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Abstract

In this thesis report, we delve into a contest game within game theory, where agents’ risk-taking capacity,
rather than effort, becomes the pivotal variable. High-quality performance in the game is associated with a
higher probability of leading to superior scores through the use of risky strategies. The application of this con-
test game to labor markets prompts considerations for both employees and employers. From the perspective
of employees, understanding the balance between risk-taking and payoff can be helpful in decision-making.
On the employer’s side, the efficiency of selection mechanisms becomes a critical factor.

We assess selection efficiency by examining the winning rates of high-type individuals. We use two pa-
rameters—market quality and market size in our analysis. Surprisingly, our theoretical analysis reveals a non-
monotonic relationship between these factors and selection efficiency. Contrary to expectations, we find that
as market quality improves or the number of agents increases, the winning rates of high types may decrease,
resulting in reduced selection efficiency for employers.

Simulation experiments inspired by Fictitious Play and evolutionary game theory are conducted to re-
search deeper into these dynamics. Learning rules and replicator dynamics under four scenarios are designed
to address the inherent volatility in agents’ strategic choices, test optimal strategies, and enable a comprehen-
sive comparison of selection efficiency. A mechanism is proposed, derived from agents gaining experience
from their usual behavior, and attempts to align outcomes more closely with Nash equilibrium, improving the
optimal result. The study’s unexpected findings about single-round screening in certain conditions highlight
the need for tailored selection processes in different markets.

In summary, this research brings a fresh perspective to contest games. It encourages a rethink of tradi-
tional ideas and provides practical insights for decision-makers, especially in labor markets.
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1
Introduction

The European job market is dynamic and continually evolving, influenced by various factors that impact both
employees and employers. This thesis explores recent changes, addresses challenges faced by candidates and
employers, and applies game theory to evaluate candidate selection methods. Through this analysis, the goal
is to optimize selection processes and gain insights into the intricate dynamics at play.

The European employment market has experienced some shifts in recent years, propelled by global eco-
nomic events and regional influences like the 2008 financial crisis and the unprecedented challenges from the
COVID-19 pandemic. These events have reshaped the structural foundations of employment and prompted
organizations to rethink traditional models. Eurostat data reveals an annual overview of the unemployment
rate, represented by the percentage of unemployed individuals in the labor force. The labor force encom-
passes both employed and unemployed individuals aged 15 to 74. Notably, recent trends in Europe indicate
that the unemployment rate has reached historically low levels.

Figure 1.1: Unemployment rate in EU over years(Source: Eurostat, Statistics Netherlands)

In the Netherlands, the annual data for unemployment has dropped by more than half in the past ten
years. Notably, the number of people who have been unemployed for a long time (more than one year) has
decreased significantly.
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6 1. Introduction

Figure 1.2: Unemployed person in NL over years

As candidates navigate the complex European job market, the focus has shifted from traditional career
paths to emphasizing skills and adaptability. However, data from Statistics Netherlands (CBS) reveals an in-
teresting trend in the educational backgrounds of the unemployed. In the second quarter of 2023, the average
educational level of unemployed individuals has significantly risen compared to a decade ago.

Specifically, the statistics show that 31 percent of the unemployed had a high level of education (HBO,
WO), marking an increase from 20 percent in 2013. Although the overall population also witnessed a rise in
the proportion of highly educated individuals, the change was less pronounced, going from 28 percent in the
second quarter of 2013 to 36 percent in the same period of 2023.

Both the long-term and short-term unemployed experienced a rise in the proportion of highly educated
individuals. This increase was more pronounced among the long-term unemployed. The data for the second
quarter of 2023 indicates that 29 percent of short-term unemployed individuals were highly educated, while
among the long-term unemployed, this figure was higher at 40 percent. This trend suggests a noteworthy
shift in the educational profiles of the unemployed in the Netherlands.

Figure 1.3: Unemployment rate by highest educational attainment in NL

At the same time, it is shown that up to 56% of new executives fail within the first two years of hire (Boydell
et al., 2005), a success rate even lower than the probability of winning by flipping a coin. Hiring the best
person for a job is a very difficult problem. In recent years, scholars within the field of game theory have
increasingly delved into the intricate dynamics of candidate attributes. There is an urgent need to find a way
to identify top candidates and make better use of labor quality.

In Chapter 1, we introduce various game theory definitions, laying the foundation for the subsequent
analyses. In Chapter 2, we build upon the work of Hvide and Kristiansen, 2003. This chapter conducts a
comprehensive mathematical analysis of a contest game. Solutions are derived, and the selection efficiency
of the game is rigorously tested. In Chapter 3, simulations based on the analytical results are presented.
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The scenarios considered include Agents without Memory, Agents with Memory, Multi-Agent scenarios, and
Multi-Round contests. Each simulation is designed to further validate the theoretical analyses.





2
Mathematical Background

To figure out the complexity of competition games within the employment market, we start with the basics of
game theory. We explore three games – the odd-even game, the secretary problem, and the Hawk-Dove game
– to learn about strategic decision-making in different scenarios.

We begin with the odd-even game, employing direct computation and demonstrating how agents learn
through fictitious play. Next, we introduce the secretary problem, a game where candidates are evaluated one
after another instead of taking turns.

Recognizing the reality that real-world agents might not always make rational decisions, we delve into the
concept of learning and adaptation. Agents start with initial strategies, refining them iteratively through a
learning process. We use the Hawk-Dove game as a compelling example to illustrate these concepts.

2.1. Game theory
Game theory is the study of mathematical models of strategic interactions among rational agents. The disci-
pline typically involves three fundamental elements:
1) Players: This refers to the set of participants involved in the game.
2) Actions: Actions represent the moves that each player can make during the game.
3) Payoffs: Payoffs are the scores or outcomes that each player receives at the end of the game.

Let’s consider the most classical game in game theory, which is called a two-player zero-sum game. This
is a game with only two players in which one player wins what the other player loses.

2.1.1. The Strategic Form
A "strategic form" is a formal and compact representation of a game that includes all the information needed
to analyze the strategies and outcomes of the game.

Definition 1 (Strategic Form of Two Zero-Sum Game). The strategic form of a two-person zero-sum game is
given by a triplet (X ,Y , A), where X , Y represents the set of strategies of Player I and II respectively, commonly
referred to as pure strategies. A is a real-valued function defined on X ×Y . A(x, y) represents the payoff
function of player I, which means the winnings of player I and the losses of player II (Ferguson, 2020).

If Player I has m actions, 1,2, . . . ,m, Player II has n actions, 1,2, . . . ,n. The payoff matrix A ∈ Rm×n repre-
sents the payoff to Player I:

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

. . .
...

am1 am2 · · · amn


If Player I chooses i and Player II chooses j , the payoff to Player I is ai j and the payoff to Player II is −ai j . The
sum of the payoff to Player I and the payoff to Player II is 0 (Karlin and Peres, 2017).

In the following part, we will use an odd-even game as an example to explain some basic concepts. An
odd-even game is a zero-sum game involving two sides, resulting in an advantage for one side and an equiva-
lent loss for the other. Two players take turns selecting numbers from a pool. After each selection, the players

9



10 2. Mathematical Background

add the numbers together. If the sum is an odd number, the player who correctly predicted the result (odd or
even) earns a point.

Now consider an example of an odd-even game with X = {1,2},Y = {1,2}, and A as given in the following
table.

Player II(even)

1 2

Player I(odd)
1 (−2,+2) (+3,−3)

2 (+3,−3) (−4,+4)

A(x, y) =
( −2 +3
+3 −4

)
Definition 2 (Mixed Strategies). While a pure strategy is an element of a strategy set, a mixed strategy is a
probability distribution over the available pure strategies in the player’s strategy set.

For any two-person zero-sum game with payoff matrix A ∈ Rm×n , a mixed strategy for Player I may be

represented by a column vector,
(
p1, p2, . . . , pm

)T of probabilities that add to 1. Similarly, a mixed strategy

for Player II is an n-tuple q = (
q1, q2, . . . , qn

)T . The sets of mixed strategies of players I and II will be denoted
respectively by X ∗ and Y ∗,

X ∗ =
{

p = (
p1, . . . , pm

)T : pi ≥ 0, for i = 1, . . . ,m and
m∑
1

pi = 1

}
Y ∗ =

{
q = (

q1, . . . , qn
)T : q j ≥ 0, for j = 1, . . . ,n and

n∑
1

q j = 1

}

2.1.2. The Minimax Theorem
When Player II uses a mixed strategy q ∈ Y ∗, and Player I selects row i , the average payoff is given by

∑n
j=1 ai j q j =

(Aq)i . If Player I knows that Player II is going to use a particular mixed strategy q , Player I would choose the
row i between 1 and m or, in other words, p ∈ X ∗, to maximize the payoff:

max
1≤i≤m

n∑
j=1

ai j q j = max
p∈X ∗ pT Aq

Consequently, Player II is incentivized to choose q in a way that minimizes this payoff.
Similarly, in the reverse scenario where Player I makes the initial decision, Player II would choose column

j between 1 and n to minimize the average payoff:

min
1≤i≤n

m∑
i=1

pi ai j = min
q∈Y ∗ pT Aq

In response, Player I would then select p to maximize this payoff. This leads to the concept of the upper and
lower values of a game.

Definition 3 (Upper and Lower Values of a Game). The upper value of the game (X ,Y , A) is the minimum
average loss that Player II can achieve no matter what Player I does, defined by:

V̄ = min
q∈Y ∗ max

1≤i≤m

n∑
i=1

ai j q j = min
q∈Y ∗ max

p∈X ∗ pT Aq .

The lower value of the game is the maximum payoff Player I can obtain, defined by:

V = max
p∈X ∗ min

1≤ j≤n

m∑
i=1

pi ai j = max
p∈X ∗ min

q∈Y ∗ pT Aq

Theorem 1 (Minimax Theorem).

V̄ = max
p∈X ∗ min

q∈Y ∗ pT Aq = min
q∈Y ∗ max

p∈X ∗ pT Aq =V .
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Published in 1928, von Neumann’s minimax theorem states that: There is a number V , called the value
of the game, For Player I, by selecting a mixed strategy p ∈ X ∗, maximizing the minimum expected payoff,
the average gain is at least V , no matter what II does. For Player II, by selecting a mixed strategy q ∈ Y ∗,
minimizing the maximum expected loss, the average loss is at most V , no matter what Player I does. If V is
zero we say the game is fair; if V is positive, we say the game favors Player I; if V is negative, we say the game
favors Player II.

2.1.3. The Principle of Indifference
From the Minimax theorem, in a finite game, both players have optimal mixed strategies, p and q . Player I
will search for an optimal strategy in p that makes Player 2 indifferent as to which of the (good) pure strategies
to use. And Player I’s average payoff is at least V (Ferguson, 2020). Therefore we have:

m∑
i=1

pi ai j ≥V for all j = 1, . . . ,n.

Similarly, Player II’s optimal strategy q also makes Player 1 indifferent among pure strategies in q : q =(
q1, . . . , qn

)T is optimal for II if and only if

n∑
j=1

ai j q j ≤V for all i = 1, . . . ,m.

Definition 4 (Equilibrium Theorem). When both players use their optimal strategies, p = (
p1, . . . , pn

)T and

q = (
q1, . . . , qn

)T respectively, then

n∑
j=1

ai j q j =V for all i for which pi > 0

and
m∑

i=1
pi ai j =V for all j for which q j > 0

This means that if one player is playing optimally, any action that has positive weight in the other player’s
optimal mixed strategy is a suitable response. It implies that any mixture of these “active actions” is a suitable
response.

To find the optimal strategies in the odd-even game mentioned before, we will first need to check the
saddle point.

Definition 5 (Saddle Point). If some entry ai j of the matrix A has the property that (1) ai j is the minimum of
the i th row, and (2) ai j is the maximum of the j th column, then we say ai j is a saddle point. If ai j is a saddle
point, then Player I can then win at least ai j by choosing row i , and Player II can keep her loss to at most ai j

by choosing column j . ai j is the value of the game.

Recall the payoff matrix

A(x, y) =
( −2 +3
+3 −4

)
There is no such a saddle point. Then we can compute the optimal mixed strategy. In our example, if Player
I calls one with probability p1 and calls two with probability p2, we want to find them such that no matter
what Player II chooses, player I has the same payoff. Therefore,

−2p1 +3(1−p2) = 3p1 −4(1−p2) =V

p1 +p2 = 1

p1 = 7

12

V = 3 · 7

12
−4 · 5

12
= 1

12
2q1 −3(1−q2) =−3q! +4(1−q2) =V

q1 +q2 = 0

q1 = 7

12



12 2. Mathematical Background

The strategy for Player I is p = (7/12,5/12)T , strategy for Player II is also q = (7/12,5/12)T . Both players have
the same optimal strategies because the matrix is symmetric. The value of the game is 1

12 , indicating an
advantage for Player I since the value is positive.

2.1.4. Fictitious play
Fictitious play is a dynamic learning process where players iteratively update their strategies based on per-
ceived opponent behavior. Introduced by George Brown(Brown, 1951), this method aims to converge to the
value of a zero-sum game. The process unfolds sequentially, approximating the game’s value with increasing
precision. After playing n rounds, Player II, with a perfect memory of Player I’s past choices, tries to predict
Player I’s strategy by averaging the n previous choices. After each round, both players update their under-
standing of the opponent’s strategy. This iterative approach offers upper and lower bounds that converge
toward the true value of the game, along with strategies for the players that achieve these bounds. The advan-
tage of fictitious play is its simplicity and flexibility, allowing users to stop the process at any point and obtain
answers known. The players interact in rounds as follows (Ferguson, 2020):
1) Player I chooses an arbitrary initial pure strategy 1 ≤ i1 ≤ m. Then j1 is chosen as that j which minimizes
A

(
i1, j

)
. Similarly, if j1 have already been chosen, i2 is then chosen as that i that maximizes A

(
i , j1

)
. To be

specific, we define

sk ( j ) =
k∑
ℓ=1

A
(
iℓ, j

)
and tk (i ) =

k∑
ℓ=1

A
(
i , jℓ

)
2) After k rounds, we have sequences i and j of strategies in these rounds. We choose ik+1 as the smallest value
of i that maximizes tk (i ). Similarly, jk is taken as the smallest j that minimizes sk ( j ). We define:

jk = argmin sk ( j ) and ik+1 = argmax tk (i )

3) Notice that V̄k = (1/k)tk (ik+1) is an upper bound to the value of the game since Player II can use the strategy
that chooses j randomly and equally likely from j1, . . . , jk and keep Player I’s expected return to be at most
V̄k . Similarly, V k = (1/k)sk

(
jk

)
is a lower bound to the value of the game.

We use the same example to see how to use fictitious play. Recall that the matrix for the game is

A =
( −2 +3
+3 −4

)
We take the initial i1 = 1, and find

k ik sk (1) sk (2) V k jk tk (1) tk (2) V̄k

1 1 −2 3 −2 1 −2 3 3
2 2 1 −1 −0.5 2 1 −1 0.5
3 1 −1 2 −1/3 1 −1 2 2/3
4 2 2 −2 −0.5 2 2 −2 0.5
5 1 0 1 0 1 0 1 1/5
6 2 3 −3 −1/2 2 3 −3 0.5
7 1 1 0 0 2 6 −7 6/7
8 1 −1 3 −1/8 1 4 −4 0.5
9 1 −3 6 −1/3 1 2 −1 2/9

10 1 −5 9 −1/2 1 0 2 1/5
11 2 −2 5 −2/11 1 −2 5 5/11
12 2 1 1 1/12 1 −4 8 8/12
13 2 4 −3 −3/13 2 −1 4 4/13
14 2 7 −7 −1/2 2 2 0 1/7

The initiation of i1 = 1 yields (s1(1), s1(2), s1(3)) as the initial row of matrix A, with the minimum value
residing at s1(1). Consequently, j1 = 1. The second column of A designates t1(2) as the maximum, resulting in
i2 = 2. Subsequently, the sequences ik and jk are deterministically defined. The maximum of V k discovered
so far occurs at k = 12, with a value of sk

(
jk

)
/k = 1/12. Player I can secure this value by employing the mixed
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strategy (7/12,5/12), since in the first 12 instances of ik , there are 7 occurrences of 1 and 5 occurrences of 2.
The minimum of the V̄k emerges multiple times, with a value of 1/7. Up to this analysis, the bounds for V are
established as 1/12 ≤V ≤ 1/7. The player slowly converges to the Nash Equilibrium.

2.2. Optimal stopping and Secretary Problem
Assume there is a single available secretarial position. The total number of applicants is known. Applicants
are interviewed one by one in a random order, with each possible order being equally likely. It is assumed that
you have the ability to rank all the applicants from best to worst without any ties. Your decisions regarding
accepting or rejecting an applicant are solely based on the relative rankings of those applicants interviewed
up to that point. Once an applicant is rejected, they cannot be reconsidered later in the process. The inter-
viewers have exceptionally high standards and will only be satisfied with the absolute best candidate. In other
words, the interviewers’ objective is to achieve a payoff of 1 by selecting the best candidate from the pool of
n applicants, and the interviewer will receive a payoff of 0 otherwise. The primary goal is to select a strategy
that maximizes the probability of identifying the best applicant, considering that applicants are presented in
a randomly chosen order. The key challenge involves determining the optimal stopping point — the moment
at which the evaluation of candidates should cease, and a selection should be made.

The game is presented in Thomas S. Ferguson’s articlein 1989, and there’s a simple solution to the ques-
tion. Selecting integer "r" greater than 1, the rule involves the rejection of the first "r - 1" applicants and
the subsequent selection of the next applicant who ranks highest in comparison to the previously observed
applicants. Let i be the best applicant, φn(r ) be the probability of selecting the best applicant.

φn(r ) =
n∑

i=1
P ( applicant i is selected ∩ applicant i is the best )

=
n∑

i=1
P ( applicant i is selected | applicant i is the best ) ·P ( applicant i is the best )

When i <= r −1, the best applicant is rejected, thus the probability is 0 indeed. When i >= r , the chosen i th
candidate is for sure the best candidate whenever the second-best one was rejected at the beginning.

φn(r ) =
[

r−1∑
i=1

0+
n∑

i=r
P

(
the best of the first i −1 applicants
is in the first r −1 applicants

| applicant i is the best

)]
· 1

n

=
[

n∑
i=r

r −1

i −1

]
· 1

n

= r −1

n

n∑
i=r

1

i −1
.

= r −1

n

(
n−1∑
i=1

1

i
−

r−1∑
i=1

1

i

)

Since Hn =∑n
i=1

1
i is the n− th harmonic number, Hr =∑r

i=1
1
i is the r − th harmonic number, as ’n’ tends

toward infinity, Hn tends to log (n)−γ, where γ is the Euler constant. Therefore,

φn(r ) = lim
n→∞

r −1

n
(Hn−1 −Hr−1) ≈ lim

n→∞
r −1

n
(log (n)−γ− log (r −1)+−γ)

.
According to the concept of Euler constant, we have γ= limn→∞

(− logn +∑n
i=1

1
k

)
, therefore,

φn(r ) = lim
n→∞(log(n)−γ− (log(r )−γ)) · r

n
= lim

n→∞(− r

n
log(

r

n
))

Represent x as the limit of r −1/n.
φn(r ) →−x log(x)

Setting the derivative with respect to x equal to zero and then solving for x, which is 1
e . The result shows that

with increasing values of ’n,’ in order to improve the selection efficiency, the optimal cutoff tends to approach
’n/e,’ and the selection of the best applicant occurs with a probability of approximately ’1/e.’
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2.3. Evolutionary Game Theory
Evolutionary game theory is a framework, for understanding how strategic behaviors evolve in biological
systems. It builds upon the foundations of game theory and expands our knowledge to go beyond just human
decision-making and into the natural world. The key idea behind evolutionary game theory is its ability to
model how individuals, in a population make choices as they adapt to their surroundings and interact with
each other. Unlike classical game theory, it doesn’t assume that players always act rationally. Instead, it merely
requires individuals to possess a strategy, with the primary objective being the assessment of the effectiveness
of that strategy.

The evolutionary game is non zero-sum, which is more difficult than a zero-sum game. The main purpose
is to find the Nash Equilibrium.

Definition 6 (Pure Nash Equilibrium). For pure strategy choices X ∗ = (
x∗

1 , . . . , x∗
i , . . . , x∗

n

)
where i = 1,2, . . . ,n,

ui (x1, x2, . . . , xn) represents the payoff to player i . If we have

ui (x1, . . . , xi−1, xi , xi+1, . . . , xn) ≥ ui (x1, . . . , xi−1, x, xi+1, . . . , xn)

the pure strategies choice is a Nash equilibrium.

The definition can be extended while the players use mixed strategies.

Definition 7 (Mixed Nash Equilibrium). Let X ∗
i be the set of mixed strategies of player i . A vector of mixed

strategy choices
(
p1, p2, . . . , pn

)
with p i ∈ X ∗

i for i = 1, . . . ,n is said to be a strategic equilibrium, if for all
i = 1,2, . . . ,n, and for all p ∈ X ∗

i , the average payoff to player i

gi
(
p1, . . . , p i−1, p i , p i+1, . . . , pn

)≥ gi
(
p1, . . . , p i−1, p , p i+1, . . . , pn

)
.

A Nash equilibrium is defined as a profile of strategies, implying an assignment of strategies to each player.
It constitutes a mutual best response scenario, where no player possesses an incentive to deviate from their
chosen strategy. If one player decides to deviate but all others do not, then this hurts the deviating player.
This is sometimes called "one shot deviation".

However, in the evolutionary game, it is crucial to note that a Nash equilibrium falls short in ensuring
evolutionary stability. A strategy profile x is a Nash Equilibrium (NE) if no player can improve their outcome
by deviating. For another strategy profile y , where xi = yi for all players except j , the condition u j (y, x) ≤
u j (x, x) holds. In Nash equilibrium, there are cases when u j (y, x) = u j (x, x), indicating that player j might
consider choosing y instead of x. An Evolutionarily Stable Strategy (ESS) has a stronger condition, where for
other players, ui (y, x) > ui (y, y) must hold. x is a best reply to itself but a strict best reply to y , which makes it
an ESS. Here’s an example of it. Consider the payoff matrix for Harm thy neighbor game as follows:

Player II

A B

Player I
A (2,2) (1,2)

B (2,1) (2,2)

It is obvious that both (A, A) and (B ,B) are Nash equilibrium. However, u1(B ,B) > u1(A,B) while u1(B , A) =
u1(A, A), which makes strategy B the only ESS.

2.3.1. Hawk-Dove Game
We can use the Hawk-Dove game to explain Evolutionary Game Theory. The hawk-dove game was first an-
alyzed in the article ’The Logic of Animal Conflict’(Gadagkar, 2005). This model revolves around conflict
between two players competing for a fixed resource. Each participant adopts one of two distinct strategies,
as outlined below: Hawk: This strategy involves initiating aggressive behavior and persisting until injured or
until the opponent yields. Dove: In contrast, the Dove strategy dictates an immediate retreat if the oppo-
nent initiates aggressive behavior. In interactions between players of the same type, Doves share resources
equally, while Hawks, engaging in aggressive attacks, pose an equal probability of injury to both parties. Con-
flict reduces the fitness of the injured participant by a constant value denoted as C , and B is the value of the
contested resource. When a Dove encounters a Hawk, the Hawk claims the resources. The traditional payoff
matrix is shown as follows:
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Hawk Dove
Hawk (B−C)/2,(B−C)/2 B,0
Dove 0, B B/2,B/2

If (B −C ) > 0, there’s only one pure Nash equilibrium ((B −C )/2,(B −C )/2) since Hawk strictly dominates
Dove for both players. Note that if (B−C )/2 < 0, there’re two pure Nash equilibriums (Hawk, Dove) and (Dove,
Hawk) with payoff (B ,0) and (0,B) respectively.

Now we simulate the game with an example:

Hawk Dove
Hawk −1,−1 10,0
Dove 0,10 5,5

Through mathematical analysis, the two Pure Strategy Equilibria (PSE), namely (Dove, H awk) and (H awk,Dove),
are easily identified. Additionally, a mixed strategy is derived for Player I, involving the probability of choos-
ing a Hawk move, denoted as p, while the probability of choosing a Dove move is 1−p. Player II should be
indifferent between the Hawk and Dove moves. Therefore, the following equation is established:

−p +10(1−p) = 5(1−p)

Therefore, p = 5/6. According to the definition of Evolutionary Stable Strategy (ESS), this mixed strategy,
specifically ( 5

6 , 1
6 ), can be also proven the ESS through the following calculations:

V (5/6, q) =−5

6
+10 · 5

6
∗ (1−q)+0 · 1

6
+5 · 1

6
∗ (1−q)

V (q, q) =−q2 +10q(1−q)+5(1−q)2

V (5/6, q)−V (q, q) = (6q −5)2/6 > 0

(2.1)

This inequality holds as long as q ̸= 5
6 , establishing the mixed strategy as evolutionarily stable with a popula-

tion of 5/6 Hawks and 1/6 Doves.
In all, there are three Nash equilibriums. What is the NE that a population of birds will end up in? To

empirically validate this result, several simulations are conducted. Beginning with a population of 1000 birds
(999 Doves and 1 Hawk), the birds are paired into 500 pairs. Following the game rules, we can calculate the
fitness of each bird after the first iteration.

Considering finite population random effects, we first experiment with the effect of the mutation. In
case of a draw, the birds remain unchanged. If not, the losing Dove transforms into a Hawk. The simulation
demonstrates a convergence towards an all-Hawk population, typically occurring around the 10th iteration.
Following this learning rule, doves were eliminated, because the payoff for hawks was (B–C )/2 < 0, and the
population went to extinction.

Figure 2.1: Hawk-dove(mutation)

To enhance the learning rule and avoid the extinction of doves due to direct mutations, we assume that
there is only a small chance of mutation that may alter the type of offspring. This mutation only has a limited
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effect, as the next generation is ultimately determined based on weight. Assuming the total number of birds
remains constant while the composition changes, we select the next generation by giving more weight to
birds with higher fitness. This increased weight enhances their chances of producing offspring. The result
shows that the population ends up in the mixed Nash Equilibrium, which is aligned with the Evolutionary
Stable Strategy as analyzed before.

Figure 2.2: Hawk-dove game

2.4. Summary
In this chapter, we reviewed classical concepts from game theory, optimal selection, and evolutionary dy-
namics. These concepts lay the foundation for our analysis of contests in the job market, where applicants
exhibit behavior like hawks and doves learning from each other. Additionally, the firms engaging with these
applicants face optimal selection challenges. Our exploration of these mathematical background sets the
stage for a deeper dive into a specific game theory paper in the next chapter.



3
Risk Taking in Selection Contests

In this chapter, we review the work of Hvide and Kristiansen, 2003, focusing on a contest game and deriving its
solutions. The chapter commences with a definition of the game, followed by a comprehensive mathematical
analysis of scenarios involving two and three agents, respectively. The primary focus of the paper is on the
selection efficiency of contests, considering the number of contestants and the quality of the contestant pool-
the proportion of high-type agents in the pool. Contrary to the intuitive expectation, the study reveals that an
increase in the number of contestants or an improvement in the quality of the market does not consistently
improve the selection efficiency. The selection efficiency may experience a decline in higher-quality markets.
These findings are supported by an exploration of the contest game and the mathematical analysis.

3.1. Definition of the game
The secretary problem outlined in Chapter 2 is a renowned example of situations where applicants are pre-
sented sequentially, one after another, and the objective is to identify the optimal candidate with only limited
information. In this section, we conduct an in-depth review of the model proposed by Hvide and Kristiansen,
2003. In their paper, the investigation revolves around the selection efficiency of Multi contests wherein con-
testants optimize their risk-taking choices considering the risk-taking behaviors of others. The study further
delves into determining which type of contestant is likely to win and evaluates the factors influencing the
efficiency of contest selection. Two pivotal factors are emphasized in the paper: the number of contestants
and the quality of contestants.

In contrast to scenarios like the secretary problem, which primarily revolves around identifying the opti-
mal strategy to maximize the probability of selecting the best applicant over rounds, the analysis undertaken
by Hvide and Kristiansen introduces a unique perspective. Here, all applicants apply simultaneously, altering
the dynamics as the decision-maker must concurrently evaluate multiple applicants and devise a strategy to
choose the most suitable one. This deviation introduces a different set of complexities and considerations in
the decision-making process.

The paper starts by considering two distinct types of agents: high types and low types, which are cate-
gorized within the type space denoted as T = l ,h. The parameter θ represents the proportion of high-type
agents within the pool from which a total of n agents are drawn. Furthermore, it defines an action space de-
noted as C , which encompasses the possible actions that each agent can undertake, including a safe move or
a risky move, i.e., C = {s,r}.

Next, Hvide and Kristiansen conduct an in-depth examination of the game denoted as Γ(n,θ). Defining n
as the number of applicants that are drawn at random from the pool of job seekers, the analysis is specifically
tailored for the case when n = 2. In this game, each agent possesses information about their type as well as the
values of n and θ. However, they remain uninformed about the types of the other contestants, rendering the
game an incomplete information game. The rules are straightforward: n contestants simultaneously engage
in one game, and the one with the highest score emerges as the winner.

We define a mapping f from T to C that gives all possibilities of pure strategies if the number of applicants
is equal to n = 2. The mapping f from T to C has 4 possibilities: f (l ) = f (h) = s, f (l ) = s; f (h) = r ; f (l ) =
r ; f (h) = s; f (l ) = f (h) = r . This set of strategies can be written as S := {(s, s), (s,r ), (r, s), (r,r )}, with the first
coordinate representing the value of f for the low type and the second coordinate representing the value of f

17
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for the high type.
An applicant achieves a score and the applicant with the highest score is selected. Assume the score of

agents is an individual output space Z consisting of four elements, Z := {z1, z2, z3, z4}, where z1 < z2 < z3 < z4.
Additionally, the contestant game incorporates the following assumptions: if a low type agent chooses the
safe move s, their output is guaranteed to be z2. Conversely, if a high type agent chooses s, their output is
guaranteed to be z3. On the other hand, if a low-type agent opts for the risky move r , their output is z1 with
a probability of 1− x, and z4 with a probability of x. Similarly, if a high type agent plays r , their output is z1

with a probability of 1− y , and z4 with a probability of y , where y exceeds x. For all the contestants, the one
who has the highest output will win the contest.

Furthermore, the paper investigated the impact of contestant quality on the selection efficiency of a con-
test. The selection efficiency is quantified by the probability of a high-type agent winning the prize in the best
response equilibrium (BNE), denoted asΠ(Γ).

Now we can draw the game tree and play this game of two players as follows. Firstly we discuss the situa-
tion where Player 1 is high type, followed by the case that Player 1 is low type.
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3.2. Mathematical analysis
Having defined the game in the last section, we will now consider the optimal strategies of the players in the
game. Particularly, we will only consider pure Nash Equilibrium but not mixed NE’s. Recall that the player
with the highest output wins. Let Ui ( j ,k) represent the win probability of an agent of type i when agents of
the same type (including themselves) play strategy j and agents of the other type play strategy k. We will now
calculate the win probabilities for both types of agents under the four strategies.

In the scenario where n = 2, we first assume that player 1 is high-type. Considering this as an illustrative
example, we proceed to calculate the win probability of the high-type agent when both types of agents opt
for the safe strategy. For the strategy (s, s), wherein both players choose strategy s, we can observe that if the
opponent is also a high type, the win probability for player 1 is 1/2. However, if the opponent is a low type,
the win probability for player 1 is 1. This analysis leads to the computation of UH (s, s) (the win probability of
high types under strategy (s,s) ) as follows:

UH (s, s) = 1

2
θ+ (1−θ) = 1−θ/2

Next, consider the scenario where the high-type agent chooses the safe strategy s and the low-type agent
chooses the risky strategy r . When player 2 is a high type, the win probability for player 1 is 1/2. However,
when player 2 is a low type, player 1 wins only if player 2’s output is z1. Therefore, we have:

UH (s,r ) = 1

2
θ+ (1−θ)(1−x) = 1−x −θ/2+θx

Similarly, we can compute the win probabilities for player 1 under the pure strategies (r,r ) and (r, s):

UH (r,r ) = θ/2+ (1−θ)[
1

2
(1− y)(1−x)+ 1

2
x y + y(1−x)] = 1/2+ (1−θ)(y −x)/2

UH (r, s) = 1

2
θ+ (1−θ)y

Now, let’s assume player 1 is a low type. Following the same approach, we calculate the win probabilities for
player 1 under the four pure strategies:

UL(s, s) = 1

2
(1−θ)

UL(r,r ) = 1

2
(1−θ)+ 1

2
θ(1−x)(1− y)+θx(1− y)+ 1

2
θx y = 1

2
+ 1

2
θ(x − y)

UL(s,r ) = 1

2
(1−θ)+θ(1− y)

UL(r, s) = 1

2
(1−θ)+θx

Using the one-shot deviation principle, we will analyze the potential strategy deviations to determine
whether each strategy qualifies as a pure strategy equilibrium. By considering how agents might change their
strategies to maximize their win probabilities, we can ascertain the stability of each strategy in the contest
setting.

In the following analysis, we write U ′
i ( j ,k) to represent the win probability of an agent of type i when

they play strategy − j (the other strategy), while other agents of the same type opt for strategy j , and agents
of the other type choose strategy k. Here’s an example for U ′

H (r,r ). Suppose player 1 is a high-type agent
who chooses the safe strategy, while other high-type agents opt for the risky strategy, and the low-type agent
chooses the risky strategy. In this scenario, the win probability for player 1 is as follows: if player 2 is also a
high type, the win probability for player 1 is θ(1− y), corresponding to the case where the output for player 1
is z3 and for player 2 is z1. Conversely, if player 2 is a low type, the win probability for player 1 is (1−θ)(1−x),
reflecting the case where the output for the low type is z1. According to analysis, we have

U ′
H (r,r ) = θ(1− y)+ (1−θ)(1−x)

Consider another scenario, specifically for U ′
L(r, s), where player 1 is a low-type agent select strategy s, making

it different from other agents of the same type, who will choose strategy r . At the same time, the high-type
agent will certainly choose the safe strategy. According to the analysis, we can compute:

U ′
L(r, s) = (1−θ)(1−x)
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considering utility function U ′
H (s,r ), the scenario involves a specific high-type agent opting for a risky strat-

egy, while the remaining high types adhere to the safe strategy. All low types consistently select the risky strat-
egy. The potential outcomes for the specific high-type agent to secure a victory are as follows: 1) Competing
against other high-types and achieving a score of z4, 2) encountering low types, with both parties obtaining a
score of z1 or z4. Therefore, we have:

U ′
H (s,r ) = θy + (1−θ)

(
1

2
x y + y(1−x)+ 1

2
(1−x)(1− y)

)
Continuing with the same analytical approach, we proceed to calculate the win probabilities for player 1 of
different types under various pure strategies.

U ′
H (r, s) = θ(1− y)+ (1−θ)

U ′
H (s, s) = y

U ′
L(r,r ) = θ(1− y)+ (1−θ)(1−x)

U ′
L(s,r ) = θ

(
1

2
x y +x(1− y)+ 1

2
(1−x)(1− y)

)
+ (1−θ)x

U ′
L(s, s) = x

Continuing from the previous analysis, we will now consider the Nash equilibrium with pure strategies,
and find out how the parameters (x, y,θ) influence the choice of risk-taking.

3.2.1. Nash Equilibrium (r,r )
Starting with the strategy (r,r ), we will check whether both types of agents adhere to the supposed equilib-
rium strategy. Specifically, we want to determine if UH (r,r ) > U ′

H (r,r ) and UL(r,r ) > U ′
L(r,r ) hold, where

U ′(r,r ) means that player deviates from r and plays s. If U (r,r ) >U ′(r,r ) then the player has no incentive to
deviate. Referring to the previous equations, we have:

1/2+ (1−θ)(y −x)/2 > θ(1− y)+ (1−θ)(1−x)

Simplifying the inequality, we find that y > [1− (2−θ)x]/(2+θ). Additionally, we have

1

2
+ 1

2
θ(x − y) > θ(1− y)+ (1−θ)(1−x)

thus y > [1− (2−θ)x]/θ. This condition is more restrictive than the previous one.
Simultaneously, we can analyze how the quality of the market influences the choice of risk-taking by ex-

amining the value of θ. It is obvious that if there are too many low agents in the market, leading to θ being
quite small, as it appears in the denominator, y would become extremely large and unattainable. In such a
case (r,r) will never be achievable, and the agents are inclined to the safe strategy. Expanding on the previ-
ously mentioned inequality, the attainment of the strategy (r,r ) as a Nash equilibrium only materializes when
θ surpasses a specific threshold, precisely when θ > 1−2x

y−x . At the same time, the bound on θ depends on the
difference between y and x.In our model, we always have y > x, which means that high-type players perform
better at the risky strategy. If y is close to x, then a high-type player doesn’t have the advantage anymore and
will prefer a safe move.

3.2.2. Nash Equilibrium (s, s)
Let UH (s, s) >U ′

H (s, s) and UL(s, s) >U ′
L(s, s), we have Nash equilibrium (s, s) if y < 1−θ/2 for high type agent,

and x < 1
2 (1−θ) for low type agent.

As for the influence of the proportion of high-type agents on risk-taking choices, it is observed that when
θ < min(2−2y,1−2x), the strategy (s, s) is an equilibrium, where both types of agents opt for the safe action.
However, as the proportion of high-type agents (θ) increases slightly and falls within the range as θ > min(1−
2x,2−2y), a shift in the equilibrium is noted, under these conditions, there is an augmented probability of
different types of agents choosing the risky strategy.

3.2.3. Nash Equilibrium (r, s)
Concerning the strategy (r, s), where low types consistently opt for the risky strategy and high types choose
the safe strategy, for high-type agents, UH (r, s) >U ′

H (r, s), the inequality is given by:

1−x −θ/2+θx > θy + (1−θ)

(
1

2
x y + y(1−x)+ 1

2
(1−x)(1− y)

)
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This simplifies to y < 1−(1−θ)x
1+θ and for low types,

1

2
(1−θ)+θx > (1−θ)(1−x)

leads to x > (1−θ)/2. These two inequalities combine to

1−2x < θ < 1− y −x

y −x

The low-type agents transition to the risky strategy, while the high-type agents adhere to the safe strategy. This
choice is reasonable in situations with a higher proportion of high agents in the market, there is an increased
probability of low-type agents encountering high types. In such a situation, the optimal strategy for low types
to win is by producing output z4 prompting their choice of the risky strategy.

3.2.4. Nash Equilibrium (s,r )
Finally considering strategy (s,r ), following a similar analysis as before, we have

1

2
θ+ (1−θ)y > θ(1− y)+ (1−θ)

which implies y > 1−θ/2 And:

1

2
(1−θ)+θ(1− y) > θ

(
1

2
x y +x(1− y)+ 1

2
(1−x)(1− y)

)
+ (1−θ)x

Thus, x < (1−θy)/(2−θ) Additionally, we consider how variations in the quality of the market will influence
this strategy. Certainly, when 2− 2y < θ < 1−2x

y−x replaces θ < 2− 2y . the high-type agents shift to the risky
strategy while the low-type agents maintain the safe strategy.

The analysis proves that the change in the equilibrium strategies is related to the variations in the pro-
portion of high-type agents (θ). The inequality equations presented above also illuminate the correlation
between the selected strategies and the parameters x, and y . For example, when x or y are relatively high,
the agents are more inclined to opt for a risky strategy. The mathematical inequalities reach the same result:
considering that θ falls within the range 0 < θ < 1, combined with θ < 1−2x, for strategy (s, s), it shows that
0 < x < 1

2 . This means that if x is larger than 1/2, the low-type agents are supposed to choose the risky strategy
for sure, and a safe move will never be reachable. For strategy (r,r ), we have condition 1−2x

y−x < 1, i.e. 1−x < y .
This means y is bigger than 1/2, or high-type agents have no incentive to choose the risky strategy.

To visualize this result, we will use graphs to demonstrate the dynamics of the equilibrium strategies with
changing range (x, y, z) When θ, x and y vary within the conditions: 0 < θ < 1, 0 < x < 1/2 and x < y < 1.

Figure 3.3: Nash equilibrium
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The x-axis is the value of parameter x, the y-axis is the value of parameter y , and the z-axis corresponds
to the parameter θ. The gradient of colors, transitioning from red to blue (or yellow) to green, represents the
strategies from (s, s) to (r, s) or (s,r ), and eventually to (r,r ). The picture illustrates a significant trend: as the
values of x, y , or θ increase, the game’s equilibrium shifts towards a greater propensity for risk-taking. This
finding aligns precisely with the results obtained from our computations.

3.3. Selection Efficiency
The main focus of the paper by Hvide and Kristiansen is the selection efficiency, denoted as Π(Γ). This pa-
rameter represents the probability that a high-type contestant wins in the game, essentially securing a job
offer. The paper uncovers an unexpected finding: as the percentage of high-types (denoted as θ) increases,
the selection efficiencyΠ(Γ) can decrease. In situations where candidates are hired randomly without a selec-
tion process, having more high types generally boosts efficiency because then the probability of a high type
is θ. However, when a selection procedure is introduced, this is not the case. Surprisingly, having a higher
proportion of high types doesn’t always achieve higher selection efficiency.

For equilibrium strategy (s,s), low-type agents are only selected if both agents are low-type. This happens
with probability (1−θ)2. Therefore, the probability of high types win is that:

Π(s, s) = 1−P (low − t y pe −wi ns) = 1− (1−θ)2 = 2θ−θ2

In the case of strategy (s,r), low types are only successful if both agents are low types or if the high types obtain
output z1. The probability for high types to win is then:

Π(s,r ) = 1−P (l ow − t y pe −wi ns) = 1− [(1−θ)2 +2∗ (1− y)(1−θ)θ] = θ2 +2∗θ(1−θ)y

Notably, this is smaller than θ if y < 1/2. In this case, it is better for the employer to just select a candidate at
random without a selection procedure. Regarding strategy (r,s), the only possibility for high types to win is to
compete with high types or to obtain z4 when competing with low types. We have:

Π(r, s) = P (hi g h − t y pe −wi ns) = θ2 +θ(1−θ)(1−x)

which is larger than θ, therefore the selection procedure is useful. For strategy (r,r), the situation for high types
to win include:1) competing with high types, 2) competing with low types, and obtaining z4, 3) competing
with low types, and obtaining z1 when low types also get z1:

Π(r,r ) = θ2 +2∗ (1−θ)θ

[
1

2
x y + y(1−x)+ 1

2
(1−x)(1− y)

]
which is larger than θ, therefore the selection here is useful. It is evident that if the equilibrium is fixed, the
functionΠ increases with the value of θ, as indicated by its positive first derivative. This finding demonstrates
that increasing the quality of the contestant pool has a statistically significant effect, leading to a higher se-
lection efficiency (Π). However, it may happen when one of the agents changes strategy if theta increases
and that may lead to a worse Π. For example, Π(s,r ) and Π(r, s) are lower than Π(s, s). Consequently, Π may
decrease as θ falls within the range min(1− 2x,2− 2y) < θ < 1−2x

y−x . However, when θ > 1−2x
y−x , the selection

efficiency (Π(r,r )) returns to exhibiting a positive correlation with θ.
In summary, the study shows that the selection efficiency (Π) is positively influenced by an increase in the

quality of the contestant pool (as θ increases), while also noting that an increase in contestant quality leads
to a shift in equilibrium towards increased risk-taking, which may decrease selection efficiency eventually. To
further illustrate this point, we provide two examples where we examine the impact of varying θ within the
range from zero to one. For example 1, we set x = 1/3 and y = 4/5. For example 2, we have x = 1/5 and y = 1/4.
By examining these two scenarios, we can observe how changes in θ influence the equilibrium strategies and,
consequently, the selection efficiency of the contest.

To begin, the variable v signifies the change in equilibrium as θ undergoes increments of 0.001, progress-
ing from 0 to 1. In example 1, despite an overall increasing trend of Pi over θ, there are three transition points:
when θ approaches 0.3, 0.4, the Nash equilibrium transitions from (s,s) to (r,s), then (s,r). This transition is
accompanied by a decrease in Π and also indicates a shift towards a more risk-taking strategy. in medium-
quality pool. When around θ of 0.7, there’s the second transition point. The strategy changes from (s,r) to (r,r),
where maintaining the strategy (s,r) would result in a larger Π. Afterward, Π exhibits a consistent increasing
trend. In example 2, when both y and x are less than 1/2, there exists a single transition point. From the
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figure, it is evident that it is evident that in the beginning there’s an increase, then when the transitions from
(s,s) to (r,s), it results in a decrease inΠ at that point, followed by an increasing trend again afterward.

Figure 3.4: example 1 Figure 3.5: example 2

The two examples of the plots ofΠ over θ proves the statement:

(i) In a low-quality pool, a marginal increase in contestants’ average quality in-
creases selection efficiency.
(ii) In a medium-quality pool, a marginal increase in contestants’ average quality
may decrease selection efficiency.
(iii) In a high-quality pool, a marginal increase in contestants’ average quality in-
creases selection efficiency.

3.4. Increased number of contestants
We now investigate the impact of increasing the number of contestants, denoted as n, on the selection effi-
ciency Π. To analyze this effect, we consider the case where n = 3 and find out the new Nash equilibrium,
and then we compute the selection efficiency accordingly. In the following part, we will compute the utility
functions for each type of agent under the four pure strategies (s,s), (s,r), (r,s), and (r,r), taking into account
the increased number of contestants.

Let’s proceed with the computation of the utility functions for the case where n = 3. We first examine the
utility function UH (s, s), where both low types and high types adopt the safe strategy. In this case, there are
several scenarios in which high types may win: 1) When three high types compete against each other (with
probability θ)2), the agent has a 1/3 probability of winning. 2) When there is one low-type agent and two
high-types competing (with probability 2∗θ(1−θ)), the probability of high-types winning is 1/2. 3) When
there are two low agents and only one high-type agent competing, the win probability is 1. Therefore we
have:

UH (s, s) = θ2 ∗ 1

3
+2∗θ(1−θ)

1

2
+ (1−θ)2

Considering the utility function U ′
H (s, s), this is the case that the specific high-type agent chooses the risky

strategy. Regardless of whom they compete with, the only way for this high-type agent to win is by obtaining
the score z4. Therefore we have:

U ′
H (s, s) = y

Continuing with the same analytical approach, we proceed to calculate the win probabilities for player 1 of
different types under various scenarios:

UL(s, s) = 1

3
(1−θ)2

U ′
L(s, s) = x

UL(r, s) = θ2x +2θ(1−θ)x(1−x + x

2
)+ 1

3
(1−θ)2
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U ′
L(r, s) = (1−θ)2(1−x)2

UH (s,r ) = θ2 · 1

3
+2∗θ(1−θ)

1

2
(1−x)+ (1−θ)2(1−x)2 = (θ−1)2 · (x −1)2 +θ2/3+θ∗ (θ−1)∗ (x −1)2

U ′
H (s,r ) = θ2 y +2θ(1−θ)y[1−x + 1

2
x]+ (1−θ)2[

1

2
(1−x)(1− y)+ 1

2
x y + y(1−x)]2

= ((θ−1)2(y −x +1)2)/4+θ2 y +2θy(x/2−1)(θ−1)

Recall from the previous section that when n = 2 and 0 < θ < min(1−2x,2−2y), the strategy (s, s) con-
stitutes a unique Bayesian Nash equilibrium. Under the same conditions where 0 < x < 1

2 , x < y < 1, and
θ < min(1−2x,2−2y), we observe that when the number of contestants increases to n = 3, the strategy (s, s)
is no longer an equilibrium. This is because if 1/3 < x < 1/2, U ′

L(s, s) > UL(s, s). Consequently, if there are
more contestants, then the low-type agent will become more risky.

Given this context, let’s examine if the strategy (r, s) is the new equilibrium in the scenario where n = 3.
Recall that for two players this is an equilibrium if θ < mi n(1−2x,2−2y). If x > 1/3, therefore θ < 1

3 , we have

UL(r, s)−U ′
L(r, s) > [1/3− (1−x)2 +2θx](1−θ)2 +θ2x > 0

and

UH (s,r )−U ′
H (s,r ) = (θ−1)2(x−1)2−θ2 y−((θ−1)2(y−x+1)2)/4+θ2/3+θ(θ−1)∗(x−1)2−2θy(x/2−1)(θ−1) > 0

This proves that (r, s) is the new Nash equilibrium.
This change in equilibrium strategy can subsequently influence the selection efficiencyΠ. After calculat-

ing the selection efficiencies for the strategies (s, s) and (r, s), denoted as Π(s, s) and Π(r, s) respectively, we
observe the following:

Π(s, s) = θ3 +2θ2(1−θ)+2θ(1−θ)2

Π(r, s) = 2 ·θ(θ−1)2 · (x −1)2 +θ3 +2θ2(θ−1)(x −1)2

It becomes apparent that Π(s, s) > Π(r, s) since (x −1)2 < 1, which implies that in this case, the selection
efficiency decreased when the number of agents increased.

This paper establishes several implicit conditions and focuses on the analysis of a contest involving two
agents (n = 2). However, it does not explicitly address scenarios involving multiple agents (n > 2), which
presents a limitation for further study. The implications and findings presented in the paper may not directly
apply to contests with more than two agents, as the dynamics and strategic interactions can become more
complex in such cases. The behavior and outcomes observed in two-agent contests may not necessarily
generalize to contests involving more participants.

3.5. Summary
In this chapter, we reviewed the paper of Hvide and Kristiansen about risk and selection in a contest game.
The mathematical analysis of Nash equilibrium and selection efficiency revealed surprising facts: in the job
market, an increase in the number of contestants or an improvement in market quality may decrease selec-
tion efficiency. These insights from our mathematical analysis lead to the simulations in the next chapter.





4
Simulations of Selection Contest

In Chapter 3, we undertake a comprehensive mathematical analysis of a selection contest, with a particular
emphasis on two key aspects: optimal risk-taking choices and selection efficiency. We identify pure Nash
equilibrium under various parameter values. Drawing inspiration from the hawk-dove game example, we
introduce different learning rules in simulations to explore whether players’ strategies converge to pure Nash
equilibrium through learning by playing. According to Robinson’s theorem on fictitious play, this will happen
if the players have infinite memory. But what if they have only limited memory? What if we have more than
2 contestants (n > 2)? The chapter delves into the simulation results derived from experiments conducted
under four distinct scenarios: Agents without memory, Agents with limited memory, Multi-agent scenarios,
and Multi-round contests. Additionally, we also examine the selection efficiency over θ under each scenario.
Our objective is to conduct an analysis of these results and compare them with our earlier theoretical analysis,
thereby providing a nuanced understanding of the dynamics at play in diverse contest scenarios.

4.1. Agents with no memory
First, we will present figures illustrating the variation in the proportion of risky agents, providing an analysis
of example 1 (where x = 1/3, y = 4/5) and example 2 (where x = 1/5, y = 1/4) as outlined in Chapter 2. We will
operate under the assumption that there are 100 agents within the market. As θ represents the quality of the
market (the proportion of high-type agents), We check θ values from 0 to 1 in 10 steps (0.1, 0.2, 0.3, ..., 1), but
the figures are plotted specifically for θ = 0.2,0.5,0.8. These values represent the low-quality, medium-quality,
and high-quality pool scenarios. In each round of the game, we begin by randomly pairing up the 100 agents,
resulting in 50 pairs. A game is played within each pair, and the player who achieves the highest output
emerges as the winner. The rules governing these game outputs align with the model defined in Chapter 3.

The dynamics of strategy adaptation in this game are as follows: the winning player retains their current
strategy for the subsequent round, while the losing player is prompted to switch their strategy. In cases where
a round ends in a tie, with both players achieving the same output, both individuals maintain their existing
strategies for the next round. This iterative process continues, and we conduct this game 1000 times for each
selected value of θ yielding a comprehensive set of results for our analysis. Over 1000 iterations, we compute
the proportion of risky agents in both types respectively under low-quality, medium-quality, and high-quality
markets. To mitigate fluctuations in the figures, a time window is employed, set at 50 within the context of
1000 time points.

Figure 4.1: example 1(theta=0.2) Figure 4.2: example 1(theta=0.5) Figure 4.3: example 1(theta=0.8)
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Figures 4.1 through 4.3 illustrate the pure Nash Equilibrium within the context of Example 1. As discussed
in Chapter 3, the equilibrium strategy transitions from (s,s) to (s,r) and finally to (r,r) according to the theo-
retical analysis. Indeed, these figures show that variations in the parameter θ wield a substantial impact on
the equilibrium strategy. Particularly, as depicted in Figures 4.1 to 4.3, a steady increase in the proportion of
risk-taking agents becomes apparent as the parameter θ increases from 0.2 to 0.5 to 0.8, all while holding the
total number of agents constant. For the high types, the proportion of risky ones rises from 0.5 to 0.75, and
for the low types, it increases from 0.3 to 0.55. This indicates that both types of agents exhibit a propensity
to embrace risky strategies swiftly. However, it is noteworthy that the percentage of risky agents fluctuates,
even though we use the time window to smooth the figures, the proportion of risky agents never reaches 0 or
1. This makes the pure Nash Equilibrium never reached. Therefore, the simulation result is different from Fig
3.4 in the last Chapter which shows that equilibrium strategies change from (s,s) to (s,r) to (r,r) on different
values of the parameter θ.

At the same time, it’s also interesting to note that the results exhibit a heightened level of instability at
the boundary points. For instance, when approximately 99% of the agents in the system are high-type, the
behavior of low-type agents tends to exhibit a heightened level of unpredictability. To make the figure more
readable, we use a time window (set at 2), and the reason for low types getting 0.5 is that he flips from 0
to 1 during the time window. This phenomenon can be attributed to the fact that, since all types of agents
have a chance to win, they modify their strategies every time they encounter losses, introducing an element
of unpredictability. When most agents are of a specific type, this phenomenon is particularly pronounced,
leading to more frequent changes in the strategies of agents of the opposing type.

Figure 4.4: example 1(theta=0.01) Figure 4.5: example 1(theta=0.99)(time window=2)

To illustrate the dynamics of the changes in the strategy, we reconfigure the plots with the x-axis rep-
resenting the outcomes from the t iteration, and the y-axis representing the outcomes from the t +1 itera-
tion. Despite potential randomness affecting the figures, excluding extreme edge points reveals a consistent
pattern. The dense cluster of data points converges within a specific range, consistently indicating that an
increase in θ leads to a rise in the proportion of risk-taking agents for both types.



4.1. Agents with no memory 29

Figure 4.6: example 1(theta=0.2) Figure 4.7: example 1(theta=0.5) Figure 4.8: example 1(theta=0.8)

Conversely, when we examine example 2, as shown in Figures 4.9-4.11, the equilibrium strategies also
depend on the values of the parameters (x, y) with the same θ. In this scenario, however, it is the low-type
agents who demonstrate a greater inclination to transition to risky strategies at an earlier stage compared to
their high-type contestants, and the equilibrium moves from (s, s) to (r, s), in accordance with the findings
presented in Figure 3.3.

Figure 4.9: example 2(theta=0.2) Figure 4.10: example 2(theta=0.5) Figure 4.11: example 2(theta=0.8)

Another aspect of our analysis is how market quality (θ) influences the win probability of the high-type
agent (selection efficiency), which is computed by the number of winning high types/ number of high types.
As illustrated in figures 4.12 to 4.14, a consistent trend emerges. The selection efficiency increases as θ rises
from 0.2 to 0.8, moving from 0.43 to 0.7 and then to 0.88. Similarly, from Figures 4.15 to 4.17, the trend persists
from 0.5 to 0.65 and then to 0.85. This trend persists across low-quality, medium-quality, and high-quality
contestant pools. Surprisingly, contrary to the theoretical analysis in Chapter 3, which suggested a potential
decrease in selection efficiency in a medium-quality pool with a marginal increase in contestants’ average
quality, the figures consistently show an overall increase in selection efficiency with elevated contestant qual-
ity (θ), leading to an increasing win probability of the high-type agent. This difference may arise due to the
influence of randomness, leading to strategies far from pure Nash Equilibrium and instability in the choices
made by both types. In this scenario, low types cannot learn to use the risky strategy, and the random strategy
selection reduces their chances of manipulating the market.

These graphs offer valuable insights into how changes in contestant quality (θ) impact the equilibrium
strategy and, more importantly, impact the selection efficiency, shedding light on the distinct dynamics at
play in both example 1 and example 2. The observed randomness and absence of convergence can be at-
tributed to the rules of the game, where an agent adjusts their strategy in every iteration following a loss
in the game. Therefore, we proceeded to conduct the subsequent experiment, examining the implications
of allowing agents to learn from their prior actions, thereby obviating the necessity for them to adjust their
strategy following each instance of losing in the game.
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Figure 4.12: example 1(theta=0.2) Figure 4.13: example 1(theta=0.5) Figure 4.14: example 1(theta=0.8)

Figure 4.15: example 2(theta=0.2) Figure 4.16: example 2(theta=0.5) Figure 4.17: example 2(theta=0.8)

4.2. Agent with limited memory
A modification of our assumptions regarding agent behavior occurs. In the last experiment, the large fluc-
tuations make the Nash equilibrium impossible to reach, because agents flip between risky and safe moves
frequently. In this experiment, we will enable agents to learn not only from their most recent interaction but
also from the preceding steps in the game. Here are the results of the experiments involving three-step mem-
ory for both examples 1 and 2. The experiments were conducted with varying values of θ from 0 to 1. In these
experiments, the parameters x and y are also set to 1/3 and 4/5, and for example 2, they were set to 1/5 and
1/4. Agents in this scenario possess a memory of the last three results, and if they both lose, they will modify
their strategy based on this limited memory. Figures 4.18 to 4.23 vividly illustrate the transformation of the
proportion of risky agents as a function of θ, the proportion of high-type agents within the market. These
figures offer valuable insights into the relationship between θ and the strategic behaviors of agents.

Figure 4.18: example 1(theta=0.2) Figure 4.19: example 1(theta=0.5) Figure 4.20: example 1(theta=0.8)

Figure 4.21: example 2(theta=0.2) Figure 4.22: example 2(theta=0.5) Figure 4.23: example 2(theta=0.8)

When agents possess memory, the figures reveal remarkable consistency in the results. The agents still do
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not reach pure NE, in line with our assumption, which differs from George Brown’s notion in Fictitious Play
where infinite learning steps lead to convergence to the game’s value. However, comparing these figures to
example 1 in Chapter 3, the result gets closer to pure Nash Equilibrium. In example 1, within a low-quality
pool, there are almost no risky agents, and the strategy equilibrium (s, s) stands as a Nash equilibrium. Tran-
sitioning to a medium-quality pool, approximately 90% of high types opt for the risky strategy, while only 50%
of low types choose the safe strategy. In a high-quality pool, about 95% of high types select the risky strategy,
and around 60% of low types opt for the safe strategy. In example 2, the high types keep the safe strategy,
while an increasing number of low types choose the risky strategy.

Furthermore, the observed outcomes indicate a potential decrease in selection efficiency as the market
quality improves. This is because all agents are converging to their optimal strategies. When the Nash Equi-
librium changes in the medium-quality market, a decline in selection efficiency is shown. As an illustrative
instance, in Example 1, the selection efficiency declines from 0.65 to 0.6 as θ transitions from 0.2 to 0.3 and
then increases up to 0.88 as θ = 0.8. This correspondence with our mathematical analysis in Chapter 3 that in
the medium-quality pool, a marginal increase in θ may decrease selection efficiency. In the case of example
1, the figures are as follows:

Figure 4.24: example 1(theta=0.2) Figure 4.25: example 1(theta=0.3) Figure 4.26: example 1(theta=0.8)

In example 2, When θ changes from 0.3 to 0.4 and 0.8, selection efficiency initially decreases from 0.75 to
0.7 and then undergoes an increase to 0.83.

Figure 4.27: example 2(theta=0.3) Figure 4.28: example 2(theta=0.4) Figure 4.29: example 2(theta=0.8)

The figures for agents with memory show that: 1) The players do not converge to pure Nash Equilibrium,
but get closer to pure Nash Equilibrium than when they have no memory because they get closer to their
optimal strategy. 2) There are situations where, as θ increases, the corresponding selection efficiency (Π) may
decrease.

4.3. Multi-agent
Several factors have the potential to influence the outcomes of our experiments. One of these factors is the
scenario where more than two agents compete. As a consequence, we will proceed to undertake a new se-
ries of simulations. We examine the scenarios involving more than two agents within a single competition.
We conducted experiments as follows: simulate a market consisting of 100 agents, and divide them into 25
groups, each containing 4 agents. In other words, this is the case for n = 4, which was not considered by Hvide
and Kristiansen, 2003. The group’s only winner(s) maintain their strategy while the others modify theirs. This
experiment was conducted for three different values of θ: 0.2, 0.5, and 0.8.

It is noteworthy that agents never reach a Nash equilibrium under the current conditions. Additionally, it’s
pointed out that there is a slight trend regarding risk-taking behavior among the agents. This implies that the
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strategies adopted by the agents do not consistently shift towards risk-taking as θ increases. In comparison
with the scenario where n = 2, the results become intriguing due to the observed decrease in the proportion
of risk-taking agents as the value of θ increases, as depicted in the accompanying figures. This shift in the
equilibrium introduces a unique dynamic to our analysis. This might be because the Nash Equilibrium is no
longer pure if n = 4. Since there is only 1 winner and 3 losers, more players change their behavior and the
results are more volatile.

Figure 4.30: example 1(theta=0.2) Figure 4.31: example 1(theta=0.5) Figure 4.32: example 1(theta=0.8)

In terms of selection efficiency, a noteworthy observation is a decrease when compared to the scenario
where n = 2. For instance, in example 1, under the same conditions, when θ = 0.2 and n = 4, Π is approx-
imately 0.25, whereas for n = 2, Π is 0.43. This trend is consistent for θ values at 0.5 and 0.8 as illustrated
in figures 4.33-4.35. This demonstrates that increasing the number of contestants, starting from a smaller
value may negatively impact selection efficiency. This might be because of the negative equilibrium effect of
increases in n, more agents change their behavior in one round, as long as they don’t get the highest score.
This trend towards the risky strategy provides low types with more opportunities to attain high scores and
manipulate the market. This might cause a decrease in selection efficiency.

Figure 4.33: example 1(theta=0.2) Figure 4.34: example 1(theta=0.5) Figure 4.35: example 1(theta=0.8)

4.4. Multi-round selection
In this section, we will compare two mechanisms within a multi-round selection game, evaluating their im-
pact on selection efficiency.

The first mechanism involves the selection of 50 pairs from a pool of 100 agents, engaging in pairwise
competitions. Unlike the previous mechanism, the defeated agent doesn’t have the chance to alter their strat-
egy but is eliminated from the game directly. When there’s a draw, the two contestants involved will proceed
to the next round. The victorious agent advances to subsequent rounds, competing with other winners, and
this two-round structure repeats. If in the second round, the total number of agents is odd, we will Select one
agent directly for the next round.

The second mechanism entails the creation of 25 groups, each composed of 4 agents, competing within
their respective groups for a single round. Following the competition, 25 agents are expected to remain in
each mechanism, allowing for a comparative analysis of selection efficiency.

The result is as follows:

θ Mechanism 1 Mechanism 2

0.1 0.09840 0.11039
0.2 0.19519 0.22800
0.5 0.65356 0.57742
0.8 0.92657 0.92518
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Table 4.1: Selection Efficiency of Two Mechanisms

The results show that the Multi-round mechanism doesn’t always hold an advantage. In the low-quality
pool, mechanism 2 exhibits better results, while in the middle and high-quality pool, mechanism 1 has the
advantage for selection efficiency.

4.5. Summary
In this chapter, we mainly undertake four simulation experiments applying various learning methods to val-
idate the findings of our mathematical analysis. Although a Nash Equilibrium is not strictly achieved, the
results demonstrate a convergence towards Nash Equilibrium when agents have limited memory. The results
also show the negative equilibrium effect of increases in number of contestants (n) or market quality (θ) on
selection efficiency (Π). When n = 2, the efficiency loss does not occur as θ increases when contestants have
no memory. However, some efficiency loss is observed when contestants have limited memory. Moreover,
an increase in n can lead to a decrease in efficiency. Notably, we find that in a low-quality pool, single-round
selection has an advantage, while in a higher-quality market, multi-round selection proves to have an advan-
tage.





5
Conclusion

In this study, we explored a competition game within game theory, where the key variable is not the effort
but rather risk-taking. Unlike conventional competitions, high quality in this context is associated with a
propensity for higher-risk strategies, leading to potential high scores. Surprisingly, mathematical analyses
revealed counterintuitive outcomes. As market quality improves or the total number of agents increases, the
winning rates of high-type agents may decrease. This insight extends to labor markets, providing valuable
perspectives for both candidates and recruiters.

Applying this competition paradigm to labor markets has implications for job seekers and employers.
Candidates benefit from understanding the balance between risk and reward in decision-making, while re-
cruiters need to consider the efficiency of selection mechanisms, which may not follow a straightforward
pattern with market size or quality. Our mathematical analysis in Chapter 3 shows that selection efficiency
might be non-monotone in market size or market quality.

The simulation experiments provided further depth to the investigation, introducing the concept of learn-
ing rules and replicator dynamics to improve the alignment of outcomes with Nash equilibrium. This pro-
posed mechanism, derived from agents gaining experience from their behavior, has been demonstrated to
align outcomes more closely with Nash equilibrium, thereby enhancing the optimal result. At the same time,
in this scenario, a decrease in selection efficiency is observed. We also explore a scenario with n = 4 and
observe a potential decrease in efficiency compared to n = 2.

Additionally, the exploration of multi-round screening mechanisms offers practical insights into recruit-
ment strategies. The unexpected superiority of single-round screening challenges assumptions and empha-
sizes the need to tailor selection processes to specific market characteristics.

In all, this study contributes a novel perspective to the competition game. The findings encourage a
reevaluation of traditional assumptions and offer practical implications for decision-makers in competitive
environments, particularly within labor markets.
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A
Matlab Code

A.1. Chapter 3-Equilibrium Strategies

% Define ranges
x_range = 0:0.05:1;
y_range = 0:0.05:1;
z_range = 0:0.05:1;

[x, y, z] = meshgrid(x_range , y_range , z_range);

% Define inequalities
region1 = y < 1 - z/2 & x < 0.5 .* (1 - z) & y > x;
region2 = y > 1 - z/2 & x < (1 - z .* y)./ (2 - z) & y > x;
region3 = y < (1 - (1 - z) .* x) ./ (1 + z) & x > (1 - z) ./ 2 & y > x;
region4 = y > (1 - (2 - z) .* x) ./ z & y > x;

% Create a scatter plot for data points within each region
figure;
scatter3(x(region1), y(region1), z(region1), 'r.');
hold on;
scatter3(x(region2), y(region2), z(region2), 'y.');
scatter3(x(region3), y(region3), z(region3), 'b.');
scatter3(x(region4), y(region4), z(region4), 'g.');

% Set labels and title
xlabel('x');
ylabel('y');
zlabel('\theta');
title('Equilibrium Strategie ');

% Create shaded regions for each condition
alpha (0.3);

% Add color bar
legend('Region (s, s)', 'Region (s, r)', 'Region (r, s)', 'Region (r, r

)');

% View in 3D
view (3);
grid on;
hold off;
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Here’s the code for risk-taking strategies over θ of example 1:

syms x y theta

x = 1/3;
y = 4/5;

theta = 0:0.001:1;

f = 2 * theta - theta .^2;
z = 2 * (1/2 * theta .^2 + (1 - theta) .* theta .* (1 - x));
g = 2 * (1/2 * theta .^2 + (1 - theta) .* theta * y);
w = 2 * (1/2 * theta .^2 + theta .* (1 - theta) .* (1/2 * x * y + y * (1

- x) + 1/2 * (1 - x) * (1 - y)));

v = zeros(size(theta));

for i = 1: length(theta)
if theta(i) < 1 - 2 * x

v(i) = f(i);
elseif (theta(i) >= 1 - 2 * x) && (theta(i) < 2 - 2 * y)

v(i) = z(i);
elseif (theta(i) >= 2 - 2 * y) && (theta(i) < (1 - 2 * x) / (y - x)

)
v(i) = g(i);

elseif theta(i) >= (1 - 2 * x) / (y - x)
v(i) = w(i);

end
end

figure;
plot(theta , f, theta , z, theta , w, theta , g);
hold on;
plot(theta , v, '--', 'LineWidth ', 2); % <-- Use '--' for dashed line

and 'LineWidth ', 2 for thickness
hold off;
xlabel('\theta');
ylabel('\Pi');
legend('\Pi(s,s)', '\Pi(r,s)', '\Pi(r,r)', '\Pi(s,r)', 'v');



B
Python Code

B.1. Chapter 2-Hawk-Dove Game
Firstly, we define the hawk dove game.

import random
class Bird:

def __init__(self, strategy):
self.strategy = strategy
self.fitness = 10

def contest(self, opponent, v, c):

# both hawks --> 50:50 battle

if self.strategy == opponent.strategy == "hawk":
if random.randint(0, 1) == 1:

self.fitness = self.fitness + v
opponent.fitness = opponent.fitness - c

else:
self.fitness = self.fitness - c
opponent.fitness = opponent.fitness + v

# hawk meets dove

elif self.strategy == "hawk" != opponent.strategy:
self.fitness = self.fitness + v
opponent.fitness = opponent.fitness

elif self.strategy == "dove" != opponent.strategy:
self.fitness = self.fitness
opponent.fitness = opponent.fitness + v

# both doves --> share the resource

else:
self.fitness = self.fitness + v/2
opponent.fitness = opponent.fitness + v/2

def spawn(self):
"""
Allow a small chance of mutation to flip the strategy
Otherwise, return offspring of the same type

39
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"""

mutation = random.randint(0, 1000) > 999
if mutation:

if self.strategy == "dove":
return Bird("hawk")

else:
return Bird("dove")

else:
return Bird(self.strategy)

Then we pair up the birds, make them compete, and produce next-generation weighted by fitness

from bird import Bird
import random
import numpy as np
import pandas as pd
import matplotlib

def initialise():
#Create a population of birds - all dove to begin

birds = []
for _ in range(999):

birds.append(Bird("dove"))

# Adding a single Hawk to the population
birds.append(Bird('hawk'))

#for _ in range(100):
# birds.append(Bird("dove")*99,Bird('hawk'))

return (birds)

def timestep(birds, value, cost):
#Pair up the birds, make them compete
#Then produce next generation, weighted by fitness

next_generation = []

random.shuffle(birds)

for _ in range(1000):

# pair up random birds to contest
a, b = random.sample(birds, 2)
a.contest(b, value, cost)

# generate next generation
fitnesses = [bird.fitness for bird in birds]

draw = random.choices(birds, k=1000, weights=fitnesses)
next_generation = [bird.spawn() for bird in draw]

return next_generation
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def main():

birds = initialise()

rows = []

V = 5 ; C = 6

for _ in range(1000):

# add the counts to a new row
strategy = [bird.strategy for bird in birds]
n_hawks = strategy.count("hawk")
n_doves = strategy.count("dove")
row = {'n_hawks': n_hawks, 'n_doves': n_doves}
rows.append(row)

# run the timestep function
birds = timestep(birds, V, C)

df = pd.DataFrame(rows)
df.to_csv('simulation.csv')
fig = df.plot(y=["n_hawks", "n_doves"]).get_figure()
fig.savefig('simulation.pdf')

if __name__ == "__main__":
main()

B.2. Chapter 2-Hawk-Dove Game(mutation)
import random
import matplotlib.pyplot as plt

def hawk_dove_game(population):
# Shuffle the population to form pairs
random.shuffle(population)

payoffs = []

# Iterate through pairs and calculate payoffs
for i in range(0, len(population), 2):

strategy_1 = population[i]
strategy_2 = population[i + 1]

payoff_1, payoff_2 = 0, 0

if strategy_1 == "Hawk" and strategy_2 == "Hawk":
#payoff_1, payoff_2 = -10, -10
payoff_1, payoff_2 = -1, -1

elif strategy_1 == "Hawk" and strategy_2 == "Dove":
#payoff_1, payoff_2 = 100, 0
payoff_1, payoff_2 = 10,0

elif strategy_1 == "Dove" and strategy_2 == "Hawk":
#payoff_1, payoff_2 = 0, 100
payoff_1, payoff_2 = 0,10

elif strategy_1 == "Dove" and strategy_2 == "Dove":
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#payoff_1, payoff_2 = 50, 50
payoff_1, payoff_2 = 5,5

payoffs.append((payoff_1, payoff_2))

# Update strategies based on payoffs
for i in range(0, len(population), 2):

payoff_1, payoff_2 = payoffs[i // 2]

if payoff_1 > payoff_2:
# Change the type of the loser (Dove) to Hawk
population[i + 1] = population[i]

elif payoff_2 > payoff_1:
# Change the type of the loser (Dove) to Hawk
population[i] = population[i + 1]

return population

def calculate_proportion(population):
# Calculate the proportion of Hawks in the population
num_hawks = population.count("Hawk")
total_birds = len(population)
proportion_hawks = num_hawks / total_birds

return proportion_hawks

def print_population_with_indices(population):
for i, strategy in enumerate(population):

print(f"Element {i + 1}: {strategy}")

def plot_population_proportion(iterations, initial_population):
proportions = []

for iteration in range(iterations):
print(f"Iteration {iteration + 1}:")
print_population_with_indices(initial_population)

initial_population = hawk_dove_game(initial_population)

# Calculate the proportion of Hawks in the population
proportion_hawks = calculate_proportion(initial_population)

proportions.append(proportion_hawks)

# Plotting
plt.plot(range(1, iterations + 1), proportions, marker='o')
plt.xlabel('Iterations')
plt.ylabel('Proportion of Hawks')
plt.title('Change in Proportion of Hawks Over Iterations')
plt.show()

# Initial population: 99 Doves and 1 Hawk
initial_population = ["Dove"] *9+ ["Hawk"]

# Number of iterations
num_iterations = 50 # You can adjust this number as needed
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plot_population_proportion(num_iterations, initial_population)

B.3. Chapter 4-Agents with no memory
import random
import matplotlib.pyplot as plt
import numpy as np

# Define 'scores' function to represent the outputs.
n=100
theta=0.2
iteration=1000
high=theta*n
def update_scores(population_subset):

updated_scores = []
for i, value in enumerate(population_subset):

if i < high:
# For the first theta elements (high type agent)
if value == 0: #safe strategy

updated_scores.append(3) #output z3
else: #risky strategy

if random.random() < 0.8: #y=1/4 #y=0.8
updated_scores.append(4) #output z4

else:
updated_scores.append(1) #output z1

else:
# For the last 50 elements (low-type agent)
if value == 0: #safe strategy

updated_scores.append(2) #output z2
else: #risky strategy

if random.random() < 1/3: #x=1/5 #x=1/3
updated_scores.append(4) #output z4

else:
updated_scores.append(1) #output z1

return updated_scores

# Set up array 'population' to represent strategy, 0 means safe and 1 means risky
#Initialize 'population' array with 100 elements (0 or 1) randomly.
population = [random.randint(0, 1) for _ in range(100)] #100 agents
scores = update_scores(population)
print (population)
score_indices = list(range(1, 101)) # Indices of scores (1 to 100).
high=theta*n
low=(1-theta)*n
elements=int(theta*n)
sum_population_high = [] # Sum of the first theta elements
sum_population_low = [] # Sum of the last 1-theta elements

# Perform updates 100 times.
for update_step in range(iteration):

# Select 50 pairs randomly and compare the outputs (scores)
random.shuffle(score_indices)
pairs_indices = [(score_indices[i], score_indices[i + 1])\
for i in range(0, 100, 2)]
pair_comparisons = []
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high_type_agent=population[:elements]
low_type_agent=population[-(n - elements):]

# Calculate the sum of the first theta elements in 'population'
# Calculate the sum of the last 1-theta elements in 'population'
sum_high_agents = high_type_agent.count(1)
sum_low_agents = low_type_agent.count(1)
sum_population_high.append(sum_high_agents/high)
sum_population_low.append(sum_low_agents/low)

for compared_indices in pairs_indices:
score1 = scores[compared_indices[0] - 1] # Subtract 1 for 0-based indexing
score2 = scores[compared_indices[1] - 1]

if score1 == score2:
# Handle case where scores are equal
pair_comparisons.append({

"element1_index_in_scores": compared_indices[0],
"element2_index_in_scores": compared_indices[1],
"element1_value": score1,
"element2_value": score2,
"lower_index_in_scores": None, # Set lower_index to None

})
else:

lower_index = compared_indices[0] if score1 < score2\
else compared_indices[1]
higher_index = compared_indices[1] if score1 < score2\
else compared_indices[0]

pair_comparisons.append({
"element1_index_in_scores": compared_indices[0],
"element2_index_in_scores": compared_indices[1],
"element1_value": score1,
"element2_value": score2,
"lower_index_in_scores": lower_index,
"higher_index_in_scores": higher_index,

})

# Update strategy ('population' array) based on the comparison results.
population_new = population.copy()
for comparison in pair_comparisons:

lower_index = comparison.get("lower_index_in_scores")

if lower_index is not None: # the scores are different
corresponding_element = population[lower_index - 1]
if corresponding_element == 0: #if the previous strategy is safe

population_new[lower_index - 1] = 1 #change to risky
else:

population_new[lower_index - 1] = 0 # change to safe

# Collect the index of changed elements in 'population' starting from 1.
changed_indices = [i + 1 for i in range(100) if\
population[i] != population_new[i]]
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# Update 'population' and 'scores' for the next iteration.
population = population_new
scores = update_scores(population)
sum_pop=sum(population_new)
print(changed_indices)
print(pair_comparisons)
print(population_new)
print(f"Iteration {update_step + 1}: {scores}")
print(sum_pop)
#print(population)

# Lists to store data for plotting.
proportion_high = []
proportion_low = []

# Time window for calculating the moving average
time_window = 50
# Apply moving average to the proportions.
smoothed_proportion_high = np.convolve(sum_population_high,np.ones(time_window)\
/time_window,mode='valid')
smoothed_proportion_low = np.convolve(sum_population_low,np.ones(time_window) \
/ time_window,mode='valid')

plt.figure(figsize=(10, 6))
plt.plot(range(1, len(smoothed_proportion_high) + 1), smoothed_proportion_high,\
linestyle='-',markersize=2, label='High type')
plt.plot(range(1, len(smoothed_proportion_low) + 1), smoothed_proportion_low, \
linestyle='-',markersize=2, label='Low type')
plt.title("Smoothed Proportion of Risky Agents")
plt.xlabel("Iteration")
plt.ylabel("Proportion of risky agents")
plt.legend()
plt.grid(True)
plt.show()

And the code to compute selection efficiency is that:

plt.figure(figsize=(10, 6))
# Create x-axis values (iterations)
iterations = list(range(1, iteration + 1))
# Create y-axis values (higher_index_probabilities)
plt.plot(iterations, probability_higher_index, marker='o', linestyle='-')

# Add labels and title
plt.xlabel('Iterations')
plt.ylabel('Probability of high type wins')
plt.title('Probability of high type wins vs. Iterations')

# Show the plot
plt.grid(True)
plt.show()

B.4. Chapter 4-Agents with memory
import random
import matplotlib.pyplot as plt
import numpy as np
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def update_scores(population_subset):
updated_scores = []
for i, value in enumerate(population_subset):

if i < high: # For the first theta elements (high type agent)
if value == 0: #safe strategy

updated_scores.append(3) #output z3
else: #risky strategy

if random.random() < 0.8: #y=1/4 #y=0.8
updated_scores.append(4) #output z4

else:
updated_scores.append(1) #output z1

else:
# For the last 50 elements (low-type agent)
if value == 0: #safe strategy

updated_scores.append(2) #output z2
else: #risky strategy

if random.random() < 1/3: #x=1/5 #x=1/3
updated_scores.append(4) #output z4

else:
updated_scores.append(1) #output z1

return updated_scores

n = 100
theta = 0.9
iterations = 1000
high = int(theta * n)
low = n - high
elements = int(theta * n)
probability_higher_index = []
z=4
# Initialize 'population' array with 100 agents.
population = [random.randint(0, 1) for _ in range(n)]
common_smaller_scores = []
# Initialize 'scores' array based on 'population'.
scores = update_scores(population)
score_indices = list(range(1, 101))
sum_population_high = []
sum_population_low = []
agent_highest_indice=[]
# Initialize lists to track the results of each score in every two iterations.
previous_score_results = []
current_score_results = []

# Initialize a list to track which elements are compared and need to be changed.
#elements_compared = [False] * n

# Initialize a list to store comparisons.
pair_comparisons = []
# Perform updates 'iterations' times.
for update_step in range(iterations):

print(update_step)
# Select 50 pairs randomly from 100 agents and compare the scores.
random.shuffle(score_indices)
#print(score_indices)
pairs_indices = [(score_indices[i], score_indices[i + 1])\
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for i in range(0, 100, 2)]
#print(pairs_indices)

# Iterate over pairs and compare the scores.
for compared_indices in pairs_indices:

score1 = scores[compared_indices[0] - 1]
score2 = scores[compared_indices[1] - 1]

if score1 != score2:
smaller_index = compared_indices[0] if score1 < score2\
else compared_indices[1]
higher_index = compared_indices[1] if score1 < score2\
else compared_indices[0]

pair_comparisons.append({
"element1_index_in_scores": compared_indices[0],
"element2_index_in_scores": compared_indices[1],
"element1_score": score1,
"element2_score": score2,
"lower_index_in_scores":smaller_index,
"higher_index_in_scores": higher_index,

})
agent_highest_indice.append(higher_index)

else:
pair_comparisons.append({

"element1_index_in_scores":compared_indices[0],
"element2_index_in_scores": compared_indices[1],
"element1_value": score1,
"element2_value": score2,
"lower_index_in_scores": None,# Set lower_index to None

})

#print(f"Iteration {update_step + 1}: Agent {smaller_index}\
(Score: {score1}) compared with Agent {higher_index}\
(Score: {score2 if smaller_index == agent1 else score1})")

print(pair_comparisons)

highest_indices = [j for j in agent_highest_indice if j <= elements]
#highest_indices = [j["higher_index_in_scores"] for j in pair_comparisons\
if "higher_index_in_scores" in j and j["higher_index_in_scores"] <= elements]
probability = len(highest_indices) / len(agent_highest_indice)
probability_higher_index.append(probability)

#To create the memory
# Record the results of each score comparison.
population_new = population.copy()
for comparison in pair_comparisons:

small_index = comparison["lower_index_in_scores"]
#element2_index = comparison["element2_index_in_scores"]
if small_index is not None:

small_index = int(small_index)
#element2_index = int(element2_index)

current_score_results.append(small_index)
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# Check if this is the second iteration of the pair comparison.
if update_step % z == 1:

common_smaller_scores = []
# Identify the scores that are the smaller ones in both iterations

common_smaller_scores= [i for i in previous_score_results\
if i in current_score_results]
previous_score_results=[]
current_score_results=[]

# Update the population for agents with common smaller scores.
for agent_index in common_smaller_scores:

if agent_index is not None:
population_new[agent_index-1] =\
1 - population_new[agent_index-1] # Flip the strategy

# Reset the elements_compared list and pair_comparisons for the next iteration.
#elements_compared = [False] * n
pair_comparisons = []

# Copy the current score results to the previous results for the next iteration.
previous_score_results = current_score_results.copy()
current_score_results=[]

# Divide 'population' into high and low type agents based on the threshold.
high_type_agent = population[:int(theta * n)]
low_type_agent = population[int(theta * n):]

# Calculate the sum of high and low type agents in 'population'.
sum_high_agents = sum(high_type_agent)
sum_low_agents = sum(low_type_agent)
sum_population_high.append(sum_high_agents / (theta * n))
sum_population_low.append(sum_low_agents / ((1 - theta) * n))
population = population_new
scores = update_scores(population)

# Print the results for the current iteration.
#print(f"Iteration {update_step+1}:")
print(f"Population: {population}")
print(common_smaller_scores)
common_smaller_scores=[]
print(f"Iteration {update_step + 1}: {scores}")

# Print the final population.
print("Final Population:", population)

B.5. Chapter 3-Multi-agent
n = 100
theta = 0.2
iterations = 1000
high = int(theta * n)
low = n - high
elements = int(theta * n)
probability_highest_index = []
# Initialize 'population' array with 100 agents.
population = [random.randint(0, 1) for _ in range(n)]

# Lists to store data for plotting.



B.5. Chapter 3-Multi-agent 49

sum_population_high = []
sum_population_low = []

shuffled_indices = list(range(n))
random.shuffle(shuffled_indices)

# Perform updates 'iterations' times.
for update_step in range(iterations):

# Divide shuffled indices into 25 groups with 4 elements each.
group_indices = [shuffled_indices[i:i+4] for i in range(0, n, 4)]
#print(group_indices)

# Update 'scores' based on the current 'population'.
scores = update_scores(population)

# Compare the scores within each group and find the lowest score.
min_scores = []
max_scores = []

for group in group_indices:
group_scores = [scores[i] for i in group]
#print(group_scores)
min_score = min(group_scores)
min_scores.append(min_score)
max_score=max(group_scores)
max_scores.append(max_score)

# Identify the indices of agents with the highest score.
agent_indices = []
highest_index=[]
agent_highest_indice=[]
highest_scores_list=[]
highest_scores_count_list=[]
All_highest_scores_count_list=[]

for group_index, group in enumerate(group_indices):
lowest_score = min_scores[group_index]
print(lowest_score)
highest_score=max_scores[group_index]
print(highest_score)
lowest_indices = [i for i, score in\
enumerate(group_scores) if score == lowest_score]
highest_indices = [i for i, score in\
enumerate(group_scores) if score == highest_score]

agent_indices.extend([group[i] for i in lowest_indices])
agent_highest_indice.extend([group[i] for i in highest_indices])

All_highest_scores=[score for i, score in enumerate(group_scores)\
if score == max(group_scores)]

highest_scores = [score for i, score in enumerate(group_scores)\
if score == max(group_scores) and i <= elements]
highest_scores_count = len(highest_scores)
All_highest_scores_count = len(All_highest_scores)
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#print(len(agent_highest_indice))
#print(agent_highest_indice)
highest_indice_count = [j for j in agent_highest_indice if j <= high]
probability_higher=len(highest_indice_count)/len(agent_highest_indice)
#probability_higher_index.append(probability_higher)
#print(agent_highest_indice)

probability_highest_index.append(probability_higher)

# Update strategy ('population' array) based on the lowest score.
population_new = population.copy()

#for agent_index in agent_indices:

for agent_index in range(100):
if agent_index not in agent_highest_indice:

population_new[agent_index] = 1 if population[agent_index] == 0 else 0

# Update 'population' for the next iteration.
population = population_new
scores = update_scores(population)

# Calculate the sum of the first 'high' and last 'low' elements in 'population'.
sum_high_agents = sum(population[:elements])
sum_low_agents = sum(population[-(n - elements):])
sum_population_high.append(sum_high_agents / high)
sum_population_low.append(sum_low_agents / low)

# Print information about the comparison in this iteration.
print(f"Iteration {update_step + 1}:")

# Print the final population.
print("Final Population:", population)

B.6. Chapter 3-Multi-round-mechanism 1
We provide the code for mechanism 1, and the final outcome presented in Chapter 4.4 is the average result
across 1000 iterations.

# Generate a population of 100 agents with random strategies (0 or 1)
population = [random.randint(0, 1) for _ in range(100)]

# Define the threshold for high-type agents (theta)
high_threshold = theta*n

# Update scores
updated_scores = update_scores(population)

score_indices = list(range(1, 101))

# Shuffle the list of agents
random.shuffle(score_indices)

# Pair agents into 50 pairs
pairs = [(score_indices[i], score_indices[i + 1]) for i in range(0, 100, 2)]
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# First round of selection
selected_agents_round1 = []

for pair in pairs:
agent1, agent2 = pair

if updated_scores[agent1 - 1] > updated_scores[agent2 - 1]:
selected_agents_round1.append(agent1)

elif updated_scores[agent1 - 1] < updated_scores[agent2 - 1]:
selected_agents_round1.append(agent2)

else:
selected_agents_round1.extend(pair)

# Count the number of elements under high_threshold in selected_agents_round1
high_selected_round1 = sum(1 for agent in selected_agents_round1\
if agent <= high_threshold)

# Print Scores of Selected Agents Round 1
print("Scores of Selected Agents Round 1:", [updated_scores[i - 1]\
for i in selected_agents_round1])
print("Number of elements under high_threshold in Selected Agents Round 1:",\
high_selected_round1)

# Check if there's an odd number of agents left after round 1
if len(selected_agents_round1) % 2 == 1:

# Select one agent directly to the next round
selected_agents_round2 = [selected_agents_round1.pop()]

# Pair the remaining agents for comparison
remaining_pairs = [(selected_agents_round1[i],\
selected_agents_round1[i + 1]) for i in range(0, len(selected_agents_round1), 2)]

# Second round of selection
for pair in remaining_pairs:

agent1, agent2 = pair

if updated_scores[agent1 - 1] > updated_scores[agent2 - 1]:
selected_agents_round2.append(agent1)

elif updated_scores[agent1 - 1] < updated_scores[agent2 - 1]:
selected_agents_round2.append(agent2)

else:
selected_agents_round2.extend(pair)

else:
# Pair the agents for the second round
selected_agents_round2 = []

for pair in zip(selected_agents_round1[0::2], selected_agents_round1[1::2]):
agent1, agent2 = pair

if updated_scores[agent1 - 1] > updated_scores[agent2 - 1]:
selected_agents_round2.append(agent1)

elif updated_scores[agent1 - 1] < updated_scores[agent2 - 1]:
selected_agents_round2.append(agent2)

else:
selected_agents_round2.extend(pair)



52 B. Python Code

# Count the number of elements under high_threshold in selected_agents_round2
high_selected_round2 = sum(1 for agent in selected_agents_round2\
if agent <= high_threshold)

print("Selected Agents Round 1:", selected_agents_round1)
print("Number of elements under high_threshold in Selected Agents Round 1:",\
high_selected_round1)
print("Selected Agents Round 2:", selected_agents_round2)
print("Number of elements under high_threshold in Selected Agents Round 2:",\
high_selected_round2)

agents in Round 2:
selected_scores_round2 = [updated_scores[i - 1] for i in selected_agents_round2]
print("Scores of Selected Agents Round 2:", selected_scores_round2)

# Calculate proportions
proportion_high_selected_round1 = high_selected_round1 / len(selected_agents_round1)
proportion_high_selected_round2 = high_selected_round2 / len(selected_agents_round2)

print("Proportion of high_selected_round1/selected_agents_round1:",\
proportion_high_selected_round1)
print("Proportion of high_selected_round2/selected_agents_round2:",\
proportion_high_selected_round2)

B.7. Chapter 3-Multi-round-mechanism 2
We provide the code for mechanism 2, and the final outcome presented in Chapter 4.4 is the average result
across 1000 iterations.

# Generate a population of 100 agents with random strategies (0 or 1)
population = [random.randint(0, 1) for _ in range(100)]

# Define the threshold for high-type agents (e.g., 50)
high_threshold = theta*n

# Update scores
updated_scores = update_scores(population)

# Assign score indices to agents
score_indices = list(range(1, 101))

# Shuffle the list of agents
random.shuffle(score_indices)

# Divide agents into 25 groups of 4
agent_groups = [score_indices[i:i + 4] for i in range(0, 100, 4)]

selected_agents_round1 = []

for group in agent_groups:
# Sort agents within the group based on their scores in descending order
sorted_group = sorted(group, key=lambda agent:\
updated_scores[agent - 1], reverse=True)

# Select agents with the highest score in the sorted group
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max_score = updated_scores[sorted_group[0] - 1]
selected_agents_round1.extend(agent for agent in sorted_group\
if updated_scores[agent - 1] == max_score)

# Print Scores of Selected Agents Round 1
print("Scores of Selected Agents Round 1:", [updated_scores[i - 1]\
for i in selected_agents_round1])

# Count the number of elements under high_threshold in selected_agents_round1
high_selected_round1 = sum(1 for agent in selected_agents_round1\
if agent <= high_threshold)

print("Selected Agents Round 1:", selected_agents_round1)
print("Number of elements under high_threshold in Selected Agents Round 1:",\
high_selected_round1)

# Calculate proportions
proportion_high_selected_round1 = high_selected_round1 / len(selected_agents_round1)
print("Proportion of high_selected_round1/selected_agents_round1:",\
proportion_high_selected_round1)
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