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ABSTRACT

In this thesis, two topics are studied: mathematical inequalities and non-linear quantum
entanglement witnesses.
First, various inequalities, like the Cauchy-Schwarz inequality (on finite dimensional vector
spaces) and Jensen’s inequality, along with their extensions and generalisations, are proved
and discussed. The intimate relationship between these inequalities is studied. Because
this thesis was restricted to finite dimensional vector spaces, the consequences of general-
ising the results to infinite dimensional vector spaces are finally determined.
Secondly, the topic of entanglement detection is discussed - specifically, non-linear en-
tanglement witnesses are considered. A bipartite and multipartite entanglement criterion
based on the previously discussed inequalities are introduced and assessed extensively by
considering their optimality, how they relate to other criteria as well as their limitations.
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INTRODUCTION

The rich but peculiar structure of the realm of quantum phenomena is exemplified by
quantum entanglement, which Albert Einstein famously described as spukhafte Fernwirkung:
spooky action at a distance. In spite of - or rather due to - its very strange nature, entan-
glement has been the topic of a plethora of research since it was first described by Einstein,
Podolsky and Rosen in 1935 (Einstein et al. (1935)).
Entanglement is not just interesting from a theoretical point of view, however: within the
field of quantum information theory, entanglement is of great importance for applications
like quantum teleportation (Bennett et al. (1993)), quantum cryptography and quantum
communication; more specifically, entanglement is essential for superdense coding (Mat-
tle et al. (1995)). In order to make use of entanglement as a resource, one needs to be certain
that the states at hand are indeed entangled or indeed not entangled (i.e. separable). Up
until today, however, no all-encompassing entanglement detection method of any practi-
cal use has been found. On top of that, it has even been proved that solving the problem
of determining whether a state is separable or not is NP-hard (Ioannou (2007)). For prac-
tical purposes, however, this problem is often addressed using so-called entanglement cri-
teria, which are often given in the form of an inequality. One of the most frequently-used
inequality-based entanglement detection methods is based on so-called entanglement wit-
nesses (Gühne and Tóth (2008)).

Inequalities, however, are not merely a mathematical tool for exploring the foundation
of theoretical physics, but are also very essential for all branches of mathematics - in statis-
tics, one encounters the famous Cramer-Rao bound (Rice (2007)), in probability theory, the
Chebychev inequality (Grimmitt and Welsh (2014)), and so on. Furthermore, inequalities
are key tools for investigating deeper mathematical structure, and as such, have proved
their worth time and time again.

In this thesis, both the topic of entanglement as well as inequalities will be covered ex-
tensively. As such, this thesis will be split up into two parts. First, in Part I, an elaborate
study of several well-known mathematical inequalities will be conducted, including, but
not limited to, the Cauchy-Schwarz inequality, Jensen’s inequality and the AM-GM inequal-
ity. They will be studied on two levels: on the one hand, they will be studied individually
by delving into some of their generalisations, extensions and applications. On the other
hand, they will be studied as a collective, by enquiring into the connection between these
inequalities.

After this mathematical exploration, entanglement will be studied in Part II. First, the
underlying mathematical structure of quantum mechanics will be described, after which
the topic of entanglement detection will be delved into.

Lastly, these two fields of study will be brought together by extensively studying several
entanglement criteria introduced by Wölk et al. (2014), which are based on the inequalities
that will pass by in the mathematical part.
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1
MATHEMATICAL INTRODUCTION:

DEFINING THE SETTING

In this chapter, we introduce some preliminary definitions and concepts that will be rele-
vant throughout the mathematical explorations that lie before us, as well as set the concrete
setting in which we will be working, and explain this choice.
The rest of the mathematical part of this thesis is structured as follows.
In Chapter 2, we will start off by studying the Cauchy-Schwarz Inequality.
In Chapter 3, we will continue by studying the AM-GM inequality and will consider how it
relates to the results derived in Chapter 2.
Then, we will study convexity and Jensen’s inequality in Chapter 4.
In Chapter 5, we will introduce a generalisation of the AM-GM inequality.
In Chapter 6, we will study Hölder’s inequality and the inequality of Minkowski, and show
how these relate to all the inequalities derived up to that point.
In Chapter 7, we will finish off by studying p-spaces, and we will consider what happens
when we extend the framework to the infinite dimensional case.

Note that Steele (2004) is used as the primary source for the mathematical journey that
lies ahead of us.

1.1. PRELIMINARY DEFINITIONS AND CONCEPTS
In this section, we recall some definitions. These are mostly based on Vermeer (2017) and
Carothers (2000)). These definitions will be used and addressed throughout this thesis.

Before talking about inequalities, we need to introduce some preliminary concepts that
allow for the description of these inequalities. As inequalities like that of Cauchy and Schwarz
are fundamentally geometrical, we start off by introducing the concept of a vector space.

Definition 1.1. V is called a vector space over the field L if it is a non-empty set on which
two operations are defined:

1. Addition such that v+w ∈V ∀v,w ∈V

2. Scalar multiplication such that ∀c ∈ L∧∀v ∈V : cv ∈V

The operations with which we equip vector spaces should satisfy eight axioms.
For all v,w,u ∈V and for all c,d ∈ L, we have:

5



6 1. MATHEMATICAL INTRODUCTION: DEFINING THE SETTING

1. v+w = w+v commutativity

2. (v+w)+u = v+ (w+u) associativity

3. ∃0 ∈V : v+0 = v neutral element for addition

4. ∀v ∈V : ∃ v̂ ∈V : v+ v̂ = 0

5. 1v = v

6. c (dv) = (cd)v

7. (c +d)v = cv+dv distributivity I

8. c (v+w) = cv+ cw distributivity II

The structure provided by just a vector space is, however, not enough. We also want
to be able to introduce additional structure in the form of - for example - distance, length
and orthogonality. We will allow for this structure by presenting the concepts of an inner
product, a norm and a metric.

Definition 1.2. Let V be a vector space. 〈·, ·〉 : V ×V → L1 is called an inner product if it
satisfies the following properties:

1. 〈v,v〉 ≥ 0 ∀v ∈V

2. 〈v,v〉 = 0 ⇐⇒ v = 0

3. 〈αv,v〉 =α〈v,v〉 ∀α ∈ L∧∀v,w ∈V

4. 〈u+v,w〉 = 〈u,w〉+〈v,w〉∀v,w,u ∈V

5. 〈v,w〉 = 〈w,v〉 ∀v,w ∈V

We say that (V ,〈·, ·〉) is an inner product space.

Definition 1.3. Let V be a vector space over the field L. Then ‖·‖ : V →R is called a norm if
it satisfies the following properties:

1. 0 ≤ ‖v‖ <∞ ∀v ∈V

2. ‖v‖ = 0 ⇐⇒ v = 0

3. ‖αv‖ = |α|‖v‖ ∀α ∈ L∧∀v ∈V

4. ‖v+w‖ ≤ ‖v‖+‖w‖ ∀v,w ∈V triangle Inequality

We say that (V ,‖·‖) is a normed vector space.

In this thesis, we will restrict ourselves to the real numbers (with an occasional extension
to the complex field), and as such we will either set L=R or L=C. Note that in the real case,
property 5. of Definition 1.2 yields symmetry of the inner product.

Remark. Any inner product space can be extended to a normed inner product space by
setting ‖·‖ : V → R+ such that:

‖v‖ =
√

〈v,v〉
1Note that here L=R or L=C.
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Note that the norm of a vector represents the length of this vector. We also want to be
able to measure distances. For this, we introduce the concept of a metric.

Definition 1.4. Given a set X , we call d : X × X → R a metric if it satisfies the following
properties:

1. d(x, y) ≥ 0∀x, y ∈ X

2. d(x, y) = 0 ⇐⇒ x = y

3. d(x, y) = d(y, x)

4. d(x, z)+d(y, z) ≤ d(x, y)∀x, y, z ∈ X triangle Inequality

We call the pair (X ,d) a metric space.

Remark. Any normed vector space can be extended to a metric space by setting:

d(x, y) = ‖x − y‖
Note that this last remark is very important, since the notion of a metric is essential for

performing analysis on normed vector spaces.

We will also be considering sequences and their convergence in this thesis. For this, it is
necessary to introduce the concept of completeness.

Definition 1.5. Let (V ,d) be a metric space, then it is called complete if every Cauchy se-
quence converges, that is, for every sequence (xn) ∈V that is Cauchy, i.e.

∀ε> 0 : ∃N ∈N : ∀n,m ≥ N : ‖xn −xm‖ < ε

For the description of quantum mechanics, we need to combine all the concepts we
have introduced up until now. This structure is called a Hilbert space.

Definition 1.6. H is called a Hilbert Space if it is both an inner product space and a com-
plete metric space with respect to the metric induced by its inner product. We call H a real
(or complex) Hilbert space if it is a real (or complex) inner product space.

Later on, we will discuss relation between inequalities on various vector fields. For this,
we need to introduce the concepts of compactness and open sets.

Definition 1.7. Let (X ,d) be a metric space. Then this metric space is called compact if it is
complete and totally bounded, that is, if next to completeness, the following holds:

∀ε> 0 : ∃n ∈N : ∃ {x1, . . . , xn ∈ X } : X ⊂
n⋃

i=1
Bε(xi )

We now introduce the concept of topologies.

Definition 1.8. Let X be a set and let τ denote a subset of X . Then τ is called a topology if:

1. X ∈ τ and ;∈ τ
2. Given some index set I of sets Ui for i ∈I , then:⋃

i∈I

Ui ∈ τ

3. For any n ∈N:
n⋂

i=1
Ui ∈ τ

We call the elements of τ the open sets of X . Furthermore, (X ,τ) is called a topological
space.
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1.2. ESTABLISHING THE SETTING
In this thesis, we will mostly be concerned with studying inequalities on finite vector spaces
- that is, on vector spaces with a basis of finite cardinality. This decision is justified, because
restricting ourselves to finite fields allows for optimally exploring the topic of inequality, as
the finitude of the vector spaces ensures preservation of many nice properties. This can be
seen from the following theorem, which we state without proof.

Theorem 1.1. let V be a finite dimensional vector space over the field L of dimension n.
Then:

V ∼= Ln

This theorem ensures that we can restrict ourselves to studying Rn (or in the case of
complex extensions: Cn) without loss of generality.
Lastly, it is also very relevant that our results are consistent in the sense that they remain
true irrespective of our choice of basis. This will be established by a theorem and its corol-
lary ,whose proof can be found in Appendix A.

Theorem 1.2. Let V be a finite dimensional inner product space over the field L and let B =
b1, . . . ,bn be a basis of V . Then ∀v,w ∈V , we have that:

〈v,w〉 = [v]†
B GB [w]B

where GB is the Gramian matrix of B, so (GB )i j = 〈bi,bj〉 and [v]B the coordinates of v ex-
pressed in terms of the new basis B, so if v =∑n

k=1 ck bk, then [v]B ,k = ck .

Corollary 1.2.1. Given a finite dimensional inner product space V with orthonormal basis
B = {b1, . . . ,bn}. Then:

〈v,w〉 = 〈[v]B , [w]B 〉
We will generously make use of these two facts throughout this thesis, and we will ad-

dress the infinite dimensional case at the very end of our enquiry when discussing the so-
called p-spaces.



2
THE STARTING POINT: CAUCHY AND

SCHWARZ

In this chapter, we set off on our study of mathematical inequalities by introducing a very
famous inequality, with many applications in various domains of mathematics and in the-
oretical physics: the Cauchy-Schwarz inequality. We will present several proofs of this in-
equality, first in a general real vector space and then specifically onRn , after which we study
various generalisations, extensions and applications of this inequality.

2.1. CAUCHY-SCHWARZ ON GENERAL REAL INNER PRODUCT SPACES
We start off by presenting two forms of the Cauchy-Schwarz inequality along with their
proofs, and we will show that these two forms are interchangeable on an arbitrary, real
vector space. Let us start with the first of these two forms, and let us prove this statement
using elementary properties of quadratic functions.

Theorem 2.1. (Cauchy-Schwarz Inequality). Let (V ,〈·, ·〉) be a real inner product space and
let v,w ∈V . Then

|〈v,w〉| ≤ ‖v‖ ·‖w‖,

Proof. Let t ∈R and consider v+ tw. Now:

< v+ tw,v+ tw >≥ 0

But also: < v+ tw,v+ tw >=< v,v >+2t < v,w >+t 2 < w,w >
But this is a parabola of t and is larger than or equal to zero, and can thus intersect the
x-axis at most once, and thus has a discriminant of less than or equal to zero! So:

(2 < v,w >)2 −4 < v,v >< w,w >≤ 0

⇐⇒ 4 < v,w >2≤ 4 < v,v >< w,w >= 4‖v‖2‖w‖2

Dividing both sides of the inequality by four and taking the square root of both sides yields
the expected result.

We can also express the Cauchy-Schwarz inequality by not taking the absolute value over
the inner product and prove this statement separately.

Theorem 2.2. (Cauchy-Schwarz Inequality). Let (V ,〈·, ·〉) be a real inner product space and
let v,w ∈V . Then

〈v,w〉 ≤ ‖v‖ ·‖w‖,

9



10 2. THE STARTING POINT: CAUCHY AND SCHWARZ

Proof. II. We now consider the case for t = -1, and let v̂ and ŵ denote normalised vectors,
i.e. v̂ = v

‖v‖ and ŵ = w
‖w‖ . Then:

< v̂− ŵ, v̂− ŵ >≥ 0

Expanding the inner product yields:

< v̂,ŵ >≤ 1

2
< v̂, v̂ >+1

2
< ŵ,ŵ >= 1

This yields:

< v

‖v‖ ,
w

‖w‖ >≤ 1

⇐⇒ 1

‖v‖
1

‖w‖ < v,w >≤ 1

⇐⇒ < v,w >≤ ‖v‖‖w‖

Remark. Note that the case of equality can very easily be derived from this proof. We find
equality if and only if < v̂− ŵ, v̂− ŵ >= 0, which is equivalent to saying v = λw for some
λ ∈R.

While one’s mathematical intuition might lead us to think that the first version of this
inequality is stronger, it can be proved that these two variants are fully equivalent. Let us
now proceed to proving this statement.

Theorem 2.3. On any real vector space V , the following statements are equivalent:

1. 〈v,w〉 ≤ ‖v‖ ·‖w‖ ∀v,w ∈V

2. |〈v,w〉| ≤ ‖v‖ ·‖w‖ ∀v,w ∈V

Proof. 2 =⇒ 1. Since ∀x ∈R : |x| ≥ x, the implication follows trivially.
1 =⇒ 2. Note that |x| = max{x,−x}. Thus |〈v,w〉| = max{〈v,w〉 ,−〈v,w〉}. note however that:

−〈v,w〉 = 〈−v,w〉 ≤ ‖−v‖ ·‖w‖ = |−1|‖v‖ ·‖w‖ = ‖v‖ ·‖w‖
Thus surely |〈v,w〉| ≤ ‖v‖ ·‖w‖

As such, we can restrict ourselves to either one of these inequalities without loss of gen-
erality.

We now turn to the Cauchy-Schwarz inequality on Rn . Recall that this restriction can be
implemented without loss of generality.

2.2. CAUCHY-SCHWARZ ON Rn

In this section, we will study the inequality of Cauchy and Schwarz on the spaces of real
vectors of finite dimension. We first present the theorem and give two proofs for it: the first
proof uses the very simple fact that (a −b)2 ≥ 0, a fact that we will encounter again in the
upcoming few chapters.

Theorem 2.4. Cauchy-Schwarz on Rn . Let (ak )n
k=1 , (bk )n

k=1 be sequences such that ak ,bk ∈
R ∀k = 1, . . . ,n. Then:

n∑
k=1

ak bk ≤
√

n∑
k=1

a2
k

√
n∑

k=1
b2

k
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Proof. First note that (a −b)2 ≥ 0∀a,b ∈R. Therefore surely ab ≤ 1
2 a2 + 1

2 b2. Thus:

n∑
k=1

ak bk ≤ 1

2

n∑
k=1

a2
k +

1

2

n∑
k=1

b2
k

Now set (an), (bn) to normalised sequences. Then:

n∑
k=1

ak√∑n
k=1 a2

k

bk√∑n
k=1 b2

k

≤ 1

⇐⇒
n∑

k=1
ak bk ≤

√
n∑

k=1
a2

k

√
n∑

k=1
b2

k

We now present an alternative proof for the Cauchy-Schwarz Inequality. In this proof,
we make use of the fact the inner product of two vectors as well as the norm of every vector
are conserved under a change of bases.

Proof. Given two vectors x,y ∈ Rn . We first use the Gram-Schmidt process (see: Vermeer
(2017)) to find an orthogonal basis:

w1 = x

‖x‖
w2 = y−< y,w1 > w1, etc.

Now x,y can be expressed in terms of the new basis {w1,w2, . . . ,wn} in the following manner:

[x]W =


x1

0
0
...
0

 and
[
y
]

W =


y1

y2

0
...
0


But then:

< [x]W ,
[
y
]

W >= x1 y1 ≤
√

x2
1

√
y2

1 + y2
2 = ‖[x]W ‖‖[y

]
W ‖

Note, however, that since W is an orthogonal basis for Rn , Corollary 1.2.1 yields that this
statement is valid irrespective of the basis of choice.

Now that we have introduced and proved the Cauchy-Schwarz inequality, let us consider
whether we can generalise this inequality.

2.2.1. GENERALISATIONS OF THE CAUCHY-SCHWARZ INEQUALITY ON Rn

As a first step towards a generalisation, let us consider whether or not we can extend the
Cauchy-Schwarz inequality to three sequences. A logical first step to take is to just apply the
inequality twice. The following theorem shows us that this yields a different upper bound.

Theorem 2.5. Let (ak ))n
k=1 , (bk ))n

k=1 and (ck ))n
k=1 be sequences such that∀k = 1, . . . ,n : ak ,bk ,ck ∈

R. Then: (
n∑

k=1
ak bk ck

)4

≤
(

n∑
k=1

a2
k

)2 n∑
k=1

b4
k

n∑
k=1

c4
k
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Proof. Note that (dk ))n
k=1 with dk = bk ck denotes a sequence. We can thus apply Theorem

2.4 on the sequences ak and dk to obtain:(
n∑

k=1
ak dk

)4

≤
(

n∑
k=1

a2
k

)2 (
n∑

k=1
d 2

k

)2

Substituting dk = bk ck and applying Theorem 2.4 to dn yields:(
n∑

k=1
ak bk ck

)4

≤
(

n∑
k=1

a2
k

)2 (
n∑

k=1
(bk ck )2

)2

≤
(

n∑
k=1

a2
k

)2 n∑
k=1

b4
k

n∑
k=1

c4
k

This is, however, not a form-preserving generalisation of the inequality at hand. Such
a form-preserving generalisation is nevertheless still valid. Let us try to derive this result,
first by tediously applying the principle of induction.

Theorem 2.6. Let (ak ))n
k=1 , (bk ))n

k=1 and (ck ))n
k=1 be sequences such that∀k = 1, . . . ,n : ak ,bk ,ck ∈

R. Then: (
n∑

k=1
ak bk ck

)2

≤
n∑

k=1
a2

k

n∑
k=1

b2
k

n∑
k=1

c2
k

Proof. We will first prove this theorem using induction.
n = 1. We obtain equality.
n = 2. We have to prove that:

(a1b1c1 +a2b2c2)2 ≤ (
a2

1 +a2
2

)(
b2

1 +b2
2

)(
c2

1 + c2
2

)
Writing out this statement yields:

(a1b1c1)2 +2(a1b1c1) (a2b2c2)+ (a2b2c2)2 ≤ (a1b1c1)2 + (a1b1c2)2 + (a1b2c1)2 + (a1b2c2)2+
(a2b1c1)2 + (a2b1c2)2 + (a2b2c1)2 + (a2b2c2)2

Working this out proves the basis step:

2(a1b1c1) (a2b2c2) ≤ (a1b1c2)2 + (a1b2c1)2 + (a1b2c2)2

+ (a2b1c1)2 + (a2b1c2)2 + (a2b2c1)2

0 ≤ (a1b2c1)2 + (a1b2c2)2 + (a2b1c1)2 + (a2b1c2)2

+ (a1b1c2)2 −2(a1b1c2) (a2b2c1)+ (a2b2c1)2

As such, we find:

(a1b2c1)2 + (a1b2c2)2 + (a2b1c1)2 + (a2b1c2)2 + (a1b1c2)2 −2(a1b1c2) (a2b2c1)+ (a2b2c1)2

≥ (a1b1c2)2 −2(a1b1c2) (a2b2c1)+ (a2b2c1)2

= ((a1b1c2)− (a2b2c1))2 ≥ 0

which finishes the proof for the case n = 2.
n =⇒ n + 1. Let us now assume that the induction hypothesis is valid for a certain n ∈N.
We then find:(

n+1∑
k=1

ak bk ck

)2

=
(

n∑
k=1

ak bk ck +an+1bn+1cn+1

)2

≤
(√

n∑
k=1

a2
k

n∑
k=1

b2
k

n∑
k=1

c2
k +an+1bn+1cn+1

)2
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due to the induction hypothesis for n. Settingα=
√∑n

k=1 a2
k ,β=

√∑n
k=1 b2

k andγ=
√∑n

k=1 c2
k ,

we find: (
αβγ+an+1bn+1cn+1

)2 ≤ (
α2 +a2

n+1

)(
β2 +b2

n+1

)(
γ2 + c2

n+1

)
due to the induction hypothesis for the case of n = 2, proving the hypothesis for n +1.

This proof was not very elegant. There is a much more elegant (and surprisingly simple!)
proof, however, which only makes use of the Cauchy-Schwarz inequality for two sequences
and the triangle inequality.

Proof. We will now prove this using Theorem 2.4. We find, using the Triangle Inequality:(
n∑

k=1
ak bk ck

)2

=
∣∣∣∣∣ n∑
k=1

ak bk ck

∣∣∣∣∣
2

≤
(

n∑
k=1

|ak bk ck |
)2

=
(

n∑
k=1

|ak | |bk | |ck |
)2

≤
(

n∑
k=1

|ak | |bk |
√

n∑
k=1

|ck |2
)2

=
(

n∑
k=1

|ak | |bk |
)2 n∑

k=1
c2

k ≤
n∑

k=1
a2

k

n∑
k=1

b2
k

n∑
k=1

c2
k

where we use that ∀i : |ci | =
√

|ci |2 ≤
√∑n

k=1 |ck |2.

From this, we see that a generalisation of the statement to three sequences holds. This
naturally leads to the generalisation of Theorem 2.4 for m ∈N\{1} sequences. We now state
this generalisation and proof it in two ways: first by generalising the induction proof, which
ends up being reasonably straight-forward.

Theorem 2.7. Let m ∈N\{1} and let
(
x1

k

)
,
(
x2

k

)
, . . . ,

(
xm

k

)
be sequences such that ∀p = 1, . . . ,m :

∀k = 1, . . . ,n : xp
k ∈R. Then: (

n∑
k=1

m∏
p=1

xp
k

)2

≤
m∏

p=1

n∑
k=1

(
xp

k

)2

Proof. Again, we first prove the inequality using induction. For m = 2, we retrieve Theorem
2.4, and for m = 3, we retrieve Theorem 2.6. We thus set m ∈N\{1,2,3}.
We proceed in a similar fashion as we did for the case of m = 2 and m = 3 by proving this
theorem using the principle of induction.
n = 1. We, again, find equality.
n = 2. We want to prove that(

2∑
k=1

m∏
p=1

xp
k

)2

≤
m∏

p=1

2∑
k=1

(
xp

k

)2

(
m∏

p=1
xp

1 +
m∏

p=1
xp

2

)2

≤
m∏

p=1

((
xp

1

)2 + (
xp

2

)2
)

(
m∏

p=1
xp

1

)2

+2
m∏

p=1
xp

1

m∏
p=1

xp
2 +

(
m∏

p=1
xp

2

)2

≤
(

m∏
p=1

xp
1

)2

+
(

m∏
p=1

xp
2

)2

+
(

xm
2

m−1∏
p=1

xp
1

)2

+
(

xm
1

m−1∏
p=1

xp
2

)2

+O
((

xp
1

)2
,
(
xp

2

)2
)
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where O
((

xp
1

)2
,
(
xp

2

)2
)

is some polynomial sum of
(
x1

1

)2
,
(
x1

2

)2
,
(
x2

1

)2
, . . . ,

(
xm

2

)2 (and is there-

fore surely non-negative). We can rewrite this as:

2
m∏

p=1
xp

1

m∏
p=1

xp
2 ≤

(
xm

2

m−1∏
p=1

xp
1

)2

+
(

xm
1

m−1∏
p=1

xp
2

)2

+O
((

xp
1

)2
,
(
xp

2

)2
)

0 ≤
(

xm
2

m−1∏
p=1

xp
1

)2

+
(

xm
1

m−1∏
p=1

xp
2

)2

−2
m∏

p=1
xp

1

m∏
p=1

xp
2 +O

((
xp

1

)2
,
(
xp

2

)2
)

We find: (
xm

2

m−1∏
p=1

xp
1

)2

+
(

xm
1

m−1∏
p=1

xp
2

)2

−2
m∏

p=1
xp

1

m∏
p=1

xp
2 +O

((
xp

1

)2
,
(
xp

2

)2
)
≥

(
xm

2

m−1∏
p=1

xp
1

)2

+
(

xm
1

m−1∏
p=1

xp
2

)2

−2
m∏

p=1
xp

1

m∏
p=1

xp
2

=
(

xm
2

m−1∏
p=1

xp
1

)2

+
(

xm
1

m−1∏
p=1

xp
2

)2

−2

(
xm

2

m−1∏
p=1

xp
1

)(
xm

1

m−1∏
p=1

xp
2

)

=
(

xm
2

m−1∏
p=1

xp
1 −xm

1

m−1∏
p=1

xp
2

)2

≥ 0

which proves the hypothesis for n = 2.
n =⇒ n + 1. We first assume that the induction hypothesis holds for n. Then:(

n+1∑
k=1

m∏
p=1

xp
k

)2

=
(

n∑
k=1

m∏
p=1

xp
k +

m∏
p=1

xp
n+1

)2

≤
√√√√ m∏

p=1

n∑
k=1

(
xp

k

)2 +
m∏

p=1
xp

n+1

2

=
(

m∏
p=1

√
n∑

k=1

(
xp

k

)2 +
m∏

p=1
xp

n+1

)2

Setting αp =
√∑n

k=1

(
xp

k

)2 ∀p = 1, . . . ,m, we can use the induction hypothesis for the case
of n = 2 to find:(

m∏
p=1

√
n∑

k=1

(
xp

k

)2 +
m∏

p=1
xp

n+1

)2

=
(

m∏
p=1

αp +
m∏

p=1
xp

n+1

)2

≤
m∏

p=1

(
α2

p + (
xp

n+1

)2
)
=

m∏
p=1

n+1∑
k=1

(
xp

k

)2

which proves the induction hypothesis for n +1.

Even though the induction proof is relatively straight-forward, it would be substantially
easier to prove the generalisation at hand in some generalised form of the second proof of
the case of three sequences, which used the Triangle Inequality. Fortunately, this can be
done. Let us do so below.

Proof. First note that for any sequence (ak )n
k=1, we have:

∀i : |ai | =
√

a2
i ≤

√
n∑

k=1
ak (2.1)

We thus find:(
n∑

k=1

m∏
p=1

xp
k

)2

≤
(

n∑
k=1

x1
k x2

k

m∏
p=3

√
n∑

k=1

(
xp

k

)2

)2

=
(

n∑
k=1

x1
k x2

k

)2 m∏
p=3

n∑
k=1

(
xp

k

)2 ≤
m∏

p=1

n∑
k=1

(
xp

k

)2
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An interesting question to consider is whether the upper bound found in Theorem 2.5
(by taking the square root on both sides) yields a tighter upper bound than the one found
in Theorem 2.6. We can prove that this is indeed the case. Before doing so, however, we first
need to introduce a lemma. We first consider a lemma. Note that this lemma is a corollary
of a more general theorem that will be covered in Chapter 7, and as such, we omit the proof.

Lemma 2.8. Let (xk )n
k=1 be a sequence of non-negative real numbers. Then surely:

n∑
k=1

xk ≤
√

n∑
k=1

x2
k

Theorem 2.9. Let (ak ))n
k=1 , (bk ))n

k=1 and (ck ))n
k=1 be sequences such that∀k = 1, . . . ,n : ak ,bk ,ck ∈

R
n∑

k=1
a2

k

√
n∑

k=1
b4

k

√
n∑

k=1
c4

k ≤
n∑

k=1
a2

k

n∑
k=1

b2
k

n∑
k=1

c2
k

Proof. Since ∀k : a2
k ≥ 0, it suffices to prove that:√

n∑
k=1

b4
k

√
n∑

k=1
c4

k ≤
n∑

k=1
b2

k

n∑
k=1

c2
k

This inequality is definitely satisfied if:√
n∑

k=1
b4

k ≤
n∑

k=1
b2

k ∧
√

n∑
k=1

c4
k ≤

n∑
k=1

c2
k

Setting xk = b2
k and yk = c2

k and using Lemma 2.8 proves the above statement.

The question at hand of course is whether the generalisations that we have derived are
also independent of the basis at hand. Obviously , the right-hand side of Theorem 2.6 is
also independent of our choice of orthonormal basis, as this term only contains valid inner
products. The left-hand side, however, is only proved to be independent of our choice
of orthonormal basis for the case of two sequences - for higher dimensions, it ceases to
represent an inner product. Let us now tackle this question, specifically for the case of
three sequences. First, however, it would be convenient to introduce some more compact
notation.

Definition 2.1. Let 〈·, ·, ·〉 :Rn ×Rn ×Rn →Rn such that 〈u,v,w〉 =∑n
k=1 uk vk wk . Then 〈·, ·, ·〉

satisfies the following three properties ∀u,v,w ∈Rn :

1. 〈u,v,w〉 = 〈v,u,w〉 = 〈u,w,v〉 symmetry

2. 〈αu,v,w〉 =α〈u,v,w〉
3. 〈u1 +u2,v,w〉 = 〈u1,v,w〉+〈u2,v,w〉
Now if we let B = {b1, . . . ,bn} and u =∑n

i=1 ui bi, v =∑n
i=1 vi bi and w =∑n

i=1 wi bi, we can
derive that

〈u,v,w〉 =
n∑

i=1
ui

n∑
j=1

v j

n∑
k=1

wk 〈bk,bj,bi〉 (2.2)
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Furthermore, we can derive that

〈u,v,w〉B =
n∑

i=1
ui vi wi =

n∑
i=1

ui

n∑
j=1

v j

n∑
k=1

wkδi j k (2.3)

We thus see that these two can only be equal if we have 〈bk,bj,bi〉 = δi j k . This equation,
is in general, not satisfied1 and therefore, we see that the generalisation of the Cauchy-
Schwarz inequality is, contrary to the original inequality, unfortunately not independent of
our choice of basis.

Let us now move on to consider various applications of the Cauchy-Schwarz Inequality.
We prove various theorems mentioned as exercises in Chapter 1 of Steele (2004).

2.3. APPLICATIONS OF THE CAUCHY-SCHWARZ INEQUALITY
We can apply the Cauchy-Schwarz inequality to derive some other results: we first derive
bounds on the sum of the elements of a vector and then consider the use of the inequality
when considering weighted sums.

We start off by deriving two bounds on the sum of the elements of a vector.

Theorem 2.10. Let (ak )n
k=1 be a sequence such that bk ∈R ∀k = 1, . . . ,n. Then:

n∑
k=1

ak ≤p
n

√
n∑

k=1
a2

k

Proof. Let (ak )n
k=1 be as defined and let (bk )n

k=1 such that ak = 1 ∀k = 1, . . . ,n. Using The-
orem 2.1, we find:

n∑
k=1

ak bk ≤
√

n∑
k=1

a2
k

√
n∑

k=1
b2

k =
√

n∑
k=1

12

√
n∑

k=1
a2

k =p
n

√
n∑

k=1
a2

k

Note that this inequality, although very simple to derive, gives a stronger bound than the
bound that will be derived in a much more complicated manner in Chapter 7.
Let us now consider what upper bounds a sequence puts on the sum of its elements.

Theorem 2.11. Let (ak )n
k=1 be a sequence such that ak ∈R ∀k = 1, . . . ,n. Then:

n∑
k=1

|ak | ≤
√

n∑
k=1

|ak | 2
3

√
n∑

k=1

|ak | 4
3

Proof. Note that
∑n

k=1 |ak | =
∑n

k=1 |ak | 1
3 |ak | 2

3 . Let bk = |ak | 1
3 ,ck = |ak | 2

3 ∀k = 1, . . . ,n, then
using the Triangle Inequality and Theorem 2.1:

n∑
k=1

|ak | =
n∑

k=1
bk ck ≤

√
n∑

k=1
b2

k

√
n∑

k=1
c2

k =
√

n∑
k=1

|ak | 2
3

√
n∑

k=1

|ak | 4
3

1Take for example, u = 1p
14

1
2
3

 ,v = 1p
3

−1
−1
1

 ,u = 1p
42

 5
−4
1

 as our basis. Then 〈u,v,w〉B = 0, while 〈u,v,w〉 = 1.
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This result can obviously be extended very easily to prove that ∀N > 1 and 1 < k < N :

n∑
k=1

|ak | ≤
√

n∑
k=1

|ak | 2k
N

√
n∑

k=1
|ak |

2(N−k)
N

Now let us consider what upper bounds we can derive when considering weighted sums of
sequences.

Theorem 2.12. Let
(
pk

)n
k=1 be a sequence such that pk ≥ 0 ∀k = 1, . . . ,n ∧∑n

k=1 pk = 1.
Furthermore, let (ak )n

k=1 and (bk )n
k=1 such that ak ≥ 0,bk ≥ 0∧ak bk ≥ 1 ∀k = 1, . . . ,n. Then(

n∑
k=1

ak pk

)(
n∑

k=1
bk pk

)
≥ 1

Proof. We can define ck =p
ak pk and dk =√

bk pk and use Theorem 2.1 to find:

n∑
k=1

p
ak pk

√
bk pk =

n∑
k=1

ck dk ≤
√

n∑
k=1

c2
k

√
n∑

k=1
d 2

k =
√√√√(

n∑
k=1

ak pk

)(
n∑

k=1
bk pk

)
Furthermore, we find that:

n∑
k=1

p
ak pk

√
bk pk =

n∑
k=1

pk

√
ak bk ≥

n∑
k=1

pk ·1 = 1.

We thus find (
n∑

k=1
ak pk

n∑
k=1

bk pk

) 1
2

≥ 1 =⇒
(

n∑
k=1

ak pk

)(
n∑

k=1
bk pk

)
≥ 1

An interesting application of the Cauchy-Schwarz inequality is in the proof of the so-
called Harker-Kasper inequality, which has applications in crystallography (see Steele (2004)).
We prove this inequality in two ways. Let us start with the first proof. This proof requires
the following lemma:

Lemma 2.13. Let f (x) : D → R for some domain D and let pk ≥ 0 ∀k = 1, . . . ,n such that∑n
k=1 pk = 1. Furthermore, let x1, . . . , xn ∈ D. Then:(

n∑
k=1

pk f (xk )2

)
−

(
n∑

k=1
pk f (xk )

)2

≥ 0

Proof. We rewrite the left side of the inequality:(
n∑

k=1
pk f (xk )2

)
−1 ·2

(
n∑

k=1
pk f (xk )

)2

+1 ·
(

n∑
k=1

pk f (xk )

)2

=
n∑

k=1
pk

(
f (xk )

)2 −
n∑

k=1
pk ·2

(
n∑

k=1
pk f (xk )

)2

+
n∑

k=1
pk

(
n∑

k=1
pk f (xk )

)2

=
n∑

k=1
pk

(
f (xk )2 −2

(
n∑

k=1
pk f (xk )

)2

+
(

n∑
k=1

pk f (xk )

)2)

=
n∑

k=1
pk

(
f (xk )−

n∑
k=1

pk f (xk )

)2

≥ 0

Since all pk ≥ 0.
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Remark. Note that this proves that for the variance of a discrete random variable X we
have σ2 (X ) ≥ 0. This can also be seen as a consequence of Jensen’s Inequality, which will
be covered extensively in Chapter 4.

Theorem 2.14. (Harker-Kasper) Let pk ≥ 0 ∀k = 1, . . . ,n ∧∑n
k=1 pk = 1. Then(

n∑
k=1

pk cos
(
βk x

))2

≤ 1

2

(
1+

n∑
k=1

pk cos
(
2βk x

))
Proof. Note that:

n∑
k=1

pk cos2 (
βk x

)= n∑
k=1

pk

(
1

2

(
1+cos

(
2βk x

)))= 1

2

(
n∑

k=1
pk +

n∑
k=1

pk cos
(
2βk x

))

= 1

2

(
1+

n∑
k=1

pk cos
(
2βk x

))
It remains to be proved that(

n∑
k=1

pk cos
(
βk x

))2

≤
n∑

k=1
pk cos2 (

βk x
)

Setting f (x) = cos
(
βk x

)
in Lemma 2.13 yields the expected result.

This proof was rather long and required quite a detour which was presented in the
form of a lemma. A second proof, however, becomes very easy, all thanks to Cauchy and
Schwarz.

Proof. Set ak = p
pk and bk = p

pk cos
(
βx x

)
. Then using the Cauchy-Schwarz inequality,

we find:(∑
k

pk cos
(
βx x

))2

≤
√

n∑
k=1

pk

n∑
k=1

pk cos2(βx x) =
√√√√ n∑

k=1
pk

n∑
k=1

pk

(
1+cos

(
2βx x

)
2

)

= 1

2

(
1+

n∑
k=1

pk cos
(
2βk x

))

2.4. EXTENDING CAUCHY-SCHWARZ COMPLEX INNER PRODUCT SPACES
Lastly, we show that the Cauchy-Schwarz inequality is still valid on complex inner product
spaces. We generalise two of the proofs for the real case: one for the case of general complex
vector spaces, and one for Cn .

Theorem 2.15. Cauchy-Schwarz Let v,w ∈Cn . Then:

|〈v,w〉| ≤ ‖v‖‖w‖
Proof. I. Note that:

〈v̂−w, v̂−w〉 ≥ 0

But also:

〈v̂−w, v̂−w〉 = 〈v̂, v̂〉−〈v̂,w〉−〈w, v̂〉+〈w,w〉 = ‖v̂‖−〈v̂,w〉−〈v̂,w〉+‖w‖ = ‖v̂‖−2Re{〈v̂,w〉}+‖w‖



2.4. EXTENDING CAUCHY-SCHWARZ COMPLEX INNER PRODUCT SPACES 19

we thus find:

‖v̂‖−2Re{〈v̂,w〉}+‖w‖ ≥ 0 ⇐⇒ Re{〈v̂,w〉} ≤ 1

2
‖v̂‖+ 1

2
‖w‖

Choosing v,w as normalised vectors yields:

Re{〈v̂,w〉} ≤ ‖v̂‖‖w‖
Since 〈v̂,w〉 ∈ C, we can assume that ∃ρ,θ ∈ R : 〈v̂,w〉 = ρexp(iθ) without loss of generality.
Choose v = exp(−iθ), then:

1. 〈v,w〉 = Re{〈v,w〉} = |〈v̂,w〉|
2. 〈v̂, v̂〉 = 〈v,v〉 =⇒ ‖v̂‖ = ‖v‖

But then:
|〈v̂,w〉| = Re{〈v,w〉} ≤ ‖v‖‖w‖ = ‖v̂‖‖w‖

Note that Theorem 1.2 is also valid when V =Cn , and that the Gram Schmidt process can
still be applied. It is thus trivial to prove this theorem in a completely analogous manner as
the second proof of Theorem 2.4:

Proof. Given two vectors x,y ∈ Cn . We first use the Gram-Schmidt process to find an or-
thogonal basis:

w1 = x

‖x‖
w2 = y−< y,w1 > w1, etc.

Now x,y can be expressed in terms of the new basis {w1,w2, . . . ,wn} as follows:

[x]W =


x1

0
0
...
0

 and
[
y
]

W =


y1

y2

0
...
0


But then:

< x,y >W = |[x]†
W

[
y
]

W | = |x̄1 y1| ≤
√

x2
1

√
y2

1 + y2
2 = ‖x‖2‖y‖2

Note however that since W is an orthogonal basis for Cn , Corollary 1.2.1 yields that this
statement is valid irrespective of the basis of choice.





3
THE AM-GM INEQUALITY

In Chapter 3, the proof by induction of The Cauchy-Schwarz inequality on Rn and its gen-
eralisations relied heavily on the trivial fact that for all x, y ∈ R, we have (x − y)2 ≥ 0. By
choosing x =p

a and y =p
b, we can rewrite this statement to

p
ab ≤ a+b

2 .
This hints to another family of inequalities that is closely related to the Cauchy-Schwarz
inequality: inequalities relating to averages. This chapter will deal with one well-known in-
equality of averages: the inequality of the arithmetic and the geometric average, shortened
to the AM-GM inequality.

3.1. THE AM-GM INEQUALITY

Let us first define the averages that will be at the core of this chapter.

Definition 3.1. The arithmetic mean ā of numbers a1, a2, . . . , an is defined as

ā ≡ 1

n

n∑
k=1

ak

Definition 3.2. The geometric mean â of numbers a1, a2, . . . , an is defined as

â ≡ n

√
n∏

k=1
ak

Having defined the AM and GM, we can introduce the AM-GM inequality. We will state
this inequality and show how this inequality can be proven due to the self-generalising
nature of

p
x y ≤ x+y

2

Theorem 3.1. AM-GM inequality. Let (ak )n
k=1 be a sequence of non-negative real numbers.

Then:

n

√
n∏

k=1
ak ≤ 1

n

n∑
k=1

ak

Proof. We have already seen that
p

a1a2 ≤ a1+a2
2 . We claim that ∀n ∈N :

∏2n

k=1 a
1

2n

k ≤
∑2n

k=1 ak

2n .
We can prove this claim using induction. The first induction step has already been proved,
thus:

21
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n =⇒ n + 1. Assume
∏2n

k=1 a
1

2n

k ≤ 1
2n

∑2n

k=1 ak for some n ∈N. Then:

2n+1∏
k=1

a
1

2n+1

k =
√√√√(

2n∏
k=1

a
1

2n

k

)(
2n+1∏

k=2n+1
a

1
2n

k

)
≤

∏2n

k=1 a
1

2n

k +∏2n+1

k=2n+1 a
1

2n

k

2

≤
1

2n

∑2n

k=1 ak + 1
2n

∑2n+1

k=2n+1 ak

2
= 1

2n+1

2n+1∑
k=1

ak

Where we used the basis step to obtain the first inequality and the induction hypothesis to
prove the second inequality. This thus proves the statement for all 2k with k ∈N.
Now let n ∈N. We use the construction presented above to prove the theorem for a general
value of n 6= 2k∀k ∈N0. Take the first k ∈N such that n < 2k . Denoting the arithmetic mean
as ā ≡ 1

n

∑n
i=1 ai a new sequence αi as follows:

αi =
{

ai i ∈ {1,2, . . .n −1,n}

ā i ∈ {
n +1,n +2, . . . ,2k −1,2k

}
Applying the AM-GM inequality on this new sequence yields:(

n∏
i=1

ai

) 1
2k

ā
2k−n

2k =
(

ā2k−n
n∏

i=1
ai

) 1
2k

=
(

2k∏
i=1

αi

) 1
2k

≤ 1

2k

2k∑
i=1

αi =
∑n

i=1 ai +
(
2k −n

)
ā

2k
= 2k ā

2k
= ā

=⇒
(

n∏
i=1

ai

) 1
2k

ā
1− n

2k ≤ ā

⇐⇒
(

n∏
i=1

ai

) 1
2k

≤ ā
n

2k

⇐⇒
(

n∏
i=1

ai

) 1
n

≤ 1

n

n∑
i=1

ai = ā

Which proves the theorem for all n ∈N.

Remark. Note that because the AM-GM inequality strictly follows from the fact that (
p

a −p
b)2 ≥ 0, we see that we only have equality in the case in which ai = a j∀i , j . We will prove

this more rigidly for the generalised version.

We now immediately show how the AM-GM inequality can be generalised. The proof of
this statement, much to one’s surprise, also follows from the self-generalising nature of the
inequality we have proved above.

Theorem 3.2. Generalised AM-GM inequality. Let (ak )n
k=1 be a sequence of non-negative

real numbers and let
(
pk

)n
k=1 be a non-negative sequence such that

∑n
k=1 pk = 1 Then:

n∏
k=1

apk
k ≤

n∑
k=1

pk ak

Proof. We want to prove this theorem for all pk ∈R. Note that we have already constructed
the proof for the cases when pk = 1

n∀k ∈ {1,2, . . . ,n}.
Now suppose pk ∈ Q∀k. We can then find an N ∈ N such that each pk can be written as
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pk = ck
N with ck ∈N. Now define a new sequence (αi )N

i=1 such that every ak occurs ck times.
Then:(

N∏
i=1

αi

) 1
N

≤ 1

N

N∑
i=1

αi ⇐⇒
(

n∏
i=1

aci
i

) 1
N

≤ 1

N

n∑
i=1

ci ai ⇐⇒=
n∏

i=1
api

i =
(

n∏
i=1

a
ci
N

i

)
≤

n∑
i=1

ci

N
ai =

n∑
i=1

pi ai

Which proves the theorem for all n ∈Q.
We thus have to prove the theorem for pk ∈Rn . Note, however, that we can always define a
sequence of vectors

(
p1(t ), p2(t ), . . . , pn(t )

)
, such that ∀t ∈N : ∀k ∈ {1,2, . . . ,n} : pk (t ) ∈Q≥0,

such that
∑n

k=1 pk (t ) = 1 and limt→∞
(
p1(t ), p2(t ), . . . , pn(t )

)= (
p1, p2, . . . , pn

)
. But since:

n∏
k=1

apk (t )
k ≤

n∑
k=1

pk (t )ak∀t ∈N

We can take limits to find that:
n∏

k=1
apk

k = lim
t→∞

n∏
k=1

apk (t )
k ≤ lim

t→∞

n∑
k=1

pk (t )ak =
n∑

k=1
pk ak

While the self-generalising nature of the AM-GM inequality follows beautifully from the
induction proof, we can also prove this inequality in a different way: this proof was sug-
gested by the mathematician Pólya, who claimed to have realised this proof in one of his
dreams. (see: Steele (2004)) Before doing so, let us first prove the following lemma.

Lemma 3.3. For all x ∈R, the following inequality holds:

1+x ≤ ex

Proof. We consider the function f : R→ R given by f (x) = ex − x −1. We see that d
dx f (x) =

ex − 1. Thus f ′(x) = 0 for x = 0. Now since f ′′(x) = ex > 0, we see that f (x) is a strictly
decreasing function on (←,0) and strictly increasing on (0,→), and thus attains a minimum
at x = 0. But f (0) = 0. So ∀x 6= 0 : f (x) > 0.

Proof. Pólya. We note that through a shift of coordinates x → x −1, Lemma 3.3 yields:

x ≤ ex−1

using this translated version of Lemma 3.3, for any sequence of non-negative numbers
(αk )n

k=1, we obtain:

αk ≤ eαk−1 =⇒ α
pk
k ≤ epkαk−pk =⇒

n∏
k=1

α
pk
k ≤ e

∑n
k=1 pkαk−

∑n
k=1 pk = e

∑n
k=1 pkαk−1

Taking αk = ak∑n
i=1 pi ai

, so a normalised version of the sequence ak , we find:

n∏
k=1

(
ak∑n

i=1 pi ai

)pk

=
n∏

k=1
α

pk
k ≤ e

∑n
k=1 pkαk−1 = e0 = 1 =⇒

n∏
k=1

apk
k ≤

n∑
k=1

pk ak

Remark. Note that we only have equality if we have αk = eαk−1, which only holds if αk = 1,
so if αk = ∑n

i=1 piαi . But this should hold for all k ! So then we have equality if and only if
αi =α j∀i , j .
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Lastly, we present a proof that at first instance looks different, but can nevertheless still
be interpreted as a variation on the proof by Pólya.

Proof. Note that by taking the logarithm of both sides, Lemma 3.3 yields for x > 0:

x −1 ≤ ln(x)

Furthermore, note that:

n∏
k=1

(λak )pk =λ
n∏

k=1
apk

k

n∑
k=1

pk (λak ) =λ
n∑

k=1
pk ak

Taking λ≥ 0, it suffices to prove that

λ
n∏

k=1
apk

k ≤
n∑

k=1
pk (λak )

Taking λ= 1∏n
k=1 a

pk
k

, this reduces to:

n∑
k=1

pk (λak ) ≥ 1

But now:

n∑
k=1

pk (λak )−1 =
n∑

k=1
pk (λak −1) ≥

n∑
k=1

pk ln(λak ) =
n∑

k=1
ln

(
(λak )pk

)
= ln

(
n∏

k=1

(
ak∏n

i=1 api
i

)pk
)
= ln

(
n∏

k=1

(
apk

k(∏n
i=1 api

i

)pk

))

= ln

(∏n
k=1 apk

k∏n
i=1 api

i

)
= 0

3.2. PROPERTIES AND A REFINEMENT OF THE AM-GM INEQUALITY
In this section, we consider one interesting property of the geometric mean and then present
a different, more tight bound on the arithmetic mean.

3.2.1. THE QUASI-ADDITIVITY OF THE GEOMETRIC MEAN

We now prove an important property of the geometric mean - its quasi-additivity. We first
consider the case of two sequences.

Theorem 3.4. Let (ak )n
k=1 , (bk )n

k=1 be sequences of non-negative real numbers, then:

n

√
n∏

k=1
ak + n

√
n∏

k=1
bk ≤ n

√
n∏

k=1
(ak +bk )
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Proof. We first rewrite the theorem to:

n
√∏n

k=1 ak + n
√∏n

k=1 bk

n
√∏n

k=1 (ak +bk )
≤ 1

We can rewrite the left side of the equation:

n
√∏n

k=1 ak

n
√∏n

k=1 (ak +bk )
+

n
√∏n

k=1 bk

n
√∏n

k=1 (ak +bk )
= n

√√√√ ∏n
k=1 ak∏n

k=1 (ak +bk )
+ n

√√√√ ∏n
k=1 bk∏n

k=1 (ak +bk )

= n

√
n∏

k=1

ak

(ak +bk )
+ n

√
n∏

k=1

bk

(ak +bk )

We can now use the original AM-GM inequality (Theorem 3.1) on both summands to ob-
tain:

n

√
n∏

k=1

ak

(ak +bk )
+ n

√
n∏

k=1

bk

(ak +bk )
≤ 1

n

n∑
k=1

(
ak

ak +bk

)
+ 1

n

n∑
k=1

(
bk

ak +bk

)
= 1

n

n∑
k=1

(
ak +bk

ak +bk

)
= 1

n

n∑
k=1

1 = 1

We thus see that this property of the geometric mean (much to one’s surprise) simply
follows from its relation to the arithmetic mean!
This is not just restricted to the case of two sequences - this property is still valid when
considering an arbitrary number of sequences. Let us proceed by proving this.

Theorem 3.5. Let
(
x1

k

)n
k=1

,
(
x2

k

)n
k=1

, . . . ,
(
xp

k

)n

k=1
be sequences of non-negative real numbers.

Then:
m∑

p=1

n

√
n∏

k=1
xp

k ≤ n

√√√√ n∏
k=1

m∑
p=1

xp
k

Proof. We first note that the theorem is equivalent to proving that:∑m
p=1

n
√∏n

k=1 xp
k

n

√∏n
k=1

(∑m
p=1 xp

k

) ≤ 1

We consider the left-hand side of this inequality:∑m
p=1

n
√∏n

k=1 xp
k

n

√∏n
k=1

(∑m
p=1 xp

k

) = m∑
p=1

n

√√√√√ ∏n
k=1 xp

k∏n
k=1

(∑m
p=1 xp

k

) = m∑
p=1

n

√√√√ n∏
k=1

xp
k∑m

p=1 xp
k

Using Theorem 3.1, we find an upper bound for each of the summands:

m∑
p=1

n

√√√√ n∏
k=1

xp
k∑m

p=1 xp
k

≤
m∑

p=1

(
1

n

n∑
k=1

xp
k∑m

p=1 xp
k

)
= 1

n

n∑
k=1

(∑m
p=1 xp

k∑m
p=1 xp

k

)
= 1

n

n∑
k=1

1 = 1
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3.2.2. A REFINEMENT OF THE INEQUALITY

Note that we can find a better lower bound for the arithmetic than the one found in Theo-
rem 3.1. Before introducing this refinement, we first consider the following lemma, which
will prove to be helpful in proving our refinement:

Lemma 3.6. Let x ≥ 0 and n ∈Nn≥2. Then:

x
(
n −xn−1)≤ n −1

Proof. We will prove the theorem by induction.
Consider the functions fn : R≥0 → R such that fn(x) = x

(
n −xn−1

)−n +1. We thus have to
prove that fn is non-positive for all n.
n = 2. We obtain f2(x) =−x2+2x−1. The discriminant is D = 22−4·(−1)·(−1) = 0, such that
the extremum of this parabola coincides with its only zero. From elementary mathematics,
we know that this extremum is also its maximum. This thus proves the induction step.
n =⇒ n + 1. Assume the induction hypothesis is valid for some n, so fn = x

(
n −xn−1

)+1−
n ≤ 0. Then we can multiply both sides by x:

nx2 −xn+1 +x −nx ≤ 0

⇐⇒ nx2 +nx −xn+1 +x −2nx ≤ 0

⇐⇒ nx2 +nx −xn+1 +x −2nx +n −n ≤ 0

⇐⇒ x(n +1−xn)−n +n(x −1)2 ≤ 0

=⇒ fn+1(x) = x(n +1−xn)−n ≤ 0

Theorem 3.7. Åkerberg’s Refinement. Let (ak )n
k=1 be a sequence of non-negative real num-

bers and let n ≥ 2. Then:

an

(
1

n −1

n−1∑
k=1

ak

)n−1

≤
(

1

n

n∑
k=1

ak

)n

Proof. We first note that

an =
n∑

k=1
ak −

n−1∑
k=1

ak = n

n

n∑
k=1

ak −
n −1

n −1

n−1∑
k=1

ak

Thus the inequality reduces to:(
n · 1

n

n∑
k=1

ak −
n −1

n −1

n−1∑
k=1

ak

)(
1

n −1

n−1∑
k=1

ak

)n−1

≤
(

1

n

n∑
k=1

ak

)n

⇐⇒ n · 1

n

n∑
k=1

ak

(
1

n −1

n−1∑
k=1

ak

)n−1

− (n −1)

(
1

n −1

n−1∑
k=1

ak

)n

≤
(

1

n

n∑
k=1

ak

)n

⇐⇒ n · 1

n

n∑
k=1

ak

(
1

n −1

n−1∑
k=1

ak

)n−1

−
(

1

n

n∑
k=1

ak

)n

≤ (n −1)

(
1

n −1

n−1∑
k=1

ak

)n

⇐⇒ n

(
1
n

∑n
k=1 ak

1
n−1

∑n−1
k=1 ak

)
−

(
1
n

∑n
k=1 ak

1
n−1

∑n−1
k=1 ak

)n

≤ n −1

⇐⇒
(

1
n

∑n
k=1 ak

1
n−1

∑n−1
k=1 ak

)(
n −

((
1
n

∑n
k=1 ak

1
n−1

∑n−1
k=1 ak

))n−1)
≤ n −1
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Setting x ≡
(

1
n

∑n
k=1 ak

1
n−1

∑n−1
k=1 ak

)
, this reduces to the simple inequality

x
(
n −xn−1)≤ n −1, x ≥ 0,n ∈N≥2

which was proved in Lemma 3.6.

The proof that this bound is more tight can be established very easily through inductive
reasoning - we can use the same inequality to prove that:

n∏
k=1

ak ≤
n∏

k=3
ak

(
1

2
(a2 +a1)

)2

≤ . . . ≤ an an−1

(
1

n −2

n−2∑
k=1

ak

)n−2

≤ an

(
1

n −1

n−1∑
k=1

ak

)n−1

≤ 1

n

n∑
k=1

ak

which yields our AM-GM inequality.

3.3. A COMPLEX EXTENSION
We can now extend the AM-GM to the complex numbers with some slight adaptions.

Theorem 3.8. Given complex numbers z1, z2, . . . zn and an angle ψ < π
2 such that ∀θk =

Arg(zk ) : |θk | <ψ. Furthermore, assume |zn | <∞∀n. Then:

cos
(
ψ

)| n∏
k=1

zk |
1
n ≤ 1

n
|

n∑
k=1

zk |

Proof. Note that since ψ ∈ (
0, π2

)
, we have that cos

(
ψ

)> 0 and thus:

cos
(
ψ

) | n∏
k=1

zk |
1
n = |

n∏
k=1

zk cosn (
ψ

)| 1
n ≤ |

n∏
k=1

zk cos(θk )| 1
n

∗= |
n∏

k=1
Re{zk }| 1

n

where the inequality follows from the fact that the cos is an even function and decreasing on[
0, π2

]
, and equality∗ follows from the fact that Re{zk } = Re

{|zk |e iθk
}= Re{|zk | (cos(iθk )+ i sin(cos(iθk )))} =

|zk |cos(iθk ). We thus find:

|
n∏

k=1
Re{zk }| 1

n ≤ 1

n

n∑
k=1

Re{zk } = 1

n
Re

{
n∑

k=1
zk

}

We now find:

1

n
Re

{
n∑

k=1
zk

}
≤ 1

n

√√√√Re

{
n∑

k=1
zk

}2

≤ 1

n

√√√√Re

{
n∑

k=1
zk

}2

+ Im

{
n∑

k=1
zk

}2

= 1

n
|

n∑
k=0

zk |

3.4. AM-GM IN RELATION TO CAUCHY-SCHWARZ
Note that since both the Cauchy-Schwarz inequality as well as the AM-GM inequality follow
from the simple fact that (a−b)2 ≥ 0, these inequalities are obviously very much related. In
the first proof of the Cauchy-Schwarz inequality, the step:

n∑
k=1

ak bk ≤ 1

2

n∑
k=1

a2
k +

1

2
b2

k
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follows simply from the AM-GM inequality. Note that this inequality is true if it holds for all
components, so if:

ak bk ≤ 1

2
a2

k +
1

2
b2

k

holds for all k, which is equal to the requirement that:√
a2

k b2
k ≤ a2

k +b2
k

2

which is just the AM-GM inequality. So we see by merely assuming the AM-GM inequality,
we can derive the Cauchy-Schwarz inequality.

Alternatively, We can also derive the AM-GM inequality from the Cauchy Schwarz in-

equality. Let us consider the following two vectors in R2: x =
[p

ap
b

]
and y =

[p
bp
a

]
. Applying

the Cauchy-Schwarz inequality yields:

〈x,y〉 =
p

ab +
p

ab = 2
p

ab ≤
(√p

a
2 +

p
b

2
)2

= a +b

which yields the AM-GM inequality for two sequences, and can be generalised to the full
inequality using the self-generalising property of the AM-GM inequality.

We thus see that the AM-GM inequality and the Cauchy-Schwarz inequality can be de-
rived from the other inequality.



4
CONVEXITY AND JENSEN’S INEQUALITY

We now switch to a seemingly different topic which is also an important tool in proving
inequalities and deriving upper bounds: convexity. Inseparable from convexity is another
famous inequality, namely Jensen’s inequality. In this chapter, we will prove this inequality,
delve deeper into some interesting properties of convexity and then see how this seemingly
unrelated topic can be connected to the Cauchy-Schwarz and AM-GM inequality.

4.1. INTRODUCING CONVEXITY AND JENSEN’S INEQUALITY
We start off by defining convexity.

Definition 4.1. A function f : [a,b] →R is called convex if it satisfies:

f
(
px + (1−p)y

)≤ p f (x)+ (1−p) f (y) ∀x, y ∈ [a,b] ,∀p ∈ [0,1]

Let us now consider Jensen’s inequality and show how this inequality follows utmost
elegantly from the definition of convexity.

Theorem 4.1. Jensen’s Inequality. Let f : [a,b] → Rbe convex and let
(
pi

)n
i=1 such that ∀i :

pi ≥ 0 and
∑n

i=1 pi = 1. Then ∀xi ∈ [a,b], f satisfies:

f

(
n∑

i=1
pi xi

)
≤

n∑
i=1

pi f (xi )

Proof.

f

(
n∑

i=1
pi xi

)
= f

(
pn xn + (1−pn)

n−1∑
i=1

pi

1−pn
xi

)

≤ pn f (xn)+ (1−pn)
n−1∑
i=1

pi

1−pn
f (xi ) =

n∑
i=1

pi f (xi )

One may wonder what the conditions are for equality. We will prove that these condi-
tions are relatively strict: one only has equality if all xi are equal.

Theorem 4.2. Theorem 4.1 only yields equality if and only if all variables are the same , i.e.:

f

(
n∑

i=1
pi xi

)
=

n∑
i=1

pi f (xi ) ⇐⇒ x1 = x2 = . . . = xn

29
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Proof.
=⇒ . We prove this implication by contradiction. Assume we have equality for some x1, . . . , xn

which are not all equal. Set S ≡ {
i |xi < maxk∈{1,...,n} {xk }

}
. Note that S is a proper subset of

{1,2, . . . ,n}. Now define:

p = ∑
i∈S

pi

x = 1

p

∑
i∈S

pi xi

y = 1

1−p

∑
i 6∈S

pi xi

Now since we have strict convexity, we find:

f (px + (1−p)y) < p f (x)+ (1−p) f (y)

Now we can substitute x and y :

p f (x)+(1−p) f (y) = p f

(∑
i∈S

pi

p
xi

)
+(1−p) f

(∑
i 6∈S

pi

1−p
xi

)
≤ ∑

i∈S
pi f (xi )+∑

i 6∈S
pi f (xi ) =

n∑
k=1

pk f (xk )

Note that f (px + (1−p)y) = f
(∑n

k=1 pk xk
)
. But then:

f

(
n∑

k=1
pk xk

)
<

n∑
k=1

pk f (xk ) (4.1)

But we assumed equality. ⇒⇐.

⇐. Furthermore, note that if x1 = x2 + . . . = xn = x, then:

f

(
n∑

k=1
pk xk

)
= f

(
x

n∑
k=1

pk

)
= f (x) =

n∑
k=1

pk f (x) =
n∑

k=1
pk f (xk )

4.2. CONNECTION TO THE AM-GM AND CAUCHY-SCHWARZ INEQUALITY
The concept of convexity will prove to be exceptionally useful in proving various inequali-
ties. One such inequality is the AM-GM inequality (Theorem 3.2). We can easily proof this
Theorem using the convexity of exponential functions.

Proof. First note that f : x → ex is convex on R. Thus:

e
∑n

k=1 pk x̂k ≤
n∑

k=1
pk e x̂k

Setting xk = e x̂k yields:
n∏

k=1
xpk

k ≤
n∑

k=1
pk xk
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We see that the AM-GM gracefully follows from Jensen’s inequality, which again is a di-
rect implication of the definition of convexity! In retrospect, however, this should not be
very surprising, since the most simple form of the AM-GM inequality, namely

p
x y ≤ x+y

2 ,
is just a simple consequence of the convexity of x 7→ x2! Taking f (x) = 4x2 and x1 =

p
x, x2 =p

y and p1 = p2 = 1
2 , we see that:

f

(
1

2
(x1 +x2)

)
= (

p
x +p

y)2 ≤ 2x +2y = 1

2

(
f (x1)+ f (x2)

)
working out the squares on the left hand side and rearranging the terms yields the AM-GM
inequality.

Evidently, since the AM-GM inequality and the Cauchy-Schwarz inequality are so in-
timately related via exactly the relation which holds because of convexity, the Cauchy-
Schwarz inequality can also be derived via Jensen’s inequality by the exact argument we’ve
presented above!

4.3. THE STRENGTH OF CONVEXITY
The beautiful structure that convexity brings is not just restricted to the main topic of this
exploration - rather, it can be shown that convexity is a fairly strong property, in the sense
that convexity implies quite some smoothness of a given function. We will prove this first
by showing that convex functions are necessarily continuous, and then by showing that
convex functions are even more smooth, in the sense that they even possess left and right
derivatives. Before doing so, however, we will have to introduce a very important lemma
first.

Lemma 4.3. Let f : [a,b] →R be convex. Furthermore, consider x ∈ (a,b). Then:

f (x)− f (a)

x −a
≤ f (b)− f (a)

b −a
≤ f (b)− f (x)

b −x
Proof. Note that ∃p : x = pb + (1−p)a. Then since f (x) is convex:

f (x) = f (pb + (1−p)a) ≤ p f (b)+ (1−p) f (a)

It can be checked that p = x−a
b−a satisfies the first equality. Then:

f (x) ≤
(x −a

b −a

)
f (b)+

(
1−

(x −a

b −a

))
f (a)

⇐⇒ f (x)− f (a) ≤
(x −a

b −a

)(
f (b)− f (a)

)
⇐⇒ f (x)− f (a)

x −a
≤ f (b)− f (a)

b −a
Thus proving the first inequality.

Similarly, taking p = b−x
b−a , we find:

f (x) = f (pa + (1−p)b) ≤ p f (a)+ (1−p) f (b)

after substitution, this yields:

f (x)− f (b) ≤ (
f (a)− f (b)

)(b −x

b −a

)
⇐⇒ f (b)− f (a)

b −a
≤ f (b)− f (x)

b −x
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proving the second inequality.

We can use this lemma to prove that a convex function is always continuous on (a,b).

Theorem 4.4. Let f : (a,b) →R be convex. Then f (x) is continuous.

Proof. We will prove that f (x) is locally Lipschitz continuous in any point c ∈ (a,b). Let
[a1,b1] ⊆ (a,b) and choose a2,b2 such that a < a2 < a1,b1 < b2 < b. Now let x, y ∈ [a1,b1].
Then, using Lemma 4.3, we find:

f (x)− f (y)

x − y
≤ f (b2)− f (y)

b2 − y
≤ f (b1)− f (b2)

b1 −b2

Similarly, using Lemma 4.3 once again, we find:

f (a2)− f (a1)

a2 −a1
≤ f (y)− f (a1)

y −a1
≤ f (x)− f (y)

x − y

Setting M ≡ max
{∣∣∣ f (a2)− f (a1)

a2−a1

∣∣∣ ,
∣∣∣ f (b1)− f (b2)

b1−b2

∣∣∣}, we see that:∣∣∣∣ f (x)− f (y)

x − y

∣∣∣∣≤ f (b1)− f (b2)

b1 −b2

Thus
∣∣ f (x)− f (y)

∣∣≤ M |x − y |.
We can prove that convex function possess an even stronger property: near-differentiability.

Theorem 4.5. Let f : [a,b] →R be convex. Then the left and right-hand derivative of f exist
on (a,b).

Proof. Let x ∈ (a,b) fixed. We first use Lemma 4.3 to find that:

f (x +h)− f (x)

h
≤ f (x +h +ε)− f (x)

h +ε
with ε> 0. Thus, we find that f (x+h)− f (x)

h is a decreasing function of h. Furthermore, for any
fixed value y ∈ (a, x) Lemma 4.3 yields:

f (x)− f (y)

x − y
≤ f (x +h)− f (x)

h

for all h > 0. Note that the left-hand side of the inequality is definitely bounded. Thus, we

see that F (h) ≡ f (x+h)− f (x)
h is a monotone, decreasing function that is also bounded. The

Monotone Convergence Theorem now ensures us that the limit for h ↓ 0 exists, i.e.

lim
h↓0

f (x +h)− f (x)

h

exists and is finite.

In a similar manner, we can prove that:

f (x −h −ε)− f (x)

h +ε ≤ f (x −h)− f (x)

h
≤ f (y)− f (x)

y −x
(4.2)
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with y ∈ (x,b). This yields a monotone, increasing and bounded sequence, and thus, once
again using the Monotone Convergence Theorem, we see that:

lim
h↑0

f (x −h)− f (x)

h

exists and is finite.

We thus see that convexity (through Jensen’s inequality) allows for the emergence of a
lot of rich structure, both in terms of smoothness of functions and in terms of the inequal-
ities that can be derived by these functions. We now proceed to study three more famous
inequalities, of which the inequalities studied heretofore are just a special case, and we will
show how these inequalities are nevertheless closely related to those we have derived up
until now.





5
THE LADDER OF POWER MEANS

Hitherto, we have seen two means: the arithmetic and the geometric mean. These means,
however, belong to a more general class of means, for which numerous important proper-
ties can be proved. This class is called the class of the power means. power means. In this
chapter, we first define these power means and then prove an inequality on this class which
can be considered a generalisation of the AM-GM inequality.

5.1. THE POWER MEANS
We start off by defining power means.

Definition 5.1. Mt with t ∈ R for
(
pk

)n
k=1 such that pk ≥ 0 and

∑n
k=1 pk = 1 and a sequence

of non-negative numbers (xk )n
k=1 is defined as follows:

Mt =
(

n∑
k=1

pk x t
k

) 1
t

We call Mt a power mean of power t . Note that for t = 0, the definition of Mt is unclear.
Furthermore, the definition can be extended to include the cases for t →±∞. The defini-
tion for these cases follows from the natural requirement that the mapping t → Mt should
be continuous. Let us first consider the case for t = 0.

Theorem 5.1. For t → 0 Mt reduces to the geometric mean, i.e.

lim
t→0

Mt =
n∏

k=1
xpk

k

Proof. Taking the logarithm of Mt yields:

log(Mt ) = log

(
n∑

k=1
pk x t

k

) 1
t

= 1

t
log

(
n∑

k=1
pk x t

k

)
= 1

t
log

(
n∑

k=1
pk e t log(xk )

)
The exponential function can be expanded using a Taylor polynomial:

log(Mt ) = 1

t
log

(
n∑

k=1
pk e t log(xk )

)
= 1

t
log

(
n∑

k=1
pk

(
1+ t log(xk )+O (t 2)

))= 1

t
log

(
1+ t

n∑
k=1

pk log(xk )+O (t 2)

)
Now, using a Taylor expansion for the logarithm (i.e. log(1+x)), we find:

log(Mt ) = 1

t
log

(
1+ t

n∑
k=1

pk log(xk )+O (t 2)

)
= 1

t

(
t

n∑
k=1

pk log(xk )+O (t 2)

)
=

n∑
k=1

pk log(xk )+O (t )

35
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Taking the limit as t → 0 on both sides and inverting the logarithm yields the expected
result.

This brings us to the most important inequality of this section: the Power Mean Inequal-
ity.

Theorem 5.2. Power Mean Inequality. Consider a sequence
(
pk

)n
k=1 with pk ≥ 0 and

∑n
k=1 pk =

1 and a sequence (xk )n
k=1 of non-negative numbers. Then ∀s, t ∈R : −∞< s < t <∞:

Ms =
(

n∑
k=1

pk xs
k

) 1
s

≤
(

n∑
k=1

pk x t
k

) 1
t

= Mt

Proof. We will split this problem up into three cases: the case for 0 < s < t , the case for
s < t < 0 and the case for s ≤ 0 ≤ t .

Case I: 0 < s < t . Consider the function f : x → x
t
s . Note that since t > s, f is a convex

function. Thus, Jensen’s inequality (Theorem 4.1) yields:

f

(
n∑

k=1
pk x̂k

)
≤

n∑
k=1

pk f (x̂k )

Setting x̂k = xs
k now yields:(

n∑
k=1

pk xs
k

) t
s

≤
n∑

k=1
pk

(
xs

k

) t
s =

n∑
k=1

pk (xk )t

Raising both sides to the power of 1
t yields the expected result.

Case II: s < t < 0. Note that the result from case 1 yields that:

1(∑n
k=1 pk x̂−t

k

) 1
t

=
(

n∑
k=1

pk x̂−t
k

)− 1
t

≤
(

n∑
k=1

pk x̂−s
k

)− 1
s

= 1(∑n
k=1 pk x̂−s

k

) 1
s

since 0 <−t <−s. By taking the reciprocal, we obtain:(
n∑

k=1
pk x̂−s

k

) 1
s

≤
(

n∑
k=1

pk x̂−t
k

) 1
t

Setting x̂k = 1
xk

yields the expected result.
Case III: s ≤ 0 ≤ t . This problem can be split up into two parts: proving that M0 ≤ Mt for

t > 0 and Ms ≤ M0.
First note that case I yields that: M 1

2n+1
≤ M 1

2n
for all n ∈ N. Thus. Note, however, that for

every t ∈R>0 : ∃N ∈N : 1
2N ≤ t . Thus:

M 1
2N

≤ Mt

Taking the limit for N →∞ yields the expected result.
The second case is covered by considering −s:(

n∑
k=1

pk x̂−s
k

)− 1
s

= 1(∑n
k=1 pk x̂−s

k

) 1
s

≥
n∏

k=1
x̂pk

k
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Taking reciprocals yields: (
n∑

k=1
pk x̂−s

k

) 1
s

≤
n∏

k=1
x̂−pk

k

Setting x̂k = 1
xk

finishes the proof.

Note how this inequality between power means is also a simple consequence of Jensen’s
inequality! We can therefore easily see that we only find a case of equality if we have that
x1 = x2 = . . . xn as this is the only possibility for us to have equality in the first case, and
every other case follows from that.

Note, however, that an analytical extension of the concept of a power mean for t →±∞
is possible. This reduces to an unexpectedly simple result, which we will prove here.

Theorem 5.3. If pk > 0, the following holds:

M±∞ ≡ lim
t→±∞Mt =±max

k
{±xk }

Proof. We first note that:

pk x t
k ≤

n∑
k=1

pk x t
k ≤

n∑
k=1

pk

(
max

k
{xk }

)t

=
(
max

k
{xk }

)t

We can take the t th root on all sides of the inequality. Now since limits preserve non-
strict inequalities, we can take t →∞:

lim
t→∞p

1
t
k xk ≤ liminf

t→∞ Mt ≤ limsup
t→∞

Mt ≤ max
k

{xk }

Where we obtain a liminf and a limsup since it is uncertain whether limt→∞ Mt exists. Now,

since pk > 0, we know that limt→∞ p
1
t = 1. We thus obtain:

xk ≤ liminf
t→∞ Mt ≤ limsup

t→∞
Mt ≤ max

k
{xk }

Now the first inequality holds for any xk , thus it also holds for maxk xk :

max
k

{xk } ≤ liminf
t→∞ Mt ≤ limsup

t→∞
Mt ≤ max

k
{xk }

But then limt→∞ Mt = maxk xk .
Furthermore, using the following expression (which was used very often in the previous
proof): M−t (x1, . . . , xn) = M−1

t ( 1
x1

, . . . , 1
xn

), we find that limt→−∞ Mt = mink {xk }.

5.2. LOOSENING THE CONDITIONS

One might, of course, consider whether the condition of
∑n

k=1 pk = 1 is truly necessary.
Let us attempt to prove the necessity of this requirement for the power mean inequality,
by looking at the so-called p-norms (which we will study extensively in Chapter 7), so by
taking pk = 1∀k. Before doing so, however, we first prove a useful lemma.

Lemma 5.4. Given the following function f :R+ →R defined as f (x) = x
p

x. Then:

f (x + y) ≤ f (x)+ f (y)
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Proof.
f (x + y) = (x + y)

√
x + y = x

√
x + y + y

√
x + y ≤ x

p
x + y

p
y

where the inequality follows from the fact that
p· is an increasing function and x, y ≥ 0.

Theorem 5.5. Let (ak )n
k=1 be a sequence of non-negative numbers. Then:(

n∑
k=1

a
1
2
k

)2

≤
(

n∑
k=1

a
1
3
k

)3

Proof. We will prove the following equivalent statement:(
n∑

k=1
a

1
3
k

) 3
2

≥
n∑

k=1
a

1
2
k

Note that: (
n∑

k=1
a

1
3
k

) 3
2

≥
n∑

k=1

(
a

1
3
k

) 3
2 =

n∑
k=1

a
1
2
k

where the first equality follows from Lemma 5.4.

We thus see that dropping the requirement flips the power mean inequality.

5.3. AN APPLICATION OF POWER MEANS
Lastly, we now turn to an interesting theorem that connects the mean value of sequences
to their limit sequence and can be proved based on the theory of generalised means.

Theorem 5.6. Niven-Zuckerman Lemma. Given a sequence of non-negative n-dimensional

vectors (a)n
k=1, such that ak =

ak1
...

akn

 . Now let µ ∈R≥0 be a constant such that:

lim
k→∞

n∑
i=1

aki = nµ

Furthermore, let p ∈ (1,∞) such that:
Then ∀i ∈ {1, . . . ,n}:

lim
k→∞

aki =µ

Proof. Note that the two statements can be rewritten as:

lim
k→∞

n∑
i=1

1

n
·aki =µ

and

lim
k→∞

n∑
i=1

1

n
·ap

ki =µp

Setting pk = 1
n , this comes down to:

lim
k→∞

M1 =µ

lim
k→∞

M p
p =µp =⇒ lim

k→∞
Mp =µ
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But then limk→∞ M1 = limk→∞ Mp . In Theorem 5.2, we have proved that equality between
means implies equality of the variables. We thus claim that:

lim
k→∞

ak1 = lim
k→∞

ak2 = . . . = lim
k→∞

akn

But then limk→∞ aki =µ∀i ∈ {1, . . . ,n}.

Of course, one has to take great care when extending results to limit cases. Thus, to
ensure that the step towards equality of variables is valid, we consider what happens when
the limits of the variables are not equal. Without loss of generality, we restrict ourselves to
the case of two unequal limits.
Let us assume that limk→∞ ak1 = µ+ ε for some ε ∈ (

0,µ
)

1 and that limk→∞ aki = µ∀i ∈
{2, . . . ,n −1}. Now in order to satisfy the first condition, we must surely have:

lim
k→∞

akn = nµ−
n−1∑
i=1

lim
k→∞

aki =µ−ε

In order to satisfy the second condition, we must have that:(
µ+ε)p + (

µ−ε)p = 2µp

Rewriting this statement, however, we obtain:((
µ+ε)p + (

µ−ε)p) 1
p = 2µ= (

µ+ε)1 + (
µ−ε)1

But the left hand side of this equation is the generalised power mean for power p, while the
right hand side is the generalised mean for p = 1. Thus, we know that we only have equality
if µ+ε=µ−ε. ⇒⇐.

1Note that taking ε=µ makes it impossible to satisfy both conditions, and thus, this case can be excluded.





6
HÖLDER’S AND MINKOWSKI’S

INEQUALITIES

The theory derived in the previous chapters can be used to prove another well-known in-
equality: Hölder’s inequality. From Hölder’s inequality, we can derive yet another famous
inequality: Minkowsi’s inequality. In this chapter, these inequalities, their generalisations
and some of their applications will be studied. Furthermore, we will show how these in-
equalities relate to all the inequalities discussed up until now.

6.1. HÖLDER’S INEQUALITY
Before considering Hölder’s Inequality, we first prove a lemma, which comes down to the
direct application of the AM-GM inequality. The inequality introduced through this lemma
carries its own name: Young’s inequality.

Lemma 6.1. Young’s Inequality Let α,β, x and y be positive. Then:

xαyβ ≤ α

α+βxα+β+ β

α+β yα+β

Proof. First, we denote p1 ≡ α
α+β and p2 ≡ β

α+β and note that p1+p2 = 1. Now, if we consider
two positive numbers x̂ and ŷ , we can apply the AM-GM inequality (Theorem 3.2) in order
to find:

x̂p1 ŷ p2 ≤ p1x̂ +p2 ŷ

Setting x̂ ≡ xα/p1 and ŷ ≡ yβ/p2 yields the expected result.

Theorem 6.2. Hölder’s Inequality Let p, q > 1 be numbers such that 1
p + 1

q = 1, and let

(ak )n
k=1 , (bk )n

k=1 be sequences of non-negative real numbers. Then:

n∑
k=1

ak bk ≤
(

n∑
k=1

ap
k

) 1
p
(

n∑
k=1

bq
k

) 1
q

Proof. Let us consider one index, say k = i , first. Now let us consider the result of Lemma
6.1:

xαyβ ≤ α

α+βxα+β+ β

α+β yα+β

41
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Setting x = α
p

ai and y = β
√

bi , we find:

ai bi ≤ α

α+βa(α+β)/α
i + β

α+βb(α+β)/β
i

Setting α= 1
p and β= 1

q , we find:

ai bi ≤ 1

p
ap

i + 1

q
bq

i

We now continue in a similar manner as was done in the proof of the Cauchy-Schwarz
inequality. First, note that we thus find:

n∑
k=1

ak bk ≤ 1

p

n∑
k=1

ap
k + 1

q

n∑
k=1

bq
k

We now apply the normalisation trick: note that this equation also holds for the sequences
âk ≡ ak

p
√∑n

i=1 a
p
i

and b̂k ≡ bk
q
√∑n

i=1 b
q
i

. Substituting these into the right-hand side of the inequal-

ity yields:
n∑

k=1
âk b̂k ≤ 1

p
+ 1

q
= 1

Thus:
n∑

k=1

ak

p
√∑n

i=1 ap
i

bk(∑n
i=1 bq

i

) 1
q

= 1 ⇐⇒
n∑

k=1
ak bk =

(
n∑

i=1
ap

i

)
1

p

(
n∑

i=1
bq

i

) 1
q

Now note how Hölder’s inequality simply follows from the AM-GM inequality. But since
the Cauchy-Schwarz inequality is just Hölder’s inequality for p = 1

2 , we can also easily de-
rive the AM-GM inequality from Hölder’s inequality!

Let us now derive the conditions for equality. From Lemma 6.1, we see that we only have

equality when (âi )p = (
b̂i

)q
for all i. But this is satisfied only if ai =λb

w
p

i .

6.2. GENERALISATIONS, HISTORICAL FORMS AND A CONVERSE STATEMENT
In this section, we consider generalising Hölder’s Inequality. After that, we study various
historical forms of the inequality and show how they are equivalent to the form presented
above. Lastly, we show how to find a bound on one of the terms on the right hand side.

Let us commence by generalising the inequality to N sequences. Before doing so, how-
ever, we introduce an important lemma, which can also be considered to be a generalisa-
tion of Hölder’s inequality.

Lemma 6.3. Let p, q,r be positive numbers such that 1
p + 1

q = 1
r and let (ak )n

k=1 , (bk )n
k=1 be

sequences of non-negative real numbers. Then:(
n∑

k=1
|ak bk |r

) 1
r

≤
(

n∑
k=1

ap
k

) 1
p
(

n∑
k=1

bq
k

) 1
q
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Proof. Consider t = p
r , s = q

r . Then 1
t + 1

s = 1. We can now use 6.2 on the sequences ar
k ,br

k to
find:

n∑
k=1

|ak bk |r ≤
(

n∑
k=1

|ar
k |t

) 1
t
(

n∑
k=1

|br
k |s

) 1
s

=
(

n∑
k=1

ap
k

) r
p
(

n∑
k=1

bq
k

) r
q

(6.1)

Taking the r th root on both sides finishes the proof.

Using this lemma, we first consider the case of N = 3 sequences.

Theorem 6.4. Let p, q,r be positive numbers such that 1
p+ 1

q +1
r = 1 and let (ak )n

k=1 , (bk )n
k=1 , (ck )n

k=1
be sequences of non-negative real numbers. Then:

n∑
k=1

ak bk ck ≤
(

n∑
k=1

ap
k

) 1
p
(

n∑
k=1

bq
k

) 1
q
(

n∑
k=1

cr
k

) 1
r

Proof. Let us consider the sequence dk ≡ bk ck∀k. Then, given t such that 1
p + 1

t = 1, we
find:

n∑
k=1

ak dk ≤
(

n∑
k=1

ap
k

) 1
p
(

n∑
k=1

d t
k

) 1
t

=
(

n∑
k=1

ap
k

) 1
p
(

n∑
k=1

(bk ck )t

) 1
t

Now since 1
q + 1

r = 1
t , we can use Lemma 6.3 to find the desired result.

We can now proceed to generalise this statement to an arbitrary number of sequences.

Theorem 6.5. Let pm for m = 1, . . . , N be a sequence of non-negative numbers such that∑N
m=1

1
pm

= 1. Furthermore, let
(
xm

k

)n
k=1

for m = 1, . . . , N be sequences of non-negative real
numbers. Then:

n∑
k=1

N∏
m=1

xm
k ≤

N∏
m=1

(
n∑

k=1
|xm

k |pm

) 1
pm

Proof. without loss of generality we assume that N > 3. Suppose N is even. We then obtain
the desired result in a recursive manner as follows. Define q,r in such a manner that 1

q =∑N /2
m=1

1
pm

and 1
r =∑N

m=N /2+1
1

pm
. Then, using Theorem 6.2 we find:

n∑
k=1

N∏
m=1

xm
k ≤

(
n∑

k=1
|

N /2∏
m=1

xm
k |q

) 1
q
(

n∑
k=1

|
N∏

m=N /2+1
xm

k |r
) 1

r

We now have two possibilities. Either N /2 is even (and the products on the right hand side
have an even number of terms). We then perform the same sequence of operations until
we reach an odd number of terms.

If we obtain one term, we are done. So let us assume that the odd number of terms is
larger than or equal to three. We then proceed in a similar fashion as we did in the proof
of Theorem 6.4: We use Lemma 6.3 in order to split the expression up into a part over one
sequence and a part over an even number of sequences. We then consider the part over the
even number of sequences, and continue as we did above.

If we start off with an odd number of sequences, we use Lemma 6.3 and then proceed in
a similar manner as presented above.
Note that this algorithm will always yield a result in at most N steps.
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Furthermore, one can show that Hölders inequality still holds when we include weights
in both the inner product and the norms!

Theorem 6.6. Let p, q be positive numbers such that 1
p+ 1

q = 1 and let (ak )n
k=1 , (bk )n

k=1 , (wk )n
k=1

be sequences of non-negative real numbers. Then:

n∑
k=1

wk ak bk ≤ p

√
n∑

k=1
wk ap

k
q

√
n∑

k=1
wk |bk |q

Proof. Note that wk = w
1
p + 1

q

k = w
1
p

k w
1
q

k . Applying Theorem 6.2 on the sequences w
1
p

k ak and

w
1
q

k bk yields the expected result.

Much to anyone’s surprise, the original inequality that Hölder proved was actually a spe-
cific case of this weighted inequality! His original inequality follows by taking ak = 1∀k.

Theorem 6.7. Let p, q be positive numbers such that 1
p + 1

q = 1 and let (ak )n
k=1 , (wk )n

k=1 be
sequences of non-negative real numbers. Then:

n∑
k=1

wk bk ≤ p

√
n∑

k=1
wk

q

√
n∑

k=1
wk |bk |q

We will prove this version of the inequality later in this chapter by making use of one of
the inequalities we have derived in a previous chapter. Note that this statement is equiva-
lent to Theorem 6.2 for two sequences ck ,dk : seting wk = cp

k and bk = dk
q
√

c
p
k

yields the mod-

ern version of Hölder’s Inequality. The other implication follows from the proof of Theorem
6.6.

Interestingly enough, we use a statement that looks partially like Hölder’s inequality in
order to say something about the remaining aspects of the equality - we present this result,
which can be considered to be a "converse" statement.

Theorem 6.8. Let p ∈ (1,∞) and let (ak )n
k=1 be a sequence of real numbers. Suppose ∃C ∈ R

such that ∀xk ,k = 1, . . . ,n:
n∑

k=1
|ak xk | ≤C p

√
n∑

k=1
|xk |p

Then for q = p
p−1 :

q

√
n∑

k=1
|ak |q ≤C

Proof. Consider1 xk ≡ sgn(ak )|ak |
q
p . Then surely:

n∑
k=1

|ak |
q
p +1 ≤C p

√
n∑

k=1
|ak |q

1Note that in Steele (2004) one finds an incorrect expression. The author of this thesis has corrected this and has implemented the
correct result.
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Note that q = p
p−1 , such that q

p = 1
p−1 . Thus the power of the left hand side yields q

p +1 =
1

p−1 +
p−1
p−1 = p

p−1 = q . Therefore, we find:

n∑
k=1

|ak |q ≤C p

√
n∑

k=1
|ak |q

Dividing both sides by the right hand side yields the desired result, since:

q

√
n∑

k=1
|ak |q =

(
n∑

k=1
|ak |q

)1− 1
p

=
∑n

k=1|ak |q
p
√∑n

k=1|ak |q
≤C

6.3. ONE LAST INEQUALITY: MINKOWSKI’S INEQUALITY

We now introduce another inequality, which is often considered to be a consequence of
Hölder’s inequality, but can also be considered the generalisation of the Triangle inequality
on p-spaces, which we will discuss extensively in the next chapter. Without further ado, let
us prove Minkowski’s inequality.

Theorem 6.9. Minkowski’s Inequality. Let p ≥ 1 and let (ak )n
k=1 , (bk )n

k=1. Then:

(
n∑

k=1
|ak bk |p

) 1
p

≤
(

n∑
k=1

|ak |p
) 1

p

+
(

n∑
k=1

|bk |p
) 1

p

Proof. Note that:

n∑
k=1

|ak +bk |p =
n∑

k=1
|ak +bk ||ak +bk |p−1 ≤

n∑
k=1

|ak ||ak +bk |p−1 +
n∑

k=1
|bk ||ak +bk |p−1

Now we can use Theorem 6.2 on both sums on the right hand side. We then find:

n∑
k=1

|ak ||ak +bk |p−1 ≤
(

n∑
k=1

ap
k

) 1
p
(

n∑
k=1

|ak +bk |p
) p−1

p

An analogous result can be derived for the second sum. Combining these results yields:

n∑
k=1

|ak +bk |p ≤
(

n∑
k=1

ap
k

) 1
p

+
(

n∑
k=1

bp
k

) 1
p

(
n∑

k=1
|ak +bk |p

) p−1
p

We can divide out the last term to find the desired results:(
n∑

k=1
|ak +bk |p

) 1
p

≤
(

n∑
k=1

ap
k

) 1
p

+
(

n∑
k=1

bp
k

) 1
p
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6.4. CONNECTING THE DOTS: HÖLDER IN RELATION TO THE PRIOR INEQUAL-
ITIES

We have already seen how Hölder’s inequality follows from the AM-GM inequality. Fur-
thermore, Hölder’s inequality is obviously a generalisation of the inequality of Cauchy and
Schwarz, and therefore, intuitively, Hölder’s inequality appears to be a much stronger state-
ment. In this chapter, we will see how Hölder’s inequality can be derived from all the other
inequalities - much to one’s surprise!

6.4.1. DERIVING HÖLDER FROM CAUCHY-SCHWARZ

We will now show that Hölder’s inequality can be derived from the Cauchy-Schwarz in-
equality (2.4). One will see that the Cauchy-Schwarz Inequality also possesses a self-generalising
property, and as such, the proof will be analogous to that of the AM-GM inequality to quite

some extend. Let us first consider the case of 2N sequences, so
(
x1

k

)n
k=1

, . . . ,
(
x2N−1

k

)n

k=1
,
(
x2N

k

)n

k=1
.We

can then use the Cauchy-Schwarz inequality to derive the following result:(
n∑

k=1

2N∏
m=1

xm
k

)2N

≤
2N∏

m=1

n∑
k=1

|xm
k |2N

This can easily be seen by iterating as follows:(
n∑

k=1

2N∏
m=1

xm
k

)2N

C−S≤
(

n∑
k=1

2N−1∏
m=1

|xm
k |2

)2N−1 (
n∑

k=2N−1+1

2N∏
m=1

|xm
k |2

)2N−1

C−S≤ . . .
C−S≤

2N∏
m=1

n∑
k=1

|xm
k |2N

This results also follows immediately from the generalisation of the Cauchy-Schwarz in-
equality (Theorem 2.7). Now from this, it easily follows that Holder’s inequality holds for

two non-negative real sequences (ak )n
k=1 , (bk )n

k=1 and for any number p ∈
{

2N

j : j = 1, . . . ,2N −1
}

and its reciprocal by choosing X m
k such that ak =∏ j

m=1 xm
k and xm

k equal for all m = 1, . . . , j

and choosing the other xm
k equal such that bk =∏2N

m= j+1 xm
k , as we then obtain:(

n∑
k=1

ak bk

)2N

=
(

n∑
k=1

(
j∏

m=1
xm

k

)(
2N∏

m= j+1
xm

k

))2N

≤
(

j∏
m=1

n∑
k=1

|xm
k |2N

)(
2N∏

m= j+1

n∑
k=1

|xm
k |2N

)

=
(

n∑
k=1

|ak |
2N

j

) j (
n∑

k=1
|xm

k |
2N

2N − j

)2N− j

Taking the 2N th root of both sides yields:

n∑
k=1

ak bk ≤
(

n∑
k=1

|ak |
2N

j

) j

2N
(

n∑
k=1

|xm
k |

2N

2N − j

) 2N − j

2N

=
(

n∑
k=1

ap
k

) 1
p
(

n∑
k=1

bq
k

) 1
q

Note that even though p can now only attain rational values, for any p ∈ R≥1 \Q we can

define a sequence pm ∈Q such that pm → p. Setting cm = (∑n
k=1 apm

k

) 1
pm

(∑n
k=1 bqm

k

) 1
qm , we

find that:
n∑

k=1
ak bk ≤ cm ∀n ∈N

Thus, taking the limit m →∞ yields Hölder’s inequality for any real p.
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STARTING WITH JENSEN’S INEQUALITY

We can show that both Minkowski’s as well as Hölder’s inequality can be derived from
Jensen’s Inequality.
First, note that Jensen’s Inequality can be rephrased as follows:

Theorem 6.10. Let wi be positive, real numbers and let φ be concave. Then:∑n
i=1 wiφ(xi )∑n

k=1 wi
≤φ

(∑n
i=1 wi xi∑n

k=1 wi

)

Let us consider the concave function φ(x) =
(
1+x

1
p

)p
for x ∈ [0,∞). We then obtain:

∑n
i=1 wi

(
1+x

1
p

i

)p

∑n
k=1 wk

≤
1+

(∑n
i=1 wi xi∑n

k=1 wi

) 1
p

p

Which is equivalent to:(
n∑

i=1
wi

(
1+x

1
p

i

)p
) 1

p

≤
(

n∑
k=1

wi

) 1
p

+
(

n∑
i=1

wi xi

) 1
p

Substituting wi = ap
i and xi =

(
bi
ai

)p
, we retrieve Minkowski’s inequality.

Let us now derive the historical Hölder’s Inequality in the same manner as Hölder did.
We consider the convex function φ(x) = xq . We apply Jensen’s inequality to find:(∑n

k=1 wk bk∑n
i=1 wi

)q

=φ

(∑n
k=1 wk bk∑n

i=1 wi

)
≤

∑n
k=1 wkφ(bk )∑n

i=1 wi
=

∑n
k=1 wk bq

k∑n
i=1 wi

Which is equivalent to:

n∑
k=1

wk bk ≤
∑n

i=1 wi(∑n
i=1 wi

) 1
q

(
n∑

k=1
wk bq

k

) 1
q

=
(∑n

i=1 wi
) 1

p + 1
q(∑n

i=1 wi
) 1

q

(
n∑

k=1
wk bq

k

) 1
q

=
(

n∑
i=1

wi

) 1
p
(

n∑
k=1

wk bq
k

) 1
q

This is the historical inequality, from which the inequality in the form that we presented
initially follows.

DERIVING HÖLDER’S INEQUALITY FROM MINKOWSKI’S INEQUALITY

Lastly, while we proved Minkowski’s inequality from Hölder’s inequality, we can also prove
Hölder’s Inequality from Minkowski’s inequality by taking a small detour via the results that
we obtained surrounding power means! We present these results in the form of a lemma.

Lemma 6.11. Given θ ∈ [0,1] and a,b ≥ 0. Then:

lim
p→∞

(
θa1/p + (1−θ)b1/p)p = aθb1−θ

We now apply Minkowski’s inequality to the sequences
(
θap/s

k

)n

k=1
,
(
(1−θ)bq/s

k

)n

k=1
us-

ing an s-norm:(
n∑

k=1

(
θap/s

k + (1−θ)bq/s
k

)s
)1/s

≤
(

n∑
k=1

(
θap/s

k

)s
)1/s

+
(

n∑
k=1

(
1−θ)bq/s

k

)s
)1/s

= θ

(
n∑

k=1
ap

k

)1/s

+(1−θ)

(
n∑

k=1
bq

k

)1/s
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Raising both sides to the power of s, we find:

n∑
k=1

(
θap/s

k + (1−θ)bq/s
k

)s ≤
(
θ

(
n∑

k=1
ap

k

)1/s

+ (1−θ)

(
n∑

k=1
bq

k

)1/s)s

We can now consider the limit s →∞ and use Lemma 6.11 to find:

n∑
k=1

apθ
k b(1−θ)q

k ≤
(

n∑
k=1

ap
k

)θ (
n∑

k=1
bq

k

)1−θ

Setting θ = 1
p yields Hölder’s inequality.

Note that since we can prove Hölder’s inequality from Minkowski’s inequality, we can
also easily prove that the Cauchy-Schwarz inequality follows from Minkowski’s inequality -
from which we can show very easily that the AM-GM inequality follows from Minkowski’s
inequality as well: the starting point of our study of Hölder’s inequality!



7
EXPLORING P-SPACES

All the results that we have derived up until now are restricted to finite sequences. In this
section, we study a very important class of normed vector spaces: Rn equipped with the
so-called p-norm for p ≥ 1 and the standard inner product. Note that these spaces are
complete under each norm and the metric induces by them. We will study some inter-
esting properties of these spaces, and will lastly show how this structure is lost when we
extend to infinite dimensional vector spaces. Note that we will be referring to many of the
definitions introduced in Chapter 1.

7.1. INTRODUCING P-SPACES
We first recall the definition of the p-norm.

Definition 7.1. Let x ∈Rn and let p ≥ 1. We then define the p-norm as:

‖x‖p =
(

n∑
k=1

|xk |p
)1/p

Furthermore, for p =∞, we set:
‖x‖∞ = max

i
{|xi |}

We denote the normed space
(
Rn ,‖·‖p

)
as Rn

p .

One may wonder why the p-norm is only defined for p ≥ 1. Let us consider what hap-
pens to Minkowski’s inequality (Theorem 6.9) if p < 1. As was mentioned briefly in Chapter
6, Minkowski’s inequality can be seen as a generalisation of the triangle inequality Note that
the triangle inequality follows from Minkowski’s inequality by setting a ≡ x−z and b ≡ z−y:

dp (x,y) = ‖x−y‖p = ‖a+b‖p ≤ ‖a‖+‖b‖p = ‖x−z‖p +‖y−z‖p = dp (x,z)+dp (z,y)

Let us refer back to the proof of Minkowkski’s inequality on the basis of Jensen’s inequality,

in which we made use of the concave mapping φ(x) =
(
1+x

1
p

)p
, from which we obtained

∑n
i=1 wi

(
1+x

1
p

i

)p

∑n
k=1 wk

≤
1+

(∑n
i=1 wi xi∑n

k=1 wi

) 1
p

p

49
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using Jensen’s inequality (Theorem 4.1). Note, however that this final step is only valid if

the mapping x → (1+ x
1
p )p is convex. This is the case for p ≥ 1 - for p < 1, however, this

mapping becomes concave, and we obtain the inverse of the triangle inequality, i.e. we find
that:

‖a+b‖p<1 ≥ ‖a‖p<1 +‖b‖p<1

which yields:
dp (x,y) ≥ dp (x,z)+dp (z,y)

This, of course, conflicts with properties of metrics, and as such, the requirement that p ≥ 1
is a necessary requirement for us to have a valid metric space.

7.2. PROPERTIES OF P-SPACES
In this section, we will prove inequalities on the class of p-norms. These inequalities will
reveal a cyclic relationship between two different p-norms. We will then show how this
cyclic relationship ensures that a lot of structure on the different Rn

p is essentially equal.

Theorem 7.1. Let 1 < p2 < p1 <∞. Then ∀x ∈Rn :

‖x‖∞ ≤ ‖x‖p1 ≤ ‖x‖p2 ≤ ‖x‖1 ≤ n‖x‖∞
Proof. We start off by proving the leftmost inequality.

‖x‖ = max
i

(|xi |) =
(|xi |p1

)1/p1 ≤
(

n∑
i=1

|xi |p1

)1/p1

= ‖x‖p1

Now consider the last two inequalities. We start with the first of these.

‖x‖p2 =
(

n∑
i=1

|xi |p2

)1/p2

≤
n∑

i=1
|xi | = ‖x‖1 ⇐⇒

n∑
i=1

|xi |p2 ≤
(

n∑
i=1

|xi |
)p2

⇐⇒
(

n∑
i=1

|xi |∑n
i=1|xi |

)p2

≤ 1

which, evidently, is true.

‖x‖1 =
n∑

k=1
|xi | ≤

n∑
k=1

max
i

(|xi |) = n ·max
i

(|xi |) = n‖x‖∞

We now come to the last of these inequalities.

‖x‖p1 =
(

n∑
i=1

|xi |p1

)1/p1

≤
(

n∑
i=1

|xi |p2

)1/p2

= ‖x‖p2 ⇐⇒
(

n∑
i=1

|xi |p1

)p2/p1

≤
(

n∑
i=1

|xi |p2

)

But this comes down to proving that:

‖xp2‖p1/p2 ≤ ‖xp2‖1

which, for t ≡ p1/p2 > 1, reduces to proving that ‖y‖t ≤ ‖y‖1 (where yi = |xi |p2 ). But this
has been done already, and as such, we are done.

Corollary 7.1.1. Let n be fixed. Then all Rn
p share the same convergent sequences, the same

open sets and the same compact sets.
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Proof. Consider a sequence of vectors (xk )∞k=1 such that xk
p1→ x for some p1 ∈ [1,∞]. We

then have:
∀ε> 0 : ∃N ∈N : ∀k ≥ N : ‖x−xk‖p1 <

ε

n
Let us now consider p2 ∈ [1,∞). Two cases can be distinguished.
Case I: p1 < p2.
We now simply have that for given ε and N :

‖x−xk‖p2 ≤ ‖x−xk‖p1 <
ε

n
∀k ≥ N

because of Theorem 7.1.
Case II: p1 > p2.
In this case, we find that ‖x‖p2 ≤ n‖x‖∞ ≤ n‖x‖p1 . We thus find that∀ε> 0 : ∃N ∈N : ∀k ≥ N :

‖x−xk‖p2 ≤ n · ‖x−xk‖p1 ≤ n · ε
n
= ε

So in either case, we have that xk
p2→ x. We thus see that all p-spaces share the same conver-

gent sequences.

We know that open sets and convergent sets are related in the following way:

X ⊆Rn
p is open ⇐⇒ ∀ (xk )∞k=1 ∈Rn

p \ X convergent: xk → x, for x ∈Rn
p \ X

But since all p-metrics yield the same convergent sequences, they also share the same open
sets.

But then, all p-spaces share the same complete sets, since convergent Cauchy sequences
in one p-space must also converge under all other p metrics.
But then, since these p-spaces share the same open sets, they also share the same totally
bounded sets. But then, they also share the same compact sets.

This proof shows that results on any Rn
p space regarding for example convergence of

sequences or openness of sets can be extended to all other p-metrics. But this is not all!
We can even prove that all such results hold for any arbitrary norm on Rn , and as such are
completely completely independent under the choice of norm!

Theorem 7.2. Let n be fixed and let ‖·‖ be any norm onRn . Then for all ‖·‖p , we have that ‖·‖
and ‖·‖p generate the same convergent sequences, the same open sets and the same compact
sets.

Proof. We first prove that ∃C such that

‖x‖ ≤C‖x‖∞
Let us first write x in terms of the basis vectors:

‖x‖ = ‖
n∑

i=1
xi ei‖ =

n∑
i=1

|xi |‖ei‖ ≤C

(
n∑

i=1
|xi |

)
=C‖x‖1

with C ≡ maxi (‖ei‖). Using Theorem 7.1, we find: ‖x‖ ≤C n‖x‖∞.
We now prove that ‖x‖ ≥ m‖x‖∞. Let us consider the following compact subset of Rn∞ : K ≡
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{
x ∈Rn |‖x‖∞ = 1

}
and the function f : x →‖x‖. We then use the inverse triangle inequality

to derive:
| f (x)− f (y)| = |‖x‖−‖y‖| ≤ ‖x−y‖ ≤C ·n‖x−y‖∞

And thus, f is Lipschitz continuous on K . Note, however, that since K is a compact set, we
can find a minimum and maximum of f on K , i.e. ∃m, M ∈R>0 : m ≤ f (k) ≤ M . Thus, given
some x ∈R:

‖x‖ = ‖‖x‖∞ x

‖x‖∞
‖ = ‖x‖∞‖ x

‖x‖∞
‖ ≥ m‖x‖∞

which follows from the fact that x
‖x‖∞ ∈ K . As such, we find:

m‖x‖∞ ≤ ‖x‖ ≤ n ·C‖x‖∞
By continuing in the exact same manner as was done in the proof of the previous theorem,
we can thus show that we indeed obtain the same convergent sequences as well as the same
open, complete and compact sets under both norms.

This theorem thus shows that studying the topology of the n dimensional real vector
space, which can be restricted to just studying to Rn , can simply be done by choosing one’s
favourite metric! Note that convergence (or, equivalently, openness) is a very strong prop-
erty, as other, more complex structures, like for example continuity of functions over the
vector field at hand, can completely by characterised by convergent sequences (or, equiva-
lently, open sets)!

7.3. EXTENSION TO R∞
At last, we have arrived at the point at which we can reflect on the finitude of the spaces that
we are considering - specifically, we are interested in seeing whether the strong structure
preserving properties of the spaces at hand are still present on infinite dimensional spaces.
In order to assess this, we limit ourselves to R∞, and consider whether or not the norm-
independent structure present in the finite dimensional case is still to our disposal. Let us
now introduce a linear subspace of R∞, which we will study in this section, which we will
dub V :

V = {
x = (xn)∞n=1 with xn = 0∀n > n0 for somen0.

}
Note that we can extend the aforementioned p-norms to this set: since for every sequence
there is some n0 such that xn = 0∀n ≥ n0, so for that specific sequence, V acts as Rn0 under
the p-norms. Therefore, we still have:

‖x‖∞ ≤ ‖x‖p1 ≤ ‖x‖p2 ≤ ‖x‖1

for 1 < p2 < p1 <∞ and for every x ∈ V . However, the topologies generated under each of
these norms are distinct! Let us prove this in the following theorem.

Theorem 7.3. Given the set V as defined above. Let 1 < p2 < p1 <∞, then:

τ∞ ⊂ τp1 ⊂ τp2 ⊂ τ1

Proof. Let us first prove that:
τ∞ ⊆ τp1 ⊆ τp2 ⊆ τ1

We can restrict ourselves to the case for q1 ∈ (1,∞) and q2 ∈
[
1, q1

)
and prove that

τq1 ⊆ τq2
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without loss of generalisation. Suppose X ∈ τq1 . Then X is open under the q1-norm.
We prove that X is open under the q2-norm. Take x ∈ X . Then ∃ε such that B q1

ε (x) ⊆ X .
Now take y ∈ B q2

ε (x). Then since ‖x−y‖q1 ≤ ‖x−y‖q2 < ε, we have that y ∈ B q1
ε (x). As such,

we have that B q2
ε (x) ⊆ B q1

ε (x). But then surely ∀x ∈ X : ∃ε : x ∈ B q2
ε (x). Thus, all open sets

under the q1-norm are open under the q2-norm.

We now prove that τq1 is a strict subset of τq2 . We do this by showing that B q2

δ
(x) 6∈ τq1 .

More specifically, we show that any q1-open set cannot be fully contained in B q2
1 under the

q1-norm.
We first note that we can make use of the fact that B q2

δ
(x) = x+B q2

δ
(0), such that we can limit

ourselves to the case B q2

δ
(0) without loss of generality.

We prove that B q1
ε (0) 6⊆ B q2

δ
(0) under the q1-norm for all ε> 0.

Let us consider the sequence xn = 1
n1/q2

. Then:

∞∑
n=1

xq2
n diverges, while

∞∑
n=1

xq1
n converges

Now let ε > 0. Then: ∃N0 :
(∑∞

n=N0
xq1

n

)1/q1 < ε. Furthermore, we also have that ∃N1 :∑N1
n=N0

xq2
n > δ. But then, surely

(∑N1
n=N0

xq1
n

)1/q1 < ε. Thus, if we define a new sequence

y ≡ (
xN0 , xN0+1 . . . , xN1 ,0,0, . . .

)
, then:

y ∈ B q1
ε (0)

y 6∈ B q2

δ
(0)

Lastly, we want to prove that τ∞ ⊂ τp for all p ∈ [1,∞). Suppose that for some p : τ∞ = τp .
Then let q ∈ (

p,∞)
. Then τq = τp . ⇒⇐. Thus τ∞ ⊂ τp .

We see that, contrary to the finite dimensional case, the topologies on R∞ are not equiv-
alent.





CONCLUDING PART I

In the past chapters, we have given several proofs for the Cauchy-Schwarz Inequality, the
AM-GM inequality, Hölder’s Inequality and Minkowski’s inequality, and discussed the in-
timate relationship between these inequalities by showing how each of them can be derived
from the others. We have also proved how the Cauchy-Schwarz inequality and the AM-GM
inequality follow from the simple and almost trivial fact that (a −b)2 ≥ 0.
We saw that this trivial fact hinted towards the study of convexity, which proved to be a sur-
prisingly strong property of which Jensen’s Inequality could be derived.
We also considered a generalised class of means, and proved a generalisation of the AM-
GM inequality from that: the Power Means Inequality.
In retrospect, all the other inequalities could be considered to be (often) simple conse-
quences of Jensen’s inequality - which in and of itself was a simple consequence of the
definition of convexity.
The connection between all the inequalities we studied is represented in the following dia-
gram.

Figure 7.1: The connection between the main inequalities of this thesis is displayed in this diagram. The inequality at the end of an arrow
can be derived using the inequality at the base of the arrow.

Lastly, we studied inequalities relating to the p-norms which followed from Jensen’s in-
equality, and showed how the topologies under each of these norms (and under every other
norm!) were the same on finite dimensional real vector spaces, and as such, how a lot of
structure on real vector is preserved when switching between different norms. We ended
by showing that this rich structure is lost when extending to the infinite dimensional case.
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INTRODUCTION TO PART II

After having studied mathematical inequalities extensively in Part I, we can finally turn to
the physical part of this thesis, which concerns the detection of quantum entanglement,
and how it relates to the mathematical inequalities that we have studied so far.

We will first introduce some fundamental quantum mechanical concepts in Chapter 8.

Then, in Chapter 9, we will study the concept of quantum entanglement and delve into
various entanglement methods. This section will mostly be based on the results found in
Gühne and Tóth (2008).

Then, finally, we will join our prior enquiries into mathematical inequalities from Part I
with quantum entanglement detection, and we will introduce entanglement criteria de-
rived in Wölk et al. (2014) in Chapter 10.

After having proved these criteria, we will assess them in Chapter 11 by considering which
states they can and cannot detect, as well as by comparing them to the criteria introduced
in Chapter 9.
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8
QUANTUM MECHANICAL FUNDAMENTALS

This chapter marks the beginning of the second part of this thesis, in which the applications
of the inequalities that have heretofore been studied to the field of quantum entanglement
detection will be studied. First, however, fundamental quantum mechanical concepts and
theorems will be introduced. These concepts will form the basis for the next few chapters,
in which these concepts will be supplemented by more in-depth discussion of quantum
entanglement and its detection. Note that this section will mostly be based on Nielsen and
Chuang (2012).

8.1. THE AXIOMATIC FOUNDATION OF QUANTUM MECHANICS
Four postulates form the basis of the mathematical description of the physical description
of quantum mechanical phenomena. These four postulates will be introduced below.

Postulate I: Any isolated physical system has an associated Hilbert space, called the state
space, in which the system can be completely described by a unit vector, the so called state
vector, henceforth denoted by |Ψ〉.

Postulate II: The evolution of a closed quantum system is described by a unitary transfor-
mation. The time evolution of the state of any closed quantum system is described by the
Schrödinger equation*:

iħ d

dt
|Ψ〉 = Ĥ |Ψ〉

where Ĥ =− ħ2

2m∇2 + V̂ denotes the Hamiltonian operator.

Postulate III: Quantum measurements are described by a collection of measurement oper-
ators {Mm}, where the indices refer to the possible outcomes. For a state |Ψ〉, the probability
of measuring outcome m is:

P(M = m) = 〈Ψ|M †
m Mm |Ψ〉

After measurement, the state collapses to a new state
∣∣ψ̂〉

:

∣∣ψ̂〉= Mm
∣∣ψ〉√〈

ψ
∣∣M †

m Mm
∣∣ψ〉
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60 8. QUANTUM MECHANICAL FUNDAMENTALS

There is also a special class of measurements, the so-called projective measurements. These
are described by an observable M , which is hermitian on the state space of the system and
has a spectral decomposition, i.e.:

M =∑
m

mPm

where m denotes a possible outcome of the measurement and Pm is the projector onto the
corresponding eigenspace. The probability of measuring m is thus:

P(M = m) = 〈
ψ

∣∣Pm
∣∣ψ〉

This property leads to nice results for the expected value and the standard deviation:

〈M〉 ≡ E(M) =∑
m
P(M = m) = 〈

ψ
∣∣M

∣∣ψ〉
σ(M) ≡

√
〈(M −〈M〉)2〉 =

√〈
ψ

∣∣M 2
∣∣ψ〉− (〈

ψ
∣∣M

∣∣ψ〉)2

Postulate IV: The state phase of a composite physical system is described by the tensor
product of its constituting component systems.

We now proceed to studying the concepts introduced in these postulates more thor-
oughly.

8.2. EXTENDING THE AXIOMATIC FRAMEWORK
In this section, we extend upon the postulates of the field of quantum mechanics. First, we
delve deeper into the description of states, and then we define quantum operators on more
thoroughly.

8.2.1. DESCRIBING STATES

We extend on the concept of a state vector |Ψ〉 as introduced above. First, note that linear
operators can be represented using the so-called outer product representation.

Definition 8.1. Let V ,W be Hilbert spaces and let v ∈ V , w ∈ W . Then the outer product
|w〉〈v | acting on V ×W is defined as the operator which for every other vector v̂ ∈V : satis-
fies:

(|w〉〈v |) |v̂〉 = |w〉〈v |v̂〉 = (〈v |v̂〉) |w〉
State vectors, however, only described pure states. As such, mixtures or statistical en-

sembles of different quantum states cannot be represented by state vectors. In order to
describe these, we make use of the outer product representation and introduce the con-
cept of a density matrix.

Definition 8.2. An ensemble of pure states
∣∣ψi

〉
, occurring with probabilities pi , a so-called

mixed state, can be represented by a density operator ρ̂, defined by:

ρ̂ =
n∑

i=1
pi

∣∣ψi
〉〈
ψi

∣∣
Density matrices possess very nice properties which makes the density operator formal-

ism very useful. Some of the relevant properties of this are given in the following theorem.

Theorem 8.1. Let ρ̂ be a density operator. Then ρ̂ satisfies the following properties:
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1. ρ̂ is positive semi-definite.

2. ρ̂ has a trace of unity.

3. The evolution of a system through the unitary operator U is given by UρU †

4. For a measurement described by Mm , we find1:

P(M = m) = Tr
(
M †

m Mmρ
)

After measurement, the state collapses to:

MmρM †
m

Tr
(
M †

m Mmρ
)

5. Tr
(
ρ2

)≤ 1 with equality if and only if ρ represents a pure state.

6. Given an observable A:
〈A〉 = Tr

(
ρ̂A

)
7. if ρ represents the state of systems A and B, we can describe the state of system A with

the reduced density operator ρA.:
ρA = TrB (ρ)

Where TrB denotes the partial trace. The partial trace is defined as follows:

TrB (|a1〉〈a2|⊗ |b1〉〈b2|) ≡ |a1〉〈a2|Tr(|b1〉〈b2|)

Proof. We only prove property 6.

Tr (ρ̂A) =∑
k

〈k| ρ̂A |k〉 =
n∑

i=1
pi

∑
k

〈k|(∣∣ψi
〉〈
ψi

∣∣) A |k〉 =
n∑

i=1
pi

∑
k

〈
ψi

∣∣ A |k〉〈k
∣∣ψi

〉= n∑
i=1

pi
〈
ψi

∣∣ A
∣∣ψi

〉
where the last step follows from the completeness of {k}.

8.2.2. DESCRIBING OPERATORS

In this section, we proceed to define quantum operators more rigorously by approaching
them axiomatically. But first, since these operators act on Hilbert spaces, we can define an
inner product between them as follows:

Definition 8.3. Given two operators A,B on a finite Hilbert space H . Then the mapping
〈·, ·〉 defined onH ×H as:

〈A,B〉 ≡ Tr
(

A†B
)

is called the Hilbert-Schmidt inner product

We now proceed with the axiomatic approach to quantum operators. Before introduc-
ing these axioms, some preliminary concepts need to be introduced first.

Definition 8.4. Let A be an operator acting on a Hilbert Space H . Then A is called positive
if ∀v ∈H , we have that 〈v |Av〉 ≥ 0.
1Note that Tr (A) ≡∑

n Ann denotes the trace of A.
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Theorem 8.2. (Nielsen and Chuang (2012)) Let A be a positive operator. Then A is self-
adjoint, and therefore also Hermitian.

Definition 8.5. A mapping Λ : HA → HB is called positive if ∀a ≥ 0, Λ(a) ≥ 0. Further-
more, Λ is called a completely positive mapping if it still yields positive mappings under
composition with an arbitrary other system, i.e. if the mapping I ⊗Λ : C ⊗HA →D is still
positive, regardless of C .

Definition 8.6. Let A be an operator acting on H A ⊗HB . Then A is called decomposable if
∃P1,P2 are completely positive maps such that:

A = P1 +P2 ⊗T

where T denotes the transposition map.

Having introduces these preliminary concepts, every quantum operator Λ is described
by the following axioms:

Axiom I: Given an initial state ρ, Tr
(
Λ(ρ)

)
yields the probability that the process described

byΛ occurs.

Axiom II: The mapΛ is a convex linear map on the set of density operators.

Axiom III:Λ is a completely positive map.

Note that this axiomatic approach is equivalent to the approach taken before. This can
be explicated in the following theorem.

Theorem 8.3. (Nielsen and Chuang (2012)) Λ satisfies the axioms given above if and only if
Λ(ρ) can be represented as:

Λ(ρ) =∑
i

AiρA†
i

where {Ai } is a set of operators satisfying
∑

E †
i Ei ≤ I .

Two important maps can be introduced, which will prove to be relevant for entangle-
ment detection later on.

Definition 8.7. The map ρTB = I ⊗θ : HA ⊗HB → HA ⊗HB where θ : B 7→ B T is called
the partial transpose map.

Remark. The transpose map is a positive, but not completely positive, map. Therefore, the
partial transpose is not necessarily a positive map.

Using this knowledge, we can classify states according to the positivity of their partial
transpose as follows:

Definition 8.8. Let ρ ∈ HA ⊗HB . If ρTA is a positive map, so if ρ has a Positive Partial
Transpose, we call ρ PPT. If ρ is not PPT, we call it NPT.

8.2.3. SCHMIDT DECOMPOSITIONS

Since quantum states and operators are represented using linear algebraic objects, these
can be decomposed in many ways. One decomposition that will prove to be of utmost
importance throughout our enquiry is given below, namely the Schmidt Decomposition.
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Theorem 8.4. Schmidt Decomposition. (Gühne and Tóth (2008)) Given a pure state
∣∣ψ〉 ∈

H A ⊗HB of a composite system AB. Then there exists an orthonormal basis |i A〉 for system
A and an orthonormal basis |iB 〉 for system B such that, given d = min{dimH A,HB }:

∣∣ψ〉= d∑
i=1

λi |i A〉⊗ |iB 〉

where λi ≥ 0∀i are called the Schmidt Coefficients such that
∑

i λi = 1. Furthermore, S =
#{λi |λi > 0} is called the Schmidt Rank of the wave function

∣∣ψ〉
.

Note that the concept of a Schmidt decomposition can be extended to density matrices
of bipartite systems as follows:

Theorem 8.5. Schmidt Decomposition. (Gühne and Tóth (2008)) Given a density matrix
ρ ∈H A ⊗HB . Then a basis G A

k of H A,GB
k of HB consisting of Local Orthogonal Observables

(LOO) exists, i.e. 〈G A
i ,G A

j 〉 = 〈GB
i ,GB

i 〉 = δi j , such that:

ρ =∑
k
λkG A

k ⊗GB
k

with λk ≥ 0.

8.3. THE QUANTUM CAUCHY-SCHWARZ INEQUALITY
In the language of quantum mechanics, we retrieve the following formulation for the Cauchy-
Schwarz Inequality:

Theorem 8.6. Cauchy-Schwarz Inequality. (Nielsen and Chuang (2012)) Given
∣∣ψ〉

,
∣∣φ〉

,
then:

|〈ψ∣∣φ〉|2 ≤ 〈
ψ

∣∣ψ〉〈
φ

∣∣φ〉
Furthermore, the Cauchy-Schwarz inequality can be adapted to operators, as these sat-

isfy the Hilbert-Schmidt inner product.

Theorem 8.7. Cauchy-Schwarz for expectations. (Wölk et al. (2014)) Given a density ma-
trix ρ and two operators A,B, both acting on the same Hilbert space. Then:

|Tr
(

ABρ
)|2 ≤ Tr

(
A A†ρ

)
Tr

(
B †Bρ

)
Proof. Note that 〈Â, B̂〉 ≡ Tr (Â†B̂) is the Hilbert-Schmidt inner product. Setting Â =p

ρA†, B̂ =
B
p
ρ, applying Cauchy-Schwarz’ inequality and applying the cyclic property of the Trace

operator yields the result.

A famous application of the Cauchy-Schwarz inequality is in proving the well-known
uncertainty relation of Heisenberg, of which we present a proof below.

Theorem 8.8. Heisenberg’s uncertainty principle. Let A,B be Hermitian operators and let∣∣ψ〉
denote a quantum state. Then:

σ(A)σ(B) ≥ |〈ψ∣∣ [A,B ]
∣∣ψ〉|

2

Proof. First consider the operators Â = A−< A >, B̂ = B−< B >. Then:

|〈ψ∣∣[Â, B̂
]∣∣ψ〉|2 +|〈ψ∣∣{Â, B̂

}∣∣ψ〉|2 = 4|〈ψ∣∣ ÂB̂
∣∣ψ〉|2
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Since:

|〈ψ∣∣ ÂB̂ ± B̂ Â
∣∣ψ〉|2 = |〈ψ∣∣ ÂB̂

∣∣ψ〉±〈
ψ

∣∣ B̂ Â
∣∣ψ〉|2

= (〈
ψ

∣∣ ÂB̂
∣∣ψ〉±〈

ψ
∣∣ B̂ Â

∣∣ψ〉)(〈
ψ

∣∣ ÂB̂
∣∣ψ〉±〈

ψ
∣∣ B̂ Â

∣∣ψ〉)
= |〈ψ∣∣ ÂB̂

∣∣ψ〉|2 ±〈
ψ

∣∣ ÂB̂
∣∣ψ〉〈

ψ
∣∣ B̂ Â

∣∣ψ〉±〈
ψ

∣∣ ÂB̂
∣∣ψ〉〈

ψ
∣∣ B̂ Â

∣∣ψ〉+|〈ψ∣∣ B̂ Â
∣∣ψ〉|2

= 2|〈ψ∣∣ ÂB̂
∣∣ψ〉|2 ±〈

ψ
∣∣ ÂB̂

∣∣ψ〉〈
ψ

∣∣ B̂ Â
∣∣ψ〉±〈

ψ
∣∣ ÂB̂

∣∣ψ〉〈
ψ

∣∣ B̂ Â
∣∣ψ〉

where the last step follows because the hermitian conjugation conserves lengths for scalars
(inner products) and because A,B are hermitian. But now:

|〈ψ∣∣ ÂB̂
∣∣ψ〉|2 ≥ |〈ψ∣∣[Â, B̂

]∣∣ψ〉|2
4

Taking the square root of both sides and substituting Â = A −〈A〉 , B̂ = B −〈B〉 finishes the
proof.

Note that the other inequalities presented in the previous chapters can also be writ-
ten in terms of the quantum mechanical formalism. This will not be done here, since the
quantum mechanical representation of these inequalities is considered to be very evident.
Nevertheless, they will prove to be very important - the definition of the density matrix
as the convex sum of outer products hints at the use of Jensen’s Inequality or the AM-GM
inequality, for example. This will become more clear as we turn to the topic of quantum
entanglement, which will be introduced in the next chapter.



9
AN ENQUIRY INTO ENTANGLEMENT

DETECTION

In this chapter, an enquiry will be made into the various detection methods for quantum
entanglement. But, prior to that, the concept of entanglement will be introduced first. This
chapter will be divided into two sections - one on bipartite entanglement and one on mul-
tipartite entanglement - as this approach offers more insight in the topic of entanglement
detection.

9.1. BIPARTITE ENTANGLEMENT AND ITS DETECTION
We first introduce the definition of entanglement for two-particle states and then proceed
to discuss the detection of bipartite entanglement.

9.1.1. INTRODUCTION TO BIPARTITE ENTANGLEMENT

Let us first introduce the definition of separability and entanglement for bipartite systems.

Definition 9.1. Given a pure bipartite state |Ψ〉 ∈H1 ⊗H2. |Ψ〉 is called separable if it can
be written as the tensor product of pure states, i.e. if ∃ ∣∣ψ1

〉 ∈H1and
∣∣ψ2

〉 ∈H2, such that:

|Ψ〉 = ∣∣ψ1
〉⊗ ∣∣ψ2

〉
If |Ψ〉 is not separable, it is called entangled.

An example of a bipartite entangled state is for example the ψ− Bell state, which is given
by: ∣∣ψ−

〉= |10〉− |01〉p
2

This result can be generalised to mixed bipartite systems.

Definition 9.2. Let ρ ∈H1⊗H2 be a density operator. We then distinguish three classes of
density matrices.

1. If ρ = ρA ⊗ρB , then ρ is called a product state.

2. If ρ can be written as a convex sum of product states, i.e. ρ = ∑
i piρ

A
i ⊗ρB

i , then ρ is
called separable. Note that any product state is also separable.

3. If ρ is not separable, ρ is called entangled.
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Given some mixture of quantum states - so, some density matrix - the question whether
this mixture is separable or entangled follows naturally, especially considering that this
knowledge is of great importance for many applications in for example quantum comput-
ing. This question results in the so-called separability problem, which has not been resolved
up to this date (Gühne and Tóth (2008)). Some criteria, however, have been derived - these
will be discussed below.

9.1.2. BIPARTITE ENTANGLEMENT DETECTION

There are various methods for the detection of entanglement. In this section, the most
important bipartite entanglement detection methods will be treated. We first discuss de-
tection methods which are dependent on performing direct action on the given mixture.

THE PPT, REDUCTION AND MAJORISATION CRITERIA

We first give three criteria and prove them, and then show how they relate to one another.
Let us first state and prove the so-called PPT criterion (Wolf (2003), Gühne and Tóth (2008))

Theorem 9.1. (PPT Criterion) Let ρ be a bipartite, separable state. Then ρ is PPT.

Proof. Let ρ be separable, i.e. ρ =∑n
i=1 piρA

i ⊗ρB
i . We can take the partial transpose:

ρTA =
n∑

i=1
pi

(
ρA

i

)T ⊗ρB
i

Note that this again is a density matrix and as such a positive definite operator. Thus ρ is
PPT.

If the converse of the implication were also true, the separability problem for bipartite
states could be reduced to the question whether these states are PPT. This is, unfortunately,
not always the case. There are some cases of great practical relevance - like two-qubit sys-
tems - for which this is the case, however:

Theorem 9.2. (Horodecki’s Theorem) (Horodecki et al. (1996)) Let ρ be a 2x2 or a 2x3 sys-
tem. If ρ is PPT, then ρ is separable.

Another criterion that is related to positive but not completely positive maps is based
on the so-called Reduction map.

Theorem 9.3. (Reduction criterion) Let ΛR (X ) = Tr(X )1− X . If ρ is separable, then I ⊗
ΛR (ρ) ≥ 0.

One may wonder how this criterion relates to the PPT criterion in terms of its detection
strength. The following theorem shows that the Reduction criterion is actually weaker than
the PPT criterion:

Theorem 9.4. Let ρ be entangled and detectable by the Reduction criterion. Then ρ is de-
tectable by the PPT criterion.

Proof. First of all, note that ΛR is decomposable (see Horodecki and Horodecki (1999)),
i.e. ∃P1,P2 completely positive maps such that ΛR = P1 +P2 ⊗T . But since P1 and P2 are
completely positive, ρ can only be detected if I ⊗T is not positive.

Note that decomposability is not unique to this specific positive map - it can be gener-
alised even further.
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Theorem 9.5. (Woronowicz (1976)) Let Λ : H A → HB with dimHa = 2 and dimHB ≤ 3.
ThenΛ is decomposable.

It can actually be shown that any positive but not completely positive map is completely
positive over the separable states. This yields an interesting theorem, of which the Reduc-
tion Criterion is just a corollary.

Theorem 9.6. (Horodecki et al. (1996)) ρ is separable ⇐⇒ ∀Λ positive, we have that (I ⊗
Λ)(ρ) ≥ 0 ∀ρ.

Thus, the separability problem reduces to the identification of all positive maps. From
this, it easily follows that for low dimensions (at most 2 x 3), the PPT criterion is a necessary
and sufficient condition for entanglement, and as such, proves the Horodecki criterion.

Furthermore, there is another criterion that - at first sight - might appear to be com-
pletely unrelated, which we state here without proof.

Theorem 9.7. (Majorisation Criterion) (Hiroshima (2003)) Let ρ ∈ H A ⊗HB be a density
matrix and consider ρA ≡ TrB (ρ). Consider the eigenvalues of ρ arranged in decreasing order,
say P = (

p1, p2 . . .
)

and analogously those of ρA, say Q = (
q1, q2 . . .

)
. If ρ is separable, then ∀k:

k∑
i=1

pi ≤
k∑

i=1
qi

The question how the majorisation criterion relates to the reduction criterion arises nat-
urally. This question is addressed by the following theorem.

Theorem 9.8. (Hiroshima (2003)) Any entangled state that is detected by the majorisation
criterion can also be detected by the reduction criterion.

We thus see that the PPT criterion is the stronger one of these criteria. There are, how-
ever, criteria that can detect states which are left undetected by the PPT criterion. One of
such entangled PPT states is (de Vicente (2007)):

ρ = 1
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Some of these criteria are discussed next.

THE CCNR CRITERION, THE CMC CRITERION AND OTHERS

We start off by introducing a criterion which is based on the Schmidt decomposition in
operator space: the so-called Computable Cross Norm or Realignment Criterion.

Theorem 9.9. (CCNR Criterion) (Chen and Wu (2003)). Let ρ be a density matrix with the
following Schmidt decomposition: ρ = ∑

k λkG A
k ⊗GB

k , where
{
G A

k

}
forms an orthonormal

basis of H A and
{
GB

k

}
forms an orthonormal basis of HB . If ρ is separable, then:∑

k
λk ≤ 1
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A similar criterion is the so-called Covariance Matrix Criterion.

Theorem 9.10. (CMC Criterion) (Gittsovich et al. (2008)) Let G A
i ,GB

j denote local orthog-
onal observables acting on H A and HB , respectively. Then by forming the block matrix γ

by setting γi j = 〈G A
i GB

j 〉− 〈G A
i 〉〈GB

j 〉. Then if ρ ∈ H A ⊗HB is separable, one can find states

ψA
k ∈H A and ψk

k ∈HB such that:

γ≥
[∑

k pkγ
∣∣ψA

k

〉
0

0
∑

k pkγ
∣∣ψB

k

〉]
We note that these criteria are intimately connected, as is shown in the following theo-

rem:

Theorem 9.11. (de Vicente (2007)) Any state ρ detected by the CNC criterion is also detected
by the CCNR criterion.

Note that the CCNR and the PPT criterion do not detect the same states. There is, how-
ever, a criterion, which relates these two criteria based on the idea of linear contractions
and permutations.

Theorem 9.12. (Horodecki et al. (2006)) Given a density matrix ρ expanded in a product
basis, so ρ = ∑

i j ,kl ρi j kl |i 〉
〈

j
∣∣⊗ |k〉〈l |. Then the following two separability criteria can be

derived:
‖ρ(i j lk)‖ ≤ 1 and ‖ρ(i k j l )‖ ≤ 1

where (. . . ) indicates a permutation of ijkl and the Hilbert-Schmidt norm is used.

Note that the first of the two separability requirements is just the PPT criterion, while
the second criterion comes down to the CCNR criterion.

BIPARTITE WITNESS DETECTION

The methods presented up until here all presuppose knowledge of the mixture of states
at hand. In this section, a class of methods that do not require such knowledge will be
presented: entanglement witness detection methods. We first define a witness.

Definition 9.3. Let W be an observable. W is called an entanglement witness if:

∀ρs separable : Tr
(
W ρs

)≥ 0

∃ρe entangled : Tr
(
W ρe

)< 0

In fact, all entangled states can be detected by some witness:

Theorem 9.13. (Horodecki et al. (1996)) Let ρ be an entangled state. Then there is an entan-
glement witness W which detects ρ.

We thus find another reformulation of the separability problem: if we know how to con-
struct a entanglement witness for any entangled state, we can always determine whether a
state is separable or not.
We can now discuss two examples of constructions of witnesses, namely for states that vi-
olate the PPT criterion and for states that violate the CCNR criterion.

Theorem 9.14. (Gühne and Tóth (2008)) Let ρ be NPT with a negative eigenvalue λ− for
some eigenvector

∣∣η〉
of ρTA . Then:

W = ∣∣η〉〈
η
∣∣TA

is a witness detecting ρ.
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We can generalise this theorem to any positive map as follows:

Theorem 9.15. (Gühne and Tóth (2008)) Let ρ be an entangled state detected by the positive
operatorΛ. Then:

1. 1⊗Λ(ρ) has some eigenvalue λ− < 0 for some eigenvector
∣∣η〉

, and

2. W = I ⊗Λ∗(
∣∣η〉〈

η
∣∣) is a witness which detects ρ.

We can also derive a witness based on the CCNR criterion.

Theorem 9.16. (Yu and Liu (2005)) Let ρ violate the CCNR criterion. Then:

W = I −∑
k

G A
k ⊗GB

k

is a witness that detects ρ.

The question might rise whether there is a connection between entanglement detec-
tion via positive maps and entanglement detection using witnesses. This question can be
addressed by studying a specific isomorphism, which will be discussed in the next section.

CONNECTING POSITIVE MAPS AND WITNESSES

In the search of a connection between the maps between two spaces and the operators act-
ing on their tensor product, a logical step would be to try to find an isomorphism between
these two classes of objects. We introduce one such isomorphism below.

Definition 9.4. Consider the operators E acting on L(H A)⊗L(HB ) and consider the maps
ε : L(H A) → L(HB ). Then the Choi-Jamiołkowski isomorphism is given by:

ε(ρ) = TrA(EρT ⊗1B )

The relevance of the Choi-Jamiołkowski isomorphism will become clear from the next
theorem.

Theorem 9.17. (Choi (1975)) Let E be an operator acting on L(H A)⊗L(HB ) and consider
the map ε : L(H A) → L(HB ). Suppose that ε and E are mapped onto each other by the Choi-
Jamiołkowski isomorphism. Then the following properties hold:

1. ε is CP ⇐⇒ E is a positive semi-definite operator.

2. ε is positive but not CP ⇐⇒ E is an entanglement witness.

3. ε is decomposable ⇐⇒ E is a decomposable entanglement witness.

This theorem shows that the Choi-Jamiołkowski isomorphism relates positive but not
completely positive maps to entanglement witnesses, effectively linking the maps studied
in the previous sections like the partial transpose to the witnesses discussed later on. As
such, we see that the separability problem can also be interpreted to be the classification
of all entanglement witnesses.
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NON-LINEAR WITNESS DETECTION

Note that the inequalities that were derived up until now for witness detection methods
are all inequalities in the mean of the given witness. These inequalities can, however, be
extended to include non-linearities in the form of e.g. the variance of the observables at
hand. For example, all witnesses of the form presented in Theorem 9.14 can be given a
nonlinear extension (see: Gühne and Lütkenhaus (2005)). This extension offers signifi-
cant improvement over the linear entanglement criteria. We will discuss several of these
non-linear criteria in this chapter, and will derive some other non-linear criteria using the
inequalities studied in the previous chapters in the next chapter.

Two of these non-linear criteria were derived by Hillery and Zubairy.

Theorem 9.18. Let A,B be operators acting on H A and HB , respectively. Then for separable
states ρ we have:

|〈A† ⊗B〉|2 ≤ 〈A† A⊗B †B〉
|〈A† ⊗B〉|2 ≤ 〈A A†〉〈B †B〉

Another bipartite entanglement criteria was derived by Shchukin and Vogel.

Theorem 9.19. () Let a,b denote the annihilation operators in H A and HB , respectively.
Then:

|〈a†m an a†p aq ⊗b†sbr b†k bl 〉| ≤ 〈a†m an a†n am ⊗b†l bk b†k bl 〉〈a†q ap a†p aq ⊗b†sbr b†r bs〉

Lastly, a criterion has been derived by Huber et al.

Theorem 9.20. Let Π denote the permutation operator and let Φ denote a product state of
an m-tupled system for some m ∈N≥2. Then:√

Re
(〈Φ| (1A ⊗ΠB )†ρ⊗m (ΠA ⊗1B ) |Φ〉)≤√

〈Φ|ρ⊗m |Φ〉

It can be shown that the cases for m ≥ 3 can be brought back to the case for m = 2 with
a different product stateΦ. We therefore restrict ourselves to the case for m = 2.

9.2. MULTIPARTITE ENTANGLEMENT AND ITS DETECTION
In this section we introduce entanglement and entanglement detection methods for multi-
partite systems. This will not be done in a completely analogous manner to the two-particle
case, as extra particles introduce more complex structures than the bipartite case, since
multiple degrees of entanglement become possible.

9.2.1. INTRODUCTION INTO MULTIPARTITE ENTANGLEMENT

We start off by introducing the concept of separability, and from there on delve into the
possible forms of entanglement.

Definition 9.5. Given a pure multipartite state |Ψ〉 ∈ ⊗n
i=1 H i . |Ψ〉 is called fully separable

if it can be written as the tensor product of pure states, i.e. if ∃ ∣∣ψ1
〉 ∈ H1, . . . ,

∣∣ψn
〉 ∈ Hn ,

such that:

|Ψ〉 =
n⊗

i=1

∣∣ψi
〉
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Any state that is not fully separable, is somewhat entangled. We now introduce structure
into the degrees of entanglement possible. First, we introduce a weaker form of separabil-
ity.

Definition 9.6. Let |Ψ〉 ∈ ⊗n
i=1 H i . |Ψ〉 is called m-separable with 1 < m < n if there are m

parts P1, . . . ,Pm such that:

|Ψ〉 =
m⊗

i=1

∣∣φ〉
Pi

We call |Ψ〉 truly n-partite entangled if it is neither fully separable nor m-separable.

Let us now introduce some examples of important multipartite entangled states. We first
start off with a class of states that is very strongly entangled: the Greenberger–Horne–Zeilinger
(GHZ) state.

Definition 9.7. The GHZ-state for n qubits is:

|G H Zn〉 =
|0〉⊗n +|1〉⊗n

p
2

Another class of entangled qubit states are called Dicke-states.

Definition 9.8. The (n,k) symmetric Dicke state on n qubits is defined as:

∣∣Dk,n
〉= ∑

j P j
(|1〉⊗k ⊗|0〉⊗n−k

)√(n
k

)
where P j () denotes a permutation over the order of the qubits.

To make these definitions more tangible, let us consider their tripartite versions. For
three qubits, the GHZ-state is becomes:

|G H Z3〉 =
|000〉+ |111〉p

2

and one of the Dicke states, the (1,3)-Dicke state (which is also known as the W state), be-
comes:

|W3〉 =
|100〉+ |010〉+ |001〉p

3

9.2.2. MULTIPARTITE ENTANGLEMENT DETECTION METHODS

In this section, we will primarily focuss on multipartite witness detection, as this will prove
to be relevant for our enquiry. Nevertheless, we first introduce a multipartite entanglement
criterion which generalises the PPT and CCNR criteria by using permutations.

MULTIPARTITE ENTANGLEMENT PERMUTATION CRITERIA

Theorem 9.21. (Permutation Criteria) (Horodecki et al. (2006)) Given ρ describing an n-
dimensional system with an expansion in a product basis of the following form:

ρ = ∑
i1, j1,...in , jn

ρi1, j1,...in , jn

n⊗
k=1

|ik〉
〈

jk
∣∣

Then ρ is separable if for all permutations (denoted as σ), we have:

‖ρσ(i1, j1,...in , jn )‖ ≤ 1
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MULTIPARTITE WITNESS DETECTION

We can also introduce the concept of entanglement witnesses for multipartite systems. It
should first be noted that several types of witnesses exist for different types of multipartite
entanglement. One of these witnesses are GHZ-witnesses.

Definition 9.9. WG H Z is called a GHZ-class witness if:

∀ρ not GHZ : Tr
(
WG H Zρ

)≥ 0 (9.1)

∃ρg GHZ : Tr
(
WG H Zρg

)< 0 (9.2)

This definition can be adapted to derive witnesses for other classes. These witnesses
can be easily constructed as follows. Let

∣∣psi
〉

denote the state that we want the witness to
detect. Then

Wψ =α1− ∣∣ψ〉〈
ψ

∣∣
Then Wψ is a witness detecting

∣∣ψ〉
with α denoting the maximum overlap between

∣∣ψ〉
and other inseparable states. Note that this allows for a degree of freedom, as said insepa-
rable states can be chosen to be e.g. biseparable or fully separable states. One can derive,
for example, a witness that detects genuine multipartite detection in specific Dike states,

namely
∣∣∣D N

2 ,N

〉
to be:

WD = N

2(N −1)
1−

∣∣∣D N
2 ,N

〉〈
D N

2 ,N

∣∣∣
Note that these linear witness criteria are very basic, and can be extended greatly, for ex-
ample by considering stabiliser witnesses. This is, however, beyond the scope of this thesis.

We now consider five cases of non-linear witnesses for multipartite systems.
We first start off by considering a criterion for tripartite systems that was derived by Gühne
and Seevinck.

Theorem 9.22. Consider the density matrixρ, expressed in the standard basis (|000〉 , |001〉 , . . . , |111〉).
Then for separable states and biseparable qubit states, we find that:

|ρ000,111| ≤p
ρ001,001ρ110,110 +p

ρ010,010ρ101,101 +p
ρ011,011ρ100,100

Note that this Theorem also has practical uses, as it provides a both necessary and suf-
ficient condition for full separability of GHZ-states that are mixed with white noise (Gühne
and Seevinck (2018)). We will prove this theorem in a later chapter.
Furthermore, it is suggested in Wölk et al. (2014) that the condition by Gühne and Seevinck
can be extended using the AM-GM inequality (Theorem 3.1). Note, however, that this ex-
tension is of little use in our attempt to detect non-separable states, as this only loosens the
upper bound that has been derived, and as such, will fail to detect even more not com-
pletely separable states.

We now turn to more general multipartite systems. First of all, the criterion by Hillary
and Zubairy can be generalised to multipartite systems.

Theorem 9.23. Let Ak be operators acting on Hk for k = 1, . . . , N . Then:

‖〈
N⊗

k=1

Ak〉|2 ≤ 〈
j⊗

k=1

A†
k Ak〉〈

N⊗
k= j+1

Ak A†
k〉

is satisfied by separable states as well as biseparable states with respect to the partition (1,2, . . . , j ), ( j+
1, . . . , N ).
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In Hillery et al. (2010), Hillary et al. sought to derive stronger versions of this extension.
Note that these criteria can proved using the inequalities that we have studied. We present
two of them here.

Theorem 9.24. Consider operators Ak acting on Hk for k = 1, . . . ,n. Then for separable
states, the following holds:

|〈
N⊗

k=1

Ak〉| ≤
N∏

k=1

〈
(

A†
k Ak

) n
2 〉

1
n

Theorem 9.25. Consider operators Ak acting on Hk for k = 1, . . . ,n. Then for separable
states, the following holds:

|〈
N⊗

k=1

Ak〉|n ≤ 〈
(

1

n

N∑
k=1

A†
k Ak

) n
2

〉

The criterion by Huber et al. can also be extended to the multipartite case. We specifi-
cally consider the generalisation for m = 2.

Theorem 9.26. For all biseparable states, we find that:√
〈Φ|ρ⊗2Π |Φ〉 ≤∑

j

√
〈Φ|P †

j ρ
⊗2P j |Φ〉

whereΠ acts on all subsystems simultaneously, while P j only acts on the j th subsystem.

In the next chapter, we derive some non-linear witnesses based on the inequalities stud-
ied in previous chapters, and then assess these criteria by comparing them to the ones pre-
sented here.
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ENTANGLEMENT CRITERIA BASED ON

CAUCHY-SCHWARZ AND HÖLDER

In this chapter, we will present entanglement criteria developed by Wölk, Huber and Gühne.
Just like in the previous chapter, we first start by presenting the two-particle case first. After-
wards, the results from these two-particle states will be extended to multipartite systems,
after which we will compare these results with some of the criteria discussed in the previous
chapter.

10.1. A BIPARTITE ENTANGLEMENT CRITERION
In this section, we present two upper bounds for quantum states: one that holds for all
states, and a second one which only holds for separable states. Throughout this section,
states ψ ∈ H A ⊗HB as well as operators A1, A2 acting on H A as well as operators B1,B2

acting on HB will be considered.
We now present and prove an upper bound which holds for all states.

Theorem 10.1. For all operators A1, A2,B1,B2, the following inequality holds:

| 〈A1 A2 ⊗B1B2〉|2 ≤ 〈A1 A†
1 ⊗B1B †

1〉〈A†
2 A2 ⊗B †

2B2〉
Proof. Note that this result follows trivially from the Cauchy-Schwarz Inequality on the
Hilbert-Schmidt norm (Theorem 8.7) by taking A = A1 ⊗B1,B = A2 ⊗B2.

We now present and prove a result which only holds for separable states.

Theorem 10.2. For separable states and for all operators A1, A2,B1,B2, the following in-
equality holds:

| 〈A1 A2 ⊗B1B2〉|2 ≤ 〈A1 A†
1 ⊗B †

2B2〉〈A†
2 A2 ⊗B1B †

1〉
Proof. First assume

∣∣ψ〉= |a〉⊗ |b〉. Then:

|〈a ⊗b| A1 A2⊗B1B2 |a ⊗b〉|2 = |〈a| A1 A2 |a〉|2|〈b|B1B2 |b〉|2 ≤ 〈a| A1 A†
1 |a〉〈a| A†

2 A2 |a〉〈b|B1B †
1 |b〉〈b|B †

2B2 |b〉
where the first step follows from the separability of

∣∣ψ〉
and the inequality follows from

Theorem 8.7. The proof for pure states is finished by realising that:

〈A1 A†
1 ⊗B †

2B2〉〈A†
2 A2 ⊗B1B †

1〉 = 〈a| A1 A†
1 |a〉〈b|B †

2B2 |b〉〈a| A†
2 A2 |a〉〈b|B1B †

1 |b〉
= 〈a| A1 A†

1 |a〉〈a| A†
2 A2 |a〉〈b|B1B †

1 |b〉〈b|B †
2B2 |b〉

75
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Let us now consider mixed states. Set ρ = ∑n
k=1 pkρk , where ρk ≡ ∣∣ψk

〉〈
ψk

∣∣ for pure states∣∣ψk
〉

. Then each ρk represents a pure state, thus:

〈A1 A2 ⊗B1B2〉 = Tr
((

A1 A2 ⊗B1B2ρ
))= Tr

(
(A1 A2 ⊗B1B2)

n∑
k=1

pkρk

)
=

n∑
k=1

pk Tr
(
(A1 A2 ⊗B1B2)ρk

)
One can now deduce that:

n∑
k=1

pk Tr
(
(A1 A2 ⊗B1B2)ρk

)≤ n∑
k=1

pk

√
Tr

((
A1 A†

1 ⊗B †
2B2

)
ρk

)
Tr

((
A†

2 A2 ⊗B1B †
1

)
ρk

)
=

n∑
k=1

√
pk Tr

((
A1 A†

1 ⊗B †
2B2

)
ρk

)
·
√

pk Tr
((

A†
2 A2 ⊗B1B †

1

)
ρk

)
≤

√
n∑

k=1
pk Tr

((
A1 A†

1 ⊗B †
2B2

)
ρk

) n∑
k=1

pk Tr
((

A†
2 A2 ⊗B1B †

1

)
ρk

)

=
√√√√Tr

((
A1 A†

1 ⊗B †
2B2

) n∑
k=1

pkρk

)
Tr

((
A†

2 A2 ⊗B1B †
1

) n∑
k=1

pkρk

)

=
√

Tr
((

A1 A†
1 ⊗B †

2B2

)
ρ
)

Tr
((

A†
2 A2 ⊗B1B †

1

)
ρ
)

=
√
〈A1 A†

1 ⊗B †
2B2〉〈A†

2 A2 ⊗B1B †
1〉

where the two inequalities follow from the Cauchy-schwarz Inequality (Theorem 2.4).

Any state that violates this criterion is thus entangled. Note that this criterion only works
if the upper bound found for separable states is smaller than the upper bound we have de-
rived for general states.

10.2. DERIVING MULTIPARTITE ENTANGLEMENT CRITERIA
In this section, we will derive a generalisation of the criterion derived in the previous sec-
tion. Note that this derivation cannot be done completely analogously without loss of the
strength of the criterion - that is, the criterion will not only be sensitive to (genuine) mul-
tipartite entanglement. We will first show why this is the case, and will then proceed to
derive the criterion.

Let us first proceed by deriving a criterion in an analogous manner. Let us consider
operators A1

k A2
k acting on Hilbert spaces Hk for k = 1, . . . , N . For product states, we can

then easily derive the following inequality - simply through substitution:

|〈
N⊗

k=1

A1
k A2

k〉| ≤
N∏

k=1

√
〈A1

k (A1
k )†〉〈(A2

k )† A2
k〉

We can then introduce any recombination of the operators on the right hand side, following
a similar argument as was done in the bipartite case. We introduce a new index based on
the permutation σ over the current set of indices, to find:

|〈
N⊗

k=1

A1
k A2

k〉| ≤
N∏

k=1

√
〈A1

k (A1
k )†(A2

σ(k))
† A2

σ(k)〉
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Note, however, that these inequalities are not convex, and as such do not generally hold for
separable mixed states. As such, no criterion can be derived that guarantees to be valid for
separable states in this fashion.

We thus derive another set of multipartite entanglement criteria, which is an explicit
generalisation of our bipartite criterion, which is based on a development scheme pre-
sented in Wölk et al. (2014), in which we will use the Cauchy-Schwarz inequality (Theorem
2.4), Holder’s inequality (Theorem 6.5) and Jensen’s inequality (Theorem 4.1).

Theorem 10.3. Given operators A1
k , A2

k acting on a Hilbert Space Hk for k = 1, . . . , N . Then
for any permutationσ acting on {1, . . . , N } with ord(σ) = n, the following inequality holds for
separable states:

|〈
N⊗

k=1

A1
k A2

k〉|2 ≤
N∏

k=1

(
〈
(

A1
k

(
A1

k

)†
(A2

σ(k))
† A2

σ(k)

) N
2 〉

) 2
N

Proof. We first set ρ = ∑
i pi

∣∣ψi
〉〈
ψi

∣∣, where
∣∣ψi

〉
are product states in

⊗N
k=1 Hk . Because

we are considering a separable state, we find that:

|〈
N⊗

k=1

A1
k A2

k〉|2 = |∑
i

pi 〈
N⊗

k=1

A1
k A2

k〉
i

|2 ≤∑
i

pi |〈
N⊗

k=1

A1
k A2

k〉
i

|2

Where the final step follows from the triangle inequality for absolute values. We can now
split the right hand side up in the same manner as was done in the bipartite case, as this
concerns product states. We thus proceed by applying the Cauchy-Schwarz inequality:

∑
i

pi 〈
N⊗

k=1

A1
k A2

k〉
i

|2 ≤∑
i

pi |
N∏

k=1

〈A1
k

(
A1

k

)†〉i 〈
(

A2
k

)†
A2

k〉i |

We now introduce the permutation function σ to regroup the expected values:

∑
i

pi |
N∏

k=1

〈A1
k

(
A1

k

)†〉i 〈
(

A2
k

)†
A2

k〉i | =
∑

i
pi |

N∏
k=1

〈A1
k

(
A1

k

)†
(

A2
σ(k)

)†
A2
σ(k)〉i

|

We now combine two of the results that we have derived earlier: a generalisation of Hölder’s
inequality (6.5) as well as the weighted Hölder’s inequality (6.6). Using these results, we
find: ∑

i
pi |

N∏
k=1

〈A1
k

(
A1

k

)†
(

A2
σ(k)

)†
A2
σ(k)〉i

| ≤
N∏

k=1

∑
i

pi |〈A1
k

(
A1

k

)†
(

A2
σ(k)

)†
A2
σ(k)〉

N
2

i
| 2

N

We now make use of Jensen’s inequality (4.1), which yields that for any positive operator P
and any x ≥ 1, we have that 〈P〉x ≤ 〈P x〉, such that:

N∏
k=1

∑
i

pi |〈A1
k

(
A1

k

)†
(

A2
σ(k)

)†
A2
σ(k)〉

N
2

i
| 2

N ≤
N∏

k=1

∑
i

pi |〈
(

A1
k

(
A1

k

)†
(

A2
σ(k)

)†
A2
σ(k)

) N
2 〉

i
| 2

N

Note that the right hand side of the last inequality can be rewritten in terms of expected
values over the mixed state, so:

N∏
k=1

∑
i

pi |〈
(

A1
k

(
A1

k

)†
(

A2
σ(k)

)†
A2
σ(k)

) N
2 〉

i
| 2

N =
N∏

k=1

(
〈
(

A1
k

(
A1

k

)†
(A2

σ(k))
† A2

σ(k)

) N
2 〉

) 2
N

Combining the first and the final result finishes this proof.
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Note that this is just one of many possibilities, as the decision to group the k values with
just one of their permutations was made on an arbitrary basis - these can be grouped in
any other manner, and as such, this derivation allows for criteria of different forms than
the one presented above to be derived.
We present four of the many alternatives below which apply to tripartite systems. In the
next chapter, these specific cases will prove their worth when we consider a special tripar-
tite state and further assess our criteria.

Theorem 10.4. Let A1, A2, B1,B2 and C1,C2 be operators acting on the Hilbert Spaces H A,HB

and HC , respectively. Then the following condition holds for all separable states:

|〈A1 A2 ⊗B1B2 ⊗C1C2〉| ≤
(
〈A1 A†

1 ⊗B1B †
1 ⊗C †

2C2〉〈A1 A†
1 ⊗B †

2B2 ⊗C1C †
1〉

. . . 〈A†
2 A2 ⊗B1B †

1 ⊗C1C †
1〉〈A†

2 A2 ⊗B †
2B2 ⊗C †

2C2〉
) 1

4

Proof. We proceed by following the scheme presented in the proof of the previous theorem
to find:

|〈A1 A2 ⊗B1B2 ⊗C1C2〉| ≤
∑

i
pi

√
〈A1 A†

1〉i 〈A†
2 A2〉i 〈B1B †

1〉i 〈B †
2B2〉i 〈C1C †

1〉i 〈C †
2C2〉i

Since each of the terms contains operators of the form X X † and is thus a positive operator,

we can safely set 〈X X †〉 =
(
〈X X †〉n

) 1
n

. Setting n = 2, we find:

|〈A1 A2 ⊗B1B2 ⊗C1C2〉| ≤
∑

i
pi

(
〈A1 A†

1〉i 〈A1 A†
1〉i 〈A†

2 A2〉i 〈A†
2 A2〉i 〈B1B †

1〉i 〈B1B †
1〉i

. . . 〈B †
2B2〉i 〈B †

2B2〉i 〈C1C †
1〉i 〈C1C †

1〉i 〈C †
2C2〉i 〈C †

2C2〉i

) 1
4

We now combine these expected values in groups of three in order to find:

|〈A1 A2 ⊗B1B2 ⊗C1C2〉| ≤
∑

i
pi

(
〈A1 A†

1 ⊗B1B †
1 ⊗C †

2C2〉i 〈A1 A†
1 ⊗B †

2B2 ⊗C1C †
1〉i

. . . 〈A†
2 A2 ⊗B1B †

1 ⊗C1C †
1〉i 〈A†

2 A2 ⊗B †
2B2 ⊗C †

2C2〉i

) 1
4

We now proceed in the same manner as before and apply a combination of Theorem 6.5
and Theorem 6.6 in order to find:

|〈A1 A2 ⊗B1B2 ⊗C1C2〉| ≤
((∑

i
pi 〈A1 A†

1 ⊗B1B †
1 ⊗C †

2C2〉i

)(∑
i

pi 〈A1 A†
1 ⊗B †

2B2 ⊗C1C †
1〉i

)

. . .

(∑
i

pi 〈A†
2 A2 ⊗B1B †

1 ⊗C1C †
1〉i

)(∑
i

pi 〈A†
2 A2 ⊗B †

2B2 ⊗C †
2C2〉i

)) 1
4

Each of the sums on the right can be rewritten to the expected value with regards to the
density matrix at hand. This finishes the proof.

Similarly, one can prove the following theorem:

Theorem 10.5. Let A1, A2, B1,B2 and C1,C2 be operators acting on the Hilbert Spaces H A,HB

and HC , respectively. Then the following condition holds for all separable states:

|〈A1 A2 ⊗B1B2 ⊗C1C2〉| ≤
(
〈A1 A†

1 ⊗B1B †
1 ⊗C1C †

1〉〈A1 A†
1 ⊗B †

2B2 ⊗C †
2C2〉

. . . 〈A†
2 A2 ⊗B1B †

1 ⊗C †
2C2〉〈A†

2 A2 ⊗B †
2B2 ⊗C1C †

1〉
) 1

4
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The next two extensions can be found below. As these can be proved in a completely
analogous manner as the previous criteria, we omit their proof - one can follow the previous
proof and take n = 3 instead and regroup the operators differently.

Theorem 10.6. Let A1, A2, B1,B2 and C1,C2 be operators acting on the Hilbert Spaces H A,HB

and HC , respectively. Then for separable states, we have that:

|〈A1 A2 ⊗B1B2 ⊗C1C2〉| ≤
(
〈A†

2 A2 ⊗B †
2B2 ⊗C1C †

1〉〈A†
2 A2 ⊗B1B †

1 ⊗C †
2C2〉〈A1 A†

1 ⊗B †
2B2 ⊗C1C †

1〉

. . . 〈A1 A†
1 ⊗B †

2B2 ⊗C †
2C2〉〈A†

2 A2 ⊗B1B †
1 ⊗C1C †

1〉〈A1 A†
1 ⊗B1B †

1 ⊗C †
2C2〉

) 1
6

Theorem 10.7. Let A1, A2, B1,B2 and C1,C2 be operators acting on the Hilbert Spaces H A,HB

and HC , respectively. Then for separable states, we have that:

|〈A1 A2 ⊗B1B2 ⊗C1C2〉| ≤
(
〈A†

2 A2 ⊗B †
2B2 ⊗C1C †

1〉〈A†
2 A2 ⊗B1B †

1 ⊗C †
2C2〉〈A1 A†

1 ⊗B †
2B2 ⊗C †

2C2〉

. . . 〈A1 A†
1 ⊗B †

2B2 ⊗C †
2C2〉〈A†

2 A2 ⊗B1B †
1 ⊗C1C †

1〉〈A1 A†
1 ⊗B1B †

1 ⊗C1C †
1〉

) 1
6





11
ASSESSMENT OF THE INEQUALITIES-BASED

ENTANGLEMENT CRITERIA

In this section, we assess the entanglement criteria that have been derived using the dif-
ferent inequalities by comparing them to some of the criteria mentioned in the Chapter 9.
Furthermore, we the optimality condition as well as the limitations of these criteria. This
section will again be split up into two parts: the bipartite case and the multipartite case.

11.1. ASSESSING THE BIPARTITE CRITERION
In this section, we will assess the criteria at hand in two ways. First, we will derive the
optimal choice of criteria for a given bipartite state, after which we will compare the criteria
at hand to various of the criteria that have been discussed in Chapter 9.

11.1.1. DETERMINING AN OPTIMAL CRITERION

Let us now study the optimal choice of operators. Note that the optimal choice corresponds
to the choice of operators which gives the tightest upper bound, as this ensures that we can
detect as many states as possible. This optimal choice will prove to be rather elegant.

Theorem 11.1. The optimal choice for operators in Theorem 10.2 are of the form:

A1 = |α〉〈φ∣∣ A2 =
∣∣φ〉〈

γ
∣∣

where α,γ and φ are pure states. An analogous result holds for the operators acting on HB .

Proof. First, note that given an orthonormal basis
{
φ j

}
of H A, any operators A1, A2 acting

on H A can be written as follows:

A1 =
∑

j
a j

∣∣α j
〉〈
φ j

∣∣ A2 =
∑

j
g j

∣∣φ j
〉〈
γ j

∣∣
Note that Theorem 10.2 can now be written as:

|〈
(∑

j
a j

∣∣α j
〉〈
φ j

∣∣∑
j

g j
∣∣φ j

〉〈
γ j

∣∣)⊗B1B2〉|2 ≤〈
(∑

j
a j

∣∣α j
〉〈
φ j

∣∣∑
j

a∗
j

∣∣φ j
〉〈
α j

∣∣)⊗B †
2B2〉 ·

〈
(∑

j
g∗

j

∣∣γ j
〉〈
φ j

∣∣∑
j

g j
∣∣φ j

〉〈
γ j

∣∣)⊗B †
2B2〉

81
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which, using the orthonormality of
{
φ j

}
and the linearity of the expectation value operator,

can be rewritten as:

|∑
j

a j g j 〈
∣∣α j

〉〈
γ j

∣∣⊗B1B2〉|2 ≤
∑

j
|a j |2 〈

∣∣α j
〉〈
α j

∣∣⊗B †
2B2〉

∑
i
|gi |2 〈

∣∣γi
〉〈
γi

∣∣⊗B †
2B2〉

This will be our starting point. We will prove that this upper bound has some slack - mean-
ing, that there exists a more tight upper bound, and that this slack is only zero under the
choice of optimal operators proposed in this theorem.
We start off by introducing more compact notation. Set:

x j ≡ 〈∣∣α j
〉〈
α j

∣∣⊗B †
2B2〉

yi ≡ 〈∣∣γi
〉〈
γi

∣∣⊗B †
2B2〉

We can then rewrite the right-hand side of our criterion as follows:∑
j
|a j |2x j

∑
i
|γi |2 yi =

∑
j
|α jγ j |2x j yi +

∑
i

∑
k>i

(|αiγk |2xi yk +|αkγi |2xk yi
)

Let us now consider the left hand side. We will now derive a more tight upper bound on
the left hand side, and will then show that this upper bound is equivalent to the right hand
side of our criterion if and only if we choose the proposed optimal operators. We can apply
the triangle inequality on the right hand side, and then apply Theorem 10.2 on each of the
operators in the summand to find:

|∑
j

a j g j 〈
∣∣α j

〉〈
γ j

∣∣⊗B1B2〉|2 ≤
(∑

j
|α jγ j |

√
x j y j

)2

in which we have equality if we chose the operators as proposed.

Note that under the optimal choice of operators, our criterion reduces to:

|〈α1 ⊗β1
∣∣ρ ∣∣α2 ⊗β2

〉|2 ≤ 〈
α1 ⊗β1

∣∣ρ ∣∣α1 ⊗β1
〉 ·〈α2 ⊗β2

∣∣ρ ∣∣α2β2
〉

11.1.2. COMPARING THE BIPARTITE CRITERION

COMPARISON WITH THE CRITERION BY HILLERY AND ZUBAIRY

We start off by considering the entanglement criteria that have been derived by Hillery and
Zubairy (Theorem 9.18). Note that the first of these criteria is a direct consequence of our
bipartite inequality. This can easily be seen by setting:

A1 = A† A2 = I A

B1 = IB B2 = B

As such, this criterion is a direct implication of the criterion we derived based on the Cauchy-
Schwarz inequality. Note that we can therefore consider our criterion to be a generalisation
of the criterion of Hillery and Zubairy!
Furthermore, note that the second of these criteria has the shape of Theorem 10.1, and as
such, a full comparison with our criterion is not possible.

Nevertheless, let us consider the example of a qubit system, and let us show that our
criterion can be employed to yield a more tight entanglement detection criterion than both
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of the criteria from Hillery and Zubairy. Consider, for example, the following operators:

A1 = |1〉〈0| A2 = |0〉〈0|
B1 = |1〉〈0| B2 = |0〉〈0|

Let us first consider what we find for the first criterion of Theorem 9.18. Note that these
results were presented incorrectly in Wölk et al. (2014). We present the correct results below.
The first criterion reduces to:

|〈A1 ⊗B1〉|2 ≤ 〈A1 A†
1 ⊗B †

1B1〉
The left hand side yields:

|〈A1 ⊗B1〉|2 = |〈|1〉〈0|⊗ |1〉〈0|〉|2 = |〈|11〉〈00|〉|2 = ρ00,11

Similarly, the right hand side yields:

〈A1 A†
1 ⊗B †

1B1〉 = 〈|1〉〈0|0〉〈1|⊗ |0〉〈1|1〉〈0|〉 = 〈|10〉〈10|〉 = ρ10,10

From which we finally find the following criterion:

|ρ00,11|2 ≤ ρ10,10

In an exactly analogous manner, we find that our criterion becomes:

|ρ00,11|2 ≤ ρ01,01ρ10,10

Furthermore, we find that the second criterion yields:

|ρ00,11|2 ≤
(
ρ00,00 +ρ01,01

)(
ρ00,00 +ρ10,10

)= ρ10,10ρ01,01 +ρ2
00,00 +ρ00,00

(
ρ01,01 +ρ10,10

)
where we took A = A1 instead, in order to find the same left hand side. Note that these
results were also presented incorrectly in Wölk et al. (2014).
However, since density operators are Hermitian, positive operators with a trace of unity, we
have that 0 ≤ ρi j ,i j ≤ 1, and as such, we find that our criterion outperforms the criteria of
Hillary and Zubairy in almost every two-qubit case.

COMPARISON WITH THE CRITERION BY SHCHUKIN AND VOGEL

Note that by choosing the following operators:

A1 =
(
a†

)m
an A2 =

(
a†

)p
aq

B1 =
(
b†

)s
ar B2 =

(
b†

)k
al

and substituting this in our criterion in Theorem 10.2, we find the criterion by Shchuckin
and Vogel (Theorem 9.19) - thus this criterion is merely a special case of our criterion!

COMPARISON WITH THE CRITERION BY HUBER ET AL.
We now compare our criterion with the criterion by Huber et al. (Theorem 9.20). Note that
if we take a product state |Φ〉 = ∣∣αβγδ〉

, the right hand side yields:√〈Φ|ρ⊗ρ |Φ〉 =
√〈

αβ
∣∣ρ ∣∣αβ〉〈

γδ
∣∣ρ ∣∣γδ〉



84 11. ASSESSMENT OF THE INEQUALITIES-BASED ENTANGLEMENT CRITERIA

whereas the left hand side becomes:√
Re

(〈
αβγδ

∣∣ (1⊗Π)†ρ⊗ρ (Π⊗1)
∣∣αβγδ〉)=√

Re
(〈
αβγδ (1⊗Π)

∣∣ρ⊗ρ ∣∣(Π⊗1)αβγδ
〉)

=
√

Re
(〈
αδγβ

∣∣ρ⊗ρ ∣∣γβαδ〉)
=

√
Re

(〈αδ|ρ ∣∣γβ〉
ρ

〈
γβ

∣∣αδ〉)
= |〈αδ|ρ ∣∣γδ〉|

We combine these to rewrite the criterion as:

|〈αδ|ρ ∣∣γδ〉| ≤√〈
αβ

∣∣ρ ∣∣αβ〉〈
γδ

∣∣ρ ∣∣γδ〉
which is just the optimal form of our bipartite criterion!

COMPARISON WITH THE PPT CRITERION

Note that, first of all, that this criterion is only limited to NPT states.

Theorem 11.2. The criterion in Theorem 10.2 does not detect PPT states.

Proof. Suppose ρ is PPT and violates the upper bound. First note that:

|〈A1 A2 ⊗B1B〉| = |Tr
(
(A1 A2 ⊗B1B2)ρ

)| = |Tr
((

(A1 A2)T ⊗B1B2
)
ρTA

)| = |Tr
((

AT
2 AT

1 ⊗B1B2
)
ρTA

)|
Note that the the trace is conserved by the partial transpose operator.
Now, since ρTA is PPT and thus a valid density operator, the Cauchy-Schwarz inequality
(Theorem 8.7) can be used to find that:

|Tr
((

AT
2 AT

1 ⊗B1B2
)
ρTA

)| ≤√
Tr

((
AT

2

(
AT

2

)† ⊗B1B †
1

)
ρTA

)
Tr

(((
AT

1

)†
AT

1 ⊗B †
2B2

)
ρTA

)
Thus:

|〈A1 A2 ⊗B1B〉| ≤
√

Tr
((

AT
2

(
AT

2

)† ⊗B1B †
1

)
ρTA

)
Tr

(((
AT

1

)†
AT

1 ⊗B †
2B2

)
ρTA

)
=

√
〈A1 A†

1 ⊗B1B †
1〉〈A†

2 A2 ⊗B †
2B2〉

which yields the upper bound from Theorem 10.2. ⇒⇐
Therefore, our criterion can only be used to determine entanglement in NPT states. One

bipartite PPT state that is entangled, and can therefore not be detected by our criterion, is
the following double qutrit state:

ρa = 1

8a +1



a 0 0 0 a 0 0 0 a
0 a 0 0 0 0 0 0 0
0 0 a 0 0 0 0 0 0
0 0 0 a 0 0 0 0 0
a 0 0 0 a 0 0 0 a
0 0 0 0 0 a 0 0 0

0 0 0 0 0 0 1+a
2 0

p
1−a2

2
0 0 0 0 0 0 0 a 0

a 0 0 0 a 0
p

1−a2

2 0 1+a
2


(0 < a < 1)
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Note, however, that the PPT criterion yields that NPT states are always entangled. As such,
our criterion is weaker than the PPT criterion in the most general case, as there are NPT
states that cannot be detected by our criterion. In the next section we will see, however,
that our criterion does perform sufficiently well in the case of the most important bipartite
state: two-qubit states.

11.1.3. USEFUL APPLICATIONS OF THE BIPARTITE CRITERION

Let us now consider the extent to which this criterion is useful. An important application
of this criterion lies in its ability to detect entanglement in two-qubit systems. Before we
can prove this, we prove a relevant lemma.

Lemma 11.3. Let ρ be a density matrix representing a bipartite state. Then ρ violates the
criterion given in Theorem 10.2 under a few conditions. First, ρTA needs to have eigenstates∣∣∣λ+

j

〉
corresponding to positive eigenvalues and eigenstates

∣∣∣λ−
j

〉
corresponding to negative

eigenvalues and H A (respectively HB ) has states |ak〉 (|bk〉) with k = 1,2 such that:

1.
〈

a2 ⊗b1

∣∣∣λ+
j

〉
= c+

〈
a1 ⊗b2

∣∣∣λ+
j

〉
2.

〈
a2 ⊗b1

∣∣∣λ−
j

〉
= c−

〈
a1 ⊗b2

∣∣∣λ−
j

〉
where c± are not dependent on j and c+c− < 0. Then, for arbitrary α ∈HB and β ∈HB , set:

A1 =
∣∣a∗

1

〉〈α| B1 = |b1〉
〈
β
∣∣ (11.1)

A2 = |α〉〈a∗
2

∣∣ B2 =
∣∣β〉〈b2| (11.2)

Proof. We make use of the proof of Theorem 11.2 to show that:

|Tr
((

AT
2 AT

1 ⊗B1B2
)
ρTA

)| ≥√
Tr

((
AT

2

(
AT

2

)† ⊗B1B †
1

)
ρTA

)
Tr

(((
AT

1

)†
AT

1 ⊗B †
2B2

)
ρTA

)
We consider both sides of the equation separately. We first fill in the left-hand sight of the
equation.

|Tr
((

AT
2 AT

1 ⊗B1B2
)
ρTA

)| = |Tr
(((|a2〉

〈
α∗∣∣)(∣∣α∗〉〈a1|

))⊗ ((|b1〉
〈
β
∣∣)(∣∣β〉〈b2|

))
ρTA

)|
= |Tr

(((|a2〉
(〈
α∗∣∣α∗〉)〈a1|

))⊗ ((|b1〉
(〈
β
∣∣β〉)〈b2|

))
ρTA

)|
= |Tr

(
((|a2〉〈a1|))⊗ ((|b1〉〈b2|))ρTA

)|
= |Tr

(
(|a2 ⊗b1〉〈a1 ⊗b2|)ρTA

)|
= |〈a1 ⊗b2|ρTA |a2 ⊗b1〉|

We now introduce a spectral decomposition of ρTA , i.e. ρTA =∑
j λ

±
j

∣∣∣λ±
j

〉〈
λ±

j

∣∣∣, from which

we find:

|Tr
((

AT
2 AT

1 ⊗B1B2
)
ρTA

)| = |〈a1 ⊗b2|
(∑

j
λ±

j

∣∣∣λ±
j

〉)〈
λ±

j

∣∣∣a2 ⊗b1

〉
|

= |∑
j
λ±

j

(
〈a1 ⊗b2|

∣∣∣λ±
j

〉)(〈
λ±

j

∣∣∣a2 ⊗b1

〉)
|

= |∑
j

(
|c±|λ±

j

〈
a1 ⊗b2

∣∣∣λ±
j

〉)
|

= |∑
j
|c+|λ+

j

〈
a1 ⊗b2

∣∣∣λ+
j

〉
+∑

j
|c−|λ−

j

〈
a1 ⊗b2

∣∣∣λ−
j

〉
|
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We now consider the right hand side of the equation. We work out the results of one of
the two sides of the product under the square root, since the derivation of the other goes
completely analogously.

Tr
((

AT
2 (AT

2 )† ⊗B1B †
1

)
ρTA

)
= Tr

((
(|a2〉

〈
α∗∣∣α∗〉〈a2|)⊗|b1〉

〈
β
∣∣β〉〈b1|

)
ρTA

)
= Tr

(
((|a2〉〈a2|)⊗|b1〉〈b1|)ρTA

)
= Tr

(
(|a2 ⊗b1〉〈a2 ⊗b1|)ρTA

)
= 〈a2 ⊗b1|ρTA |a2 ⊗b1〉

We now use the spectral decomposition of ρTA to find:

Tr
((

AT
2 (AT

2 )† ⊗B1B †
1

)
ρTA

)
=∑

j
λ±

j |
〈

a2 ⊗b1

∣∣∣λ±
j

〉
|2 =∑

j
|c±|2λ±

j |
〈

a1 ⊗b2

∣∣∣λ±
j

〉
|2

Proceeding in a similar manner, we find that the right hand side equals:√√√√(
|c+|2 ∑

j
λ+

j |
〈

a1 ⊗b2

∣∣∣λ+
j

〉
|2 +|c−|2 ∑

j
λ−

j |
〈

a1 ⊗b2

∣∣∣λ−
j

〉
|2

)(∑
j
λ+

j |
〈

a1 ⊗b2

∣∣∣λ+
j

〉
|2 +∑

j
λ−

j |
〈

a1 ⊗b2

∣∣∣λ−
j

〉
|2

)

This can be worked out to:√√√√|c+|2
(∑

j
|
〈

a1 ⊗b2

∣∣∣λ+
j

〉
|2

)2

+|c−|2
(∑

j
|
〈

a1 ⊗b2

∣∣∣λ−
j

〉
|2

)2

− (|c+|2 +|c−|2)∑
j
λ+

j |
〈

a1 ⊗b2

∣∣∣λ+
j

〉
|2 ∑

j
|λ−

j ||
〈

a1 ⊗b2

∣∣∣λ−
j

〉
|2

Now, using the starting point of this thesis, namely:
(|c+|− |c−|)2 ≥ 0, we can show that the

right hand side is bound as follows:

≤ ||c+|∑
j
λ+

j |
〈

a1 ⊗b2

∣∣∣λ+
j

〉
|2 −|c−|∑

j
|λ j ||

〈
a1 ⊗b2

∣∣∣λ−
j

〉
|2|

≤ |c+|∑
j
λ+

j |
〈

a1 ⊗b2

∣∣∣λ+
j

〉
|2 +|c−|∑

j
|λ j ||

〈
a1 ⊗b2

∣∣∣λ−
j

〉
|2

which shows that the right hand side is indeed smaller than the left hand side.

Theorem 11.4. Any two-qubit state ρ can be detected using Theorem 10.2.

We proceed in a different manner than was done in Wölk et al. (2014) and first introduce
a lemma to show that an entangled 2-qubit state’s partial transpose has one negative and
three positive eigenvalues.

Lemma 11.5. The partial transpose of the density matrix of any entangled 2-qubit state has
one negative eigenvalue, say λ−, and three positive eigenvalues.

Proof. Let |Ψ〉 represent any arbitrary entangled two-qubit state. Using the Schmidt de-
composition, we can then express |Ψ〉 in terms of a two-dimensional, orthogonal basis, say{∣∣χ0χ0

〉
,
∣∣χ1χ1

〉}
, such that:

|Ψ〉 =χ0
∣∣χ0χ0

〉+χ1
∣∣χ1χ1

〉
, χ0,χ1 ∈R>0
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with χ2
0 +χ2

1 = 1. Then:

ρ = |Ψ〉〈Ψ| =χ2
0

∣∣χ0χ0
〉〈
χ0χ0

∣∣+χ0χ1
∣∣χ0χ0

〉〈
χ1χ1

∣∣+χ1χ0
∣∣χ1χ1

〉〈
χ0χ0

∣∣+χ2
1

∣∣χ1χ1
〉〈
χ1χ1

∣∣
=


χ2

0 0 0 χ0χ1

0 0 0 0
0 0 0 0

χ1χ0 0 0 χ2
1


We can then express ρTA as follows:

ρTA =


χ2

0 0 0 0
0 0 χ0χ1 0
0 χ1χ0 0 0
0 0 0 χ2

1


Which has the following eigenvectors (belonging to eigenvalue χ2

0, χ2
1, χ0χ1 and −χ0χ1, re-

spectively): 
1
0
0
0

 ,


0
0
0
1

 ,
1p
2


0
1
1
0

 ,
1p
2


0
1
−1
0


This finishes the proof.

We now prove that entangled two-qubit systems can always be detected by our criteria.

Proof. Using the lemma we just proved, we can express the negative eigenvalue in its own
Schmidt basis, say:

|λ−〉 = η0
∣∣η0η0

〉+η1
∣∣η1η1

〉
Since all positive eigenvectors need to be orthogonal to the negative eigenvector, they must
necessarily be of the form:∣∣λ+

k

〉= γkη0
∣∣η0η0

〉−γkη1
∣∣η1η1

〉+φk
∣∣η0η1

〉+δk
∣∣η1η0

〉
for arbitrary γk ,δk and φk which cannot all be zero for the same value of k and with γk 6= 0
for at least one k (since these eigenvalues need to be orthogonal as well). We can now use
11.3 by setting:

|a1 ⊗b2〉 =
∣∣η1η1

〉
|a2 ⊗b1〉 =

∣∣η0η0
〉

with c+ =−η1
η0

and c− = η0
η1

.

11.1.4. LIMITATIONS TO THE BIPARTITE CRITERION

First of all, note that since our criterion cannot be used to detect entanglement in PPT
states, we are restricted to detecting entanglement in NPT states. The question arises, how-
ever, whether all entangled NPT states can be detected. Before tackling this question, let us
first introduce two definitions.

Definition 11.1. A state ρ is called distillable if for some N ∈ N, ρ⊗N can be brought to a
maximally entangled state (e.g. |Ψ−〉 = |01〉−|10〉p

2
) solely through the use of local operations

and classical communication (LOCC).
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Remark. If a state ρ is distillable, and say ρ⊗n
LOCC

−−−−−→Ψ− for some smallest possible n, then
ρ is called n-distillable.

Definition 11.2. If ρ is entangled and distillable, ρ is called freely entangled. Otherwise, ρ
is called bound entangled.

Now that we have introduced these definitions, let us address the core issue in this sec-
tion. First of all, note the optimality condition we found that the criterion gives us four
independent vectors:

|〈α1 ⊗β1
∣∣ρ ∣∣α2 ⊗β2

〉|2 ≤ 〈
α1 ⊗β1

∣∣ρ ∣∣α1 ⊗β1
〉 ·〈α2 ⊗β2

∣∣ρ ∣∣α2β2
〉

Note, however, that |α1〉 can be decomposed into a part in |α2〉 and
∣∣α⊥

2

〉
. As such, the

criterion yields an invariant result under projection in the qubit subspace 1A = |α1〉〈α1|+∣∣α⊥
1

〉〈
α⊥

1

∣∣. An analogous argument holds for the subsystem HB . Thus, we see that detect-
ing entanglement using this criterion is equivalent to detecting entanglement a subsystem
isomorphic to C2

1 ⊗C2
1. But from Horodecki et al. (1998) it therefore follows that detection

of entanglement in such systems necessarily implies 1-distillability. As such, any bound
entangled state or state that is freely entangled but not 1-distillable cannot be detected by
our criterion!

We now discuss two examples of such states. First of all, let us consider the Werner states
(Werner (1989)). Most generally, they are characterised by the parameter p ∈ [0,1] and the
dimension d , such that:

ρW (p,d) = p
P−

N− + (1−p)
P+

N+

where N± = d(d±1)
2 and P± = I±F

2 , where F ≡∑
i , j = |i 〉〈 j

∣∣⊗ ∣∣ j
〉〈i | is the so-called flip oper-

ator.
For p ≤ 1

2 , these states are PPT. Furthermore, for p > 3(d−1)
2(2d−1) , they are distillable. while for

1
2 ≤ p ≤ 3(d−1)

2(2d−1) , they are conjectured to be bound entangled - and surely not 1-distillable
(see Horodecki (2001)).
So, if we consider the case of a qutrit pair, we then find:

ρW = p

6



0 0 0 0 0 0 0 0 0
0 1 0 −1 0 0 0 0 0
0 0 1 0 0 0 −1 0 0
0 −1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 −1 0
0 0 −1 0 0 0 1 0 0
0 0 0 0 0 −1 0 1 0
0 0 0 0 0 0 0 0 0


+ 1−p

12



2 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
0 0 1 0 0 0 1 0 0
0 1 0 1 0 0 0 0 0
0 0 0 0 2 0 0 0 0
0 0 0 0 0 1 0 1 0
0 0 1 0 0 0 1 0 0
0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 2
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A bound entangled variant can be found by taking 1
2 ≤ p ≤ 3

5 . Setting p = 3
5 yields:

ρW = 1

30



2 0 0 0 0 0 0 0 0
0 4 0 −2 0 0 0 0 0
0 0 4 0 0 0 −2 0 0
0 −2 0 4 0 0 0 0 0
0 0 0 0 2 0 0 0 0
0 0 0 0 0 4 0 −2 0
0 0 −2 0 0 0 4 0 0
0 0 0 0 0 −2 0 4 0
0 0 0 0 0 0 0 0 2


which is an NPT state that is undetectable using our criterion.

A second class of not 1-distillable states is based on the results derived in Watrous (2004).
There, the following Lemma is proved.

Lemma 11.6. (Watrous (2004)) For any integers d ≥ 3 and n ≥ 1, there is some ε> 0 such that
the following state is not n-distillable:

ρε = d +1+ε
d −1

(P−)⊗2 + (P+)⊗2

Specifically for the case that n = 1, by following the proofs in Watrous (2004), one can

derive that for ε< 2d(1− 2
d )2

4(d−1)−(1− 2
d )2 , ρ(ε) is not 1-distillable. Working this out for d = 3, we find:

ε< 6

71

and ρε becomes:

ρε = 4+ε
2



0 0 0 0 0 0 0 0 0
0 1 0 −1 0 0 0 0 0
0 0 1 0 0 0 −1 0 0
0 −1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 −1 0
0 0 −1 0 0 0 1 0 0
0 0 0 0 0 −1 0 1 0
0 0 0 0 0 0 0 0 0



⊗2

+ 1

2



2 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
0 0 1 0 0 0 1 0 0
0 1 0 1 0 0 0 0 0
0 0 0 0 2 0 0 0 0
0 0 0 0 0 1 0 1 0
0 0 1 0 0 0 1 0 0
0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 2



⊗2

which yields a 81 x 81 matrix that represents a undetectable 9 x 9 state for any ε< 6
71 .

11.2. ASSESSING THE MULTIPARTITE CRITERIA

11.2.1. APPLICATIONS OF ONE MULTIPARTITE CRITERION

Let us consider the criteria we obtained in Theorem 10.4 and Theorem 10.5 for one specific
case of Let us consider the following state, which was introduced by A. Kay (Gühne (2010))



90 11. ASSESSMENT OF THE INEQUALITIES-BASED ENTANGLEMENT CRITERIA

and which is separable under any bipartition, but not fully separable:

ρabc =
1

2+a +b + c + 1
a + 1

b + 1
c



1 0 0 0 0 0 0 1
0 a 0 0 0 0 0 0
0 0 b 0 0 0 0 0
0 0 0 1

c 0 0 0 0
0 0 0 0 c 0 0 0
0 0 0 0 0 1

b 0 0
0 0 0 0 0 0 1

c 0
1 0 0 0 0 0 0 1


for a,b,c > 0 and abc 6= 1. under the standard basis {|000〉 , |001〉 , . . . , |111〉}. We now set:

A1 = B1 =C1 = |1〉〈0|
A2 = B2 =C2 = |0〉〈0|

We derive the result for Theorem 10.4 and posit the result for Theorem 10.5, as this is de-
rived in an exactly analogous manner.
Substituting the operators on the left hand side of equation gives:

|〈A1 A2 ⊗B1B2 ⊗C1C2〉| = |〈(|1〉〈0|)⊗3〉| = 〈111|ρ |000〉 = 1

Similarly, we can retrieve the right hand side:(
〈A1 A†

1 ⊗B1B †
1 ⊗C †

2C2〉〈A1 A†
1 ⊗B †

2B2 ⊗C1C †
1〉〈A†

2 A2 ⊗B1B †
1 ⊗C1C †

1〉〈A†
2 A2 ⊗B †

2B2 ⊗C †
2C2〉

) 1
4

=(〈(|1〉〈1|)⊗2 ⊗|0〉〈0|〉〈|1〉〈1|⊗ |0〉〈0|⊗ |1〉〈1|〉〈|0〉〈0|⊗ (|1〉〈1|)⊗2〉〈(|0〉〈0|)⊗3〉) 1
4

=(
ρ110,110ρ101,101ρ011,011ρ000,000

) 1
4

=
(

1

abc

) 1
4 = (abc)

−1
4

Such that all states with:
1

abc
> 1

are detected by Theorem 10.4. Similarly, we find that all states with:

abc > 1

are detected by Theorem 10.5. As such, all states of this form can be detected by the multi-
partite criteria we have derived. Furthermore, note that this can actually be done through
measurements - even though A1,B1 and C1 are not Hermitian operators and thus not ob-
servables, we have that |1〉〈0| =σx − iσy .

11.2.2. COMPARING THE MULTIPARTITE CRITERIA

COMPARISON WITH THE CRITERION BY GÜHNE AND SEEVINCK

We now discuss the criterion by Gühne and Seevinck (Theorem 9.22) for tripartite states.
First, let us prove a lemma, from which this criterion immediately follows by taking a con-
vex sum.
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Lemma 11.7. Let ρ ∈H A ×HB ⊗HC . Then the following criteria hold for separable states:

|ρ000,111| ≤p
ρ001,001ρ110,110

|ρ000,111| ≤p
ρ010,010ρ101,101

|ρ000,111| ≤p
ρ011,011ρ100,100

Proof. We only prove one of the equations, as the others follow from a completely analo-
gous argument. Note that Theorem 10.2 still holds if we consider H A =H1 ⊗H2. As such,
we can apply our bipartite criterion to the following operators:

A1 = |00〉〈11| B1 = |0〉〈0|
A2 = |11〉〈11| B2 = |0〉〈1|

Substituting these in Theorem 10.2, we find:

|〈|00〉〈11|11〉〈11|⊗ |0〉〈0|0〉〈1|〉| ≤
√
〈|00〉〈11|11〉〈00⊗|1〉〈0|0〉〈1||〉 · 〈|11〉〈11|11〉〈11|⊗ |0〉〈0|0〉〈0|〉

|〈|000〉〈111|〉| ≤
√
〈|001〉〈001|〉〈|110〉〈110|〉

|ρ000,111| ≤p
ρ001,001ρ110,110

Note that each subcriterion presented in this lemma is the result of a different partition
of the tripartite state. As such, the criterion given by Gühne and Seevinck, which sum these
criteria, therefore does not detect biseparable states, and, as such, only detects genuine tri-
partite entanglement. Note, however, that our criterion is aimed at detecting any form of
entanglement, and as such, performs better in for example the application considered in
the previous section, since the criterion by Gühne and Seenvinck cannot detect entangle-
ment in ρabc .

We could, of course, take a different approach than Gühne and Seevinck, and multiply
the inequalities found in Lemma 11.7, in order to find:

|ρ000,111| ≤
(
ρ001,001ρ010,010ρ011,011ρ100,100ρ101,101ρ110,110

) 1
6

Evidently, this is a much stronger criterion than the one presented by them. Note, however,
that by turning back to one form of the multipartite criteria that we derived (Theorem 10.6)
and setting:

A1 = B1 =C1 = |1〉〈0|
A2 = B2 =C2 = |0〉〈0|

we find that this criterion is the direct consequence of our more general multipartite crite-
rion!

Lastly, an extension that is proposed in Gühne and Seevinck (2018) is to apply substitu-
tions, for example by setting ρ2,2ρ3,3 7→ ρ1,1ρ4,4. This would yield:

|ρ000,111| ≤
√
ρ000,000ρ

2
011,011ρ100,100ρ101,101ρ110,110

Note, now that referring back to Theorem 10.7 and by setting:

A1 = B1 =C1 = |1〉〈0|
A2 = B2 =C2 = |0〉〈0|
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we find this inequality! Note that more generally, we have that any substitution which pre-
serves the number of 0s and 1s for each index can be proved using a criterion of the form
of Theorem 10.6 and 10.7, which are merely specific forms of our more general multipartite
criteria!
Furthermore, it should be noted that this criterion can be considered to be a weighed geo-
metric mean of the following two equations:

|ρ000,111| ≤p
ρ011,011ρ100,100

|ρ000,111| ≤ 4
p
ρ000,000ρ011,011ρ101,101ρ110,110

which are given in Lemma 11.7 and Theorem 10.4 when taking the operators used in the
example of ρabc . The weights, evidently, are 1

3 and 2
3 , respectively. As such, checking these

criteria separately yields a stronger entanglement detection scheme than using the substi-
tution trick. Note that this conclusion extends to all allowed substitutions, and as such,
these are not of any particular additional merit1.

COMPARISON WITH THE CRITERION BY HILLERY ET AL.
First note that the suggested extension of the criterion by Hillery and Zubairy is also not vi-
olated by biseparable states, and as such, does not detect this form of entanglement, while
our criterion does.

Now, let us turn to the criteria of Hillery et al. Let us start off by noting that the criterion
in Theorem 9.24 is a consequence of the multipartite criteria that we have derived! Taking
any σ in Theorem 10.3 and setting:

A1
k = I A2

k = Ak ∀k ∈ {1, . . . ,n}

we find the criterion by Hillery et al. Furthermore, we should note that this criterion is not
optimal. In detecting ρabc , for example, this criteria fails. Even worse, we can prove that
this criterion is insensitive to a more general class of biseparable states!

Theorem 11.8. (Wölk et al. (2014)) Let ρ ∈⊗n
k=1 Hk denote a density state that is biseparable

for every k1,k2 over a bipartition H1|H2 such that k1 ∈ H1 and k2 ∈ H2. Then ρ cannot be
detected by Theorem 9.24.

Concerning Theorem 9.25, no general comment can be made regarding its performance
for detecting entanglement in general states in comparison to our criterion (See: Hillery
et al. (2010)), however, it should be noted that this criterion sometimes fails to detect en-
tanglement, whereas the other of these criteria - which is a mere consequence of our cri-
terion development scheme - can. Let us consider for example the tensor product of two
generalised GHZ-states:∣∣ψ〉= (cos(θ1) |0〉+ sin(θ1) |1〉)⊗ (

cos(θ2) |0〉⊗2 + sin(θ2) |1〉⊗2)
)

Let Ak = |0〉〈1|. We then find, for Theorem 9.24 and 9.25, respectively:

|1
4

sin(2θ1)sin(2θ2)| ≤ (
sin(θ1)2 sin(θ2)4) 1

3

|1
4

sin(2θ1)sin(2θ2)| ≤
(

2

3

) 3
2

cos2(θ1)sin2(θ2)+
(

1

3

) 3
2

sin2(θ1)cos2(θ2)+ sin2(θ1)sin2(θ2)

1at least, not from a theoretical point of view.
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If we assume that the first state is a regular GHZ-state, so sin(θ1) = cos(θ1) = 1p
2

, we find:

|cos(θ2)| ≤ |4sin(θ2)| 1
3

|sin(θ)cos(θ)| ≤ 4

((
1+

(
1

3

) 3
2

)
sin(θ2)−

(
2

3

) 3
2

cos(θ2)

)2

+8

(
2

3

) 3
2

(
1+

(
1

3

) 3
2

)
|sin(θ2)cos(θ2)|

Note that while the first criterion can be violated, the second cannot. As such, for this
specific state, the first criterion of Hillery et al. outperforms the second. As such, we can
conclude that there are at least states that are detectable with our criterion while being
undetectable by Theorem 9.25.

COMPARISON WITH THE CRITERION BY HUBER ET AL.
Note that the multipartite generalisation of the criterion by Huber et al. is actually valid for
all biseparable states (see Huber and Mintert (2010)). As such, this criterion is less strong
than our criterion, for example when detecting states like ρabc .
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CONCLUSION

In Part I of the thesis, the Cauchy-Schwarz inequality, Holder’s inequality, the AM-GM in-
equality, Jensen’s inequality, Minkowksi’s inequality and the ladder of power means as well
as their extensions and generalisations were proved and discussed on finite dimensional
vector spaces. It was shown that an intimate relationship exists between these inequalities:
first of all, all of the inequalities can be proved using just Jensen’s inequality, which is a sim-
ple consequence of convexity. Secondly, the AM-GM inequality and the Cauchy-Schwarz
inequality can be derived from one another. Lastly, even though Hölder’s inequality is con-
sidered to be a generalisation of the Cauchy-Schwarz inequality and Minkowksi’s inequality
is considered to be a consequence of Hölder’s inequality, it was shown that each these three
inequalities can be used to prove the others.
Since these explorations were restricted to finite dimensional vector spaces, the conse-
quences of extending the range of study to infinite dimensional vector spaces were con-
sidered. Specifically, it was shown that the rich structure that is present on Rn equipped
with a p-norm (to which every finite dimensional normed vector space over the real num-
bers with dimension n is isomorphic) is lost in this extension, as the topologies under each
of these norms are distinct.

In Part II, entanglement detection - and specifically non-linear entanglement witnesses
derived in Wölk et al. (2014), which are based on the inequalities discussed extensively in
Part I - is studied. This was first done for the case of two particles, and was later generalised
to multipartite systems. Then, the bipartite criterion was derived and an implicit scheme
in aforementioned paper for developing a general class of multipartite entanglement wit-
nesses was explicated. These criteria were then assessed as follows: first, the optimality
condition for the bipartite criterion was derived. Then, the criteria were assessed by com-
paring them with other well-known entanglement criteria. It was shown that while the
inequality-based criterion is weaker than the Positive Partial Transpose criterion, it is more
general and often even stronger than many entanglement witnesses criteria currently used.
Lastly, it was shown that our criterion is nevertheless limited to some class of Negative Par-
tial Transpose states, namely those that are 1-distillable.
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A
SUPPLEMENT TO PART I OF THE THESIS

We first introduce the proof to Theorem 1.2.

Proof. Let v =∑n
i=1 vi bi and w =∑n

i=1 wi bi. Then:

〈v,w〉 = 〈
n∑

i=1
vi bi,w〉 =

n∑
i=1

v†
i 〈bi,w〉 = [v1, . . . , vn]†

〈b1,w〉
...

〈bn,w〉

= [v1, . . . , vn]†

〈b1,
∑n

i=1 wi bi〉
...

〈bn,
∑n

i=1 wi bi〉


= [v1, . . . , vn]†

〈b1,
∑n

i=1 wi bi〉
...

〈bn,
∑n

i=1 wi bi〉

= [v1, . . . , vn]†


∑n

i=1 〈b1, wi bi〉
...∑n

i=1 〈bn, wi bi〉


= [v1, . . . , vn]†


∑n

i=1 wi 〈b1,bi〉
...∑n

i=1 wi 〈bn,bi〉

= [v1, . . . , vn]†


∑n

i=1 〈b1,bi〉
...∑n

i=1 〈bn,bi〉


w1

...
wn

= [v]†
B GB [w]B

From this Theorem, the proof of Corollary 1.2.1 follows easily:

Proof. Note that for any orthonormal basis we have that 〈bi ,b j 〉 = δi j . Thus GB = I . Now
Theorem 1.2 yields the expected result.

〈u,v,w〉 = 〈
n∑

i=1
ui bi,v,w〉 =

n∑
i=1

ui 〈bi,v,w〉 =
n∑

i=1
ui 〈v,bi,w〉 =

n∑
i=1

ui 〈
n∑

j=1
v j bj,bi,w〉

=
n∑

i=1
ui

n∑
j=1

v j 〈bj,bi,w〉 =
n∑

i=1
ui

n∑
j=1

v j 〈w,bj,bi〉 =
n∑

i=1
ui

n∑
j=1

v j 〈
n∑

k=1
wk bk,bj,bi〉

=
n∑

i=1
ui

n∑
j=1

v j

n∑
k=1

wk 〈bk,bj,bi〉 =
n∑

i=1
ui

n∑
j=1

v j

n∑
k=1

wkδi j k =
n∑

i=1
ui vi wi = 〈u,v,w〉B
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B
SUPPLEMENT TO PART II OF THE THESIS

B.1. ON THE DEFINITION OF PARTIAL TRACES

Given a measurement M A performed on some closed system, say ρA. Let us now consider
the composite system AB . Let M be the measurement operator on AB which yields the
same result as M A,so M = ∑

m mPm ⊗ IB = M A ⊗ IB , where Pm is the projector onto the
the eigenspace corresponding to the eigenvalue m. If these measurement operators corre-
spond to the same measurement, they should yield the same expectation value, so:

Tr
(

f
(
ρAB )

M A)= Tr
(
ρAB M

)= Tr
(
ρAB (

M A ⊗ IB
))

where we suppose that f (ρAB ) is a function on ρAB which yields an appropriate density
matrix describing subsystem A.

Theorem B.1. f
(
ρAB

)= TrB (ρAB ) and is uniquely defined.

Proof. First, substitute f
(
ρAB

)= TrB (ρAB ) and verify that still:

Tr
(

f
(
ρAB )

M A)= Tr
(
ρAB (

M A ⊗ IB
))

Note that ρAB = ρA ⊗ρB , and ρA =∑
i pi |mi 〉〈mi | for some

{
pi

}
. Now:

Tr
(
TrB

(
ρAB )

M A)= Tr
(
TrB

(
ρA ⊗ρB )

M A)= Tr
(
ρA Tr

(
ρB )

M A)
= Tr

(
ρA M A)

Tr
(
ρB IB

)
= Tr

((
ρA ⊗ρB )(

M A ⊗ IB
))

= Tr
(
ρAB (

M A ⊗ IB
))

Consider an orthonormal basis Mi of the space of Hermitian operators with respect to the
Hilbert-Schmidt inner product. Then:

f
(
ρAB )=∑

i
Mi Tr

(
Mi f

(
ρAB ))=∑

i
Mi Tr

(
(Mi ⊗ IB )ρAB )

=∑
i

Mi Tr
(
ρAB (Mi ⊗ IB )

)
=∑

i
Mi Tr

(
f
(
ρAB )

Mi
)

=∑
i

Mi Tr
(
TrB

(
ρAB )

Mi
)

Since the right-hand side is invariant under our choice of orthonormal basis, f (ρAB ) is
unique. By making use of a Schmidt decomposition, this result can be generalised even
further.
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B.2. SUPPLEMENTARY LINEAR ALGEBRA
We first introduce two definitions:

Definition B.1. Let A,B be two operators. The commutator [A,B ] of these operators is
given by

[A,B ] = AB −B A (B.1)

Definition B.2. Let A,B be two operators. The anti-commutator {A,B} of these operators
is defined as

{A,B} = AB +B A (B.2)
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