are also detrimental to the con-
dition of the magnetic circuit [5].

4.2.4 Condition of Tap Changer

The arcing switch of an LTC experiences arcing in its normal operation and is there-
fore i usually placed in a seperately sealed compartment within the transformer tank
to prevent damaging other components in the main tank. This separate compart-
ment can be openend and serviced without having to open the main tank which
would result in contaminants entering the main tank. The off-load switch is usually
placed in the main tank. The LTC is one of the most occurring sources of failures
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according to multiple surveys [24][17][33] and thus it is a major condition indicator
with respect to fault probability.

The condition of a tap changer is determined by the components that affect its
ability to select another tap without interrupting the load and to conduct properly.
This ability is determined by:

• The resistance of the contacts. This can be affected by contact pressure, oil deposi-
tion and contact surface and contact wear or pitting.
• The switching time. This can be affected by defects in the drive mechanism.

There are operating (running mode) differences between the arcing switch and off-
load switch, and therefore there are also different degradation mechanisms for both.

One which is present in both is the so called long term effect: when a contact is
not switched regularly, a thin film layer of oil wil deposit on it, resulting in lower
conductivity and increased power losses. At an early stage of the long term effect
the thin film can be wiped off by selecting the contact, however if this is not the case
the layer will develop further up to the point that the high temperatures will result in
oil decomposition. This will result in carbon between the contacts forming pyrolytic
carbon, a phenomenon reffered to as coking. This occurs at temperatures over 300
◦C. The contact material will wear off and pitted spots form on the contacts. The
contact is then damaged beyond repair.

The second degradation mechanism occurs at the arcing switch, called contact
pitting. This arcing that occurs damages the contacts, resulting in pitted spots on
the contacts. The arc is usually quenched at the first zero current.

The long term effect can also occur on the arcing switch, however it does not de-
velop as fast compared to the tap selector because of more frequent movement of the
arcing switch contacts [15][34].

In figure 4.4 an overview of the degradation mechanisms and where they occur
can be seen.

Figure 4.4: Degradation mechanisms of the LTC [15].

29



CHAPTER 4. TRANSFORMER CONDITION

4.2.5 Condition of Bushings

The condition of the bushings is determined by its ability to insulate the conductor
from the transformer tank. The following serve as indicators [35][22][16]:

• Contaminations on the bushing surface from the surrounding air.
• Oil contamination with water, particles and oil degradation products.
• Presence of oil leaks due to gasket aging.
• Partial discharge activity, which can develop to a dielectric breakdown.
• Bad conductor connection due to e.g. bad bushing clamp.

4.2.6 Condition of Tank

The tank protects the transformer from environmental stresses and contamination.
The condition of the tank is determined by the paint/corrosion and the condition of
the gasket and seals.

Environmental stresses result in paint wear and ultimately in corrosion. The posi-
tion of the corrosion also determines the severity of consequences, e.g. if the corro-
sion occurs at the bottom of the transformer, then the transformer might have to be
lifted to be serviced, which increases the costs by a lot.

The seals and gaskets should keep oil inside and moisture out, however over time
they lose their elasticity and become more brittle. This might lead to cracks trough
wich the oil may leak out or contaminants might enter [22].

4.3 Transformer Diagnostics

4.3.1 Insulating Oil

As mentioned in section 4.2.2, the oil has dielectric and cooling properties which
prevent transformer failures. There are several properties of the oil which can be
tested to assess the condition of the oil with respect to these aspects. The general
routine tests, which are also employed by Stedin, are discussed below according to
IEC 60422 standard [32] .

Color and appearance: the color of the oil is not a critical property, but it is useful
as a comparative evaluation. Should the color change rapidly, it may be an indication
of oil degradation or contamination.

Breakdown voltage: the breakdown voltage of the oil is a quantitative measure
of its ability to withstand electric stress and has a high importance. Water and solid
particles can reduce the breakdown voltage dramatically.

Water content: water in oil affects the breakdown voltage and the aging rate of the
liquid and solid insulation. Water enters the system by ingress of moisture from the
surrounding air and by degradation of insulation also produces water. The water
may be present as a solution in the oil, or bonded in the solid paper insulation.

Acidity: the acidity is a measure of the acidic constituents or contaminants in the
oil. The rate of increase of the acidity is a good indicator of the ageing raate. Fur-
thermore the acidity level can be used as a general guide for determining when the
oil should be replaced.
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Dielectric dissipation factor (DDF) and resistivity: These parameters are quite
sensitive to the presence of polar contaminants and ageing products. The general
relationship between DDF and resisitivity is that resistivity decreases as DDF in-
creases. High values of DDF, or low values of resistivity, is an indication of bad
dielectric losses and/or insulation resistance.

Sediment & Sludge: Sediment is a gathering name for insolubale materials in oil.
Sludge is a polymerized degradation product of solid and liquiq insulation mate-
rial, which is soluble in oil up to a certain temperature limit and deposits as a solid
afterwards.

The presence of sediment and sludge can change the electrical properties of the
oil and degrade the cooling properties, which improves the thermal degradations of
insulating materials.

Interfacial Tension (IFT): The interfacial tension between oil and and water can
be used to detect soluble polar contaminants. The rate of decrease of IFT is can be
an indication of compatibility problems between the oil and transformer materials,
or of contamination. After a certain treshold value, the oil should be investigated
further.

4.3.2 Dissolved Gas Analysis

When internal dielectric or thermal faults occur, gasses are produced as a result of
oil and solid insulation decomposition, which dissolve in the oil. The composition of
these gasses is dependent on the type of fault that has occurred, and thus an analysis
on the amount of gas in the oil can give an indication of faults that have occured or
that are still present. This diagnostic method can detect the fault type, but not the
location. DGA can detect the occurence of the following faults:

• Partial discharge
• Discharges and its severity
• Thermal faults and its severity

The interpetation of these gasses are determined by standards such as IEC 60599
[32]. The amount of gas and the relative ratios can detect problems in the insulation
system, however a trend analysis must be done in order to assess the severity and
progression of these faults [1].

This diagnostic tool can be used for both components in the main tank and the arc-
ing switch compartment, however some network operators (Stedin included) service
the arcing switch yearly and a visual inspection can be performed instead of DGA.

At Stedin, DGA analysis is performed on a yearly basis for al transformers.

4.3.3 Furan Analysis

If the DGA analysis surpasses a treshold value of CO and CO2, this indicates pa-
per degradation and warrants further investigation on the condition of the paper
insulation. This is done by determining the DP of the cellulose.

Taking paper samples on a regular basis is not feasible because this entails opening
the whole transformer, which means high cost and a long down time of the trans-
former. The common way of assessing the DP is by assessing the amount of paper
degradation components which is present in the oil. When paper degrades, furans
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are formed. The most stable and abundant furan is 2-furaldehyde (2-FAL), and thus
this one is used for the analysis. Using various models found in literature, a DP
value is found.

However, the determination of "the DP" of the solid insulation is not trivial because
the degradation of the paper does not happen uniformly over the entire winding,
and thus furan analysis determines the average DP. At the top of the winding, the
temperature is higher and the paper degrades faster. The scale of variations between
the average DP and minimal DP were found to be as follows [36]:

DPav − DPmin =


260± 134 for generator step up transformers
194± 75 for grid transformers
151± 27 for railway transformers

Furthermore, pressboard is also used in transformer construction which also pro-
duces furans when it decomposes, which is not distuinguishable from the furan pro-
duced from the paper insulation. One would like to know the critical DP of the
furan, i.e. where the paper has degraded the most since this is the part that is the
most susceptible to a fault. This spot is usually at the top of the middle low voltage
winding [37]. This can not be achieved with furan analysis, resulting in significant
discrepancies between the calculated average DP and the worst case DP.

The models for determining the DP from furan analysis are not always accurate. It
has been shown that in old transformers, the furan and DP relationship is no longer
accurate [37]. A post mortem comparison between paper samples and furan-DP
models has been done in [36], see figure 4.5 for the results.

Figure 4.5: Post mortem paper sample analysis compared to furan-DP models for
grid transformers[36].

Furan analysis is still a useful diagnostic tool, but care must be taken with its ac-
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curacy, especially with older transformers where high temperatures (160-200 ◦C)
might have evaporated the furan. Furan analysis may be most useful as a trou-
bleshooting tool, i.e. indicating high rates of ageing, rather than monitoring of nor-
mal ageing [38].

At Stedin, furan analysis is caried out after DGA indicates abnormal values of CO
and CO2 in order to save on costs.

4.3.4 Winding Diagnostics

Winding resistance can be used to indicate the condition of the tap changer contact
and the winding conductor. This requires an outage and isolation of the transformer,
thus it can not be done regularly. Variations of more than 5% (corrected for temper-
ature) may indicate transformer damage[39].

The winding turn ratio test measures the voltage transformation, which can be
used to derived the effective turn ratio. This test can indicate [23][39]:

• Short circuited or open windings
• Magnetisation problems such as core or winding deformation

4.3.5 Bushing Diagnostics

Figure 4.6:
Equivalent
circuit of

bushing [40]

Applying an AC voltage to an insulation system causes dielec-
tric losses regardless of the insulation condition. New insulation
usually has a very low loss factor and a high loss factor might
indicate aging or other problems in the insulation structure. This
loss factor is usually measured in terms of dissipation factor (tan
δ) or power factor [40]. In figure 4.6 the equivalent circuit is given.
If there are structural changes in the insulation system, this will
affect the value of the capicator and/or the resistance, resulting
in a different loss factor.

A big (rate of) change in the loss factor will indicate that there
are problems in the bushing such as

• High PD activity
• Problems in insulating oil or paper
• Bad conductor connection

PD activity can also be measured acoustically, with the advantage that the trans-
former should not have to be taken offline.

4.3.6 LTC Diagnostics

Visual inspection The condition of the contacts can be determined visually, how-
ever only the arcing switch is easily accesible for inspection as it is located in a sep-
arate compartment. The off-load switch is located in the main tank and thus not
easily accessible, as the main tank should then be dismantled. The condition of the
contacts of the tap selector are diagnosed with other methods.

Static resistance measurement (SRM) The condition of the LTC contacts can be
measured by contact resistance measurement. This test is performed while the tap
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changer is motionless, hence the word static in the name. Due to the big inductance
of the transformer winding, this measurement takes relatively long as the circuit
must reach its steady state for each measurment.

The DC resistance of the winding and contact is measured for each tap position. If
all is correct, the graph will be linearly increasing or decreasing [15].

Dynamic resistance measurement (DRM) DRM is suitable for detecting irregu-
laries in the OLTC contacts just like the SRM, however during this measurement the
tap changer is operated. The tap changers do not remain at the same position long
enough for the ciruit to reach steady state. This makes the DRM less accurate than
SRM, but it provides more information about the type and location of the defects,
e.g. defects concerning the transistion time [15].

At Stedin the arcing switch is serviced by visual inspection yearly and replace-
ments are done if necessary. The tap selector is diagnosed using DRM between ev-
ery one and five years, depending on the results of the last test. This diagnostic tool
is also referred to as "regelschakelaar diagnostiek" (RSD).

Motor and drive mechanism diagnostics The condtion of the motor can be mea-
sured by doing power measurement for the motor, as there is a relationship between
the power and the delivered torque. If there is a change in the needed torque, it can
be an indication of defects in the motor or the drive mechanism.

4.3.7 Infrared Thermography (IT)

IT can indicate hot spots in the transformer. The location of the hotspot can of course
indicate what subsystem is experiencing a thermal fault. Examples of faults:

• Bad connection in bushing
• Faulty contact in the LTC
• High losses in magnetic core

4.3.8 Frequency Response Analysis

This test entails measuring the transformer impedance over a range of frequencies,
resulting in a frequency response. This response is compared to a previous analysis
or a reference set. This test can indicate damages such as [23]:

• Winding deformation
• Winding short circuit
• Core degradation

4.3.9 Visual Inspection

Visual inspection by maintenance workers is a widely used diagnostic tool, which is
also very practical. It is useful for detecting aspect such as:

• Bushing surface contamination or leakage
• Arcing switch contact condition
• Tank paint and leakage
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Chapter 5

Transformer Condition Assessment
Techniques

In the previous chapter the condition of a transformer and its condition parameters
have been discussed. The relative importance of each parameter and the methods
to aggregate them into one index which describes the health of the complete trans-
former will be discussed in this chapter.

A quantitative measure for a transformer’s condition will be refered to as its Health
Index (HI). A HI method is a way of combining complex condition information to
give a single numerical value as a comparative indication of overall condition [41].
There are many HI methods available in literature, thus developing a completely
new one would be time consuming and probably not better than those created by
experienced specialist. What should be determined however, is which (combination
of) HI method(s) will be suitable to use at Stedin, considering the available data and
objectives.

Choosing a HI method dependends on the objective of the condition assessments
and the amount and quality of available transformer data. The objectives will be
discussed in section 5.1.

How the HI methods combine the transformer data into a HI, will be discussed in
section 5.2.

Reviewing the HI methods found in literature is done in section 5.3

5.1 Objective of Condition Assessment

It is important to define the purpose of the health index, because there is a consid-
erable difference between the data requirements when assessing the condition for
maintenance purposes and EOL prediction [41]. Certain subsystems of the trans-
former are less critical to its EOL, as it can undergo maintenance to be restored or
cost-effectively replaced.

Furthermore, there are also some critical objectives for a well formulated HI. The
HI should [42]:

• indicate the suitability of the asset to continue its service, and be representative of
the overall asset health.
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• contain objectives and verifiable measures of asset condition, as opposed to sub-
jective observations.
• be understandabily and easily interpreted.

The objective of Stedin’s HI is to aid in decision making regarding EOL of the
transformer and maintenance planning. Stedin would like to use TF data for the
following:

1. Operational planning: Ranking of transformers to indicate priority with respect
to the attention needed to assure proper functioning of the grid. This ranking
should help with short term planning and decision making (5 years).

2. Strategic planning: Making predictions on the moment of TF EOL/replacement.
This should help with long term planning and decision making (60 years).

HI is a powerful tool for a ranking system for operational planning because it can
identify investment needs, prioritize investments and furthermore the condition of
each individual is assessed.

HI can be used indirectly in strategic planning as an input for e.g. a survival model.
The purpose of the HI is thus to help asset management on the short term, including
maintenance strategies. This means that the condition of replaceable/maintainable
subsystems of the transformers must also be taken into account.

Applying transformer health and risk scores provides a basic means of asset rank-
ing. Transformer HI is by itself not a direct indicator of a transformer’s problems,
but it does provide a relatively simple means for scoring a large population of trans-
formers. HI is thus not an absolute measure, as there is still a need for engineering
judgment. Combining HI with a measure of consequence allows a risk ranking that
is useful to prioritize action plans for all types of risks [19].

5.2 Categorization of HI Assessment Methods

There is an extensive amount of literature regarding different HI methods, which
cover different transformer condition indicators and subsystems. The HI methods
will be categorised by the following properties:

1. Input parameters: the inputs used varies across the HI methods. These do not
only include measurements on the condition indicator themselves, but also as-
pects that affect them, such as operating and weather conditions.

2. Approach: the approach describes the model that transforms the input parame-
ters to a numerical HI. These function can be further categorised as [43]:

• Data driven approach
• Physical model app, the so called physics-of-failure (POF) models

5.2.1 Differences in Input Parameters

The input parameters used in HI vary based on the objective. The objective influ-
ences the parameter choice because the parameters depends on the subsystems that
are taken into account, which is again dependent of the objective (e.g. for opera-
tional planning the replaceable systems with relatively low impact should on EOL
also be taken into consideration).
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The amount of input parameters should be comprehensive, but not redundant.
Acquisition of data introduces expenses and asset managers should not carelesly
request everything possible without considering its utility.

5.2.2 Difference in Approach

The PoF models are based on degradation processes that result from mechanical,
chemical, electrical and thermal processes. The transformer specific change pro-
cesses were discussed in section 4.1.1. The PoF approach is to calculate the cumu-
lative damage due to these various stresses of an individual asset given the usage
condition. This cumulative damage is then converted into scores used to compute
the asset health.

The data driven approach estimates the health of a system by deriving relation-
ships from the given data. This approach can be seen as a black box process, as it
does not include detailed information on material properties but rather derives re-
lationships and patterns that exist in the data based on e.g. covariance, correlation,
residual and inference patterns between system variables and system stresses. The
data driven approach can be further categorised into two groups: machine learning
(ML) and classical statistics.

ML translates raw data to useful information by reasoning, classification and clus-
tering. There are two types of ML algorithms; supervised and unsupervised learning.
The difference is mainly in the training data that is given and the relationship that
is sought. Supervised algorithms are given input data which are labelled with their
corresponding outputs to derive a relationship, e.g transformer data as input and
failure rate of that transformer as output. Unsupervised algorithms are given only
input data and given the task to find hidden structures within the data, e.g. cluster-
ing of transformers with similar behaviour.

Statistical techniques are divided into parametric, semi-parametric and non para-
metric methods. The distinction in usage is based on whether the distribution of the
data is known or not.

In table 5.1 a summary is given on the comparison between the approaches.

Table 5.1: Comparison PoF and data driven approaches[43].

5.3 Review of Existing HI Methods

In this section previous research on the two principal approaches towards HI calcu-
lation are reviewed. These implemented HI calculation methods will be reviewed
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on the following criteria:

1. Availability of required input parameters
2. Objectiveness
3. Fault mechanisms that are taken into account
4. Comprehensiveness

Most likely a custom combination of HI implementations will be used to satisfy all
Stedin’s needs, given its data constraints.

5.3.1 PoF Approaches

Scoring method

There are numerous PoF HI methods developed which all cover different subsets of
transformer health indicators [44, 1, 45, 46, 47, 48]

However, the method used to calculate the HI with the health indicators is gener-
ally the same, namely by a scoring system. The scoring system divides the HI into
smaller portions (health subindices) and assigns a (discrete) score to each condition
indicator based on its value, e.g. if the DP of paper insulation is between 200-300,
the DP subindex receives a score of 1 out of 4. These functions will be referred to as
assessment functions and are usually defined based on standards, guidelines, his-
torical information and theoretical knowledge [49]. These scores are then multiplied
by a weighting factor to represent the relative importance to one another. The HI is
then calculated as the sum of these weighted scores, usually divided by the maxi-
mum possible score. It can be defined as

HI =
∑n

j=1 Sj · wj

∑n
j=1 Sjmax · wj

where n is the number of condition indicators, Sj is the score resulting for the jth
condition indicator, Sjmax the maximum possible score for the jth condition indicator,
and wj is the relative weight for the jth condition indicator. See figure 5.1 for an
overview of the process.

Figure 5.1: The common HI formula.

There are some drawbacks and criticism to this approach. It can be argued that
the determination of each subindex is key to the quality of the evaluation, thus the
relative weighting is crucial [50]. Most of the HI methods use expert opinion for
their weight determination process. These opinions are most commonly used in an
analytical hierarchy process (AHP) to determine the weighting.

In the AHP, multi criteria decision making (MCDA) is approached by structuring
the criteria into a hierarchy, assessing the relative importance of the criteria and then
comparing the alternatives for each criterion to determine an overall ranking of the
alternatives. AHP is a tool for checking the consistency of the evaluations within a
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team and reduces bias in decision making [51]. However, the results are to an extent
still subjective and different teams will still have different results.

Other, less used, methods for determining the weighting are the Delphi method
and least square method [52]. The subjective aspect in these methods, incuding AHP,
will cause discrepancies between the weighting given by different experts, which
makes the methods inconsistent on a wider scale.

Another point of critism is that the numerical boundaries of the assesment func-
tions for determining the discrete scores can not be determined precisely. This means
that there is a region that is not well defined. Some HI models overcome the objec-
tiveness and boundary problem by using entropy weighting [50] and fuzzy logic
[53], respectively.

Fuzzy Scoring

Fuzzy logic defines overlapping thresholds, thus instead of getting a discrete score,
the condition indicator is given a level of membership to a lexigraphical value, see
figure 5.2. Using this in combination with expert rules (rules in the form of "if-then"),
a HI can be calculated. This method thus still uses expert opinion for formulating
the rules. See fig 5.3 for a schematic of general fuzzy logic systems.

Figure 5.2: Example of water content of transformer oil being given a level of
membership to a condition.

Figure 5.3: Fuzzy logic system.
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Entropy Weighting

The entropy weighting method considers the level of information in a condition
indicator, based on the amount that it varies within the observed period. Not only
does it take care of the subjective aspect of expert weighting, it also overcomes the
fact that fixed subjective weighting can not fully reflect a condition indicator’s rate
of change, and thus omits the the fact that a condition indicator is degrading rapidly.

The basic principle of entropy weighting is to determine the weight according to
its relative degree of change. This results in a dynamic weight, as the relative change
is a measure that may vary when more data is gathered.

The algorithm takes input data into a m × n judge matrix P = (pij)m×n, where
m is the number of observations and n the number of condition indicators. This
matrix is then transformed into the m× n unitary judge matrix U = (uij)m×n by the
transformation defined as

uij =
pij − pmin

pmax − pmin

where pmin and pmax are the worst and best value of the same condition indicator
in all the samples. U is then used as an input to calculate the entropy H of the
corresponding condition indicator as the following:

Hj = −(
m

∑
i=1

fij ln fij)/ ln m

In which

fij =
1 + uij

∑m
i=1(1 + uij)

The correspoding weight for the jth condition indicator is then

wj =
1− Hj

n−∑n
j=1 Hj

However, this method only gives the health of the transformer relative to the time
frame under which the condition indicators have been observed. This might pose
a problem because most of the stored transformer data does not date back to the
moment it entered service [50].

5.3.2 Data Driven Approaches

The statistical methods of data driven approaches are suitable for population stud-
ies, however as the goal is to find the condition of an individual transformer based
on operating conditions and diagnostic results, these will not be considered further
for a HI method.

Some ML approaches towards transformer HI have been found in literature [54]
[55] [56] [57]. In the ML approach, the data is split into a training data set and a
verification data set. The training data set is given to the algorithm to derive the
model and the verification data set is used to assess the accuracy of the model. Prior
to training and verifying the data, the relevantness of the input variables can be
assessed in order to select the best input, this is referred to as feature selection. See
figure 5.4 for a overview of the application of ML for condition assessment.
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Figure 5.4: Overview of the application of ML [58].

The most common encountered ML algorithms used in transformer condition as-
sessment literature are:

• Neural networks (NN)
• Support vector machines (SVM)

These approaches are all supervised learning algorithms when it comes to calculat-
ing a numerical HI. This means that the training data given to the algorithms is of
the labeled form S = (xi, yi)|i ∈ [1, c], where x is the vector containing data of trans-
former i, y is the HI of that particular transformer and c is the number of observed
transformers.

Up till now, the implemented models found in literature are aimed at HI with re-
spect to end of life assessment; they only include some oil diagnostics, while exclud-
ing other condition indicators related to maintenance. This is a gap in the research
area that can be filled by this research.

Because the algorithms needs a HI labeled to the data of each transformer (not
only for deriving the relationship but also for verification), a HI for each transformer
must be derived prior to training the algorithm. A PoF approach is thus needed
to produce training data and giving this data to a ML algorithm will just result in
an approximation of the PoF model if the same input data is used. However, there
are still some advantages to implementing a ML approach. ML can find a relation-
ship between quantities for which the relationship is not yet known, e.g. weather
and tank corrossion. Furthermore, by using feature selection algorithms, the most
informative inputs for HI calculation can be selected. Not only can this improve
the effeciency of the ML algorithm [58], but a better selection of required inputs is
also created, which allows better allocation of resources in terms of data acquisition.
Examples of feature selection techniques are [58][59] :

• Correlation based selection
• Minimum-redudancy-maximum-relevance (mRMR) based selection
• Forward search selection
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5.3.3 Choosing a HI Method

Based on the criteria discussed in section 5.1, the chosen HI method will be that of
a PoF approach. This is due to the fact that the ML approaches are done with su-
pervised learning, for which a proper HI already needs to exist, and at the moment
Stedin posesses HI categorisation that is not well suited for this. This is due to the
fact that the current HI methods puts transformers with small defects in a bad cat-
egory just to put it under close attention, even though it can be fixed easily. This
makes it impossible to distinguish transformers which are actually in a bad condi-
tion from transformers which have a defect that can be easily repaired.

The approach in [1] will be used, as this is the most comprehensive. Although it
does put carbonoxide values, which is only produced via paper degradation, under
the DGA/faults subindex. The approach in [45] is also a good approach and the
intention was to implement this and compare, but there was not enough time. This
approach defines different assessment functions based on the condition indicator
value, and also correctly puts carbonoxide values under the paper sub-health index.
The data that Stedin does not have, can be left out of the scoring system, so it is pos-
sible to easily pick and choose. The objectiveness of the scoring system is less than
the other methods discussed, but it was still considered the best, as there was not
enough data available for the other methods or the added value did not compensate
for the added complexity.

Application of the entropy weighting is not well suited because it makes a relative
index based on the observed period. Stedin does not have accesible data of trans-
formers dating back to the installation date, with the exception of newer tranformers.
Furthermore, the expertise of specialists is not utilised whatsoever.

The fuzzy logic technique introduces a lot of complexity, while still needing the
opinion of experts for the formulation of the expert rules, which are also not well
documented in literature. Furthermore, defining the overlap of the membership
functions is still a subjective matter. The added value of fuzzy logic, in this case, in-
creases with a lesser amount of categories to apply a membership to. This is because
the category choice becomes more important if the condition scale is divided into
bigger intervals. In the scoring system e.g., the assessment function will divide the
condition scale into six numerical categories. It then has less impact on the outcome
wether the condition indicator falls e.g. into category 3 or 4.
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Chapter 6

Survival Modelling

In this chapter the techniques to predict an individual transformer’s probability of
failure, will be discussed. The goal is to develop a model which can predict a trans-
formers time to failure. One of the challenges when fitting such a model, is the
absence of events in the data. This can be due to the fact that the subject has expe-
rienced the event outside of the observation period, or the subject dropped out of
the study during this period. These type of subjects are usually present in the data,
especially when the observation period is short compared to the average event time
(which is the case for this study). This phenomenon is referred to as censoring, and
can be effectively handled using survival analysis techniques [60].

Survival analysis is a subfield of statistics, which provides a means to dealing with
censored data, which is the type of data in most real-world applications. Although
it has the term survival in the name, it can be used to predict the time to any type
of event, alternative to death or failure. The event time will be considered to be a
continuous random variable, which allows the application of statistics.

Within survival theory, several methods have been developed. A review of the
methods have been given in [60], see figure 6.1 for an overview. Traditional statistical
methods aim to find a function to describe the survival probabilities. The families of
functions can be categorized in varying levels of parametrization:

• non-parametric: having no parameters.
• parametric: having parameters which are found by optimizing a statistical quan-

tity.
• semi-parametric: a mathematical combination of a parametric and non-parametric

function.

In addition to these traditional methods, machine learning tools have also been
employed. When applied to survival analysis, the challenge for these algorithms is
the difficulty to deal with censored information. ML algorithms are effective when
there is a large number of events and a reasonable amount of variables. These al-
gorithms differ from the traditional statistics in the fact that they are designed for
higher dimensional problems and focus less on the distribution of the event times
and the statistical properties of the parameter estimation [60]. However, due to time
constraints and the fact that it is doubtful whether the data quality and the amount
of data is up to par, these will not be explored further.

This chapter begins with general survival theory and the way it deals with cen-
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Figure 6.1: Survival analysis methods.

sored data in section 6.1. In section 6.2, the survival model types under consideration
will be discussed, followed by the validation methods in section 6.3.

6.1 Survival Theory

6.1.1 Survival and Hazard Functions

Assume T to be a continuous random variable with probability density function
(PDF) f (t) and cumulative distribution function (CDF) F(t), which gives the prob-
ability that an event has occurred by duration t. This event at time t is usually a
death, e.g. a fatal transformer failure. The terms death and event will be used inter-
changeably from now on. For convenient purposes, the survival function is defined
as the complement of the CDF:

S(t) = Pr{T ≥ t} = 1− F(t) =
∫ ∞

t
f (x)dx (6.1)
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The survival function gives the probability of being alive just before duration t, or
generally, that the event of interest has not ocurred by duration t.

The hazard function is another characteristic of the distribution T, which can be
seen as the instantaneous rate of occurrence of an event. The hazard function is
defined as

λ(t) = lim
∆t→0

Pr{t ≤ T < t + ∆t|T ≥ t}
∆t

(6.2)

This expression gives the conditional probability that the event occurs in the time
interval [t, t + dt), given that the event has not yet occurred, divided by the width of
the interval. Taking the limit of this interval to zero, results in the instantaneous rate
of death. Applying the rule of conditional probability results in

λ(t) = lim
∆t→0

Pr{t ≤ T < t + ∆t} ∩ Pr{T ≥ t}
∆t · Pr{T ≥ t}

The expression in the numerator is the intersection between T being in the interval
[t, t + dt) and T ≥ t, which is the probability that T is in the interval; f (t)∆t for small
∆t. The probability in the denominator is by definition S(t). Applying the limit
produces the useful result

λ(t) =
f (t)
S(t)

(6.3)

Considering that f (t) is the negative derivative of S(t), the equation can be written
as

λ(t) = − d
dt

log S(t) (6.4)

This can be integrated to achieve an expression for S(t), given the boundary condi-
tion S(0) = 1 (as the event has to occur after t = 0):

S(t) = exp{−
∫ t

0
λ(x)dx}

S(t) = exp{Λ(t)} (6.5)

The integral is called the cumulative hazard, Λ(t), which can be seen as the sum
of risks during the time interval [0, t). Equation 6.5 is an alternative but equivalent
characterization of distribution T.

Another useful property of the survival function S(t) is that mean or expected life,
µ, can easily be calculated with it. Consider the definition of mean life, wich would
be computed by multiplying the t by the desity f (t) and integrating:

µ =
∫ ∞

0
t f (t)dt

Integrating by parts and using the fact that− f (t) is the derivative of S(t) with bound-
ary conditions S(0) = 1 and S(∞) = 0 will result in

µ =
∫ ∞

0
S(t)dt (6.6)

The goal of survival modelling is to fit either S(t) or λ(t) to the survival data of all
the subjects [61].
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6.1.2 Censoring Data

There will be cases for which the event has not yet occurred within the observation
period, but this data can still be used. There are two ways of censoring the data:

• Type I: n units are followed for a fixed time τ.
• Type II: n units are followed until d units have experienced the event.

The censoring mechanisms essentially lead to the same likelihood function (see sec-
tion 6.1.3), if the censoring of an observation does not provide any information re-
garding the survival of the unit beyond the censoring time. This is reffered to as
non-informative censoring. It does affect the expected number of occured events.
Furthermore, there are three types of censored data:

• Left censored: the event happened prior to the observation period. This gives an
upper bound for the event time.
• Right censored: the event happened after the observation period. This gives a

lower bound for the event time.
• Interval censored: the event happened within an interval, but the exact time is not

known. This gives an upper and lower bound for the event time.

When under study, a subject will thus provide one of two pieces of information: a
survival time or a censored time, see figure 6.2.

Figure 6.2: Example of survival data of four subjects; T1 - left censored, T2 -
dropped out, T3 - right censored, T4 - death . The dashed lines represents the

observation period and "entry" represents the point at which they entered the study.

In this study, type I censoring is applied as the observation time is fixed. Further-
more, the only censoring that is applied is right censoring; there are transformers
that have not experienced a failure yet, but they will eventually fail at some point in
the future.
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6.1.3 Likelihood Function

The likelihood function is the cumulative probability that an amount of events have
occured. This function is useful for optomization in algorithms, as it can be used to
find the point at which the cumulative probability of the events is at its maximum.
This can be used to e.g. find the best parameters of a hazard function that fits the
observed events.

Should a unit i fail at time ti, its contribution to the likelihood function is the prob-
ability density at that point in time

Li = f (ti) = S(ti)λ(ti) (6.7)

However, if a unit is still alive at ti, then under non-informative censoring the as-
sumption is made that its lifetime exceeds ti. Its contribution to the likelihood func-
tion is then

Li = S(ti) (6.8)

The two mentioned units have the same survival function S(ti) and a failure/death
multiplies the contribution by the hazard function λ(ti), but a censored unit does
not. The likelihood function can then be defined as

L =
n

∏
i=1

Li =
n

∏
i=1

λ(ti)
di S(ti) (6.9)

where di is a logical value indicating wether a failure or death has occured.
Finding the maximum value of the likelihood function can pinpoint with which

parameters λ will have the best fit, which can then be used to predict future failure
probabilities. However, finding the maximum by equating the derivative of the like-
lihood function will be quite a task, as the chainrule must be applied. This can be
circumvented by finding the maximum of the log of the likelihood function instead.
This is called the log-likelihood function:

LL = log L (6.10)

the value will be different, but the location of the maximum is the same. The
derivative will then be easier to find, as the log of the likelihood function will result
in a summation instead of a multiplicative function.

6.2 Survival Models

Up to this point the survival function was assumed to be identical across the units. It
is possible to define individual survival functions for each unit, based on additional
information about the unit. In this section the different types of survival models will
be explored.

The classification in figure 6.1 is based on the original form of the methods, but
variations do exist (e.g. there is a parametric form of Cox regression)

6.2.1 Non-parametric Models

In non-parametric estimations, the survival function is estimated solely by an empir-
ical function. The most widely used is the Kaplan and Meier (KM) method [62] and
is also used in the survival package in R. The most popular methods will be presented.
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Kaplan-Meier

This method estimates the survival function with a step-wise function. Let T1 <
T2 < ... < TK be a set of ordered event times for N(K ≤ N) subjects. In addition
to these event times there are also censored times. The survival function is built
stepwise at each event time as follows.

For each event time Tj(j = 1, 2, ..., K), the number of events is dj ≥ 1, as multiple
events can happen at the same time. Furthermore, rj instances will be considered at
risk, meaning that they are eligible for experiencing an event (this populations event
or censor time is greater than Tj). rj is thus

rj = rj−1 − dj−1 − cj−1 (6.11)

where cj−1 is the amount of censored event times. With this, the probability of an
event occurring after Tj is

p(Tj) =
rj − dj

rj
(6.12)

The KM method then estimates the survival probability at a given time as a product
of the survival rate up to the previous time and the survival rate at that give time:

Ŝ(t) = ∏
j∈Tj<t

p(Tj) = ∏
j∈Tj<t

(1−
dj

rj
) (6.13)

For this reason it is also reffered to as the product limit method (PLM). Note that this
is an estimation, hence the hat notation. An example of such an estimation for Stedin
transformers is given in figure 6.3. At each step one or more events occurred and the
censor times are indicated by a short vertical line. A time tolerance may be used to
consider events with a small time discrepancy to have happened simultaneously, if
this provides a better fit. Furthermore the effect of different subpopulations can be
compared, in this example the rated voltage.

Figure 6.3: Example of a KM survival function estimation.
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Nelson-Aalen

Using equation 6.5, the survival function can also be estimated by estimating the
cumulative hazard function. The Nelson-Aalen (NA) method estimates this by a
counting process [63]:

Λ̂(t) = ∑
j∈Tj<t

dj

rj
(6.14)

Comparison

It is a general knowledge that the NA and KM estimators are asymptotically equiv-
alent. They appear to have negligble bias for K > 50 [64]. As the KM method is the
most easily applied in R, it has the preference in case it is needed.

In both cases it is possible to study the effect of different subpopulation, e.g. 50kV
and 150kV transformers, by estimating different survival functions with two seper-
ate data sets. However, multi-variate analysis becomes complex or impossible.

6.2.2 Semi-parametric Models

Semi parametric models are a combination of a parametric and non-parametric me-
thod, hence the name. Furthermore, the distribution of the outcome of these models
is unknown, even if it is based on parametric regression. The most common semi-
parametric model is the Cox model.

Defining individual survival functions will be done by manipulating the base haz-
ard function, λ0, which is the hazard function that is fitted to all subject and is thus
equal for all. Choosing the correct base hazard model to describe a failure distribu-
tion is crucial to the accuracy. In semi-parametric models this base hazard function
is estimated non-parametrically with the methods described in the previous section.
The manipulating terms/coefficients are found by likelihood estimation, see section
6.3. The most popular methods will be presented.

Cox’s Proportional Hazard Model

A large family of models which alter the hazard function where introduced by [65],
referred to as Cox models. One of the models in this family is Cox’s proportional
hazards model (CPHM), in which a base hazard function λ0 will be multiplied by
factor which is dependent on a vector of covariates xi, which are specific for an indi-
vidual subject indicated by i . Each individual can contain up to X covariates. The
weight/effect of these covariates are represented by an effect vector β = [β1, ..., βX],
which is identical to all individuals. This model thus assumes a proportional ef-
fect of the covariates on the hazard function, hence its name. The resulting hazard
function is

λi(t|xi) = λ0(t) exp{x′iβ} (6.15)

Where the apostrophe is used to indicate the transpose, resulting in the dot product.
The covariates and their corresponding weighting determine the proportional factor
which will thus increase or decrease the hazard function. The covariates, e.g. trans-
former rated voltage, will vary per subject. Note that the covariates and effect are
not dependent on time in this model.
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Using equation 6.15, the effect on the cumulative hazard and consequently the
survival function can be found:

Λi(t|xi) = Λ0(t) exp{x′i β} (6.16)

resulting in
Si(t|xi) = S0(t)exp{x′i β} (6.17)

Where S0(t) = exp{−Λ0(t)} is the baseline survival function. The effect of the
covariates on the survival function is thus multiplying the base survival function to
a power of exp{x′iβ}. An example of the survival function estimated with this model
is given in figure 6.4. In this model the covariate is the HI with a weight of −0, 7 .
The covariate is a continuous variable in this case, but it may also be categorical. The
underlying data will be discussed later on.

Figure 6.4: Example of a Cox survival function estimation.

An important assumption of the Cox model that must be validated, is that this
proportionality is constant over time. That is, that the hazard ratio

HR =
λi(t|xi)

λ0(t)
= exp{x′iβ} (6.18)

is constant over time. This also means that for different xi the survival functions
will never cross each other and will have the same starting and end points. The
validation of this constant hazard ratio is discussed in section 6.3

Time Dependent Cox Model

Equation 6.15 can be extended to include time varying covariates, x(t), and effects,
β(t). Example of a time varying covariate is a transformer condition indicator, e.g.
the DP value of the paper insulation. The corresponding weighting of this covariate
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on the survival probability may also be time dependent, e.g. the DP having a bigger
effect for older transformers (not necessarily true).

The two time dependent assumptions will result in the most general form of the
Cox model, the time dependent Cox model (TD-Cox) [66]:

λi(t, xi(t)) = λ0(t) exp{x′i(t)β(t)} (6.19)

This extension of the base Cox model can be used to add a time correction if the
constant hazard ratio assumption is invalid, or simply if there are time dependent
covariates.

Comparison

The TD-Cox model is an extension of the base Cox model, and can provide a better
fit, if the weights have a correlation with time. However, it does add an extra layer
of complexity and should be avoided if not necessary.

6.2.3 Parametric models

These models are more accurate than the ones previously discussed, if the event
times have a known underlying statistical distribution which can be specified in pa-
rameters. It also makes it easier to estimate the times to event compared to the previ-
ous methods, as now the survival function always goes asymptotically to zero [67].
The most popular methods will be presented. "The mean survival time is the aver-
age duration of the follow-up time of all observations in the study. To estimate mean
survival time accurately, all individuals must have a ‘complete follow-up time’, i.e.
all observations must be ‘failures’ by the closure of the study. If this condition is not
met, the estimate of mean survival time will be based on incomplete observations
(censored)14 and will not reflect a true picture of the data"[68].

Accelerated Failure Time Model

Consider Ti to be a random variable of the event time of unit i (assuming one event
per unit). The accelerated failure time (AFT) model assumes a linear relationship
between the logarithm and the covariates [69]. Assuming Ti to be non-negative, it is
modeled as follows:

log Ti = x′iβ + ε (6.20)

where εi is an error term which has a parametric distribution that will also deter-
mine the distribution of Ti. Solving for Ti gives

Ti = exp{x′iβ} · exp ε

Ti = γiT0 (6.21)

with γi representing the multiplicative terms and T0 being the exponential error
term. To display the effect of this modified Ti, consider the relationship between
a reference group S0 and a group under study S1:

S1(t) = S0(t/γ) (6.22)
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This indicates that the study group has the same survival probability at time t, as
the reference group has at time t/γ. Assume γ to be 2, this means that the reference
group "ages" twice as fast as the reference group (hence "accelerated" term in the
name). The corresponding hazard functions is then

λ1 =
λ0(t/γ)

γ
(6.23)

Proportional Hazard Model

The proportional hazard model (PHM) [61] is identical to CPHM, but assumes the
base hazard function λ0 to have a known distribution function. This is somewhat
contrary to the original intent of the Cox model, which is to get rid of the need to
know the distribution of λ0. However, a (completely) parametric model is more ac-
curate if the data follows a known distribution. λ0 can thus have e.g. an exponential,
Weibull or gamma distribution.

Comparison

The choice should be to choose the model that fits the data the best, depending on
whether the survival times have a time accelerated or proportional relationship with
the covariates. However, there is a case for which the two models coincide [61]: if
the base hazard or base survival function is chosen to be a Weibull distribution. The
Weibull hazard and survival functions are as follows:

λ(t) = pλ(λt)p−1 (6.24)

S(t) = exp{−(λt)p} (6.25)

λ and p being the parameters. If a Weibull is picked as the baseline risk and is
multiplied by the γ in the PHM model, the result is still a Weibull distribution. If the
same baseline is accelerated by multiplying time with γ, the result is also a Weibull
distribution.

6.2.4 Comparison of the Methods

Non-parametric methods are useful when there does not seems to be a known un-
derlying distribution, but are not able to effectively study the effect of covariates.
Semi-parametric methods combine the ease of not needing to specify the underlying
distribution and the ability to effectively study the effect of covariates. Parametric
methods are the most efficient when the event time has an underlying distribution.
See table 6.1 for an overview of the advantages and disadvantages. The choice will
lie between a Cox model or an AFT model, whichever fits best.

6.3 Model Fitting

In this section the aspects of fitting the model, i.e. finding parameter values for the
(semi-) parametric methods, will be discussed. Furthermore the methods to validate
the assumptions made in the model and methods to validate the model itself will be
presented.
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Table 6.1: Statistical method comparison

Type Advantages Disadvantages
Non-
parametric

More efficient when no suitable
theoretical distributions known

Inaccurate if data follows a
distribution

Semi-
parametric

No knowledge needed of distri-
bution

Distribution still unknown; not
easy to interpret

Parametric Easy to interpret, more efficient
when data follows a particular
distribution

Innacurate if distribution as-
sumption is violated

6.3.1 Parameter optimization

Finding the parameter values means finding the values of the parameters of the
baseline hazard function θ, the weighting paramaters β, or both depending if it is a
semi-parametric or parametric model. Assume the hazard function of a subject to be
defined as

λ(θ, β|t) = λ0(θ|t)γ(β)

Then the likelihood function (eq. 6.9) is also a function of θ and β:

L = L(θ, β) (6.26)

The probability hj that an individual of the risk set Ri has an event at Tj, given that
one in the set does, can be expressed as hazard function of that individual divided
by the sum of the hazard function of all other individuals in the risk set:

hj =
λi(θ, β|Tj)

∑i∈Ri
λi(θ, β|Tj)

(6.27)

And so the likelihood function can be expressed as the multiplication of these prob-
abilities, including a censoring exponent:

L =
K

∏
j=1

(
λ0(θ|Tj) exp{x′jβ}

∑i∈Ri
λ0(θ|Tj) exp{x′iβ}

)δi

(6.28)

Where xj is the covariate vector of the unit corresponding to time Tj, and Ri is the
risk set, i.e. all units which have an event time greater than Tj. By finding the values
of these parameters for which the likelihood is at its maximum, the model will fit
the observed data at its optimum.

Lmax = L(θ̂, β̂) (6.29)

with θ̂ and β̂ being the values that maximizes L. Because this likelihood function
contains all the parameters needed to describe the distribution, it is called the maxi-
mum likelihood estimator (MLE).

There are however cases for which λ0 can not be specified or there is no interest in
finding λ0, resulting in a semi-parametric model.
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In these cases θ becomes nuisance parameters and to circumvent this, Cox proposed
the partial likelihood estimator (PLE) [70]:

Lpartmax = L(β̂) (6.30)

Applying this to the CPHM results in

Lpart =
K

∏
j=1

(
exp{x′jβ}

∑i∈Ri
exp{x′iβ}

)δi

(6.31)

Note that this function depends only on the order in which the events occur, not the
times at which they occur. The order dictates the risk set per event.

6.3.2 Recurrent Events

Up to this point, subjects were only considered to have a maximum of one event.
The conditional probability in the definition of the hazard (eq 6.2) clearly states that
the event T > t, meaning that no previous events have occurred for that subject.
However, in this study there were no fatal failures in the data, corrective mainte-
nances and outages were used. This makes it possible for a subject to have multiple
events, as a transformer may have had multiple corrective maintenance or outages
within the study period.

There are different methods to extend the likelihood function to adapt to recurrent
events, by adapting the risk set, Ri, in the likelihood estimator. These models as-
sume that there are multiple states before the "death" state. There are three common
methods[71]:

• Andersen and Gill (AG) [72]
• Prentice-Williams-Peterson (PWP) [73]
• Wei-Lin-Weissfeld (WLW) [74]

To explain these methods, we redefine the indices: each individual i = 1, 2, ..., N can
experience up to j = 1, 2, ..., K events. K is thus the maximum amount of events
considered per subject, and ki is the maximum amount of events for individual i
(ki ≤ K). Furthermore there are time dependent covariates (condition changes with
time), thus xij is defined as the covariates of individual i at event time Tj. This is
an extension of the time independent version proposed by the above mentioned
methods.

Andersen and Gill

The AG model is the most commonly applied model for recurrent event times and is
a simple extension of the Cox model. The base assumption is that the instantaneous
risk, λ(t), is not dependent on whether a previous event has occurred. This implies
that subsequent events are independent, which is not always true. The likelihood
function is identical to equation 6.31, with an altered risk set

RAG(t) := {l = 1, ..., N : ∃ j ∈ {1, ..., kl} : Tij > t} (6.32)

with Tij being the jth event of individual i. This simply states that the risk group
contains all the individuals that have an event time after t. It can be seen as dupli-
cating an individual i by ki times, and let each have one distinct event time from the
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set of events experienced by that individual. This results in the following likelihood
function:

L =
N

∏
i=1

ki

∏
j=1

(
exp{x′ijβ}

∑l∈RAG(Tij)
exp{x′l jβ}

)δij

(6.33)

Prentice-Williams-Peterson

The PWP model relates the hazard function to the preceding failure time history. It is
a stratified model with respect to the jth recurrent event time, meaning that different
λ0 and β are fitted for each group of all first events, for all second events and so on
up to the Kth event. Notice that j is the recurrent event time, thus the time to the first
event is not taken into account.

Regarding the time to event, there are two approaches to the time scale:

• Total time scale: time since study entry to the event time. The hazard functions
are modelled as

λij(t) = λ0j(t) exp{x′ijβ j} (6.34)

• Gap time scale: time since the previous event. The hazard functions are modelled
as

λij(t) = λ0j(t− tj−1) exp{x′ijβ j} (6.35)

With λ0j being the base hazard function for each j = 1, 2, ...K recurrent event with its
corresponding coeffecients β j.

The risk set for the jth event consists of only individuals who have experienced a
previous (j− 1)th event. The likelihood function can be written as a product of all
the event specific likelihoods

L =
K

∏
j=1

Lj (6.36)

with

Lj =
N

∏
i=1

(
exp{x′ijβ j}

∑l∈RPWP
j (Tij)

exp{x′l jβ j}

)δij

(6.37)

The risk sets for the the total time model is

RPWP
j (t) := {l = 1, .., N : Tij−1 < t ≤ Tij} (6.38)

and for the gap time model the risk set is

RPWP
j (t) := {l = 1, .., N : (Tij − Tij−1) ≥ t} (6.39)

The model makes it possible to derive strata specific weights β j, however it might
be possible to be interested in a single effect estimator, quantifying the net effect.
This can be done by setting β1 = β2 = ... = βK = β in equation 6.37 to estimate a
common β.
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Wei-Lin-Weissfeld

The WLW model is also a stratified model as the PWP model and the hazard function
is identical to that of the total time model as given in 6.34. The difference is in the risk
set, in this case an individual is at risk even though no prior events have occurred.
Stratum specific weights β j can be estimated by the same PLE as in equation 6.37
with an altered risk set

RWLW
j (t) := {l = 1, .., N : ∃ j ∈ {1, ..., K} : Tl j ≥ t} (6.40)

Notice that this model assumes that all individuals observe K number of events, and
should kl < K, then "artificial" censored events will be added until kl = K. This
makes it necessary to carefully choose the maximum number K, because if it is too
high then many artificial censored data will be added, weakening its precision.

Comparison

If the recurrent events are independent, then the AG model is the most straightfor-
ward one to use. If this method does not provide satisfactory results which might
indicate that the events are not independent, then an PWP or WLW model can be
used. The PWP model is focuses on relating the hazard function to the preceding
failure time history. The WLW does the same, but takes the first event into account
and also assumes that all individuals will have K events, censored or not.

6.3.3 Validation

There are some assumptions of the previously mentioned methods that needs to be
validated, and furthermore the accuracy of the model should also be measured.

For either a CPHM, PHM or AFT model , there are some aspects that must be
validated in order to consider the model suitable [75]:

• Significance of covariates, i.e. the significance of the effect of the covariate.
• Proportional hazard (PH) or accelerated time (AT) assumption. These assumption

state that the hazard functions of different individuals have either a proportional
or accelerated relationship at all points in time.

Validating the Significance of a Covariate

The significance of the covariates xn with n = {1, ..., X} can be tested by the cor-
responding optomized coefficients β̂n.The significance can proved by rejecting the
null hypothesis in the following statements

H0 : β̂n = 0
H1 : β̂n 6= 0

(6.41)

The region for rejecting H0 is usually a probability of less than 5%, but this is of
course up to the choice of the user [76]. This probability is referred to as the p-value

p = Pr{β̂n|H0} (6.42)

56



Section 6.3. MODEL FITTING

Note that if β̂n = 0, then HR = 1 (eq. 6.18), meaning that the addition of the
covariates had no effect on the hazard function. The following statements can thus
also be used as a test statistic

H0 : HR = 1
H1 : HR 6= 1

(6.43)

Another way of testing for significance is the Wald test, which tests the amount
that the optomized parameter βn deviates from the initial value βn0 (the value at the
start of the iteration for finding β̂), which is in this case equal to 0. The Wald statistic
is defined as

z =
(βn0 − β̂n)2

var(β̂n)
(6.44)

Validating the Constant PH and AT Assumption

The PH assumption states that the hazard ratio should be constant with time, how-
ever, models with time varying covariates can not fulfill this requirement as the haz-
ard ratio varies with time due to a varying covariate xi(t). The same is true for the
AT assumption, which states that the hazard of one group at any time t is equal to
the survival of another group at time γt (eq 6.22).

Since the model we want to use has time varying covariates, there is no need to
validate these assumptions for those covariates.

Goodness of Fit

The goodness of fit of a survival model indicates to what degree it can represent
the survival patterns. In survival analysis it is common to evaluate a model by con-
sidering the relative risk of an event for different instances, instead of the absolute
survival times for each instance. In some cases it is also not possible to predict the
exact survival time, which makes a goodness of fit test with absolute survival times
unsuitable.

A goodness of fit test that considers the relative risk is the concordance probability
or concordance index (C-index) [77]. This method compares the survival times of all
possible pairs to check whether the instance with the lower survival rate indeed have
a lower survival time. The survival times of two instances can only be compared if
both are uncensored, or if the censored event occurred later than the uncensored
one. A representation of these two scenarios is given in figure 6.5

(a) (b)

Figure 6.5: Time pairs in case of uncensored (a) and censored (b) events. Black
circles indicate an event and red circles indicate a censored time [60].
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The c-index is the ratio between the amount of time pairs that have been "correctly"
predicted and the amount of comparable pairs.

C =
P

num
=

1
num ∑

i:δi=1
∑

b:Ti<Tb

I [Si < Sb] (6.45)

Where num is the number of comparable pairs, δi the death indicator for instance
i, I is the indicator function, P is the amount of pairs for which instance i had a
lower survival time than instance b, and Si and Sb are the corresponding survival
probability at that time.

Another validation method is the Brier score[78], which is a measure of error pre-
diction for probabilistic outcomes. It is defined as

BS =
1
N

N

∑
i=1

(Si − oi) (6.46)

Where N is the amount of instances, Si is the survival probability of instance i at the
time of the event, and ot is the event outcome (0 for death, 1 for censoring). The BS
is ranged between [0, 1] where 0 is a perfect score and 1 the worst.

6.4 Conclusion

In this chapter various survival model methods were discussed. The methods that
will be used and the reasoning behind it will conclude this chapter.

Machine learning methods were ruled out due to time constraints and the doubt of
sufficient data quality. These methods can perform better than traditional statistical
methods, but need much more data.

The model shall thus be a semi-parametric or parametric model, as non-parametric
models are not adequate for studying the effects of multiple variables. The perfor-
mance of a semi-parametric or parametric model can not be determined before im-
plementation, because the performace depends on whether the events have a known
underlying distribution or not. It can be assumed that the underlying distribution is
a Weibull distribution, as this is the most common one used in failure analysis, but
it is just a hypothesis.

Whether to use a PH or AFT model can also not be determined beforehand, as the
relationship between the different hazard functions is not known yet. In case of a
parametric Weibull approach, the choice does not have to be made, as the models
are the same.

Furthermore, the model will have time dependent covariates, as the condition in-
formation of transformers vary with time. This affects how the data table which is
passed onto the modelling function will have multiple rows per event, in order to
change the value of the covariates.

To model recurrent events, a choice must also be made in the type of recurrent
analysis. If independence between events is assumed, the AG model can be applied.
If not, then the PWP or WLW can be used to make different survival functions for
each group of recurrent events. However, the PWP does not include the first event,
which is the biggest portion of events in the data. The AG and WLW models were
chosen to compare.
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To avoid the effects of biasing, enough data must be available. Simulation work
has suggested that a minimum of 10 events are needed for each covariate considered,
otherwise this will lead to problems such as the regression coeffecients becoming
biased [79].

Lastly, the models should be tested for:

• Covariance significance using the p-value.
• PH or AT assumption, in case of time independent covariates.
• Goodness of fit using the C-index and/or Brier score.
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Chapter 7

Data & Modelling

In this chapter the data structure and some important modelling details will be dis-
cussed. Stedin has many databases for each type of data, thus they were all imported
into R to bind all of the data to each other.

In section 7.1 the data model is presented, followed by the HI model in section 7.2
and some implementation details of the failure model in section 7.3. This chapter
ends with a description of the transformer population in section 7.4.

7.1 Data Model

Various data was gathered for all in-service transformers in the Stedin population,
which amounted to 501. These were imported into R then joined per transformer in
a nested list structure, with each enclosing element representing a unique trans-
former with a unique serial number. A list is an array with each element having
the property that it can be data of any type and length. An overview of this structure
is shown in figure 7.1.

Figure 7.1: Data structure.
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The chained blocks represent the top level list, with each block/element representing
a unique transformer. Inside each block there is another list, containing four data
frames and three lists. A data frame is an array in which each column can have
a different data type, but must have the same length as all other columns. It is
essentially a list with a length constraint.

Each element contains the following transformer specific data, provided that it was
possible to join it from the databases:

• INFO: A data frame containing all static data of the transformer such as serial
number, location, brand and nameplate ratings
• DGA: A data frame containing the DGA measurements.
• FURAN: A data frame containing the furan measurements.
• OIL: A data frame containing the physical oil properties measurements.
• LTC: A list containing two data frames. RSD contains the numeric diagnostic

results of the LTC diagnostic. The other one contains the amount of switching
actions in 2017.
• HI: A list containing two data frames. sub_HI contains the dates and sub health

indices, which are the values outputted by the assessment functions. HIF (health
index factors) contains the HI calculation for each transformer year.
• FAIL DATA: A list containing two data frames. Repairs contains the corrective

maintenances of the transformer between 2008 and 2017. Outages contains infor-
mation on the outage caused by the transformer between 2000 and 2017.

Joining the data from the different databases was not very trivial, as there are mul-
tiple ways to identify a transformer and these identifiers (keys) can differ slightly
per database. A transformer can be identified by one of the following keys:

• Serial number
• Station ID in combination with transformer number

Care must be taken when using the latter because replaced transformers might have
the same keys as the new transformer. Serial number, station ID and transformer
numbers may differ (slightly) per database, but these are the keys used to join all the
data. The data was checked manually to validate the joining, but there might still be
a small amount of errors.

7.2 HI Model

7.2.1 Absence of Data

The HI will be computed once per year over the transformer’s lifetime, because di-
agnostic values usually change at most once per year. However, these values are not
available for every year because:

• Measurement orders were simply not carried out.
• The measurement frequency is set to be lower, e.g. every 5 years.
• The data could not be joined to a transformer.

In order to increase the amount of years that have a comprehensive HI, the values
will be held for a period of time. Interpolation was also an option, but for long
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time spans this would be a big guess which is assumed to be valid. More complex
missing data augmentation for transformer diagnostics is presented in [80], which
can be used in future work.

The method to fill in the gaps is quite simple: for each year, the measurement with
the closest date is selected and is considered to be valid only if the absolute difference
is lower than half the time of the measurement frequency. To illustrate, consider the
following example: furan diagnostic occurs every five years, so the measurement
done within 2.5 years before or after the health index calculation date is considered
to be valid.

Once the validity of a measurement point is decided, it enters the calculation for
the level of completeness. This is a self-defined term, which indicates how much of
the data was available for a HI calculation. It can be written as

Compl = ∑i=N
i=1 wi · validi · compli

∑i=N
i=1 wi

(7.1)

where i is the indicator of the sub HI, wi is the weighting of that sub HI, validi is
the binary value that indicates the validity of that sub HI for that year, N is the
maximum number of sub HI, and compli is the completeness of that sub HI w.r.t. all
the inputs needed for that assessment function.

7.2.2 HI Calculation

The HI is computed for each year by running the closest measurement points in time
through the assessment functions, which calculates the sub HI. A weighted sum of
these averages then forms the HI, while an added validity term selects the valid
measurement points.

HI = ∑i=N
i=1 wi · Si · validi

∑i=N
i=1 wi · Smax · validi

(7.2)

Where Si is the score of sub HI i and Smax is the maximum attainable score, in this
case 4. wi are the weights of the sub HI, which is determined by experts in a decision
making process. Note that missing data is thus excluded from the calculation, but
its absence is given by the level of completeness (eq 7.1).

The sub HI that are taken into account for the main tank are:

• HIDGA, which indicates the severity of faults, but not the fault types.
• HIOIL, which indicates the condition of the insulating and cooling properties of

the oil.
• HIFURAN , which indicates the condition of the paper insulation based on furan

values.

The sub HI above form the HI of the main tank. The LTC is also taken into account,
but because of the high probability of failure, it’s weight is taken to be 40% of the
total. The total HI is thus given by

HI = 40% · HILTC + 60% · HItank (7.3)

Top oil temperature and loading data were also acquired, but time constraints pre-
vented this from being incorporated in this HI model. Furthermore the maintenance
data up to 2017 was not in a suitable form to be incorporated.
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7.3 Failure Probability Model

7.3.1 Model description

Due to time constraints, only a time dependent CPHM was implemented with the
AG and WLW approach. However, after realizing a crucial error in the models,
there was only enough time to correct the AG model and thus only the this model
is presented. The model was implemented in R with the survival package, which
provides helpful functions for survival analysis.

As mentioned before, there are no fatal failure records in the data. Instead, correc-
tive maintenances were used as an event. A corrective maintenance is carried out
due to a failure, or because inspection results during regular maintenance indicated
the necessity for replacement or revision of a subsystem. This model thus computes
the probability of a corrective maintenance, and (if valid) can be used to:

• Decide when to replace a transformer once it is no longer financially attractive to
prolong its lifetime by repairs.
• Estimate corrective maintenance budgets per year.

Outtage data was also available, however these were not used because it only in-
cludes transformer outtages that included customer black outs. Due to network re-
dundancy, many transformer outtages are thus not present in this data set and thus
it would lead to incorrect results.

7.3.2 Event Table

The first step in analyzing time-varying covariates in survival analysis is to reshape
the data frame so that there are multiple rows (time intervals) for each subject, along
with covariate values that apply across these intervals [81]. This data frame will be
referred to as an event table. The event table for two transformers (A and B) are
given in table 7.1. The definition of the columns are as follows:

• date: the date that a need for a corrective maintenance was detected
• event_num: the nth event for the same transformer during the total observation

period
• status: binary event indicator (1 for an observation with an event, 0 for a censored

observation)
• id: transformer ID
• tstart, tstop: starting and stopping time of the event period in years (notice that

this is the time relative to the start of the observation period (2008), not the age of
the transformer)
• age: age of the transformer in years at the beginning of the interval

The age and scores are the time varying covariates. The static covariates, e.g. voltage
rating or manufacturer , are not displayed.
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Table 7.1

date event_num event id tstart tstop age score_dga score_furan score_oil score_ltc

- 1 0 A 0.00 2.00 33 2 - - -
- 1 0 A 2.00 4.00 35 2 4 - -

10-07-2014 1 1 A 4.00 6.53 37 2 4 3 -
21-07-2014 2 1 A 6.53 6.56 37 2 4 3 -

- 3 0 A 6.56 7.01 37 2 4 3 -
- 3 0 A 7.01 8.01 40 3 4 - -

24-08-2017 3 1 A 8.01 9.65 41 3 4 2 -
- 4 0 A 9.65 10.60 41 3 4 2 -
- 1 0 B 0.00 1.00 47 2 4 - -
- 1 0 B 1.00 5.01 48 4 4 - -
- 1 0 B 5.01 8.01 52 4 4 1 -
- 1 0 B 8.01 9.01 55 4 3 - -
- 1 0 B 9.01 10.00 56 3 3 1 -
- 1 0 B 10.00 10.60 57 4 3 1 -

The events must be divided into multiple observations to adjust the values of the
covariates. The colored entries indicate the reason that a new interval was triggered.
Take event 1 of trafo A as an example: in the first two years only the dga score is
known, in year 2 to 4 the furan score is added and in year 4 to 6.5 the oil score is
added. At the end of the 4 to 6.5 year period an event occurs. Transformer A has 3
corrective maintenances and a censored period from the last event to the end of the
observation period. This last censored interval is necessary as recurrent events are
considered, meaning that the transformer is still in the risk set.

Transformer B has no events and therefore has only a censored observation, but
this must be distributed among multiple intervals for the time dependent covariates.
The age only varies when the other covariates vary because the model should use
the age at the entry of the time interval.

7.3.3 Failure types

Table 7.1 contains the event data for all failure types. When making a subset of fail-
ure types, this table must be completely constructed again, as the length of intervals
and event numbers will change. The failures were divided into events concerning
the following subsystems:

• Bucholz
• Seals
• LTC
• LTC Drive
• Leakage
• Bushing
• Protective
• Cooling equipment
• Various (multiple problems, but poorly described)
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See figure 7.2 for the distribution of the failure types. There were 306 corrective
maintenance entries, however one entry may contain multiple categories, which
thus increases the amount of data points to 439.

Figure 7.2: Distribution of corrective maintenances that were also identified to a
transformer. n = 439

7.3.4 Implementing the Cox model

The code for constructing the event table can be found in listing C.1 in appendix
C. It makes an event table for each transformer using the corrective maintenances
or a censored observations as a starting point, after which the different intervals
for the time varying covariates are constructed from this starting point using the
survival::tmerge function. It thus uses information from the "INFO", "HI" and
"FAIL DATA" lists, as displayed in fig 7.1.

Once the event table is constructed, it can be used as an input for fitting the Cox
model. See listing 7.1 for a code snippet in which a Cox model is fitted using the
survival::coxph function. The Surv function converts the event table to a sur-
vival object, using tstart, tstop and event from the event table. The covariates
are in this case the age and sub health indices (scores). A subset is made from the
event table to filter out the rows that have missing covariates. The subsetting is more
applicable for the case that the HI is used as a covariate, because the coxph function
automatically filters out rows with missing covariates.

Listing 7.1: fitting the cox model using the event table.
1 cox_sub <- coxph( Surv(tstart, tstop, event) ~ age +
2 score_dga + score_furan +
3 score_oil + score_ltc + cluster(id),
4 data = subset(event_table, compl_tot > 0.9)
5 )
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7.4 Transformer population

The transformers that were taken into account are high voltage power transformers,
meaning a secondary voltage higher than 1 kV. The distribution of the voltage, age
and manufacturer can be found in figure 7.3, 7.4 and 7.5, respectively.

As expected, the amount of transformers increases as the rated voltage drops, due
to the central generation structure. The age distribution seems to follow an instal-
lation and replacement wave, as discussed in section 2.4. The data regarding the
manufacturers is quite incomplete, as can be seen by the high number of NA’s (not
available). The dominant brand is Smit, with Pauwels in second.

Figure 7.3: Voltage distribution of the transformer population. n = 498
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Figure 7.4: Age distribution of the transformer population. n = 498

Figure 7.5: Manufacturer distribution of the transformer population. n = 498
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Results

In this chapter the results of the HI and failure probability models are discussed. The
results of the HI model is discussed in section 8.1, in which the input data is reviewed
and some exploratory data analysis is performed to find a relation between the HI
and other variables. This is followed by the results of the survival model in section
8.2, in which the effect of the covariates and their significance on the accuracy of the
model is studied.

8.1 Results of the HI Model

8.1.1 Review of Input Data

To check whether the input values are within reason of the treshold values proposed
in [1], and to have a general overview of the problems in the population, boxplots
were made to see in which category the quantiles fall. These plots for DGA, oil, and
furan measurements can be seen in figure 8.1 to 8.3. The colored horizontal lines
are the threshold values used by the assessment functions to score the condition
indicators. These figures are based on the entire measurement history, and thus
contain transformers that are no longer in service. Keep in mind that only in service
transformers are used for the HI and survival models. From these figures it can be
concluded that the values are correct in terms of scale. Outliers are not displayed, as
they extend the scales extensively. See figure B.1 to B.3 in appendix B for the plots
with outliers.
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Figure 8.1: DGA data plotted with assessment function tresholds. n = 84k.

Figure 8.2: Oil properties data plotted with assessment function tresholds. n = 12k
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Figure 8.3: Furan data plotted with assessment function tresholds. n = 1361.

(a) (b)

Figure 8.4: LTC data plotted with assessment function tresholds. n = 572

The treshold values for the LTC assessment function are the same as those used by
the company that does the LTC diagnostic. This was not given however, and thus a
categorical boxplot was made to find the tresholds, see figure 8.4a. In figure 8.4b the
boxplot with the tresholds can be seen.
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Figure 8.5: Higher completeness can be seen for more recent years. n = 15.4k.

To show any trends in the availability of data over time, the completeness of the
data over time was plotted, see figure 8.5. The line is a result of a local regression
smoothing function (loess). As expected, for more recent years the completeness is
higher. The flattening at the end is probably caused by work orders that still need to
be carried out, or the fact that the bin width is smaller at the end.

In table 8.1 the amount of measurements for each condition indicator can be seen.
This only entails data that has been joined to individual transformers and actually
form a part of the HI calculation later on.

Table 8.1

dga furan oil ltc

n 10232 1069 1755 629
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8.1.2 HI output

Behaviour with Age

(a) (b)

(c) (d)

Figure 8.6: Boxplots of scores for different age groups.

Some data exploration is performed in order to get an idea of how the HI behaves
and for which additional purposes it can be used. Relation with time, brand and
voltage rating is performed.

In order to get an idea of how the scores behave with time, boxplots of different
age groups were made, which can be seen in figure 8.6. The line is again a local re-
gression which eases the interpretation of the results. For the DGA and furan scores,
there is a clear reverse in the slope at around the 40 year age mark. Assumption is
that old transformers with bad condition indicators are taken out of service if they
are passed the expected lifetime of 40 years, which is typical expectancy given by
manufacturers. In future work, these type of plots can be used to estimate missing
values based on time.
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Moving on to the relationship between the HI and time, similair observations can
be made. As there is a relatively low amount of LTC measurements, HItank will be
studied first. The HI is computed for each year in the transformer’s current lifetime,
but the completeness indicates how accurate or trustworthy that HI is. See figure
8.7 for a plot of the HI computed for each year of the whole transformer population.
The color scale indicates the level of completeness, which is unfiltered in this case.

A linear regression indicates a low coeffecient, but this is to be expected as the
transformer condition is not a function age but of endured stress. In figure 8.8 the
points are filtered for a completeness of higher than 90%. This reduces the prediction
bounds and has a slightly higher coefficient.

In figure 8.9 an example of HI calculations can be seen, which was given in [1].
This also indicates a low correlation coefficient, see table 8.2 for a comparison of
the correlation coefficients (r). It seems that increasing the completeness results in a
bigger correlation coefficient. They are all negative, indicating the decay of the HI
with age.

Table 8.2: HI-age correlation coefficients.

Dataset r

compl > 0% -0.21
compl > 90% -0.46
example [1] -0.13

Figure 8.7: HItank of whole transformer population plotted against the age. Dashed
line represents the prediction interval and the grey area the confidence interval. n =

10k
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Figure 8.8: HItank of whole transformer population plotted against the age for
completeness > 90%. Dashed line represents the prediction interval and the grey

area the confidence interval. n = 1557

Figure 8.9: Example of HI calculation for a large transformer population taken from
[1].

An important note is that after the 40 age year mark, the HI seems to increase. This
is probably due to the fact that only in-service transformers are present in the data
set. Old transformers with a low HI are probably taken out of service while old and
good transformers are kept in service. See figure 8.10 for a smoothed regression in
which this increase can be seen.
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Figure 8.10: Nonparametric regression of HItank over time. Grey area is the
confidence interval. n = 1557.

Introducing the LTC in the HI equation results in figure 8.11. Here the upward
trend is not seen, because it is somewhat masked by the high weighting of the LTC
sub health index, which does not display the trend.

Figure 8.11: Nonparametric regression of total HI over time. Grey area is the
confidence interval. n = 732.

It can be concluded that the time dependency of the HI is not large, but this is
to be expected as the age of a transformer is not necessarily a good measure of its
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condition. If this was the case then there would be no need for condition based
maintenance. A transformer’s condition change process has a time dependency, but
it is hugely influenced by its operating conditions. Furthermore it can be concluded
that the completeness index is quite usefull in filtering out highly uncertain values.

Behaviour with Voltage Rating

Figure 8.12: Regression for different voltage ratings.

In figure 8.12 the health index development over time can be seen for different volt-
age ratings. It appears that the 150 kV transformer deteriorate less that the others,
but no other conclusions can be made.

Behaviour with Brands

Figure 8.13: Regression for different voltage ratings.
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The two most representative brands in the data were compared and it appears that
Smit transformers outperform the Pauwels. This agrees with the experience of the
asset manager in charge of transformers.

8.1.3 HI validation and conclusion

To verify the HI, which has the goal to identify and prioritize replacements, the HI of
the tranformers on Stedin’s replacement list were compared. In table B.1 in appendix
B these transformers can be seen. This table includes only transformers that are to
be replaced based on quality assessments.

The planned replacement year, scores and corresponding evaluation date of those
scores are given. Furthermore HITANK and HITOT are also given along with the cor-
responding level of completeness.

Some HI are still relatively high, but this is paired with a low completeness. Those
that have a high completeness display reasons for replacement; either the HI is low
or one subcomponent is critical and not worth a revision.

This does display a problem with using a single number for a condition assess-
ment, namely that if only one subcomponent is scored badly, it can be masked by
other components that are scored well.

8.2 Results of the Failure Probability Model

A time dependent cox model was implemented and the effects of various covariates
were studied. Univariate models were made to indicate which covariates might be
useful in a multivariate model, which was implemented afterwards. The model is
based on corrective maintenance events, which will be seen as a failure. The results
of the failure probability model will be discussed by:

• Covariate effect β: whether it impacts the hazard function as expected, i.e. increas-
ingly or decreasingly.
• p value: whether the covariate is statistically significant. 5% is usually used as the

threshold for significance, however in the univariate models a significance level
of about 20% can be used to select a covariate for a multivariate model.
• Log likelihood ratio: whether and by how much the covariate increases the likeli-

hood of the model compared to the base model.
• Concordance: 0.75 being the average for Cox models and 0.5 being no better than

a coin flip [82].

Furthermore, the amount of events per covariate should be at least 10. There were
in total 306 corrective maintenances that could be matched to a transformer ID, how-
ever there was no clear measure on the severity of the situation. Furthermore the
type of failure (which subsystem and cause of failure) is not well defined in some
cases and can thus not always be correctly identified by the search terms used in the
R script. On top of this there is also the issue of missing condition data at the time of
the failure.

By distinguishing the type of failure on which the models are derived, the covariate
effects can be more specific towards a failure type. This makes the contribution of
the covariates to each type of failure more clear. Three subsets are made:
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• LTC failures
• Leakages (seals, tank corrosion)
• Miscellaneous (bushing, cooling, protective devices)

The last group contains events that could not be categorized or are a part of small
category groups.

For each event type, a univariate and multivariate model will be created. In sub-
section 8.2.1 the model of all events will be presented, followed by the LTC event
types in subsection 8.2.2, leakage event types in 8.2.3, and miscellaneous events in
subsection 8.2.4. This section ends with a conclusion in subsection 8.2.5.

8.2.1 All Event Types

Univariate models

In table 8.3 the results of the univariate models are given. These models were based
on all failures while the rows containing missing covariate data were filtered out.
HR is the hazard ratio, which is given along with the confidence intervals, and the
log likelihood ratio is given by LL.ratio. Significant p values are followed by an
asterisk or two; one for the 20% threshold and two for the 5% threshold. As these
are univariate models, the C index will not be discussed as it assumed to be low
for univariate models. The amount of censored and non-censored observations is
given by n, while the amount of events (failures) are given by n.event. Note that
the observations are spread across multiple rows due to time dependent covariates,
which is why n is multiple times higher than the amount of transformers. n.event
has been corrected for this and gives the actual amount of events.

Table 8.3: Univariate models for all failures

covariate beta HR (95% CI) wald.test p.value LL.ratio C index n n.event

HI -0.53 0.591 (0.33-1.06) 3.13 0.077* 4.03 0.53 2286 272
age 0.02 1.02 (1.01-1.03) 26.60 2.5e-07** 40.18 0.60 2484 306

uprim50 0.76 2.15 (1.58-2.91) 27.10 8.2e-07** 38.18 0.58 2486 306
uprim150 0.10 1.1 (0.728-1.66) 27.10 0.65 38.18 0.58 2486 306
score_dga -0.10 0.903 (0.797-1.02) 2.56 0.11* 3.39 0.53 2276 272

score_furan -0.13 0.88 (0.735-1.05) 1.92 0.17* 2.23 0.52 1540 168
score_oil -0.11 0.896 (0.735-1.09) 1.17 0.28 1.66 0.52 959 154

HI_tot -0.17 0.84 (0.449-1.57) 0.30 0.58 0.45 0.51 2286 272
score_ltc -0.11 0.897 (0.744-1.08) 1.29 0.26 1.48 0.51 1081 150

The significant covariates are the age and primary voltage of 50 kV. An increase in
age increases the hazard, which was as expected. The primary voltage is a categor-
ical variable and is thus compared to the reference case of 25 kV. Notably, the only
voltage level that significantly impacts the hazard is the 50 kV level.

The rest of the covariates do effect the hazard as expected, i.e. lowering the hazard
with the negative covariate effect, but the p values are not low enough to be consid-
ered significant in the univariate case. However, the HI, dga score and furan score
are significant enough to be considered for a multivariate model.
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Because these models were not based on a subset of the data, the cases with low
completeness were also included in the derivation of the HI and HItot covariate ef-
fect. In table 8.4 and 8.5 these covariates were evaluated again for a subset of com-
pleteness > 0.85 and completenesstot > 0.80 respectively, which then includes a mea-
surement of all sub HI.

A bigger effect is observed with an increased significance for the HI and for HItot
and the significance is quite higher. This shows the importance of using the com-
pleteness index and that excessive interpolation of the data may lead to incorrect
results.

Table 8.4: Univariate model of HI for all fails with completeness subset

covariate beta HR (95% CI) wald.test p.value LL.ratio C index n n.event

HI -1.14 0.321 (0.114-0.903) 4.64 0.031** 5.71 0.56 763 109
age 0.02 1.02 (1-1.04) 4.62 0.032** 9.59 0.58 763 109

uprim50 1.18 3.25 (1.77-5.97) 29.80 0.00015** 44.05 0.67 763 109
uprim150 -0.29 0.745 (0.344-1.62) 29.80 0.46 44.05 0.67 763 109

Table 8.5: Univariate model of HItot for all fails with completeness subset

covariate beta HR (95% CI) wald.test p.value LL.ratio C index n n.event

HI_tot -0.51 0.599 (0.166-2.16) 0.61 0.43 0.80 0.51 844 105
age 0.03 1.03 (1.01-1.05) 10.90 0.00098** 18.64 0.61 844 105

uprim50 0.87 2.4 (1.34-4.3) 13.50 0.0034** 21.09 0.61 844 105
uprim150 -0.10 0.902 (0.446-1.83) 13.50 0.78 21.09 0.61 844 105

Multivariate model

According to table 8.3 the relevant covariates are HI, age, uprim50, furan score and
oil score. Using all of these results in the model in table 8.6. Many of the covariates
have a low significance and so another method, backward selection, is used to find
the best model. Backward selection removes covariates from the complete model
by comparing the Aikake information criteria (AIC) to select the best covariates for
the model [82]. The AIC is one of the most used criteria in model selection and is
a trade of between the amount of parameters and the resulting likelihood. This can
be implemented with the step function from the rms package. The results of the
backward selection can be seen in table 8.7 and the final results, which is uses all
the available data, can be seen in table 8.8. The final model also narrows down the
confidence interval for the hazard ratio.

Unfortunately, the health indices were not significant enough in combination with
the age and voltage level. The final model also has a below average concordance,
although it is higher than the univariate models.

Because these are not time dependent covariates, a test must be done for the PH
assumption. In figure 8.14 the Schoenfeld residual plots are given, along with an
estimation of β(t). This tests whether the slope of residuals are zero and from this
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Table 8.6: Multivariate model for all fails based on univariate significance

covariate beta HR (95% CI for HR) wald.test p.value LL.ratio C index n n.event

uprim50TRUE 1.19 3.28 (1.94-5.53) 27.00 8.6e-06** 49.70 0.69 763 109
age 0.02 1.02 (0.996-1.04) 27.00 0.1 49.70 0.69 763 109
HI 1.01 2.75 (0.0251-302) 27.00 0.67 49.70 0.69 763 109

score_oil 0.00 1 (0.528-1.91) 27.00 0.99 49.70 0.69 763 109
score_dga -0.20 0.817 (0.417-1.6) 27.00 0.56 49.70 0.69 763 109

Table 8.7: Multivariate model for all fails by backward selection

covariate beta HR (95% CI for HR) wald.test p.value LL.ratio C index n n.event

uprim50TRUE 1.23 3.41 (2.31-5.02) 47.10 6.2e-10 48.69 0.67 763 109
age 0.02 1.02 (1-1.03) 47.10 0.022 48.69 0.67 763 109

it can be concluded that the PH assumption is only valid for the age covariate. This
means that the model might be improved by [79]:

• adding a omitted covariate that corrects this non-proportionality
• transforming the covariate effect to be time dependent
• the use of an non-PH model such as AFT

Note that the test for proportionality should be done with the multivariate models,
as omitted covariates will result in a high propotion of non-proportional covariates.
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Table 8.8: Final multivariate model for all fails

covariate beta HR (95% CI for HR) wald.test p.value LL.ratio C index n n.event

uprim50TRUE 0.68 1.97 (1.51-2.57) 45.50 6.9e-07 72.37 0.63 2484 306
age 0.02 1.02 (1.01-1.03) 45.50 8.5e-07 72.37 0.63 2484 306

(a)

(b)

Figure 8.14: Schoenfeld test for proportional hazard assumption of voltage (a) and
age (b).

8.2.2 LTC Event Types

Univariate models

See table 8.9 for the univariate models based on LTC failures. In this table and the
following ones, the appropriate completeness was used for the HI and HItot models.
For this case no significant covariates other than the voltage and age could be found.
The ltc score is on the edge of the 20% threshold and might still prove useful in a
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multivariate model.

Table 8.9: Univariate models for LTC fails

covariate beta HR (95% CI for HR) wald.test p.value LL.ratio C index n n.event

HI -1.00 0.369 (0.0658-2.07) 1.29 0.26 1.67 0.57 605 47
age 0.03 1.03 (1.02-1.04) 27.50 1.6e-07** 34.19 0.64 1994 144

uprim50 0.79 2.2 (1.42-3.42) 16.50 0.00045** 22.59 0.59 1995 144
uprim150 -0.15 0.859 (0.488-1.51) 16.50 0.60 22.59 0.59 1995 144
score_dga -0.00 0.997 (0.809-1.23) 0.00 0.98 0.00 0.50 1817 124

score_furan 0.06 1.06 (0.708-1.6) 0.09 0.77 0.15 0.52 1226 82
score_oil -0.08 0.921 (0.665-1.28) 0.25 0.62 0.40 0.52 760 63

HI_tot -0.16 0.85 (0.12-5.99) 0.03 0.87 0.05 0.48 664 61
score_ltc -0.15 0.86 (0.671-1.1) 1.42 0.23 1.88 0.53 854 85

Multivariate models

According to table 8.9, the significant covariates with respect to LTC events are the
age and uprim50. The LTC score is on the verge of being significant for the univariate
case and thus a multivariate model is built with it, to see if it will increase. The
result can be seen in table 8.10. It is clear that the significance of the LTC score is not
increased.

Table 8.10: Multivariate model for LTC fails based on univariate significance

covariate beta HR (95% CI for HR) wald.test p.value LL.ratio C index n n.event

age 0.03 1.03 (1.01-1.05) 30.10 0.00044 42.97 0.70 854 85
uprim50TRUE 1.07 2.92 (1.67-5.09) 30.10 0.00016 42.97 0.70 854 85

score_ltc -0.08 0.925 (0.697-1.23) 30.10 0.59 42.97 0.70 854 85

The result of performing backward selection can be seen in table 8.11. The sig-
nificance did not increase and the effect is positive, which is in contrast with the
expectation of it being negative. Furthermore there are only 30 events, which is not
enough for 4 covariates. The concordance is higher, but this is quite certain a result
of overfitting because according to this model a better condition of the LTC and pa-
per leads to higher hazard rate. Therefore this model will not be developed further.

Table 8.11: Multivariate model for LTC fails by backward selection

covariate beta HR (95% CI for HR) wald.test p.value LL.ratio C index n n.event

uprim50TRUE 1.92 6.83 (3.01-15.5) 22.90 4.3e-06 26.27 0.76 314 30
score_oil -0.65 0.524 (0.321-0.854) 22.90 0.0095 26.27 0.76 314 30

score_furan 0.38 1.46 (0.943-2.27) 22.90 0.089 26.27 0.76 314 30
score_ltc 0.52 1.68 (0.746-3.8) 22.90 0.21 26.27 0.76 314 30
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8.2.3 Leakage Event Types

Univariate models

For the leakage events, the HI, dga score and furan score are significant covariates,
see table 8.12. The score of the oil might also prove useful in a multivariate model.

Table 8.12: Univariate model for leakage related events

covariate beta HR (95% CI) wald.test p.value LL.ratio C index n n.event

HI -1.96 0.14 (0.0441-0.447) 11.00 0.0009** 9.77 0.61 619 53
age 0.03 1.03 (1.01-1.04) 19.30 1.1e-05** 28.01 0.62 2015 149

uprim50 1.06 2.89 (1.9-4.38) 27.00 6.8e-07** 34.15 0.62 2017 149
uprim150 0.29 1.33 (0.766-2.32) 27.00 0.31 34.15 0.62 2017 149
score_dga -0.18 0.838 (0.718-0.978) 5.04 0.025** 5.57 0.54 1842 135

score_furan -0.30 0.739 (0.623-0.876) 12.10 0.00049** 8.28 0.56 1239 79
score_oil -0.23 0.79 (0.618-1.01) 3.51 0.061* 3.76 0.56 785 79

HI_tot -1.27 0.28 (0.068-1.16) 3.10 0.078* 2.60 0.56 659 50
score_ltc -0.10 0.905 (0.694-1.18) 0.54 0.46 0.54 0.52 840 70

Multivariate models

Table 8.13: Multivariate model for leakage events based on univariate significance

covariate beta HR (95% CI for HR) wald.test p.value LL.ratio C index n n.event

age 0.04 1.04 (1.01-1.06) 41.10 0.0034 50.60 0.75 622 53
uprim50TRUE 1.57 4.78 (2.53-9.05) 41.10 1.5e-06 50.60 0.75 622 53

score_furan -0.13 0.876 (0.655-1.17) 41.10 0.37 50.60 0.75 622 53
score_dga -0.02 0.983 (0.736-1.31) 41.10 0.91 50.60 0.75 622 53

score_oil 0.19 1.21 (0.757-1.94) 41.10 0.42 50.60 0.75 622 53

Using the significant covariates in table 8.12, the model in table 8.13 was made.
Although the concordance is average, the scores are not contributing much to this
due to the low significance of it.

8.2.4 Misc Event Types

Univariate models

For the miscellaneous events there are no useful significant covariates. There are not
enough events to support the use of a multivariate model, and furthermore the ones
that are below the 20% threshold do not effect the hazard rate in the expected way.
Therefore this event type can not be analyzed further.
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Table 8.14: Univariate model for misc events

covariate beta HR (95% CI) wald.test p.value LL.ratio C index n n.event

HI 0.64 1.89 (0.395-9.05) 0.63 0.43 0.30 0.56 40 18
age 0.00 1 (0.975-1.03) 0.04 0.84 0.07 0.50 125 42

uprim50 0.66 1.93 (0.826-4.49) 2.30 0.13 2.60 0.58 125 42
uprim150 0.27 1.31 (0.532-3.22) 2.30 0.56 2.60 0.58 125 42
score_dga -0.05 0.953 (0.707-1.28) 0.10 0.75 0.14 0.52 118 39

score_furan 0.18 1.2 (0.731-1.96) 0.51 0.47 0.36 0.54 76 23
score_oil 0.36 1.43 (0.86-2.37) 1.89 0.17* 2.39 0.62 45 22

HI_tot 1.26 3.53 (0.00562-2220) 0.15 0.70 0.16 0.57 41 7
score_ltc 0.86 2.35 (0.834-6.65) 2.62 0.11* 0.82 0.57 56 13

8.2.5 Conclusion

It can be concluded that the condition indicators do have an effect on the failure
probability in the univariate cases, but when they are used in a multivariate model
they are masked by the significance of the age and voltage covariates.

Comparison of the models based on event types demonstrates the need to spec-
ify the type of failure, as the size and significance of the covariate effect can vary
considerably.

Another problem is that not all events could be joined to a transformer ID, which
makes the model imprecise. There were in total 785 transformer related corrective
maintenances, but only 306 could be joined. This results in transformers that have
experienced a failure with indication thereof in its condition data, to be inaccurately
represented in the likelihood estimator. This is also the reason that the outage data
was not used: from the 387 transformer related outages, only 71 could be identified
and these only included outages with customer interruptions.

Furthermore, the severity is not taken into account which means that small events
which might not even be relevant are also present in the data.

Lastly, the voltage level does not seem to hold up to the proportional hazard as-
sumption which indicates that there is room for improvement.
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Chapter 9

Conclusion and Recommendations

9.1 Conclusion

In this thesis a HI model was built based on condition indicators. Afterwards, the
HI model and its condition indicators were used as an input for the survival models.

It can be concluded that the HI method can identify transformers that need atten-
tion, however that one numerical index should only be used as a guideline, and that
the sub health indices should also trigger concerns. Analogous to the weakest link
in a chain, the weakest subsystems should trigger actions.

The implemented HI method is an improvement from the previous, as trend anal-
yses is now possible due to the added quantization levels. Furthermore it is now
possible to quickly create an overview of a transformer’s data, which is an improve-
ment compared to the previous situation in which the data was scattered in multiple
data bases.

The survival model was used to answer the main research question: Can the con-
dition of transformer be used as a reliable input for transformer failure probability
prediction? The univariate models indicate that there is a significant effect of the
condition indicators on the survival probability, however the concordance of these
models were below average (~0.6). Therefore it can be concluded that there is an
affect, but due to lacking data quality it can not yet be concluded whether it can be
used as a reliable input (i.e. increasing the prediction accuracy of the model).

9.2 Recommendations

In order to make predictions based on the history, it is necessary to have the historical
data quality up to par. The recommendation towards Stedin is to improve the outage
data base by:

• Including a unique key per transformer and using this in all databases. This in-
creases the ease of joining data and increases the amount of available data per
transformer. The condition indicators of the transformers is dispersed in multi-
ple systems which is not a problem if there was a unique key to join all the data.
Joining the data took a significant amount of time and of course multiple attempts
were made to join data that was not identified by a clear key.
• Adding predefined failure modes to the outage and maintenance forms provides
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a better means for categorizing the events that occured. Adding both a unique
key and a failure modes might also reduce the time needed for filling in forms by
the electricians, as many of columns can be filled automatically if these two are
known.

Future work on improving the HI should look into using the maintenance and
loading data of transformers. Furthermore, it would make more sense to move the
CO and CO2 assessment from the DGA sub health index to the sub health index
concerning the insulation of the transformer, as paper degradation is what primarily
forms these gasses and not the internal faults.

Another important aspect is that at this moment the bushings are not taken into ac-
count, which is a component that can have fatal injuries as a result, should someone
be in the area. However, the asset manager stated that current condition indicator
standards would dissaprove the use of a quite large portion of the bushing popu-
lation, but the amount of faults do not reflect this. A study is being carried out to
study the condition indicators and acceptable thresholds.

Lastly on the HI model, it might be worth while to fill in the missing data using
advanced methods as described in [80]. Of course, the best solution is to improve
the data acquistion and storage, but it would also take years before a significant
amount of new data has been acquired. Filling in missing data by interpolation and
other techniques might improve the current models, which might prove themselves
useful for the replacement wave.

To increase the accuracy of the survival model, it is worthwhile to implement a
fully parametric proportional hazard or AFT model. Research must be done on
which base hazard function, e.g. Weibull, will fit the observations the best. The
added advantage of this is that not only will it provide a better fit if the underly-
ing distribution is chosen correctly, but it provides the means to calculate the actual
survival time instead of only the probability.

Adding more relevant covariates might also improve the accuracy of the model,
e.g. loading, temperature and weather conditions. The challenge is to gather as
much possible while trading off the costs of acquiring and storing the data.
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Appendix A

FMEA

Table A.1: Action definitions

Action Description

1 Monitor fault development up to point of replacement
2 Repair if possible, otherwise replace component
3 Replace component
4 Repair/replace if costeffecient, otherwise replace transformer
5 Replace transformer
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Table A.2: Transformer FMEA

Subsystem Failure mode Effect Causes Stress Detection Action

Core
Insulating layers be-
tween lamination
damaged

• Overheating due to eddy currents
• Performance loss

• Transportation
• Eddy currents

MT Thermo scan,
DGA

1

Gaps between de lami-
nations

• Partial discharges
• Overheating due to eddy currents
• Performance loss

• Transportation
• Gas bubbles in oil

CM Thermo scan,
DGA

1

Windings

Deformation of wind-
ings axially or radially

• Rupture solid insulation
• Overheating due to leakage flux
• Performance loss

• Electromagnetic forces due to fault
currents
• Transportation
• Thermal expansion/compression

EMT Winding ratio 1

Dielectric breakdown
insulating medium

• Short circuit of windings: incorrect turn ratio
• Overheating if short circuit to ground

• Fault voltages
• Lightning impulse
• Ruptured solid insulation
• Degraded or contaminated oil

CET DGA, resistance
measurement, fu-
ran analysis

Oil:2
Paper:
5

Conductor rupture Interuption of load • Mechanical wear due to thermal
expansion
• Deformation

MT Transformer not
functioning

4

LTC arcing
switch

Bad/interupted contact • Interuption of load
• Performance loss
• Overheating due high resistivity

• Low contact pressure due to
spring wear
• Long term effect
• Operational arcing causes pitting
• Mechanical wear contacts due to
switching

CEMT Visual 2

Open or short circuited
transition impedance

• High circulating current during transition
• Arcing on main contact

• Bad/interupted contact
• Burnt resistor

ET Visual, DRM 2

Switching time too large • Interuption of load • Faulty motor drive
• Spring wear

EMT Switch time mea-
surements, DRM

2

LTC off load
switch

Bad/interupted contact • Interuption of load
• Performance loss
• High temperatures due to high resistivity

Long term effect CET DRM, SRM, DGA 4
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Subsystem Failure mode Effect Causes Stress Detection Action

LTC drive
Motor failure Unable to switch taps Overuse EMT Visual 2

Shaft rupture Catastrophic failure Mechanical load or fatigue M 5

Bushing

Oil leaks • Overheating
• Flashover
• Performance loss

• Environmental stresses CMT Visual 4

High partial discharge
activity

• Overheating
• Flashover
• Performance loss

• High voltages
• Presence of floating particles
• Presence of sharp points

EM PD activity mea-
surement, Acous-
tic, thermo scan

3

Bad connection within
bushing, local tempera-
ture increase

• Explosion due to high oil expansion
• Overheating
• Performance loss

Mechanical stresses M Thermo scan 2

Oil

Cooling properties re-
duced

Overheating Oxidation results in sludge deposits
on winding and cooling ducts, re-
ducing cooling.

CT DGA, physical
oil properties

2

Insulating properties re-
duced

• Partial discharges
• Flashover

• Oxidation results in acid degrad-
ing paper insulation
•Water content: water might be re-
leased in oil and vapor occurs.

CT DGA, physical
oil properties

2

Reaction with copper
or silver forming semi-
conducting compounds

Short circuits Presence of corrosive sulphur in oil C DGA, physical
oil properties

2

Tank
Gaskets and seals dam-
age

Oil contamination Aging of seals and gaskets CM Visual 2

Paint wear off and corro-
sion

Oil leakage Environmental stresses CMT Visual 4

Cooling
Pump failure Overheating Pump wear/overuse M Visual 2

Fan failure Overheating Fan wear/overuse M Visual 2

Protective
devices

Bucholz failure Catastrophic failure MC Visual 3

Pressure relief circuitry
failure

Catastrophic failure Springs in device becoming fragile MC Visual 3

Surge protector failure High voltage applied over transformer •Moisture
• Heat
• Corossion

CT Visual 3
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Appendix B

HI

Figure B.1: DGA data plotted with assessment function tresholds.
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Figure B.2: Oil properties data plotted with assessment function tresholds.

Figure B.3: Furan data plotted with assessment function tresholds.
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Table B.1: HI of transformers to be replaced

ID build year replacing date_ltc ltc date_dga dga date_furan furan date_oil oil HI completeness HI_tot compl_tot

1 1958 2017 2015-01-23 1 2017-05-30 3 2014-04-29 4 2014-04-30 1 0.75 0.45 0.45 0
2 1962 2017 2016-07-27 0 2017-05-30 2 2017-05-23 4 2017-05-30 1 0.55 0.94 0.33 0.96
3 1958 2017 2014-04-16 1 2017-10-02 1 2012-03-06 4 2016-09-23 1 0.25 0.45 0.15 0
4 1960 2017 2016-05-12 1 2017-10-02 4 2008-07-17 4 2016-09-23 1 1 0.45 0.7 0.67
5 1965 2018 2016-07-22 1 2017-06-13 3 2017-06-07 4 2017-06-13 4 0.88 0.82 0.63 0.89
6 1957 2018 2015-08-14 0 2017-05-19 1 2017-05-16 4 2017-05-19 1 0.43 0.94 0.26 0.96
7 1960 2018 2016-07-28 1 2017-05-19 2 2017-05-16 4 2017-05-19 1 0.55 0.94 0.43 0.96
8 1966 2018 2014-06-20 1 2017-05-19 3 2017-05-16 4 2017-05-19 2 0.74 0.94 0.44 0
9 1957 2019 2015-08-13 2 2017-05-19 2 2017-05-16 4 2017-05-19 1 0.55 0.94 0.53 0.96

10 1967 2019 2014-06-20 2 2017-05-19 4 2017-05-16 4 2017-05-19 2 0.86 0.94 0.51 0
11 1962 2019 2016-04-05 0 2017-10-02 4 2005-08-16 4 2016-09-23 1 1 0.45 0.6 0.67
12 1962 2019 2015-11-06 4 NaN 0 NaN 0
13 1958 2019 2014-02-18 1 2017-09-19 3 2013-03-05 4 2016-09-23 2 0.75 0.45 0.45 0
14 1956 2020 2015-01-15 2 2017-05-19 4 2017-05-16 4 2017-05-19 1 0.79 0.94 0.47 0
15 1966 2020 2014-06-23 2 2017-05-19 4 2017-05-16 4 2017-05-19 2 0.86 0.94 0.51 0
16 1968 2020 2017-09-19 3 2009-04-24 4 2016-09-23 3 0.75 0.45 0.45 0
17 1970 2020 2017-06-13 4 2017-06-07 4 2017-06-13 4 1 0.82 0.6 0
18 1975 2021 2015-06-26 3 2017-10-03 4 2017-04-21 4 2017-04-26 2 0.86 0.94 0.51 0
19 1969 2021 2017-10-02 4 2016-09-23 2 1 0.45 0.6 0
20 1969 2021 2017-10-02 3 2008-07-16 4 2016-09-23 2 0.75 0.45 0.45 0
21 1969 2021 2017-10-02 4 2008-07-16 4 2016-08-26 2 1 0.45 0.6 0
22 1969 2021 2017-10-02 4 2016-09-23 2 1 0.45 0.6 0
23 1969 2021 2017-10-02 3 2008-07-16 4 2016-09-23 2 0.75 0.45 0.45 0
24 1969 2021 2017-10-02 4 2008-07-16 4 2016-08-26 3 1 0.45 0.6 0
25 1966 2021 2017-09-12 2 2013-03-06 4 2016-09-23 2 0.5 0.45 0.3 0
26 1992 2021 2014-03-27 3 2017-09-12 4 2015-11-16 4 2016-09-23 2 1 0.69 0.6 0
27 1965 2022 2017-10-02 4 2012-03-07 4 2016-09-23 2 1 0.45 0.6 0
28 1972 2022 2017-09-19 1 2012-03-08 1 2016-09-23 1 0.25 0.45 0.15 0
29 1972 2022 2017-10-02 4 1 0.45 0.6 0
30 1984 2022 2016-05-27 3 2017-09-19 4 2015-11-12 3 2016-09-23 2 0.92 0.69 0.85 0.81
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Appendix C

R Code

Listing C.1: Constructing the event tables
1 # DATA PREP REPAIRS ---------------------------------------------------------------
2 # Get serie_nr, HI’s, bouwjaar, dates, failures
3 # Get these from tf list, then make life table
4
5 tfs <- list.select(tf,
6 "INFO" = INFO[c("serie_nr", "bouw jaar trafo", "regio",
7 "fabrikant trafo", "uprim")],
8 "HIF" = select(HI$HIF, "date", "age", "HI", "completeness",
9 starts_with("score"),

10 starts_with("valid"), ends_with("tot")),
11 "REPAIRS" = FAILS$REPAIRS[c(1, 9, 36:48)]
12 )
13 tf_info <- list.select(tfs, INFO) %>% do.call(what = "rbind") %>% do.call(what = "

rbind")
14 tf_info$uprim[tf_info$uprim == 2.3] <- 2.5
15 tf_info$uprim <- (tf_info$uprim *10) %>% as.factor()
16
17 valid_NA <- function(x,y){ # Helper function
18 x*(y|NA)
19 }
20
21 # Define function to make an event table
22 make_life_table <- function(tf, method,
23 considered_fails = NULL,
24 unvalid_to_NA = FALSE){
25 # Use repairs as events for life table and merge duplicates
26 trafo_bouwjaar <- tf$INFO$"bouw jaar trafo" # called a lot, reduce runtime
27 entry_date <- max(as_date("2008-01-01"), trafo_bouwjaar) # 2008 = studystart
28 study_start_date <- as_date("2008-01-01")
29 end_time <- difftime(as_date("2018-08-01"), as_date("2008-01-01")) %>%
30 time_length("years") # same for all
31 max_events <- 3 # max amount of considered event
32 ltable <- tibble()
33 { #1
34 if(nrow(tf$REPAIRS)){#2
35 # Create life table, fix duplicate times, add event number stratum
36
37 #create table
38 ltable <- tf$REPAIRS
39 ltable <- ltable[order(ltable$"Aanmaak Datum"),]
40 ltable$serie_nr <- tf$INFO$serie_nr
41 #ltable <- uniw(ltable, serie_nr, "Aanmaak Datum", .keep_all = T)
42 ltable$duptime_correction <- F
43
44 #filter relevant fails
45 if(!is.null(considered_fails)){
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46 ltable <- subset(ltable, eval(parse(text = considered_fails)))
47 }
48
49 #merge duplicate times
50 duplidates <- subset(ltable, ltable$"Aanmaak Datum" %>% duplicated2())
51 if(nrow(duplidates) != 0){
52 ltable <- subset(ltable, !duplicated2(ltable$"Aanmaak Datum"))
53
54 correction <- duplidates[1,]
55 correction[,failtypes] <- colSums(duplidates[, failtypes]) %>% as.logical()
56 correction$duptime_correction <- T
57
58 ltable <- rbind(ltable, correction)
59 ltable <- ltable[order(ltable$"Aanmaak Datum"),]
60 }
61 #add event number stratum
62 ltable$eventnum <- seq_len(nrow(ltable))
63
64 # Make start and stop times
65 # takes study time (2008) as starting point, or build year if it entered the

study later
66 ltable$status <- c(rep(1, nrow(ltable)))
67
68 stop <- difftime(ltable$"Aanmaak Datum", study_start_date) %>%
69 time_length("years")
70 default_start <- difftime(entry_date, study_start_date) %>%
71 time_length("years")
72 start <- lag(stop, default = default_start )
73 ltable$start2 <- start
74 ltable$stop2 <- stop
75
76 }#2
77
78 # Add censored row if there were no failures to begin with,
79 # or if they were all filtered out by failure type selection.
80 if((nrow(tf$REPAIRS) == 0 ) | (nrow(ltable) == 0)){
81 if(method == "WLW"){
82 ltable <- censored_ltable[c(rep(1,max_events)),] # add presaved censor row
83 ltable$eventnum <- c(1:max_events)
84 }
85 if(method == "AG"){
86 ltable <- censored_ltable[1,] # add presaved censor row
87 ltable$eventnum <- 1
88 }
89 ltable$serie_nr <- tf$INFO$serie_nr
90 ltable$start2 <- difftime( entry_date, study_start_date) %>%
91 time_length("years")
92 ltable$stop2 <- end_time
93 }#1
94 ltable1 <<- ltable
95
96 # Add censored events depending on recurrence type
97 if(method == "WLW"){#wlw
98 if(max(ltable$eventnum) < max_events){
99 event_count <- max(ltable$eventnum) # amount of events

100 for(i in (event_count+1):max_events){ # add "artificial events"
101 ltable[i,] <- censored_ltable[1,]
102 ltable$serie_nr[i] <- tf$INFO$serie_nr
103 ltable$eventnum[i] <- i
104 ltable$start2[i] <- ltable$stop2[event_count]
105 ltable$stop2[i] <- difftime(as_date("2018-08-01"), as_date("2008-01-01"))

%>% time_length("years")
106 }
107 }else{
108 ltable <- ltabe[1:max_events,]
109 }
110 }#wlw
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111 if( (method == "AG") & (tail(ltable$stop2,1) != end_time ) ){#ag add one
censoring

112 i <- nrow(ltable)+1
113 ltable[i,] <- censored_ltable[1,]
114 ltable$serie_nr[i] <- tf$INFO$serie_nr
115 ltable$eventnum[i] <- i
116 ltable$start2[i] <- ltable$stop2[i-1]
117 ltable$stop2[i] <- difftime(as_date("2018-08-01"), as_date("2008-01-01"))

%>% time_length("years")
118 }#ag
119
120 } #1
121
122
123 # Add time dependent covariates with tmerge()
124 # Covariates come from HIF.Not all HIF have all scores, causes problems.
125 # Quick fix is adding all variables as NA with fix_missing_scores
126 HIF <- tf$HIF
127 HIF <- rbind.fill(HIF, fix_missing_scores)
128 HIF <- HIF[-nrow(HIF),] # remove fixing row
129
130 # Create output container
131 output <- tibble()
132 # Add td covariates
133 for(i in ltable$eventnum){ # i for each eventnum, tmerge ltable$eventnum
134 fail <<- ltable[i,]
135 HIF <- subset(HIF, date >= entry_date )
136 HIF$HI_stops <- difftime(HIF$date, as_date("2008-01-01")) %>% time_length("years

")
137 scores <- select(HIF,starts_with("score"), starts_with("valid"))
138 if(scores %>% is.na %>% all){return()}
139 scores$serie_nr <- tf$INFO$serie_nr
140 HIF <- subset(HIF, !duplicated(scores))
141 HIF <- mutate(HIF, serie_nr = tf$INFO$serie_nr)
142
143 if(unvalid_to_NA){
144 HIF <- mutate(HIF, score_dga = valid_NA(score_dga,valid_dga),
145 score_furan = valid_NA(score_furan, valid_furan),
146 score_oil = valid_NA(score_oil, valid_oil),
147 score_ltc = valid_NA(score_ltc, valid_ltc) )
148 }
149
150
151 if(fail$start2 > fail$stop2){next} # start must be later than stop, otherwise

error
152 newfail <- tmerge(fail, fail, id = serie_nr, tstart = start2, tstop = stop2)
153 for(j in 1:nrow(HIF)){ # j for each change in HIF table (change in covariates)

#3
154 newfail <- tmerge(newfail, HIF[j,], id = serie_nr,
155 age = tdc(HI_stops, age),
156 score_dga = tdc(HI_stops, score_dga),
157 score_furan = tdc(HI_stops, score_furan),
158 score_oil = tdc(HI_stops, score_oil),
159 score_ltc = tdc(HI_stops, score_ltc),
160 completeness = tdc(HI_stops, completeness),
161 HI = tdc(HI_stops, HI),
162 HI_tot = tdc(HI_stops, HI_tot),
163 compl_tot = tdc(HI_stops, compl_tot),
164 event = event(ltable$stop2[i], ltable$status[i]),
165 options = list(na.rm = F) )
166 }#3
167
168 output <- rbind.fill(output, newfail)
169 }
170 return(output)
171 }
172
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173
174 # RUN AND SAVE VARIOUS FAILTYPES AG WITH NA ------------------------------
175
176 life_tables <- vector("list",length = length(failtypes) )
177
178 for(i in 1:length(failtypes)){
179 life_tables[[i]] <- lapply(tfs, make_life_table,
180 considered_fails = failtypes[i],
181 method = "AG",
182 unvalid_to_NA = T
183 ) %>% do.call(what = "rbind.fill")
184 }
185
186 life_table_all_fails <- lapply(tfs, make_life_table,
187 method = "AG", unvalid_to_NA = T
188 ) %>% do.call(what = "rbind.fill")
189
190 if(0){
191 save(life_tables, file = "R_objects/Fail_model/life_tables_AG_failsubsets_withNA.

RData")
192 save(life_table_all_fails, file = "R_objects/Fail_model/life_table_AG_allfails_

withNA.RData")
193 }
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