

Delft University of Technology

Distributed multi-robot formation control in dynamic environments

Alonso-Mora, Javier; Montijano, Eduardo; Nägeli, Tobias; Hilliges, Otmar; Schwager, Mac; Rus, Daniela

DOI
10.1007/s10514-018-9783-9
Publication date
2018
Document Version
Final published version
Published in
Autonomous Robots

Citation (APA)
Alonso-Mora, J., Montijano, E., Nägeli, T., Hilliges, O., Schwager, M., & Rus, D. (2018). Distributed multi-
robot formation control in dynamic environments. Autonomous Robots, 43 (2019)(5), 1079-1100.
https://doi.org/10.1007/s10514-018-9783-9

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s10514-018-9783-9
https://doi.org/10.1007/s10514-018-9783-9

Autonomous Robots
https://doi.org/10.1007/s10514-018-9783-9

Distributed multi-robot formation control in dynamic environments

Javier Alonso-Mora1 · Eduardo Montijano2 · Tobias Nägeli3 ·Otmar Hilliges3 ·Mac Schwager4 · Daniela Rus5

Received: 15 February 2017 / Accepted: 10 July 2018
© The Author(s) 2018

Abstract
This paper presents a distributed method for formation control of a homogeneous team of aerial or ground mobile robots
navigating in environments with static and dynamic obstacles. Each robot in the team has a finite communication and visibility
radius and shares information with its neighbors to coordinate. Our approach leverages both constrained optimization and
multi-robot consensus to compute the parameters of the multi-robot formation. This ensures that the robots make progress
and avoid collisions with static and moving obstacles. In particular, via distributed consensus, the robots compute (a) the
convex hull of the robot positions, (b) the desired direction of movement and (c) a large convex region embedded in the
four dimensional position-time free space. The robots then compute, via sequential convex programming, the locally optimal
parameters for the formation to remain within the convex neighborhood of the robots. The method allows for reconfiguration.
Each robot then navigates towards its assigned position in the target collision-free formation via an individual controller
that accounts for its dynamics. This approach is efficient and scalable with the number of robots. We present an extensive
evaluation of the communication requirements and verify the method in simulations with up to sixteen quadrotors. Lastly, we
present experiments with four real quadrotors flying in formation in an environment with one moving human.

Keywords Multi-robot systems · Distributed robotics · Formation control · Dynamic environments · Collision avoidance ·
Unmanned aerial vehicles · Drones · Micro air vehicles

This work was supported in part by pDOT ONR N00014-12-1-1000,
the Boeing Company, the MIT-Singapore Alliance on Research and
Technology under the Future of Urban Mobility, Spanish Project
DPI2015-69376-R (MINECO/FEDER), Microsoft Research and the
Netherlands Organisation for Scientific Research NWO-TTW Veni
15916. We are grateful for their support.

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s10514-018-9783-9) contains supplementary
material, which is available to authorized users.

B Javier Alonso-Mora
j.alonsomora@tudelft.nl

Eduardo Montijano
emonti@unizar.es

Tobias Nägeli
naegelit@ethz.ch

Mac Schwager
schwager@stanford.edu

Daniela Rus
rus@mit.edu

1 Department of Cognitive Robotics, Delft University of
Technology, Mekelweg 2, 2628 CD Delft, The Netherlands

1 Introduction

Multi-robot systems will be ubiquitous to perform many
tasks, such as surveillance (Schwager et al. 2011), inspec-
tion (Suzuki et al. 2000), factory automation (Alonso-Mora
et al. 2015a), logistics (Wurman et al. 2008) or cinematog-
raphy (Nägeli et al. 2017b). While some of these problems
require team navigation in a rigid pattern, other scenarios,
such as cooperative manipulation of deformable objects or
transportation of cable-suspended loads, allow for more flex-
ibility, yet requiring certain level of coordination. This is also
the case, for example, for a team of robots that fly through
narrow canyons while preserving inter-robot communication

2 Instituto de Investigación en Ingeniería de Aragón,
Universidad de Zaragoza, Zaragoza, Spain

3 Department of Computer Science, ETH Zurich, Zürich,
Switzerland

4 Department of Aeronautics and Astronautics, Stanford
University, Stanford, CA 94305, USA

5 Computer Science and Artificial Intelligence Lab,
Massachusetts Institute of Technology, 32 Vassar St,
Cambridge, MA 02139, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10514-018-9783-9&domain=pdf
http://orcid.org/0000-0003-0058-570X
https://doi.org/10.1007/s10514-018-9783-9

Autonomous Robots

or visibility. In this paper we present a method for formation
control that is ideally suited for these kind of flexible multi-
robot formations, since our approach is capable of adjusting
several parameters of the formation dynamically to avoid
collisions with the environment.

Multi-robot navigation in formation has received exten-
sive attention in the past, with many works considering
obstacle-free scenarios. In this work we leverage efficient
constrained optimization, multi-robot consensus and geo-
metric reasoning to achieve distributed formation control in
environments with static and moving obstacles. In contrast
to our previous work (Alonso-Mora et al. 2017), we consider
the case where robots are no more centrally controlled, but
instead have a limited field of view and communicate with
their immediate neighbors to coordinate.

Given a set of target formation shapes, our method opti-
mizes the parameters (such as position, orientation and size)
of the multi-robot formation in a neighborhood of the robots.
The method guarantees that the team of robots remains
collision-free by rearranging its formation, see Fig. 1 for
an example with four quadrotors in a square formation. A
simplified global planner can use this method to navigate the
group of robots from an initial location to a final location.
This global planner may consist of a series of waypoints for
the formation center. A human may also provide the global
path for the formation, or a desired velocity, and the robots
will adapt their configuration automatically.

1.1 Related works

A large part of the literature in multi-robot navigation with
obstacles considers solutions designed for ground robots
operating on the plane. These techniques include using a set
of reactive behaviors (Balch andArkin 1998), potential fields
(Balch and Hybinette 2000; Sabattini et al. 2011), abstrac-
tions (Michael et al. 2008; Ayanian and Kumar 2010a),
decentralized feedback laws with graph theory (Desai et al.
2001), proximity constraints (Ayanian and Kumar 2010b)
and stochastic planning (Urcola et al. 2017), to name a few.
In contrast, our method automatically optimizes for the for-
mation parameters natively in three-dimensional dynamic
environments.

The use of distributed consensus algorithms (Ren and
Beard 2008), where each robot only needs to interact with
nearby teammates, has also led to awide variety of formation
control strategies, as shown in the survey by Oh et al. (2015).
Regarding the robot dynamics, Lin et al. (2005) considered
unicycle robots, Dong et al. (2015) considered aerial vehi-
cles and Hatanaka et al. (2012) considered motion in SO(3).
Although our method does not directly model the robot
dynamics in the computation of the formation parameters,
it relays on low-level controllers to drive each robot towards
its individual position in the formation while respecting its

Fig. 1 Four drones in a square formation avoid a walking human

dynamic constraints. We show experiments with a team of
quadrotors. In terms of the sensing model, Franchi et al.
(2012) considered relative bearing measurements, Oh and
Ahn (2011) considered inter-robot distances and Mostagh
et al. (2009) and Montijano et al. (2016) employed explicit
vision measurements to estimate the relative positions of
neighboring robots and reach the formation. A common
assumption in these approaches is the lack of obstacles in the
environment, focusing on the design of low-level controllers
for each robot to reach the desired formation pattern. Our
method is different, in the sense that we exploit the consen-
sus algorithm to agree upon high-level navigation concepts,
such as a large convex region reachable by the robots and
which does not intersect any of the observed obstacles.

Decentralized solutions with local sensing and communi-
cation in environmentswith obstacleswere treated byMosteo
et al. (2008) and Nestmeyer et al. (2017). Both approaches
dealt with the problem of task assignment for the team of
robots under the assumption of a known map, taking into
account connectivity constraints in the plan execution. Com-
pared to them, in our solutionwe do notmake any assumption
about structure or knowledge of the map, although we con-
sider a global target goal for all the robots, to which the team
needs to move in formation.

Our approach relies on convex and non-convex opti-
mization methods to obtain the locally optimal state of the
formation. Several approaches have formulated the navi-
gation of teams of robots as an optimization problem. In
particular, convex optimization frameworks for navigating
in formation include semidefinite programming (Derenick
et al. 2010), which considers only 2D circular obstacles; dis-
tributed quadratic optimization (Alonso-Mora et al. 2015a),
without global coordination; distributed optimization with
discrete-time communications by Kia et al. (2016), which
considers a global function defined by the sum of individual
costs; and second order cone programming (Derenick and
Spletzer 2007), which triangulates the free 2D space to com-
pute the optimal motion in formation. Our method applies to

123

Autonomous Robots

Fig. 2 Example of three approaches for distributed formation planning
with obstacles. a Each robot independently computes a target formation
(red/blue). Consensus on the formation’s parameters (green) could lead
to a formation in collision with the obstacle. b Each robot computes

an obstacle-free region, but their intersection could be empty. c Our
approach, see Sect. 2.4, with target formation after consensus (green).
The target formation is computed within the intersection of convex
regions, which contain all the robots (Color figure online)

polygonal obstacles and does not require a triangulation of
the environment.

Centralized non-convex optimizations include a mixed
integer approach by Kushleyev et al. (2013) and a discretized
linear temporal logic approach by Saha et al. (2014). Both
require high computational effort and can only be applied
offline to precompute trajectories. Our goal is to have real-
time capability for online computation. Online sequential
convex programming has been employed byAugugliaro et al.
(2012) and Chen et al. (2015) to compute collision-free
trajectories for multiple Micro Air Vehicles (MAVs), but
without considering formations. The assignment of robots
to the target positions in the formation is another optimiza-
tion problem that was solved with a centralized algorithm by
Turpin et al. (2014) or with a distributed algorithm, albeit in
environments without obstacles, by Montijano and Mosteo
(2014) and Morgan et al. (2016). Building upon the central-
ized, yet online, method by Alonso-Mora et al. (2017), we
propose an optimization and consensus based approach to
reconfigure the formation in dynamic environments, which
is distributed and online.

Several works have proposed distributed constrained opti-
mization approaches to maintain a formation, based on
Model Predictive Control (MPC). In particular, Keviczky
et al. (2008) computed a set of inputs for a team of
aerial vehicles navigating in, or towards, a given forma-
tion, and Kuriki and Namerikawa (2015) relied on a leader
to compute the formation configuration. Our approach is
leaderless and can adjust the size of the formation to avoid
obstacles.

1.2 Contribution

The main contribution of this paper is a distributed method
for formation control. The method enables a team of ground
or aerial robots to navigate in a dynamic environment while
reconfiguring their formation to avoid collisions with static
and moving obstacles. A descriptive idea of the method is
shown in Fig. 2.

We present a holistic method where we rely on con-
vex optimization techniques to compute a convex region
in free position-time space and on non-convex optimiza-
tion techniques to compute the configuration for the team
of robots. We introduce distributed consensus algorithms to
obtain:

– The convex hull of the robot’s positions.
– The preferred direction of motion.
– A convex region in free position-time space, given by the
intersection of individual regions.

We provide a formal analysis with convergence guaran-
tees of the distributed algorithms composing the holistic
approach, simulations with teams of robots and experiments
with four quadrotors avoiding a human. Our algorithms are
easy to implement, require small computational efforts and
scale well with the number of robots, as opposed to equiva-
lent flooding methods.

An earlier version of this paper was published by Alonso-
Mora et al. (2016). In this version we extend the method
with an additional consensus round to compute the preferred
direction of motion and a validation of the method in exper-
iments with four real drones navigating in an environment
with a human.

Our proposed method is intended for local motion plan-
ning and therefore, deadlocks may arise. To avoid dead-
locks, our method can be employed in combination with
a global planner, in a manner similar to the work on cen-
tralized formation control by Alonso-Mora et al. (2017).
In this work we have introduced an additional step in the
method, where robots compute the preferred direction of
motion. This additional step is intended to avoid disagree-
ments in the case that each robot computes an independent
global path, and to coordinate the intentions of all robots.
This is done in a max-min consensus step where the best
direction of movement is chosen with respect to all the
robots.

123

Autonomous Robots

2 Preliminaries

In this section we provide the needed definitions, the prob-
lem formulation for distributed formation control in dynamic
environments and an overview of the proposed method.

2.1 Definitions

2.1.1 Robots

Consider a team of robots navigating in formation. For each
robot i ∈ I = {1, . . . , n} ⊂ N, its position at time t
is denoted by pi (t) ∈ R

3. In the following, we consider
all robots to have the same dynamic model and cylindrical
non-rotating shape of radius r and height 2h in the vertical
dimension. Denote the volume occupied by a robot at posi-
tion p by A(p) ⊂ R

3.

2.1.2 Communication

LetG = (I, E) be the communication graph associated to the
team of robots. Each edge in the graph, (i, j) ∈ E, denotes
the possibility of robots i and j to directly communicate
with each other. The set of neighbors of robot i is denoted
by Ni , i.e., Ni = { j ∈ I | (i, j) ∈ E}. We assume ideal
communications, i.e., noise-free and without packet losses,
and that G is connected, i.e., for every pair of robots i, j
there exists a path of one or more edges in E that links robot
i to robot j . We denote by d the diameter of G, which is
the longest among all the shortest paths between any pair of
robots.

2.1.3 Field of view

We consider that each robot i has a limited field of view, typi-
cally a sphere of given radius centered at the robot’s position.
We denote it by Bi ⊂ R

3.

2.1.4 Static obstacles

Consider a set of static obstaclesO ⊂ R
3 defining the global

map, and Oi = Bi
⋂O the set of obstacles seen by robot i .

Further denote by Ōi the setOi dilated by half of the robot’s
volume, i.e., the positions for which the robot of cylindrical
shape would be in collision with any of the obstacles within
its visibility radius, formally

Ōi = {p ∈ R
3|A(p) ∩ Oi �= ∅}. (1)

2.1.5 Moving obstacles

Moving, or dynamic, obstacles within the field of view
of robot i can be accounted for. Consider j ∈ Ji =

{1, . . . , nDO,i } ⊂ N the list of observed moving obstacles
of shape D j ⊂ R

3 by robot i . We denote by D j |i (t) the vol-
ume occupied by the dynamic obstacle j at time t , as seen
by robot i and

D̄ j |i (t) = {p ∈ R
3|A(p) ∩ D j (t) �= ∅}, (2)

its dilation by half of the robot’s volume. In our implementa-
tion we assume that dynamic obstacles maintain a constant
velocity.

2.1.6 Position-time obstacles

We rely on the notion of position-time space, where the time
dimension is added to the workspace to account for moving
obstacles. This is similar to the concept of configuration-time
space introduced by Erdmann and Lozano-Perez (1987), but
differs in that it is embedded inR4 instead of in the potentially
large high-dimensional space. We denote the current time by
t0 and consider a time horizon τ , typically a few seconds
in the future. For robot i and current time t0, we denote the
union of static and dynamic obstacles seen by robot i by

Ôi (t0) = Ōi × [0, τ] ∪
⋃

t∈[0,τ]
j∈Ji

D̄ j |i (t0 + t) × t ⊂ R
4,

where × denotes the Cartesian product of two spaces, in this
case the workspace and the time dimension.

2.1.7 Position-time free space

For robot i and current time t0, the free space in the position-
time space is then

F̄i (t0) = R
3 × [0, τ] \ Ôi (t0) ⊂ R

4. (3)

This set represents the positions at which the robot does not
collide with any static or moving obstacle at a given time
within the time horizon τ .

2.1.8 Motion planning

This work presents an approach for local navigation.We con-
sider that a desired goal position for the team of robots is
given, and known by all robots. This global position could
be given by a human operator or a standard sampling based
approach for global planning, and is outside the scope of this
work. Denote by g(t) ∈ R

3 the goal position for the centroid
of the formation at time t . Our distributed local planner then
computes the configuration state of the target formation and
the required motion of the robots for a given time horizon
τ > 0, which must be longer than the required time to stop.
We denote t1 = t0 + τ .

123

Autonomous Robots

2.2 Definition of the formation

We consider a pre-defined set ofm ∈ N template formations,
such as a square or a line. See Fig. 3 for an example. Each
template formation f ∈ I f = [1,m] is given by a set of
robot positions {r f

0,1, . . . , r f
0,n} and a set of outer vertices

{w f
1, . . . ,w f

n f } relative to the center of rotation (typically
the centroid) of the formation, where n f denotes the number
of outer vertices defining formation f . The set of vertices
represents the convex hull of the robot’s positions in the for-
mation, thus reducing the complexity for formations with a
large number of robots.

Further denote by d f the minimum distance between any
given pair of robots in the template formation f . Template
formations can be defined by a human designer or automat-
ically computed for optimal representation of a target shape
as showed by Schoch et al. (2014).

A formation is then defined by an isomorphic transforma-
tion, which includes the size s ∈ R+, a translation t ∈ R

3 and
a rotation R(q) described by a unit quaternion q ∈ SO(3),
its conjugate denoted by q̄. With this formation definition,
the configuration state for the team of robots is fully defined
by z = [t, s,q] ∈ R

3 × R+ × SO(3).
Given the configuration state z, and template formation

number f , the robot positions and outer vertices of the
resulting formation are computed by an isomorphic trans-
formation,

r f
i = t + s R(q)r f

0,i , ∀i ∈ [1, n],
v f
j = t + s R(q)w f

j , ∀ j ∈ [1, n f], (4)

where the rotation in SO(3) is given by the quaternion
operation

[
0, R(q)w f

j

]T = q ×
[
0, w f

j

]T × q̄. (5)

For template formation f and configuration state z we
denote the set of outer vertices by

V(z, f) = [v f
1 , . . . , v f

n f]. (6)

In this paper we rely on this definition for the formation.
The method is general and could be applied to alternative
definitions, such as for a team of mobile manipulators car-
rying a rigid object, as shown by Alonso-Mora et al. (2017)
for centralized formation control.

2.3 Problem formulation

Consider a team of n mobile robots, each robot i with a lim-
ited field of view Bi and a communication graph G. Consider
also a set of m template formations known by all the robots

Fig. 3 a Example of a template square formation with sixteen MAVs
with the four vertices defining the convex hull. b The formation can be
transformed with a translation t, a 3D rotation q and a size s isomorphic
transformation

in the team. For a template formation, the configuration state
z fully defines the positions of the robots in the formation.

Consider also a set of static and moving obstacles seen by
the robots and a prediction of their future positions for a time
horizon τ . From this information, each robot individually
computes the free position-time space F̄i (t0).

Our method solves the following two problems jointly.

Problem 1 (Optimal target configuration) At the current
time t0, obtain a goal configuration z∗ and formation index
f ∗ ∈ I f for time t1 = t0+τ such that the deviation between
the robot team’s centroid and a desired position g is min-
imized, and the robot positions in the target formation are
collision free with respect to all observed obstacles, that is
V(z∗, f ∗) × t1 ⊂ ⋃

i∈I F̄i (t0).

Problem 2 (Collision-free motion) Given the current posi-
tion at time t0 of all robots, ensure that the transition from
their current positions, p1(t0) . . . pn(t0), to their assigned
positions, r1(t1) . . . rn(t1), in the target formation is collision
free at all time instances until t1, i.e., for all robot i ∈ I and
time t ∈ [t0, t1] its position satisfies pi (t)×t ⊂ ⋃

i∈I F̄i (t0).

In the following, and for clarity, we will drop the time
index whenever it is self-evident and denote pi (t0) by pi .

2.4 Method overview

In the following we give an intuitive idea of the method fol-
lowed by a detailed method overview.

2.4.1 Idea

Consider a team of robots, each of them with a limited field
of view, and a communication topology. A naive approach
to solve Problem 1 could be that each robot computes a tar-
get formation and then all robots perform consensus on the
formation parameters. Unfortunately, this can lead to a for-
mation in collision with an obstacle, as shown in Fig. 2a. If

123

Autonomous Robots

all the robots first agree on a convex obstacle-free region,
and then compute a target formation therein, then this prob-
lem would not appear any more. An approach to compute
this common obstacle-free region could be that each robot
computes an obstacle-free region with respect to its limited
field of view and then the robots collaboratively compute the
intersection of all regions. Nonetheless, this could lead to an
empty intersection as shown in Fig. 2b. This second problem
can be solved by imposing (a) that the robots first agree on a
commondirection ofmotion and (b) that the convex obstacle-
free region computed by each robot accounts for the robots’
positions. The latter is equivalent to imposing that the convex
obstacle-free region includes the convex hull of the robots’
positions. See Fig. 2c for an example.

Following this line of thought, the proposed method con-
sists of the following steps, which are detailed in Fig. 4.

2.4.2 Formation control

The team of robots computes a target formation and the
assigned position of each robot with the following distributed
procedure.

(a) Robots perform distributed consensus to compute the
convex hull of the robots’ positions.

(b) Robots perform a distributed min/max consensus to
agree on the preferred direction of movement for the
team.

(c) Each robot computes a large convex region in obstacle-
free space, grown from the convex hull of the robots’
positions and directed in the preferred direction of
motion.

(d) Robots perform distributed consensus to compute the
intersection of the individual convex regions.

(e) Each robot computes the optimal target formationwithin
the resulting convex volume. At this stage all the robots
execute the same optimization and with identical ini-
tial conditions, variables, cost function and constraints
(these are computed from the intersection of convex
regions, the convex hull of the robot positions and the
preferred direction of motion). Therefore, we assume
that they reach the same solution. If not, an additional
consensus round would be required.

(f) Robots are assigned, with a distributed optimization, to
target positions within the desired formation.

2.4.3 Low level control

Each robot navigates towards its assigned position within
the target formation with a high-frequency control loop.
They locally avoid collisionswith their neighbors and remain
within the convex region in free position-time space to avoid
collisions with perceived static and moving obstacles. The

target positions are updated as soon as a new configuration
state of the team’s formation is obtained.

3 Method

In this section we explain all the steps of the distributed nav-
igation algorithm, discussing which information the robots
need to communicate to their neighbors and which steps are
executed locally. The proposed algorithm accounts for the
limited visibility and communication capabilities of all the
robots, exploiting the good properties of a distributed consen-
sus scheme. To avoid confusions in the notation, throughout
the section we denote discrete-time communication rounds
using the index k and remove the continuous time depen-
dency of the previous section.

We assume that the final time t1 is longer than the amount
of time required for the distributed algorithm to compute the
formation and that the robots update their local information
used in the consensus rounds only at the beginning of each
execution of the algorithm. In addition, during this time for
simplicity we consider that the communication network, G,
remains fixed. In a separate process, and at high frequency,
each robot does update its information continuously for local
collision avoidance and control towards the assigned position
in themost recent target configuration for the team.SeeFig. 4.

3.1 Convex hull of the robots’positions

In the first step the robots need to compute the convex hull,
C, of their positions. The convex hull of a set of points can be
computed trivially via a function that we denote by convhull.
To computeC in a distributedmannerwe let each robot handle

Fig. 4 Schema of the method which includes several consensus rounds
to compute an obstacle-free convex region and the parameters of the
formation. The position control includes local collision avoidance and
is executed in a separate process with high update rate, controlling
towards the newest formation

123

Autonomous Robots

a local estimation of the convex hull, Ci , which is initialized
containing exclusively the robot’s position, i.e.,Ci (0) = {pi }.

The robots execute an iterative process where, at each
iteration, the local estimations are grown using the convex
hull estimations obtained from direct neighbors in the com-
munication graph. Then, the robots communicate to their
neighbors only the new points that are part of their con-
vex hull estimation, C̄i (k) = Ci (k) \ Ci (k − 1). The whole
process is repeated for a number of communication rounds
equal to the diameter of G, d. This method is synthesized in
Algorithm 1.

Algorithm 1 Distributed Convex Hull - Robot i
1: Ci (−1) = ∅, Ci (0) = {pi }
2: for k = 0 . . . d − 1 do
3: Send C̄i (k) = Ci (k) \ Ci (k − 1) to all j ∈ Ni
4: Receive C̄ j (k) from all j ∈ Ni
5: Ci (k + 1) =convhull(Ci (k), C̄ j (k))
6: end for

Proposition 1 The execution of Algorithm 1 makes the local
estimation of all the robots converge to the actual convex hull
of the whole team in no more than d communication rounds.
That is,

Ci (d) = C, ∀i ∈ I. (7)

Proof In order to show that (7) holds, we first show by induc-
tion that

Ci (k + 1) = convhull(Ci (k), C j (k)), (8)

for all i ∈ I, j ∈ Ni and k ≥ 0.
Equation (8) holds for k = 1 because C̄i (0) = Ci (0) =

{pi } and, therefore, for all i , Ci (1) =convhull(Ci (0), C j (0)).
Assume now that Eq. (8) is also true up to some other k > 0.
Thus,

Ci (k + 1) = convhull(Ci (k), C̄ j (k))

= convhull(convhull(Ci (k − 1), C j (k − 1)),

C j (k) \ C j (k − 1))

= convhull(Ci (k), C j (k)),

where in the last equality we have accounted that all the
points that are not sent by robot j are already contained in
the convex hull at the previous step of robot i .

Now let Ni (k), k ≥ 0, be the set of robots that are reach-
able from robot i after k propagation steps. That is, for k = 1,
Ni (1) = Ni , whereas for k = 2, Ni (k) contains the neigh-
bors of robot i and the neighbors of its neighbors. In a second
step we show that

Ci (k) = convhull(pi ,p j), j ∈ Ni (k), (9)

for all k ≥ 0. Clearly Eq. (9) is true for k = 0 and k = 1.
Assume that it is also true for some other k. Using Eq. (8),

Ci (k + 1) = convhull(Ci (k), C j (k)),

= convhull(pi ,p j), j ∈ Ni (k) ∪ N j (k)

= convhull(pi ,p j), j ∈ Ni (k + 1).

By induction, since the communication graph is assumed to
be connected, Ni (d) = I and Eq. (7) holds. ��

We analyze now the communication cost of Algorithm 1.
Note that, in the worst case, where the convex hull contains
the positions of all the robots, our algorithm presents a com-
munication cost equal to that of flooding all the positions
to all the robots. Nevertheless, even in such case, there are
practical advantages of using this procedure instead of pure
flooding. Besides the likely savings in communications from
positions that are not relayed because they do not belong
to the convex hull, with our procedure there is no need for
a specific identification of which position corresponds to a
particular robot, making it better suited for pure broadcast
implementations.

Remark 1 (Unknown d) If the diameter, d, is unknown, the
consensus runs until convergence for all robots. Since only
new points are transmitted at each iteration, the convergence
of the algorithm can be detected using a timeout when no
new messages are received.

Remark 2 (Algorithm complexity) In terms of computational
demands, our algorithm requires the computation of d con-
vex hulls for each robot, instead of a single computation.
On the other hand, each convex hull computation will poten-
tially contain fewer points, and the information fromprevious
rounds could also be exploited for efficiency. Nevertheless,
existing algorithms to compute the convex hull of a set of
points are already fast enough not to consider the additional
computations an issue of the algorithm.

3.2 Preferred direction of motion

The next step of the algorithm consists in computing the
direction in which the team of robots needs to move. Denote
by g ∈ R

3 the goal position for the robot formation and con-
sider it known by all robots. A priori the preferred direction
of motion, θ∗ ∈ R

3, for the team of robots is given by the
vector from c ∈ R

3, the centroid of C, to the goal position,
g ∈ R

3. Note that the centroid of the convex hull can be com-
puted by all the robots locally without the need of additional
information, as opposed to the centroid of the robots’ posi-
tions, which would require further information and possibly

123

Autonomous Robots

asymptotic consensus methods. However, it may happen that
an obstacle is in the way of such direction, which might be
seen only by a subset of the robots. Thus, we introduce an
optional step in the algorithm in which the robots agree upon
the best direction to compute the goal formation.

Our algorithm considers a discrete set,Θ = {θ1, . . . , θκ },
containing κ different possible directions of motion. We
assume that a common orientation frame is available to all
the robots, with origin defined by the vector g − c. For each
θ ∈ Θ , each robot computes a utility value, ui : Θ → R

+,

that describes how good is that direction. The utility function
can be defined for example, as the distance to an obstacle in
that direction, based on the local perception of that robot.

Since different robots may have different utility values for
the same angle, the global utility of the angle is given by the
worst utility among all the robots, i.e.,

u(θ) = min
i∈I

ui (θ). (10)

Therefore, the objective for the team is to find the angle that
gives the best global utility,

θ∗ = argmax
θ∈Θ

u(θ) = argmax
θ∈Θ

min
i∈I

ui (θ). (11)

In order to compute θ∗ in a distributed fashion, each
robot handles a vector ui ∈ R

κ to compute the global
utility for all the angles in Θ . The vector is initialized as
ui (0) = [ui (θ1), . . . , ui (θκ)], i.e., initially each robot con-
siders that its own utility is the global utility. Then, all the
robots execute the following iterative rule,

ui (k + 1) = min
j∈Ni

(ui (k),u j (k)), (12)

where the minimum is taken component wise in the vectors.
This rule corresponds to κ distributed leader-election algo-
rithms run in parallel (Lynch 1997), which is a well known
algorithm that converges for all the robots to the minimum
of the initial conditions in d iterations. Therefore, once the
algorithm has converged, each robot knows the global utility
for all the angles and can locally select the maximum over
ui (d), which will correspond to θ∗. In case of a tie between
two directions, for simplicity we let the robots choose the one
with minimum index in Θ . The procedure is summarized in
Algorithm 2.

Remark 3 (Bandwidth reduction) Using the above rule, the
total bandwidth used in the network will be equal to κnd
units of information, obtained fromd communication rounds,
each one of them requiring n robots to transmit a vector of
dimension κ . In order to reduce this quantity, at each commu-
nication round each robot only sends the components of the
vector that have changed after executing (12). The messages

Algorithm 2 Distributed Direction of Motion - Robot i
1: ui (0) = [ui (θ1), . . . , ui (θκ)]
2: for k = 0 . . . d − 1 do
3: Send ui (k) to all j ∈ Ni
4: Receive u j (k) from all j ∈ Ni
5: ui (k + 1) = min j∈Ni (ui (k),u j (k)) component-wise
6: end for
7: θ∗ = argmax ui (d)

contain then segments of the vector, determined by the ini-
tial component, the length of the segment and the data.While
in the worst case the bandwidth usage of this methodology
raises to 3

2κnd, we will show empirically that in practice this
approach brings substantial savings.

3.3 Obstacle-free convex region

Recall that, from Sect. 3.1, all robots have knowledge of
the convex hull C of the robots’ positions and from Sect. 3.2
they share a preferred direction ofmotion.With this common
information, but different obstacle maps due to the limited
field of view, each robot computes an obstacle-free convex
region embedded in position-time space, denotedPi ⊂ R

3×
[0, τ]. If the step in Sect. 3.2 is omitted, the robots will use by
default the angle θ∗ defined by the vector g − c as preferred
direction.

To compute the convex regionsPi we follow our previous
work for centralized formation control (Alonso-Mora et al.
2017), which relies on the iterative optimization by Deits and
Tedrake (2014). Given a small initial ellipsoid in free space
we compute (1) the separating hyperplanes between the ellip-
soid and the obstacles and (2) the largest ellipsoid contained
in the resulting convex polytope. These two steps are formu-
lated as convex programs and are repeated iteratively until
convergence to a large convex region in free space and as
long as a set of points are contained in the convex region.
The initial ellipsoid can be generated by two points biasing
the growth of the convex polytope. We note though that the
distributed formation control method described in this paper
is agnostic to the underlaying algorithm to compute convex
polytopes in free space.

For each robot i we can consider two polytopes, see Fig. 5,
where each polytope is computed with the aforementioned
procedure. These are:

– PC
i , a convex polytope that contains the convex hull C of

the robot positions, is computed towards a point χ = c+
θ∗τ in the preferred direction ofmotion, and is embedded
in the free position-time space as seen by the robot. This
polytopePC

i = Pχ×τ

C×0 (F̄i (t0))verifies thatC×0 ⊂ PC
i ⊂

F̄i (t0).

123

Autonomous Robots

Fig. 5 Eight drones in formation and one static obstacle (black). The
preferred direction ofmotion θ is shownwith an arrow from the centroid
c of the convex hull C of the robot positions. The convex region PC

i ,
which contains all the robots, is shown on the left (green sides), and
the convex region Pc

i , which contains the centroid c, is shown on the
bottom (blue sides) (Color figure online)

– Pc
i , a convex polytope that, in contrast to PC

i , only con-
tains the centroid c of the convex hull. This polytope
Pc
i = Pχ×τ

c×0 (F̄i (t0)) verifies that c × 0 ⊂ Pc
i ⊂ F̄i (t0).

We then define Pi as the intersection of both polytopes,
i.e., Pi = PC

i

⋂Pc
i . The former polytope (thanks to its con-

vexity) guarantees that the robots canmove towards the target
configuration following collision-free trajectories. The latter
polytope guides the team towards the goal.

However, due to the local visibility of the robots, some of
these regions may intersect some obstacles that a particular
robot has not seen. Additionally, these regions might not be
equal for all robots, which, if usedwithout further agreement,
would lead to different target formations. Thus, the robots
need to agree upon a common region that is globally free
of obstacles. For that purpose, we next propose a distributed
algorithm that computes the intersection of all the regions,
P = ⋂

i∈I Pi .
As in Algorithm 1, each robot handles a local estimation

of the region of interest. We denote Pi (k) the region of robot
i at iteration k. This region is initialized with the value pro-
vided by the local optimizer, Pi (0) = Pi . At each iteration
the individual regions are shrunk by computing local inter-
sections with the regions received from the neighbors in the
communication graph. The algorithm finishes after d itera-
tions, as shown in Algorithm 3.

Algorithm 3 Distributed Obstacle-Free Region - Robot i
1: Pi (0) = Pi
2: for k = 0 . . . d − 1 do
3: Send Pi (k) to all j ∈ Ni
4: Receive P j (k) from all j ∈ Ni
5: Pi (k + 1) = Pi (k) ∩ P j (k)
6: end for

Proposition 2 When executing Algorithm 3 the regions of all
the robots converge to a common region, equal to the intersec-
tion of the initial regions, in no more than d communication
rounds. That is,

Pi (d) = P =
⋂

j∈I
P j (0), ∀i ∈ I. (13)

Proof Similarly to the proof of Proposition 1, we let Ni (k),
k ≥ 0, be the set of robots that are reachable from robot i
after k propagation steps. We show by induction that

Pi (k) =
⋂

j∈Ni (k)

P j , (14)

for all k ≥ 0. Clearly Eq. (14) is true for k = 0 and k = 1.
Assuming that it is also true for some k, using the associative
and distributive properties of the intersection with respect to
the intersection it is straightforward to show that it also holds
for k+1.Therefore, by the connectedness ofG,Eq. (13) holds
for k = d. ��

To compute the intersections, we rely on a representation
of the obstacle-free convex polytopeP given by its equivalent
set of linear constraints

P = {x ∈ R
4|Ax ≤ b, for A ∈ R

nl×4, b ∈ R
nl }, (15)

where nl denotes the number of faces of P . This leads to
messages of size equal to nl × 4.

Let us note that any face that belongs to both Pi (k) and
Pi (k + 1) will yield the same linear constraints in both poly-
topes. This implies that, similarly to Algorithm 1, robots do
not need to send all the constraints at each communication
round, but only those that are new, and consequently more
restrictive than in the previous round. In particular, robots
send at each communication round the new linear constraints
that have appeared after computing the intersection in Line 5
of Algorithm 3, instead of all the linear constraints at each
round, as we originally considered in Alonso-Mora et al.
(2016). This modification leads to substantial communica-
tion savings in the Algorithm, specially when compared to
a pure flooding approach. In addition, it allows us to define
a solid stop criterion for the algorithm in case of unknown
value of d, as in the case of Remark 1.

Proposition 3 The resulting convex region P is a convex
polytope.

Proof The intersection of convex regions is also convex. ��
Proposition 4 The resulting convex region P does not inter-
sect with any obstacle seen by the robots in the team for
the time period [t0, t1], i.e., it is fully contained in the free
position-time space.

123

Autonomous Robots

Proof For each robot i , its individual convex region Pi (0) is
fully contained in its observed free position-time space by
construction, i.e., Pi (0) ⊂ F̄i (t0).

In each consensus round, the new polytope is given by
the intersection of the previous polytope with the received
ones, therefore Pi (k + 1) ⊂ Pi (k). This implies that, after
convergence, P = Pi (d) ⊂ Pi (0).

From these two set inclusions we then have that P ⊂
Pi (0) ⊂ F̄i (t0) for all robot i . Therefore, the following holds
true

P ⊂
⋂

i∈I
F̄i (t0) = R

3 × [0, τ] \
⋃

i∈I
Ôi (t0). (16)

Which guarantees that the convex regionP does not inter-
sect any obstacle within the time horizon. ��

If P = ∅, an alternative convex region Pi can be selected
by each robot as described by Alonso-Mora et al. (2017)—
Sect. III-C, and consensus on the intersection is repeated.

3.4 Optimal formation

Given the convex set P , and recalling Sect. 2.2, each robot i
then computes the configuration state z∗ of a locally optimal
formation for the team. For a template formation f ∈ I f

the optimal configuration state z∗
f is found by solving the

non-linear optimization

z∗
f = argmin

z
J f (z)

s.t . V(z, f) × t1 ⊂ P (collision-free)
s ≥ 2max(r ,h)

d f
(minimum size)

(17)

where J f (z) is a cost function penalizing the weighted devi-
ation to the goal g, to a preferred size s̄ and to a preferred
orientation q̄. The first constraints impose that all vertices are
within the convex region P . The second constraint imposes
that no two robots within the formation are in collision.

Recalling that z = [t, s,q], we employ the cost function

J f (z) = wt ||t − g(t1)||2 + ws ||s − s̄||2
+wq ||q − q̄||2 + c f , (18)

wherewt ,ws ,wq are designweights, and c f is the predefined
cost for formation type f ∈ I f .

This constrained optimization was first introduced by
Alonso-Mora et al. (2017) and can be solved with state of
the art Sequential Convex Programming solvers. We employ
the non-linear solver SNOPT by Gill et al. (2002). If multi-
ple template formations exist, the best one f ∗ is obtained by
solvingm constrained optimizations. Thanks to the previous
consensus rounds, all robots execute this optimization with
the same parameters (the template formations are known by

all robots and the convex regionP was agreed in the consen-
sus round). Therefore, even when the optimization is solved
individually by each robot, we assume that they all obtain the
same values for the target formation.

3.5 Robot assignment to positions in the formation

The result of the computation of Sect. 3.4 is a target formation
f ∗ and configuration state z∗, fromwhich its associated set of
target robot positions {r1∗, . . . , rn∗} can be computed from
Eq. (4).

Robots are assigned to the goal positionswith the objective
of minimizing the sum of squared travelled distances, i.e.,
find the permutation matrix, X : I → I, minimizer of

min
X

∑

i∈I

∑

j∈I
xi j ||pi − r∗

j ||2. (19)

There exist several distributed algorithms based on local
interactions that are able to find the optimal solution to the
above linear program, such as the distributed simplex pro-
posed by Burger et al. (2012). The algorithm has a bounded
communication cost per iteration and proven finite-time ter-
mination.

Proposition 5 The robots can transition to their assigned
positions in the target formation with collision-free paths.

Proof Under the assumption of holonomicmotionmodel, the
proposition is guaranteed if, for every robot, the straight line
from the current position to the assigned position is collision
free within the position-time space.

Recall Sect. 3.3 and let us denote by PC the intersection
PC = ⋂

i∈I PC
i , which contains the convex hull of robot

positions, i.e., C ⊂ PC , and the consensus polytope P , i.e,
P ⊂ PC , by construction. It also does not intersect any of
the seen obstacles, i.e., PC ⊂ ⋂

i∈I F̄i (t0).
FromSect. 3.3,we have that the current robot positionpi is

inside the convex regionPC , since pi ×0 ∈ C×0 ⊂ PC . Fur-
thermore, the optimization problem of Eq. (17) guarantees
that the target position r∗

σ(i) is within the same convex region,

since r∗
σ(i) × τ ∈ P ⊂ PC . Therefore, the path from the cur-

rent position to the target position is within a convex polytope
PC which does not intersect any of the seen obstacles. ��

3.6 Real-time control

Consider r∗
i to be the target position assigned to robot i ,which

is updated as soon as a new target formation is computed. In
a high frequency control loop each robot individually nav-
igates towards its target position avoiding collisions with
static obstacles, moving obstacles and other robots locally.
For this we compute a collision-free local motion via a state
of the art receding horizon controller which accounts for the

123

Autonomous Robots

5 16 64 256 1024
Number of robots

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
%

 o
f d

at
a

se
nt

co
m

pa
re

d
to

 fl
oo

di
ng

Com Rad 1m
Com Rad 2m
Com Rad 5m
Com Rad 10m

5 16 64 256 1024
Number of robots

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
 o

f d
at

a
se

nt
co

m
pa

re
d

to
 fl

oo
di

ng

Com Rad 1m
Com Rad 2m
Com Rad 5m
Com Rad 10m

5 16 64 256 1024
Number of robots

0

0.2

0.4

0.6

0.8

1

%
 o

f d
at

a
se

nt
co

m
pa

re
d

to
 fl

oo
di

ng

Com Rad 1m
Com Rad 2m
Com Rad 5m
Com Rad 10m

(a) (b) (c)

Fig. 6 Communication cost of Algorithm 1 (Distributed Convex Hull)
(a), Algorithm 2 (Distributed Direction of Motion) (b) and Algorithm 3
(Distributed Obstacle-Free Region) (c) relative to flooding. The plots
show the mean and standard deviation over 100 trials for different num-

bers of robots and communication radii. In the majority of cases the
three algorithms require less bandwidth than pure flooding in the same
number of communication rounds and present a good scalability with
the number of robots

dynamical model of the robot. Two suitable methods are the
distributed reciprocal velocity obstacles with motion con-
straints for aerial vehicles by Alonso-Mora et al. (2015b)
and the receding horizon controller by Nägeli et al. (2017a).

4 Simulation results

4.1 Performance of the consensus strategies

In this section we present simulation results using Monte
Carlo experiments to analyze the distributed Algorithms 1, 2
and 3. In particular, we are interested in comparing the
communication demands of our algorithms with a solution
consisting on flooding the information of all the robots to the
whole network, i.e., a centralized solution under the assump-
tion of limited communication. Since the final solution and
the number of communication rounds are equivalent to those
of the centralized solution, we do not analyze these parame-
ters in the simulation.

4.1.1 Convex hull

InAlgorithm1we considered different group sizes, from n =
5 to n = 1024 robots. For each value of n we have considered
100 different initial conditions, where the robots have been
randomly placed in a 3 dimensional space, with minimum
inter-robot distance equal to 0.5m, forcing the connectedness
of the communication graph for a communication radius of
one meter. Then, for each configuration we have considered
four different communication radii, CR = {1, 2, 5, 10} and
we have run the algorithm.

The amount of information exchanged over the network,
relative to the amount requiredwhen using flooding, is shown

in Fig. 6a. The plot shows the mean and standard deviation
over the 100 trials for each scenario. First of all, it should be
noted that the total bandwidth requirements over the network
will actually increment as we increase the number of robots,
because the number of communication rounds and possibly
the size of the convex hull will increase accordingly. Thus,
the objective of the plots is not to analyze the total bandwidth
but to compare how much better (or worse) is one solution
relative to the other, understanding that there might be other
limitations for the algorithms depending on the size of the
network and its configuration. With this in mind, the first
observation is that in all the cases our algorithm requires
less communication than pure flooding of all the positions
because the relative cost is always less than one. The algo-
rithm also shows the scalability with the number of robots.
As n increases, the amount of positions that do not belong to
the convex hull is also increased, resulting in fewer informa-
tion exchanges for any communication radius. In a similar
fashion, by increasing the communication radius, the relative
communication cost is also decreased. This happens because
at each communication round, the robots are able to discard
more points from their local convex hull estimations, since
they have information from more neighbors available. Over-
all, taking into account that the number of communication
rounds of our algorithm is the same as the one for flooding,
we conclude that our distributed solution is always a better
choice.

4.1.2 Direction of movement

We have also analyzed Algorithm 2 (Distributed Direction of
Motion) using the same simulation parameters, i.e., 100 tri-
als for each different number of robots and communication

123

Autonomous Robots

radii. We have measured the relative cost to a pure flood-
ing algorithm for vectors with κ = 100 utilities, using the
implementation described in Remark 3. The results of this
experiment are depicted in Fig. 6b, where we can observe
that for this particular algorithm our solution is by large
more efficient than flooding. As in the convex hull, the algo-
rithm also performs better for densely connected networks
and large values of n. We have also analyzed the influence
of the size of κ , observing that the relative cost, compared
to flooding, was basically the same for the different sizes.
Therefore, since this parameter can be chosen arbitrarily, the
design choice should be made according to the capacity of
the network to find a good balance between the degree of
accuracy in the orientation of the direction and the absolute
bandwidth requirements.

4.1.3 Intersection of convex regions

Finally, in order to analyze Algorithm 3 we have considered
again the same number of robots and communication radii,
as well as 100 random initial configurations for each pair of
values. The initial regions Pi have been created using the
following procedure: first we have created a random poly-
tope composed by 20 three dimensional vertices. Then, for
each robot we have randomly changed 5% of the vertices
and included perturbations on another 15% of the vertices.
These parameters have been designed taking into account the
properties of the polytopes obtained in the full simulations
containing real obstacles described in Sect. 4.2. The results
of these experiments are depicted in Fig. 6c.

Theplot shows a similar behavior to the one inFig. 6a,with
decreasing bandwidth requirements, relative to a flooding
procedure, as n and the communication radius are increased.
Only for small teams of robots, some executions of the algo-
rithm will require the exchange of more information than
flooding. This happens because for the flooding we send
the 3-dimensional vertices of the associated obstacle-free
polytope instead of the 4-dimensional constraints to reduce
the bandwidth. When n is small, the savings from send-
ing the new constraints at each iteration are not enough to
compensate the increase in the dimension of the informa-
tion exchanged, given that d � n. Nevertheless, in the rest
of cases our algorithm outperforms this algorithm to levels
where we only require to send a small fraction of the infor-
mation. Considering the extra routing control mechanisms
that flooding would require make our solution a much better
choice.Besides, the solution sendingonly the newconstraints
improves over our original approach in Alonso-Mora et al.
(2016), where on average for small teams the cost of our
algorithm was much bigger.

In summary, our algorithms require in (almost) all cases
less bandwidth than equivalent flooding approaches using the
same number of communication rounds. However, it should

be noted that the number of communication rounds of these
algorithms will increase with the diameter of the network,
which will also grow with the number of robots. Neverthe-
less, even if the number of rounds increaseswith n, the size of
the messages will remain more or less constant for arbitrarily
large numbers of robots. The reason for this is that, while the
number of robots can grow, the number of points that define
the convex hull (or similarly the direction of motion and the
points in the obstacle free region) will remain approximately
constant.

4.2 Multi-drone formation control

We present simulations with teams of quadrotor MAVs,
where we employ the same nonlinear dynamical model and
LQR controller employed by Alonso-Mora et al. (2015b),
which was verified with real quadrotors. We use SNOPT by
Gill et al. (2002) to solve the non-linear program, a goal-
directed version of IRIS by Deits and Tedrake (2014) to
compute large convex regions and the Drake toolbox from
MIT1 to handle quaternions, constraints and interface with
SNOPT.

In our simulations a time horizon τ = 4 s is considered for
the experiments with 4 robots and of τ = 10 s for the exper-
iments with 16 robots, due to the large size of the formation
and the scenario. In all cases a new formation is computed
every 2 s. The individual collision avoidance planners run at
5 Hz and the quadrotors have a preferred speed of 1.5 m/s.
Both the visibility distance and the communication radius
are set to 3 m and sensing and actuation noise are neglected.

We test the distributed algorithm described in this paper
in two scenarios previously introduced in Alonso-Mora et al.
(2017) for the centralized case. This provides a direct com-
parison and evaluation.

4.2.1 Four robots

Figure 7 shows snapshots and trajectories of four quadro-
tors tracking a circular trajectory while locally avoiding three
static obstacles and a dynamic obstacle. Three default forma-
tions are considered: square (1st preference), diamond (2nd
preference) and line. The optimal parameters are computed
with the distributed consensus algorithm and non-linear opti-
mizaiton, allowing rotation in 3D (flat horizontal orientation
preferred) and reconfiguration.

The four quadrotors start from the horizontal square and
slightly tilt it (11 s) to avoid the incoming dynamic obstacle.
To fully clear it while avoiding the obstacle in the lower cor-
ner, they shortly switch to a vertical line, and then back to the
preferred square formation (20 s). To pass through the next
narrow opening they switch back to the line formation (30

1 http://drake.mit.edu.

123

http://drake.mit.edu

Autonomous Robots

Fig. 7 Four quadrotors (green-blue) navigate in a 12× 12× 6 m3 sce-
nario with three static obstacles (grey) and a dynamic obstacle (yellow).
The four quadrotors track a circular motion around the central obsta-
cle and locally reconfigure the formation to avoid collisions and make
progress. a Side view. From left to right, snapshots at 11, 20, 30 and 45
s, and paths of the robots in-between. b Top view. From left to right,
snapshots at 11, 20, 30 and 45 s, and paths of the robots in-between. c
Projection (red) of the convex obstacle-free polytopeP onto the 2D top

view at approximately the same time instances of the snapshots. The
projection can overlap with obstacles that are not in the field of view of
the robots. The projection of the optimized formation is shown in green
and the convex hull C of the robot positions at the time of computation
with blue stars (recall that the optimized formation is only recomputed
every 2 s). In two frames the projection of the optimized formation has
negligible size and is shown by a line (Color figure online)

s). Once the obstacles are cleared they return to the preferred
horizontal square formation (45 s).

4.2.2 Sixteen robots

Figure 8 shows the paths of 16 quadrotors moving along a
corridor of three different widths. Three default formations
are considered: 4×4×1 defined by four vertices (preferred),
4 × 2 × 2 defined by eight vertices and 8 × 2 × 1 defined
by four vertices. At each time step the method computes the
optimal parameters for each of the three and selects the one
with lowest cost upon them. Between times 75 and 110s the
method successfully rotates the formation by 90◦ to avoid
collisions (the default formations were horizontal, which is
also preferred in the cost function).

5 Experimental results

In this section we describe experimental results with a team
of four quadrotors.

5.1 Implementation details
Our experiments are conducted with two standard lap-

tops (Quadcore Intel i7 CPU@2.8 GHz). The person and
drones are tracked with a external motion capture system
that provides precise position information at a high update
rate and move in an environment of approximately 4m (W)
× 5m (L) × 3m (H). In order to guarantee connectedness of
the communication graph, the communication radius of the
drones is simulated at 3 m. The visibility has also been set at
3m, looking for a compromise between safety and allowing
different perceptions of the environment. The physical diam-

123

Autonomous Robots

Fig. 8 Sixteen quadrotors navigate along a 100× 10× 10 m3 corridor,
with obstacles shown in grey (top view). The quadrotors locally adapt
the formation to remain collision free. The robots start in the preferred
horizontal 4 × 4 × 1 formation and tilt it to vertical, to pass trough
the narrow corridors. In the wider middle region they transform to a

4 × 2 × 2 formation, which has lower cost than the vertical 4 × 4 × 1.
They finally transition towards 4× 4× 1. a Top view (X–Y) with robot
paths. Sixteen simulated quadrotors move from left to right. b Side view
(X–Z) with robot paths. Sixteen simulated quadrotors move from left
to right

Fig. 9 Histogram of computation time of the distributed formation con-
trol approach, for a sequential implementation in Matlab, with all the
data from the drone experiments

eter of each drone is, approximately, 0.3m.When computing
the configuration of the formation, we impose a minimum
distance of 1m between drones, to avoid collisions and aero-
dynamic disturbances.

In one laptopwe receive the current state of the drones and
obstacles and execute the method of this paper. In particular,
we compute convex obstacle-free regions, perform the con-
sensus rounds, optimize the configuration of the formation
and compute the goal position for each robot in that for-
mation. These computations are performed in a continuous
manner, as soon as one execution is finished, we recompute.
The computations are performed in Matlab and the commu-
nication is handled with ROS. In practice, we observe some
variability in the computation time, with themedian at 0.35 s.
See Fig. 9 for a histogram of the computation time over all
experiments. We observe that many instances took in the
order of 0.25 s, with a large number of them below 0.5 s,
and most of them below 1 s. Very few instances took longer
than 1 s. These are due to longer computational time in the
optimization and search for convex regions, for which we
did not set strict real-time bounds. Furthermore, our current

implementation is sequential, with several for-loops over all
robots, and thus a parallelized implementation may reduce
the computation time.

In the second laptop, we receive the current state of the
drones and obstacles at a high frequency and send input com-
mands to the drones. We also receive the target positions for
the drones, computed in the first laptop. This laptop con-
trols the position of the drones at a high, and approximately
constant, frequency of 20Hz. We implement a slightly mod-
ified version of the Model Predictive Controller introduced
by Nägeli et al. (2017a) and extended to multiple drones by
Nägeli et al. (2017b), where we remove all the cost terms for
videography. This controller minimizes the deviation from
the assigned position of the drone in the formation, sub-
ject to collision avoidance, state and input constraints. We
run a controller for each drone and exchange the planned
trajectories sequentially. We employ a horizon of M = 20
steps, at 0.05 s each, and we solve the MPC problem with
FORCES Pro (Domahidi et al. 2012; Domahidi and Jerez
2016), which generates fast solver code, exploiting the spe-
cial structure in the NLP problem. MPC methods have also
been employed with onboard sensing of obstacles, for exam-
ple by Odelga et al. (2016).

5.2 Quadrotor hardware

We use unmodified Parrot Bebop2 quadrotors in all our
experiments. The communication between the drones and
the host PC is handled via ROS (Quigley et al. 2009) and we
directly send the control inputs from the first time step, with-
out an additional feedback controller for trajectory tracking
on the drone.

The state of the quadrotor is given by its position p ∈ R
3,

its velocity ṗ = [ṗx,y, ṗqz] ∈ R
3 and its orientation, i.e. roll

Φq , pitch Θq and yaw ψq .

123

Autonomous Robots

Fig. 10 Histograms with robot–robot and robot–human distance from
cumulated data of all 20 experiments. Although the planned formations
maintained the desired separation of one meter between drones, in a
few instances the drones got closer due to their dynamics and uncer-

tainties, see Sect. 5.3 for a discussion. The robots always maintained a
separation of over one meter with the moving human. a Planned inter-
drone distance. bMeasured inter-drone distance. c Distance to moving
obstacle

The control inputs to the system are: the velocity of the
quadrotor in the body-z axis vz = ṗqz , the desired roll angle
φq and the desired pitch angle θq for the quadrotor and its
angular speed around the body-z axis ωqz . The horizontal
velocities are not directly controlled.

The NMPC byNägeli et al. (2017b) accounts for the inter-
nal constraints of the Parrot Bebop 2 (e.g., maximal vertical
and horizontal velocities,maximal roll and pitch angles). The
limits are described in the documentation of the Parrot SDK.2

5.3 Results

We have performed a total of twenty experiments, all of them
with one moving obstacle (walking and running) and three
to four drones. In each experiment the robots are tasked with
either maintaining the centroid of the formation as close as
possible to the center of the room or with tracking a circu-
lar, constant velocity motion. For the experiments with three
drones we consider both a line and a triangle formation. For
the experiments with four drones we consider both a line and
a square formation. In all cases, the preferred size of the for-
mation is set to 1.5m between consecutive robots (side of
the triangle and square), and its minimum size is set to 1m
between robots.

In Fig. 10 we show three histograms with cumulated data
over all twenty experiments, for a total of about half an hour
of flight time. In Fig. 10a we cumulate the distance between
the planned position of all drones in the formation, i.e. their
goal positions as computed by the method of this paper. We
observe two distinct peaks, one at 1.5 m, the preferred inter-
robot distance, and one at 2.1 m, the diagonal in the square
formation. The variability in distance is due to the method
adjusting the size of the formation to avoid collisions, while
maintaining a minimum distance of 1 m between robots.

2 http://developer.parrot.com/.

In Fig. 10b we cumulate the distance between all drones
during the experiments. Again, we observe the two distinct
peaks at the planned 1.5 and 2.1 m. Yet, we also observe a
much larger variability in the inter-robot distance. In most
instances, the drones maintain a separation greater than 1
m, as planned by the formation control module. In a few
instances, two drones were between the planned separation
of 1 m and the collision distance of 0.5 m. In extremely
few instances, the separation between two drones was below
0.5 m and a collision could occur, but did not happen in
our experiments. These instances occurred in cases where
the human is running, the drones are pushed towards the
walls of the room and have to fly over in a narrow space and
short period of time in order to avoid a collision. Recalling
our system architecture, see Sect. 5.1, we note that the set-
point tracking is the responsibility of the low-level collision
avoidance, which in our implementation was a sequential
non-linear model predictive controller (NMPC). The reduc-
tion of inter-drone distance, below the predefined setpoint,
was due to several factors: (a) the drone dynamics were not
perfectly identified in the model employed, (b) delays in the
control and communication frameworkwere notmodeled, (c)
higherweight was given to drone–human collision avoidance
than to drone–drone collision avoidance, and (d) slack vari-
ables were used in the NMPC optimization framework. We
recall that the contribution of this paper is the formation con-
trolmethod—which generated collision-free setpoints for the
drones—and not the low level single-drone controller.

Finally, in Fig. 10cwe cumulate the distance between each
drone and themovinghuman. In all instances aminimumsep-
aration of 1 m was achieved and therefore collision with the
human were avoided. The approach successfully adapted the
configuration of the formation to avoid the moving human,
whose motion ranged from walking to running.

123

http://developer.parrot.com/

Autonomous Robots

Fig. 11 Four drones navigate in a square planar formation (drones are
circled in red). The formation is allowed to change its position and rotate
around the vertical axis to avoid the moving person and the walls of the
room. The team of robots minimizes the deviation between its centroid

and the center of the room (blue hexagon). We show a slightly tilted top
view. a Preferred formation at goal position. b Avoidance to the side. c
Avoidance over the person (Color figure online)

We now present experimental results for four distinct sce-
narios. In each scenario we describe a distinct capability of
the method. A video illustrating the results accompanies this
paper and can be found at https://youtu.be/khzM54Qk1QQ.

5.3.1 Single planar formation and static setpoint

In this first scenario four drones navigate in a square planar
formation. The team of robots is allowed to change the posi-
tion of the centroid of the formation and the orientation of
the formation around the vertical axis, in order to avoid the
moving person and the walls of the room. The team of robots
minimizes the deviation between its centroid and the center
of the room. We show three representative frames in Fig. 11.
The left one shows the team of robots at their preferred posi-
tion and orientation (squared formation in the center of the
room). In the middle image the team of robots moves to the
side to let the person pass. In the right image the team of
robots flies up to let the person pass below. The approach
showed good performance.

5.3.2 Single planar formation andmoving setpoint

In this second scenario four drones navigate in the square
planar formation of the previous experiment. As before, the
formation is allowed to change its position and rotate around
the vertical axis to avoid the moving person and the walls
of the room. In this scenario, the centroid of the team of
robots tracks a circular trajectory of radius 2 m and speed 0.3
m/s while avoiding the moving person. In four representa-
tive frames, see Fig. 12, we show a full avoidance maneuver
where the team of robots lifts to avoid the person and then
continues tracking the specified trajectory.

5.3.3 Single formation (with free 3D rotation) and static
setpoint

In this third scenario four drones navigate again in the
square formation, which can now rotate freely in 3D to avoid
the moving person and the walls of the room. The team of
robots minimizes the deviation between its centroid and the
center of the room and tilts the formation to avoid the human.
In Fig. 13 we show the robots at their preferred position and
orientation and three examples of the team of robots tilting
the formation to avoid the moving person. In these set of
experiments we observed that while the method successfully
computes tilted configurations for the team of robots, which
are safe, their execution was not always robust due to the
turbulences created by the drones and their height sensors
(sonar), which produced interferences between the drones
when they were very near.

5.3.4 Multiple formations andmoving setpoint

In the fourth scenario three drones navigate in a triangle
formation and can reconfigure to a line formation if advanta-
geous. The team of robots optimizes (a) the formation type
(triangle -preferred- or line), (b) the centroid of the formation
and (c) the orientation around the vertical axis. This is done
to avoid the moving person and the walls of the room and to
let the centroid of the team of robots track a circular trajec-
tory of radius 2 m and speed 0.5m/s. In Fig. 14 we show two
sequences of three images each. The three drones are first
shown in their preferred formation type (triangle) tracking
the circular motion (Fig. 14a). When the person traps them
against a side, they have to switch to a line formation (Fig.
14b), which then goes up to fly over the person (Fig. 14c),
before returning the preferred triangle formation once the
area is clear (Fig. 14d). If the person runs towards the drones,

123

https://youtu.be/khzM54Qk1QQ

Autonomous Robots

Fig. 12 Four drones navigate in a square planar formation (drones are
circled in red). The formation is allowed to change its position and rotate
around the vertical axis to avoid the moving person and the walls of the
room. The centroid of the team of robots tracks a circular trajectory
(blue dashed line) of radius 2 m. We show a slightly tilted top view. a

The team moves right towards the person. b The team slightly rotates
in the plane to avoid the person. c The team backs-up and flies over the
person. d The team continues tracking the circular motion (Color figure
online)

Fig. 13 Four drones navigate in a square formation. The team of robots
is allowed to change its position and 3D orientation freely to avoid the
moving person and the walls of the room. The team of robots mini-
mizes the deviation between its centroid and the center of the room
(blue hexagon) and tilts the formation to avoid the human. We show a

side view. a Preferred formation at goal position. b The team tilts the
formation to avoid the person. c The team tilts the formation to avoid
the person. d The team tilts the formation to avoid the person (Color
figure online)

123

Autonomous Robots

Fig. 14 Three drones navigate in a triangle formation and can reconfig-
ure to a line formation if advantageous (drones are circled in red). The
team of robots optimizes the a the formation type (triangle- preferred-
or line), b the centroid of the formation and c the orientation around the
vertical axis. This is done to avoid the moving person and the walls of
the room and to let the centroid of the team of robots track a circular

trajectory (blue dashed line) of radius 2 m and speed 0.5 m/s. We show
a slightly tilted top view. a Preferred triangle formation. b Switches to
line to avoid person. c Team flies over the person. d The team returns
to the triangle formation. e The team flies up to avoid the person. f The
team flies up to avoid the person (Color figure online)

123

Autonomous Robots

and they have enough room, they may quickly go up to pass
over the person (Fig. 14e) and continue tracking the circular
trajectory (Fig. 14f).

5.3.5 Discussion on limitations

In multiple experiments we have observed the following.
The approach is safe under predictable movement of the

human. If the human walks in the environment or runs with
constant speed, the formation control method updates the
parameters of the formation to successfully avoid the mov-
ing person. If the humanmakes abrupt changes in speedwhile
running, then the formation control method can result in an
unfeasible optimization due to the constant velocity assump-
tion and the computation delay. If this happens, the individual
low level controllers, based on NMPC, avoid collisions with
the moving person and the formation is recovered as soon as
the optimization becomes feasible again, typically in below
a second.

Although the median computation time of the approach
was 0.35 s, several instances took over one second to com-
pute, see Fig. 9 and Sect. 5.1 for a discussion. This delay was
noticeable at high obstacle speeds. A faster and bounded
update rate is desirable for more fluid performance and
shorter reaction times.

Higher robustness is achieved when in the cost function
of the optimization, Eq. (18), we set a lower weight for ver-
tical deviations from the setpoint than for deviations in the
horizontal plane. In this way we give preference to avoiding
the human by lifting the formation, rather than a sideways
avoidance. This helps in avoiding situations where the robots
are trapped against a wall and they have to quickly fly up to
avoid the collision with the moving human.

The formation control method takes polytopes as obsta-
cles. The volume occupied by the human was enclosed by
a convex polytope. We chose an hexagonal prism with the
sides slightly tilted, i.e. the upper face was slightly smaller
than the lower face. This serves two purposes: (a) it provides
larger clearance around the body of the person and the legs
and (b) it helps in biasing the free-space convex polytope to
have more clearance as height increases.

Overall, the approach performed verywell andwas able to
safely adapt the configuration of the formation in real time.

6 Conclusion

In this paper we considered a team of networked robots in
which each robot only communicates with its neighbors. We
showed that navigation of distributed teams of robots in for-
mation among static and dynamic obstacles can be achieved
via a constrained non-linear optimization combined with
consensus. The robots first compute an obstacle-free convex

region and then optimize the formation parameters. In partic-
ular, non-convex environments can be handled. Thanks to the
consensus on convex obstacle-free regions, the robots do not
need to exchange the position of all the obstacles. Instead they
compute, and exchange, the joint free space. This approach
may present lower computational cost, specially in scenarios
with many obstacles, and requires substantially fewer com-
munication messages than flooding for consensus.

In simulations with up to sixteen drones, and in experi-
ments with up to four drones, we showed successful navi-
gation in formation. The robots were able to reconfigure the
formation when required, in order to avoid collisions with
static and moving obstacles, and to make progress. Last, but
not least, the approach is general and could be adapted to
other formation definitions and applications, such as collab-
orative transportation with mobile manipulations, as long as
the formation can be defined by a set of equations that deter-
mine the outer vertices and position of the robots.

Since the approach is local, deadlocksmay still occur. Yet,
the consensus round on the best direction of motion could be
extended to account for global planning performed by the
individual robots. Another avenue of future work is splitting
and merging into smaller and larger subteams, which also
navigate in formation. Future works should also look at the
integration of planning and sensing in real environments and
at joint low-level and high-level planning.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

Alonso-Mora, J., Knepper, R. A., Siegwart, R., & Rus, D. (2015a).
Local motion planning for collaborative multi-robot manipula-
tion of deformable objects. In: IEEE international conference on
robotics and automation.

Alonso-Mora, J., Montijano, E., Schwager, M., & Rus, D. (2016). Dis-
tributed multi-robot navigation in formation among obstacles: A
geometric and optimization approach with consensus. In IEEE
international conference on robotics and automation.

Alonso-Mora, J., Baker, S., & Rus, D. (2017). Multi-robot forma-
tion control and object transport in dynamic environments via
constrained optimization. The International Journal of Robotics
Research, 36(9), 1000–1021.

Alonso-Mora, J., Nägeli, T., Siegwart, R., & Beardsley, P. (2015b).
Collision avoidance for aerial vehicles in multi-agent scenarios.
Autonomous Robots, 39(1), 101–121.

Augugliaro, F., Schoellig, A. P., & D’Andrea, R. (2012). Generation
of collision-free trajectories for a quadrocopter fleet: A sequential
convex programming approach. In: IEEE/RSJ international con-
ference on intelligent robots and systems.

Ayanian, N., & Kumar, V. (2010a). Abstractions and controllers for
groups of robots in environments with obstacles. In: IEEE inter-

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Autonomous Robots

national conference on robotics and automation, Anchorage, AK
(pp. 3537–3542).

Ayanian, N., & Kumar, V. (2010b). Decentralized feedback controllers
formulti-agent teams in environments with obstacles. IEEETrans-
actions on Robotics, 26(5), 878–887.

Balch, T., & Hybinette, M. (2000). Social potentials for scalable multi-
robot formations. In: IEEE international conference on robotics
and automation.

Balch, T., & Arkin, R. C. (1998). Behavior-based formation control for
multirobot teams. IEEE Transaction on Robotics and Automation,
14(6), 926–939.

Burger, M., Notarstefano, G., Allgower, F., & Bullo, F. (2012). A dis-
tributed simplex algorithm for degenerate linear programs and
multi-agent assignments. Automatica, 48(9), 2298–2304.

Chen, Y., Cutler, M., & How, J. P. (2015). Decoupled multiagent path
planning via incremental sequential convex programming. In IEEE
international conference on robotics and automation (ICRA).

Deits, R., & Tedrake, R. (2014). Computing large convex regions of
obstacle-free space through semidefinite programming. In Work-
shop on the algorithmic fundamentals of robotics.

Derenick, J., Spletzer, J., & Kumar, V.(2010). A semidefinite program-
ming framework for controlling multi-robot systems in dynamic
environments. In: IEEE conference on decision and control.

Derenick, J. C., & Spletzer, J. R. (2007). Convex optimization strategies
for coordinating large-scale robot formations. IEEE Transaction
on Robotics, 23, 1252–1259.

Desai, J. P., Ostrowski, J. P., & Kumar, V. (2001). Modeling and control
of formations of nonholonomic mobile robots. IEEE Transaction
on Robotics and Automation, 17(6), 905–908.

Domahidi, A., & Jerez, J. (2016). FORCES Pro: Code generation for
embedded optimization. https://www.embotech.com/FORCES-
Pro.

Domahidi, A., Zgraggen, A. U., Zeilinger, M. N., Morari, M., & Jones,
C. N. (2012). Efficient interior point methods for multistage prob-
lems arising in receding horizon control. In: 47th IEEE conference
on decision and control, 2008. CDC 2008 (pp. 668–674). IEEE.

Dong, X., Yu, B., Shi, Z., & Zhong, Y. (2015). Time-varying formation
control for unmanned aerial vehicles: Theories and applications.
IEEE Transactions on Control Systems Technology, 23(1), 340–
348.

Erdmann, M., & Lozano-Perez, T. (1987). On multiple moving objects.
Algorithmica, 2, 477–521.

Franchi, A., Masone, C., Grabe, V., Ryll, M., Bulfhoff, H. H., &
Giordano, P. R. (2012). Modeling and control of UAV bearing for-
mations with bilateral high-level steering. International Journal of
Robotics Research, 31, 1504–1525.

Gill, P. E., Murray, W., & Saunders, M. A. (2002). SNOPT: An SQP
algorithm for large-scale constrained optimization. SIAM Journal
on Optimization, 12(4), 979–1006.

Hatanaka, T., Igarashi, Y., Fujita, M., & Spong, M. W. (2012).
Passivity-based pose synchronization in three dimensions. IEEE
Transactions on Automatic Control, 57(2), 360–375.

Keviczky, T., Borrelli, F., Fregene, K., Godbole, D., & Balas, G. J.
(2008). Decentralized receding horizon control and coordination
of autonomous vehicle formations. IEEE Transactions on Control
Systems Technology, 16(1), 19–33.

Kia, S. S., Cortes, J., & Martinez, S. (2016). Distributed convex
optimization via continuous-time coordination algorithms with
discrete-time communication. Automatica, 55(5), 254–264.

Kuriki, Y., & Namerikawa, T. (2015). Formation control with collision
avoidance for a multi-UAV system using decentralized mpc and
consensus-based control. SICE Journal of Control, Measurement,
and System Integration, 8(4), 285–294.

Kushleyev, A., Mellinger, D., Powers, C., &Kumar, V. (2013). Towards
a swarm of agile micro quadrotors. Autonomous Robots, 35(4),
287–300.

Lin, Z., Francis, B., & Maggiore, M. (2005). Necessary and suffi-
cient graphical conditions for formation control of unicycles. IEEE
Transaction on Automatic Control, 50(1), 540–545.

Lynch, N. (1997). Distributed algorithms. Burlington: Morgan Kauf-
mann publishers.

Michael, N., Zavlanos, M. M., Kumar, V., & Pappas, G. J. (2008).
Distributed multi-robot task assignment and formation control. In:
IEEE international conference on robotics and automation.

Montijano, E., & Mosteo, A. R. (2014). Efficient multi-robot forma-
tions using distributed optimization. In: IEEE 53th conference on
decision and control.

Montijano, E., Cristofalo, E., Zhou, D., Schwager, M., & Sagues,
C. (2016). Vision-based distributed formation control without
an external positioning system. IEEE Transactions on Robotics,
32(2), 339351.

Morgan, D., Subramanian, G. P., Chung, S.-J., &Hadaegh, F. Y. (2016).
Swarm assignment and trajectory optimization using variable-
swarm, distributed auction assignment and sequential convex
programming. The International Journal of Robotics Research,
35(10), 1261–1285.

Mostagh, N., Michael, N., Jadbabaie, A., & Daniilidis, K. (2009).
Vision-based, distributed control laws for motion coordination
of nonholonomic robots. IEEE Transactions on Robotics, 25(4),
851860.

Mosteo, A. R., Montano, L., & Lagoudakis, M. G. (2008). Guaranteed-
performance multi-robot routing under limited communication
range. In: Distributed autonomous robotic systems (pp. 491–502).

Nägeli, T., Meier, L., Domahidi, A., Alonso-Mora, J., & Hilliges, O.
(2017b). Real-time planning for automated multi-view drone cin-
ematography. ACM Transactions on Graphics (TOG), 36(4), 132.

Nägeli, T., Alonso-Mora, J., Domahidi, A., Rus, D., & Hilliges, O.
(2017a). Real-time motion planning for aerial videography with
dynamic obstacle avoidance and viewpoint optimization. IEEE
Robotics and Automation Letters, 2(3), 1696–1703.

Nestmeyer, T., Robuffo Giordano, P., Blthoff, H. H., & Franchi, A.
(2017). Decentralized simultaneous multi-target exploration using
a connected network of multiple robots. Autonomous Robots,
41(4), 989–1011.

Odelga, M., Stegagno, P., & Bülthoff, HH. (2016). Obstacle detection,
tracking and avoidance for a teleoperated UAV. In: 2016 IEEE
international conference on robotics and automation (ICRA) (pp.
2984–2990). IEEE.

Oh, K.-K., & Ahn, H.-S. (2011). Formation control of mobile agents
based on inter-agent distance dynamics. Automatica, 47(10),
2306–2312.

Oh, K. K., Park, M. C., & Ahn, H. S. (2015). A survey of multi-agent
formation control. Automatica, 53(3), 424–440.

Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote, T., Leibs, J.,
Wheeler, R., & Ng, A. Y. (2009). Ros: An open-source robot oper-
ating system. In: IEEE ICRA workshop on open source software.

Ren, W., & Beard, R.W. (2008).Distributed consensus in multi-vehicle
cooperative control. Communications and control engineering.
London: Springer.

Sabattini, L., Secchi, C., & Fantuzzi, C. (2011). Arbitrarily shaped for-
mations of mobile robots: Artificial potential fields and coordinate
transformation. Autonomous Robots, 30, 385–397.

Saha, I., Ramaithitima, R., Kumar, V., Pappas, G. J., & Seshia,
S. A. (2014). Automated composition of motion primitives for
multi-robot systems from safe LTL specifications. In: IEEE/RSJ
international conference on intelligent robots and systems.

Schoch, M., Alonso-Mora, J., Siegwart, R., & Beardsley, P. (2014).
Viewpoint and trajectory optimization for animation display with
aerial vehicles. In: 2010 IEEE international conference on robotics
and automation (ICRA) (pp. 4711–4716). IEEE.

123

https://www.embotech.com/FORCES-Pro
https://www.embotech.com/FORCES-Pro

Autonomous Robots

Schwager, M., Julian, B. J., Angermann, M., & Rus, D. (2011). Eyes
in the sky: Decentralized control for the deployment of robotic
camera networks. Proceedings of the IEEE, 99(9), 1541–1561.

Suzuki, T., Sekine, T., Fujii, T., Asama, H., & Endo, I. (2000). Coop-
erative formation among multiple mobile robot teleoperation in
inspection task. In Proceedings of the 39th IEEE Conference on
Decision and Control, 2000 (Vol. 1, pp. 358–363). IEEE.

Turpin, M., Mohta, K., Michael, N., & Kumar, V. (2014). Goal assign-
ment and trajectory planning for large teams of interchangeable
robots. Autonomous Robots, 37(4), 401–415.

Urcola, P., Lazaro, M. T., Castellanos, J. A., & Montano, L. (2017).
Cooperative minimum expected length planning for robot forma-
tions in stochastic maps. Robotics and Autonomous Systems, 87,
3850.

Wurman, P. R., D’Andrea, R., & Mountz, M. (2008). Coordinating
hundreds of cooperative, autonomous vehicles in warehouses. AI
Magazine, 29(1), 9.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Javier Alonso-Mora is an Assis-
tant Professor at the Delft Univer-
sity of Technology. Until October
2016 he was a Postdoctoral Asso-
ciate at the Computer Science and
Artificial Intelligence Lab CSAIL
of MIT, working in the Distributed
Robotics Lab. He received his
Ph.D. degree in robotics from
ETH Zurich, working in the
Autonomous Systems Lab (2014).
He holds a M.Sc. from ETH
Zurich, a Diploma in Engineer-
ing and a Diploma in Mathemat-
ics from the Technical University

of Catalonia. He was also a member of Disney Research Zurich. His
main research interests are in navigation, decision-making, motion
planning and control of autonomous mobile robots, with a special
emphasis in multi-robot systems and robots that interact with other
robots and humans. He received a NWO Veni award in 2017.

Eduardo Montijano is an assis-
tant professor at Universidad de
Zaragoza, Spain. He received the
M.Sc. and Ph.D. degrees from the
Universidad de Zaragoza, Spain,
in 2008 and 2012 respectively,
obtaining the extraordinary award
of the Universidad de Zaragoza in
the 2012–2013 academic year. He
has been a visiting scholar at Uni-
versity of California San Diego,
University of California Berke-
ley and Boston University in the
United States and at Royal Insti-
tute of Technology, in Stockholm,

Sweden. He has also been a faculty member at Centro Universitario
de la Defensa, Zaragoza, Spain, between 2012 and 2016. His main
research interests include distributed algorithms, cooperative control
and computer vision.

Tobias Nägeli is currently a Ph.D.
student in the Advanced Interac-
tive Technologies group of the
Institute of Pervasive Computing
at the Swiss Federal Institute of
Technology Zürich (ETH). His
Ph.D. advisor is Prof. Dr. Otmar
Hilliges. In 2013, he received his
MSc from ETH Zurich in Electri-
cal Engineering with a main focus
on Control and Estimation.

Otmar Hilliges is originally from
Munich, Germany where he was
born and raised. Currently he is
an Assistant Professor of Com-
puter Science (tenure-track) at
ETH Zurich. He leads the AIT lab
affiliated with the Institute of Per-
vasive Computing and the Insti-
tute of Visual Computing. Prior to
joining ETH he was Researcher at
Microsoft Research Cambridge, in
the I3D group (2010–2013). He
was awarded a Diplom (equiv.
MSc) in Computer Science from
Technische Universität München,

Germany (Summa Cum Laude 2004) and a PhD in Computer Science
from LMU München, Germany (Summa Cum Laude 2009). Follow-
ing his studies, he spent two years as a postdoc at Microsoft Research
Cambridge (2010–2012).

Mac Schwager is an assistant pro-
fessor with the Aeronautics and
Astronautics Department at Stan-
ford University. He obtained his
BS degree in 2000 from Stan-
ford University, his MS degree
from MIT in 2005, and his PhD
degree from MIT in 2009. He was
a postdoctoral researcher work-
ing jointly in the GRASP lab at
the University of Pennsylvania and
CSAIL at MIT from 2010 to 2012,
and was an assistant professor at
Boston University from 2012 to
2015. His research interests are in

distributed algorithms for control, perception, and learning in groups
of robots and animals. He received the NSF CAREER award in 2014.

123

Autonomous Robots

Daniela Rus is the Andrew (1956)
and Erna Viterbi Professor of
Electrical Engineering and Com-
puter Science and Director of the
Computer Science and Artificial
Intelligence Laboratory (CSAIL)
at MIT. Rus’s research interests
are in robotics, mobile comput-
ing, and big data. The key focus
of her research is to develop the
science of networked/distributed
/collaborative robotics, by asking:
how can many machines collabo-
rate to achieve a common goal?
Rus is a Class of 2002 MacArthur

Fellow, a fellow of ACM, AAAI and IEEE, and a member of the
National Academy of Engineering. She earned her PhD in Computer
Science from Cornell University. Prior to joining MIT, Rus was a pro-
fessor in the Computer Science Department at Dartmouth College.

123

	Distributed multi-robot formation control in dynamic environments
	Abstract
	1 Introduction
	1.1 Related works
	1.2 Contribution

	2 Preliminaries
	2.1 Definitions
	2.1.1 Robots
	2.1.2 Communication
	2.1.3 Field of view
	2.1.4 Static obstacles
	2.1.5 Moving obstacles
	2.1.6 Position-time obstacles
	2.1.7 Position-time free space
	2.1.8 Motion planning

	2.2 Definition of the formation
	2.3 Problem formulation
	2.4 Method overview
	2.4.1 Idea
	2.4.2 Formation control
	2.4.3 Low level control

	3 Method
	3.1 Convex hull of the robots' positions
	3.2 Preferred direction of motion
	3.3 Obstacle-free convex region
	3.4 Optimal formation
	3.5 Robot assignment to positions in the formation
	3.6 Real-time control

	4 Simulation results
	4.1 Performance of the consensus strategies
	4.1.1 Convex hull
	4.1.2 Direction of movement
	4.1.3 Intersection of convex regions

	4.2 Multi-drone formation control
	4.2.1 Four robots
	4.2.2 Sixteen robots

	5 Experimental results
	5.1 Implementation details
	5.2 Quadrotor hardware
	5.3 Results
	5.3.1 Single planar formation and static setpoint
	5.3.2 Single planar formation and moving setpoint
	5.3.3 Single formation (with free 3D rotation) and static setpoint
	5.3.4 Multiple formations and moving setpoint
	5.3.5 Discussion on limitations

	6 Conclusion
	References

