
 
 

Delft University of Technology

Sparse domination for the lattice Hardy–Littlewood maximal operator

Hänninen, Timo S.; Lorist, Emiel

DOI
10.1090/proc/14236
Publication date
2019
Document Version
Accepted author manuscript
Published in
Proceedings of the American Mathematical Society

Citation (APA)
Hänninen, T. S., & Lorist, E. (2019). Sparse domination for the lattice Hardy–Littlewood maximal operator.
Proceedings of the American Mathematical Society, 147(1), 271-284. https://doi.org/10.1090/proc/14236

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1090/proc/14236
https://doi.org/10.1090/proc/14236


SPARSE DOMINATION FOR THE LATTICE

HARDY–LITTLEWOOD MAXIMAL OPERATOR

TIMO S. HÄNNINEN AND EMIEL LORIST

Abstract. We study the domination of the lattice Hardy–Littlewood
maximal operator by sparse operators in the setting of general Banach
lattices. We prove that the admissible exponents of the dominating
sparse operator are determined by the q-convexity of the Banach lattice.

1. Introduction

Various complicated operators of harmonic analysis can be dominated
by simple sparse operators and, via such domination, weighted estimates
for them follow from estimates for sparse operators. This approach, in its
essence, was initiated by Lerner by his median oscillation decomposition [22].
Its early highlight was the domination of Calderón–Zygmund operators by
sparse operators by Lerner [23, 24]. This domination yielded an alternative,
simple proof of the A2 theorem, which was originally proved by Hytönen
[16]. Since then, a wide variety of operators has been dominated by sparse
operators (or, more generally, sparse forms). We refer the reader to the
introductions, for example, in [1, 4, 25, 21, 26] for an overview of this vast
field.

We study pointwise domination of the lattice Hardy–Littlewood maximal

operator by sparse operators in the setting of general Banach lattices. Let E
be a Banach lattice, that is, a Banach space and a lattice such that both the
structures are compatible. An important class of Banach lattices is the class
of Banach function spaces, with the pointwise order as the lattice partial
order. For an introduction to Banach lattices, see for example [27, 30]. Let
µ be a locally finite Borel measure on Rd, and D be a finite collection of
dyadic cubes in Rd. A subcollection S ⊆ D of dyadic cubes is called sparse if
for every S ∈ S there exists a subset ES ⊆ S such that µ(ES) ≥

1
2µ(S) and

such that the sets {ES}S∈S are pairwise disjoint. The operators of study
are defined as follows:

• The dyadic lattice Hardy–Littlewood maximal operator M̃
µ
D is defined as

follows: For a locally integrable function f : Rd → E, we set

M̃
µ
Df(x) := sup

Q∈D
〈|f |〉µQ 1Q(x), x ∈ Rd,
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where the supremum and the absolute value are taken in the lattice
sense, and 〈f〉µQ := 1

µ(Q)

∫
Q f dµ.

• For an exponent q ∈ [1,∞) and a sparse collection S of dyadic cubes,
the sparse operator Aµ

q,S relevant to our study is defined as follows: For

a locally integrable function f : Rd → R, we set

Aµ
q,Sf(x) :=

(∑

S∈S

(
〈|f |〉µS

)q
1S(x)

)1/q
, x ∈ Rd.

We address the following problem:

Problem 1.1. For a Banach lattice E, for which exponents q ∈ [1,∞) can

the dyadic lattice maximal operator M̃
µ
D be pointwise dominated by a sparse

operator Aµ
q,S?

The pointwise domination is meant in the following sense: For each locally
integrable function f : Rd → E and for each finite collection D of dyadic
cubes there exists a sparse subcollection S ⊆ D such that

(1.1)
∥∥M̃µ

Df
∥∥
E
≤ CE,q A

µ
q,S(‖f‖E) µ-a.e.

Note that the larger the exponent q, the smaller the dominating sparse
operator Aµ

q,S and hence the problem is to determine the largest possible
exponent in the domination.

We study the problem among the Banach lattices E that have the Hardy–
Littlewood property. In the most important case that the measure µ is
the Lebesgue measure, this assumption is necessary for the domination, for
any domination exponent q ∈ [1,∞). The class of Banach lattices with the
Hardy–Littlewood property includes all reflexive Lebesgue, Lorentz, and Or-
licz spaces. The Hardy–Littlewood property is defined and further discussed
in Section 2.

We find out that the admissible exponents are determined by the geo-
metric property of the lattice E called q-convexity. We recall that a Banach
lattice E is called q-convex, with q ∈ [1,∞), if

∥∥∥
( n∑

k=1

|ek|
q)1/q∥∥∥

E
≤ CE,q

n∑

k=1

(
‖ek‖

q
E

)1/q

for all e1, · · · , en ∈ E. More precisely, we show that the exponent q∗, defined
by

q∗ := sup{q ∈ (1,∞) : E is q-convex},

is critical in that the domination (1.1) holds for all q ∈ [1, q∗) and fails for
all q ∈ (q∗,∞).

We first study the necessity of q-convexity. The main contribution of this
article reads as follows:

Theorem 1.2. Let E be a Banach lattice, let µ be a locally finite Borel

measure such that µ(Rd) = ∞ and let r ∈ (1,∞). Assume that for each

finite collection D of dyadic cubes and for each locally integrable function

f : Rd → E there exists a sparse collection S ⊆ D such that
∥∥M̃µ

Df(x)
∥∥
E
≤ CE,q A

µ
r,S(‖f‖E)(x), µ-a.e. x ∈ Rd.

Then the Banach lattice E is q-convex for all exponents q ∈ [1, r).



SPARSE DOMINATION FOR THE LATTICE MAXIMAL OPERATOR 3

We then study the sufficiency of q-convexity. For the particular Banach
lattice E = ℓq, a prototypical example of a q-convex lattice, the domination
was obtained by Cruz-Uribe, Martell, and Pérez [6, Section 8]. In this
article, we mention how their proof, based on Lerner’s median oscillation
decomposition, can be extended to general Banach lattices E. We also
give an alternative, elementary proof of this domination, via the technique
of stopping cubes. In this proof, the lattice-valued setting differs from the
scalar-valued setting in that we need to use a lattice-valued generalization of
the usual Muckenhoupt–Wheeden principal cubes stopping condition. The
domination in full generality reads as follows:

Theorem 1.3. Let E be a Banach lattice and let µ be a locally finite Borel

measure. Assume that E has the Hardy–Littlewood property and is q-convex

for some q ∈ (1,∞). Then for each finite collection D of dyadic cubes and

for each locally integrable function f : Rd → E there exists a sparse collection

S ⊆ D such that
∥∥M̃µ

Df(x)
∥∥
E
≤ CE,q A

µ
q,S(‖f‖E)(x), µ-a.e. x ∈ Rd.

As an immediate corollary of the domination, we mention sharp weighted
weak and strong Lp-estimates for the non-dyadic lattice Hardy–Littlewood
maximal operator (see Corollary 5.2).

Combining Theorem 1.3 and Theorem 1.2 yields the following corollary,
which has been mentioned above:

Corollary 1.4 (Admissible exponents are determined by q-convexity). Let

E be a Banach lattice with the Hardy–Littlewood property and let µ be a

locally finite Borel measure such that µ(Rd) = ∞. Define

q∗ := sup{q ∈ (1,∞) : E is q-convex}.

Then the sparse domination (1.1) holds for all q ∈ [1, q∗) and fails for all

q ∈ (q∗,∞).

Remark. A Banach lattice E may be q∗-convex (for example, ℓq) or may
fail to be q∗-convex (for example, Lp,q with p < q). If E is q∗-convex, then
the sparse domination (1.1) holds for q∗ by Theorem 1.3. We do not know
whether the converse of this holds: is it true that if the sparse domination
(1.1) holds for q∗, then E is q∗-convex; or in other words, is it true that if
E is not q∗-convex, then the sparse domination (1.1) fails for q∗?

This article is organized as follows: We summarize the preliminaries in
Section 2. We then prove that the domination implies the q-convexity (The-
orem 1.2) in Section 3. Furthermore, we give an alternative proof of the
result that the domination is implied by the q-convexity (Theorem 1.3) in
Section 4, and mention weighted bounds (Corollary 5.2) as its corollary
in Section 5. In Appendix A, for the reader’s convenience, we give a self-
contained elementary proof of the well-known fact that the strong Lp-bound
with p ∈ (1,∞) implies the weak L1-bound for the dyadic lattice maximal
operator (Proposition A.1). This fact is used in our proof of the sparse
domination.

Acknowledgement. The authors thank Mark Veraar for his helpful
comments on the draft.
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2. Preliminaries

Let µ be a locally finite Borel measure on Rd, and D be a finite collection
of dyadic cubes in Rd. It is well-known that, for every q ∈ (0,∞), the
sparse operator Aµ

q,S , defined in the introduction, is bounded on Lp(µ) for

every p ∈ (1,∞). This can be checked, for example, by using duality and
the Hardy–Littlewood maximal inequality. Therefore, a necessary condition

for the domination (1.1) is that the dyadic lattice maximal operator M̃µ
D is

bounded on Lp(µ;E). In our context the most important measure is the
Lebesgue measure, which leads us to consider the Banach lattices that have
the Hardy–Littlewood property:

Definition 2.1 (Hardy–Littlewood property). A Banach lattice E has the
Hardy–Littlewood property if for some p ∈ (1,∞), we have

(2.1) sup
D

∥∥M̃dx
D

∥∥
Lp(dx;E)→Lp(dx;E)

< ∞,

where the supremum is taken over all finite collections D of dyadic cubes
and dx denotes the Lebesgue measure.

Remark.

• By a covering argument using shifted dyadic systems (see for example
[18, Lemma 3.2.26]), it is equivalent to take the supremum in (2.1) over
all finite collections of generic cubes or balls, in place of taking it over
all finite collections of dyadic cubes over several dyadic systems.

• The Hardy-Littlewood property is independent of the exponent p and
of the dimension d (see [9, Remark 1.3 and Theorem 1.7] or [7, The-
orem 3]). The independence of the exponent p also follows from the
sparse domination (Theorem 1.3), since the dominating sparse operator
is bounded on Lp for all p ∈ (1,∞).

• Among all the measures on Rd, the norm of the lattice maximal operator
with respect to the Lebesgue measure is the largest (see [14, Appendix
A.2]), in that for every locally finite Borel measure µ and for every finite
collection D of dyadic cubes, we have

∥∥M̃µ
D

∥∥
Lp(µ;E)→Lp(µ;E)

. sup
D′

∥∥M̃dx
D′

∥∥
Lp(dx;E)→Lp(dx;E)

.

Example.

• The Fefferman–Stein vector-valued maximal inequality states that the
Banach lattice ℓq with q ∈ (1,∞] has the Hardy–Littlewood property.

• Every Banach lattice with the UMD property (Unconditional Martin-
gale Differences) has the Hardy-Littlewood property [2, 33]. The class
of Banach lattices with the UMD property and hence with the Hardy–
Littlewood property includes all reflexive Lebesgue, Lorentz and Orlicz
spaces. For UMD spaces, see for example [18, Chapter 4].

It is known that the domination (1.1) holds with the exponent q = 1. This

follows from viewing the operator M̃
µ
D as an instance of a singular integral

operator or a discrete analogue of such, operators for which the domination
with q = 1 is known:
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• M̃
µ
D can be viewed as a vector-valued singular integral (see [9, 10]). The

sparse domination for vector-valued singular integrals follows by com-
bining [15, Theorem 2.10] (dominating vector-valued singular integrals
by more complex operators) and [5, Theorem A] (dominating the more
complex operators by the sparse operator Aµ

1,S).

• M̃
µ
D can be viewed as a vector-valued martingale transform (see [29]).

Vector-valued martingale transforms can be dominated by the sparse
operator Aµ

1,S (see [20, Theorem 2.4]; for an alternative proof, see [13,

Proposition 2.7]).

As stated in Problem 1.1, our purpose is to study whether the domination
(1.1) holds with some strictly larger exponent q ∈ (1,∞). The critical notion
for this is that of q-convexity:

Definition 2.2 (q-convexity). We say that a Banach lattice E is q-convex,
with q ∈ [1,∞), if

∥∥∥
( n∑

k=1

|ek|
q)1/q∥∥∥

E
≤ CE,q

n∑

k=1

(
‖ek‖

q
E

)1/q

for all e1, · · · , en ∈ E.

Note that the expression
(∑n

k=1|ek|
q)1/q can be defined pointwise in a

Banach function space. In a general lattice it can be defined using the
Krivine calculus (see for example [27, Theorem 1.d.1]).

Every Banach lattice with the Hardy–Littlewood property is q-convex for
some q > 1 [9, Theorem 2.8]. Recall that, in the case that the measure µ

is the Lebesgue measure, the Hardy–Littlewood property is necessary for
the domination (1.1) to hold for any q ∈ [1,∞). Thus, in the case of the
Lebesgue measure, if the domination (1.1) holds for any exponent q ∈ [1,∞),
then the lattice E is q-convex for some q ∈ (1,∞).

3. Domination exponent is determined by q-convexity

In this section we prove Theorem 1.2 from the introduction, which states
the necessity of the q-convexity assumption for the domination (1.1) to hold:

Theorem 1.2. Let E be a Banach lattice, let µ be a locally finite Borel

measure such that µ(Rd) = ∞ and let r ∈ (1,∞). Assume that for each

finite collection D of dyadic cubes and for each locally integrable function

f : Rd → E there exists a sparse collection S ⊆ D such that
∥∥M̃µ

Df(x)
∥∥
E
≤ CE,q A

µ
r,S(‖f‖E)(x), µ-a.e. x ∈ Rd.

Then the Banach lattice E is q-convex for all exponents q ∈ [1, r).

Proof. Let Q0 be a dyadic cube such that µ(Q0) > 0 and such that for any
C > 0 there exists a dyadic cube Q′ ⊇ Q0 with µ(Q′) > C, which is possible
since µ(Rd) = ∞. Define recursively Qk+1 as the minimal dyadic cube such
that Qk ⊆ Qk+1 and µ(Qk) ≤

1
2µ(Qk+1).

Fix n ∈ N and let e1, · · · , en ∈ E be pairwise disjoint (i.e. inf{ej , ek} = 0
for all 1 ≤ j, k ≤ n), such that ‖e1‖ ≤ · · · ≤ ‖en‖. Define D =

⋃n
k=0Qk and
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f =
∑n

k=1 1Qk\Qk−1
ek. Let S ⊆ D be sparse such that

(3.1) ‖MDf‖E ≤ CE,r A
µ
r,S(‖f‖E).

µ-almost everywhere and let x0 ∈ Q0 be such that (3.1) holds. Note that

〈|f |〉µQk
≥

µ(Qk \Qk−1)

µ(Qk)
|ek| ≥

(
1−

1

2

)
|ek| =

1

2
|ek|.

By the elementary relations

e+ e′ = sup{e, e′}+ inf{e, e′}

inf{sup{e, e′}, e′′} = sup{inf{e, e′′}, inf{e′, e′′}}

for e, e′, e′′ ∈ E, the disjoint vectors ek’s satisfy
∑n

k=1 ek = sup1≤k≤n ek.

Therefore,

(3.2)
∥∥∥

n∑

k=1

ek

∥∥∥
E
≤

∥∥ sup
1≤k≤n

|ek|
∥∥
E
≤ 2

∥∥M̃µ
Df(x0)

∥∥
E

Moreover, since ‖e1‖ ≤ · · · ≤ ‖en‖, we have that

〈‖f‖E〉
µ
Qk

=
1

µ(Qk)

k∑

j=1

µ(Qj \Qj−1)‖ej‖E ≤ ‖ek‖E .

which yields

(3.3) Aµ
r,S

(
‖f‖E

)
(x0) ≤

( n∑

k=1

(
〈‖f‖〉µQk

)r) 1

r
≤

( n∑

k=1

‖ek‖
r
E

) 1

r
,

Combining (3.1), (3.2) and (3.3), we deduce that

∥∥∥
n∑

k=1

ek

∥∥∥
E
≤ CE,r

( n∑

k=1

‖ek‖
r
E

) 1

r
,

for all pairwise disjoint vectors e1, · · · , en ∈ E such that ‖e1‖ ≤ · · · ≤ ‖en‖
and therefore for every collection of pairwise disjoint vectors in E. This is
called an upper r-estimate for E. By [27, Theorem 1.f.7], this implies that
E is q-convex for all q ∈ [1, r). �

4. Sparse domination for q-convex lattices

In this section we prove Theorem 1.3 from the introduction, which states
the sufficiency of the q-convexity for the domination (1.1) to hold:

Theorem 1.3 (Sparse domination for lattice maximal operator). Let E be a

Banach lattice and let µ be a locally finite Borel measure. Assume that E has

the Hardy–Littlewood property and is q-convex for some q ∈ (1,∞). Then

for each finite collection D of dyadic cubes and for each locally integrable

function f : Rd → E there exists a sparse collection S ⊆ D such that

∥∥M̃µ
Df(x)

∥∥
E
≤ CE,q A

µ
q,S(‖f‖E)(x), µ-a.e. x ∈ Rd.
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Cruz-Uribe, Martell, and Pérez [6, Lemma 8.1] proved this domination in
the case where µ is the Lebesgue measure and E = ℓq, which is a prototypical
Banach lattice that has the Hardy–Littlewood property and is q-convex.
Their proof extends to the case of general measures and general Banach
lattices as follows. First, in place of the estimate 0 ≤ max{a, b} − b ≤ a for
all positive reals a, b, one uses the estimate

0 ≤ ‖sup{e1, e2}‖
q
E − ‖e2‖

q
E ≤ ‖e1‖

q
E

for all positive vectors e1, e2 in a q-convex lattice E. This estimate holds
provided that the constant CE,q in the definition of q-convexity equals one,
which can be arranged by passing to an equivalent norm [27, Theorem 1.d.8].
Second, in place of the usual Lerner median oscillation decomposition [22],
one uses its variant for general measures [13, Theorem 1.2].

We give an alternative proof for the sparse domination. Our proof is el-
ementary in that it uses neither Lerner’s median oscillation decomposition,
unlike the Cruz-Uribe–Martell–Pérez proof, nor renorming of the lattice.
Our proof is via the technique of stopping cubes, using a lattice-valued
generalization of the Muckenhoupt–Wheeden principal cubes stopping con-
dition. The generalized stopping condition has been applied to characterize
lattice-valued two-weight norm inequalities [14] and is likely to have also
other applications in the lattice-valued setting.

The generalized stopping condition is as follows. Let f : Rd → E+ be a
non-negative (in the lattice sense) locally integrable function. In the gener-
alized stopping condition, we choose the maximal dyadic subcubes S′ ⊆ S

that satisfy the stopping condition
∥∥∥ sup

Q∈D
S′⊆Q⊆S

〈f〉µQ

∥∥∥
E
> 2

∥∥M̃µ
D

∥∥
L1(µ;E)→L1,∞(µ;E)

〈‖f‖E〉
µ
S.

Note that in the scalar-valued case E+ = R+ this reduces to choosing the
maximal dyadic subcubes S′ ⊆ S such that

〈f〉µS′ > 2〈f〉µS ;

this is the Muckenhoupt–Wheeden principal cubes stopping condition, which
originally appeared in [31, Equation 2.5].

Proof of Theorem 1.3 via the technique of stopping cubes. Let f : Rd → E

be a locally integrable function, which may be taken positive without loss
of generality. For a cube S ∈ D, we define its stopping children chS(S) to
be the collection of maximal (w.r.t. set inclusion) cubes S′ ∈ D such that
S′ ( S and the cube S′ satisfies the stopping condition

(4.1)
∥∥∥ sup

Q∈D
S′⊆Q⊆S

〈f〉µQ

∥∥∥
E
> 2

∥∥M̃µ
D

∥∥
L1(µ;E)→L1,∞(µ;E)

〈‖f‖E〉
µ
S.

Let S0 := {Q ∈ D : Q maximal} and define recursively Sk+1 :=
⋃

S∈Sk
chS(S).

We set S :=
⋃∞

k=0 Sk. For each Q ∈ D, we define its stopping parent πS(Q)
as

πS(Q) = {S ∈ S : S minimal (w.r.t. set inclusion) such that Q ⊆ S}.
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First, we show that the collection S of dyadic cubes is sparse. Fix S ∈ S
and let ES := S \

⋃
S′∈chS(S)

S′. Define the set

S∗ :=
{
x ∈ Rd :

∥∥M̃µ
D(f 1S)(x)

∥∥
E
> 2

∥∥M̃µ
D

∥∥
L1(E)→L1,∞(E)

〈
‖f‖E

〉µ
S

}
.

Note that by the definition of the weak L1-norm we have

(4.2) µ(S∗) ≤
1

2
µ(S).

Moreover, for S′ ∈ chS(S) and x ∈ S′, we have
∥∥∥M̃µ

D(f 1S)(x)
∥∥∥
E
=

∥∥∥ sup
Q∈D

〈f 1S〉
µ
Q 1S′(x)

∥∥∥
E
≥

∥∥∥ sup
Q∈D

S′⊆Q⊆S

〈f〉µQ

∥∥∥
E

so x ∈ S∗ by (4.1) and thus S′ ⊆ S∗. Using the disjointness of chS(S) and
(4.2), we get

∑

S′∈chS(S)

µ(S′) ≤ µ(S∗) ≤
1

2
µ(S).

So µ(ES) ≥ 1
2µ(S), which means that S is a sparse collection of dyadic

cubes.
Next, we check the pointwise estimate. Fix S ∈ S, x ∈ S and let Sx ∈ D

be the minimal (w.r.t. set inclusion) cube such that x ∈ Sx and πS(Sx) = S.
By the minimality, we have

∥∥∥ sup
Q∈D

πS(Q)=S

〈f〉µQ 1Q(x)
∥∥∥
E
=

∥∥∥ sup
Q∈D

Sx⊆Q⊆S

〈f〉µQ

∥∥∥
E
1S(x).

and by the condition πS(Sx) = S, we have
∥∥∥ sup

Q∈D
Sx⊆Q⊆S

〈f〉µQ

∥∥∥
E
1S(x) ≤ 2

∥∥M̃µ
D

∥∥
L1(µ,E)→L1,∞(µ,E)

〈‖f‖E〉
µ
S 1S(x).

Altogether,

(4.3)
∥∥∥ sup

Q∈D
πS(Q)=S

〈f〉µQ 1Q(x)
∥∥∥
E
≤ 2

∥∥M̃µ
D

∥∥
L1(E)→L1,∞(E)

〈‖f‖E〉
µ
S 1S(x).

Now, we have
∥∥M̃µ

Df(x)
∥∥
E
=

∥∥∥sup
S∈S

sup
Q∈D

πS(Q)=S

〈f〉µQ 1Q(x)
∥∥∥
E

≤
∥∥∥
(∑

S∈S

(
sup
Q∈D

πS(Q)=S

〈f〉µQ 1Q(x)
)q) 1

q
∥∥∥
E

‖ · ‖ℓ∞ ≤ ‖ · ‖ℓq

≤ CE,q

(∑

S∈S

∥∥∥ sup
Q∈D

πS(Q)=S

〈f〉µQ 1Q(x)
∥∥∥
q

E

) 1

q
q-convexity of E

≤ CE,q

∥∥M̃µ
D

∥∥
(∑

S∈S

(
〈‖f‖E〉

µ
S

)q
1S(x)

) 1

q
(4.3),
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with
∥∥M̃µ

D

∥∥ :=
∥∥M̃µ

D

∥∥
L1(µ;E)→L1,∞(µ;E)

. By Proposition A.1, we have

∥∥M̃µ
D

∥∥
L1(µ;E)→L1,∞(µ;E)

≤ Cp

∥∥M̃µ
D

∥∥
Lp(µ;E)→Lp(µ;E)

for every p ∈ (1,∞). By the remark after Definition 2.1, we have
∥∥M̃µ

D

∥∥
Lp(µ;E)→Lp(µ;E)

≤ sup
D′

∥∥M̃dx
D′

∥∥
Lp(dx;E)→Lp(dx;E)

.

Note that the quantity supD′

∥∥M̃dx
D′

∥∥
Lp(dx;E)→Lp(dx;E)

is finite for some p ∈

(1,∞) by the assumption that E has the Hardy-Littlewood property. This
completes the proof of the theorem. �

5. Weighted estimates for non-dyadic maximal functions

As well-known, via the domination of an operator by sparse operators, the
weighted bounds for sparse operator carry over to the dominated operator.
In this section, we mention weighted bounds that carry over via the dom-
ination from sparse operators to the non-dyadic lattice Hardy–Littlewood
maximal operator.

Non-dyadic lattice Hardy–Littlewood maximal operator. We define

the non-dyadic lattice Hardy–Littlewood maximal operator M̃µ as follows: for
a locally integrable function f : Rd → E, we set

(5.1) M̃µf(x) := sup
Q

〈|f |〉µQ 1Q(x), x ∈ Rd,

where the supremum is taken in the lattice sense over all cubes Q ⊆ Rd with
sides parallel to the coordinate axes.

For this definition to make sense, the supremum needs to exist for µ-a.e.

x ∈ Rd, and M̃µf needs to be strongly µ-measurable, i.e. it needs to be
pointwise approximable by simple functions (see [18, Chapter 1] for more
on strong measurability). This is the case if the Banach lattice is order

continuous. (On order continuity, see for example [27, Section 1.a].) Since,
in particular, every reflexive Banach lattice is order continuous, this a rather
general sufficient condition.

Lemma 5.1 (Well-definedness of the non-dyadic lattice maximal operator).
Let E be an order continuous Banach lattice and µ be a locally finite Borel

measure. Then for every simple function f : Rd → E the maximal function

M̃µf exists and is strongly µ-measurable.

Proof. Note that since E is order-continuous, the space of all strongly µ-
measurable functions L0(µ;E) is order-complete by [12, Theorem 2.6], i.e.
every order bounded set in L0(µ;E) has a supremum in L0(µ;E).

Let f : Rd → E be a simple function, that is, f =
∑n

k=1 ek 1Ak
with

e1, · · · , en ∈ E and A1, · · · , An ⊆ Rd measurable, pairwise disjoint and
µ(Ak) < ∞ for k = 1, · · · , n. Since we have for all cubes Q ⊆ Rd that

〈|f |〉µQ 1Q ≤
( n∑

k=1

|ek|
)
1Rd ∈ L0(µ;E),
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it follows that
M̃µf = sup

Q
〈|f |〉µQ 1Q ∈ L0(µ;E) �

Muckenhoupt weights. We now turn to the weighted estimates for the
non-dyadic Hardy–Littlewood maximal operator. For this, we fix µ to be

the Lebesgue measure dx and denote M̃ := M̃dx, M̃D := M̃dx
D , Aq,S := Adx

q,S

and 〈 · 〉Q := 〈 · 〉dxQ .

A weight is a nonnegative locally integrable function w : Rd → (0,∞).
For p ∈ [1,∞), the weighted Lebesgue–Bochner space Lp(w;E) is the space
of all f ∈ L0(dx;E) such that

‖f‖Lp(w;E) :=
(∫

Rd

‖f‖pEwdx
)1/p

< ∞.

For p ∈ [1,∞), the class of the Muckenhoupt Ap-weights contains all weights
w such that

[w]Ap
:= sup

Q
〈w〉Q

〈
w

− 1

p−1

〉p−1

Q
< ∞,

where the supremum is taken over all cubes Q ⊆ Rd with sides parallel to
the coordinate axes, and where the second factor is replaced by ‖w−1‖L∞(Q)

for p = 1. For p = ∞, the class contains all weights such that

[w]A∞
=

∫
QM(w 1Q) dx∫

Q w dx
< ∞,

where M is the usual (scalar) Hardy-Littlewood maximal operator. We
call [w]Ap the Ap-characteristic of w. For a general overview of Mucken-
houpt weights, see [11, Chapter 9], and for an introduction to the A∞-
characteristic, see [19] and the references therein.

Weighted bounds for maximal operators. As well-known, there are
boundedly many shifted dyadic systems such that every cube is contained
in some dyadic cube of comparable side length (see for example [18, Lemma
3.2.26]). Hence, as well-known, non-dyadic maximal operators can be dom-
inated by dyadic maximal operators. Via the domination of non-dyadic lat-
tice maximal operators by dyadic lattice maximal operators and the domina-
tion of dyadic lattice maximal operators by sparse operators, the weighted
bounds for sparse operator carry over to the non-dyadic lattice maximal
operator. In this way the weighted bounds for sparse operators from

• [17, Theorem 1.1. and Theorem 1.2.] in the case Lp(w) → Lp(w) and
Lp(w) → Lp,∞(w)

• [8, Theorem 1.3] in the case L1(w) → L1,∞(w)

yield the following weighted estimates:

Corollary 5.2. Let E be an order-continuous Banach lattice. Assume that

E has the Hardy–Littlewood property and is thus q-convex for some q ∈
(1,∞). Then for all p ∈ (1,∞), w ∈ Ap and f ∈ Lp(w;E) we have

∥∥M̃f
∥∥
Lp(w;E)

≤ CE,p,q,d [w]
1

p

Ap

(
[w]

1

q
− 1

p

A∞
+ [w1−p′ ]

1

p

A∞

)∥∥f
∥∥
Lp(w;E)

(5.2)

≤ CE,p,q,d[w]
max

{
1

p−1
, 1
q

}
Ap

∥∥f
∥∥
Lp(w;E)

,(5.3)
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and if p 6= q we have

∥∥M̃f
∥∥
Lp,∞(w;E)

≤ CE,p,q,d [w]
1

p

Ap

(
[w]

1

q
− 1

p

A∞
+ 1

)∥∥f
∥∥
Lp(w;E)

(5.4)

≤ CE,p,q,d [w]
max

{
1

p
, 1
q

}
Ap

∥∥f
∥∥
Lp(w;E)

.(5.5)

If w ∈ A1 and f ∈ L1(w;E) we have
∥∥M̃f

∥∥
L1,∞(w;E)

≤ CE,d [w]A1

(
1 + log([w]A∞

)
)
‖f‖L1(w;E)(5.6)

In the particular case E = ℓq, the strong-type weighted bound (5.3) to-
gether with its sharpness was proved in [6]. After the appearance of this
manuscript on arXiv, another manuscript appeared, in which the weighted
bounds (5.2) and (5.4) for the lattice maximal operator were deduced inde-
pendently in the particular case E = ℓq, see [3, Theorem 2].

Remark. In the particular case E = ℓq, the dependence on the Ap-characteristic
is sharp both in the strong-type weighted estimate (5.3) (see [6]) and in the
weak-type weighted estimate (5.5) (this follows from combining [6] and [32,
Theorem 1]). In the general case that E is Banach lattice that is q-convex
for some q ∈ (1,∞), the exponent

q∗ := sup{q ∈ (1,∞) : E is q-convex}

is critical: The strong-type weighted estimate (5.3) with the dependence

[w]
max

{
1

p−1
, 1
q

}
Ap

holds for all q < q∗ and fails for all q > q∗. Similarly, the weak-type (5.5)
weighted estimate with the dependence

[w]
max

{
1

p
, 1
q

}
Ap

holds for all q < q∗ and fails for all q > q∗. This follows from embedding a
copy of ℓqn with q < q∗ into the lattice E for a large enough n (by applying
[27, Theorem 1.f.12]) and using the sharpness in the case ℓqn. This sharpness
for weighted estimates can be compared with the sharpness for domination,
see Corollary 1.4.

Appendix A. Strong Lp-bound implies weak L1-bound

As well-known, for the dyadic lattice Hardy Littlewood maximal operator
the strong Lp-boundedness implies the weak L1-boundedness. This result
can be proven by viewing the lattice maximal operator as a vector-valued
singular integral operator (see [9, 10]) and using the Calderón–Zygmund
decomposition, or alternatively, by viewing the lattice maximal operator as
a martingale transform (see [29]) and using the Gundy decomposition. In
this Appendix, we give an elementary proof of this result.

Proposition A.1. Let E be a Banach lattice, µ a locally finite Borel mea-

sure, and D a finite collection of dyadic cubes. Then for all p ∈ (1,∞)
∥∥M̃µ

D

∥∥
L1,∞(µ;E)→L1(µ;E)

≤ Cp

∥∥M̃µ
D

∥∥
Lp(µ;E)→Lp(µ;E)

.
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Proof. Fix f ∈ L1(µ;E), which may be taken positive without loss of gen-

erality. Let D̃ be the dyadic grid such that D ⊆ D̃ and for a cube Q ∈ D̃ let

its dyadic parent Q̂ be the minimal cube Q′ ∈ D̃ such that Q ( Q′. Define
for λ > 0

S := {Q ∈ D̃ maximal with 〈‖f‖E〉Q > λ}.

We write Ω :=
⋃

S∈S S. For a fixed cube Q ∈ D we have

〈f〉Q =
∑

S∈S
S(Q

〈f 1S〉Q +
∑

S∈S
S⊇Q

〈f 1S〉Q + 〈f 1Ωc〉Q

≤
∑

S∈S

µ(S)

µ(Ŝ)

〈
〈f〉S 1Ŝ

〉
Q

+
∑

S∈S
S⊇Q

〈f〉Q + 〈f 1Ωc〉Q,

as Ŝ ⊆ Q if S ( Q. Therefore, we have the decomposition

M̃
µ
Df ≤ M̃

µ
D

(∑

S∈S

µ(S)

µ(Ŝ)
〈f〉S 1Ŝ +f 1Ωc

)
+ sup

Q∈D

∑

S∈S
S⊇Q

〈f〉Q 1Q

=: M̃µ
D(g1 + g2) + b.

(A.1)

Note that b is supported on Ω and Ω = {MD̃(‖f‖E) > λ}, where MD̃
is the usual dyadic (scalar) Hardy–Littlewood maximal operator over the

dyadic grid D̃. By the weak L1-boundedness of M
D̃

(see for example [34]),
we have

(A.2) µ
(
‖b‖E > λ

)
≤ µ

(
MD̃(‖f‖E) > λ

)
≤

1

λ
‖f‖L1(µ;E).

Since S is a family of disjoint dyadic cubes, we have by [28, Lemma 3.3]
that

(A.3)

‖g1‖
p
Lp(E) ≤

∫

Rd

(∑

S∈S

µ(S)

µ(Ŝ)
〈‖f‖E〉

µ
S 1Ŝ

)p
dx

≤ Cp

(
sup
S∈S

〈‖f‖E〉
µ

Ŝ

)p−1
∫

Ω
‖f‖E dx ≤ Cp λ

p−1‖f‖L1(E).

By the Lebesgue differentiation theorem and the definition of Ω, we have

‖g2(x)‖E = ‖f(x)‖E 1Ωc(x) ≤ sup
Q∈D̃:Q⊆Ωc

〈‖f‖E〉Q ≤ λ

for µ-a.e. x ∈ Rd and therefore

(A.4) ‖g2‖
p
Lp(E) ≤ λp−1‖f‖L1(µ;E).

Combining (A.2), (A.3) and (A.4) we obtain

µ
(∥∥M̃µ

Df
∥∥
E
> 2λ

)
≤ µ

(∥∥M̃µ
D(g1 + g2)

∥∥
E
> λ

)
+ µ

(
‖b‖E > λ

)

≤
∥∥M̃µ

Df
∥∥
Lp,∞(µ;E)→Lp,∞(µ;E)

·
‖g1 + g2‖

p
Lp(µ;E)

λp
+

1

λ
‖f‖L1(µ;E)

≤ Cp
1

λ

∥∥M̃µ
Df

∥∥
Lp,∞(µ;E)→Lp,∞(µ;E)

‖f‖L1(µ;E)

≤ Cp
1

λ

∥∥M̃µ
Df

∥∥
Lp(µ;E)→Lp(µ;E)

‖f‖L1(E),
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which completes the proof of the proposition. �

Remark. The functions g1 and g2 are a subpart of the good part of the
non-doubling Calderón–Zygmund decomposition [28, Theorem 2.1]. Our
decomposition (A.1) can be viewed as a hands-on variant of that Calderón-
Zygmund decomposition.
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