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Abstract

Geolocation of Radio Frequency (RF) emitters, is finding the geographical location of said emitter. This the-
sis explores the concepts of geolocation, specifically, Space-Based geolocation of earth-surface emitters by
means of measuring the Angle-of-Arrival using a Uniform-Rectangular Antenna Array. Initially the literature
is explored, the significance of Geolocation is made clear and the research outline and scope is defined. Af-
terwards, Angles-of-Arrival finding algorithms are investigated and implemented, specifically the subspace
algorithms: "MUltiple SIgnal Classification" (MUSIC) and "Estimation of Signal Parameters via Rotational
Invariance"(ESPRIT). These algorithms are thoroughly explained, a model is obtained and implemented into
a Simulation framework. The Simulation Framework is used to create a Graphical Tool used to calculate
performance figures of Space-Based Geolocation. By using the obtained Simulation, a sensitivity analysis is
produced. This sensitivity analysis observes the effect of design parameters of a satellite platform and geolo-
cation payload on the geolocation performance. This sensitivity analysis is used to find the optimal approach
when designing a geolocation payload. This approach can be used to synthesize a geolocation payload design
that maximizes performance.
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1
Introduction

Geolocation is the process of determining the geographical-location of a target. In practice it is possible to
achieve this localization by exploiting radio transmissions. The geolocation concept discussed in this doc-
ument is about locating a surface based emitter by means of space based sensing. Obtaining information
about the geographical-location of radio emitters could potentially provide an advantage. This study has
been carried out in collaboration with the Royal Netherlands Air Force (RNLAF), The Royal Netherlands Air
Force is a modern and technology-rich part of the Dutch ministery of Defense that is internationally active[1].
The RNLAF started space activities in 2013 with the founding of ’bureau Space’, which currently transitioned
into ’Section Space’.

1.1. Motivation of Research
The RNLAF’s Section Space has several tasks and projects, some of these are: to increase space situational
awareness, to gain knowledge in the area of space developments and operations, increase space awareness
within the Ministery of Defense, and development of small satellite projects. One of the interests of Sec-
tion Space is to gain knowledge and explore the concept of space based geolocation satellites. Space based
geolocation can have a variety of applications, for example to find and locate interfering emitters, to locate
emergency beacons, locating ship-radar, locating signal jammers on GNSS frequencies, etc. The primary fo-
cus of this project is to investigate space based geolocation of radio emitters using the Angle-of-Arrival (AoA).
Due to these techniques requiring the least amount satellites and the least amount of prior knowledge of the
signal (as further explained in section 2.1). Evaluations of geolocation of AoA already exist and most com-
monly presents a Root-Mean-Squared-Error of the estimated AoA of the incoming signal plotted against the
Signal-to-Noise ratio or presents observations regarding the estimated signal spatial spectrum. These existing
evaluations are primarily not specified for space based geolocation and the results given are also commonly
only in one dimension and do not provide the accuracy of the geolocation fully end-to-end (e.g. Longitude
and Latitude instead of incoming angle). The studies that do take a space-based system limit themselves to
for example one specific algorithm or antenna array configuration[15]. The novelty of this thesis is to:

• Provide a complete overview , simulation and analysis of existing algorithms.

• Extend Angle-of-Arrival algorithms to Geolocation algorithms.

• Provide end-system performance figures (e.g. RMSE of longitude and latitude).

• Investigate design synthesis procedures.

• Include a complete implementation of a simulation of AoA based geolocation.

1



2 1. Introduction

1.2. Research Project Outline
In this thesis, AoA estimation algorithms are investigated and implemented, and the entire system is mod-
eled and simulated in order to determine performance figures. A sensitivity analysis is performed on this
performance to find how parameters of the model affect the geolocation performance. This is done in order
to obtain an insight in the design synthesis of such a system. Finally, using the obtained insight on design
synthesis, a test-case geolocation mission is analyzed and an geolocation spacecraft is designed.

A sketch of a space based geolocation scenario can be seen in figure 1.1. Using this sketch, one can see
that the geolocation problem consists of three elements, namely: the emitter model, the link model and the
spacecraft model. The spacecraft model consists of a platform and a payload capable of doing AoA measure-

Figure 1.1: Schematic overview of space-based geolocation

ments of an RF signal. A payload capable of doing this is an RF receiver payload and in order to obtain AoA
data, the payload should be an array of RF receivers. Thus the spacecraft model can be split up into the plat-
form model and the payload.

Model parameters of interest for sensitivity analysis defined in this project can be found in table 1.1. A more
detailed explanation per parameter is given in section 4.

Symbol Parameter Description Unit
Payload Parameters

Z
Additive Noise of received Signal: This model parameter describes the amount of
noise received by the payload, this value is commonly defined using the Signal-to-
Noise Ratio (SNR)

dB

N

Number of Samples: Amount of measurements obtained by the payload before es-
timating the AoA. The number of samples might be limited by storage capabilities,
and obtaining a high number of frequency might not be beneficial to the geoloca-
tion performance due to the satellite drift during sampling.

-

M
Number of elements: Number of antenna elements per dimension in a (M × M)
antenna array.

-

d Element Spacing: Spacing between the elements of the Array. -

Satellite Parameters

θerror

Pointing Error: Pointing Determination error of satellite platform, defined by per-
formance of the Attitude control and Determination (ACDS) of the satellite. The
performance figure of ACDS Module of interest is the Attitude determination, as an
error in the measured attitude and the real attitude propagates into an error in the
geolocation. Determination performance figures are commonly given in variance
of a standard distribution (σ)

Degrees

xerror

Position Error: Positioning error of satellite platform, defined by performance of
the Position control and Determination of the satellite. Position Determination is
commonly performed by GNSS modules. Performance figures are also commonly
given in variance of a standard distribution (σ)

m

Table 1.1: Satellite and Payload Parameters of interest



2
Theory and Model of Geolocation

techniques

2.1. Overview of Geolocation Techniques
By ’geolocation’, the process of determining the geographical location of a target is described. Geolocation of
RF emitters is done by obtaining information of the emitter by receiving the signal. Common methods of RF
geolocation are:

• AoA - Angle of Arrival: Finding the direction of an incoming RF to estimate the emitter location.

• TOA - Time of Arrival: Using the timing information of the emitter, one can estimate the emitter loca-
tion by measuring the time of arrival at the receiver.

• FOA - Frequency of Arrival: Using information of the emitter’s frequency, one can observe the fre-
quency difference at the receiver (e.g. differential Doppler) to estimate the emitter location.

Noticeable from the methods described above is that TOA and FOA require prior knowledge of the emitter
to work, namely the timing and frequency respectively. In order to geolocate an emitter without this prior
knowledge, multiple receivers can work together and the differential of the measurement:

• TDOA - Time Difference of Arrival: One can use the differential of the timing of arrival to estimate the
emitter geographic location.

• FDOA - Frequency Difference of Arrival: Using multiple measurements of the arrival frequency, one
can look at the frequency difference (differential Doppler) between the receivers to estimate the emitter
location.

When comparing these methods, the AoA method allows one to obtain the geolocation of the emitter without
requiring differential measurements and requires the least amount of prior knowledge of the emitter.

3
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2.2. Geolocation using Angle-Of-Arrival
Geolocation using the AoA requires that the AoA is extracted from the received signal. In order to extract this
AoA, an antenna array can be implemented and the phase difference per element can be used to derive the
AoA. Methods for obtaining the AoA can also be divided into sub-categories, namely quadratic estimators and
subspace algorithms[27]. These two categories and their respective most common algorithm can be seen in
figure 2.1.

Figure 2.1: Methods of deriving the AoA from a signal

Quadratic estimators estimate the angle-of-arrival by means of maximizing spectral power, or most-likelyhood
calculations [27]. Subspace algorithms however, estimate the angle-of-arrival by means of the eigenspace of
the received signal. Subspace based algorithms have a superior accuracy over quadratic estimators since
more information is added to the equation array[5]. However, subspace algorithms are much more compu-
tationally intensive as it requires eigenvalue- or singular value decomposition. The focus in this thesis are on
subspace algorithms, due to the superior accuracy.

The process of geolocation using AoA can be observed in figure 2.2. The earth surface emitter broadcasts
signal S and is received by the Antenna Array with the incoming angle-of-arrival (θ,φ) based on the location
of the emitter (l at , l on). From the received signal X̃ the AoA is estimated to be (θ̃, φ̃). From the estimated AoA
the geographic location of the emitter is estimated to ( ˜l at , ˜lon)

Figure 2.2: Schematic overview of geolocation using AoA

2.2.1. Emitter Model
In order to keep the project constraint to a defined scope, the following assumptions are made about the
emitter:

1. The emitter is static (non-moving).

2. The emitter is Earth-surface based.

3. The emitter broadcasts a narrow-band RF signal (e.g. Phase-Shift-Keying modulation) at fixed fre-
quency.

A signal is defined as being narrow-band if it’s center frequency is much higher than it’s occupied bandwidth
( fc >> B , figure 2.3).
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Figure 2.3: Frequency plot of narrow-band signal

A narrow-band RF signal can be represented as in equation (2.1). Where ρs (t ) is the information (base-band)
signal, ωc the carrier frequency and s(t ) the complex envelope of the signal. An important property of such
a narrow-band signal for the consecutive models is that a small delay in the signal can be approximated as
equation (2.2), given that such a delay τ is much smaller than half the base-band bandwidth (τ << 1

2Bρ
),

meaning that when a narrow-band signal is delayed by τ this can be approximated as purely a phase shift.

s(t ) ≈ ρs (t ) ·e jωc t (2.1)

s(t +τ) ≈ ρs (t +τ) ·e jωc (t+τ) ≈ ρs (t ) ·e jωc (t+τ) ≈ s(t ) ·e jωcτ (2.2)

2.2.2. Receiver Model
As mentioned earlier, the AoA of an incoming signal can be estimated from the phase difference when having
multiple receiver antenna’s. A system consisting of multiple antennas in a certain formation is commonly
referred to as an antenna array. The antenna array can have different geometries, however, in order to fur-
ther constraint the scope of the thesis, the antenna array geometries of interest are the so-called Uniform-
Rectangular-Array (URA).

2D Receiver Array
Initially the receive model is derived in two dimensions, using a Uniform-Linear-Array (ULA) instead of an
URA. When an narrow-band RF signal (s j (t )) arrives at the antenna array it is assumed that the array is in the
emitter’s far-field, meaning the signal impinges as a plane-wave. When such a plane-wave arrives at the array
at an angle (θ j ), the antenna array elements sense the signal at a slight offset in time, due to this angle. This
effect is represented in figure 2.4.

Figure 2.4: ULA receiving RF signal in far-field, the array elements measure the signal at a smale time (phase) offset
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The exact timing offset induced can be calculated using the antenna geometry as seen in equation (2.3).
Where τi , j is the timing offset of element i of the measurement of incoming wave-front s j (t ), d ′

i , j is the

distance of element i to incoming plane-wave s j (t ) and c is the wave propagation speed (c ≈ lightspeed for
RF signals).

τi , j =
d ′

i , j

c
(2.3)

The distance d ′
i , j between the element and the incoming plane-wave can be calculated using the dot-product

between the incoming signal s j (t ) and a vector pointing to element i . This can be observed in equation (2.4).

d ′
i , j = ~s j ·~ei (2.4)

where ~s j is the unit direction vector of incoming wave s j (t ) and ~ei is the vector pointing to element i . In case
of an antenna array as shown by figure 2.4, the direction vectors can be given by equation (2.5).

~s j =
[

sinθ j

cosθ j

]
, ~ei =

[
di

0

]
(2.5)

Substituting equation (2.5) in equation (2.4) and (2.3), one can derive equation (2.6)

τi , j =
di sinθ j

c
(2.6)

3D Receiver Array
In order for the receiver model to handle incoming signals in a three dimensional space, the equations need
to be rewritten. It is assumed that the antenna array is an URA in the XY-Plane (figure 2.5) and the incoming
angle-of-arrival is described by the inclination θ j and azimuth φ j .

-d
x

0

d
x

-d
y

0

d
y

0

0.2

0.4

0.6

0.8

1

Figure 2.5: 3x3 URA in XY-Plane, each blue dot represents an antenna array element

When the equations are expanded to this 3D environment, the signal direction unit vector s j and element
position vector ei can be given by equations (2.7).

~s j =
sinθ j cosφ j

sinθ j sinφ j

cosθ j

 , ~ei =
xi

yi

0

 (2.7)

Note that zi = 0, due to all elements being in the XY-Plane. The timing difference τi , j can be calculated in
three dimensions by substituting equation (2.7) in equation (2.4) and (2.3) leading to equation (2.8).

τi , j =
xi sinθ j cosφ j + yi sinθ j sinφ j

c
(2.8)
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Phase shift and sample model
By substituting the timing offset (equation (2.8)) in the narrow-band approximation (equation (2.2)) given
that ωc = 2πc/λ, , where ωc is the carrier frequency and λ the carrier wavelength which leads to equation
(2.9)

s(t +τi , j ) ≈ s(t ) ·e jωcτi , j ≈ s(t ) ·e
j 2πd ′

i , j /λc ≈ s(t ) ·e jΦi , j (2.9)

This equation suggest that each element i in the array receives the identical signal s j (t ) rotated by a phase
shiftΦi , j on received signal. Where this phase shiftΦi , j is given by equation (2.10).

Φi , j = 2πd ′
i , j /λ=

{
1D: 2π(xi sinθ j )/λ

2D: 2π(xi sinθ j cosφ j + yi sinθ j sinφ j )/λ
(2.10)

Now given an antenna array with i = 0,1, ..., M −1 elements in the antenna array and j = 0,1, ...,D −1 incom-
ing RF plane-waves s j (t ), each element i in the antenna array measures the sum of all D signals, phase shifted
atΦi , j respectively. Thus, the received measurement of antenna element i can be given by equation (2.11)

xi (t ) =
D∑

j=0
s j (t ) ·e jΦi , j (2.11)

Equation (2.11) can be rewritten into an matrix calculation which can be seen in equation (2.12).
x0

xi
...

xM

=


e jΦ0,0 e jΦ0, j . . . e jΦ0,D

e jΦi ,0 e jΦi , j . . . e jΦi ,D

...
...

. . .
...

e jΦM ,0 e jΦM , j . . . e jΦM ,D




s0

s j
...

sD

 (2.12)

X = AS (2.13)

This equation can be used to obtain the measured samples of all elements in the antenna array simultane-
ously in one calculation. Rewriting this matrix calculation in short gives equation (2.13), where X are the
received samples A is the steering matrix and S are the incoming wave-fronts.

The antenna array should induce noise on the measured samples, thus a noise vector Z should be added
to the measurements, which can be represented as mean zero additive white Gaussian noise (Z ∼ N (0,σ2

N )).

X̃ = AS+ Z (2.14)

Note that when multiple measurements are taken over time (t = 0,1, ...,T ), this can be modeled into the same
matrix calculation by simply extending the incoming wave-front matrix S.

X =


x0,0 . . . x0,T

xi ,0 . . . xi ,T
...

...
...

xM ,0 . . . xM ,T

=


e jΦ0,0 e jΦ0, j . . . e jΦ0,D

e jΦi ,0 e jΦi , j . . . e jΦi ,D

...
...

. . .
...

e jΦM ,0 e jΦM , j . . . e jΦM ,D




s0,0 . . . s0,T

s j ,0 . . . s j ,T
...

...
...

sD,0 . . . sD,T

 (2.15)

2.2.3. AoA Algorithms
As mentioned prior, the algorithms of interest are subspace algorithms and subspace algorithms exploit the
eigenspace of the samples. More specifically, the subspace algorithms exploit the eigenspace of the auto-
covariance of the obtained samples. The autocovariance of the sample matrix can be found using equation
(2.16). By substituting the obtained receive model (2.13) into the autocovariance equation, equation (2.17) is
obtained[24].

RX , E [X,XH ] (2.16)
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RX ,AE [S,SH ]AH +E [Z,ZH ] = AE [S,SH ]AH +σ2
N IM (2.17)

In this equation, the operation E [·] and (·)H represent the expected value and the Hermitian transpose re-
spectively. Decomposing the autocovariance into its eigenvalues and eigenvectors yields a decomposition
into two seperate eigenspaces, namely the signal-space and the noise-space[24]. This is shown in equation.
(2.18)

RX = EXΛXEH
X = ESΛS EH

S +ENΛN EH
N (2.18)

Where EX are the eigenvectors and ΛX a diagonal matrix of the eigenvalues. ES and EN are the signal- and
noise-eigenvectors andΛS andΛN which are the signal- and noise eigenvalues[22]. Assuming that the steer-
ing matrix and the signal autocovariance are full rank, the amount of eigenvalues and eigenvectors should be
M (number of elements in array)

Given a sample matrix X̃, it’s autocovariance matrix can not be obtained using equation (2.18), since the exact
signal information is unknown. Instead, a more heuristic approach can be used and the autocovariance R̃X

can be obtained using the samples(Equation (2.19)).

R̃x = X̃X̃H (2.19)

This sample autocovariance R̃x can similarly be decomposed into it’s noise subspace and signal subspace ac-
cording to equation (2.18). There are multiple subspace algorithms that exploit these sub-spaces in order to
obtain the AoA. The most widely used algorithms are the Multiple Signal Classification (MUSIC) Algorithm[23]
and Estimation of Signal Parameters using Rotational Invariance Techniques (ESPRIT)[21].

MUSIC
The first algorithm discussed is the MUSIC algorithm[23]. The MUSIC algorithm can be used to find an es-
timate of the angle-of-arrival of the incoming signal by exploiting the eigenvectors of the noise-space that
occupy the null-space of the entire eigenspace.

The steering matrix A (equation (2.12)) consists of linearly independent vectors (columns), thus A is full
rank. If the incident wave-fronts on the antenna array are not correlated, then the autocovariance matrix
RS = E [S,SH ] is non-singular, since it’s columns are also independent. This means that ARS AH in equation
(2.17) is of rank D (number of impinging signals), which implies that M −D eigenvalues of ARS AH are zero.

Adding this information to equation (2.17) means that Rx has M −D eigenvalues that are equal to σ2
N . Note

that this only works under the assumption that the incoming signals are non-coherent and the signals and
noise are not correlated (as is the case with Gaussian noise).

Equation (2.20) must hold for any pair of eigenvalue (λi ) and eigenvector (vi ) of Rx

(Rx −λi I)vi = 0 (2.20)

By substituting equation (2.17) in equation (2.20) for the M−D eigenvalues that are equal toσ2
N and knowing

that E [S,SH ] is non-singular leads to equation (2.21)

(Rx −σ2
N I)vi = AE [S,SH ]AH vi = AH vi = 0 for i = D +1,D +2, ..., M (2.21)

This equation suggests that the eigenvectors from the M −D eigenvalues ( that are equal to σ2
N ) belong to a

noise space. Which is orthogonal to the steering matrix A[23].

A ⊥ EN (2.22)

Since these matrices are orthogonal, the euclidean distance between the steering vector and the noise-subspace
should theoretically be zero:

||EN A|| = AEN EH
N AH = 0 for θ = θi (2.23)

Taking the inverse of this equation leads to the MUSIC Spatial Spectrum equation (2.24)[23], which should be
maximum when the selected steering matrix Ã(θ,φ) is close to the real (unknown) steering matrix A.

PMU SIC (θ,φ) = 1

||ẼN Ã(θ,φ)|| =
1

Ã(θ,φ)ẼN ẼH
N ÃH (θ,φ)

(2.24)
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An example of the MUSIC spatial spectrum has been calculated for a steering matrix with one incoming
wave-front at (θ,φ) = (40◦,200◦). This spatial spectrum can be seen in figure 2.6.

Figure 2.6: 2D MUSIC Spatial spectrum of incoming signal at (θ,φ) = (40◦,200◦)

Thus, in order to find the angle-of-arrival of the incoming signals using the MUSIC algorithm, one has to take
the following steps[23]:

1. Collect sample matrix X̃ and construct autocovariance matrix R̃X.

2. Obtain noise space ẼN by eigendecomposition of R̃X.

3. Evaluate PMU SIC (Eqn. (2.24)) for range of (θ,φ).

4. Pick D peaks from PMU SIC , which are the estimated AoA

The final step in the MUSIC algorithm implements a peak search, being one of the major drawbacks of the
algorithm, since a peak-search is computationally intensive and costly in time.

ESPRIT
ESPRIT (Estimation of Signal Parameters using Rotational Invariance Techniques) is another technique used
to obtain the AoA. ESPRIT exploits a rotational invariance in the signal eigenspace caused by a translation
invariance in the antenna array[21]. The ESPRIT algorithm produces a result without using a search space,
hence decreasing the computational time in respect with the MUSIC algorithm [2].

The ESPRIT algorithm does put a physical constraint on the antenna array because it assumes that the ar-
ray is made-up of identical sub-arrays with a known displacement between them. These sub-arrays may be
overlapping. A 1D example of two identical sub-arrays being ’selected’ from a Uniform Linear Array (ULA)
can be seen in figure 2.7.
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Figure 2.7: Uniform Linear Array consisting of two identical overlapping sub-arrays. The blue and red rectangles represent the sub-
arrays, the blue dots the antenna elements.

Following the example given in figure 2.7, one can observer that the two sub-arrays are translated by a fixed
value (∆x ). Similarly to equation (2.10), this translation leads to a phase difference between the samples of
the two sub-arrays (φ). This effect can be modeled in the steering matrix A as seen in equation (2.25)

A2 = A1ΦΦΦ (2.25)

where Φ is the rotational invariance (phase difference) induced by the fixed translation between sub-array 1
and sub-array 2. Due to this translation being purely in the x-direction, Phi is defined as a diagonal matrix
with phase-shiftΦ j for every incoming signal j = {0,1, ...,D −1} (Eqn. (2.26)).

ΦΦΦ= diag{e jΦ0 , ...,e jΦD−1 } , where Φ j = 2π∆x sinθ j /λ (2.26)

Since both the signal covariance matrix Rss and the steering matrix A have full rank (as in eqn. (2.17)) and
decompose in the signal subspace Es (as in eqn. (2.18)), there exists a unique matrix T such that equation
(2.27) holds[2].

Es = AT (2.27)

Now substituting equation (2.25) in equation (2.27), one gets the results shown in equations (2.28)

E1 = A1T (2.28a)

E2 = A1ΦΦΦT (2.28b)

In similar fashion to equation (2.25), one can construct the same invariance for the signal spaces E1 and E2

[13].
E2 =ΨΨΨE1 (2.29)

By substituting equation (2.29) into equation (2.28) one can find that the relationship betweenΨΨΨ andΦΦΦ is one
of eigendecomposition (equation (2.30))[2].

ATΨΨΨ= AΦΦΦΨΨΨT →ΨΨΨ= TΦΦΦT−1 (2.30)

Acknowledging that the data has a rotational invariance induced by a translation, one can find the AoA by
doing the inverse. In a more practical approach, the sub-array does not have to be physically implemented
but can be ’virtual’ by using a selection matrix on the actual antenna array.

A1 = J1A, A2 = J2A → J2A = J1AΦΦΦ (2.31a)
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E1 = J1Es , E2 = J2Es → J2Es = J1EsΨΨΨ (2.31b)

Note that ESPRIT allows for overlapping sub-arrays, selecting a maximum overlapping sub-array ensures the
maximum amount of elements per sub-array.

In practice, the data available is noisy, thus solving the invariance equation (2.31) cannot be solved exactly,
hence a solving technique is required. Approaches to solve the invariance can be e.g. a Least-Squares ap-
proach, Total-Least-Squares approach or a Moore-Penrose inverse.

AfterΨΨΨ is obtained by solving the invariance equation using the signal sub-space. One can find the invari-
ance ΦΦΦ by means of eigendecomposition. Afterwards, one can find the phase-shifts (µ j = e jΦ j ) induced by
the sub-array translation by taking the diagonals ofΦΦΦ (Eqn. (2.26)). The AoA impinging on the antenna array
in figure 2.7 can be extracted from the eigenvalues ofΦΦΦ using the inverse of equation (2.26).

φ j = arg{µ j } → θ j = arcsin
λφ j

2π∆x
(2.32)

In the case of estimating the AoA in 2D (elevation θ j and azimuth φ j ) using an URA, one can extend the
ESPRIT algorithm in another dimension, meaning sub-arrays need to be selected in both dimensions. An
example of this can be seen in figure 2.8.

Figure 2.8: URA with two identical sub-arrays in x-direction Figure 2.9: URA with two identical sub-arrays in y-direction

The invariance equations of the steering and signal-space matrices are obtained in similar fashion to the 1D
scenario ((2.31)) and are represented in equation (2.33).

Jµ2 A = Jµ1 AΦΦΦµ (2.33a)

Jν2 A = Jν1 AΦΦΦν (2.33b)

Jµ2 Es = Jµ1 EsΨΨΨµ (2.33c)

Jν2 Es = Jν1 EsΨΨΨν (2.33d)

Similarly to the 1D scenario (eqn. (2.26)), one can find the estimated angles of arrival by extracting the diago-
nals ofΨΨΨµ andΨΨΨν respectively representing the phase shift induced by the translation in the x-direction (µi )
and y-direction (νi ).

ΦΦΦµ = diag{e jµ0 , ...,e jµD−1 } (2.34a)

ΦΦΦν = diag{e jν0 , ...,e jνD−1 } (2.34b)

These phase shifts per incoming signal, induced by the translation, can be shown to relate to the elevation
and azimuth of the incoming signal by breaking equation (2.8) into it’s x and y component[9].

µi = 2π

λ
∆x sinθi cosφi = 2π

λ
∆xµ

′
i (2.35a)

νi = 2π

λ
∆y sinθi sinφi = 2π

λ
∆yν

′
i (2.35b)
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where θi and φi are the elevation and azimuth of the incoming signal respectively. These values can easily be
extracted from the phase shifts µi and νi using intermediate ξi as shown in equation (2.36)[2].

ξi =µ′
i + jν′i = sinθi e jφi →

{
θi = arcsin(||ξi ||)
φi = arg(ξi )

(2.36)

Thus, in order to find the AoA of the incoming signals using the ESPRIT algorithm, one has to take the follow-
ing steps:

1. Collect sample matrix X̃ and construct autocovariance matrix R̃X.

2. Obtain Signal space ẼS by eigendecomposition of R̃X.

3. Create selection matrices in x and y-direction (Jµ1 , Jµ2 , Jν1 and Jν2 )

4. Solve invariance equation Jµ2 Es = Jµ1 EsΨΨΨµ and Jν2 Es = Jν1 EsΨΨΨν forΨΨΨµ andΨΨΨν. (Eqn. (2.33))

5. FindΦΦΦµ andΦΦΦν by means of eigendecomposition ofΨΨΨµ andΨΨΨν respectively. (Eqn. (2.30))

6. Find AoA θi and φi from the diagonal ofΨΨΨµ andΨΨΨν. (Eqn. (2.36))

Note that unlike the MUSIC algorithm, the ESPRIT algorithm does not require an extra algorithm to imple-
ment a peaksearch, but instead gives a determined results. This is one of the major advantages of this algo-
rithm in respect to MUSIC. However, an ambiguity that is present in this algorithm is the method of solving
the invariance equation (as mentioned earlier).

Forward-Backward Averaging
Before applying the algorithms, the received sample data can be pre-processed in order to increase perfor-
mance. One of the most common problems introduced in the eigenspace algorithms is when received signals
appear to be coherent[2]. When coherent signals are received by the the array, the autocorrelation matrix will
reflect this, leading to ’false’ values in the eigen-decomposition causing the algorithms to fail. One of the
more common methods to reduce this effect is so called Forward-backward averaging. By exploiting the fact
that the antenna array is centro-symmetric one can take the average of the correlation matrix and a ’back-
ward’ correlation matrix, reducing coherency between the samples of coherent signals[14]. This operation
is possible due to the fact that the steering matrix can be reversed and conjugated and still remain the same
(centro-symmetry)[2].

Let JM be an M × M exchange matrix (flipped identity matrix). Then the backward autocorrelation can be
calculated from the regular autocorrelation matrix as:

Rx back = JM Rx
∗JM (2.37)

where the ∗ operator denotes the complex conjugate. The forward-backward averaged auto-correlation can
be calculated as follows:

Rx f b = 1

2
(Rx +Rx back ) = 1

2
(Rx + JM Rx

∗JM ) (2.38)

Equation (2.38) can also be written using the so called ’extended data matrix’ [2]:

Z = [X JM XJN ] (2.39)

Then the forward-backward averaged autocovariance matrix can be calculated as[2]:

˜Rx f b = 1

2
ZZH = 1

2
(XXH + JM XXH∗

JM ) = 1

2
(Rx + JM Rx

∗JM ) (2.40)

Real-Value transformation
Computation of both MUSIC and ESPRIT requires decomposition of complex valued matrices. This is a much
greater computational burden than using exclusively real valued matrices. A method of making the matrices
real-valued can provide further improvement to the algorithms[7].
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The complex matrix that is decomposed in these algorithms is the sample autocovariance matrix. A method
to make these values real-valued is by exploiting the fact that the antenna-array is centro-symmetric. This
transformation is a so called unitary transformation, using a well defined unitary matrix Q, one can find the
real valued centro-symmetric matrix from a complex centro-symmetric matrix as follows[2]:

Greal = Qp
H GcomplexQp (2.41)

Where QM is an M ×M unitary matrix. The definition for when M is an even number is found in equation
(2.42a), and for M is odd in equation (2.42b).[14]:

QM = 1p
2

[
I j I
J − j J

]
(2.42a)

QM = 1p
2

I 0 j I
0 j

p
2 0

J 0 − j J

 (2.42b)

Where I is the identity matrix and J the exchange matrix.

This unitary transformation can be applied to the sample matrix of the algorithms, due to the samples being
centro-symmetric (a Uniform-Rectangular-Array is centro-symmetric). When this unitary transformaiton is
applied to the forward-backward averaged autocovariance matrix, one can derive an equation to do both
unitary transformation and forward-backward averaging simultaneously [2].

Rx f b real
= QM

H 1

2
(Rx +Rx back )QM = 1

2
(QM

H Rx QM +QM
H∗

Rx
∗QM

H ) = Real
{

QM
H Rx QM

}
(2.43)

Changing the sample matrix to a real-valued sample matrix does not reduce or increase the dimensions of
the martices but does make sure they’re real-valued troughout the algorithms, leading to a reduction of the
computational complexity (mostly in ESPRIT)[7]. Besides a reduction in computational complexity[7], it has
been shown that by implementing this unitary transformation, the ESPRIT algorithm’s AoA estimates also
improve significantly, due to an improvement in the underlying signal subspace estimates[7].

After unitary transformation of the sample matrix, the algorithms slightly change their implementation. Sim-
ilarly to equation (2.17), the real-valued autocovariance splits into the signal-space and noise-space (US and
UN respectively). However, one should realize that the eigen-spaces of the autocovariance of the samples
are different than the eigen-spaces of the autocovariance of the real-valued samples (US 6= ES ). In order to
account for this change in autocovariance matrix, the algorithms should be updated as follows.

The modification of the MUSIC algorithms are exclusively in the MUSIC spatial spectrum. Since the rela-
tionship between the regular autocovariance matrix and the real-valued autocovariance matrix is simply the
defined unitary matrix[17] as shown in equation (2.44).

ES = QM US (2.44)

Meaning that a small change in the MUSIC spatial spectrum equation (eqn. (2.24)) can account for the real-
valued transformation[17] as seen in equation (2.45).

PMUSIC = 1

Ã(θ,φ)ẼN ẼH
N ÃH (θ,φ)

= 1

Ã(θ,φ)QM ŨN ŨH
N QH

M ÃH (θ,φ)
(2.45)

The modifications for the ESPRIT algorithm to support real-value transformation are more significant. It’s
possible to transform all equations to real-valued equations. The real-valued steering matrices are trans-
formed using the unitary matrix QM as given in equation (2.46).[7]

B = QH
M A (2.46)

Where the real-valued steering matrix B can be used to setup a real-valued invariance equation using trans-
formed selection matrices K, similarly to the invariance equations of the complex steering matrix[7], this can
be observed in equation (2.47).

Kµ1 BΩΩΩµ = Kµ2 B (2.47a)
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Kν1 BΩΩΩν = Kν2 B (2.47b)

The transformed selection matrices K are derived from the regular selection matrices J according to equations
(2.48)[28].

Kµ1 = 2Re{QH
mx

Kµ2 QM } Kµ2 = 2Im{QH
mx

Kµ2 QM } (2.48a)

Kν1 = 2Re{QH
my

Kν2 QM } Kν2 = 2Im{QH
my

Kν2 QM } (2.48b)

consequently, the invariance equations of the signal space (equations (2.33)) can also be transformed to
real-valued invariance equations similarly to the real-valued steering matrix invariance equations (equations
(2.47)). This invariance is given in equations (2.49)

Kµ1 USΥΥΥµ = Kµ2 US (2.49a)

Kν1 USΥΥΥν = Kν2 US (2.49b)

Where the relationship betweenΥΥΥ andΩΩΩ is one of eigendecomposition (similarly to equation (2.30))[28].

ΥΥΥµ = TΩΩΩµT−1 ΥΥΥν = TΩΩΩνT−1 (2.50)

The phase-shifts can be observed in the diagonal of ΩΩΩ similar to how the phase-shifts are observed in the
diagonal ofΦΦΦ in the complex domain (Equation (2.34))[28].

ΩΩΩµ = diag{tan(µ0/2), ..., tan( jµD−1/2)} (2.51a)

ΩΩΩν = diag{tan( jν0/2), ..., tan( jνD−1/2)} (2.51b)

Where µi and νi can be used to find the elevation and azimuth according to equation (2.36). A drawback
to this algorithm modification is by addition of the ’tan’ function one can have difficulty pairing the found
elevation and azimuth together when ΩΩΩµ and ΩΩΩν are calculated independently[28]. A method to adapt for
this problem is using so-called "Automatic Pairing"[28]. This technique makes use of the fact thatΥΥΥµ andΥΥΥν
should have the same set of eigenvectors (Equation (2.50)). Thus, ΩΩΩµ andΩΩΩν can be solved simultaneously
by creating a complex matrix fromΥΥΥµ andΥΥΥν as shown in equation (2.52).

ΥΥΥµ+ jΥΥΥν = T(ΩΩΩµ+ jΩΩΩν)T−1 (2.52)

Where µi and νi can be extracted from the diagonal ofΥΥΥµ+ jΥΥΥν[28].

ΥΥΥµ+ jΥΥΥν = diag{λi , ...,λD1 } →
{
µi = 2arctan(Re{λi })

νi = 2arctan(Re{λi })
(2.53)

Finally, the modified ESPRIT algorithm (Unitary ESPRIT) can be described by the following steps [28]

1. Collect sample matrix X̃ and construct autocovariance matrix R̃X.

2. Unitary transformation and forward-backward averaging of the autocovariance matrix R̃X (Eqn. (2.43))

3. Obtain Signal space ŨS by eigendecomposition of Rx fb-real.

4. Setup transformed selection matrices in x and y-direction (Kµ1 , Kµ2 , Kν1 and Kν2 )

5. Solve invariance equation Kµ1 USΥΥΥµ = Kµ2 US and Kν1 USΥΥΥν = Kν2 US forΥΥΥµ andΥΥΥν. (Eqn. (2.49))

6. FindΩΩΩµ+ jΩΩΩν by means of eigendecomposition ofΥΥΥµ+ jΥΥΥν respectively. (Eqn. (2.52))

7. Find AoA θi and φi from the diagonal ofΩΩΩµ+ jΩΩΩν. (Eqn. (2.53) and (2.36))



3
Simulation of Geolocation Antenna Array

The following section is about considerations and implementation of a simulation of the models described in
the previous section. Before running the simulation of a model, a programming language has to be selected
and the functions have to be implemented and created.

3.1. Overview of Simulation Chain
In order to maximize the flexibility and to make the simulation ’future-proof’ the following considerations
are to be taken into account:

• ’Architecture’ of the functions: The overall architecture documentation shall be complete but not too
complex, in order to allow for future work to either extend or adapt the software.

• Programming Language: The programming language and software used, has to be considered future-
proof. (Programming language shall be recent and high-level, but also licensing costs have to be taken
into account).

• Decoupling of functions: The software shall decouple functionality in order to allow it to be a modular
design, in-case future projects require reuse of specific functionality or addition of modules.

To comply with these considerations, the programming language selected should be a modern object-oriented
language, particularly to allow for proper architecture and decoupling. Another consideration is licensing and
platform dependency. Licensing costs should be reduced in order to make the software portable across mul-
tiple computer systems without the need to move a license. The software should preferably be multi-platform
in order to move the software across multiple computer systems without the need for specific hardware or
operating system. After weighing different options, the programming language selected is Python, due to it
being very accessible between multiple platforms without the need of different compilers and having no li-
censing costs since it is open-source.

The architecture of the simulation is done by wrapping functionality and parameters into objects. The main
object is the estimator-object, which holds the emitter-objects and the satellite-object. The satellite-object
holds the AoA-estimator object and the antenna array parameters. The architecture of these objects can be
found in figure 3.1. The implementation of the AoA Algorithms themselves is kept in a separate library, due to
the fact that these algorithms do not distinguish between ’simulation’ and actual implementation, meaning
that this library could be used in actual hardware implementations in future works (decoupling of function-
ality).

15
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Figure 3.1: Schematic overview of software objects

3.2. Implementation

This part of the Thesis focusses on the implementation of the AOA - Algorithms as discussed per section 2.2.3.

Receive Model
The receive model is implemented according to section 2.2.3 and requires as input the parameters and di-
mensions of the antenna array (coordinates of elements in URA), the noise figure of the received signal, the
amount of samples taken and lastly the parameters of the emitter.

Algorithm 1: Calculate received samples of Emitter

ReceiveSignal (Mx , My ,Lats,Lons,λ, N ,σ)
inputs : Received Noise figure σ, amount of samples N , Antenna Array Geometry (Mx , My ),

Emitter Parameters (Latitudes, Longitudes, Wavelength λ)
outputs: Array of Received Samples X .
Convert target longitudes, latitudes to Angles-of-Arrival: (θi , φi );
Calculate steering matrix: A(My , Mx ,λ,θ,φ) ;
Generate N random signals: S;
Create received data matrix: X0 = AS ;
Add Gaussian noise to received data: X = X0 +N(0,σ) ;

ESPRIT
The ESPRIT Algorithm[21][28] is implemented using the steps given last section. The required input is the
geometry of the antenna array (URA), the received samples X, the wavelength of the received signal λ and
lastly whether to apply unitary transformation or not.
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Algorithm 2: ESPRIT Algorithm

CalculateESPRIT (Mx ,My ,X,λ,unitaryMode)
inputs : Samples X, Antenna Array Geometry (Mx ,My ) Emitter Parameter (λ), Unitary-Mode

True/False
outputs: Estimated Angles-of-Arrival θθθ,φφφ
Calculate autocovariance Matrix: Rx = XXH ;
if unitaryMode == True then

Perform Unitary Transformation: T = Real
{

QM
H Rx QM

}
;

Perform Singular Value Decomposition to obtain the Signal Eigenspace: US ;
Calculate transformed selection matrices: Kµ, Kν ;
Solve invariance equations: Kµ1 USΥΥΥµ = Kµ2 US , Kν1 USΥΥΥν = Kν2 US ;
Perform Singular Value Decomposition to obtain intermediate:ΩΩΩµ+ jΩΩΩν;
Extract phase shift terms from diagonal of intermediate: µi , νi ;

else
Perform Singular Value Decomposition to obtain the Signal Eigenspace: ES ;
Create selection Matrices that are maximum overlapping: Jµ, Jν;
Solve invariance equations: Jµ2 Es = Jµ1 EsΨΨΨµ, Jν2 Es = Jν1 EsΨΨΨν;
Perform Singular Value Decomposition to obtain intermediates: ΦΦΦµ,ΦΦΦν;
Extract phase shift terms from diagonals of intermediates: µi , νi ;

Create intermediate value from phase-shift terms: ξi =µi + jνi ;
Get Elevation Angles: θi = arcsin |ξi |;
Get Azimuth Angles: θi =∠ξi ;

MUSIC
The MUSIC Algorithm[21] requires as input the geometry of the antenna array (URA), the received samples
X, the wavelength of the received signal λ and lastly whether to apply unitary transformation or not.

Algorithm 3: MUSIC Algorithm

CalculateMUSIC (Mx ,My ,X,λ,unitaryMode)
inputs : Samples X, Antenna Array Geomerty (Mx ,My ) Emitter Parameter (λ), Unitary-Mode

True/False
outputs: Array of Received Samples X
Calculate autocovariance matrix: Rx = XXH ;
if Unitary-Mode == True then

Perform Unitary Transformation: T = Real
{

QM
H Rx QM

}
;

Perform Singular Value Decomposition to obtain the noise Eigenspace: UN ;
Search for peaks in the MUSIC spatial spectrum:

PMU SIC (θ,φ) = (Ã(θ,φ)QM ŨN ŨH
N QH

M ÃH (θ,φ))−1 ;
else

Perform Singular Value Decomposition to obtain the noise Eigenspace: EN ;
Search for peaks in the MUSIC spatial spectrum:

PMU SIC (θ,φ) = (Ã(θ,φ)ẼN ẼH
N ÃH (θ,φ))−1 ;

Match peaks with received Angles-of-Arrival: (θi ,φi );

As mentioned earlier and observable from the MUSIC algorithm (Algorithm 3), the MUSIC algorithm requires
a 2D peak-search. One could simply use a ’brute-force’ approach for the peak-search, trying every possible
combination of AoA to find all local maxima. However, in order to reduce the computational intensity a
simple iterative neighbour checking peak-search algorithm has been implemented[3]. The algorithm is re-
cursively called, every-time performing the peak-search with a smaller step-size. Note that the final step-size
limits the amount of decimals of the fractional part of the found angles. An example of this iterative approach
can be seen in figure 3.2. In this example the step-size of the search is reduced from 10◦ → 1◦ → 0.1◦. The
peak-search algorithm can be observed in algorithm 4. The selected final search-depth for the implementa-
tion has been decided on 4, meaning the peak search will obtain an estimation of peaks with a step-size of
10−4.
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Figure 3.2: Iterative smaller search-space and step-size of Peak search algorithm step size of 10◦, 1◦ and .1◦ from left to right

Algorithm 4: Peak search algorithm

SearchPeaks (Mx ,My ,EN /UN ,d ,d0,λ, boundaries)
inputs : Antenna Array Geometry (Mx ,My ) and Emitter wavelength (λ) in order to create the

steering Matrix, Noise Space EN /UN , the initial boundaries of search-space (default =
(0-90,0-360)), final search depth (d) and current search depth (d0) (default = -1)

outputs: Peaks in PMU SIC : (θθθ,φφφ)
Calculate step-size: dstep = 10−d0 ;
Calculate MUSIC spatial spectrum within boundaries using step-size:

PMU SIC (bounds,EN /UN ,Mx ,My ,λ);
foreach i , j ∈ search-space do

Check if Peak by checking neighbours:
P (i , j ) > P (i +1, j ),P (i , j ) > P (i −1, j ),P (i , j ) > P (i , j +1),P (i , j ) > P (i , j −1) ;

if P (i , j ) == Peak then
Calculate Elevation angle of peak: θk = lower-bound+ i ·dstep ;
Calculate Azimuth angle of peak: φk = lower-bound+ j ·dstep ;

if d0 >= d then
return found Angles-of-Arrival: θθθ,φφφ;

else
foreach (θk ,φk ∈θθθ,φφφ ) do

Set new elevation boundary: [θk −dstep/2;θk +dstep/2] ;
Set new azimuth boundary: [θk −dstep/2;θk +dstep/2] ;
θθθ,φφφ = SearchPeaks(Mx ,My ,EN /UN ,d ,d0 +1,λ, new boundaries)

return found Angles-of-Arrival: θθθ,φφφ;

Conversions between Longitude/Latitude to Angles-of-Arrival
Another function required for geolocation is to go from longitudes and latitudes to AoA and vice-versa. In
order to do this effectively, a decision has to be made regarding reference frames. Assumed is a spherical
earth and due to the nature of this project mostly being interested in locations on the earth surface and mostly
dealing with longitudes and latitudes, the default frame selected is the so called Earth-Centered, Earth-Fixed
reference frame (ECEF)[4]. This ECEF frame has an x-axis pointing to the Greenwich Meridian (Longitude
λ= 0◦), the earths equatorial plane lies entirely in the XY-plane and the x-axis points to the North-Pole. The
ECEF frame can be observed in figure 3.3. Consequently, a frame of the spacecraft in which the measurements
take place has to be defined. This secondary frame can be defined as a so-called North-East-Down (NED)
frame, as observed in figure 3.4.
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Figure 3.3: Earth-Centered Earth-Fixed frame Figure 3.4: Nort-East-Down frame

An emitter on earth surface can now be placed in the ECEF frame, either as spherical coordinates or Cartesian
coordinates. Due to the nature of the ECEF frame, the spherical coordinates of the emitter can simply be
interchanged with longitude, latitude and radius (which is earth-radius assuming an earth-surface emitter).
Using trigonometry, the location vector of emitter j can be given in Cartesian coordinates using equation
(3.1):

~p j = REarth cos(λ j )cos(ψ j )x̂+REarth sin(λ j )cos(ψ j )ŷ+REarth sin(ψ j )ẑ (3.1)

Where~p j is the position vector of emitter j , REarth is the radius from the earth center (Rearth = 6371 km), λ j is
the emitter longitude and ψ j is the emitter latitude.

The origin of the NED frame is the satellite, the location of the satellite can be described similarly to a ra-
dio emitter, namely using a longitude and latitude of the satellite projected on the Earth-surface, and a radius
which can be calculated using the orbital height (r = REarth +h). The ’Down’ vector of the NED frame can be
described in the ECEF frame as the unit length inverse of the origin location vector, the ’North’ vector can be
calculated using trigonometry and the satellite latitude (figure 3.5). Lastly, the ’East’ vector can be derived by
completing the frame using the cross product. The equations to calculate the NED frame vectors in the ECEF
frame can be found in equation (3.2)

Figure 3.5: ’North’ Vector in ECEF Frame

p̂s = (REarth +hs )cos(λs )cos(ψs )x̂+ (REarth +hs )sin(λs )cos(ψs )ŷ+ (REarth +hs )sin(ψs )ẑ (3.2a)

D̂ =− ~ps

||~ps||
= −cos(λs)cos(ψs)x̂− sin(λs)cos(ψs)ŷ− sin(ψs)ẑ (3.2b)

N̂ =−cos(λs)sin(ψs)x̂− sin(λs)sin(ψs)ŷ+cos(ψs)ẑ (3.2c)

Ê = D̂× N̂

||D̂× N̂|| (3.2d)
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Given the geographic location of the emitter (λj,ψj), the geographic location of the satellite (λs ,ψs ) and the
height (hs ), the Angles-of-Arrival of the incoming signal (θ j ,φ j ) can be found by investigating the emitter in
the NED frame. The elevation of the signal (θ j ) is the angle between the vector pointing from the satellite
to the emitter and the ’Down’ vector. The azimuth of the signal (φ j ) can be defined as the angle between
the ’North’ Vector and the projection of the vector pointing from the satellite to the emitter projected on the
’North-East’ plane. Both the angle between two vectors and a projection of a vector on a plane can be found
using the dot product.

Figure 3.6: NED Frame, satellite and emitter in ECEF frame

~ps, j =~p j −~ps (3.3a)

θ j = arccos

( D̂ ·~ps, j

||~ps, j ||
)

(3.3b)

φ j = arctan

(~ps, j · Ê

p̂s, j · N̂

)
(3.3c)

This operation has also be done inversely. Instead of finding the respective elevation and azimuth angle
from the geographic location from an emitter, one also has to find the estimated geographic location from an
estimated elevation and azimuth. In figure 3.7 one can observe the estimated Angles-of-Arrival and estimated
Direction vector of the Earth-Surface emitter (d̃ j ) in the NED frame.

Figure 3.7: Estimated direction vector of emitter in satellite NED frame

By using trigonometry, the estimation direction d̃ j can be rewritten in terms of estimated AoA (θ̃ j , φ̃ j )

d̃ j = sin(θ̃ j )cos(φ̃ j )N̂+ sin(θ̃ j )sin(φ̃ j )N̂+cos(θ̃ j )D̂ (3.4)



3.2. Implementation 21

The estimated position on the earth surface can be found by finding an intersection between a sphere (Earth)
and the estimated direction vector of the emitter starting at the satellite. This Line-Sphere intersection can
be extended to a quadratic form, this can be seen in equations (3.5).

||~ps +d d̃ j || = R2
earth (3.5a)

d 2(d̃ j · d̃ j )+2d(d̃ j ·~ps )+ (~ps ·~ps )−R2
earth = 0 (3.5b)

Solving the form of ad 2 +bd + c = 0 can be achieved using the quadratic formula.

a = d̃ j · d̃ j = 1 (3.6a)

b = 2(d̃ j ·~ps ) (3.6b)

c = (~ps ·~ps )−R2
earth = (R2

earth +hs )2 −R2
earth (3.6c)

d = −b ±
p

b2 −4ac

2a
(3.6d)

Note that equations (3.6) either give:

• no solution (no possible estimated emitter for estimated direction vector)

• one solution (estimated emitter geographic location is on horizon in respect to satellite location)

• two solutions, where only the minimal solution d is valid (a solution on the surface, and another solu-
tion on the opposite side of Earth, where only the former solution is valid).

Given a solution for d using equations (3.6), the estimated coordinates for the emitter location in the ECEF
frame can be found according to equation (3.7)

p̃ j =~ps +d d̃ j (3.7)

The estimated geographic location of the emitter can be converted to estimated longitude and latitude using
trigonometry.

λ̃ j = arctan

( p̃ jy

p̃ jx

)
ψ̃ j = arcsin(p̃ jz ) (3.8)

Linking the Angle-of-Arrival algorithms to the geographic estimation algorithms leads to a full end-to-end
chain as described in figure 2.2. An example of this can be seen in figure 3.8, where the whole chain is simu-
lated for both MUSIC and ESPRIT and for two different values of noise.

Figure 3.8: Example of AOA-Chain simulation for both MUSIC and ESPRIT for relatively high noise (0 dB SNR) and low noise (10 dB SNR)
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A function has to be obtained to calculate the error between the geographic location of the estimation and
the actual emitter location. This error can be found by calculating the great-circle distance between the two
points using the so-called Haversine formula. The error between two points on the Earth surface can be
found according to equation (3.9) [19]

e = 2REarth arcsin

(√
Hav(ψ2 −ψ1)+cos(ψ1)cos(ψ2)Hav(λ2 −λ1)

)
(3.9)

Where ’Hav(·)’ is the Haversine equation given by equation (3.10)

y = sin2(θ/2) (3.10)

3.3. Simulation Verification
In order to resume analysis with the obtained simulation software, the software should be evaluated for cor-
rectness. The most critical sections of software, that should be focused on during verification is:

• Longitude and Latitude to Angle-of-Arrival Conversion.

• Angle-of-Arrival to Longitude and Latitude Conversion.

• (Unitary) ESPRIT Algorithm

• (Unitary) MUSIC Algorithm

Longitude, Latitude and Angle-of-Arrival Conversions: In order to verify the functionality of the geographi-
cal coordinates to Angle-of-Arrival conversion, one can first do a basic test, creating an output for an arbitrary
input and observe if the obtained result is logical. Consequently, special cases with known outputs can be in-
troduced in order to test the correctness, for example if the satellite and target have the same geographical
coordinates, the elevation should be θ = 0◦, These special cases can be shown in table 3.1. The cases has been
verified for geographical to elevation/azimuth conversion for a satellite height of 50km and the verification
results can be seen in table 3.2. One can observe that all verification tests are passed.

Test Nr Satellite (λs ,ψs ) Target (λt ,ψt ) Angle-of-Arrival (θ,φ)
1 (λs ,ψs ) (λt ,ψt ) = (λs ,ψs ) (θ,φ) = (0◦,−)
2 (λs ,ψs ) (λt ,ψt ) = (λs ,ψt >ψs ) (θ,φ) = (> 0◦,0◦)
3 (λs ,ψs ) (λt ,ψt ) = (λs ,ψt <ψs ) (θ,φ) = (> 0◦,180◦)
4 (λs ,ψs ) (λt ,ψt ) = (λt >λs ,ψs ) (θ,φ) = (> 0◦,≈ 90◦)
5 (λs ,ψs ) (λt ,ψt ) = (λt <λs ,ψs ) (θ,φ) = (> 0◦,≈ 270◦)

Table 3.1: Verification cases for geographical coordinates to angle-of-arrival conversion

Test Nr Satellite (λs ,ψs ) Target (λt ,ψt ) Angle-of-Arrival (θ,φ)
1 (50◦,50◦) (λt ,ψt ) = (50◦,50◦) (θ,φ) = (0.00◦,−69.09◦)
2 (50◦,50◦) (λt ,ψt ) = (50◦,70◦) (θ,φ) = (65.69◦,0.00◦)
3 (50◦,50◦) (λt ,ψt ) = (50◦,30◦) (θ,φ) = (65.69◦,180.00◦)
4 (50◦,50◦) (λt ,ψt ) = (55◦,50◦) (θ,φ) = (30.35◦,88.08◦)
5 (50◦,50◦) (λt ,ψt ) = (45◦,50◦) (θ,φ) = (30.35◦,−88.08◦)

Table 3.2: Verification cases for geographical coordinates to angle-of-arrival conversion

However, the obtained verification cases can however also be verify the inverse conversion, by defining the
input AoA and converting those to target coordinates. The verification results of this scenario can be seen in
table 3.3.



3.3. Simulation Verification 23

Test Nr Satellite (λs ,ψs ) Angle-of-Arrival (θ,φ) Target (λt ,ψt )
1 (50◦,50◦) (θ,φ) = (0◦,0◦) (λt ,ψt ) = (50.00◦,50.00◦)
2 (50◦,50◦) (θ,φ) = (20◦,0◦) (λt ,ψt ) = (50.00◦,51.98◦)
3 (50◦,50◦) (θ,φ) = (20◦,180◦) (λt ,ψt ) = (50.00◦,48.02◦)
4 (50◦,50◦) (θ,φ) = (20◦,90◦) (λt ,ψt ) = (53.07◦,49.96◦)
5 (50◦,50◦) (θ,φ) = (20◦,270◦) (λt ,ψt ) = (46.93◦,49.96◦)

Table 3.3: Verification cases for angle-of-arrival conversion to geographical coordinates

Lastly, one can check the conversion algorithms for an error or offset by coupling them directly to each-other.
For example, one takes an arbitrary emitter latitude and longitude, converts this to angles-of-arrival, converts
this back into estimated emitter latitude and longitude and finally checks the error in between them. When
taking the satellite and emitter parameters similar to the verification tests ((λs ,ψs ) = (50◦,50◦), (λt ,ψt ) =
(60◦,40◦)) and converting them back and forth leads to an error of ((eλt ,eψt ) = (1.42 ·10−14◦,−7.11 ·10−15◦)),
which is negligibly small and can be accounted to rounding errors.

ESPRIT Algorithm
The ESPRIT algorithms in the software are more complex than the conversion algorithms. Hence a more ex-
tensive approach has to be used to verify this piece of simulation. Initially one can check if the Algorithm
solves to the correct solution if there is no noise on the signal. This can easily be checked by running the
simulation with zero noise. Doing 100 runs of a noiseless scenario leads to the results found in figure 3.9 and
3.10
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Figure 3.9: Polar plot of noiseless ESPRIT simu-
lation
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Figure 3.10: Geographic plot of noiseless ES-
PRIT simulation

Another verification case is that when additive white Gaussian noise is introduced to the model, the obtained
estimation should form an ellipse around the real solution. This is due to the noise propagating as an uncer-
tainty in the results leading to a distribution around the noiseless solution. This has been simulated and can
be observed in figure 3.11 and 3.12
Finally, the simulation can be compared to similar already existing simulations and see if the results align
with each-other. However, this step has shown to be most difficult. Since the majority of the Angle-of-Arrival
simulations don’t extend to geolocation and focus on one single dimension (e.g. only focus on elevation θ,
not on azimuth φ). If one were to find a similar simulation, the parameters of the scenario are sometimes
hard to match. (e.g. not all parameters are given or a different Array geometry is used). Also, not all perfor-
mance evaluations of geolocation system can be assuumed to be published, due to the nature of geolocation
being closely related with electronic intelligece.

A similar existing simulation results have been obtained in a paper by Zoltowski et al. [28]. In this simulation
2D Unitary ESPRIT is simulated using an URA, this is very similar to this projects simulation, however the in-
put angles are given in spatial coordinates (u, v) which are identical to (µ′,ν′) (Equation (2.36)) in this paper.
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Figure 3.11: Polar plot of noiseless ESPRIT sim-
ulation
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Figure 3.12: Geographic plot of noisy ESPRIT
simulation (5 dB)

The simulation results published are the Root-Mean-Square-Error of the predicted spatial coordinates (µ′,ν′)
versus the Signal-to-Noise ratio per input-source per array element. The paper displays a theoretical lower
bound and experimental simulation results. This simulation scenario can be imitated in the simulation ob-
tained in this thesis. First, the input coordinates (u, v) can be converted to AoAs (θ,φ) by means of equation
(2.36). These AoA values can be turned into input longitudes and latitudes by using the AoA to longitude and
latitude conversion software. Finally the estimated AoA of the ESPRIT algorithms can be converted back to
(ũ, ṽ). The RMSE can then be calculated according to equation (3.11).

RMSE =
√

1

N

∑
k = 1N {(u − ũ)2 + (v − ṽ)2} (3.11)

The results of this simulation, together with the results of Zoltowski et al.[28], can be seen in figure 3.13.
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Figure 3.13: Obtained Simulation versus Zoltowski et al.[28]

Similarly to the ESPRIT algorithm, the MUSIC algorithm in the software are much more complex than the
conversion algorithms. The approach used to verify the ESPRIT Algorithm can also be applied to the MUSIC
Algorithm. Initially the correct solution in a noiseless scenario is verified. Doing 100 runs of a noiseless sce-
nario leads to the results found in figure 3.14 and 3.15
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Figure 3.14: Polar plot of noiseless MUSIC sim-
ulation
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Figure 3.15: Geographic plot of noiseless MU-
SIC simulation

Consequently, noise is introduced in the algorithm and the simulation is run again. The obtained estimation
should form an ellipse around the real solution, due to the noise propagating as an uncertainty in the results
leading to a distribution around the noiseless solution. This can be observed in figure 3.16 and 3.12.
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Figure 3.16: Polar plot of noiseless MUSIC sim-
ulation
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Figure 3.17: Geographic plot of noisy MUSIC
simulation (5 dB)

No MUSIC algorithm simulation could be obtained where all the parameters are transparent and the fig-
ures of performance are clearly given, like in the case of the ESPRIT Algorithms. MUSIC algorithm simula-
tions are available in 1-D (Uniform Linear Arrays), but the majority of those are unclear about peak-search
step-size and proper significant digits[13][18][11][26][10]. Other simulations that do implement 2-D MU-
SIC algorithms, stay within analysis of the shape of the spatial spectrum without moving to accuracy results
(no peak-finding)[20]. However, the ESPRIT and MUSIC algorithms share a lot of similarities, as both are
dependent on the eigenspace decomposition. Comparing the MUSIC and ESPRIT algorithms after the eigen-
decomposition, MUSIC is much simpler as it only compares to sub-spaces with each-other, without the need
of invariance equation solving and another eigen-decomposition.

3.4. Graphical User Interface
Besides a back-end simulation architecture, a front-end graphical interface can be designed. This interface
allows for the simulation framework’s functionalities (calculating performance indications) to be more acces-
sible for an end-user. By adding such an interface, the obtained simulation algorithms and software will be a
fully wrapped in a product.
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In order to take a systematic and system engineering approach the the design of a user interface, one can
use the so called ’Planes of user experience’ [6], these planes can be described in order as follows:

1. Strategy Plane: In this plane, the purpose of the interface is determined. It involves identifying user
needs and project objectives.

2. Scope Plane: The scope plane defines what is and has to be defined in the interface. This plane mainly
involves functional specifications/requirements and content requirements

3. Structure Plane: In this plane, the design on how the various features, functions and content interact
with each-other. This plane mainly focuses on the information architecture

4. Skeleton Plane: This plane is a more concrete version of the structure plane, it holds information on
how the different modules are placed and structured on the interface, and how to navigate between
multiple interfaces.

5. Surface Plane: This plane consists of the sensory experience. The final (top) plane is the ’actual’ inter-
face.

3.4.1. Strategy
The two aspects focused on in the Strategy Plane are the user needs and the product objectives. The user
needs are the goals and needs specifically to the user of the interface. Key is to understand what the user
wants and what goals they have. The product objective embodies what the purpose and strategic interest the
User-Interface has.

The specific objective decided on for this product is: "To provide users with a performance estimate of a Space-
Based Geolocation System using the Angle-of-Arrival Estimates of an Antenna Array, when provided the design
parameters, in order to support the decision making process during the design synthesis in an early stage of the
project".

When designing the interface, one should recognize that the interface has to be designed for a demographic
and psychographic of users, and not a specific ideal user. Understanding the demographic, psychographic
and user is part of investigating ’user needs’[6]. Due to the nature of this project being part of the RNLAF, the
demographic and psychographic can be recognized in general as an employee of Section Space within the
RNLAF. Meaning that the average user will have atleast basic-knowledge about space-based resources and
satellites.

Another method of understanding user needs will be to look into possible Personas and Scenarios.[6]

A example persona of the RNLAF - Section Space could be a person that requires quick and accurate answers,
without the need to know or read through the mathematics regarding AoA geolocation. A possible scenario
could be: The RNLAF - Section Space decides to investigate Space-Based Geolocation of tracking beacon
functionality for a multi-purpose satellite. Known are a satellite platform parameters and orbital parameters
and Signal-to-Noise ratios. The tool can calculate what the achievable performance is of such a system when
one would enter and tweak payload parameters. As such, helping in deciding whether the payload can satisfy
functional requirements and aiding the decision making process whether to continue with the development
of such a tracking system or not.

3.4.2. Scope
Once a clear picture is obtained of what users want and need, one can start translating the needs into specific
requirements for functionality and content. The difference between these two, is that one emphasises the
requirements in terms of usability and functionality, whereas content requirements focuses on requirements
regarding information necessities.
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REQUIREMENT Description

REQ-GUI-FUNC-01
The GUI shall provide performance estimates using the Geolocation
Simulation, Given the user Parameters

Rationale: Primary functionality of the interface to achieve the GUI objective.

REQ-GUI-FUNC-02 The GUI shall show estimates in an intuitive way

Rationale:
Showing estimation results in an intuitive way allows the user for
quick judgement

REQ-GUI-FUNC-03 The GUI shall be intuitive to use

Rationale:
An intuitive GUI allows for an inexperienced user to use the GUI with-
out the need to go through an extensive manual

REQ-GUI-CONT-01 The GUI shall be managed by a content management object

Rationale:
In order to manage all information held or created by the GUI, the in-
formation shall be wrapped in a container

Table 3.4: Functional and Content Requirements of Graphical User Interface

The main requirements help to satisfy the GUI objective and user needs. In order to find how some these
requirements can be achieved, sub-requirements can be made. Sub-requirements belonging to this GUI can
be found in table 3.5

SUB-REQUIREMENT Description

REQ-GUI-FUNC-01A
The GUI shall implement the Geolocation Simulation framework
produced

Rationale:
In order to provide geolocation estimates, the simulation framework
produced in this thesis must be implemented in the GUI

REQ-GUI-FUNC-02A
The GUI shall provide estimations in Root-Mean-Squared-Error
(RMSE)

Rationale:

RMSE is a very common method used to show error and should be in-
tuitive to a person familiar with accuracy figures. Since the mean of
the error should be zero, this figure also indicates the variance (distri-
bution) of the error.

REQ-GUI-FUNC-02B
The GUI shall present estimations in a polar plot of the satellites
’view’

Rationale:
Showing the target and it’s estimation in a polar view from the satel-
lite’s perspective allows the user to quickly see what the actual incom-
ing angle is of the target and estimations.

REQ-GUI-FUNC-02C The GUI shall present estimations in a geographical plot

Rationale:

Showing the target and it’s estimation on a geographical map allows
the user to see the error in terms of distance from a target where that
person might be more familiar with. Showing points on a map might
allow the user to more intuitively understand the error in kilometers.

REQ-GUI-FUNC-03A The GUI shall be limited to only one main window

Rationale:

Presenting the GUI in only one main window allows the user to see
all the information without the need to browse through different win-
dows, menus or sub-menus. Which purpose is to increase intuitiveness
of the GUI

REQ-GUI-FUNC-03B The GUI shall have default parameters for all inputs

Rationale:

Showing exclusively empty boxes where information needs to be filled
in might overwhelm the user, showing a default parameter gives indi-
cation on what format the parameter needs to be filled in and allows
for a default version to run the simulation even if that parameter is
unknown at the time.

Table 3.5: Functional and Content Sub-Requirements of Graphical User Interface
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3.4.3. Structure

After the basic requirements have been defined, one should have a clearer picture of the final product. How-
ever, one should also define on how the different objects and information of the interface form a whole. Thus,
a conceptual structure for the interface should be designed.

The simulation structure itself, wraps all the functionality and information into an estimator object (figure
3.1), breaking-up this object should be avoided since it can properly hold all the simulation information in a
container. Implementing the simulation framework like this doesn’t only satisfy requirementREQ-GUI-FUNC-01A,
but also REQ-GUI-CONT-01. The GUI should feed this estimator object the user-input, properly manage the
estimator object output and finally control this estimation object to run when required. These functions can
be split into several objects that can be contained within the main GUI object. This way the user only directly
interacts with the parameter window, the visualization of the estimates, and with the estimator controller. An
overview of this structure can be seen in figure 3.18

Figure 3.18: Schematic overview of GUI structure

3.4.4. Skeleton

After the basic concept structure is developed, one can further refine this concept by shaping the interface
and making the structure of the front-end concrete. The GUI shall only consist of one primary window
(REQ-GUI-FUNC-03A) and this primary window is to be populated by different objects. The objects defined
are the user input parameters window, Results Window, Simulation controller, Results Visualizer.

Designing the user input parameters window is fairly straightforward. One should first list and categorize
all input parameters available.
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Parameter Description Options
Algorithm parameters
Algorithm MUSIC/ESPRIT
Unitary Mode ON/Off
Amount of Samples -
Antenna Array Parameters
Antenna Array Elements -
Element Spacing -
Satellite Parameters -
Satellite Longitude -
Satellite Latitude -
Satellite Height -
Target Parameters -
Target Latitude -
Target Longitude -
Target Frequency -
Target Signal-to-Noise -
Amount of simulation iterations -

Table 3.6: Available user input parameters

The parameters that have options have multiple ways to visualize this, for example a drop-down or selection
’bubbles’. In this example selection bubbles have been selected due to the small amount of options. Param-
eters with no options can be visualized as an input-box or slider, in this case an input-box has been selected
due to the added functionality of typing in an exact value. Finally a quick ’skeleton’ is designed for the Input
Parameter object, this can be seen in figure 3.19. Note that for input parameters in this object, a default value
should be present (REQ-GUI-FUNC-03B).

Figure 3.19: Schematic overview of input parameters window

The results window is straightforward, and should consist of a small box containing the numerical perfor-
mance figures in RMSE (REQ-GUI-FUNC-02A). An extra required functionality which is beneficial to work
efficiency is that the text should be ’select-able’ to allow for ’copy-paste’ of the obtained results.

The Simulation Controller is also a very straightforward it should essentially contain two buttons, a button to
update the estimation object with new parameters, and a button to run the simulation.

The Results Visualizer can visualize the results in different ways. In this particular scenario, the visualizer
shows the results in two ways. First, as a polar plot from the satellites ’view’, allowing the user to see the in-
coming angle-of-arrival from the selected geographical coordinates of the emitter and satellite (REQ-GUI-FUNC-02B).
Secondly, a map showing the geographical location of the actual emitter and the estimates, allowing the user
to quickly translate the estimation error in kilometers to a more practical interpretation (For example, an es-
timation in Hamburg where-as actual emitter is in Berlin instead of 250 km) (REQ-GUI-FUNC-02C).
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Lastly, all this information can be combined in order to obtain a skeletal design of the user interface. (fig-
ure 3.20)

Figure 3.20: Schematic overview of GUI

3.4.5. Surface
Lastly, the obtained structure and skeleton is implemented into software, in order to obtain the product de-
fined in the strategic plane[6].

Figure 3.21: Overview of Graphical User Interface

3.5. Graphical User Interface Verification and Validation
The simulation framework itself has been verified, and from this framework a front-end GUI is produced. The
final check is to validate whether this GUI is correct. A way to validate the GUI is by checking the user needs
and product objective. Initially all GUI sub-requirements can be verified, this can be seen in table 3.7 X
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SUB-REQUIREMENT Description Verification Method Pass

REQ-GUI-FUNC-01A
The GUI shall implement the Geolocation Simulation
framework produced

by design X

REQ-GUI-FUNC-02A
The GUI shall provide estimations in Root-Mean-
Squared-Error (RMSE)

by observation X

REQ-GUI-FUNC-02B
The GUI shall present estimations in a polar plot of the
satellites ’view’

by observation X

REQ-GUI-FUNC-02C
The GUI shall present estimations in a geographical
plot

by observation X

REQ-GUI-FUNC-03A The GUI shall be limited to only one main window by observation X
REQ-GUI-FUNC-03B The GUI shall have default parameters for all inputs by observation X

Table 3.7: Functional and Content Sub-Requirements of Graphical User Interface

All main requirements should also be verified as well. A verification of the main requirements is seen in table
3.8

REQUIREMENT Description Verification Method Pass

REQ-GUI-FUNC-01
The GUI shall provide performance estimates using the
Geolocation Simulation, Given the user Parameters

by observation X

REQ-GUI-FUNC-02 The GUI shall show estimates in an intuitive way. by verifying sub-req. X
REQ-GUI-FUNC-03 The GUI shall be intuitive to use. by verifying sub-req. X

REQ-GUI-CONT-01
The GUI shall be managed by a content management ob-
ject

by Design X

Table 3.8: Functional and Content Requirements of Graphical User Interface

Lastly, the original input of the requirements should be compared to the obtained product. Meaning that the
original persona and objective should be compared to the obtained GUI in order to validate the design. The
objective defined for the GUI is:

"To provide users with a performance estimate of a Space-Based Geolocation System using the AoA Estimate of
an Antenna Array, when provided the design parameters, In order to support the decision making process

during the design synthesis in an early stage of the project".

The persona defined for the GUI is:

"A person that requires quick and accurate answers, without the need to know or read through the
mathematics regarding AoA geolocation."

Comparing the objective and user need with the outcome GUI (as seen in figure 3.21), one can see that the
product seems to be a tool that is of ease to use to obtain performance estimates of geolocation without the
need to go through the mathematics or actual algorithms of AoA based geolocation. Therefor validating the
original objective and persona. However, in order to do a true validation for both the GUI and the simulation
these validation tests should be more extensive than a simple observation. In order to validate whether the
user needs have been satisfied, the product should be integrated into an actual work product, and should be
extensively used by multiple end-users. After-which user-data should be obtained for example by means of
a questionnaire or interview. In order to fully validate the objective, the correctness of the tool needs to be
further investigated, this can be done by implementing the tool into an actual product and comparing the
obtained geolocation system performance with the estimated performance figures provided by the tool.
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Sensitivity Analysis

4.1. Overview of Parameters
In this section, the obtained model and simulation framework are used to produce an sensitivity analysis
of the performance of the geolocation system. Initially a baseline case is selected for the simulation, which
holds the ’default’ values of the design parameters. Then, the design parameters of interest and their respec-
tive range are investigated and selected.

The design parameters of interest can be divided in two categories, namely the:

• Payload Parameters: which hold the parameters regarding the antenna array and AoA algorithms.

• Satellite Platform Parameters: which hold parameters regarding the performance of the satellite plat-
form.

and the , which hold parameters regarding the performance baseline regarding the platform.

Symbol Parameter Description Unit Distribution
Payload Parameters

Z Additive Noise ratio of received Signal dB Normal(0,σ)
N Number of Samples taken before running the algorithm - Discrete Uniform
M Amount of elements in the Antenna Array (MxM) - Discrete Uniform
d Spacing between the elements of the Array relative to wavelength - Discrete Uniform

Satellite Parameters
θerror Pointing Error of satellite platform % Normal(0,σ)
xerror Positioning Error of satellite platform % Normal(0,σ)

Table 4.1: Parameters investigated during sensitivity analysis

The ’baseline’ parameters selected can be observed in table 4.2 and the geographical location of the ’baseline’
emitter and satellite is shown in figure 4.1

Parameter Value
SNR 10 dB

N 10
M 3
d λ/2

MAR 0%
MPR 0%

Satellite Coordinates (λs , ψs ) Eindhoven = ( 5.47◦,51.4◦ )
Satellite Height (hs ) 600 km

Emitter Coordinates (λ1, ψ1) Paris = ( 2.35◦, 48.86◦ )

Table 4.2: Baseline Parameters of Analysis

33
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Figure 4.1: Baseline Satellite-Target Location of Analysis

4.2. Performance vs Signal-to-Noise
The noise received at the antenna is represented as the symbol Z (equation (2.13)). The noise is modeled as
additive white Gaussian noise with a mean of zero. The amount of noise on the antenna (variance) can be
derived by observing the path the signal takes from the earth-surface emitter to receiver of the satellite. A
parameter commonly used to indicate the amount of noise attenuating the signal is the Signal-to-Noise Ra-
tio (SNR), which indicates not an absolute noise power, but a noise power proportional to the signal power.
Hence, the amount of noise on the signal can be derived from this SNR.

The SNR of a system is influenced by multiple (mostly physical) factors. A simplified formula to calculate
the SNR can be given using equation (4.1)[12]:

SN R = PR X −NR X (4.1)

where the PR X is the received signal power in dB and NR X is the received noise power in dB. Respectively,
PR X can be calculated using equation (4.2)

PR X = PT X +GT X +GR X −L (4.2)

where PT X is the transmit power of the emitter, GT X and GR X are the transmitter and receiver gain and fi-
nally L is the sum of all the losses. PT X +GT X is also commonly referred to as the effective isotropic radiated
power (EIRP) of the signal. The transmitter and receiver gain are commonly represented in the unit dBi, the
directivity, which is the performance of the antenna in respect to an isotropic antenna (antenna that radiates
all transmit power equally in all directions). The signal loss L consists of all losses in the chain, most promi-
nently loss is the free-space.

Finally, the received noise power is calculated using equation (4.3)[12]:

NR X = (kTs )dB BN (4.3)

where kTs is the noise spectral density, calculated by multiplying the system equivalent noise temperature
with the Boltzmann constant. Lastly, BN is the noise bandwidth given in dB-Hz.
An example of calculating the SNR of a system can be as table 4.3.
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Transmit Parameters
1. Transmit Power (5W), dBW 6.99
2. Transmitter directivity, dBi 2.15

Losses
3. Free-Space-Loss (f=1.5GHz,H=600km), dB 151.53

Receiver Parameters
4. Receiver directivity (n=4,eff=60%), dBi 8.95

5. Noise Temperature, K 56
6. Bandwidth (50kHz), dB-Hz 46.98

7. Noise Spectral Density, dBm/Hz -211.11
Power Summary

8. Received Power, dBm (1+2-3+4) -133.44
9. Received Noise, dBm (7+6) -164.13

SNR, dB (8-9) 30.7 dB

Table 4.3: Example Calculation SNR

Common approaches to increase the SNR are to increase the directivity of the antennas and therefor the
gain, reduce the equivalent noise temperature. In order to increase the directivity, a different type or bigger
antenna array can be designed. In order to reduce the noise temperature, components can be selected that
have a smaller noise temperature and the (preferably as early in the chain as possible) gain can be maximized
(requiring more power), which will suppress noise later in the chain.

In order to model this SNR figure into the simulation, the SNR figure has to be rewritten into additive Gaussian
noise Z (as in equation (2.13)). By rewriting SNR equation (4.1), the noise power can be obtained as NR X =
PR X −SN R. If the SNR is converted from decibel scale to linear scale, the equation for the noise power can be
rewritten to equation (4.4).

NR X Lin = PR X Lin

SN RLin
= E [S2]

SN RLin
=σ2

noise (4.4)

Meaning that if the signal power is modeled as a value of one, the standard deviation of the Additive Gaussian
noise can be given according to equation (4.5).

σnoise =
√

1

SN RLin
=

√
10

−SN RdB
10 (4.5)

Lastly, the complex noise Z can be modeled using this noise power and equation (4.6) can be obtained.

Z = σnoisep
2

· (N (0,1)+ j ·N (0,1)) (4.6)

By using the baseline parameters given by 4.2, the system can be simulated and the results in figure 4.2, figure
4.3 and table 4.4 are obtained.
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Figure 4.2: box plot of Geolocation error vs Signal-to-Noise

In Figure 4.2, the so-called box plots of the resulting Geolocation Error can be observed. From this graph
one can see that by increasing or decreasing the SNR, the median value of the geolocation error shifts down,
but the overall distribution of this geolocation remains roughly the same. Another observation is that the
box itself is small in comparison to the total range and whisker length, meaning that the majority of the
observations of the geolocation error are tightly-packed around the median. However when observing the
whiskers, (especially in the ESPRIT algorithms) the distribution geolocation error is skewed to the lower end.
Meaning that the the probability of an outlier of the geolocation error being much lower than the median is
higher than the probability of the outlier having a much higher geolocation error.
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Figure 4.3: Geolocation RMSE vs Signal-to-Noise

SNR [db]: -20.00 -15.00 -10.00 -5.00 0.00 5.00 10.00 15.00 20.00
ESPRIT: [km] 312.02 243.55 158.77 99.23 64.81 43.70 31.39 22.92 17.22
unitary ESPRIT: [km] 303.17 221.92 118.58 66.58 42.59 30.92 21.90 16.09 12.04
MUSIC: [km] 724.01 417.24 222.09 72.81 40.33 29.91 21.48 15.94 11.93
unitary MUSIC: [km] 697.83 467.10 197.76 63.47 40.04 29.80 21.48 15.95 11.93

Table 4.4: Performance of geolocation (RMSE km) vs SNR

In figure 4.3, one can observe that for the SNR > 0 dB the geolocation RMSE and the SNR appear to have a
linear relationship on semi-logarithmic scale. This suggests that if (SNR > 0 dB), an increase of 1 dB in SNR
leads to a decrease of 11% in of the error. This suggests a proportionality of RMSE ∝ 0.89SNR. However, in the
low SNR region (SNR < 0 dB), this linear relationship appears not to hold. Besides this, in the low SNR region
the ESPRIT algorithm (specifically Unitary ESPRIT) performs much better than the MUSIC algorithms. A way
to rationale this difference is due to the nature of the algorithms. The MUSIC algorithm estimates the AoA
by using a peak-search algorithm to find the signal’s null-space that is occupied by the noise space. Having
an extremely high noise (extremely low SNR), can lead to this null-space becoming unobservable. Whereas
the ESPRIT algorithms uses an invariance in the signal-space that is ’contaminated’ by the the noise space to
find the AoA.
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Besides observing RMSE of the geolocation algorithms, The algorithm run-time can also be observed over
different values of the SNR. These values have been measured and can be seen in figure 4.4 and table 4.5.
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Figure 4.4: Algorithm timing vs Signal-to-Noise

SNR[dB] -20.00 -15.00 -10.00 -5.00 0.00 5.00 10.00 15.00 20.00
ESPRIT [ms] 0.73 0.73 0.80 0.72 0.72 0.75 0.77 0.70 0.77
Unitary ESPRIT [ms] 0.80 0.79 0.83 0.79 0.78 0.81 0.82 0.75 0.81
MUSIC [ms] 143.50 137.61 144.24 141.03 138.49 141.05 140.97 141.59 139.63
Unitary MUSIC [ms] 136.81 132.65 134.38 132.93 131.72 132.17 134.37 135.83 132.81

Table 4.5: Algorithm timing vs Signal-to-Noise

It should be realized that the absolute run-time performance of the algorithms is hardware and software
dependent. The hardware of the computer running the simulations influences the run-time performance by
means of processor cycles per second and cycles per instruction, another commonly used method of measur-
ing computational power is Floating Point Operations Per Second (FLOPS). The software is implemented in
Python code, which is a ’dynamic’ programming language, meaning that during run-time many other pro-
cesses are running on the background, namely evaluating and dynamically interpreting the code and so
called ’garbgage collection processes’. However, the relative difference in algorithm run-time does contain
information regarding run-time sensitivity due to change in SNR. The run-time measurements stay relatively
the same over different values of the SNR, suggesting that the algorithm run-time is decoupled from the SNR
and remains approximately constant over different values of the SNR. This behaviour can be explained by the
fact that a different noise value does not obiviously impact the excecution time of the code as the algorithms
remain the same. Another observation is that the ESPRIT algorithms, have a drastically lower run-time than
the MUSIC algorithm, this can be explained by the MUSIC algorithm containing a time-exhaustive peak-
search algorithm.

Lastly, one can observe whether the relationship between the RMSE and the SNR (Noise) is independent
of other parameters. This can be tested by changing other parameters and observing whether the behaviour
of the RMSE over the SNR remains the same. The simulation is re-run with a different amount of elements,
amount of samples and element spacing. The results of this simulation is seen in figure 4.5. This graph shows
that when other parameters change, the behaviour of the geolocation error over SNR remains similar. This
suggests that the proportionality of RMSE ∝ 0.89SNR, is independent of the other parameters, especially for
higher SNR. Whereas (similar to the original simulation) the proportionality does not hold for low-SNR (SNR
< 0 dB).



4.2. Performance vs Signal-to-Noise 39

-20 -15 -10 -5 0 5 10 15 20

SNR [dB]

100

101

102

103

R
M

S
E

 [
k
m

]

Geolocation Error [M=3/4, N=10/100, d = /2 / /3]

MUSIC

ESPRIT

Unitary MUSIC

Unitary ESPRIT

data1

Figure 4.5: Geolocation RMSE vs SNR in semilog Scale
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4.3. Performance vs Number of Samples

Another important parameter for the algorithms is the amount of samples it uses to perform the algorithm
(as discussed in section 2.2.3). This parameter should be coupled to the performance of the algorithms since
it increases and decreases the amount of input data to the algorithms. The geolocation algorithms can be
simulated in order to obtain the performance for different values of the amount of input samples using the
baseline scenario given by table 4.2. The obtained geolocation performance is given by figure 4.6, figure 4.7
and table 4.6
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Figure 4.6: box plot of Geolocation error vs number of samples

in Figure 4.6 The box plots of the resulting geolocation error can be observed. These graphs show similarities
to the SNR analysis, by increasing or decreasing the amount of samples, the median value is shifted down, but
the overall range of the errors remains roughly the same. Also similar to the SNR analysis, the data appears
slightly skewed downwards.
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Figure 4.7: Geolocation RMSE vs Number of Samples

N [-]: 1 10 50 100 200 400 800 1600 3200 6400
ESPRIT: [km] 181.54 32.32 12.83 9.20 6.48 4.38 3.22 2.23 1.64 1.14
unitary ESPRIT: [km] 160.17 21.99 9.04 6.47 4.57 3.12 2.27 1.61 1.17 0.79
MUSIC: [km] 319.65 21.23 9.03 6.47 4.59 3.12 2.27 1.61 1.17 0.79
unitary MUSIC: [km] 295.83 21.25 9.03 6.47 4.59 3.12 2.27 1.61 1.17 0.79

Table 4.6: Geolocation RMSE vs Number of Samples

One can immediately notice that increasing the number of samples leads to a dramatic improvement in the
geolocation accuracy. A jump from 1 to 10 samples can lead to an improvement of factor >7. One can also
notice that the logarithmic RMSE of the geolocation seems to be of exponential relationship with the amount
of samples. The decrease in the error almost appears asymptotic, this can be explained by the other factors
limiting the accuracy, the error can only approach zero but never reach it. One can plot this graph on log-log
scale, the resulting graph can be observed in figure 4.8
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Figure 4.8: Geolocation RMSE vs Number of Samples in Log-Log Scale

When observing this log-log scaled graph, one can see that for N > 10 the relationship appears linear, mean-
ing that the relationship between the RMSE of the geolocation and the amount of samples is approximately

RMSE ∝ N−0.46 (∆ logRMSE
∆ log N ≈−0.46). Another aspect one notices on this scale, is that for single snapshot mea-

surements N = 1, the ESPRIT algorithms perform better.

Increasing the amount of samples, might also alter the run-time of the algorithms, plotting the algorithm
run-time over the amount of samples leads to the results represented in figure 4.9 and table 4.7

N [samples]: 1 10 50 100 200 400 800 1600 3200 6400
ESPRIT: [ms] 0.79 0.81 0.76 0.87 0.85 0.93 0.92 0.98 1.11 1.66

unitary ESPRIT: [ms] 0.82 0.82 0.75 0.96 0.95 1.03 1.03 1.10 1.25 2.15
MUSIC: [ms] 134.53 135.76 134.23 146.29 178.02 175.83 176.34 178.15 176.65 173.47

unitary MUSIC: [ms] 130.63 137.13 130.40 155.15 154.11 156.59 153.72 154.60 154.64 157.56

Table 4.7: Algorithm run-time vs number of samples

ESPRIT Algorithm Run-Time
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Figure 4.9: Algorithm run-time vs number of samples

From the run-time one can observe, that an increase in the amount of samples leads to an increase of run-
time. The increase in the number of samples leads to a bigger calculation of the autocovariance, causing an
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initial increase in the run-time for both algorithms. The increased amount of samples has the biggest impact
on the ESPRIT algorithms as the run-time appears to double, whereas the increase in the MUSIC algorithms
is approximately ≈25% from 1 to 6400 samples.

It is also investigated whether this proportional behaviour of the RMSE of the geolocation is independent
of the other parameters. The simulation is re-run with a different amount of elements, Signal-to-Noise and
element spacing. The results of this simulation is seen in figure 4.10. One can observe that for N > 10 the
proportionality of RMSE ∝ N−0.46 holds for different parameters of the array, suggesting that the effect of N
on the performance is independent on the other parameters.
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Figure 4.10: Geolocation RMSE vs Number of Samples in Log-Log Scale

Knowing this information one might be inclined to use the algorithms with an extremely high amount of
samples (N > 1000), however, this is impossible due to practical limits. One of the limits is memory, assuming
every sample is a complex 32-bit floating point number the memory costs are 8 bytes per sample per array
element (4 + 4 bytes). Assuming the baseline scenario (3 x 3 Antenna Array) the amount of storage required
quickly reaches a big amount. (N = 10,000 → 720kB)
Finally, another limit to obtaining a big amount of samples is the act of sampling itself. The sampling of a
signal in orbit is not an instantaneous function, meaning the satellite cannot take all samples at the same
time immediately. The movement of the satellite during sampling ’contaminates’ the data due to the angle
of arrival changing during measurements. However, even though the sampling gets contaminated by a shift
in the AoA, it might still allow for an increase in the performance. The speed at ones does sampling is com-
monly limited by the Analog-to-Digital converter of the antenna array, by simulating the sensor array while
in movement, one can find an optimal amount of samples fitting the sampling-rate of the satellite.

The position of the satellite can be extrapolated over time by assuming a circular orbit and by either fixing
the location of the ascension node or the inclination. Using this information one can find a plane that con-
tains the origin, satellite and ascension-node (in an earth-centric frame) by means of cross product (equation
(4.7)).

npl ane = vsatel l i te × vascensi on−node (4.7)

The entire circular orbit is contained in this plane. The center-point of the orbit is the origin and the circular
orbit intersects the satellite position. By using these properties the circular orbit can be found. By using
the angular velocity and the circular velocity (equation (4.8) & (4.9) [4]) one can propagate the orbit for time
t = τ, note that this method does not take into account orbital perturbations[4], hence it would only hold
for small τ. An example of using this method to extrapolate a circular orbit from a satellite position and an
ascension-node longitude can be found in figure 4.11
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vci r cul ar =
√

GM

r
(4.8)

vci r cul ar =ωci r cul ar r (4.9)

Figure 4.11: Propagation of circular orbit

For example, taking 200 Samples with a sample-rate of 10 Hz takes (200/10Hz) 20 seconds. An orbital height
of 600 km has an angular velocity of approximately ωci r cul ar = 0.0011 rad/s, this leads to an angular shift of
1.24◦. Assuming the case that a satellite is currently above Eindhoven (Longitude = 5.47, Latitude = 51.4) and
an emitter is situated in Amsterdam (Longitude = 4.9, Latitude = 52.4), the approximate drift on ground can
be observed in figure 4.12.
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Figure 4.12: Movement of satellite during 20 seconds measurement

In order to visualize the inaccuracy caused by the satellite movement during sampling, previous’ simula-
tion can be reevaluated, incorporating satellite movement in the model. The three cases simulated are an
extremely low sample rate (10 Hz), an average sample-rate (1 kHz) and a sample rate readily available in



4.3. Performance vs Number of Samples 45

commercial Analog-to-Digital converters (1.6 MHz). The results of this simulation can be observed in figure
4.13 and on log-log scale in figure 4.14
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Figure 4.13: Geolocation RMSE vs Number of Samples including drift
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Figure 4.14: Geolocation RMSE vs Number of Samples including drift on Log-Log scale with proportionality approximation

From these results it is observed that if the sampling rate of the antenna array is high enough, inaccuracies
introduced by movement of the satellite is not going to noticeably influence the accuracy of geolocation for
N < 6400. However, when using a low sampling rate, an increase in samples might actually reduce the per-
formance of the system. This happens when the performance loss due to drift ’contamination’ is bigger then
the performance gain when the number of samples is increased. In the log-log scale figure (4.14), the approx-
imation of proportionality defined earlier (RMSE ∝ N−0.46) is plotted as well, and one can see that if fs →∞
the RMSE behaviour converges to this proportionality.

4.3.1. Performance vs Number of Elements
The number of elements in an antenna array should also influence the geolocation accuracy. However, the
number of elements in the array cannot be arbitrarily selected. The number of eigenvectors of the autoco-
variance matrix should be equal to the number elements in the array. (autocovariance is full-rank see section
2.2.3). In order for the algorithms to solve the angle-of-arrival, the eigenspace should be big enough to dis-
tinguish the noise space and signal space. Meaning that the eigenspace should at-least be the size of the
signal-space +1. If the eigenspace is of the size M 2 (where M 2 is the number of elements in the array and
M the number of elements per dimension) and the signal-space is of the size N (where N is the number of
incoming signals), this constraint can be shown by equation (4.10)

M 2 ≥ N +1 (4.10)

When the amount of elements in the array increase, the amount of samples and the size of the eigenspace
also increase, hence leading to a greater performance. However, the amount of elements in an antenna array
has an upper-bound by means of physical complexity. A higher amount of elements has a much greater im-
plementation complexity and power requirement.
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In figure 4.15, 4.16 and table 4.8 one can see the obtained results from simulating the antenna array for mul-
tiple values of the amount of elements, ranging from a total of 4 elements to 49 elements.
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Figure 4.15: box plot of Geolocation error vs number of elements

Figure 4.15 presents the box plots of the resulting Geolocation Error. This graph is again similar to the number
of elements and noise analysis. Increasing or decreasing the amount of elements causes the median value to
either shift up or down, but the overall range of the errors remains roughly the same. Also similar to the other
analyses, the data appears slightly skewed downwards.
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Figure 4.16: Geolocation RMSE vs Number of Elements in antenna array

M [-]: 2 3 4 5 6 7
ESPRIT: [km] 41.30 17.03 10.24 7.19 5.71 4.87
unitary ESPRIT: [km] 29.32 11.75 7.05 4.87 3.71 2.97
MUSIC: [km] 29.30 11.67 6.55 4.06 2.78 1.99
unitary MUSIC: [km] 29.30 11.66 6.55 4.06 2.78 1.99

Table 4.8: Geolocation RMSE vs Number of Elements in antenna array

It is observed that for both ESPRIT and MUSIC algorithms, the RMSE decreases with an increasing amount of
elements, however when M > 3 the MUSIC algorithm starts performing significantly better then the ESPRIT
algorithm. One could rationale this by closely investigating the data used by the algorithms to calculate the
AoA. The data exploited by the ESPRIT algorithm is the signal subspace, every element added to the calcula-
tion should add one row to this subspace. However, the MUSIC algorithm exploits the noise-subspace, and
every element added increases the noise subspace with one row and one column. Meaning that an increase
of elements has a much bigger impact on the data exploited by MUSIC then by ESPRIT. The geolocation
RMSE vs the number of elements can also be plotted on logarithmic scale on both axis, giving figure 4.17.
One can observe that the performance of the MUSIC algorithm on this scale is shown as linear, suggesting a
proportionality of RMSEMUSIC ∝ M−2.15. This proportionality is also represented in the figure.
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Figure 4.17: Geolocation RMSE vs Number of Elements in antenna array on log-log scale with approximation line

The behaviour of the run-time of the algorithms can also be observed as a function of M . The run-time of the
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algorithm for the different values of M can be found in figure 4.18 and table 4.9.
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Figure 4.18: Algorithm timing vs Number of elements

M[-] 2 3 4 5 6 7
ESPRIT [ms] 0.76 0.80 0.76 1.47 1.36 2.19
Unitary ESPRIT [ms] 0.82 0.81 0.81 1.57 1.40 2.19
MUSIC [ms] 144.64 140.29 143.92 253.68 285.78 321.87
Unitary MUSIC [ms] 135.91 135.81 139.05 243.40 272.86 291.32

Table 4.9: Algorithm timing vs Number of elements

It can be observed that the algorithm timing is coupled to the size of the array. Increasing M leads to a signif-
icant increase in both the run-time of the MUSIC algorithms and the ESPRIT algorithms. The increase in the
run-time seems to be proportional. However, due to the large run-time of the MUSIC algorithms (also in the
baseline case) this increase is much more significant in absolute numbers (increase in ESPRIT algorithms:
≈ 1.5ms, increase in MUSIC algorithms: ≈ 150ms)

The system can also be simulated for multiple impinging signals on the antenna array. This simulation can
be observed in figure 4.19

2 3 4 5 6 7

SNR [dB]

100

101

102

103

R
M

S
E

 [
k
m

]

Geolocation Error D = 1

MUSIC

ESPRIT

Unitary MUSIC

Unitary ESPRIT

2 3 4 5 6 7

SNR [dB]

100

101

102

103

R
M

S
E

 [
k
m

]

Geolocation Error D = 2

MUSIC

ESPRIT

Unitary MUSIC

Unitary ESPRIT

2 3 4 5 6 7

SNR [dB]

100

101

102

103

R
M

S
E

 [
k
m

]

Geolocation Error D = 3

MUSIC

ESPRIT

Unitary MUSIC

Unitary ESPRIT

Figure 4.19: Geolocation RMSE vs Number of Elements in antenna array

City Longitude Latitude
Berlin 13.40◦ 52.527◦

London −0.12◦ 51.51◦

Table 4.10: Geographic coordinates of two additional earth-surface emitters

It can be observed that for a higher amount of incoming signals, the performance reduces. The cause of this
can be shown more clearly by observing the spatial spectrum of the MUSIC algorithm. When the amount of
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incoming signals increase, but the amount of elements remains the same, the noise-space reduces in size.
When the workable noise-space reduces in size the peaks in the spatial spectrum become much less defined,
until it is reduced in such a degree that the spatial spectrum peaks start to ’merge’. When this happens, the
peak finding algorithms misses or wrongly distinguishes peaks. This process is shown in figures 4.23 and 4.22
for two incoming signals and figures 4.25 and 4.24 for three incoming signals. Another noticeable property
is that if the amount of incoming signals increase, the MUSIC algorithms still surpass the ESPRIT algorithms
in performance, around M = 3 when D = 1, M = 4 when D = 2 and M = 4 when D = 3. This further suggests
that the reason that the performance of the MUSIC algorithms overtake the ESPRIT algorithms is due to a
bigger amount of input data in the MUSIC algorithms for a bigger M . An approach to find the point where
the MUSIC algorithms overtake the ESPRIT algorithms in performance, is to assume that the suggestion of
causality of the MUSIC data-set being bigger than the ESPRIT data-set is correct. The size of the signal-space
is namely D where D is the amount of signals, and the size of the noise-space can be modeled as P −D , where
P is the amount of elements in the array (P = M 2 −D). This means that the noise-space size will overtake the
signal-space size (the MUSIC data-set wil overtake the ESPRIT data-set) at P > 2D or M 2 > 2D . The obtained
simulation results and figures of MUSIC spatial spectra ( figure 4.23, 4.22, 4.25, 4.24) seem to support the ob-
tained hypothesis. This means that the MUSIC algorithms overtake the ESPRIT algorithms when the amount
of columns describing the spatial spectrum is similar to the amount of peaks in the spatial spectrum.

One can also investigate whether the performance behaviour of the geolocation (due to the amount of array
elements) is independent on the other parameters. When increasing the amount of samples and increasing
the Signal-to-Noise ratio, the results in figure 4.20 are obtained. One can see that the overall performance is
much better (as expected), but the overall shape and slope of the curves remain the same, suggesting that the
behaviour of the performance caused by the array elements is independent of other parameters. This differ-
ent case is also plotted on log-log scale and the same proportionality as in the original case (RMSE ∝ M−2.15)
is represented around the new case, using this one can observe that the behaviour of the RMSE of the MUSIC
algorithms is almost identical, and that the ESPRIT algorithms actually seem to approach this behaviour.
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Figure 4.20: Geolocation RMSE vs Number of Elements in an-
tenna array with different configuration
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Figure 4.22: two incoming signals on a 5x5 array, peaks are
clearly separate
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Figure 4.23: two incoming signals on a 2x2 array, peaks are
slightly merging
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Figure 4.24: three incoming signals on a 5x5 array, peaks are
clearly separate
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Figure 4.25: three incoming signals on a 2x2 array, peaks are
clearly merging
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4.3.2. Performance vs Element Spacing
The spacing between the antenna array elements also influences the performance of the antenna array. The
reason why the AoA can be extracted from antenna array samples is essentially due to the phase difference
per antenna array element (section 2.2.3), when one decreases the elemental spacing, this phase difference is
reduced and when someone increases the elemental spacing, this effect is exaggerated. Thus one could hy-
pothesize that the bigger the elemental spacing, the bigger the phase shift effect, the better the performance.
However, when the phase difference of a signal is bigger then half a wavelength, ambiguity is introduced in
the measurements. Meaning that the maximum performance of geolocation should be when the element
spacing equals half-wavelength, whereas an element spacing greater than half-wavelength would degrade
the performance drastically

The performance of the geolocation is simulated for different values of the element spacing d using the base-
line parameters given by table 4.2. The outcomes of this simulation can be observed in figure 4.26, 4.27 and
table 4.11
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Figure 4.26: box plot of Geolocation error vs element spacing

Figure 4.26 presents the box plots of the resulting Geolocation Error. The behaviour of the boxplots is again
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similar to the other analyses. Increasing or decreasing the element spacing, causes the median geolocation
error to either shift up or down. The overall range of the errors remains roughly the same and the distribu-
tion of the error appears slightly skewed downwards. It is observed that when the elements spacing exceeds
λ/2, the ESPRIT algorithms performance extremely degrades, whereas the MUSIC algorithms is still able to
produce some accurate results, however it still degrades.
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Figure 4.27: Geolocation RMSE vs Element Spacing

M [-]: λ/16 λ/8 λ/4 λ/2 λ

ESPRIT: [km] 276.14 169.57 56.61 29.39 486.72
unitary ESPRIT: [km] 212.73 111.20 37.87 18.79 491.03
MUSIC: [km] 216.79 123.67 39.42 18.57 190.09
unitary MUSIC: [km] 217.97 122.97 39.44 18.57 189.70

Table 4.11: Geolocation RMSE vs element spacing

One can observe that for an element spacing <λ/2 MUSIC and unitary ESPRIT preform similarly. The RMSE
reaches a minimum (the performance reaches a maximum) at an element spacing of d = λ/2. One can ob-
serve that the RMSE is linear in log-log scale for d = λ/2, suggesting a proportionality. This proportionality
has been calculated as RMSE ∝ d−1.086 and is shown in the figure. When the element spacing exceeds this
(d >λ/2) ambiguity is added to the phase results and the performance reduced drastically as expected. How-
ever, the ESPRIT performance reduces more drastically then the MUSIC algorithms.

The run-time of the algorithms is also analyzed over a change of element spacing d . This can be found in
figure 4.28 and table 4.28. From these results one can observe that the algorithm run-times appear to be de-
coupled to the element spacing. This suggests that a change in element-spacing would not lead to a change
in run-time.
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ESPRIT Algorithm Run-Time
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Figure 4.28: Algorithm timing vs Element Spacing

M[-] λ/16 λ/8 λ/4 λ/2 λ

ESPRIT [ms] 0.86 0.81 0.80 0.79 0.77
Unitary ESPRIT [ms] 0.89 0.84 0.83 0.80 0.85
MUSIC [ms] 141.46 140.92 140.97 142.78 141.06
Unitary MUSIC [ms] 137.56 137.01 135.72 137.60 136.20

Table 4.12: Algorithm timing vs Element Spacing

It is investigated whether the behaviour of the performance of the geolocation due to element spacing is inde-
pendent on other parameters. This is achieved by changing other parameters and comparing the behaviour.
The system has been simulated again but with an increased the amount of elements, Signal-to-Noise and
number of samples, leading to the results in figure 4.29. As one can observe, the linear behaviour on log-log
scale still approximately holds, this suggests that the proportionality RMSE ∝ d−1.086 would hold indepen-
dently of the other parameters.

/16 /8 /4 /2

d [m]

10-1

100

101

102

103

R
M

S
E

 [
k
m

]

Geolocation Error [3x3, SNR = 10 dB, N = 10]

MUSIC

ESPRIT

Unitary MUSIC

Unitary ESPRIT

Proportionality Fit

Figure 4.29: Geolocation RMSE vs Element Spacing

A trade-off in the geometric design of the antenna array, is element spacing versus number of elements.
When more elements occupy the same space, they are more compactly packed, hence decreasing the ele-
ment spacing. An increase in elements should allow for an increase of performance, however the decrease of
element spacing should cause a decrease of performance. Observing the proportionals calculated for these
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parameters( RMSE ∝ d−1.086 and RMSE ∝ M−2.15) one can derive that increasing the amount of elements
would cause a greater performance gain than the performance loss due to a decrease of element spacing.

Figure 4.30: Schematic of increase of M causing decrease in d

A scenario of this decrease in element spacing can be observed in figure 4.30. In this particular case, the
element spacing is optimal (d = λ/2) when the amount of elements is M = 3. This particular scenario has
been simulated in order to compare whether an increase in M but decrease in d would cause a performance
gain or loss. The results of this simulation can be observed in table 4.13 and figure 4.31. One can observe that
an increase of elements indeed causes an increase of performance (nonetheless that a decrease in spacing
causes a small loss) as expected.
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Figure 4.31: Geolocation RMSE vs increasing M , decreasing d

M [-]: 3.00 6.00 9.00 12.00 15.00
ESPRIT: [km] 29.21 19.26 16.28 14.50 14.23
unitary ESPRIT: [km] 18.71 12.92 11.16 9.96 9.09
MUSIC: [km] 18.89 10.64 7.71 5.74 4.75
unitary MUSIC: [km] 18.89 10.63 7.71 5.74 4.75

Table 4.13: Geolocation RMSE vs increasing M , decreasing d

When plotting on log-log scale, the performance shows a linear relationship as expected. The slope of this
relationship can be estimated by using the obtained proportionalities found for parameter d and M . The
estimation of the slope is (−2.15+1.086 =)−1.0640, the slope approximated from the simulation is −0.8478
which is within reasonable range of the estimation.

It is important to note that there are methods available for increasing performance when the element spacing
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exceeds λ/2. An example of these methods is antenna array interpolation, by creating extra ’virtual’ antenna
array elements in-between the largely spaced real antenna array elements, one can reduce the RMSE. [8]

4.4. Performance vs Satellite Platform Parameters
Besides parameters of the geolocation payload affecting the performance of the geolocating process. The
satellite platform itself also influences this performance. Satellite parameters affecting the geolocation pro-
cess consists of extra added noise and inaccuracies. The two major additions of inaccuracies are those in the
pointing (noise is added to the satellite orientation during AoA to Geographic location conversion) and in
the position (extra noise is added to the location of the satellite during the Angles-to-Arrival to Geographic
location conversion).

4.4.1. Performance vs Satellite Pointing Accuracy
Pointing accuracy of a satellite is mostly given as a 3σ figure. When using a complete Commercial-of-the-
shelf Attitude Determination and Control System (ADCS) solution, the 3σ ranges from 0.1◦−1◦ degrees.

The pointing error angels can be modeled as an uncertainty in the orientation of the NED-frame. One can
simulate this error by multiplying the NED-frame vectors by a rotation matrix with it’s x- y- and z-angles a
random distribution given by the 3σ figure. However, due to the pointing error angle being relatively small
and the satellite orbital height being relatively large, an easy approximation can be done to obtain the added
geolocation error induced by this uncertainty without a full simulation. This approximation is represented
in one dimension in equation, where θerror is the added pointing uncertainty in radians and hsat the satellite
height. (4.11) an figure 4.32

xerror = θerror ·hsat =σpointing ·N (0,0) ·hsat (4.11)

Figure 4.32: Error in pointing propagating to geographic error

This approximation needs to be extended as the uncertainty is in three dimensions. This means that the
total approximated additive geolocation error caused by pointing uncertainty can be calculated according to
equation (4.12)

eerror =
√

x2
error + y2

error + z2
error =

p
3σpointing ·hsat ·N (0,0) (4.12)

Using this estimate, one can state that the total added RMSE error can be given by equation (4.13).

RMSEpointing =
p

3σpointing ·hsat (4.13)

The RMSE added to the system due to a uncertainty in the pointing has been calculated for different values
of 3σ and compared to a simulated value. This can be seen in table 4.14 and figure 4.33, one can observe that
the approximated additive RMSE is very close to the ’actual’ simulated value.
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Accuracy Figure 3σ Approximated RMSE Simulated RMSE
0◦ 0 0
.2◦ 0.2828 0.2892
.4◦ 0.5657 0.5696
.6◦ 0.8485 0.8738
.8◦ 1.1314 1.1620
1◦ 1.4142 1.4299

Table 4.14: Distribution in pointing accuracy and how-much additive RMSE in geolocation
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Figure 4.33: Additive Geolocation RMSE vs Pointing uncertainty 3σ

4.4.2. Performance vs Satellite Positioning Accuracy
Positioning accuracy of a satellite can also be given as a figure of variance. This can be for example standard
deviation σ. This positioning uncertainty can be simulated by adding a distribution of error to the position
of the origin of the NED frame (satellite position vector). Similarly to the case of pointing accuracy, an ap-
proximation can be obtained by first observing the additive error in one dimensional. The result of this one
dimensional approximation can be seen in figure 4.34 and equation (4.14).

xerror = x ′
error =σposition ·N (0,0) (4.14)

Figure 4.34: Error in position propagating to geographic error

This approximation can now be extended to three dimensions, since there is uncertainty in the x-, y- and
z-direction. However, an error in the z-direction (height), should have minimal to no impact on the system
due to the emitter always being assumed as earth surface. Hence, the error can be approximated according
to equation (4.15) and (4.16)

eerror =
√

x ′
error

2 + y ′
error

2 + z ′
error

2 =
√

x ′
error

2 + y ′
error

2 (4.15)
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eerror =
p

2σposition ·N (0,0) (4.16)

Meaning that the approximated added RMSE due to positioning error can be given by equation (4.17).

RMSEposition =p
2σposition (4.17)

Simulating and calculating the added RMSE error for different values of σ one can observe whether the ap-
proximation is close to the ’real’ simulated losses. The results of this simulation can be seen in table 4.15 and
figure 4.35, one can observe that the approximated additive RMSE is very close to the ’actual’ simulated value.

Accuracy Figure σ Approximated RMSE Simulated RMSE
0km 0 0
.3◦ 1.2092 1.2975
.5◦ 2.4184 2.5553
.7◦ 3.6276 3.9049
.9◦ 4.8368 5.1449

1.1◦ 6.0460 6.3019

Table 4.15: Distribution in pointing accuracy and how-much additive RMSE in geolocation
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Figure 4.35: Additive Geolocation RMSE vs positioning uncertainty σ

4.5. Summary of Sensitivity Analysis
After the analysis, all parameters are listed and their respective optimization approach and effect on RMSE is
given. The optimization approach can either be to maximize, minimize, or to set the value to an optimum.
This overview can be seen in table 4.16

Symbol Parameter Description Optimization RMSE Proportionality
Payload Parameters

Z Additive Noise ratio of received Signal minimize (maximize SNR) ∝ 0.89SNR

N Number of Samples optimum(based on fs and orbit) ∝ N−0.46

M Amount of elements (M ×M) maximize ∝ M−2.15

d antenna array element spacing optimum (d =λ/2) ∝ d−1.086

Satellite Parameters
θerror Pointing Error of satellite platform minimize +p2σposition

xerror Positioning Error of satellite platform minimize +p3σpointing ·hsat

Table 4.16: Investigated parameters with their respective effect and optimization approach

The performance of the geolocation can be represented as afigure of merit, an example of this is to take
the inverse of the RMSE. This figure of merit can be graphed for the design parameters versus the design
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parameter value. By using this graph one could identify which design parameter has the biggest impact on
the figure of merit. This graph can be seen in figure 4.36.
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Figure 4.36: Effect on design parameter x on geolocation performance

Using this one can see that the influence of the SNR on the performance of the geolocation on log-log scale
is exponential, whereas the other payload parameters are linear. This is expected behaviour due to the found
proportionalities and the linearity on semi-log scale instead of log-log scale. However, one should realize that
the unit of the SNR parameter is in dB, which is an exponential unit by itself. When excluding the effect of the
SNR, the importance of the design parameters can be ranked based on influence on figure of merit which is
M , followed by d , followed by N .

4.6. Recommendation of Design Synthesis
Using the analysis and prioritization provided this chapter, one can define the steps to maximize the perfor-
mance of the URA Array for AoA based Geolocation. Assuming that the satellite platform, orbital parameters
and the antenna element technology are known, one can take the following steps in order to maximize per-
formance.

1. Investigate the frequency (range) of the emitters of interest, since this frequency (range) defines the
target wavelength.

2. Calculate the maximum allowed element spacing to d =λmi n/2.

3. Maximize Amount of array elements M ×M based on maximum available power, available complexity
or available surface Space keeping the maximum allowed element spacing into account.

4. Space the obtained elements as optimally as possible to eachother (d →λmi n/2).

5. Make sure that M ×M > D (Equation (4.10)) or design is infeasible.

6. Find optimum point of amount of samples N by simulating with respective sample frequency and or-
bital parameters.

7. If quick run-time is a requirement → select Unitary ESPRIT Algorithm.

8. If run-time is not a requirement and (M 2 > 2D), the MUSIC algorithm should be selected.

These steps can be translated into a flowchart, leading to figure 4.37.
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Figure 4.37: Overview of design steps to maximize Geolocation performance





5
Test Case: The design of a geolocation

antenna array

The obtained sensitivity analysis and design synthesis approach can be used to design an antenna array pay-
load for a satellite mission. As a demonstration, an example of the design process for a proposed mission is
showcased in this chapter.

5.1. Proposed mission scenario
The mission proposed involves space-based geolocation of earth-surface interference sources in order to find
unlicensed emitters broadcasting on a specific reserved frequency. The mission consist of multiple assets,
one of which is a smallsat in low sun synchronous low earth orbit. This satellite’s purpose is to do global
course geolocation of interference sources of a specific known frequency. When an interference source is
roughly localized, local authorities and other more responsive assets can take further action. Below one can
find an example of the requirements set by the mission provider. The antenna array payload designed for this
mission is the so called ’GLAP’ meaning ’Geolocating Array Payload’. It is assumed that no more then two
interference sources would cluster up to each-other in close geographic proximity.

REQUIREMENT Description
REQ-GLAP-TRACK-01 The GLAP shall geolocate interference sources from space
REQ-GLAP-TRACK-02 The GLAP shall geolocate with a Root-Mean-Square Error of less or equal to 100km
REQ-GLAP-TRACK-03 The GLAP shall geolocate interference sources of 10dBm or more
REQ-GLAP-TRACK-04 The GLAP shall be able to geolocate up to four interference sources simultaneously
REQ-GLAP-TRACK-05 The GLAP shall geolocate interference sources with a frequency of 3 GHz
REQ-GLAP-MECH-01 The GLAP shall not exceed the dimensions of a 6U surface payload
REQ-GLAP-PWR-01 The GLAP shall not exceed power usage of 15W when active

Table 5.1: Mock Mission Requirements

During the early design phase of the satellite payload within this ’mock scenario’, the antenna geometry se-
lected are so called patch-antennas (microstrip antenna), Due to the slim design making it easy to integrate
on a cubesat surface and it’s easy availability in this specific project. Another advantage of this particular
antenna is that it’s directivity pattern is maximum at θ = 0.

5.2. Satellite and Antenna Array Parameters
Following the previous’ chapter’s defined steps, initially the wavelength is investigated.

1. The only frequency of interest is fc = 3G H z, which wavelength is λ= c
f = 3·108

3·109 = 10 cm

2. The optimal (and maximal) element spacing can be calculated to doptimal/maximal =λ/2 = 5 cm.

61
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3. The surface space available is 6U (30cm x 20cm) surface (REQ-GLAP-MECH-01). Initially the dimensions
of a single antenna element should be investigated. An example of a simple inset feed patch antenna
can be seen in figure 5.1.

Figure 5.1: schematic of inset feed patch antenna

The primary dimensions of such a patch antenna are the width (W ) and length (L). The sizing of these
dimensions are primarily based on the designed sensitive frequency (the center frequency of the signal)
of the permittivity of the dielectric substrate the patch antenna is printed on. A simple initial value for
W and L can be empirically approximated using equation (5.1) and (5.2)[16].

W = λ

2
p

0.5εr +1
(5.1)

L = c

2 fc
p
εr

(5.2)

where λ is the wavelength, c is the speed of light, fc is the designed center frequency and εr is the sub-
strate permittivity.

A common substrate used for patch antennas is an FR4 substrate, which permittivity is εr = 4.4[16].
Subsequently, a patch antenna on this substrate designed for a center frequency of 3 GHz (REQ-GLAP-TRACK-05)
will have the dimension of approximately W = 30.4 mm and L = 23.8 mm. Assuming a power consump-
tion of 0.5W (only Receive Capability) per element, implementing 24 antenna array elements results in
a power consumption of 12W, leaving 3W for a data processing unit. (REQ-GLAP-PWR-01)

4. When positioning the elements on the surface, one should make sure to leave space for possible con-
nectors, while trying to approach the optimal element spacing (50 mm). An optimally spaced antenna
array can be designed for a 6U surface using a URA of 6× 4 elements which also allows for enough
spacing for connectors and wires. This antenna array design can be seen in figure 5.2.

Figure 5.2: Proposed Design of Patch Antenna Array

5. 24 Elements is sufficient for geolocating four targets simulaneously, as 24 elements theoretically allows
for up to 23 targets. (REQ-GLAP-TRACK-04)
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6. A commercial ADC converter can easily sample the signals with a sample frequency of >2MHz, meaning
that due to the orbital-height, the sampling rate and satellite movement drift will not have a big impact
on the performance (figure 4.13). Therefor, the amount of samples should be maximized and depends
on available processing resources and broadcast time of the interference source. For example, if the
interference source only broadcasts for 5ms when in view, the maximum amount of obtainable samples
is N = fs ·T = 8000.

7. No statement is made about maximum allowed processing time, and thus is assumed that this is not of
importance. If processing time ends up being an important factor, one should use the Unitary ESPRIT
Algorithm

8. Due to the high amount of elements in the array compared to the maximum amount of expected in-
coming signals (REQ-GLAP-TRACK-04), the MUSIC is the algorithm should give the best performance.
(6×4 > 2 ·4)

Figure 5.3: Example Design of geolocation Satellite using the GLAP

The last unknown parameter for the simulation is the Additive Noise Z , calculated from the SNR. However
this can be calculated in similar fashion to chapter 4. Two important parameters for this are however, the
antenna element directivity and the equivalent noise temperature. These elements can be found by either
extensive simulation or analysis of the complete chain, or by measurements after implementation. For now
an assumption will be made of a directivity of 5 dBi (which is considered average for patch antennas [16]) and
an equivalent noise temperature of 100K (which is considered normal for satellite systems [25]). The SNR
calculated is the worst-case scenario, meaning that the incoming AoA of the interference source is θ = 30◦
which is the maximum assumed angle, thus:

• has the longest path and thus the maximum free-space loss

• is considered the half-angle of the antenna array, thus causing a pointing loss of 3 dB
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Transmit Parameters
1. Transmitted EIRP(10W) 10 dBW
Losses
3. Free-Space-Loss (f=3GHz,H=600km,θ=30◦) 158.67 dB
4. Pointing Loss 3 dB
Receiver Parameters
5. Receiver directivity (Patch antenna) 5 dBi
6. Noise Temperature 100 K
7. Max Bandwidth (50kHz) 47 dB-Hz
8. Noise Spectral Density -208.6 dBW/Hz

Power Summary
9. Received Power (1-3-4+5) -149.68 dBm
10. Received Noise (7+8) -161.6 dBm
SNR (9-10) 11.9 dB

Table 5.2: Calculation SNR for Mission Scenario

5.3. Performance of Proposed Satellite

Lastly, the AoA tool can be used to evaluate the performance of the geolocation process. The antenna array
parameters obtained in previous’ section are given by table 5.3.

Symbol Parameter Description Value
Payload Parameters

Z Additive Noise ratio of received Signal SNR = 11.9 dB
N Number of Samples 8000
M Amount of elements (M ×M) 4×6
d antenna array element spacing 5 cm

Table 5.3: Selected GLAP design parameters

These design parameters can be entered in the tool shown in figure 5.4. The tool also requires a satellite and
emitter location, in this example the location selected are shown in table 5.4. Finally, the predicted RMSE of
the geolocation system are given in table 5.5.

Symbol Parameter Description Value
Location Parameters

(λs , ψs ) Satellite Coordinates Eindhoven = ( 5.47◦,51.4◦ )
hs Satellite Height 600 km

(λ1, ψ1) Emitter Coordinates Paris = ( 2.35◦, 48.86◦ )

Table 5.4: Selected scenario location Parameters of Analysis
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Figure 5.4: Analysis of Geolocation Accuracy using the AOA Tool

Error Description RMSE Value
Elevation Angle 0.007◦
Azimuth Angle 0.01◦

Distance to Target 125m

Table 5.5: Results of RMSE after simulation





6
Conclusion

6.1. Summary and Key Outcomes
The research question of this thesis is to estimate the performance figures of Space-based Geolocation using
AoA, and to investigate the effect is of different design parameters on this performance. The algorithms re-
quired for geolocation are investigated, explored and a simulation framework is produced. The simulation
framework produced contains a front-end GUI allowing a user to interact with the simulation framework
without thorough understanding or knowledge about the Mathematics or specific algorithms. By using the
obtained simulation framework, multiple design parameters have been investigated and clear intuitive corre-
lations are found between design parameters and geolocation accuracy. These correlations are put together
in an overview for quick access. By using the obtained knowledge of the effects caused by design parameters
on the performance of geolocation, a recommended procedure is obtained on how to synthesise an optimal
design for a geolocation payload. The following statements can be made regarding the comparison between
the ESPRIT and MUSIC algorithms and the simulation parameters.

• The effect of the payload parameters (Z , N , M and d) on the geolocation performance can be approxi-
mated.

• The Payload parameter importance, excluding the SNR, based on influence on performance is M , fol-
lowed by d , followed by N .

• An array with more elements always performs better than an array with better spaced but less elements.
(More elements is always preferred over better spacing)

• ESPRIT / Unitary ESPRIT performs much better at low SNR (SNR < 0dB).

• Unitary ESPRIT outperforms ESPRIT in all (simulated) cases. Hence, when the array is cyclo-symmetric,
unitary transformation should always be performed.

• MUSIC performs much better then ESPRIT when the array has a higher amount of elements and not a
high amount of incoming signals (M 2 > 2D)

• Unitary transformation produces no significant benefit to the MUSIC algorithm when dealing with
exclusively incoherent signals.

• ESPRIT algorithms allow for much faster run-time then MUSIC Algorithms.

• The ESPRIT algorithms perform better on single-snapshot measurements.

6.2. Recommendations for Future Work
This project is only an initial exploitative research in space-based geolocation. Further study is necessary in
order to fully obtain the most optimal performance for space based geolocation. Approaches for this further
study can be to:

67
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• Create or develop an actual geolocation payload that uses the proposed algorithms, in order to fully
validate the obtained accuracy figures.

• Investigate more versions of the MUSIC and ESPRIT algorithms (such as root-MUSIC).

• Investigate more (pre-)processing schemes, such as spatial smoothing and transformations to the Beamspace
domain [2]

• Investigate different AoA algorithm such as Maximum-Likelihood algorithms.

• Extend the simulation by introducing more Noise figures and parameters, such as earth oblateness and
implementation losses.

• Investigate different Antenna Array Geometries, such as a uniform circular array, a filled circular array
or a more three dimensional L-shaped array.

• Extend the algorithms to include multiple observations (from maybe different agents) using, for exam-
ple, Kalman Filters or Particle Filters (State Observers).

• Extend the algorithms to fuse multiple satellite agents, flying in constellation or formation.

• investigate different geolocation techniques such as TDOA and FDOA.
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