

Delft University of Technology

Applications of Statistical Theory to Sensor Data Analysis

Ciszewski, M.G.

DOI
10.4233/uuid:628be99a-d5f1-4a60-a6dc-261e3b02cef2
Publication date
2024
Document Version
Final published version
Citation (APA)
Ciszewski, M. G. (2024). Applications of Statistical Theory to Sensor Data Analysis. [Dissertation (TU Delft),
Delft University of Technology]. https://doi.org/10.4233/uuid:628be99a-d5f1-4a60-a6dc-261e3b02cef2

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:628be99a-d5f1-4a60-a6dc-261e3b02cef2
https://doi.org/10.4233/uuid:628be99a-d5f1-4a60-a6dc-261e3b02cef2

Applications of statistical theory to
sensor data analysis

Applications of statistical theory to
sensor data analysis

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology,

by the authority of the Rector Magnificus prof. dr. ir. T.H.J.J. van der Hagen,
chair of the Board for Doctorates,

to be defended publicly on
Monday 14 October 2024 at 12.30 o’clock

by

Michał Grzegorz CISZEWSKI

Master of Science in Applied Mathematics,
AGH University of Krakow, Poland,

born in Zawiercie, Poland.

This dissertation has been approved by the promotors.

Composition of the doctoral committee:

Rector Magnificus, chairperson
Prof. dr. ir. G. Jongbloed, Delft University of Technology, promotor
Dr. J. Söhl, Delft University of Technology, copromotor

Independent members:
Prof. dr. A.J. Cabo, Delft University of Technology
Prof. dr. ir. K.M.B. Jansen, Delft University of Technology
Prof. dr. ir. F.H. van der Meulen, Vrije Universiteit Amsterdam
Prof. dr. H.E.J. Veeger, Delft University of Technology
Dr. K. Proksch, University of Twente
Prof. dr. H.M. Schuttelaars, Delft University of Technology, reserve member

Keywords: data analysis, statistics, sensor data, activity recognition, modelling

Printed by: Ipskamp Printing

Cover: Pezo Kazadi

Style: TU Delft House Style, with modifications by Moritz Beller
https://github.com/Inventitech/
phd-thesis-template

The author set this thesis in LATEX using the Libertinus and Inconsolata fonts.

ISBN 978-94-6473-581-9

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

https://github.com/Inventitech/phd-thesis-template
https://github.com/Inventitech/phd-thesis-template
http://repository.tudelft.nl/

v

Contents

Summary vii

Samenvatting ix

Acknowledgments xi

1 Introduction 1
1.1 Citius Altius Sanius . 1
1.2 Data . 2
1.3 Modelling and data analysis . 3
1.4 Outline . 5

2 Football activity recognition 7
2.1 Introduction . 7
2.2 Related work . 8

2.2.1 Machine learning for football activity recognition 8
2.2.2 Traditional machine learning approaches. 9
2.2.3 Deep learning approaches . 9
2.2.4 Background on deep learning 10

2.3 Materials and Methods . 12
2.3.1 Data and preparation. 12
2.3.2 Neural network architecture . 16
2.3.3 Post-processing and evaluation. 25

2.4 Results . 30
2.4.1 Training results . 30
2.4.2 Complete pipeline results . 33

2.5 Discussion . 37

3 Improving state estimation through projection post-processing for activ-
ity recognition with application to football 39
3.1 Introduction . 39
3.2 Improving classification by imposing physical restrictions 41

3.2.1 Post-processing by projection 41
3.2.2 Connection with the shortest path problem 43
3.2.3 Binary case. 45

3.3 Incorporating domain knowledge into the performance measure of classifi-
cation . 47
3.3.1 Problem-specific requirements on the performance measure 47
3.3.2 Globally Time-Shifted distance 48
3.3.3 Locally Time-Shifted distance and the Duration Penalty Term . . . 49

vi Contents

3.4 Application to activity recognition . 52
3.4.1 Simulation study . 52
3.4.2 Application to a football dataset 57

3.5 Conclusion . 60
3.6 Appendix . 61

3.6.1 Proofs . 61

4 Imputation methods for sensor reduction 67
4.1 Introduction . 67
4.2 Framework . 68

4.2.1 Functional regression . 68
4.2.2 Functional PCA . 70

4.3 Results . 71
4.4 Conclusions and discussion . 73

5 Testing for no effect in regression problems: a permutation approach 75
5.1 Introduction . 75
5.2 Methodology . 76

5.2.1 Problem description . 76
5.2.2 Permutation tests in the existing literature 77
5.2.3 Permutation approach to testing for no effect 79

5.3 Application . 82
5.3.1 Simulation study . 82
5.3.2 Tennis serve dataset . 93

5.4 Conclusion and discussion . 99

6 Conclusion 101

Bibliography 105

Glossary 114

Curriculum Vitæ 115

List of Publications 117

vii

Summary

Technological progress irreversibly changes the nature of sports. The relevance of technol-
ogy in sports can be seen with relative ease to most spectators in tennis, football and many
other elite sports. Some technologies have changed the sport in a way that many spectators
might not be aware of. Behind any professional sport, there are countless hours of training
and preparation. Athletes are pushing their own limits in achieving perfection. Coaches
are trying to make sure that the training the athletes go through results in improvement of
their performance, but without straining themselves too much which can lead to an injury.
The technology of today helps with this training process and coaches need to be able to
use it to provide good feedback to their athletes.

This thesis is written in the context of the Citius Altius Sanius (CAS) project aimed
at injury prevention and performance improvement in sports. The CAS project combines
the expertise of data scientists, industrial designers and biomechanical engineers together
with the resources of sports associations and sports equipment designers among others.
The goal of the CAS project is to initiate collaboration between various universities and
departments to develop sensor technology, provide analysis based on the sensor data and
provide a clear guideline of feedback to the athlete.

The primary goal of this thesis is to extract meaningful insights from sensor data
through statistical modeling. Two sources of sensor data are used within the thesis: data
from prototype sensor trousers worn by football players during training and data from a
sensor sleeve worn by tennis players during serve practice. The research employs super-
vised learning algorithms within the framework of machine learning and deep learning
models for capturing intricate patterns in the data as well as functional data analysis
techniques such as functional principal components analysis and functional regression
models applied for imputation purposes and dimension reduction.

We used neural network architecture, which mixes both convolutional and recurrent
layers, consistently throughout this thesis. The main application of this network lies in
recognizing football-related activities using sensor data. The neural network achieves good
accuracy and is easily adaptable to other human activity recognition problems. We also
considered various other models for this task, however none could match the computational
speed and accuracy of the neural network. Nonetheless, given a plethora of methods that
were tested and dissatisfaction with the accuracy measures used to assess the goodness-of-
fit of the tested methods, a novel quality measure was introduced for activity recognition
problems, to leverage the domain knowledge for the purpose of determining accuracy of
an activity recognition method. In the case of our application, one of the constraints is the
length of activities that are predicted. This measure accounts for the fact that activities
such as jumping or passing a ball realistically have a minimum duration. Instances where a
prediction model outputs an activity shorter than physically plausible incur harsh penalties.

We also propose a novel post-processing procedure tailored specifically to human ac-
tivity recognition problems, ensuring that predictive models adhere to physical constraints,

viii Summary

such as the minimum duration of activities. This post-processing method aims to increase
the accuracy of prediction models which violate these constraints and as a result, to narrow
the gap in accuracy between different prediction methods.

In the context of tennis, we encountered difficulties in predicting the serve performance
metrics using sensor data. While predicting the ball speed can be easily achieved, accurately
predicting the velocity-accuracy index (VA index), which combines ball speed with serve
accuracy, proved more complex. To assess the effectiveness of our model in distinguishing
true predictions from noise, we applied a permutation test. Notably, the main contribution
of this research lies in the rigorous formulation of the null hypothesis for this test, linking
it to established permutation test theory.

This research contributes to the fields of sports science and data analysis by offering
insights into activity recognition and performance prediction using sensor data. The
methodologies developed here have potential applications across various other sports as
well as activities unrelated to sports. While data provided for purposes of this research
comes from wearable sensors, it is possible to also apply these models and procedures in
other types of sensor data or even beyond.

ix

Samenvatting

Technologische vooruitgang verandert de aard van sport onomkeerbaar. De relevantie
van technologie in de sport is voor de meeste toeschouwers van tennis, voetbal en vele
andere topsporten relatief gemakkelijk te zien. Sommige technologieën hebben de sport
veranderd op een manier waarvan veel toeschouwers zich misschien niet bewust zijn.
Achter elke professionele sport gaan ontelbare uren training en voorbereiding schuil.
Sporters verleggen hun eigen grenzen om perfectie te benaderen. Coaches proberen ervoor
te zorgen dat de training van de atleten resulteert in een verbetering van hun prestaties,
maar zonder zichzelf te veel te belasten, wat kan leiden tot blessures. De technologie van
tegenwoordig helpt bij dit trainingsproces en coaches moeten deze technologie kunnen
gebruiken om goede feedback te geven aan hun atleten.

Deze scriptie is geschreven in het kader van het Citius Altius Sanius (CAS) project
gericht op blessurepreventie en prestatieverbetering in de sport. Het CAS-project com-
bineert de expertise van datawetenschappers, industrieel ontwerpers en biomechanisch
ingenieurs met de middelen van onder andere sportbonden en ontwerpers van sportu-
itrusting. Het doel van het CAS-project is om een samenwerking tussen verschillende
universiteiten en afdelingen op gang te brengen om sensortechnologie te ontwikkelen,
analyses te maken op basis van de sensordata en duidelijke feedback aan de sporter te
geven.

Het primaire doel van dit proefschrift is om zinvolle inzichten uit sensordata te halen
door middel van statistische modellering. In dit proefschrift worden twee bronnen van
sensorgegevens gebruikt: gegevens van een prototype van een sensorbroek die door voet-
balspelers tijdens de training wordt gedragen en gegevens van een sensorhoes die door
tennisspelers tijdens de serveertraining wordt gedragen. Het onderzoek maakt gebruik
van supervised learning algorithmen binnen het kader van machine learning en deep
learning modellen voor het vastleggen van ingewikkelde patronen in de gegevens, evenals
functionele dataanalysetechnieken zoals functionele principale componentenanalyse en
functionele regressiemodellen die worden toegepast voor imputatiedoeleinden en dimen-
siereductie.

We hebben in dit proefschrift consequent gebruik gemaakt van een neurale netwerkar-
chitectuur, die een mix is van convolutionele en terugkerende lagen. De belangrijkste
toepassing van dit netwerk ligt in het herkennen van voetbalgerelateerde activiteiten met
behulp van sensordata. Het neurale netwerk bereikt een goede nauwkeurigheid en is
gemakkelijk aan te passen aan andere menselijke activiteitsherkenningsproblemen. We
hebben ook verschillende andere modellen overwogen voor deze taak, maar geen daarvan
kon de berekeningssnelheid en nauwkeurigheid van het neurale netwerk evenaren. Gezien
de overvloed aan geteste methoden en de ontevredenheid over de nauwkeurigheidsmaten
die gebruikt werden om de goodness-of-fit van de geteste methoden te beoordelen, hebben
we een nieuwe kwaliteitsmaat geïntroduceerd voor activiteitenherkenningsproblemen, om
gebruik te maken van de domeinkennis om de nauwkeurigheid van een activiteitsherken-

x Samenvatting

ningmethode te bepalen. In het geval van onze toepassing is een van de beperkingen de
lengte van de activiteiten die worden voorspeld. Deze maat houdt rekening met het feit
dat activiteiten zoals springen of het passen van een bal realistisch gezien een minimale
duur hebben. Als een voorspellingsmodel een activiteit voorspelt die korter is dan fysiek
plausibel, wordt dit zwaar bestraft.

We stellen ook een nieuwe post-processing procedure voor die specifiek is afgestemd op
menselijke activiteitsherkenningsproblemen en die ervoor zorgt dat voorspellendemodellen
zich houden aan fysieke beperkingen, zoals de minimale duur van activiteiten. Deze post-
processing methode heeft als doel om de nauwkeurigheid van voorspellingsmodellen die
deze beperkingen schenden te verhogen en daardoor de kloof in nauwkeurigheid tussen
verschillende voorspellingsmethoden te verkleinen.

In de context van tennis ondervonden we moeilijkheden bij het voorspellen van de
prestatiemetingen van de opslag met behulp van sensorgegevens. Het voorspellen van
de balsnelheid is eenvoudig, maar het nauwkeurig voorspellen van de velocity-accuracy
index (VA index), die de balsnelheid combineert met de serveernauwkeurigheid, bleek
ingewikkelder. Om te beoordelen hoe goed ons model werkt om ware voorspellingen te
onderscheiden van ruis, hebben we een permutatietest toegepast. De belangrijkste bijdrage
van dit onderzoek ligt in de strikte formulering van de nulhypothese voor deze test, die
gekoppeld is aan de gevestigde theorie van permutatietests.

Dit onderzoek draagt bij aan de sportwetenschappen en data-analyse door inzicht te
bieden in activiteitsherkenning en prestatievoorspelling met behulp van sensordata. De
hier ontwikkelde methodologieën hebben potentiële toepassingen in verschillende andere
sporten en activiteiten die niet gerelateerd zijn aan sport. Hoewel de gegevens voor dit
onderzoek afkomstig zijn van draagbare sensoren, is het mogelijk om deze modellen en
procedures ook toe te passen op andere soorten sensordata of zelfs nog meer.

xi

Acknowledgments

I never imagined that I would successfully complete my PhD. This entire journey was
challenging and tumultuous, but it became the most rewarding five years of my life. What
began during the pandemic, initially a difficult time, proved to be a blessing in disguise.
Those early months of isolation allowed me to lay the groundwork for the paper published
three years later, now represented in Chapter 3. It served as proof that I could contribute
meaningfully, and deserved to finish this PhD. Ultimately, this thesis would not have been
possible without the support of many people, whom I wish to thank in this section.

Jakob, thank you for your patience with me and the time you have spent to help me.
Thank you for pushing me to be better at communicating and collaborating. Thank you
for instilling confidence in me and helping me to be more assertive.

Geurt, thank you for your expertise and many unconventional suggestions to lead
me to the solutions of my problems. Thank you for supporting me through the years and
making sure I was passionate about the direction this project went in. I would be remiss,
if I did not thank you for your humor, the witty remarks and attempts at spelling Polish
words.

I would like to thank all my collaborators. Kaspar, thank you for teaching me how to be
a better supervisor. I cherish the memories of our joint supervision of students. Bart, Ton,
Annemarijn and Erik, thank you for data collection, sensor design and your invaluable
feedback regarding my research. Rafael and Ricardo, thank you for your contributions in
creation and improvement of the activity recognition model. I would also like to thank
NWO for funding this PhD project and making it all possible.

Thank you to all my friends and colleagues. Vicente, Ivet and Frederick, thank you
for your friendship, camaraderie and our board game nights. Ardjen, Jan-Tino, Serena,
Francesco, Marc, Andrea, thank you for being part of my PhD journey. Bart, thank you
for your suggestion to the paper on which Chapter 3 was eventually based on.

Dziękuję również mojej rodzinie za pomoc, motywację, cierpliwość, wyrozumiałość i
wsparcie w trakcie tego doktoratu: moim rodzicom, siostrze Julii, dziadkowi Jurkowi,
ś.p. dziadkowi Piotrkowi, babci Ani i babciWenii.

Also thank you to my family in-law, who supported me throughout this process:
parents in-law, Kanyabu, Sakwasa and Mibenge.

Last, but most certainly not least, Pezo, thank you for your love, support and patience.
Your belief in me has been the cornerstone of this journey, and this PhD would simply
have been impossible without you by my side.

Inspired by my supervisors, supported by the love of my wife, and encouraged by the
comfort of friends and family, I have reached the final destination of this incredible journey.
I can finally say I am truly proud of what I have achieved.

Michał
Rotterdam, August 2024

1

1

1
Introduction

Since the advent of professional sports, new technologies have been enhancing training
methods, influencing the equipment design, and providing data-driven insights for strategic
decision-making for coaches. In recent years we have seen many examples of technol-
ogy changing crucial parts of certain sports. One such example is the Hawkeye system
introduced in early 2000s to professional tennis matches. Initally, it served as a supporting
mechanism to the work of the line umpires. Now, Grand Slams do not even employ line
umpires and in 2025 the Association of Tennis Professionals (ATP) announced that all ATP
tournaments will use electronic line umpires. Another example is the goal-line technology
in football. Throughout the history of football, many human-made mistakes led to the
unfair allowing or disallowing of goals, most famously in the recent history during the 2010
World Cup, in which England was not given a goal despite the ball crossing the goal line.

These examples show that technology has permeated sports and redefined the way in
which rules of the game are applied. More than that, technology can refine the performance
of athletes through the use of camera system or wearable sensors and providing direct
feedback. Tools and insights offered to the elite athletes are immense and can simulate
coaching, analyze the performance and potentially reduce injury risks.

1.1 Citius Altius Sanius
This thesis represents one of the outcomes of the Citius Altius Sanius (CAS) program.
The project’s name, a play on the Olympic motto, translates from Latin to mean "quicker,
higher, healthier". Initiated in 2017 and led by TU Delft and Vrije Universiteit Amsterdam,
CAS is a research program with a primary focus on injury prevention and performance
improvement in sports.

The primary motivation for the project stems from the numerous diseases, includ-
ing coronary heart disease, obesity and type II diabetes, primarily caused by prevailing
sedentary lifestyle and unhealthy diet. In many ways, regular physical activity acts as a
counterbalance to this unhealthy lifestyle. On the other hand in elite sports, a rigorous
training regimen coupled with limited rest can lead to an increased risk of muscle injury.

The CAS program is dedicated to encouraging people to engage in physical activities
more frequently. To achieve this goal, the program leverages data science and sensor

1

2 1 Introduction

technology, aiming to provide feedback to individuals during exercise regarding their
performance and exertion.

Figure 1.1: The overview of different subprojects within
the CAS program.

The program comprises three funda-
mental projects and six applied projects,
see fig. 1.1. The fundamental projects fo-
cus on sensor technology (P1), data science
(P2) and feedback (P3). This structured ap-
proach follows a pipeline: sensors are de-
veloped in subproject P1, then data pro-
duced are analyzed and distilled in subpro-
ject P2. Finally results from these analyses
develop into motivational feedback for the
athlete in subproject P3. Six applications
were selected to cover most sport injuries
in the Netherlands: fitness and strength training (P4), running (P5), football and field
hockey (P6), tennis and baseball (P7), heat stroke (P8) and cycling (P9), see fig. 1.1.

Figure 1.2: Sensor trousers prototype with fully embed-
ded sensors developed within subproject P1 of the CAS
program. Taken from [1].

Especially relevant to this thesis are
subprojects P2, P6 and P7. This disserta-
tion provides models for the sensor data as
well as its analysis, which contributes to
subproject P2. Subprojects P6 and P7 specif-
ically focus on football and tennis, both sup-
ported by national associations (KNVB for
football and KNLTB for tennis). Data gath-
ered in P6 and P7 are the essential part of
the application of our models. The primary
goal of the CAS program is injury preven-
tion and performance enhancement and in
the process of addressing those topics it is
important to automatically recognize activ-
ities performed by an athlete. Quite often,
sensor data are partly missing and data im-
putation techniques can potentially be em-
ployed to be able to recognize activities in
spite of this. This thesis covers the topics of
activity recognition and data imputation.

1.2 Data
Wearable sensors have evolved rapidly in recent years and have found widespread applica-
tions, also in the realm of sports. In football, players routinely wear vests equipped with
GPS trackers, offering detailed insights into their location, distance traveled, speed, power,
intensity and heart rate. One of the achievements of the CAS program is the development
of the trousers with embedded sensors (fig. 1.2). The unobtrusive nature of these sensors,
combined with the low production cost, makes them a highly appealing alternative to a
camera system, which is much more expensive and unavailable to most amateur athletes.

1.3 Modelling and data analysis

1

3

Figure 1.3: Segment model of right-handed player
and racquet (back view, frontal plane) demonstrat-
ing sensor placement. Taken from [2].

The sensor trousers were specifically devel-
oped for use in football for subproject P6. The
football sensor data used in this thesis origi-
nate from experiments utilizing these trousers.
For gathering tennis data in subproject P7 sen-
sors were attached directly to the body. In both
cases, Inertial Measurement Units (IMUs) were
employed to measure characteristics of specific
body parts. Each IMU contains a tri-axial ac-
celerometer, gyroscope and magnetometer. The
accelerometer measures acceleration, the gyro-
scope measures angular velocity and the mag-
netometer measures the magnetic field. Magne-
tometer data were not used in this thesis. These
were only used during the data formatting pro-
cess to correctly orient the data.

The placement of sensors naturally depends on the activities that are performed. In
football, the sensors were strategically placed on five body parts: pelvis, thighs and shanks,
each crucial to football-specific activities such as kicking, running and jumping. The
sensor trousers are equipped with sensors corresponding to each of these body parts. For
tennis-specific activities, sensors were positioned on four key body parts: pelvis, trunk,
upper arm and lower arm of the dominant side (fig. 1.3). The tennis data used in this thesis
specifically pertains to tennis serves; sensors on other body parts, such as the legs, were
not attached.

1.3 Modelling and data analysis
In the pursuit of extracting meaningful insights from the wealth of sensor data, the focus
shifts to modelling. This section dives into the intricate process of using data to predict and
recognize various physical activities or performance metrics related to physical activity.
The main goal of this research project is to understand the patterns within the sensor data,
allowing us to address issues of activity recognition, missing data and prediction. The aim
is to apply existing techniques to the sensor data whenever available and to contribute to
the broader knowledge by introducing our own methods when necessary. We will now
explore the relevant topics regarding modelling in this thesis.

Machine learning
Machine learning is a broad field within mathematics and computer science, focused on
deriving patterns from training data and generalizing to unseen data. Generalization,
a fundamental concept in machine learning, emphasizes a model’s capacity to use the
training data to make accurate predictions on new, unseen data. As the name suggests, the
idea behind machine learning is to imitate the process of learning. The field is typically
categorized by the type of input. Supervised learning involves machine learning algorithms
that learn based on patterns present in the training data; patterns supplied into the training
data in the form of labels. On the other hand, unsupervised learning refers to algorithms that

1

4 1 Introduction

find patterns in unlabeled data. This approach can help separate data into subsets, revealing
similarities between the data in each subset. This thesis will exclusively employ supervised
learning algorithms thanks to the data available to us and thanks to the research goals.
Classic machine learning techniques include linear regression, decision trees, K-nearest
neighbor algorithm and support vector machines.

Deep learning models
Deep learning models, characterized by their multi-layered neural architectures, have
demonstrated an ability to capture intricate patterns and representations such as images
or videos. The shift from traditional machine learning techniques towards deep learning
allows us to make use of complex data structures, while effectively handling large volumes
of data. They also capture non-linear relationships in data, which can be much harder
to achieve for traditional machine learning techniques usually requiring human input.
However, deep learning models are inherently harder to interpret and require significant
computational resources to train. Different neural network architectures are considered in
this thesis and are explained in more detail in later chapters.

Functional data analysis
Representation of data is an important topic to consider when modelling. Sensor data
consists of multivariate time series. However, sometimes it is better to represent time
series data as a set of smooth functions. Functional data introduces the concept of treating
functions as data points, where each function becomes an element of the dataset. This
representation better handles irregularly sampled data and reduces the dimensions of the
dataset. It also allows to use advanced statistical techniques tailored for functional data
analysis, which leverage the structure of the data to extract patterns. We use functional
data analysis for the purposes of data imputation, exploring the idea of what would happen
if we remove one or two IMUs from the analysis and replace them with imputed data
learned from all the other sensors and how that could impact the analysis.

Quality measures
The last step of modelling is finding an appropriate quality measure. Optimally, a quality
measure answers a question of how well does a particular model match the data? When
choosing the quality measure, we need to consider what we find to be the most important
feature of quality and then translate it into a mathematical concept. Consider a model
that assigns one of two possible labels. Given such a binary outcome, many different
quality measures can be used, such as the misclassification rate, the false positive rate
and the 𝐹 score. There is no definitive right choice; it all depends on our application and
how one wants to use it. In this thesis, we introduce a novel quality measure for activity
recognition. To define the measure, multiple parameters can be selected based on the
domain knowledge, e.g. the minimum length of activities we recognize, which allows
greater level of adaptability to a specific application.

1.4 Outline

1

5

1.4 Outline
This thesis centers around two separate topics. The first is the activity recognition of
football-specific activities. Chapter 2 describes neural network architectures, which are
designed for prediction of football activities. Multiple architectures are considered and
compared with regards to their performance on the football sensor data. The models
proposed in this chapter can be applied in other human activity recognition problems as
well. Chapter 3 addresses the problem of football activity recognition and proposes a new
post-processing scheme exploiting domain knowledge. This post-processing method allows
to eliminate unrealistic activity predictions made by the model and as an effect, increases
the accuracy of the model. It also presents a novel quality measure for activity recognition
problems. This measure accounts for the fact that activities such as jumping or passing a
ball realistically have a minimum duration. Chapter 4 revisits the framework of Chapter 2
and explores the impact of removing sensors from the dataset, replacing the associated
data with imputed features predicted using all the other sensors. This is a relevant problem
as some sensors can be removed for the next redesign of the sensor trousers and we would
like to use the already developed model on a smaller dataset.

The second topic considered in this thesis is the prediction of ball speed and the so-
called VA index of tennis serves, which combines speed with the accuracy of the shot.
Chapter 5 examines the capabilities of the chosen model to capture a relationship between
explanatory variables 𝑋 and the response variable 𝑌 . A permutation test is considered
with a novel formulation of the null hypothesis. One of the advantages of this test is that it
does not rely on performance comparison between different models. Only one model is
considered and the test either rejects the null hypothesis, which means that the model can
capture some relationship between 𝑋 and 𝑌 or does not reject it, in which case the model
might not be able to do so. The test does not require sample splitting which is especially
important when the sample size is small. The method is later applied to the tennis serve
data and the prediction of the ball speed and the VA index. Two models were considered, a
linear regression model and a deep learning model with a specific architecture. The test
rejected the null hypothesis for both models in the case of the prediction of the ball speed,
but it did not reject the null hypothesis for either of them in the case of the VA index
prediction. In this case, the test gave evidence that a seemingly well-fitting model is not
necessarily trustworthy.

2

7

2
Football activity

recognition

2.1 Introduction
The world of sports has seen a continuous and rapid increase in the usage of technology in
both competition and training during the last decades. Specifically in football (soccer), it is
nowadays common to see players training and even playing competitive matches wearing
vests with GPS trackers below their shirts. These vests can track the players during the
whole training or match and give information about their location, distance traveled, speed,
power, intensity, and heart rate, among others. These values can be processed to give the
players, trainers, and journalists a very detailed analysis of each player’s performance.
During the last decade, the scientific community has shown important advancements in
Human Activity Recognition (HAR) and, since technology and sports have developed a
mutually beneficial relationship, there is a higher demand for systems capable of recognizing
specific football-related activities.

If a coach, team, or player has information about which activities the player performs
during a match or training, it enables a more detailed analysis of the player’s performance.
A more complete assessment of the player’s movements and loads gives the teams the
possibility of better training planning, a personalized follow-up to each player, and even a
potential way to prevent, treat, and understand injuries. Nowadays, activity classification
is done either manually or with the aid of cameras. To this end, it is required to have a
large number of high-quality cameras equipped with artificial vision technologies or a
considerable number of human labelers. Both of these two options are very expensive and
can only be afforded by elite teams. This problem calls for the usage of a low-cost activity
recognition system that is also affordable for smaller teams. Sensors are continuously being
developed to be smaller, cheaper, and highly accurate (for example, [4]), so their use is a
clear solution to this problem. They can be incorporated into the player’s sportswear and
provide reliable, real-time measurements of different body parts.

This chapter is based on R. Cuperman, K.M.B. Jansen, M. Ciszewski. An end-to-end deep learning pipeline for
football activity recognition based on wearable acceleration sensors, Sensors, 2022 [3].

2

8 2 Football activity recognition

This chapter studies the usage of deep learning-based models for football (soccer)
activity recognition based on acceleration and angular velocity signals obtained from
Inertial Measurement Unit sensors (IMUs). This is done in contrast to traditional machine
learning approaches, in which a non-neural network-based model, such as k-nearest
neighbors (kNN), decision tree, or support vector machine (SVM), is used to recognize an
activity. Traditional methods make simpler and linear connections between the explanatory
variables and the outcome, while the deep learning models are able to detect complex
patterns (often non-linear). Furthermore, with this work, it is intended to use the raw
signals from the IMUs and evaluate how robust the deep models are with respect to the
signals acquired on different players. This is why little or no pre-processing will be applied
to the sensor outputs, trying to recreate real-life scenarios. Different deep architectures will
be proposed for the models and their performance and evaluation time will be examined.
Furthermore, a complete training and evaluation pipeline will be designed, in which also
the preparation of the training dataset and the strategy for the evaluation phase via a
sliding window approach will be taken into account.

The way this chapter is structured is as follows. A literature review of the state of the art
of methodologies based on sensors in the field of Human Activity Recognition is presented
in Section 2. In it, both traditional machine learning and deep learning approaches are
shown with their comparison of results, best practices, and challenges. Section 3.1 presents
the dataset that was used for training and validating the models. An activity detection
algorithm is presented, which is needed for the training phase. In Section 3.2, the training
of several deep learning models is thoroughly explained and discussed; and in Section
3.3, the proposed evaluation pipeline is presented, with which the activities present in a
given recording can be effectively recognized. The results of the training scenarios and the
complete pipeline are shown in Section 4, which are then discussed in Section 5 with the
conclusive remarks and future research recommendations.

2.2 Related work

2.2.1 Machine learning for football activity recognition

Identifying and recognizing human activities using signals obtained from Inertial Mea-
surement Sensors (IMUs) is an area of machine learning and signal processing that has
recently been studied by several authors. Recognition of daily activities, such as walking,
climbing stairs, or sitting is especially popular amongst researchers, due to the availability
of public domain datasets composed of these types of movements, and the possibility to
easily compare the results with previous works [5–12]. On the other hand, studies on
recognition of sport-specific activities (such as football, tennis, table tennis, or golf) are
less frequent because building these types of datasets is difficult due to the costs involved
in resources and time [13–19]. However, since the nature of signals is in many cases the
same, it is possible to build upon the works of authors who have studied Human Daily
Activity Recognition to build accurate and efficient methods designed for an application in
a specific sport. The focus of our study is the application in football (soccer).

2.2 Related work

2

9

2.2.2 Traditional machine learning approaches
Human Activity Recognition applications can be developed based on two types of algo-
rithms. The first one will be referred to as traditional machine learning approaches, in
which the input features from the signals are manually defined and extracted. This pro-
cess is not only heavily manual and subjective but is also extremely time-consuming [6].
Common choices of those features are the mean, standard deviation, maximum, minimum,
kurtosis, and coefficients of the Fast Fourier Transform [5]. After that, classification is
performed using traditional (non-neural network based) algorithms, such as Support Vector
Machines (SVM), Decision Trees (DT), k-Nearest Neighbors (kNN), among others.

Several research papers have been written in which Human Activity Recognition is
made with these approaches. In all of them, a manually selected set of features is extracted
from the signals, usually containing a combination of time- and frequency-domain metrics.
The majority of those works focus on daily human activities [6–12]. Others consider
specific sports, such as table tennis [13], tennis [14], skateboarding [15], or volleyball
[16]. Among the reviewed articles, ref. [17] studied Human Activity Recognition with
application on football. They reported an accuracy of 88.6% on their dataset when using
linear SVM. Some years later, ref. [20] developed other algorithms to further explore
Football Activity Recognition. In that work, they developed a hierarchical architecture to
recognize fullinstep kicks, side-foot kicks, or null activities (other movements different
from kicks, such as dribbling or running). Their method includes an initial filtering of the
signals followed by a peak detection algorithm. The detected peaks are then isolated, a set
of several manually selected features are extracted for each peak, and finally, the movement
is classified as either a kick or not. They achieved an accuracy of 94% using a Naive Bayes
classifier.

With traditional machine learning algorithms, performing additional pre-processing
is often necessary. Various pre-processing techniques are used: filtering [7, 13, 16–18],
normalization, standardization [13, 16, 18], and the usage of norms [7, 13, 16, 17] are
common practices. Stroke detection is also frequently used in sports-related applications
[13, 14, 16, 18].

2.2.3 Deep learning approaches
“The traditional feature engineering methods are becoming more and more incapable”
[21]. The second approach for Human Activity Recognition is based on neural networks.
Deep learning approaches are able to extract complex and non-linear patterns from mul-
tidimensional data. This is one of the reasons why recent researchers in areas such as
Human Activity Recognition have abandoned traditional approaches in favor of deep
learning architectures [22]. An additional important consideration is the general lack of
a pre-processing phase of the sensor signals prior to their input into the deep networks.
When working with deep learning architectures, the raw signals from the sensors can be
used directly.

Moreover, recent works have shown that the use of deep learning approaches for
Human Activity Recognition is not only beneficial in terms of feature extraction, but also in
achieving high accuracy. The study performed in [5] does an extensive review of different
approaches for Human Activity Recognition, and concludes that, on average, traditional
machine learning algorithms obtain an accuracy of 83.3%, while systems based on deep

2

10 2 Football activity recognition

learning achieve a much better 94.9%. They also expressed that there are more studies
around traditional machine learning algorithms in comparison to deep learning ones, which
shows that the use of the latter in Human Activity Recognition tasks is promising, but not
yet fully explored.

No relevant scientific publications related to the use of deep learning approaches
with sensor data for football activity recognition were found, whereas a large amount of
works where these types of algorithms are used for Human Daily Activity Recognition is
available. Since the nature of the signals and the ultimate goal of those studies are very
similar to the objective of this chapter, their methodology and results were considered.
Convolutional Neural Networks (CNNs) are very popular because “CNN-based models are
able to extract and leverage latent feature representations in time series with high tolerance
of time translation; thus, results outperform methods based on hand-crafted features” [19].
In that paper, many different deep architectures were reviewed: from CNN composed
of consecutive convolutional layers to more complex and modern possibilities, such as
inception CNN and residual CNN. However, “ (...) CNN lacks the capability to capture
temporal dependency in time-series sensory data. RNNs (Recurrent Neural Networks)
are designed to model time series data, and are suitable for discovering relationships in
temporal dimension” [23]. This is the reason why the usage of Recurrent Neural Networks
was also evaluated by other authors, mainly using Long Short-Term Memory (LSTM) units.
A very interesting approach is the combination of CNNs and RNNs to build a larger and,
according to the authors of such papers, better performing network. Examples of such
architectures are the ones proposed by [21–24], where usually an RNN (mainly composed
of LSTM units) extracts temporal relations of the signals following a feature extraction
process made by a CNN.

2.2.4 Background on deep learning
Unlike traditional machine learning algorithms, deep learning refers to the use of models
based on stacked layers of artificial neural networks. By using multiple layers, it is possible
to train the model to progressively extract and learn complex features from the inputs. This
has a huge advantage over traditional machine learning algorithms since deep learning
models perform both feature extraction and the specific machine learning task. There
are many different types of neural networks based on variations of the basic structure of
artificial neurons. In particular, this work focuses on two of those types: Convolutional
Neural Networks and Recurrent Neural Networks (specifically LSTMs).

Convolutional neural
Convolutional Neural Networks (CNNs) are a type of deep learning models that were
originally designed to tackle artificial vision and image processing problems. Studies on
vision and perception of shapes in the human brain showed that the neurons responsible
for those tasks have receptive fields, which means that each cell responds to a specific
pattern. The combination of these simple patterns generates more complex ones that are
furthermore combined so that the brain can finally interpret and understand the image.
Convolutional neural networks try to replicate this behavior and have shown impressive
results in a huge variety of machine learning applications. Although originally designed

2.2 Related work

2

11

for recognizing shapes and figures in images, CNNs can also be used to extract patterns
from signals. The general idea of CNNs is based on two types of operations [25]:

• Convolution. In a convolutional layer, the input data are convolved with a certain
number of kernels or filters. A filter 𝑘 is traversed through all the points of the input
image (or signal) and on each location, the convolution between the filter and the
overlapping area of the data is calculated. The usage of each filter results in a new
convolved image (or signal) called a feature map. The combination of all the 𝑘 filters
with different weights then generates a set of 𝑘 feature maps.

• Pooling. It is a common practice to include pooling layers after convolutional ones.
These types of layers condense information from spatially or temporally close points
to reduce the data size. In neurology, a receptive field of a neuron is defined as the
region in which the presence of a stimulus triggers the response of that particular
neuron [26]. Pooling layers introduce the concept of receptive fields into CNNs
because they condense information of neighboring points of the convolved data
into a single value. Many types of pooling layers can be used, but one of the most
common is the max pooling layer. This operation defines a small block (also called a
filter) and runs it on top of the input data of the layer. At each point, the maximum
of the values contained on the overlapping area of the data and the filter is extracted
and the output image (or signal) is built with those maximum values. Pooling layers
have the additional property that they reduce the size of the feature maps, which
translates into fewer weights to be learned by the model. The outputs of these layers
are smaller feature maps, but each element of those maps has information about its
neighbors from the previous layer.

Recurrent neural networks and LSTM
Recurrent Neural Networks (RNN) are a type of deep learning models that are especially
designed to work with data that have an underlying temporal sequence. Because of that,
they are typically used for Natural Language Processing and Signal Understanding. With
this type of data, it is important to take into account past information since the information
is treated as a sequence and what has happened in the past has influence on what will
happen in the future. Based on this idea, RNNs are able to “remember” prior inputs when
generating the output, which are based not only on the current input vectors, but also on
the so-called hidden state vectors that carry information about prior data [25, 27].

A major drawback is found when training RNNs due to a problem called “vanishing
gradients”. Basic RNNs are unable to remember long-term dependencies because the
gradients that are used to train the model tend to disappear as the input sequence grows in
length [28]. When training deep learning models, small gradients are undesirable as the
training takes longer and, as a result, becomes less effective.

When working with sequence data such as signals produced by a set of sensors, it is
important to have a model able to handle long-term dependencies. This is the reason why
more complex RNN cells were developed. Long Short Term Memory (LSTM) cells are one
of the most common RNN networks that are used to overcome that problem [27]. They are
built upon the basic RNN cells in which prior information is captured in hidden cells and
used to generate outputs.

2

12 2 Football activity recognition

In order to understand how LSTMs work, it is easier to analyze them by parts. One of
the most important properties of LSTMs is their capacity to easily propagate information
from one cell to another. This is implemented by the cell state 𝑐𝑡 , which can run through the
cell with only minor linear modifications. The cell state is the heart of the LSTM and is what
carries past information of the input sequence. LSTMs can add or remove information from
the cell state by using structures called gates, which are themselves regular feed-forward
neural networks operating mainly with an input tensor x and a hidden tensor h. There are
three gates in an LSTM unit:

• Forget gate This gate is responsible for deciding what information must be forgotten
(removed) from the cell state. To do so, it concatenates the hidden state at time 𝑡 −1
(ℎ𝑡−1) and the current input 𝑥𝑡 and calculates a value between 0 (forget) and 1 (keep)
for each element of the cell state 𝑐𝑡−1.

• Input gate This gate is responsible for deciding what new information will be stored
in the cell state and where. It is composed of two parts. The first part calculates
candidate values to potentially update the cell state, and the second part decides
which parts of the cell state must be updated with those candidate values. This
completes the update of 𝑐𝑡−1 into 𝑐𝑡 determined by the forget and input gates.

• Output gate This gate is responsible for deciding which elements of the cell state
will be given as the output of the LSTM unit. Only the desired parts of the cell state
are output as the new hidden state values ℎ𝑡 .

2.3 Materials and Methods
2.3.1 Data and preparation
Data collection procedure
This work used data acquired by [29] for the training phase and an initial evaluation. For
more information and details on the data collection procedures, see [29]. The experiments
there conducted included 11 male soccer players with 5 IMUs (Ivensense MPU-9150)
attached to their bodies in the following locations: pelvis, right thigh, left thigh, right
shank, and left shank, as shown in fig. 2.1a and fig. 2.1b. Each one of the IMUs had a
tri-axial accelerometer, gyroscope, and magnetometer. The range for the accelerometers
was set to ±16 g and for the gyroscopes to ±2000°/s (the magnetometers’ range was not
specified. However, they were not used in this work). The sampling frequency of the
signals was set to 500 Hz. The sensitivity (with 16 bits) of the accelerometers was set to
2048 LSB/g and of the gyroscopes to 16.4 LSB/(°/s). Each one of the participants executed
a set of well-specified football-related activities, including passes, shots, jumps, sprints,
among others. The experiments were designed in order to simulate an actual football match
to have reliable and real movements. The most common football activities were used as
the different classes to be recognized: pass, shoot, jump, sprint, and jog.

The use of those 5 IMUs allowed the measurement of the tri-axial accelerations and
velocities of the 5 respective body parts related to each one of the activities performed
by the subjects. This resulted in several signals representing the movements, each one of
them with their manually annotated category (activity). It is important to note that in each
experiment, before and after performing an activity, the subject walked or stood still for

2.3 Materials and Methods

2

13

(a) Placement of IMUs on lower legs in experiments. Taken from [30].

(b) Placement of IMUs on upper legs and pelvis in experiments. Taken from [30].

(c) New trousers prototype with fully embedded sensors. Taken from [1].

Figure 2.1: Placement of the sensors in the sensor trousers and the prototype.

2

14 2 Football activity recognition

some time. In order to more effectively train the models, a process of activity isolation was
performed in which those low activity intervals were removed prior to training.

Activity isolation
As explained before, the recordings that were to be used to train the model included
activities that were not isolated from surrounding noise and, in order to build a more
reliable model, the signals were cleaned so that only the desired activities were present.
This follows the logic that the deep learning model learns to extract features by itself. If a
lot of irrelevant information would be present in the training phase, it could be possible
that the model would learn some features from the low activity patterns and not from the
actual activities. Therefore, to make sure that the model learns to recognize accurately
the football-related movements, a procedure called activity isolation was developed. It
prepared the recordings for the training phase by isolating the important activities from
the aforementioned low-activity intervals.

A low-activity measurement is characterized, as its name suggests, by signals with low
magnitude and variance which lies in contrast to the behavior of the signal during a high
activity movement. This is especially true when we focus on the acceleration values. When
a football player moves from being still or relaxed, the lower limbs accelerate quickly. This
is the reason why only the accelerometer signals (and not gyroscope and magnetometer)
were used for the activity isolation phase. On the other hand, this big change in acceleration
between a low-activity interval and a high-activity one can happen in any of the measured
body parts. A standing player can start to run with the right leg while another player can
move the left leg first. This is also true with the axes (X, Y, and Z): when jumping the
movement is primarily vertical, but when passing we expect the longitudinal component
to be more present. In other words, the transition between a low- and a high-activity
interval can be detected with any of the body parts and on any axis. This is the reason
why the norm of X, Y, and Z axis of each sensor location is used. Each sensor is treated
independently and, at the end of the process, they are combined for the final result.

In order to identify when a high activity happens, a baseline value for each signal is
obtained: the mean value. When the player is still or walking, the norm of the signal is
usually smaller than its mean. However, when the player performs a more intense activity,
the norm of the signal presents peaks larger than its mean value. So, the beginning of a
high-activity measurement can be found by identifying the moment when the norm of the
signal exceeds a threshold based on the mean value. To avoid small meaningless peaks, the
algorithm looks for the window of fixed size (based on domain knowledge, we chose 50
timesteps = 0.1 s) in which the norm of the signal exceeds the threshold for each of the
timepoints of such window. Similarly, the end of the high-activity interval is identified by
placing the window in the opposite direction.

We found that activities such as sprints and jogs required the mean of the signal to be
the aforementioned threshold, while movements, such as shots, jumps, and passes, were
better isolated when using 1.5 times the mean as the threshold. By understanding the nature
of these two groups of movements, the former group was called periodic activities, in which
the activity is performed in a periodic manner; and the latter explosive activities, in which
the activity is performed only once without repetition. Since explosive activities tend to be
shorter and without repetitive patterns, the Interquartile Range (IQR) was proposed as the

2.3 Materials and Methods

2

15

metric to use to discriminate between both groups of movements. To classify an activity as
periodic or explosive, the Euclidean norm of all the accelerometer signals of the recording
was taken, then this resulting signal was normalized between 0 and 1, and finally, the IQR
was calculated. In fig. 2.2, the distribution of the IQR values for periodic and explosive
activities can be seen. This plot shows that the IQR is a good metric to distinguish between
both types of movements if a threshold is chosen. It was defined that if the IQR exceeded
0.12, the recording was considered as a periodic movement or, otherwise, as an explosive
movement. This IQR-based classifier showed to have an accuracy of 99.42%, as shown in
the confusion matrix on the top right of fig. 2.2.

Figure 2.2: IQR distribution of explosive and periodic movements. On the top right, the confusion matrix of the
periodic- vs. explosive-activity classifier based on a threshold of 0.12 on the IQR.

Algorithm 1 presents the full procedure of activity isolation. Its application showed to
be very effective in isolating high activities from low-activity periods. Some examples of
results obtained with this algorithm are shown in fig. 2.3. In these images, all the signals
are superimposed for visualization purposes. The isolated high activities are shown with
white background, while the low-activity periods are grayed out.

2

16 2 Football activity recognition

Algorithm 1: Threshold-based activity isolation
Result: Initial and final times of a detected activity isolated from low intensity

periods.
Take one recording with an activity present;
Take only the accelerometer data of the 5 locations: pelvis, right shank, right thigh,
left shank, and left thigh;

Take the Euclidean norm of the 5 signals. Name it 𝑠5;
Calculate the IQR of 𝑠5;
if IQR≤ ℎ𝐼𝑄𝑅 then

Mark the recording as an explosive movement;
else

Mark the recording as a periodic movement;
end
Take the Euclidean norm of the 𝑋 , 𝑌 , and 𝑍 axis of each one of the 5 locations.;
Name those 5 signals 𝑠𝑝 , 𝑠𝑟𝑠 , 𝑠𝑟𝑡 , 𝑠𝑙𝑠 , 𝑠𝑙𝑡 ;
for 𝑠 ∈ {𝑠𝑝 , 𝑠𝑟𝑠 , 𝑠𝑟𝑡 , 𝑠𝑙𝑠 , 𝑠𝑙𝑡} do

Calculate the mean value 𝜇 of the signal;
if The respective 𝑠5 was classified as a periodic movement then

Set 𝑡ℎ𝑟 = 𝜇;
else

Set 𝑡ℎ𝑟 = 1.5𝜇;
end
Find the first timestep where the signal and the following 50 timesteps are
larger than the previously defined threshold. Take that timestep as the start of
the activity for that bodypart 𝑠;

Find the last timestep where the signal and the previous 50 timesteps are larger
than the previously defined threshold. Take that timestep as the end of the
activity for that bodypart 𝑠;

end
Take the minimum among the starts of activity from the previous step. Subtract
250 timesteps (if possible). This is the overall start of the activity. Call it 𝑡0;

Take the maximum among the ends of activity from the previous step. Add 250
timesteps (if possible). This is the overall end of the activity. Call it 𝑡𝑓 ;

return 𝑡0, 𝑡𝑓

2.3.2 Neural network architecture
After the high activities were effectively isolated from low-activity periods, the training and
validation datasets were built. The five most common activities in football practice were
selected as the classes to be recognized by the deep learning models: shot, pass, jump, jog,
and sprint. Since the data were recorded for activities following a well-defined script (e.g.,
10 jogs each followed by a shot), the movements were manually labeled. All the examples
of those activities were isolated from the original dataset and a window segmentation
process was applied to them to extract the training and validation examples. This process
consisted of a one-second-long window traversing through the recordings, extracting, at

2.3 Materials and Methods

2

17

Figure 2.3: Examples of periods of high activity (white background) obtained after applying Algorithm 1. The
examples show accelerometer data related to a shot, pass, pass, jog, sprint, and jump.

each time, the respective interval from the original signal. In order to capture temporal
dependencies, an overlap of 75% was used when extracting the one-second-long windows,
meaning that every 250ms of a recording, a new interval of 1s was extracted.

This set of one-second-long windows was divided in two via the technique of random
subsampling cross-validation: a train dataset, composed of a random 70% set of the samples;
and a test dataset, with the remaining 30%. The former was used to train the models and the
latter to evaluate them with unseen samples. This train-test split was made by randomly
sampling among the recordings of all the subjects. In order to obtain robust results, this
procedure was repeated five times (which resulted in five different randomly selected
train and test datasets), so that at each time each train and test dataset contained samples
from different subjects. The accuracy metrics presented in this chapter are the averages
of the five repetitions. In other words, the train-test split was performed using a 5-fold
random subsampling validation [31]. This approach is similar in effectiveness to 5-fold
cross validation, but slightly faster. Additionally, only accelerometer and gyroscope data
were used. Magnetometer data were ignored to reduce the dimensionality of the problem.
The datasets were balanced via undersampling of the most frequent classes.

As explained before, HAR tasks could benefit from the usage of Convolutional Neural
Networks and Recurrent Neural Networks. The former would be responsible for extracting
relevant patterns of features from signals and the latter would use those features and give
them temporal meaning by understanding the signals as a time series. A combination of
both types of layers could be, in theory, very powerful.

The networks proposed follow the same general architectures shown in fig. 2.4. This
chapter explored models based solely on CNNs (fig. 2.4a), RNNs (fig. 2.4b), and on a
combination of CNNs and RNNs (fig. 2.4c). In fig. 2.4, the connections referred as CNN
sub-network and RNN sub-network are shown in fig. 2.5 and they consist of specific types
of convolutional and/or recurrent layers that will be explained below.

2

18 2 Football activity recognition

One of the most important elements of this chapter is the evaluation of different
variations of convolutional layers. In fig. 2.4 and 2.5, the asterisks in the convolutional
parts represent the implementation of the different types of convolutional layers proposed.
It is important to note that, even if all the convolutions are theoretically one-dimensional
(because the convolution only happens across the temporal dimension), some of them are
referred to as one-dimensional and some others as two-dimensional to distinguish among
them. By one-dimensional convolution, we refer to convolutions in which the spatial
dimension of the filter is 1, so that each signal is processed independently and the filters
do not process more than one signal at the same time. By two-dimensional convolutions,
we refer to convolutions in which the spatial dimension of the filter is more than 1, so that
several signals are convolved simultaneously. The following variations of convolutions
were built:

• 1DCNN weight sharing:
One-dimensional convolutions with the same filters for all the signals. In this type
of convolution, filters of size 1 ×𝑚 are used, where 𝑚 is a hyperparameter that
determines the timesteps used in the convolution. The 1 implies that each signal is
convolved alone. Additionally, weight sharing means that the same filters are used
for all the signals. fig. 2.6 explains this logic. Note that each sensor is composed of
three signals (𝑋 , 𝑌 , and 𝑍 axis of the sensor). The convolutions are made for each
signal using the same set of 𝑘 filters (represented in red).

• 1DCNN per sensor:
One-dimensional convolutions with the same filters for all the signals of the same
sensor, but different filters for each sensor. In this type of convolution, filters of size
1×𝑚 are used, where 𝑚 is a hyperparameter that determines the timesteps used in
the convolution. The 1 implies that each signal is convolved alone. However, each
sensor has its own set of 𝑘 filters, meaning that the filters are not shared among the
sensors. fig. 2.7 shows this logic. The convolutions are made for each sensor using,
for each one of them, a different set of 𝑘 filters (but the same set of filters are used
for the three axis of the same sensor). The different sets of filters are represented
with different colors in the figure.

• 1DCNN combined:
Combination of 1DCNN weight sharing and 1DCNN per sensor. Both types of
convolutions are performed and their results (feature maps) are concatenated one on
top of the other. Figure 2.8 shows this logic.

• 2DCNN weight sharing:
Two-dimensional convolutions with the same filters for all the sensors. In this type
of convolution, filters of size 3 ×𝑚 are used, where 𝑚 is a hyperparameter that
determines the timesteps used in the convolution. The 3 means that the 3 axes of the
same sensor are used together in the convolution. In order to convolve each sensor
by itself so that specific patterns can be extracted by combinations of the 𝑋 , 𝑌 , and 𝑍
signals of the same sensor, a spatial stride of 3 is used. Additionally, weight sharing
means that the same filters are used for all the sensors. fig. 2.9 explains this logic.

2.3 Materials and Methods

2

19

(a) General architecture for models based on CNNs

(b) General architecture for models based on RNNs

(c) General architecture for models based on combination of CNNs followed by RNNs

Figure 2.4: General architectures of the different types of models built. Three types of models were evaluated:
using only CNN, only RNN, or a combination of both. The asterisks on the Conv layers mean the usage of a
variation of a convolutional layer. The asterisks on the RNN layers represent either LSTMs or bidirectional LSTMs.
(FC = Fully Connected Feed Forward Neural Network).

2

20 2 Football activity recognition

(a) General CNN sub-network for the models that combine CNNs and RNNs.

(b) General RNN sub-network for the models that combine CNNs and RNNs.

Figure 2.5: General CNN and RNN sub-networks for the models that combine CNNs and RNNs. The asterisks on
the Conv layers mean the usage of different variations of CNNs. The asterisks on the RNN layers represent either
LSTMs or bidirectional LSTMs. (FC = Fully Connected Feed Forward Neural Network.)

Figure 2.6: 1DCNN weight sharing convolution logic.

2.3 Materials and Methods

2

21

Figure 2.7: 1DCNN per sensor convolution logic.

Figure 2.8: 1DCNN combined convolution logic.

2

22 2 Football activity recognition

Figure 2.9: 2DCNN weight sharing logic.

• 2DCNN per sensor:
Two-dimensional convolutions with different filters for each sensor. In this type
of convolution, filters of size 3 ×𝑚 are used, where 𝑚 is a hyperparameter that
determines the timesteps used in the convolution. The 3 means that the 3 axes of the
same sensor are used together in the convolution. In order to convolve each sensor
by itself so that specific patterns can be extracted by combinations of the X, Y, and Z
signals of the same sensor, a spatial stride of 3 is used. fig. 2.10 explains this logic.
The convolutions are made for each sensor using, for each one of them, a different
set of k filters. The different sets of filters are represented with different colors in the
figure.

Figure 2.10: 2DCNN per sensor logic.

• 2DCNN all sensors:
Two-dimensional convolutions made across all the sensors (thus also signals) at once.
In this type of convolution, filters of size NumSensor ×𝑚 are used, where 𝑚 is a

2.3 Materials and Methods

2

23

hyperparameter that determines the timesteps used in the convolution. Figure 2.11
explains this logic.

Figure 2.11: 2DCNN all sensors logic.

• 2DCNN combined:
Combination of 2DCNN weight sharing, 2DCNN per sensor, and 2DCNN all sensors.
The three types of convolutions are performed and the resulting feature maps are
concatenated one on top of the other. Figure 2.12 shows this logic.

Figure 2.12: 2DCNN combined logic.

Specific details of the convolutions used on the different CNN sub-networks are shown
in Table 2.1. There, the following convention is used:

• Conv(𝑓 , (𝑚,𝑛), 𝑠): Convolutional layer with 𝑓 filters of size (𝑚,𝑛) with 𝑠 strides in
the vertical (spatial direction) followed with 𝑎𝑐𝑡 activation function. In all the cases,
a ReLU activation function (𝑓 (𝑥) = max(0, 𝑥)) is used.

2

24 2 Football activity recognition

• MaxP(𝑚,𝑛): Max Pooling layer with filters of size (𝑚,𝑛), as explained in Section
2.2.4.

• 𝑑: Number of spatial dimensions of the output tensor of the previous layer.

CNN
Sub-Network Layer 1 Layer 2 Layer 3 Layer 4

1DCNN
weight sharing Conv(16, (1,5),1) MaxP(1, 4) Conv(32, (1,5),1) MaxP(1, 4)

1DCNN
per sensor Conv(16, (1,5),1) MaxP(1, 4) Conv(32, (1,5),1) MaxP(1, 4)

1DCNN
combined Concatenation of 1DCNN variations

2DCNN
weight sharing Conv(32, (3,5),3) MaxP(1, 4) Conv(64, (1,5),1) MaxP(1, 4)

2DCNN
per sensor Conv(32, (3,5),1) MaxP(1, 4) Conv(64, (1,5),1) MaxP(1, 4)

2DCNN
all sensors Conv(32, (𝑑,5),1) MaxP(1, 4) Conv(64, (1,5),1) MaxP(1, 4)

2DCNN
combined Concatenation of 2DCNN variations

Table 2.1: Details of layers used on different CNN sub-networks. Recall that the convolutions namedweight sharing
use the same kernels for all the sensors and signals, while the convolutions named per sensor use independent
kernels for each sensor.

The last convolutional layer (which occurs just before the RNN sub-network) is defined
as Conv(128, (𝑑,1),1). The LSTM and bidirectional LSTM (bLSTM) layers are, in all cases,
composed of 128 units. The fully connected layers after the sub-networks are also built
with 128 units with ReLU activation function except for the final fully connected layer,
which has 5 units (one per each class) and uses a softmax activation function instead.
Additionally, to reduce possible overfitting, dropout layers (not shown in the figures) are
applied before each fully connected layer.

All of the different architectures were trained using both accelerometer and gyroscope
data or only accelerometers to evaluate the influence of gyroscopes on the classification
of movements. To train the models, the ADAM optimization algorithm [32] was used to
optimize a categorical cross-entropy loss function. In all cases, the chosen parameters were
𝛽1 = 0.9,𝛽2 = 0.999, 𝜖 = 10−8. The learning rate (𝛼) was set to decay during the learning
phase using a learning rate scheduler. By doing this, the model was able to take large
steps towards the optimum during the initial phases of the training, and, as the model
approached this point, the steps taken were smaller. This resulted in a better and faster
training scheme. The learning rate schedulers for the models were defined as:

• For all the models without any LSTM or bLSTM component, the learning rate was
initialized at 10−3. After every 10 epochs of training, it was reduced to its 75%.

2.3 Materials and Methods

2

25

• For all the models with only LSTM or bLSTM (no convolutional part), the learning
rate was initialized at 10−4. After every 10 epochs of training, it was reduced to its
50%.

• For all the models that combined a CNN part with a LSTM or bLSTM part, the
learning rate was initialized at 5 ⋅ 10−5. After every 10 epochs of training, it was
reduced to its 75%.

The training was made with batches of 32 samples for at most 200 epochs. Additionally,
an early stopping criterion was defined in order to reduce overfitting and unnecessary train-
ing: the validation loss was monitored and if it did not improve (reduce) for 5 consecutive
epochs, the training was halted. Each model was trained 5 times using different train-test
partitions so that every case used a different subset of data for training and testing. The
resulting accuracies of the trainings of each model were averaged to obtain their overall
performance.

2.3.3 Post-processing and evaluation
Once the models were successfully trained, the next step consisted in using the model
to actively recognize and classify the activities present in a recording. A sliding window
approach was followed: a window of 1𝑠 (500 timesteps) is swept through the recording and,
for each position of the window, a prediction of the activity is made. By doing this, several
windows will have periods where no relevant activity is performed because the player is
just standing or walking passively. Therefore, the model also needs to be able to recognize
these low-activity periods and classify them as such. To allow the model to recognize these
low-activity periods, a binary classifier on top of the already trained deep learning-based
model was built. That binary classifier was responsible for recognizing whether a window
captured a low activity period or not. The low activity class could also be included as
another class in our models, however, we opted for detecting low activities using a binary
classifier before applying the deep model. This is due to the significant differences between
low and high activities, which can be exploited to accurately distinguish them.

The sliding window evaluation phase is shown in fig. 2.13. A window of the same
length as the one used for the training phase (1𝑠 = 500 timesteps) is traversed through
the recording, extracting at each time a window of such length. The extracted window
is first classified by the binary classifier as either a high or low activity window. If the
classification returns low activity, the window is understood as such. However, if the
binary classifier predicts that the window corresponds to a high activity, then the window
is passed through the deep learning model that further classifies the interval as one of the
activities: shot, sprint, jump, jog, or pass. This means that, at the end of this process, the
window is classified as either shot, sprint, jump, jog, pass, or low activity. This is what
we call a prediction. The sliding window moves and a new window is extracted and then
classified following the same process.

To build the binary low- vs. high-activity classifier, differentmetrics were extracted from
low- and high-activity windows and evaluated for their discriminant power between both
classes. The following values were evaluated for the Euclidean norm of the accelerometer
signals:

• mean,

2

26 2 Football activity recognition

Figure 2.13: Sliding window evaluation diagram.

• standard deviation (std),

• coefficient of variation (CV),

• interquartile range (IQR),

• range.

The distributions of themetrics for those two groupswere examined to identify which one of
the statistics would have more discriminatory power between both categories. Additionally,
a two-sample Kolmogorov–Smirnov (KS) test was used to evaluate the similarity of these
high- and low-activity distributions. The larger the KS value, the more certain we are that
both samples come from different distributions. The resultant KS values for the selected
metrics are summarized in Table 2.2.

Metric KS value

Mean 0.9185
Std 0.9302
CV 0.7997
IQR 0.9237
Range 0.9155

Table 2.2: Two-sided KS values for the metric distributions of high- and low-activity window.

The standard deviation was chosen as the metric to build the binary classifier since its
KS value was the largest. Additionally, the distribution plots of the standard deviation of

2.3 Materials and Methods

2

27

both categories (high- and low-activity windows) could be separated using a threshold, as
seen in fig. 2.14.

Figure 2.14: Standard deviation distribution of low- and high-activity windows. Both distributions can be separated
using a threshold value.

To define the threshold that should be used for the standard deviation so that the
separation between low and high activity was as clean as possible, different values were
used to classify a set of new unseen windows with high or low activities: if the standard
deviation of the Euclidean norm of the accelerometer signals was larger than a given
threshold, the window would be classified as a high activity, and as a low activity otherwise.
The F1 score was calculated for each one of the thresholds for the standard deviation and
the value where the F1 score was the largest was taken as the optimal threshold. This
experiment is depicted in fig. 2.15 and shows that a threshold of 8.5 gives the best F1 score
of 96.67% (and accuracy of 96.56%), which is high enough to consider this binary classifier
as good performing.

The complete sliding window evaluation diagram is shown in fig. 2.13. As it can be
seen, the low- vs. high-activity binary classifier lies on top of the deep learning model. We
recommend using sliding steps between 10𝑚𝑠 and 100𝑚𝑠 for the windows (windows of
99% and 90% overlap, respectively). It is important to note that, even if the training of the
model was made with windows of 75% overlap, this value does not need to be the same as
the one chosen for the evaluation phase. The length of the window (1𝑠 = 500 timesteps),
on the other hand, must be exactly the same as the one used for the training.

The sliding window approach at the evaluation phase has the issue that there are fewer
predictions than timesteps of the recording since the windows are not evaluated at each
time point. Furthermore, since there is an overlap between the sliding windows, all the
timesteps are evaluated (and therefore predicted) several times by different windows. To
solve this problem, the proposed best-score post-processing method post-processes the
predictions so that we can associate a unique activity to each moment of the recording.
The proposed method initially assigns all the timesteps of window 𝑖 to the prediction of
window 𝑖. Then, the final prediction for each timestep is the prediction with the largest
confidence among the ones of all the windows that contained that particular timestep.

2

28 2 Football activity recognition

Figure 2.15: F1 scores for different standard deviation thresholds when classifying high- and low-activity windows.
The red dot indicates the chosen threshold.

The softmax activation function at the last layer of the neural network was used to
calculate the confidences of the predictions. Since the problem is a multiclass classification
task, the last layer of the model includes a softmax function. The output of this activation
function can be understood as the probability distribution over all the possible categories.
The maximum among these probabilities can be taken as the confidence of the predicted
class. Therefore, it was defined that a window was considered as “other high activity” if
it had confidence lower than a certain threshold (in this work, it was defined as 95%), no
matter the prediction that it initially had. With this addition, it was possible to identify
movements different from the five predefined ones, such as turns.

Fig. 2.16 explains the previously explained process in a graphical, simplified way with
a toy example. Suppose that the multicolored horizontal bar on the top of the image
represents the recording. That recording is traversed with a sliding window and, for each
position of the window, a prediction of the activity is made. Those windows are depicted
in the figure as rectangles with thick borders and are named𝑊 1,𝑊 2,𝑊 3,… The prediction
made for each window is represented by a color: blue, red, or green. Then, the horizontal
bar on the top shows the predictions made by the sliding windows using that color code.
That bar is the output of the evaluation pipeline explained in fig. 2.13. The best-score
post-processing method assigns the prediction of the window to all the timesteps contained
in that window, as it can be seen with the small horizontal colored bars in the middle of
the figure. Each one of those predictions is composed of the recognized activity (red, blue,
or green in the figure) and the confidence of the prediction (light to dark tone of the color).
Then, as it was mentioned, for each timestep of the recording, the prediction with the
largest confidence is taken as the final prediction of the respective timestep. The horizontal
bar at the bottom of the figure shows the resulting predictions obtained with the best score

2.3 Materials and Methods

2

29

post-processing method. This post-processing option gives more importance to predictions
with high confidence. It has the additional ability of “cleaning” the results of short, isolated,
low-score predictions surrounded by predictions with larger confidence.

Figure 2.16: Best-score post-processing option. The darker the color, the larger the confidence of the prediction.

After post-processing, an outlier removal procedure is applied to the predictions. Even
if the predictions are cleaned with the post-processing phase, there is still a chance that
short peaks of isolated activities remain. An activity performed by a player cannot last
less than a certain amount of time in real life. So, if a prediction of a movement lasts less
than 𝜏𝑚𝑠, the predicted activity of that interval is replaced with the predicted activity of
the next interval that lasts at least 𝜏𝑚𝑠. Good results were obtained when choosing 𝜏 to be
between 100𝑚𝑠 and 300𝑚𝑠.

Figure 2.17: Complete sliding-window evaluation procedure.

2

30 2 Football activity recognition

The whole sliding-window evaluation process can be summarized with the diagram
shown in fig. 2.17. Each position of the sliding window is classified, then the prediction is
post-processed, and, finally, the outliers are removed. The block called Activity Classifier
in the diagram is the activity classification process, depicted previously in fig. 2.13.

2.4 Results
2.4.1 Training results
As explained before, deep learning models composed of a combination of CNNs and RNNs
were proposed, built, and trained to recognize shots, passes, jumps, jogs, and sprints (fig.
2.4). The training and validation datasets were balanced via undersampling, so that the
accuracy could be used as the metric to evaluate the performance of the model. The
prediction accuracy is defined as:

Accuracy = Number of correctly classified samples
Number of samples

When working with deep neural networks, it is a good practice to perform a normalization
or standardization of the input data. This has mainly two benefits: the model can be
trained faster, and the model can learn to better generalize from the input data [33].
Therefore, the models were trained with and without an initial normalization/scaling of the
input signals. Since the signals have both positive and negative values and we wanted to
capture information about their positiveness and negativeness, instead of using a min-max
normalization, we used a max-abs scaler: we divided by the maximum absolute value
of the signal. This process brings all the values to the range [−1,1]. In particular, if the
maximum absolute value is found in the positive range, then the values are transformed
to the range [−𝑥,1] where 𝑥 ≤ 1. Similarly, if the maximum absolute value is found in
the negative range, the transformed range is [−1, 𝑥]. The resulting series has the same
shape and structure as the original, but its values lie between −1 and 1 without losing the
positive-negative relationship. The max-abs scaling does not shift the data nor destroys
the sparsity between positive and negative values. This type of scaling was applied to each
one of the signals and the models were trained with these new scaled windows. To have a
fair comparison with the non-scaled models, all the models were trained with the same
architectures, parameters, and algorithms as the ones previously built. Only the initial
learning rate of the models had to be increased 10 times due to much smaller absolute
values for the scaled signals. Note that in real-life applications, it would be necessary to
perform this scaling with respect to a calibration recording: the player would perform a
certain sequence of activities before the competition or training and that recording would
be used to scale the subsequent data.

We trained several models based on the proposed convolutional operations and their
combination with recurrent layers. The mean and standard deviation of the accuracies
of the five trainings of each model can be seen in Tables 2.3 and 2.4. In those tables, a
red-to-blue color code was used to visualize the accuracies on the test dataset, where red is
worse and blue is better. No color code was given for the train dataset for visualization
clarity.

The main goal of this research was not only to have a highly accurate model when
recognizing football activities, but it was also desired that those classifications could be

2.4 Results

2

31

Acc + Gyro

Normalized Unnormalized

Train Test Train Test
1D CNN weight sharing 99.93% 97.53% 99.13% 94.36%
1D CNN per sensor 99.34% 97.26% 98.35% 93.92%
1D CNN combined 99.46% 97.21% 98.66% 93.97%
2D CNN weight sharing 99.29% 96.44% 98.80% 93.59%
2D CNN per sensor 99.44% 96.55% 99.32% 94.79%
2D CNN all signals 99.76% 97.81% 97.58% 92.88%
2D CNN combined 99.44% 98.08% 99.34% 95.34%
1D CNN weight sharing + LSTM 97.81% 96.11% 99.01% 96.05%
1D CNN per sensor + LSTM 99.20% 97.10% 98.31% 95.95%
1D CNN combined + LSTM 98.54% 97.04% 98.87% 96.55%
2D CNN weight sharing + LSTM 98.54% 96.71% 98.87% 96.27%
2D CNN per sensor + LSTM 98.31% 96.71% 99.32% 96.71%
2D CNN all signals + LSTM 98.87% 97.32% 98.94% 95.45%
2D CNN combined + LSTM 99.08% 97.53% 99.32% 96.71%
1D CNN weight sharing + bLSTM 99.39% 98.03% 99.08% 96.55%
1D CNN per sensor + bLSTM 99.51% 97.86% 98.66% 96.38%
1D CNN combined + bLSTM 99.44% 98.25% 99.22% 96.71%
2D CNN weight sharing + bLSTM 99.39% 97.48% 99.20% 96.22%
2D CNN per sensor + bLSTM 99.48% 97.04% 98.99% 96.11%
2D CNN all signals + bLSTM 99.13% 97.26% 98.45% 94.96%
2D CNN combined + bLSTM 99.46% 97.32% 99.29% 96.00%
LSTM 63.51% 60.44% 91.48% 77.48%
bLSTM 80.49% 76.71% 99.65% 87.07%

Table 2.3: Comparison of mean prediction accuracies between the original unnormalized models and the nor-
malized ones. Five runs. A red-to-blue color code is used to facilitate the visualization of the values on the test
dataset, where red is worse and blue is better.

2

32 2 Football activity recognition

Acc + Gyro

Normalized Unnormalized

Train Test Train Test
1D CNN weight sharing 0.09% 0.87% 0.81% 1.33%
1D CNN per sensor 0.41% 0.74% 1.68% 1.78%
1D CNN combined 0.44% 0.70% 0.33% 1.48%
2D CNN weight sharing 0.20% 0.81% 0.49% 1.60%
2D CNN per sensor 0.29% 0.37% 0.46% 1.42%
2D CNN all signals 0.15% 0.67% 0.87% 1.38%
2D CNN combined 0.55% 0.35% 0.44% 1.42%
1D CNN weight sharing + LSTM 0.79% 0.56% 0.52% 1.21%
1D CNN per sensor + LSTM 0.58% 1.44% 1.22% 0.87%
1D CNN combined + LSTM 0.54% 0.56% 0.62% 1.60%
2D CNN weight sharing + LSTM 0.50% 0.65% 0.92% 1.00%
2D CNN per sensor + LSTM 0.76% 1.47% 0.39% 1.31%
2D CNN all signals + LSTM 0.75% 0.66% 0.58% 1.02%
2D CNN combined + LSTM 0.30% 0.83% 0.37% 1.05%
1D CNN weight sharing + bLSTM 0.44% 0.63% 0.34% 0.73%
1D CNN per sensor + bLSTM 0.53% 0.68% 0.60% 0.53%
1D CNN combined + bLSTM 0.27% 0.66% 0.53% 1.54%
2D CNN weight sharing + bLSTM 0.65% 0.97% 0.41% 0.96%
2D CNN per sensor + bLSTM 0.35% 1.17% 0.75% 1.10%
2D CNN all signals + bLSTM 0.55% 0.62% 0.96% 0.99%
2D CNN combined + bLSTM 0.92% 0.82% 0.36% 1.50%
LSTM 19.13% 18.19% 2.17% 3.36%
bLSTM 24.22% 20.14% 0.24% 2.25%

Table 2.4: Comparison of standard deviation of the prediction accuracies between the original unnormalized
models and the normalized ones. Five runs. A red-to-blue color code is used to facilitate the visualization of the
values on the test dataset, where red is worse and blue is better.

2.4 Results

2

33

made in a short time. To demonstrate the computational efficiency of the proposed deep
learningmodels, traditional machine learningmodels were trained, and the evaluation times
for both types of models were computed. In particular, the following classifiers were built:
k-Nearest Neighbors (kNN), Naïve Bayes (NB), Quadratic Discriminant Analysis (QDA),
Decision Tree (DT), Random Forest (RF), SVM with linear kernel version ECOC (Error
Correcting Output Codes) (SVM-l ECOC), SVM with Gaussian kernel version ECOC (SVM-
rbf ECOC), SVM with linear kernel version One-vs-One (SVM-l OvO), SVM with Gaussian
kernel version One-vs-One (SVM-rbf OvO), SVM with linear kernel version Onevs-Rest
(SVM-l OvR), and SVM with Gaussian kernel version One-vs-Rest (SVM-rbf OvR). For all
of them, the following manually selected features were extracted: mean, median, standard
deviation, maximum, minimum, skewness, kurtosis, sum of real coefficients of Fast Fourier
Transform, and maximum of real coefficients of Fast Fourier Transform. The evaluation
times and accuracies of these models in comparison to a particular deep learning-based
model (2DCNN per sensor + bLSTM, abbreviated as DNN in the graph) are presented in
fig. 2.18. For the traditional methods, these times include the manual feature extraction
process. In general, the deep learning models required about 0.15s to evaluate 365 samples,
while this process took from 0.4 to even 0.8s with the traditional methods. In addition to
this, the best performing deep learning model had the highest accuracy (98%), whereas
traditional models showed accuracies between 40% and 90%. Deep learning models, thus,
perform better on both evaluation time and accuracy.

Figure 2.18: Prediction accuracy and evaluation time for traditional models in comparison to a deep learning-based
model (DNN). The blue bars (left vertical axis) represent evaluation time and the red bars (right vertical axis) the
prediction accuracy. The names of the models can be found in the main text.

2.4.2 Complete pipeline results
The complete activity recognition pipeline was presented in fig. 2.13, where a sliding
window approach is used to first classify each window of the recording, then post-process
those predictions, and, finally, remove the outliers. Here, some examples of results obtained

2

34 2 Football activity recognition

with the full pipeline are shown. These examples correspond to recordings that were
not seen previously by the models, neither during the training nor the validation phase.
The figures in this section are composed of four graphs. The one on the top is called
the predictions and has the predictions obtained by the model (outputs of fig. 2.17). The
second one is called the post-processed predictions and is the result of post-processing the
predictions. The third graph is called the final predictions and contains the final predictions
after the post-processed predictions are passed through the outlier removal process (outputs
of fig. 2.17). Finally, the bottom graph is for reference and contains only three of all the
sensor signals of the original recording. The horizontal axis (time) is shared among the
four graphs. For the top three graphs, the vertical axis corresponds to the predictions made
by the model and the orange-black color code represents the confidence of the predictions,
where orange means low confidence and black high.

Fig. 2.19-2.21 present results of the complete pipeline on three different recordings.
The true labels of the recordings can be seen in their respective captions.

Figure 2.19: Example 1 of final results. True labels (in order): jog, jump, sprint, pass, and sprint with low activity
periods in between each one of them. For the activity prediction plot, the orange-black color code of the dots and
lines in the predictions represents the confidence of the predictions, where orange means low confidence and
black high.

2.4 Results

2

35

Figure 2.20: Example 2 of final results. True labels: jog and turn 5 times with a final jog.

2

36 2 Football activity recognition

Figure 2.21: Example 3 of final results. True labels: 6 jumps-passes followed by 6 shots. Fast, unplannedmovements
are identified before and after the shots.

2.5 Discussion

2

37

2.5 Discussion
This chapter explores the usage of deep learning models to accurately and rapidly recognize
football activities based on IMU measurements from different body parts. The literature
review shows that, for Human Activity Recognition, these types of techniques have been
taking over the use of traditional machine learning algorithms, such as kNN, decision
trees, and SVMs, where a manual process of feature extraction is required. The majority
of reviewed articles focuses on deep learning models to recognize daily human activities,
but this study includes explosive and repetitive activities typical of football practice. The
possibility of building deep learning-based models on raw, not pre-processed IMU signals
is one of the main goals.

A robust and end-to-end pipeline is proposed. It includes activity detection and isolation
in order to prepare the required datasets, train the models, evaluate a recording via a sliding
window approach, and post-process the results to obtain the final ones. Although the built
deep models are trained to recognize the five most common football activities (sprints,
passes, shots, jumps, and shots), the proposed methodology can be used to train models to
consider additional activities, provided that there are enough training samples of those
movements. Currently considered activities can also be split into sub-activities, if possible,
e.g. sprints consist in multiple strides.

A dynamic activity detection algorithm is proposed to isolate activities in record-
ings from low activity periods. Internally, this algorithm uses a simple classifier that
distinguishes between periodic (sprints and jogs) and explosive (shots, passes, and jumps)
activities. Then, several deep learning architectures are built, trained, and evaluated in
terms of prediction accuracy, overfitting, and evaluation time. Those architectures are
based on novel variations of convolutional layers acting across signals, sensors, and/or
a combination of them with and without weight sharing. Recurrent layers (LSTMs and
bidirectional LSTMs) implemented after the convolutional layers are used to further give
temporal meaning to the features previously extracted by the CNNs. The proposed models
obtain high accuracies (up to 98.25% in the test set). Compared to traditional machine
learning algorithms, deep learning models achieve better accuracies and faster evaluation
times, showing that their use is recommended for HAR tasks. The combination of CNNs
and bLSTMs is beneficial and achieves better results than the use of only CNNs. Further-
more, models with only bLSTMs do not generate good results, implying that convolutional
operations are critical to extract relevant features. Further experimentation is encouraged
regarding the training of the models, not only with respect to proposed architectures
but also around fine-tuning of architecture and training variables, such as number of
layers, number of convolutional filters, type of convolutional operations, learning rate,
optimization algorithm, among others.

A sliding window approach for the evaluation phase is implemented following rec-
ommendations and best practices found in the literature. With this approach, a complete
recording can be evaluated by the models. Post-processing of the predictions made by
the model was necessary, thus the best-score post-processing method is proposed. This
algorithm acts analogous to the non-max suppression algorithm for object detection on
computer vision applications. It not only aligns the predictions to the original recording but
also filters out short-lived, undesired activities. An outlier removal process is implemented
at the end of the pipeline to further refine the final recognized activities from short-lived,

2

38 2 Football activity recognition

unnatural predictions.
Even if the obtained accuracies are high, it is recommended to acquire more data and

retrain the models, especially with measurements taken from real matches. The more
relevant data that a model can be trained with, the better the learning will be. The literature
review shows that HAR is an active research area in the field of deep learning, with several
open-source datasets present online ([34–36], to name a few). Although the majority of
them are about daily human activities, such as walking, sitting, or standing, those large
datasets can be used to build a base model, and then use transfer learning to fine-tune it
with football data and allow it to recognize specific football activities. The use of transfer
learning in deep learning applications has shown to be very effective when building models
for tasks that do not have large training datasets and it is expensive or time-consuming
to build them. Hence, it is highly recommended to explore this approach to potentially
improve the proposed models.

Finally, it is encouraged to use this work as input to future research topics and use-case
scenarios such as injury prevention, tracking of activity statistics during competition and
training, monitoring physical load, and personalized training. This work is focused on
football, but the proposed methodology and pipeline can also be applied to other sports.
Recognizing the activities that a player does while playing a sport is just one of the steps
that must be done in order to analyze their movements. The recognized activities can
be combined with additional data sources such as video recordings and biomechanical
analysis to study the prevalence and early detection of injuries. This would help obtain a
better understanding of the players’ performance and development.

3

39

3
Improving state estimation

through projection
post-processing for activity

recognition with
application to football

3.1 Introduction
In almost all areas of science and technology, sensors are becomingmore prevalent. In recent
years we have seen applications of sensor technology in fields as diverse as energy saving
in smart home environments [38], performance assessment in archery [39], detection of
mooring ships [40], early detection of Alzheimer disease [41] and recognition of emotional
states [42], to name just a few.

Our main interest lies in the detection of human activities using sensors attached to the
body. Sensors generate unannotated raw data, suggesting the use of unsupervised learning
methods. If an activity specified in advance is of interest, then supervised learning and
labelled data are required. However, the task of labelling activities manually from sensor
data is labour-intensive and prone to errors, which creates the need for fast and accurate
automated methods.

Human activity recognition (HAR) attracted much attention since its inception in
the ’90s. A plethora of methods are currently being used to detect human activities [43],
with various deep learning techniques leading the charge [44, 45]. In many studies [46–48]
only sensors embedded in a smartphone are used to classify user activities. Physical sensors,
such as accelerometers or gyroscopes attached directly to a body or video recordings (from
a camera), are the most popular sources of data for activity recognition [49–51]. Similarly,

This chapter is based on M. Ciszewski, J. Söhl, G. Jongbloed. Improving state estimation through projection
post-processing for activity recognition with application to football, Stat Methods Appl, 2023 [37].

3

40 Improving state estimation through projection post-processing

cameras can be either placed on the subject [52–54] or they can observe the subject [55–57].
Rarely, both camera and inertial sensor data are captured at the same time [58].

The temporal structure of the time series should be taken into account when choosing a
method for activity recognition. Simple classification techniques (such as logistic regression
or decision trees) ignore time dependencies andwill need to be improved after the procedure.
Alternatively, methods which are more complicated and more difficult to train have to be
deployed. Another challenge lies in the reliability of manual labelling (in case of supervised
learning). Quite often it is unreasonable to assume that labels annotating the observed
data are exact with regards to timings of transitions from one activity to another [59].
Timing uncertainty can be caused by a deficiency of the manual labelling or the inability
to objectively detect boundaries between different activities. This issue is well-known in
the literature, for instance, [60] introduced a scalable, parameter-free and domain-agnostic
algorithm that deals with this problem in the case of one-dimensional time series.

The main contribution of this paper is the introduction of a post-processing procedure,
which improves a result of activity classification by eliminating too short activities. The
method requires a single parameter which can be interpreted as the minimum duration
of the activites (hence the choice of this parameter is driven by domain knowledge). It
allows us to mitigate the problem of activites being fragmented in cases where some
domain-specific information about state durations is available. In the current literature,
ad hoc techniques are employed for post-processing of human activities and they are
particularly suitable when the initial classifier is already performing satisfactory. A method
that exemplifies this approach, utilizing majority voting, can be found in the article by [61].
Some more advanced approaches have also been devised in special cases, e.g. the approach
proposed by [62], which is limited to neural network classifiers. In comparison to any
existing methods, our post-processing procedure ensures removal of all too short events
and allows to specify the minimum length of activities accepted in the post-processed result.
Based on empirical evidence, the performance of classical machine learning classifiers
improves significantly by our method. This enables simple and fast but less accurate
classification methods to be upgraded to accurate and fast classifiers.

In order to compare the quality of competing activity recognition methods, an ap-
propriate criterion for evaluating the performance is needed (also to demonstrate the
performance of the post-processing procedure we introduce). Below are some commonly
used performance measures:

• accuracy, precision, the 𝐹 -measure [43, 63],

• similarity measures for time series classification [64], such as Dynamic TimeWarping
or Minimum Jump Costs Dissimilarity,

• custom vector-valued performance metric [65].

Our objective is to design a performance measure that satisfies problem-specific conditions,
which will be specified later.

The outline of the paper is as follows. Section 3.2 provides a method for improving
classification with a post-processing scheme that uses background knowledge on the
specific context. In particular, it validates the state durations and provides an improved
classification that satisfies the physical constraints on the state durations imposed by the

3.2 Improving classification by imposing physical restrictions

3

41

context. Section 3.3 introduces specialized performance measures for assessing the quality
of classification in general and in activity recognition in particular. The new performance
measure also serves the purpose of showing the advantages of the post-processing fairly.
Section 3.4 presents an application of the techniques in a simulated setting. The post-
processing method was able to improve the estimates significantly. The method achieves
similar results in an application to football data.

3.2 Improving classification by imposing physical re-
strictions

3.2.1 Post-processing by projection
When recognizing human activities, it is often the case that the result of the classification
contains events (time intervals in which a classification result is constant) that are too
short1. Usually ad hoc methods are used in order to discard those events, e.g. removal of
any short events and replacing them with the next state in the classification, whose length
is above a fixed threshold. There are also more advanced approaches, such as the one
proposed by [62]. However, this particular method is suitable only when using a neural
network as the classifier of choice, it does not ensure that too short events will always be
eliminated (no matter what is exactly meant by ‘too short’) and lastly does not provide an
intuitive understanding of the choice of its tuning parameter. Hence, our interest in a more
formal method that could be used in combination with any activity classifier. The goal of
this section is to introduce a formalized approach to correcting for the classifier’s mistakes
regarding the activity durations by introducing a novel post-processing procedure.

Consider the set of states  = {1, ...,𝑀} and a metric 𝑑 on  . Let 𝜌 denote the discrete
metric2 on  . Any state-valued function of time will be called a state sequence. In reality we
are only able to obtain a discrete-time signal, however, the relevant information contained
in such a signal is a list of all the state transitions, which can more easily be encoded in a
function with continuous argument. Hence, we define  , the set of all càdlàg3 functions
𝑓 ∶ ℝ→  with a finite number of discontinuities. We define the standard distance induced
by a metric 𝑑 between two state sequences as

dist ∶  × ∋ (𝑓 ,𝑔)→ dist(𝑓 ,𝑔) = ∫
ℝ

𝑑(𝑓 (𝑡), 𝑔(𝑡))𝑑𝑡. (3.1)

If 𝑑 is a metric on  , then dist is a metric on  . The standard distance induced by the
discrete metric is the time spent by 𝑓 in a state different from 𝑔 .

Now, we define a measure of closeness between functions in  , as our goal is to find a
function close enough to a given function in  , while reducing the number of jumps it has
(which in turn will eliminate short events in the state sequence). Let 𝑓 ,𝑔 ∈  . Then we
introduce the notation:

𝐸𝛾 (𝑓 ,𝑔) = dist(𝑓 ,𝑔)+ 𝛾 ⋅ |𝐽 (𝑔)|, (3.2)

1Depending on the application ‘too short’ might be specified differently.
2Distance between two different states is equal 1 and distance from a state to itself is equal 0.
3right continuous, left limits exist

3

42 Improving state estimation through projection post-processing

where 𝐽 (𝑔) is the set of all discontinuities of 𝑔 , |𝐽 (𝑔)| is the number of all discontinuities of
𝑔 and 𝛾 is a penalty for a single jump of 𝑔 .

Given 𝑓 ∈  , our goal is to find any solution ̂𝑓 ∈  of the minimization problem

̂𝑓 ∈ argmin
𝑔∈

𝐸𝛾 (𝑓 ,𝑔). (3.3)

As a default, we will use the standard distance induced by the discrete metric.
In order to characterize the solution ̂𝑓 of problem (3.3) we present the following lemma.

Lemma 3.2.1. Let 𝛾 > 0 and 𝑓 ∈  . Let 𝐽 denote the set of all discontinuities of the function
𝑓 . There exists a solution ̂𝑓 of the problem (3.3) such that it does not contain jumps outside of
𝐽 .

Lemma 3.2.1 leads to the conclusion that in search for the solution of the minimization
problem we can limit ourselves to a finite set of functions, namely a subset of  with jumps
only allowed at the same locations as the function 𝑓 . The proof of lemma 3.2.1 can be
found in the appendix.

In this minimization problem the choice of the parameter 𝛾 plays a crucial role. We will
now show an interpretation of the penalty parameter that will ease the process of choosing
it. It will also allow us to reformulate problem (3.3). First, we define a new set of functions.

Definition 3.2.1 (Function with bounded minimum duration of states). Given a parameter
𝛾 > 0 we define 𝛾 ⊂  , the set of functions with bounded minimum duration of states, such
that for 𝑔 ∈ 𝛾 we have

• 𝑔 =
𝑛−1
∑
𝑖=1

𝑠𝑖1[𝑡𝑖 ,𝑡𝑖+1) for some constant 𝑛 ∈ℕ, a sequence of states {𝑠1, ..., 𝑠𝑛−1}, such that
𝑠𝑖 ≠ 𝑠𝑖+1 for 𝑖= 1, ..., 𝑛−2, and an increasing sequence 𝑡1 < 𝑡2 < ... < 𝑡𝑛 (we allow 𝑡1 =−∞
and 𝑡𝑛 = ∞),

• if 𝑛 ≥ 2, then ∀𝑖≥2 𝑡𝑖− 𝑡𝑖−1 ≥ 𝛾 .

Lemma 3.2.2 below yields a connection between the penalty 𝛾 and the minimum
duration of states that we impose on the solution of our minimization problem.

Lemma 3.2.2. Let 𝛾 > 0 and 𝑓 ∈  . Any solution ̂𝑓 of problem (3.3) is an element of 𝛾 .

This lemma can be used in practice to select the size of the penalty. The proof of lemma
3.2.2 can be found in the appendix.

Given 𝑓 ∈  , by lemma 3.2.2 the minimization problem (3.3) is equivalent to the mini-
mization problem

̂𝑓 ∈ argmin
𝑔∈𝛾

𝐸𝛾 (𝑓 ,𝑔). (3.4)

̂𝑓 will be called a projection of 𝑓 onto 𝛾 .
As mentioned before, the regularization by penalizing high numbers of jumps narrows

down the set of possible solutions to a finite nonempty subset of 𝛾 (thanks to lemma 3.2.1),

3.2 Improving classification by imposing physical restrictions

3

43

which leads to the existence of ̂𝑓 . However, the solution might not be unique, as illustrated
by the following example.

Consider  = {0,1}, 𝑓 = 1[0.35,0.45)+1[0.55,+∞) and 𝛾 = 0.2. Both ̂𝑓1 = 1[0.35,+∞) as well as
̂𝑓2 = 1[0.55,+∞) are projections of 𝑓 . One could think of it as an issue, however, it reflects
well our understanding of the original problem. The assumption is that 𝑓 has impossibly
short windows, because it is uncertain which activity is actually performed in the interval
[0.35,0.55). Looking only at 𝑓 we are unable to decide which solution is more suitable,
hence it is only natural that the method also returns two possible options.

We close with a remark regarding influence of the extreme values of 𝛾 on projection ̂𝑓 .

Remark 3.2.1. Let 𝑓 ∈  . If 𝛾 = 0, then ̂𝑓 = 𝑓 is the only projection of 𝑓 . If 𝛾 = ∞ and
𝐸𝛾 (𝑓 ,𝑔) < ∞ for some function 𝑔 ∈  4, then 𝑔 is constant and equal everywhere to the
most common state of 𝑓 and ̂𝑓 = 𝑓 5.

3.2.2 Connection with the shortest path problem
In this section we devise a method for finding a projection in an efficient manner. It will
be shown that the problem of finding the shortest path in a particular graph is equivalent
to the minimization problem (3.4). This is possible thanks to the lemmas 3.2.1 and 3.2.2,
which narrowed down the set of possible solutions to a finite set.

First, we present a lemma which further characterizes a projection of 𝑓 .

Lemma 3.2.3. Let 𝑓 ∈  . Suppose 𝑓 ≡ 𝑐 on an interval [𝑎,𝑏] for some constant 𝑐 ∈ ℝ. If
𝑏−𝑎 > 2𝛾 , then ̂𝑓 ≡ 𝑐 on [𝑎,𝑏]. If 𝑏−𝑎 = 2𝛾 , then there exists a projection such that ̂𝑓 ≡ 𝑐 on
[𝑎,𝑏].

The proof of lemma 3.2.3 can be found in the appendix.
Remark 3.2.2. If 𝑛 > 2, then there exists a projection such that the second and the second-
to-last jump locations of the original function are not the first and the last (resp.) jump
locations of this projection.

Remark 3.2.2 will be used when defining a particular graph and the proof can be found
in the appendix.

We will assume that 𝑓 has 𝑛 ≥ 2 jumps6 at time points 𝑡𝑖 for 𝑖 = 1, ..., 𝑛:

𝑓 =
𝑛
∑
𝑖=0

𝑠𝑖1[𝑡𝑖 ,𝑡𝑖+1), (3.5)

where 𝑠𝑖 ∈  for 𝑖 = 0, ..., 𝑛 and 𝑠𝑖 ≠ 𝑠𝑖+1 for 𝑖 = 0, ..., 𝑛−1. We use the following notation:
𝑡0 = −∞, 𝑡𝑛+1 = ∞. In light of lemma 3.2.3 we assume that

𝑡𝑖+1− 𝑡𝑖 < 2𝛾 (3.6)
4Note that this is not always true. If the first and the last states of 𝑓 are different, then any function can be a
projection of 𝑓 .

5Note that if 𝐸𝛾 (𝑓 ,𝑔) <∞, then the first and the last states of 𝑓 are the same and the constant function equal to
that state is the only projection

6If 𝑛 = 0 or 𝑛 = 1, then 𝑓 ∈ 𝛾 and ̂𝑓 = 𝑓 .

3

44 Improving state estimation through projection post-processing

for 𝑖 = 1, ..., 𝑛−1. If this is not the case, then consider the coarsest partition of the set 𝐽 of
jumps of 𝑓 :

𝐽 =
𝑟
⋃
𝑖=1

𝐽𝑖

such that for jumps in 𝐽𝑖 for 𝑖 = 1, ..., 𝑟 equation (3.6) holds and min 𝐽𝑖 −max 𝐽𝑖−1 ≥ 2𝛾 for
𝑖 = 2, ..., 𝑟 . For each 𝐽𝑖 for 𝑖 = 1, ..., 𝑟 consider a function 𝑓𝑖 ∶ ℝ →  , such that 𝑓𝑖 ≡ 𝑓 on
[min 𝐽𝑖−2𝛾,max 𝐽𝑖+2𝛾] and the only jumps of 𝑓𝑖 lie in 𝐽𝑖. Once a projection ̂𝑓𝑖 is found for
𝑓𝑖 for all 𝑖 = 1, ..., 𝑟 , we can then consider a function ̂𝑓 , defined as follows

̂𝑓 (𝑥) = ̂𝑓𝑖(𝑥) (3.7)

given 𝑥 ∈ [min 𝐽𝑖−2𝛾,max 𝐽𝑖+2𝛾] for some 𝑖 = 1, ..., 𝑟 . By lemma 3.2.3, there exists a projec-
tion which does not change the states longer than or equal 2𝛾 , hence ̂𝑓 defined as in (3.7)
is a projection of 𝑓 . Given this remark, we can now assume that 𝑓 is of the form (3.5) and
satisfies (3.6).

We will now define a graph for the purpose of showing the connection between the
problem of finding a projection ̂𝑓 and the problem of finding a shortest path in a directed
graph. Let 𝐺 = (𝑉 ,𝐴) be a directed graph such that the set of vertices 𝑉 is given by

𝑉 = {𝑡0, 𝑡1, ..., 𝑡𝑛, 𝑡𝑛+1} (3.8)

and the set of directed arcs is given by

𝐴 = {(𝑡𝑘 , 𝑡𝑙) ∈ 𝑉 2 ∶ 𝑡𝑙 − 𝑡𝑘 ≥ 𝛾}\{(𝑡0, 𝑡2), (𝑡𝑛−1, 𝑡𝑛+1)}.7 (3.9)

There is a correspondence between each path from 𝑡0 to 𝑡𝑛+1 and a sequence of jumps in
the interval (𝑡1− 𝛾, 𝑡𝑛+ 𝛾). A path (𝑡0, 𝑡𝑙1 , ...𝑡𝑙𝑚 , 𝑡𝑛+1) can be associated with a function 𝑔 with
jumps at 𝑡𝑙1 , ..., 𝑡𝑙𝑚 , such that 𝑔(𝑡𝑙𝑘) is the most common value of 𝑓 in interval [𝑡𝑙𝑘 , 𝑡𝑙𝑘+1). The
definition (3.9) of the set of directed arcs ensures that all paths in the graph 𝐺 correspond
to at least one function in 𝛾 .

We now introduce a weight function 𝑊 ∶ 𝐴→ ℝ+ ensuring that the cost of the path
coincides with the error 𝐸(𝑓 , ⋅) of the corresponding function in the interval (𝑡1− 𝛾, 𝑡𝑛+ 𝛾).
Let 𝐼𝑘 = 𝑡𝑘+1− 𝑡𝑘 for 𝑘 = 0, ..., 𝑛. It is noteworthy that 𝐼0, 𝐼𝑛 =∞, while 𝐼𝑘 < 2𝛾 for 𝑘 = 1, ..., 𝑛−1.
We introduce the penalty for a jump 𝜙𝑘 = 𝛾 for 𝑘 = 1, ..., 𝑛 and 𝜙𝑛+1 = 0. Now we define the
weight function 𝑊 :

𝑊 ((𝑡𝑘 , 𝑡𝑙)) =
𝑙−1
∑
𝑚=𝑘

𝐼𝑚𝑑(𝑠𝑘𝑙 , 𝑠𝑚)+𝜙𝑙 , (3.10)

for (𝑡𝑘 , 𝑡𝑙) ∈ 𝐴, where 𝑠𝑘𝑙 represents the most common state in the interval [𝑡𝑘 , 𝑡𝑙) of the
original function 𝑓 . The first term equals the dist(𝑓 ,𝑔) in [𝑡𝑘 , 𝑡𝑙]. The second term adds a
penalty for jump at 𝑡𝑙 if 𝑡𝑙 is finite (the penalty for jump at 𝑡𝑘 was added on a previous arc
in the path, if 𝑘 > 0).

7In case of 𝑛 = 2, both arcs have to be included in set A.

3.2 Improving classification by imposing physical restrictions

3

45

Theorem 3.2.1 (Problem equivalence). Let 𝛾 > 0 and (𝑡1, ..., 𝑡𝑛) be the only discontinuities
of a function 𝑓 ∈  . Let 𝐺 = (𝑉 ,𝐴,𝑊) be a weighted, directed graph as defined in (3.8), (3.9),
(3.10) above. The task of finding a projection of 𝑓 onto 𝛾 , as defined in (3.4), is equivalent to
finding the shortest path from 𝑡0 to 𝑡𝑛+1 in the graph 𝐺.

The proof of the theorem can be found in the appendix. Now, we will illustrate the
method by an example.

Given 𝛾 = 0.2 and  = {0,1,2,3}, consider the function 𝑓 = 1[0.2,0.35) +2 ⋅1[0.4,0.55) +3 ⋅
1[0.55,0.75) +2 ⋅1[0.75,+∞). The graph 𝐺, as defined in (3.8), (3.9), (3.10), for 𝑓 , is shown in
figure 3.1. Note that the vertex corresponding to 0.35 is omitted in the graph, since there is
no path from the vertex corresponding to −∞ to it (according to the definition (3.9), the
arc (0.2,0.35) is not included).

Figure 3.1: Graph 𝐺 constructed for the function 𝑓 .

There are nine possible paths from −∞ to +∞. The path 𝑃 = (−∞,0.4,∞) has the cost
equal to 0.55 and is the shortest path from −∞ to +∞. Hence we conclude that ̂𝑓 = 2 ⋅1[0.4,∞)

is the projection of 𝑓 onto 0.2 (in this case, it can be shown ̂𝑓 is the only projection of 𝑓).

3.2.3 Binary case
In case the set of states  consists of only two elements, a stronger result than lemma 3.2.2
can be achieved. The main advantage of the binary case comes from the fact that we do not
need to specify the sequence of states since knowing the starting state, each jump signifies
a move to the only other available state. First, we present a supporting remark which
further strengthens the relation between jumps of a function from  and its projection.

For the remainder of the section, we will always assume that  = {0,1}8.
8This convention deviates from the notation established in section 3.2.1 as it is more natural to use 0 and 1 as
states in the binary case.

3

46 Improving state estimation through projection post-processing

Lemma 3.2.4. Let 𝛾 > 0 and 𝑓 ∈  . Let 𝐽 denote the set of all discontinuities of the function
𝑓 . If a function 𝑔 ∈ 𝛾 contains a jump 𝑗 ∈ 𝐽 (𝑓), but in an opposite direction than in 𝑓 , then 𝑔
cannot be a projection of 𝑓 onto 𝛾 .

Lemma 3.2.5. Let 𝛾 > 0 and 𝑓 ∈  . Any solution ̂𝑓 of the problem (3.3) is an element of 2𝛾 .

The proofs of lemma 3.2.4 and lemma 3.2.5 can be found in the appendix. Lemma 3.2.5
leads to the equivalence of the problem (3.4) with the minimization problem:

̂𝑓 ∈ argmin
𝑔∈2𝛾

𝐸𝛾 (𝑓 ,𝑔). (3.11)

The strengthening of lemma 3.2.1 by restricting not only the locations of the jumps but
also their directions is a favorable change as it narrows the set of possible solutions.

Lemma 3.2.6. Let 𝑓 ∈  . Suppose 𝑓 ≡ 𝑐 on an interval [𝑎,𝑏] for some constant 𝑐 ∈ ℝ. If
𝑏− 𝑎 > 𝛾 , then ̂𝑓 ≡ 𝑐 on [𝑎,𝑏]. If 𝑏− 𝑎 = 𝛾 , then there exists a projection such that ̂𝑓 ≡ 𝑐 on
[𝑎,𝑏].

Proofs of lemma 3.2.6 can be found in the appendix.
Lemma 3.2.6 potentially reduces the number of jumps that have to be considered in

the post-processing. Moreover, lemma 3.2.4 reduces the number of arcs when building the
graph making the process of finding the shortest path more effective.

Additionally, remark 3.2.2 can also be strengthened.

Remark 3.2.3. If 𝑛 > 2 and all states are shorter than 𝛾 (except for the first and the last
state), there exists a projection such that the second and the second-to-last jump of the
original function are not present in it.

Remark 3.2.3 allows us to ignore the second and the penultimate jump of the projected
function when searching for jump locations in the projection. The proof of this remark
can be found in the appendix.

The directed graph 𝐺 has a different set of vertices compared to (3.8):

𝑉 = {𝑡0, 𝑡1, ..., 𝑡𝑛, 𝑡𝑛+1}\{𝑡2, 𝑡𝑛−1}9, (3.12)

and of directed arcs compared to (3.9):

𝐴 = {(𝑡𝑘 , 𝑡𝑙) ∈ 𝑉 2 ∶ 𝑡𝑙 − 𝑡𝑘 ≥ 2𝛾 and 𝑙− 𝑘 mod 2 ≡ 1}. (3.13)

Theorem 3.2.2 (Problem equivalence - binary version). Let 𝛾 > 0 and (𝑡1, ..., 𝑡𝑛) be the only
discontinuities of a function 𝑓 ∈  . Let 𝐺 = (𝑉 ,𝐴,𝑊) be a weighted, directed graph as defined
in (3.10), (3.12), (3.13). The task of finding a projection of 𝑓 onto 2𝛾 , as defined in (3.11), is
equivalent to finding a shortest path from 𝑡0 to 𝑡𝑛+1 in the graph 𝐺.

Proof of the theorem 3.2.2 can be found in the appendix.

9If n=2, then both of those jumps are present in 𝑉

3.3 Incorporating domain knowledge into the performance measure of classification

3

47

3.3 Incorporating domain knowledge into the per-
formance measure of classification

3.3.1 Problem-specific reqirements on the performance mea-
sure

In order to choose an appropriate performance measure for a given classification task,
it is important to understand the problem-specific demands on the result. The standard
distance (3.1), which can be understood as a continuous analogue of the most common
performance metric, namely the misclassification rate, can often be inadequate to compare
the classification results as it is a one-fits-all type of metric and if more is known about the
problem, it might not represent the idea of accuracy that users have in mind. On the other
hand, there have been other approaches to performance metrics, e.g. [65]. Their approach
focuses on characterizing the error in terms of the number of inserted, deleted, merged
and fragmented events. Event fragmentation occurs when an event in the true labels10 is
represented by more than one event in the estimated labels11, whereas merging refers to
several events in true labels being represented by a single event in the estimated labels.
[65] provide an overview of different performance metrics used in activity recognition
proposing a solution to the problem of timing uncertainty as well as event fragmentation
and merging. Their solution is based on segments, which are intervals in which neither
the true labels nor the estimated labels change the state. If the state in the estimate and the
state in the true labels agree in a given segment, they denote it as correctly classified. If that
is not true, the segment is classified accordingly as fragmenting segment, inserted segment,
deleted segment or merged segment. This provides a deeper level of error characterization,
which is then used in different metrics of classifier performance. Their vector-valued
performance metric is preferable when in-depth overview of the types of mistakes made
by the classifier is needed. We will introduce a novel scalar-valued performance metric,
which can be easily compared and includes problem-specific information such as timing
uncertainty in the labels.

In this section, we aim at highlighting the main characteristics of the classification of
movements based on wearable sensors and at translating them into specific requirements
on the performance measure. Our first requirement comes from physical restrictions. The
states considered in our application represent human activities, but also in more general
contexts they often cannot be arbitrarily short; there is a lower bound on the length of the
events in a state sequence. Hence, estimated labels that violate this lower bound indicate a
bad performance. The lower bound condition requires two parameters: the lower bound
and the penalty for each violation. The lower bound can either be estimated or determined
from domain knowledge, while the penalty can be chosen more freely. Through physical
restrictions we can see a deeper connection with the method introduced in section 3.2.
It is clear that the standard classification methods cannot ensure that the state sequence
contains only events longer than a certain level. The post-processing method addresses
this issue directly and as a consequence we can expect classifiers to benefit from it in the
context of the new performance measure.

10If a state sequence corresponds to the true underlying sequence of activities in a time series, then it will be
called the true labels

11An estimate of the true labels will be called the estimated labels.

3

48 Improving state estimation through projection post-processing

The issue of timing uncertainty should also be addressed when designing the perfor-
mance measure. To illustrate its importance more clearly, we present an example. Five
people were asked to detect boundaries between activities in different time series using a
visualization tool. The tool outputs an animated stick figure model12 given sensor data.

Three time series were selected, each with one of the following activities: running,
jumping and ball kick. The start and the end of each activity were recorded by participants.
Table 3.1 presents the results of the experiment.

Partic. Running Jumping Kick
Start End Start End Start End

P1 2 7.3 2.7 5.2 2.5 3.5
P2 2 7.5 2.7 5.2 2.5 3.9
P3 2.3 6.6 2.7 5.1 2.7 3.6
P4 2.3 7.2 2.7 5.3 2.5 4.3
P5 2.2 7.2 2.9 5.4 2.5 4.1
Avg. 2.16 7.16 2.74 5.24 2.54 3.88
Std 0.15 0.34 0.09 0.11 0.09 0.33

Table 3.1: The results of the labelling experiment; all times are in seconds. The two last rows show the average
and the sample standard deviation for each boundary

The experiment indicates there is indeed uncertainty regarding the state transitions.
Granted that the sample size is very small, we notice more variation in results referring to
the end of activities rather than the beginnings. Additionally, we see more variation in the
results for the kick than the jumping. So the boundaries of some activities seem to be more
difficult to identify than of others.

3.3.2 Globally Time-Shifted distance
The standard distance (3.1) is an unsatisfying measure to compare two state sequences,
since it does not incorporate the requirements posed in the previous section. In order
to improve it, we start by modelling the timing uncertainty. Let 𝑓 ∈  be the true labels
process and let 𝑓 have 𝑛 discontinuities 𝑡1, ..., 𝑡𝑛. The locations of the discontinuities are
corrupted by additive noise:

𝑡𝑖 = 𝑇𝑖+𝑋𝑖,

for all 𝑖 = 1, ..., 𝑛, where 𝑇𝑖 is the true and unknown location of the 𝑖-th jump. In this section
we will assume that 𝑋1 = 𝑋2 = ... = 𝑋𝑛 (all jumps are moved by the same value; the global
time shift), although in general, it is more realistic to assume that 𝑋1, ...,𝑋𝑛 are independent
random variables. We will relax this condition later.

We define a class of Globally Time-Shifted distances (GTS distances), loosely inspired by
the Skorokhod distance on the space of càdlàg functions [66, pp. 121]. The GTS distances are
parametrized by two parameters. The parameter 𝑤 controls the weight of misclassification

12A symbolic representation of the human body using only lines

3.3 Incorporating domain knowledge into the performance measure of classification

3

49

occurring from the uncertainty of the true labels, while the parameter 𝜎 controls the
magnitude of the shift of activities.

Definition 3.3.1 (Globally Time-Shifted distance). Let 𝑓 ,𝑔 ∈  . Given 𝑤 ≥ 0,𝜎 > 0 and a
metric 𝑑 on  we define a Globally Time-Shifted distance as:

𝐺𝑇𝑆𝑤,𝜎(𝑓 ,𝑔) = inf
𝜖∈[−𝜎,𝜎]

{dist(𝑓 ◦ 𝜏𝜖, 𝑔)+𝑤|𝜖|},

where for 𝜖 > 0 𝜏𝜖 ∶ ℝ→ ℝ is a time shift defined as follows:

𝜏𝜖(𝑡) = 𝑡 − 𝜖.

Depending on the choice of parameters the GTS distance possesses certain properties.
For 𝑤 > 0 and 𝜎 = ∞, the GTS distance is an extended metric13 and a proof of this fact is
given in the appendix. If 𝑤 > 0 and 𝜎 > 0, then it is a semimetric meaning that it has all
properties required for a metric, except for the triangle inequality.

The main downside of using the GTS distance is the unrealistic assumption on timing
uncertainty. However, if we know that the true labels preserve the true state durations
then it is a good choice. Consider a function 𝑓 ∈  with two state transitions located at 𝑡1
and 𝑡2. Let 𝑔 ∈  also feature two state transitions located at 𝑡1− 𝜏1 and 𝑡2− 𝜏2. If 𝜏1 ≠ 𝜏2,
then there is no global time shift that can align the functions 𝑓 and 𝑔 . This implies that the
true state durations need to be preserved in the estimate in order to align functions using
the global time shift.

3.3.3 LocallyTime-Shifteddistance andtheDurationPenalty
Term

The global time shift stresses the state durations, which is not always desirable. For instance,
if the true labels do not preserve the real state durations, or e.g. if the additive noise terms
in the locations of the jumps are independent. Here is an example: figure 3.2 shows 𝑓 and
its approximations 𝑔𝑖 for 𝑖 = 1,2,3. It is impossible to align 𝑓 with any of the 𝑔𝑖 with a single
time shift, however, it would be possible if each state transition could be shifted ‘locally’.

Naturally, to accommodate for this issue, a suitable modification would be to replace
one global time shift with multiple local time shifts. We now introduce a measure of
closeness between state sequeneces which conceptually can be seen as derived from the
GTS measure. We will be working with sequences of jumps, but more specifically given
two sequences of state boundaries we will combine them together and sort the resulting
joint sequence in an increasing order. Subsequent pairs of values in this sequence are
determining segments understood as in [65]. We weigh different types of segments and
the result is a weighted average of segment lengths, which is supposed to reflect well the
error magnitude of the classifier.

We define segments formally and introduce a new distance on  .

Definition 3.3.2 (Segments). Let 𝑓 ,𝑔 ∈  . The elements of the smallest partition14 of
ℝ such that in each element of the partition neither 𝑓 nor 𝑔 changes state will be called
segments.
13It may attain the value ∞.
14A partition that cannot be made coarser

3

50 Improving state estimation through projection post-processing

Figure 3.2: The function 𝑓 represents the true labels with an uncertainty around state boundaries, 𝑔𝑖 are the
approximations of 𝑓

Since functions from  are piece-wise constant and have a finite number of discontinu-
ities, there is always a finite number of segments. The general form of segments that we
will use is as follows:

(−∞, 𝑎1) ∪
𝑙−1
⋃
𝑖=1

[𝑎𝑖, 𝑎𝑖+1) ∪ [𝑎𝑙 ,∞), (3.14)

where 𝑎1 < 𝑎2... < 𝑎𝑙 if 𝑓 and 𝑔 are not both constant on the real line. Otherwise there is
only one segment, consisting of the whole real line. By convention, 𝑎0 = −∞ and 𝑎𝑙+1 = ∞,
and

𝑓 (𝑎0) = 𝑓 (𝑎−1) = lim
𝑥→−∞

𝑓 (𝑥), 𝑓 (𝑎𝑙+1) = 𝑓 (𝑎𝑙).

Definition 3.3.3 (Locally Time-Shifted distance). Let 𝑤 ≥ 0, 𝜎 > 0 and 𝑑 be a metric on
 . Let 𝑓 ,𝑔 ∈  and their set of segments to be denoted as in (3.14). We define the Locally
Time-Shifted distance (LTS distance) as

𝐿𝑇𝑆𝑤,𝜎(𝑓 ,𝑔) =
𝑙−1
∑
𝑖=1

𝛿𝑖(𝑎𝑖+1−𝑎𝑖)𝑑(𝑓 (𝑎𝑖), 𝑔(𝑎𝑖)),

where

𝛿𝑖 =

{
𝑤, 𝑎𝑖+1−𝑎𝑖 ≤ 𝜎, 𝑓 (𝑎𝑖−1) = 𝑔(𝑎𝑖−1), 𝑓 (𝑎𝑖+1) = 𝑔(𝑎𝑖+1)
1, otherwise.

Similarly to the GTS distance, the parameter 𝑤 controls the weight of misclassification
occurring from the uncertainty of the true labels. The case when 𝑤 < 1 is more interesting

3.3 Incorporating domain knowledge into the performance measure of classification

3

51

to us, since it corresponds to timing uncertainty of the labels. If 𝑤 ≥ 1, then we put more
importance on the timings of the jumps (opposite to timing uncertainty). The LTS distance
is an extended semimetric for 𝑤 > 0 (for a proof, see the appendix). The triangle inequality
does not hold in general.

The LTS distance addresses the issue of timing uncertainty in the true labels. Let 𝜁 > 015
be the lower bound on the lengths of the events as determined by the domain knowledge
(or through estimation if possible). Let 𝜆 > 0 be the penalty for each violation of the lower
bound condition. For 𝑓 ∈  with its discontinuities 𝑡1, ..., 𝑡𝑛, we introduce a duration penalty
term:

𝐷𝑃𝜆,𝜁 (𝑓) = 𝜆
𝑛−1
∑
𝑘=1

1[0,𝜁)(𝑡𝑘+1− 𝑡𝑘).

This term will allow to lower the performance of classifications with unrealistically short
events.

In practice, we will need to extend the functions to the real line in order to use the
LTS distance as it is defined for functions with domain equal to the whole of ℝ. One
natural extension could be to extend the first and the last state of each function indefinitely.
However, this solution leads to a problem. Let𝑀 > 0. Consider two functions 𝑓 ∶ [0,𝑀]→
and 𝑔 ∶ [0,𝑀] →  such that for some 0 < 𝑎 < 𝑀 , 𝑓 (𝑡) ≠ 𝑔(𝑡) on [0, 𝑎). No matter how
small 𝑎 is, the distance between extended 𝑓 and 𝑔 will always be infinite when using this
extension, since in this case extended 𝑓 and 𝑔 are in different states on the whole half line
(−∞, 𝑎). Both functions need to be extended by the same state for the distance to be finite.
We extend any function 𝑓 defined on interval [0,𝑀] to the real line, setting its value to an
arbitrary state outside of [0,𝑀). The distance is independent of the chosen state, as on the
infinite segments that it introduces 𝑓 and 𝑔 are both equal. Without loss of generality, we
choose state 1.

𝑓 ∗(𝑡) =

{
𝑓 (𝑡), 𝑡 ∈ [0,𝑀)
1, 𝑡 ∉ [0,𝑀).

(3.15)

Notice that this extension does not have the problem stated above as 𝑓 ∗ and 𝑔∗ are equal
on the segments that it introduces and does not change the value on the original segments
regardless of the choice of the state outside of [0,𝑀].

We combine the LTS distance and the duration penalty term to define the LTS measure
of closeness of two state sequences.

Definition 3.3.4. Let 𝑓 be a function of true labels and 𝑔 its estimate, both defined on
[0,𝑀]. The LTS measure is defined as:

𝐿𝑇𝑆𝑤,𝜎,𝜆,𝜁 (𝑓 ,𝑔) = exp(−𝐿𝑇𝑆𝑤,𝜎(𝑓 ∗, 𝑔∗)/𝑀 −𝐷𝑃𝜆,𝜁 (𝑔)).

The scaling through the division by𝑀 normalizes the LTS distance to the interval [0,1].
The transformation [0,+∞) ∋ 𝑥 → exp(−𝑥) ∈ (0,1] maps the sum of the LTS distance and
the duration penalty term to the interval (0,1], while reversing the order as well: 𝑔 is closer
to 𝑓 if the LTS measure is closer to 1.

15Note that 𝜁 is related in its interpretation to the 𝛾 parameter introduced in section 3.2.

3

52 Improving state estimation through projection post-processing

3.4 Application to activity recognition
3.4.1 Simulation study
We consider a dataset created using a random procedure, which mimics the behavior of
activity recognition classifiers with varying accuracy (depending on the parameters). Let
 = {1,2,3}. Consider a function 𝑓 representing a 60 second long state sequence:

𝑓 = 1[0,5)+2 ⋅1[5,15)+3 ⋅1[15,30)+2 ⋅1[30,40)+3 ⋅1[40,55)+1[55,60].

𝑓 will be referred to as the correct labels. We introduce noise into 𝑓 in the following
manner:

• two sequences of i.i.d. random variables are considered {𝑌𝑘} and {𝑍𝑘}, with 𝑌𝑘 ∼
𝐸𝑥𝑝(𝜇1) and 𝑍𝑘 ∼ 𝐸𝑥𝑝(𝜇2) for some parameters 𝜇1, 𝜇2 > 0,

• {𝑌𝑘} represents the time spent in the correct state, while {𝑍𝑘} represents the time
spent in the incorrect state,

• we use the sequence 𝑌1,𝑍1, 𝑌2,𝑍2, ... to generate noisy labels, where the sequence ends
when the sum of all drawn numbers is exceeding 60 seconds,

• for each variable 𝑍𝑖 an incorrect state is chosen randomly out of the remaining two

and 𝑓 is changed to that state on interval [
𝑖−1
∑
𝑘=1

(𝑌𝑘 +𝑍𝑘)+ 𝑌𝑖,
𝑖
∑
𝑘=1

(𝑌𝑘 +𝑍𝑘)),

• 𝜇1 and 𝜇2 control the duration of the states.

As our performance measure we choose the LTS measure with parameters: 𝑤 = 0.6,
𝜎 = 0.35, 𝜆 = 0.0001, 𝜁 = 0.5, 𝑑 = 𝜌. The post-processing is performed for the noisy labels
with parameter 𝛾 = 0.5𝑠. To demonstrate the utility of the post-processing procedure, we
draw the noisy function 1000 times for a given set of parameters (𝜇1, 𝜇2) and compare the
accuracy of the noisy labels, the accuracy of the post-processed labels, the LTS measure of
the noisy labels and the LTS measure of the post-processed labels.

In the first setting, we fix 𝜇1 = 0.1𝑠. The procedure is repeated for 𝜇2 ∈ [0.01,0.1] (100
sample points from the interval are chosen). Figure 3.3 compares the mean accuracy of the
noisy labels and the post-processed labels as well as the mean LTS measure of the noisy
labels and the post-processed labels.

In the second setting, we fix 𝜇1 = 0.5𝑠. The procedure is repeated for 𝜇2 ∈ [0.05,0.5] (100
sample points from the interval are chosen). Figure 3.4 shows the mean accuracy of the
noisy labels and the post-processed labels as well as the mean LTS measure of both the
noisy labels and the post-processed labels.

In the third setting, we fix 𝜇1 = 1𝑠. The procedure is repeated for 𝜇2 ∈ [0.1,1] (100
sample points from the interval are chosen). Figure 3.5 shows the mean accuracy of the
noisy labels and the post-processed labels as well as the mean LTS measure of both the
noisy labels and the post-processed labels.

All three experiments show the improvement in the accuracy as well as the LTSmeasure
thanks to the use of post-processing. Additionally, we conclude that the post-processing
method behaves better when dealing with multiple shorter intervals rather than fewer
longer intervals. Moreover, the boxplots show more variability in the performance of

3.4 Application to activity recognition

3

53

Figure 3.3: The top left plot shows the mean accuracy of the noisy labels (red) and the mean accuracy of the
post-processed labels (green) as calculated for different values of 𝜇2. The top right plot shows the LTS measure
of the noisy labels (red) and the post-processed labels (green) as calculated for different values of 𝜇2. All lines
drawn for 100 different values of 𝜇2. The bottom left boxplot shows the variability of the accuracy amongst
the estimates (red) and the post-processed estimates (green). The bottom right boxplot shows the variability
of the LTS measure amongst the estimates (red) and the post-processed estimates (green). Boxplots have been
constructed for 5 different values of 𝜇2.

3

54 Improving state estimation through projection post-processing

Figure 3.4: The top left plot shows the mean accuracy of the noisy labels (red) and the mean accuracy of the
post-processed labels (green) as calculated for different values of 𝜇2. The top right plot shows the LTS measure
of the noisy labels (red) and the post-processed labels (green) as calculated for different values of 𝜇2. All lines
drawn for 100 different values of 𝜇2. The bottom left boxplot shows the variability of the accuracy amongst
the estimates (red) and the post-processed estimates (green). The bottom right boxplot shows the variability
of the LTS measure amongst the estimates (red) and the post-processed estimates (green). Boxplots have been
constructed for 5 different values of 𝜇2.

3.4 Application to activity recognition

3

55

Figure 3.5: The top left plot shows the mean accuracy of the noisy labels (red) and the mean accuracy of the
post-processed labels (green) as calculated for different values of 𝜇2. The top right plot shows the LTS measure
of the noisy labels (red) and the post-processed labels (green) as calculated for different values of 𝜇2. All lines
drawn for 100 different values of 𝜇2. The bottom left boxplot shows the variability of the accuracy amongst
the estimates (red) and the post-processed estimates (green). The bottom right boxplot shows the variability
of the LTS measure amongst the estimates (red) and the post-processed estimates (green). Boxplots have been
constructed for 5 different values of 𝜇2.

3

56 Improving state estimation through projection post-processing

Figure 3.6: The line shows the LTS measure of the post-processed labels drawn for 100 different values of 𝛾 . The
mean accuracy of noisy labels was equal to 0.556 and the mean LTS measure of noisy labels was equal to 0.602.

the post-processed estimates when dealing with initial estimates with fewer but longer
intervals of misclassification. This can be due to the fact that at the level of around 0.5 in
accuracy and in the LTS measure, the post-processing starts behaving much worse and is
not able to recover the original signal as reliably. It shows the limits of the method and the
fact that there is a point at which the method starts to behave worse.

We also investigate the importance of the parameter 𝛾 on the results. We fix 𝜇1 = 0.1,
𝜇2 = 0.08. The procedure is repeated for 𝛾 ∈ [0.01,2.5] (100 sample points from the interval
are chosen). Figure 3.6 shows the mean LTS measure of the post-processed labels.

We conclude that the parameter 𝛾 can influence the LTS measure of the post-processed
functions �̂�𝑖. It needs to be chosen carefully since too low values will lead to accepting
unrealistically short events while too high values will eliminate true events. In our case
the values of 𝛾 between 0.5 and 1 are the most favourable. In practice the minimal length
of the events in the true labels can inform on the choice of 𝛾 .

We finish the simulation study with a look at the parameters of the LTS measure. We
will investigate the weight 𝑤 first. Let all the other parameters of the LTS measure be set to
𝜎 = 0.35, 𝜆 = 0.0001, 𝜁 = 0.5. We fix 𝜇1 = 0.1, 𝜇2 = 0.08, 𝛾 = 0.5. The procedure is repeated
for 100 different values of 𝑤 in the interval [0,2]. Figure 3.7 shows the mean LTS measure
of the post-processed labels.

Figure 3.7 shows the effect of the parameter 𝑤 on the LTS measure. As we can see on
the 𝑦-axis, the values of the LTS measure are quite close together. Hence, we conclude
that the choice of 𝑤 is less important as its effect on the LTS measure is minimal. The

3.4 Application to activity recognition

3

57

Figure 3.7: The line shows the LTS measure of the post-processed labels drawn for 100 different values of 𝑤. The
mean accuracy of noisy labels was equal to 0.555.

main reason for this behaviour stems from the fact that 𝜎 restricts many of the erroneous
intervals and the remaining ones for which 𝑤 takes effect are quite small. Hence, the effect
of 𝑤 on the LTS measure is not large.

The parameter 𝜎 determines the length of the misclassified events up to which they
are caused by timing uncertainty of the labels. 𝜎 can be chosen based on the domain
knowledge, based on the experiment described in section 3.3.1. The parameter 𝜁 is a lower
bound on the lengths of the events, hence can be determined by the domain knowledge.
Given their clear interpretation, the parameters 𝜎 and 𝜁 will not be subjected to the same
procedure as the parameter 𝑤. Hence, the only parameter left to investigate is 𝜆. As before,
we fix 𝜇1 = 1, 𝜇2 = 0.8, 𝛾 = 0.5. We choose 𝑤 = 0.6. The procedure is repeated for 100 values
of 𝜆 between 0 and 0.5. Figure 3.8 shows the mean LTS measure of the post-processed labels.
We can see that high values of 𝜆 can influence the LTS measure significantly, hence choices
lower than 0.01 are preferable. We want to avoid that the penalty term is overshadowing
the LTS distance.

3.4.2 Application to a football dataset
We will now demonstrate the benefits of the post-processing by projection in a real-life
setting, utilizing the LTS measure to compare different methods of classification. [29] give
an extensive description of the football dataset of which we give a short summary below.

Eleven amateur football players participated in a coordinated experiment at a training
facility of the Royal Dutch Football Association of The Netherlands. Five Inertial Measure-

3

58 Improving state estimation through projection post-processing

Figure 3.8: The line shows the LTS measure of the post-processed labels drawn for different values of 𝜆. The
mean accuracy of noisy labels was equal to 0.56.

ment Units (IMUs) were attached to 5 different body parts: left shank (LS), right shank (RS),
left thigh (LT), right thigh (RT) and pelvis (P). Each IMU sensor contains a 3-axis accelerom-
eter (Acc) and a 3-axis gyroscope (Gyro). Athletes were asked to perform exercises on
command, e.g. ‘jog for 10 meters’ or ‘long pass’. For each athlete and exercise this resulted
in a 30-dimensional time series (5 body parts times 6 features per IMU) of length varying
from 4 to 14 seconds. Each athlete performed 70-100 exercises which amounts to nearly 900
time series (each with a sampling frequency of 500 Hz). Time series are labelled with the
command given to an athlete, but there are still other activities performed in each of the
time series, for example standing still. This causes a problem; ignoring standing periods
and treating them as part of the main signal pollutes the data and lowers the quality of
the classification. To show the advantages of post-processing by projection, we select only
two states: ‘standing’ and ‘other activity’ encoded as 0 and 1, respectively. 15 time series
(representative of all possible actions performed by athletes) were manually labelled time
point by time point in order to be able to train classifiers, and these will form our sample.
All 15 time series were chosen from the single athlete.

In pre-processing we are using the sliding window technique on the sensors [67]. This
method transforms the original raw data using windows of fixed length 𝑑 and a statistic of
choice 𝑇 : given a time point 𝑡, its neighbourhood of size 𝑑 is fed to the statistic 𝑇 for each
variable separately. Performing the procedure for each time point results in a time series
of the same dimension as the original one, but every observation is equipped with some
knowledge about the past and the future through the statistic 𝑇 and through forming the

3.4 Application to activity recognition

3

59

neighbourhoods of size 𝑑. Regarding the choice of the statistic 𝑇 one needs to be careful,
since the sensors are highly correlated with each other. The information about standing
contained in one variable is comparable to the one in another, namely the variance of the
signal is low when the person is standing (differences can occur when considering different
legs; a low variance on one leg might be misleading since the other leg might already be
transitioning into another position).

Leave-5-out cross-validation will be performed in order to select the best performing
classification method out of the 7 standard machine learning methods, which will be listed
below. A typical approach to 𝑘-fold cross-validation with a training sample of size 𝑘−1
cannot be applied here, since a single time series is not a representative sample of different
types of events. 15 time series will be used. In each iteration 10 time series will be randomly
chosen for training and 5 for testing. The results are going to be shown for post-processed
classifiers, unless specified otherwise. Before cross-validation can be performed, we need to
fix the parameters of the performance measure we introduced in section 2. The parameters
of the LTS measure are chosen as follows:

• We have limited information regarding how uncertain locations of state transitions
are, but based on the small experiment described in section 3.3.1 we select 𝜎 = 0.35
(the largest deviation between different true labels).

• The parameter 𝑤 is chosen as 0.6, but as shown in section 3.4.1 its choice is not that
important.

• The lower bound 𝛾 on the duration of activities is selected as the length of the shortest
activity in the learning dataset, which is equal to 0.8s in our case.

• A penalty 𝜆 represents the cost of additional or missing jumps in a state sequence
compared to the true labels. We decide for the penalty 𝜆 = 0.01 in order not to
overshadow the LTS distance with too much importance placed on the penalty term
(more details on that were given in section 3.4.1, specifically in figure 3.8).

Before assessing classifiers on the training set, one needs to consider an appropriate
feature set. Our variables are highly dependent on one another, so we start with feature
selection. We perform feature ranking using the Relieff algorithm and select the 6 most
relevant features based on the Relieff weights (more details on the method in [68]). Then
we test all possible combinations of these features, which is now computationally feasible,
in order to find the best set for each of the classifiers. The features selected by the Relieff
algorithm are RTGyroX, RTGyroY, RTAccX, RTAccZ, LTAccY, PAccY, where the naming
convention is as follows: RTGyroX refers to the 𝑥-axis of the gyroscope located on the
right thigh and so forth.

Proceeding with the cross-validation we select the following classifiers (with their
abbreviations) to be assessed: DT - Decision Tree, kNN - k-Nearest Neighbors, LR - Logistic
Regression, MLP - Multi-layer Perceptron, NB - Naive Bayes, RF - Random Forest, SVM -
Support Vector Machine. The results of leave-5-out cross-validation are shown in table 3.2.
It is striking that the test scores of the post-processed classifiers are at most 0.028 apart.
This is due to post-processing by projection. The correction it provides brings all classifiers
closer together. This result can be extended even further. The test score of a decision tree

3

60 Improving state estimation through projection post-processing

Classifier OG Test PP Test
MLP 0.916+/-0.031 0.972+/-0.008
LR 0.898+/-0.034 0.968+/-0.015
kNN 0.59+/-0.05 0.967+/-0.020
RF 0.83+/-0.07 0.966+/-0.017
SVC 0.894+/-0.034 0.966+/-0.017
DT 0.83+/-0.07 0.965+/-0.008
NB 0.88+/-0.04 0.944+/-0.023

Table 3.2: Average of the leave-5-out cross-validation scores for all classifiers using the best sensor set for each of
them. The pre-processing consisted of the sliding window technique in combination with summarizing by the
standard deviation. The OG Test averages the LTS measure on the test set for the original classifier, while the PP
Test is the same value for the post-processed classifier.

ranges from 59% to 86% for different sensor sets before post-processing, while using the
post-processing results in a range of test scores from 93% to 96.5% and this is not specific
to decision trees only.

The example shows that the post-processing is crucial. Firstly, it increases the accuracy
of a given estimator on a given feature set by 35%. Secondly, it diminishes the impact of
feature selection as the difference in accuracy between different feature subsets decreases
substantially. Feature selection is of course still important as it decreases the computational
complexity of the problem and allows to get rid of redundancy in the feature set. However,
with methods that only rank features such as Relieff the choice of the threshold we choose
to classify a feature as significant or not is less important. Finally and most importantly,
the post-processing by projection allows to select a method according to criteria other than
the performance, namely the computational speed.

3.5 Conclusion
In this paper we have introduced a post-processing scheme that allows to improve estimates.
It finds estimated activities that are too short and eliminates them in an optimal way by
finding the shortest path in a directed acyclic graph.

A simulation study is conducted to assess the benefits brought by the post-processing
method. Generated noisy labels are improved with the use of the post-processing. The
positive effects on the LTS measure are more significant when the noisy sequence contains
more short intervals of misclassification.

Real-life football sensor data were used to assess the adequacy of the post-processing
scheme in the more realistic setting. It significantly improved the performance of the
classifiers. At the same time, the post-processed classifiers are closer to each other in
performance than the original ones. This allows placing more importance on other criteria,
such as the computational speed of the method. It should be noted that post-processing
cannot correct for uncertainty in the classification result of the estimators. It can be seen
in figures 3.3, 3.4 and 3.5 that the worse the original estimate the worse the post-processed
one (at least as a rule of thumb as there can be cases when it is reversed). However, most

3.6 Appendix

3

61

importantly, the results of the application to the football dataset are promising. The post-
processing by projection was able to improve the estimators of accuracy ranging from 59%
to 86% up to a score of 93% to 96.5%. We note that the lowest score of the post-processed
estimates for any given classification method is still higher than the highest score of the
original estimates. An alternative to our method could be to integrate the penalization of
too short windows into the classifier. This is not an easy idea to realize, since classifiers
usually do not consider the duration of activities themselves and they classify in a time
linear manner. Nonetheless, if an appropriate scheme were to be defined, it would expand
on the theory developed in this paper.

Another contribution are novel measures of classifier performance in the task of activity
recognition using wearable sensors. They address the issue of timing offsets as well as
unrealistic classifications, while retaining a typical scalar output of a performance measure
allowing for easy comparisons between classifiers.

3.6 Appendix
3.6.1 Proofs
Proof of lemma 3.2.1 Let ̂𝑓 be a solution of problem (3.3) for a given function 𝑓 . Assume
that ̂𝑓 contains a jump 𝑡 outside of the set 𝐽 (𝑓). Denote the jump or one of the jumps
closest to 𝑡 in the original function 𝑓 by 𝑡𝑘 . Without loss of generality we assume 𝑡𝑘 is
located left of 𝑡 (𝑡𝑘 exists otherwise 𝑓 is constant and ̂𝑓 = 𝑓). Let 𝑡𝑎 and 𝑡𝑏 denote the jump
preceding and resp. following 𝑡 in the projection ̂𝑓 . Let 𝑡𝑘+1 denote the jump following 𝑡𝑘
in the original function 𝑓 . Let 𝑠1 be the state in which the original function stays in the
interval [𝑡𝑘 , 𝑡𝑘+1) and let 𝑠2 be the state from which the projection ̂𝑓 jumps at 𝑡 and left 𝑠3
be the state to which the projection ̂𝑓 jumps at 𝑡.

We will consider multiple cases and in each of them we will present a modification to
̂𝑓 that either shows that ̂𝑓 cannot be a projection or that there exists a function which is
not worse than ̂𝑓 and does not contain a jump at 𝑡. The configurations of the cases are
depicted in Fig. 3.9.

1. 𝑠1 ≠ 𝑠2

(a) 𝑡𝑎 < 𝑡𝑘 . Moving the jump 𝑡 to 𝑡𝑘 does not increase the error (and potentially
lowers it, if 𝑠3 = 𝑠1).

(b) 𝑡𝑎 ≥ 𝑡𝑘 . We move the jump 𝑡𝑎 to 𝑡, which results in lowering the error by at least
𝛾 . Then we go back to the beginning of the proof with redefined state 𝑠2 and
jump 𝑡𝑎.

2. 𝑠1 = 𝑠2

(a) 𝑡𝑏 ≥ 𝑡𝑘+1. Moving the jump 𝑡 to 𝑡𝑘+1 lowers the error by at least 𝑡𝑘+1 − 𝑡 since
𝑠3 ≠ 𝑠1.

(b) 𝑡𝑏 < 𝑡𝑘+1. We move the jump 𝑡 to 𝑡𝑏, which results in lowering the error by
penalty term 𝛾 and 𝑡𝑏 − 𝑡, since 𝑠1 = 𝑠2. We go back to the case 𝑠1 = 𝑠2 with 𝑡
moved to 𝑡𝑏 and 𝑡𝑏 moved to the next jump in ̂𝑓 (if it does not exist, then 𝑡𝑏 =∞).
Eventually the jump 𝑡 can be moved to 𝑡𝑘+1 (when case 2(a) is reached).

3

62 Improving state estimation through projection post-processing

Loops occurring in cases 1(b) and 2(b) are not problematic, since with each iteration the
number of jumps of the solution is reduced, eventually cases 1(a) or 2(a) are reached.

Proof of lemma 3.2.2 Let ̂𝑓 be a solution of the problem 3.3 for a given function 𝑓 .
Assume that for certain �̃� < 𝛾 , ̂𝑓 ∈ �̃� and ̂𝑓 ∉ 𝛾 . Hence there exist two jumps 𝑡𝑘 and 𝑡𝑙 of 𝑓
and ̂𝑓 (which follows from lemma 3.2.1), such that �̃� < 𝑡𝑙 − 𝑡𝑘 < 𝛾 . Since the state lasts less
than 𝛾 , it can be removed (in the sense that one of the jumps is removed and either the
previous state or following state is longer by 𝑡𝑙 − 𝑡𝑘) with a gain in error of less than 𝛾 and
decrease in error of exactly 𝛾 , which means we found a function with lower error than ̂𝑓 .
This contradiction ends the proof.

Proof of lemma 3.2.3 Let 𝑓 be a function with two neighboring jumps 𝑡1, 𝑡2 and the state
𝑠1 between them. Assume 𝑡2 − 𝑡1 ≥ 2𝛾 . Since the interval is longer than or equal to 2𝛾 it
satisfies the condition of the class 𝛾 . Let us assume that the projection ̂𝑓 of 𝑓 contains two
neighbouring jumps 𝑡𝑎 and 𝑡𝑏 such that 𝑡𝑎 ≤ 𝑡1 < 𝑡2 ≤ 𝑡𝑏 and the state in the interval [𝑡𝑎, 𝑡𝑏) is
𝑠2 ≠ 𝑠1. We introduce notation 𝛼 ∶= 𝑡1− 𝑡𝑎 and 𝛽 ∶= 𝑡𝑏− 𝑡2. If 𝛼,𝛽 ≥ 𝛾 , then introducing the
jumps at 𝑡1 and 𝑡2 with the state 𝑠1 between them is possible, because the condition of the
class 𝛾 is satisfied. Moreover, the error is decreased if 𝑡2− 𝑡1 > 2𝛾 and is not increased if
𝑡2− 𝑡1 = 2𝛾 . If 𝛼 ≥ 𝛾 and 𝛽 < 𝛾 , then introducing a jump at 𝑡1 such that the state following it
is 𝑠1 is possible. Moreover, the error is decreased. Analogously when 𝛼 < 𝛾 and 𝛽 ≥ 𝛾 . If
𝛼,𝛽 < 𝛾 , then changing state 𝑠2 to 𝑠1 reduces the error.

In all cases, we have shown that there exists a projection that does not change the state
longer than 2𝛾 .

Proof of remark 3.2.2 Let ̂𝑓 be a projection of 𝑓 onto 𝛾 . Let 𝑡1 and 𝑡2 be the first
two jumps in the original function 𝑓 . Let 𝑠1 and 𝑠2 be the first two states in the original
function 𝑓 . If ̂𝑓 had the first jump at 𝑡2 from the state 𝑠1, then a function 𝑔 equal to ̂𝑓
outside of interval [𝑡1, 𝑡2), but such that the jump from state 𝑠1 is moved to the location of
the jump 𝑡1 has an error lower than or equal that of ̂𝑓 . If ̂𝑓 had the first jump at 𝑡2 from a
state 𝑠𝑖 ≠ 𝑠1, then the error is infinite (since the value of ̂𝑓 differs from 𝑓 on the interval
(−∞, 𝑡1)) and ̂𝑓 cannot be a projection.

The argument is analogous for the penultimate jump.

Proof of theorem 3.2.1 We use lemma 3.2.1 to prove that a projection of a function
from  onto 𝛾 can only have jumps at the same positions as the jumps in the original
function. This leads to the fact that finding the shortest path in the graph is equivalent to
finding ̂𝑓 .

Proof of lemma 3.2.4 Let ̂𝑓 be a projection of 𝑓 onto 𝛾 . Let 𝑡𝑘 and 𝑡𝑘+1 be two consec-
utive jumps of 𝑓 . Assume that ̂𝑓 contains a jump 𝑡𝑘 , but in opposite direction than in 𝑓 .
From lemma 3.2.1 we know that the next jump of ̂𝑓 can occur at the earliest at 𝑡𝑘+1. This
means that in the interval [𝑡𝑘 , 𝑡𝑘+1) the projection ̂𝑓 is equal to 1− 𝑓 . In this case, moving
the jump at 𝑡𝑘 to 𝑡𝑘+1 (or in the case of 𝑡𝑘+1 ∈ 𝐽 (̂𝑓) removing both jumps) reduces the error

3.6 Appendix

3

63

Figure 3.9: Illustration supporting the proof of lemma 3.2.1. Plots correspond (from top to bottom) to cases 1a, 1b,
2a, 2b respectively

3

64 Improving state estimation through projection post-processing

by 𝑡𝑘+1− 𝑡𝑘 . Hence, we conclude, a jump from 𝑓 can only be present in its projection if it is
in the same direction as in 𝑓 .

Proof of lemma 3.2.5 The proof of this lemma is analogous to the proof of lemma 3.2.2.
The possibility of strengthening the previous result comes from the fact that we can remove
two jumps at once, in effect reducing the error by 2𝛾 .

Proof of lemma 3.2.6 The proof of this lemma is analogous to the proof of lemma 3.2.3

Proof of remark 3.2.3 Let ̂𝑓 be a projection of 𝑓 onto 2𝛾 . Let 𝑡1 and 𝑡2 be the first two
jumps in the original function 𝑓 . Let 0 and 1 be the first two states in the original function 𝑓
without loss of generality. By assumption 𝑡2− 𝑡1 < 2𝛾 (note that without this assumption
both jumps could be included in a projection). Since [𝑡1, 𝑡2) is not a valid activity (shorter
than 𝛾), if ̂𝑓 has a jump at 𝑡2, it does not have a jump at 𝑡1. If ̂𝑓 had a jump at 𝑡2 from the
state 0, then a function 𝑔 equal to ̂𝑓 outside of interval [𝑡1, 𝑡2), but such that the jump from
state 0 is moved to the location of the jump 𝑡1 has lower error than ̂𝑓 . If ̂𝑓 had a jump at 𝑡2
from the state 1, then the error is infinite (since the value of ̂𝑓 differs from 𝑓 on the interval
(−∞, 𝑡1)) and ̂𝑓 cannot be a projection.

The argument is analogous for the penultimate jump.

Proof of theorem 3.2.2 We use lemmas 3.2.1 and 3.2.4 to prove that a projection of
a function from  onto 𝛾 can only have jumps at the same positions and in the same
directions as the jumps in the original function. This leads to the fact that finding the
shortest path in the graph is equivalent to finding ̂𝑓 .

GTS distance with 𝑤 > 0 and 𝜎 = ∞ is an extended metric We will show that:

𝐺𝑇𝑆𝑤(𝑓 ,𝑔) = inf
𝜖∈ℝ

{dist(𝑓 ◦ 𝜏𝜖, 𝑔)+𝑤|𝜖|}

is an extended metric on  .

0. Since for any 𝜖, dist(𝑓 ◦ 𝜏𝜖, 𝑔) ≥ 0 and 𝑤|𝜖| ≥ 0 we conclude that the 𝐺𝑇𝑆𝑤 is non-
negative.

1. It is obvious to see that 𝐺𝑇𝑆𝑤(𝑓 , 𝑓) = 0 for any 𝑓 ∈  . Now let us assume that for
some 𝑓 ,𝑔 ∈  we have 𝐺𝑇𝑆𝑤(𝑓 ,𝑔) = 0. This implies that

∃(𝜖𝑛) dist(𝑓 ◦ 𝜏𝜖𝑛 , 𝑔)+𝑤|𝜖𝑛|
𝑛→∞−−−−→ 0.

Since dist(𝑓 ◦ 𝜏𝜖𝑛 , 𝑔)+𝑤|𝜖𝑛| is an upper bound of dist(𝑓 ◦ 𝜏𝜖𝑛 , 𝑔) and 𝑤|𝜖𝑛|, we have

|𝜖𝑛|
𝑛→∞−−−−→ 0,

∫
ℝ

𝑑(𝑓 ◦ 𝜏𝜖𝑛(𝑡), 𝑔(𝑡))𝑑𝜆(𝑡)
𝑛→∞−−−−→ 0.

3.6 Appendix

3

65

From Fatou’s lemma we have

∫
ℝ

liminf
𝑛→∞

𝑑(𝑓 (𝑡 − 𝜖𝑛), 𝑔(𝑡))𝑑𝜆(𝑡) = 0,

where 𝜆 is the Lebesgue measure on ℝ. Because 𝑓 and 𝑔 are càdlàg, this implies that
for almost all 𝑡 we have 𝑓 (𝑡−) = 𝑔(𝑡) or 𝑓 (𝑡) = 𝑔(𝑡) and so we conclude that 𝑓 = 𝑔 .

2. Let 𝑓 ,𝑔 ∈  , we have

𝐺𝑇𝑆𝑤(𝑓 ,𝑔) =inf
𝜖
{dist(𝑓 ◦ 𝜏𝜖, 𝑔)+𝑤|𝜖|} = inf

𝜖
{dist(𝑔 ◦ 𝜏−𝜖, 𝑓)+𝑤|− 𝜖|}

=inf
−𝜖
{dist(𝑔 ◦ 𝜏𝜖, 𝑓)+𝑤|𝜖|} = inf

𝜖
{dist(𝑔 ◦ 𝜏𝜖, 𝑓)+𝑤|𝜖|}

=𝐺𝑇𝑆𝑤(𝑔,𝑓),

hence we conclude that 𝐺𝑇𝑆𝑤 is symmetric.

3. Letting 𝑓 ,𝑔,ℎ ∈  , we have

𝐺𝑇𝑆𝑤(𝑓 ,𝑔) =inf
𝜖
{dist(𝑓 ◦ 𝜏𝜖, 𝑔)+𝑤|𝜖|}

= inf
𝜖1 ,𝜖2

{dist(𝑓 ◦ 𝜏𝜖1 ◦ 𝜏𝜖2 , 𝑔)+𝑤|𝜖1+ 𝜖2|}

≤ inf
𝜖1 ,𝜖2

{dist(𝑓 ◦ 𝜏𝜖1 ◦ 𝜏𝜖2 , ℎ ◦ 𝜏𝜖2)+dist(ℎ ◦ 𝜏𝜖2 , 𝑔)+

+𝑤|𝜖1|+𝑤|𝜖2|}
= inf

𝜖1 ,𝜖2
{dist(𝑓 ◦ 𝜏𝜖1 , ℎ)+𝑤|𝜖1|+dist(ℎ ◦ 𝜏𝜖2 , 𝑔)+𝑤|𝜖2|}

=inf
𝜖1
{dist(𝑓 ◦ 𝜏𝜖1 , ℎ)+𝑤|𝜖1|}+ inf

𝜖2
{dist(ℎ ◦ 𝜏𝜖2 , 𝑔)+𝑤|𝜖2|}

=𝐺𝑇𝑆𝑤(𝑓 ,ℎ)+𝐺𝑇𝑆𝑤(ℎ,𝑔),

which shows that 𝐺𝑇𝑆𝑤 satisfies the triangle inequality and that concludes the
proof.

The LTS distance with 𝑤 > 0 is a semimetric Let 𝑤 > 0,𝜎 > 0 and a metric 𝑑 on  be
fixed. We observe that 𝐿𝑇𝑆𝑤,𝜎 is nonnegative. Symmetry of 𝐿𝑇𝑆𝑤,𝜎 follows directly from
the definition. It only remains to show that 𝐿𝑇𝑆𝑤,𝜎(𝑓 ,𝑔) = 0 if and only if 𝑓 = 𝑔 for 𝑓 ,𝑔 ∈  .

We have
𝐿𝑇𝑆𝑤,𝜎(𝑓 , 𝑓) = 0,

because there is only one segment (as defined in 3.3.2). Assume now that 𝐿𝑇𝑆𝑤,𝜎(𝑓 ,𝑔) = 0
and 𝑓 ≠ 𝑔 . In that case, there exists more than one segment.

𝐿𝑇𝑆𝑤,𝜎(𝑓 ,𝑔) =
𝑙−1
∑
𝑖=1

𝛿𝑖(𝑎𝑖+1−𝑎𝑖)𝑑(𝑓 (𝑎𝑖), 𝑔(𝑎𝑖)) = 0

⇒ ∀𝑖=1,2,3,...,𝑙−1 𝑓 (𝑎𝑖) = 𝑔(𝑎𝑖),

which implies that 𝑓 = 𝑔 , which contradicts the assumption. We conclude that 𝐿𝑇𝑆𝑤,𝜎(𝑓 ,𝑔) =
0 iff 𝑓 = 𝑔 , which completes the proof.

4

67

4
Imputation methods for

sensor reduction

4.1 Introduction
In the field of sports analytics, efficiency needs to go hand in hand with the appropriate
incorporation of diverse feedback from both coaches and players. This encompasses not
only performance metrics and tactical observations provided by coaches but also subjective
insights and experiences shared by players, all of which are important for improving our
data analysis models. In Chapters 2 and 3 we considered applications to football activity
recognition using sensor data and observed advantages of using sensor technology. Sensor
trousers worn by the players measure acceleration and angular velocity on different body
parts. As seen in fig. 2.1c, the sensor trousers prototype covers both the upper as well as
lower legs and the respective sensors are woven into the fabric of the prototype. However,
the conventional football shorts do not go lower than the knees for comfort and freedom
of movement. Hence, it is reasonable to consider a version of the trousers which covers
only upper legs, removing lower legs sensors in the process. In addition, it is natural that
producing such trousers would incur lower costs as well. In order to make this possible,
we consider in this chapter a scenario in which parts of the sensor data are excluded from
the analysis and observe the effect it may have on the accuracy of the predictive model.

Removing parts of the data has the potential to significantly alter the outcomes of data-
driven studies. It is usually worth employing imputation techniques when faced with gaps
in the data, in order to preserve the integrity and the structure of the entire dataset. While
our previous exploration in chapters 2 and 3 concentrated on football activity recognition,
primarily from a modeling standpoint, our current focus shifts towards a critical data-
centered inquiry. We examine how the outcomes of our study in chapter 2 evolve in the
situation where specific sensors are removed from the dataset and in which ways we can
mitigate it.

Our exploration extends beyond merely identifying the impact of missing shank data
on the study results. We also discuss strategies for imputing this absent data, considering
alternative sources such as the thighs and pelvis as the guide. Constructing physically-
inspired relevant features based on the existing sensors becomes crucial in maintaining the

4

68 4 Imputation methods for sensor reduction

robustness of our study, allowing us to adapt to the potential and likely changes in sensor
configurations and ensuring the continued relevance and reliability of our findings.

The problem of imputation usually considers data that are missing only in part mostly
due to equipment malfunction, lack of compliance or human error. This is notably different
from our case, but we review the existing literature on the topic in order to draw inspiration
for our problem. In this brief literature review, we identify a selection of popular ideas in
this field and what they might offer to our particular application. For a comprehensive
survey, see [69].

In general, multiple approaches are available to tackle the issue of missing data. One
approach is to delete all entries with missing values, sometimes only if specific features of
the entry are missing [70]. Most approaches focus on imputing the data in some way. This
can be done in a multitude of ways. Simple imputation, using a single attribute such as
mean or median of all the available values, is easy to use, but often it produces unrealistic
results [71]. Hence this approach is not recommended for most datasets (especially in the
case of larger datasets). Imputation using regression is one of the most popular [72]. It
uses all the complete entries to estimate the regression coefficients, then missing data are
replaced by the predicted values based on the regression model [73]. Another approach
utilizes a 𝑘-nearest neighbor model (kNN) [74]. In this case, a missing value within a
dataset is estimated by identifying the entries in training dataset, which are the closest to
the entry with the missing value. Two entries are considered to be close if the features that
neither is missing are close [75]. There is a variety of other methods which we will not
consider in this chapter.

The sensor data are time series recorded with high frequency (500 Hz), which encour-
ages treating them as functions rather than time series. To best utilize the nature of the
sensor data, we employ functional data analysis techniques such as functional regression
and functional principal component analysis (fPCA). This chapter is structured as follows.
Section 4.2 discusses the methods used for imputation of missing data, including fPCA
and functional regression (fReg). Section 4.3 presents the results of applying our activity
recognition neural network on the full, the imputed and the reduced dataset. Section 4.4
presents the conclusions of the study and the recommendations based thereof.

4.2 Framework
We consider two different approaches to the imputation of data. One is based on fPCA. It
uses linear regression to recover the missing fPCA scores needed for the reconstruction
of the missing sensor. The other is based on fReg, where the missing sensors, treated as
function, are recovered directly. The next two subsections recap chapters 8 and 12 from
the classic book on functional data analysis by Ramsay and Silverman [76], to succinctly
describe the two methods: fReg and fPCA.

4.2.1 Functional regression
Let {𝐗(𝑡)}𝑡∈[0,𝑇] be a vector-valued function

𝐗(𝑡) = (𝑋1(𝑡), ...,𝑋𝑝(𝑡)), (4.1)

where 𝑡 represents the time. Let 𝑋𝑖 for some specific 𝑖 = 1, ...,𝑝 be the function we would
like to remove and 𝑋𝑗 for 𝑗 ≠ 𝑖 be the predictors.

4.2 Framework

4

69

Consider a concurrent functional regression model

𝑋𝑖(𝑡) = 𝛼(𝑡)+ ∑
𝑗∶𝑗≠𝑖

𝑋𝑗 (𝑡) ⋅𝛽𝑗 (𝑡)+ 𝜖(𝑡),

where 𝛼 and 𝛽𝑗 are regression coefficient functions on [0, 𝑇], while 𝜖 is the error term
function. This simple model is point-wise in nature. The conditional expectation of 𝑋𝑖(𝑡)
given the functions {𝑋𝑗 (𝑠) ∶ 𝑗 ≠ 𝑖, 𝑠 ∈ [0, 𝑡]} only depends on the values of these functions
at time 𝑡.

One can also adopt a more global approach to regression with the global functional
regression model:

𝑋𝑖(𝑡) = 𝛼(𝑡)+ ∑
𝑗∶𝑗≠𝑖

𝑇

∫
0

𝑋𝑗 (𝑠) ⋅𝛽𝑗 (𝑠, 𝑡) 𝑑𝑠+ 𝜖(𝑡).

Here, the conditional expectation of 𝑋𝑖(𝑡) given the functions {𝑋𝑗 ∶ 𝑗 ≠ 𝑖} depends linearly
on all values of these functions on [0, 𝑇]. Additional complexity is introduced into themodel;
𝛽𝑗 (𝑠, 𝑡) is now bivariate and its interpretation is now different: it describes a relationship of
the predictor 𝑋𝑗 at time 𝑠 and the response 𝑋𝑖 at time 𝑡. This model will be used during the
study and we will refer to it as fReg in abbreviation.

In the context of our application, the functional regression model will be used in a
straightforward manner. If 𝑚 components (corresponding to sensors) are removed from
vector 𝑋 (𝑡), then𝑚 regression models will be constructed, all based on the 𝑝−𝑚 remaining
sensors.

Now consider 𝑁 observations of the random function 𝐗, denoted by

𝑥 𝑙(𝑡) = (𝑥 𝑙1(𝑡),… , 𝑥 𝑙𝑝(𝑡)),

for 𝑙 = 1, ...,𝑁 . To fit the model, a common approach is to use a basis expansion for the
regression coefficient functions. Since the functions are bivariate in the global functional
regression model, the expansion needs to be double, i.e. it is in terms of two separate basis
functions, one expressed in terms of argument 𝑠 and one expressed in terms of argument 𝑡.
An expansion is also needed for the intercept function 𝛼. For details on basis expansion
of 𝛼 and 𝛽 functions, we refer to [76]. To find the coefficients of the expansion of those
functions, an objective criterion needs to be minimized:

𝐿𝑀𝑆𝑆𝐸(𝛼,𝛽) =
𝑇

∫
0

𝑁
∑
𝑙=1

[𝑋
𝑙
𝑖 (𝑡)−𝛼(𝑡)− ∑

𝑗∶𝑗≠𝑖

𝑇

∫
0

𝑋 𝑙
𝑗 (𝑠) ⋅𝛽𝑗 (𝑠, 𝑡) 𝑑𝑠]

2
𝑑𝑡 (4.2)

=
𝑇

∫
0

𝑁
∑
𝑙=1

[𝑋
𝑙
𝑖 (𝑡)−

𝐾2
∑
𝑟=1

𝑎𝑟 ⋅𝜃𝑟 (𝑡)− ∑
𝑗∶𝑗≠𝑖

𝑇

∫
0

𝑋 𝑙
𝑗 (𝑠) ⋅

𝐾1
∑
𝑞=1

𝐾2
∑
𝑟=1

𝑏𝑞𝑟 ⋅ 𝜂𝑞(𝑠) ⋅𝜃𝑟 (𝑡) 𝑑𝑠]
2
𝑑𝑡

where {𝜂1,… , 𝜂𝐾1 } and {𝜃1,… , 𝜃𝐾2 } are two sets of basis functions on [0, 𝑇], and {𝑎1,… , 𝑎𝐾2 },
{𝑏11, 𝑏12,… , 𝑏𝐾1(𝐾2−1), 𝑏𝐾1𝐾2 } are coefficients. To effectively minimize expression (4.2), restric-
tion on the number of basis functions used for the expansion of 𝛼 and 𝛽 is considered to
avoid overfitting.

4

70 4 Imputation methods for sensor reduction

4.2.2 Functional PCA
Functional PCA is one of the most important methods for obtaining characteristics of
functional data. FPCA extracts functions which explain modes of variation of functional
data. This process is incremental; the first function depicts the dominant mode of variation
of the functional data, the 𝑘th function depicts the dominant mode of variation that is
orthogonal to the 𝑘−1 previous functions. It is an effective way of studying the variation
present in the dataset without obtaining covariance and correlation functions. Consider an
inner product of weight function 𝛽 with a function 𝑋 :

𝑇

∫
0

𝛽(𝑠)𝑋 (𝑠) 𝑑𝑠, (4.3)

where 𝛽 and 𝑋 are square integrable. The goal of fPCA is to find modes of variations in
the function 𝑋 , represented by weight functions, which allows us to better understand
the ways in which the functions that compose the dataset differ from each other. Let 𝑥 𝑙
be observations of function 𝑋 for 𝑙 = 1,… ,𝑁 defined on [0, 𝑇]. Function 𝛽1 maximizes the
expression

1
𝑁

𝑁
∑
𝑙=1

(

𝑇

∫
0

𝛽1(𝑠)𝑥 𝑙(𝑠) 𝑑𝑠)

2

(4.4)

under the condition that
𝑇

∫
0

𝛽1(𝑠)2 𝑑𝑠 = 1. (4.5)

For weight function 𝛽𝑚, with 𝑚 = 2,… ,𝐾 , the above scheme also applies but with orthogo-
nality constraints:

𝑇

∫
0

𝛽𝑘(𝑠)𝛽𝑚(𝑠) 𝑑𝑠 = 0, 𝑘 < 𝑚. (4.6)

Weight functions are used for the calculation of functional principal components (4.3)
because they influence how the variability in different parts of the function space is
weighted.

There is a different way to motivate the fPCA, as seen in [76], namely by defining the
problem: find exactly 𝐾 orthonormal functions 𝛽𝑘 such that a certain basis expansion of
each observation 𝑥 𝑙 approximates the curve as closely as possible. There the expansion is
of the form

�̂� 𝑙(𝑡) =
𝐾
∑
𝑘=1

𝑓𝑙𝑘𝛽𝑘(𝑡), (4.7)

where 𝑓𝑙𝑘 is the principal component value equal to

𝑇

∫
0

𝑥 𝑙(𝑡)𝛽𝑘(𝑡) 𝑑𝑡.

4.3 Results

4

71

For each individual curve, we consider an objective criterion as the integrated squared error

‖𝑥 𝑙 − �̂� 𝑙‖2 =
𝑇
∫
0
(𝑥 𝑙(𝑠) − �̂� 𝑙(𝑠))

2 𝑑𝑠 and globally we consider the sum of integrated squared
errors:

𝑃𝐶𝐴𝑆𝑆𝐸 =
𝑁
∑
𝑙=1

‖𝑥 𝑙 − �̂� 𝑙‖2. (4.8)

Given this objective criterion the problem can be stated as follows: what choice of orthonor-
mal basis minimizes criterion (4.8)? The answer is that the functions 𝛽1,… ,𝛽𝐾 defined as
functions maximizing expression (4.4) and satisfying conditions (4.5) and (4.6) (for 𝛽𝑚 with
𝑚 > 1) minimize criterion (4.8). It is important to note that this is merely a motivation for
the fPCA and not a method of finding the weight functions, since changing the order of
the weight functions would also satisfy criterion (4.8). In practice, curves 𝑥 𝑙 are used to
estimate the weight functions 𝛽𝑚 by solving a functional eigenanalysis problem, see [76]
for more details.

Going back to our problem of sensor reduction, we will use fPCA to reduce the dimen-
sionality of our problem. Instead of functions of time, each variable will be represented
by 𝐾 scalar values 𝑓𝑙𝑘 for each curve 𝑙. Using these scalar values and the orthonormal
basis 𝛽𝑚, we can reconstruct the functions of time on their whole domain. When sensor
𝑋𝑙 is removed, we will need to recover the values 𝑓𝑙𝑘 using regression on all the remain-
ing principal component values. Using the recovered values the original sensor can be
reconstructed using expansion (4.7).

4.3 Results

Figure 4.1: An example of reconstruction using fPCA.
The blue line denotes the curve of one sensor from the
data and the orange line denotes the reconstruction of
this curve using fPCA.

The football data used for this study are
the same as the data introduced in section
3.4.2. It is important to note that data from
just one specific player is considered here.
Throughout this chapter, the term neural
network will always refer to a specific ar-
chitecture. This architecture contains both
a convolutional and a recurrent layer in its
design. The convolutional layer calculates
a multitude of inner products between part
of the input signal and a filter, which runs
through the whole signal, creating in ef-
fect a smaller, more condensed signal. The
recurrent layer carries on the information
from not only the current layer but also
prior ones, allowing for long term depen-
dencies in the signals to be preserved. The
convolutional part of the network combines the convolutions which use the same filters for
all the signals and the convolutions with the same filters for the signals of the same sensor
type. The recurrent part of the network uses bidirectional LSTM to carry information of

4

72 4 Imputation methods for sensor reduction

the input signal from the past. This architecture was chosen due to its good performance
on football data and was already presented in chapter 2.

General activity 𝐴1 𝐴2 𝐴3

Running Jog, sprint Jog, sprint 3 speeds of running
Turning 180° turn, 90° turn
Jumping Standing jump Standing jump Standing jump
Passing Short pass Short pass Short pass
Shooting Shot after run-up Shot after run-up Shot after run-up

Table 4.1: The table shows the activities included in each of the three sets 𝐴1, 𝐴2, 𝐴3.

The study is set up as follows

• three sets of activities 𝐴1, 𝐴2 and 𝐴3 are selected as shown in table 4.1,

• we consider multiple sensors to remove, just left or right shank or both and then
impute the missing data using either fPCA or fReg based on the current data set, see
4.1 for an example,

• finally we conduct five runs of cross-validation with the dataset split into training
(70%) and testing subsets (30%) and using the neural network and the imputed data
for prediction.

Table 4.2 shows the results of the study for different sets of activities, different methods
of imputation and different sensors removed/replaced. Compared to the prediction based
on the full dataset, we see that the quality of the prediction drops regardless of the method
of imputation. Notably, in all cases, the model performs better using imputed data than
the reduced dataset with sensors missing. It performs especially well on 𝐴2, which is the
most limited dataset in terms of the activities considered. There we see the smallest drop
in accuracy from the full dataset to the imputed ones. Both methods used for imputation
perform equally well.

4.4 Conclusions and discussion

4

73

Removed sensor Imputation method 𝐴1 𝐴2 𝐴3

None None 81.4% 96.7% 84.0%

Left shank
fPCA 80.1% 96.1% 82.2%
fReg 79.4% 95.8% 81.9%
None 77.2% 95.1% 79.7%

Right shank
fPCA 80.2% 95.9% 82.0%
fReg 79.7% 95.7% 82.1%
None 77.7% 95.3% 80.3%

Both shanks
fPCA 78.0% 93.2% 78.3%
fReg 75.9% 92.5% 77.2%
None 74.4% 90.4% 75.3%

Table 4.2: The table shows the mean test accuracy of the neural networks on the 3 different datasets and using
different methods of imputation.

4.4 Conclusions and discussion
This chapter tackles a feature reduction problem in the context of sensor data in football.
Usually, when discussing imputation of missing data, one faces the fact that the data
are already incomplete, which makes the problem more difficult. Certain sensors may
potentially be removed from the sensor trousers, whether due to cost considerations, for
athlete’s comfort or for compliance with traditional clothing. We examine the impact of
removing sensors on the dataset and explore methods for effectively recovering missing
sensor data using the remaining sensors.

We use two different methods of recovering the sensor signal. One uses functional
PCA scores to predict the scores of the missing curves and recover the signal using basis
expansion, the other uses a functional regression model and a direct recovery from the
remaining functional variables. Based on the results of the study, we conclude that both
methods perform comparably well. First, they allow higher performance of the predictive
model than on the reduced dataset. Second, both methods are quite similar in terms of the
accuracy that they achieve and it is hard to distinguish between their performance.

A further study could explore various activity sets. Testing alternative predictive models
can further improve upon our imputation method. While the current study focused on
a single player, extending the investigation to encompass multiple players could shine
the light on whether this method could be employed on a wider scale. When applying
this method to new players with incomplete data, it is important to acknowledge that the
method may not be as accurate due to the physical differences between new players and
players whose data was used to train the model. A study focused on the effects of mixing
sensor data from different players could give an indication of the robustness of the method.

5

75

5
Testing for no effect in
regression problems: a
permutation approach

5.1 Introduction
With the ubiquity of data often the question whether a response 𝑌 can be predicted based
on predictors 𝑋 arises. The rise of highly capable machine learning and deep learning
techniques increases the abilities to fit any kind of data. However, the abilities to fit pure
noise are increasing as well. We propose a method to test whether a model is only fitting
noise. It extends testing for no effect from linear to nonlinear models. No sample splitting
is performed so the power of the test can rely on the size of the whole sample. No nested
sequence of models is needed, in fact, no alternative models are needed at all.

Our method is based on recombining the pairings between predictors and responses
through permutations. In this way artificial reference datasets are created and the per-
formance of the model on the original data can then be assessed by comparing it to the
performances on the artificial reference datasets. The purpose of our test is to ascertain
whether the model is capable of fitting the data more effectively than mere random noise.
Our method is not restricted to linear models since it is not a test for specific parameters in
the model. Rather it tests for the ability of a model to predict the responses.

The main contribution of this paper is a rigorous formulation of a permutation test for
dependence between model predictions and responses. The test uses 𝑅2 as test statistic but
can be performed with any measure of goodness of fit in regression analysis. Because of
its interpretability, 𝑅2 is our test statistic of choice, but this can be adapted if necessary.
The method generates new pairings of (𝑋𝑖, 𝑌𝑗) conditional on the 𝑋𝑖 for 𝑖 = 1, ..., 𝑛 and 𝑌𝑗 for
𝑗 = 1, ..., 𝑛. This paper introduces a new formulation of the null hypothesis and provides a
rigorous justification for a permutation test that has been described in various forms in
the literature, for instance in the two-sample problem ([78–81]), the stochastic dominance

This chapter is based on M. Ciszewski, J. Söhl, A.J.R. Leenen, B. van Trigt, G. Jongbloed. Testing for no effect in
regression problems: a permutation approach, arXiv, 2023 [77].

5

76 Testing for no effect in regression problems

problem ([82, 83]) or the subgroup discovery problem ([84]). The main use case for this
method is in the initial stages of the data analysis to test whether a given model does only
fit noise or is able to capture some essential structure in the data.

The outline of the paper is as follows. Section 5.2.1 formulates the problem and intro-
duces necessary notation. Section 5.2.2 provides the historical context and an overview
of the current state of the literature on permutation tests in regression problems. Section
5.2.3 contains the formal formulation of the null hypothesis, theoretical considerations and
the succinct description of the method. Section 5.3.1 presents a simulation study, where the
permutation test is demonstrated in various scenarios for predictors and responses. Section
5.3.2 contains the application of the permutation test to sensor data of tennis serves in
order to demonstrate the method in practice and showcase its power in a real-life scenario.

5.2 Methodology
5.2.1 Problem description
Consider a regression setting. Given an observed pair (𝑋,𝑌), where 𝑋 is a random vector
and 𝑌 is a real random variable. 𝑌 is modelled as:

𝑌 = 𝑓 (𝑋)+ 𝜖,

where 𝜖 is a centered random variable independent of 𝑋 and (𝑓 (𝑋))𝑓 ∈ for some class of
functions  . An example of  could be a set of all linear functions corresponding to a
linear regression model with fixed number of variables or a set of functions that can be
described by a neural network. Nonparametric classes of functions can also be considered,
for instance a set of log-concave functions. For the remainder of the paper, we will focus
on 𝑅2 as goodness-of-fit measure.

Since the actual relationship between 𝑋 and 𝑌 is not known in practice, a chosen class
of functions  through which that relationship is described does not need to be appropriate.
The class of functions  is misspecified if it does not contain the true 𝑓 , while if it contains
too many functions, the model might be overfitting by memorizing the noise 𝜖. In a real
world scenario, we are often facing datasets that feature high-dimensional, time-dependent
or functional variables. The question whether there is a relationship between 𝑋 and 𝑌 and
which model to choose for describing it, is crucial. In this paper, we focus on the following
aspect:

• can a given class of functions  distinguish 𝑌 from pure noise?

Consider this simple example. Let 𝑋1,𝑋2 be independent standard normal variables and
𝑌 = 𝑋 2

1 +𝑋 2
2 + 𝜖, where 𝜖 ∼ (0,0.01). Consider a multi-layered neural net as a model of

choice to predict 𝑌 using 𝑋1 and 𝑋2. For small sample sizes shuffling the vector of responses
and applying our prediction model to this shuffled dataset can yield values of 𝑅2 higher
than values of 𝑅2 calculated for the prediction model applied to the original dataset. Ten
random samples of size 10 were drawn. Five yielded higher values of 𝑅2 for at least one
shuffled dataset than for the original pairing (we considered 200 shuffles of the sample). In
applied settings, where the sample size is fixed and difficult to increase, this presents an
inherent issue. Sample size has an immediate influence on the credibility of the model and
needs to be taken into account.

5.2 Methodology

5

77

Related problems have been addressed before in the literature in different settings and
with a variety of solutions. In this paper we focus on the permutation test. To provide
context to our solution, we will give a brief review of the existing literature on permutation
tests, before we specify the precise null hypothesis.

5.2.2 Permutation tests in the existing literature
Historically, the idea of permutation tests existed before it was feasible to realize them
on a larger scale and one of the main pioneers in that regard was Ronald Fisher. Fisher’s
interest in randomization as a concept can be traced back to his 1925 Statistical Methods for
Research Workers [85]. His initial idea related to the experimental design and to getting
rid of researcher’s bias in the setup of experiments [86]. At that time the use of random-
ization concerned only experiments with small numbers of samples (as it would be near
impossible to apply it in case of large sample sizes). The application of randomization to
hypothesis testing first emerged in the 1930s as introduced by Ronald Fisher in the form of
a permutation test as the test for comparing the distributions of two independent groups.
The use of this test, commonly known as the Fisher-Pitman permutation test, has since
been extended to many other settings [87].

The rise of automated computing made these types of tests feasible to use on a larger
scale. Since the 1970s, permutation tests have started to enjoy larger popularity. A good
example of the renewed interest in permutation tests can be found in [88], which gives a
justification based on the principle of unbiasedness for permutation tests. It also gives good
reasons for the transition from the 𝑡-test to a permutation test. The paper [89] discusses
the growing popularity of the permutation test as a substitute for the ANOVA F-test and
investigates its robustness. Tests of partial regression coefficients in a linear model are
considered in [90]. This paper explains the exact test and then compares the distributions
of the test statistics under the various permutation methods proposed. The authors use the
classic null hypothesis when testing for no effect. An excellent survey of various papers in
the biomedical field can be found in [91]. It showcases the appeal of both the randomization
in experimental design (as opposed to random sampling) as well as the permutation tests
for differences in location. The increased popularity of permutation tests can be seen in
other fields as well, e.g. in psychological research [87].

The applications of permutation tests have expanded beyond the comparison of sta-
tistical models to a variety of problems. However, the formal formulation of the null
hypothesis can be challenging and subject to variations among authors, particularly when
permutation tests are utilized as a problem-solving approach. A subset of publications uses
the concept of exchangeability, i.e. the joint distribution of the observations is invariant
under permutations of the order of the predictors in their formulation of the null hypoth-
esis in the permutation test. Most commonly the null hypothesis is expressed in terms
of exchangeability in two-sample problems, e.g. [78–81]. There have also been studies
with regards to the robustness of permutation tests with respect to the assumption of
exchangeability, i.e. in cases where exchangeability cannot be assured, what can be said
about asymptotic properties of the test. These ideas are explored well, e.g. in [92] and
[93]. More recently, a permutation test without the assumption of exchangeability has
been applied to the two-sample problem [94]. The null hypothesis is the equality of two
population means. Their split sample permutation t-tests are asymptotically exact and can

5

78 Testing for no effect in regression problems

be extended to testing hypothesis about one population.
When discussing permutation tests, the question arises whether a model applies. Many

permutation tests are specifically designed to tackle problems within linear regression
models. However, there are applications to other models as well. A permutation test for no
effect in a functional linear regression model has been proposed in [95]. In this case the
randomization technique allows for the simulation of the conditional distribution of the
test statistic, which otherwise would be difficult to obtain. Wide attention has been given
to the the permutation approach in the stochastic dominance problem in testing for ordered
categorical variables, introduced in [82]. Further developments can be found, for instance
in [83]. In the problem of testing heterogeneity in two-sample categorical variables, [96]
proposes a permutation test. Here, the null hypothesis considered is simply the equality
of heterogeneity of two population distributions. In a subgroup discovery problem, [84]
employs a randomization technique. The test devised for this purpose is based on a null
hypothesis that the quality measure (for instance 𝑅2) of a given subgroup is generated by
the distribution of false discoveries (DFD), which arises from the central limit theorem
applied to a set of quality measure values on some baseline subsets. Permutation tests have
also been applied to linear mixed models, more specifically as a test for random effects.
For instance, [97] presents two permutation tests, one based on the best linear unbiased
predictors and another based on the restricted likelihood ratio test statistics. Both methods
involve weighted residuals, with the weights determined by the among- and within-subject
variance components. The lack of flexibility in permutation tests, particularly in the context
of experimental design of the model, is considered by [98, 99]. Their main focus is on the
tests of no effect in a general linear model and their main achievement is the unification
of a diverse set of results. The outcome is a single permutation strategy with a single
generalized measure. It is worth noting that, once again, the assumption of exchangeability
is considered in the formulation of the null hypothesis for the permutation test. Permutation
approaches have also been applied to nonparametric ANOVA designs as seen in [100]. There
the synchronized permutation method is extended specifically to unbalanced two-level
ANOVA. The problem of testing independence given a sample from a bivariate distribution
has been considered in [101]. The method used there relies on studentizing the sample
correlation which leads to a permutation test that is exact under independence while
asymptotically controls the probability of type 1 errors. Permutation tests have also been
used in an application of a multivariate regression analysis to a study of factors influencing
mental health during the COVID-19 lockdown period [102]. In this particular study, a
combined permutation test on data collected in a survey is applied. The null hypothesis is
that the regression coefficients are zero. An application to weighted regression models can
be found in [103]. A comparison of 𝑋 -permutation and 𝑌 -permutation and their variability
in the weights is given there, inspired by the nature of the weighted regression models in
which the permutation of the response variables and the permutation of the predictors do
not lead to the same result. An extensive overview of permutation tests, their theoretical
properties as well as a vast number of applications, can be found in [104].

Overall, themain appeal of permutation tests stems from the fact that they do not require
any distributional assumptions on the population. The lack of assumptions is increasingly
more interesting to researchers as deep learning methods become more popular since
they likewise do not rely on distributional assumptions. Permutation tests are completely

5.2 Methodology

5

79

data-driven as pointed out by [87]. This can be very appealing as the data is the main
factor in shaping the distribution of the test statistic, i.e. the test statistic can be chosen to
be more easily interpretable without focusing on its distribution.

Our work differs from previous work most in the formulation of the null hypothesis.
Based on the publications mentioned in this section, we have seen a few different null
hypotheses. Some involve the concept of exchangeability, some equality of means or
zeroing of the coefficients. In contrast to this, we focus on the concept of independence,
which is not widely used for permutation tests. Permutation tests of independence have
existed before, e.g. [105]. However, we do not test independence of two random variables
𝑋 and 𝑌 , but rather we state the null hypothesis in terms of the model and whether it is
able to capture the dependence.

The choice of the null hypothesis can also be directly connected to the model considered
in the problem. For instance, it is natural to use zeroing of the functional coefficient as
the null hypothesis when considering a functional linear regression model [95]. We do
not restrict ourselves to any particular model in our work, we only consider the model as
given and the null hypothesis is not specifically tailored to the model.

The subsequent section will concentrate on establishing a rigorous theoretical founda-
tion for our permutation test.

5.2.3 Permutation approach to testing for no effect
Our goal is to investigate whether a class of functions  can capture any dependence
between 𝑋 and 𝑌 . We consider a test with null hypothesis stated as follows:

𝐻0 ∶ 𝑌 is independent of (𝑓 (𝑋))𝑓 ∈ . (5.1)

𝐻0 represents the problem as described in section 5.2.1. If it were true, then our class of
functions  will not be able to capture the relation between 𝑋 and 𝑌 in a meaningful
manner. Considering a dataset with permuted responses will be no different to class of
functions  under 𝐻0. If 𝐻0 is false, then the class of functions  will be able to capture
some aspects of the relation between 𝑋 and 𝑌 , although it does not guarantee that the
model is suitable and readily applicable.

The null hypothesis 𝐻0 as stated in (5.1) does not guide the choice of the test statistic.
In order to choose a suitable test statistic, further understanding of 𝐻0 is needed.

Proposition 5.2.1. Let (𝑋1, 𝑌1), ..., (𝑋𝑛, 𝑌𝑛) be an i.i.d. sample of (𝑋,𝑌). If 𝑌 is independent
of (𝑓 (𝑋))𝑓 ∈ , then for all 𝑖 = 1,… , 𝑛 the conditional distribution of

((𝑓 (𝑋𝑖), 𝑌𝜏(𝑖)))𝑓 ∈ (5.2)

given the empirical measure 𝑃𝑋
𝑛 of 𝑋1, ...,𝑋𝑛 and the empirical measure 𝑃 𝑌

𝑛 of 𝑌1, ..., 𝑌𝑛 is the
same for all permutations 𝜏 of set {1, ..., 𝑛}.

Proof. Let 𝑖 ∈ {1,… , 𝑛} be fixed. For a given finite collection of functions 𝑓1, 𝑓2, ..., 𝑓𝑚 ∈  and
a permutation 𝜏, the conditional joint distribution of (𝑓1(𝑋𝑖), 𝑌𝜏(𝑖)), ..., (𝑓𝑚(𝑋𝑖), 𝑌𝜏(𝑖)) given
𝑃𝑋
𝑛 and 𝑃 𝑌

𝑛 is the same as the joint distribution of

(𝑓1(𝑋𝑖), 𝑌𝑖), ..., (𝑓𝑚(𝑋𝑖), 𝑌𝑖), (5.3)

5

80 Testing for no effect in regression problems

thanks to the assumption of independence of (𝑓 (𝑋))𝑓 ∈ and 𝑌 . Note that (5.3) is invariant
with respect to the permutations of 𝑌𝑖. This statement will also be true if extended to
a joint distribution of (5.2) thanks to Kolmogorov extension theorem ([106]), hence the
distribution of joint conditional distribution of (5.2) given 𝑃𝑋

𝑛 and 𝑃 𝑌
𝑛 is invariant with

respect to the permutation of 𝑌𝑖.

Before proposition 5.2.1 is translated into a result in terms of 𝑅2, we formally define
𝑅2. Consider 𝑛 realizations of (𝑋,𝑌) and denote them as (𝑥1, 𝑦1), ..., (𝑥𝑛, 𝑦𝑛). Let 𝐿 be a loss
function and ̂𝑓 be an empirical risk estimator in the sense that

̂𝑓 = argmin
𝑓 ∈

𝑛
∑
𝑖=1

𝐿(𝑓 (𝑥𝑖), 𝑦𝑖). (5.4)

Let ̂𝑓 (𝑥𝑖) denote the prediction of 𝑦𝑖 for 𝑖 = 1, ..., 𝑛. Then

𝑅2 = 1−
∑𝑖(𝑦𝑖− ̂𝑓 (𝑥𝑖))2

∑𝑖(𝑦𝑖− �̄�)2
, (5.5)

where �̄� is the mean of the 𝑦𝑖. This definition of 𝑅2 is the natural one if the loss function 𝐿
in equation (5.4) is chosen to be the squared error loss. In the context of 𝑅2, proposition
5.2.1 implies the following result.

Proposition 5.2.2. Let (𝑋1, 𝑌1), ..., (𝑋𝑛, 𝑌𝑛) be an i.i.d. sample of (𝑋,𝑌). Assume that 𝑌 is
independent of (𝑓 (𝑋))𝑓 ∈ . Fix a permutation 𝜏 of {1, ..., 𝑛} and a loss function 𝐿 defining
an empirical risk estimator as in (5.4). Then, conditionally on the empirical measure 𝑃𝑋

𝑛 of
𝑋1, ...,𝑋𝑛 and the empirical measure 𝑃 𝑌

𝑛 of 𝑌1, ..., 𝑌𝑛, the distribution of 𝑅2 calculated based on
data {(𝑋𝑖, 𝑌𝜏(𝑖))} using the aforementioned emprirical risk estimator does not depend on 𝜏.

Proof. Proposition 5.2.1 implies that the conditional distribution of

(

𝑛
∑
𝑖=1

(𝑌𝜏(𝑖)− 𝑓 (𝑋𝑖))2,
𝑛
∑
𝑖=1

𝐿(𝑓 (𝑋𝑖), 𝑌𝜏(𝑖)))
𝑓 ∈

(5.6)

given 𝑃𝑋
𝑛 and 𝑃 𝑌

𝑛 is the same for all permutations 𝜏 of set {1, ..., 𝑛}. This is a two-dimensional
empirical process indexed by class of functions  . Plugging in the argmin of the second
component into the first component still gives a distribution that does not depend on 𝜏.
Hence, combining the definition (5.4) of ̂𝑓 and (5.5) of 𝑅2, we conclude that for each per-
mutation 𝜏, 𝑅2 calculated for {(𝑋𝑖, 𝑌𝜏(𝑖))} is sampled from the same distribution conditioned
on 𝑃𝑋

𝑛 and 𝑃 𝑌
𝑛 .

This allows us to consider 𝑅2 as a viable choice for the test statistic. Under the null
hypothesis, the 𝑅2 as calculated for (𝑥𝑖, 𝑦𝑖) is sampled from the same distribution as the 𝑅2

calculated for (𝑥𝑖, 𝑦𝜏(𝑖)) for some permutation 𝜏. The test itself is based on permutations
of the pairings (𝑥𝑖, 𝑦𝑖). We reject 𝐻0 only if the observed 𝑅2 is much larger than "most" of
the 𝑅2 obtained via random permutations. Essentially we compare the observed 𝑅2 to the
distribution of 𝑅2 under 𝐻0 given specific realizations of 𝑋 and 𝑌 , but not their pairings. It

5.2 Methodology

5

81

is notable that 𝑅2 can also be replaced by some other statistic, as long as it can be calculated
using the sample {(𝑓 (𝑥𝑖), 𝑦𝑖)}𝑖. Proposition 5.2.1 permits other statistics to be used instead
of 𝑅2. Taking 𝑅2 as the test statistic is equivalent to taking empirical risk with respect to
quadratic loss as the test statistic. In that sense, the other tests can also be constructed by
considering empirical risks with respect to other losses, e.g. absolute loss or Huber loss.

If the class of functions  contains the constant functions and the predictors are
optimized with respect to the quadratic loss, then 𝑅2 calculated for a given  is always
non-negative. This is true, since given set of observations {𝑦𝑖}𝑖=1,...,𝑁 , we can always choose

𝑓 (𝑋)≡ 1
𝑁

𝑁
∑
𝑖=1

𝑦𝑖 which yields 𝑅2 = 0. Note that including the constants in  , does not disturb

the independence of 𝑌 and (𝑓 (𝑋))𝑓 ∈ , since 𝑌 is always independent of a set of constant
random variables. While 𝑅2 is always non-negative in linear regression models (if the
intercept is included), that is not the case for instance in the setting of neural nets.

Given a chosen 𝛼 level∗, the precise implementation of the test is as follows:

1. given original pairings of (𝑥𝑖, 𝑦𝑖), calculate the 𝑅2 of class of functions  , which we
will denote as 𝑟20 ,∗∗

2. find the distribution of 𝑅2 under the null hypothesis conditionally on observed 𝑥𝑖
and 𝑦(𝑖) for 𝑖 = 1, ..., 𝑛 (approximated by the empirical distribution function of 𝑅2

values based on a uniform sample of permutations of original pairings (𝑥𝑖, 𝑦𝑖); for
each sample {(𝑥𝑖, 𝑦𝜏(𝑖)) ∶ 1 ≤ 𝑖 ≤ 𝑛}, where 𝜏 is a permutation, 𝑅2 is calculated; notably,
the model is refit for each permuted sample),

3. if 𝑟20 > 𝑞1−𝛼 , where 𝑞1−𝛼 is the 1−𝛼 quantile of the empirical distribution of 𝑅2 values,
then we reject the null hypothesis, otherwise we do not reject it.

Any tuning parameters used in point (1) and (2) are not adjusted for each permutation.
This implementation assumes that 𝑅2 is the statistic of choice, but it can be adapted to
suit other statistics as well. The reason we prioritize 𝑅2 is primarily because of its benefits
in terms of interpretability and ease of use. It is also important to note that in practice,
determining the distribution of 𝑅2 under the null hypothesis will not be exact in most cases.
To obtain the exact distribution we need to run through 𝑛! permutations. Even for 𝑛 > 10
the computational cost of such an operation is prohibitively expensive and sampling from
the true distribution is more reasonable.

𝑅2 is bounded by 1 from above for any model. The proximity of 𝑅2 values calculated
from the permuted data or original 𝑅2 values to 1 or to each other can provide insight
into goodness of fit of a model. The closer the values of 𝑅2 for the permuted data to 1,
the greater the capability of the model to fit to the noise. Close proximity of 𝑞1−𝛼 to 𝑟20
in case of 𝑟20 > 𝑞1−𝛼 and 𝑟20 small implies that the model’s predictive ability may not be
satisfactory even though the null hypothesis is rejected by the test. The test is widely
applicable, because of its general form and easily adaptable to different types of models. It
also provides an interesting commentary on the predictive abilities of a chosen model. In
the event that the quantile 𝑞1−𝛼 for one model, 1, significantly exceeds the same quantile
for another model, 2, we conclude that 1 is either overfitting, indicating a need for
∗default 𝛼 = 0.05
∗∗The specific method of prediction of 𝑌𝑖 is stated in 5.4.

5

82 Testing for no effect in regression problems

Figure 5.1: Histogram of the distribution of generated 𝑅2 using permutation of 𝑦 values. The model considered
here is a 3-layered neural net. The sample size is 10. The red line denotes the observed 𝑅2 for the true pairings of
𝑋 and 𝑌 , the green line denotes the 95%-quantile of the empirical distribution of 𝑅2 (approximation using 200
permutations).

reduction of the set of independent variables or model simplification, or is better able to
extract meaningful information from unrelated data.

We close this section with a continuation of the example from section 5.2.1. Let 𝑋1,𝑋2
be independent standard normal variables and 𝑌 = 𝑋 2

1 +𝑋 2
2 + 𝜖, where 𝜖 ∼ (0,0.01). We

consider a neural net as a model of choice to predict 𝑌 using 𝑋1 and 𝑋2. A random sample
of size 10 is drawn. We conduct the permutation test. As seen in figure 5.1, the test rejects
the null hypothesis. However, in the case of 2 out of 200 permutations the model achieves
higher 𝑅2 than in the case of the original pairings. Even though the model is capable to
capture the relationship between 𝑋1, 𝑋2 and 𝑌 , there are permutations of the vector of
responses that can lead to a better performance of the model.

5.3 Application
5.3.1 Simulation study
We apply our permutation test in multiple scenarios. This section will specifically focus on
simulated datasets to assess the test’s performance on datasets with varying dependence
levels between 𝑋 and 𝑌 and two different class of functions  . An empirical example will
be considered in section 5.3.2. In all scenarios we consider the 𝑅2-based test.

Two different models will be used to fit the data throughout this section. One of them
is a linear regression model, which models the relationship between a random vector 𝑋
and a random variable 𝑌 in a linear manner: 𝑌 = 𝛽 ⋅𝑋 + 𝜖. The parameter vector 𝛽 will
always be estimated using the least squares method. Regardless of the length of vector
𝑋 , the class of functions associated with this model will be referred to as LR. The other
model we consider is a neural net. A neural net is a collection of neurons arranged into

5.3 Application

5

83

layers, with neurons from different layers connected to each other. Typically, a neural net
consists of an input layer, multiple hidden layers and an output layer. The estimation of
neural nets’ parameters, the weights associated with neurons and edges between them,
is done by feeding multiple training sets of inputs and outputs into the net. Weights are
adjusted each time based on a predefined cost function. Class of functions associated with
neural nets will be referred to as NN with the number of neurons on each layer specified
as a 𝑘-tuple, where 𝑘 refers to the number of layers, e.g. NN(30,30,30) is a neural net with
3 hidden layers, each of which contains 30 neurons.

In the first two examples, we will compare the permutation test to two existing methods:
Spearman’s rank correlation coefficient (also referred to as Spearman’s 𝜌) and Kendall rank
correlation coefficient (also referred to as Kendall’s 𝜏). Both are statistics used to measure
the rank correlation between two variables and both can be used as test statistics in a test
for independence of two variables. Since, our examples have more than one explanatory
variable, multiple statistics will be given. It is worth noting that both statistics are not
applicable when there is no natural ordering in the data, e.g. in the case of functional data
when datapoints are functions.

Let 𝑋1,𝑋2 ∼ (0,1) and 𝑌 ∼ 𝑈 ([0,1]) be independent random variables. We consider
two models and two classes of functions associated with them: LR and NN(30,30,30)
and a sample of size 100. In both cases the null hypothesis is not rejected, see fig. 5.2a
and 5.3a. We also consider 1000 repetitions of the experiment in the same setup to see
the behavior of the test on a larger number of examples. As seen in fig. 5.2b and 5.3b, the
null hypothesis is rejected in most repetitions for both models, namely 4.7% for the linear
model and 4.5% for the neural net. This shows that the rejection of the null hypothesis can
still happen even in case of independence. Most importantly, the rejection rate is close to
the confidence level 𝛼 = 5%. Spearman’s 𝜌 test rejects the null hypothesis of independence
of 𝑋1 and 𝑌 in 5.2% of all cases and rejects the independence of 𝑋2 and 𝑌 in 5% of all cases.
Kendall’s 𝜏 test rejects the null hypothesis of independence of 𝑋1 and 𝑌 in 5.2% of all cases
and rejects the independence of 𝑋2 and 𝑌 in 5.3% of all cases. For both of these tests, the
rejection rate is also close to the confidence level.

Now, let 𝑋1 ∼ (1,1),𝑋2 ∼ (0,1) be independent and 𝑌 = log |𝑋1|+𝑋 2
2 + 𝜖, where

𝜖 ∼ (0,1) is the noise. Consider a sample of size 100. For both LR and NN(30,30,30),
the permutation test rejects the null hypothesis, since the values of 𝑅2 for the original
pairings are much higher than for any of the permuted pairings. For the behavior of the test
in a single example see fig. 5.4a and 5.5a. In this case the neural net outperforms the linear
model significantly, thanks to its complexity. Fig. 5.4b and 5.5b show that the rejection
rate in this case is quite high when repeating the experiment 1000 times, close to 95% for
the linear model and 94% for the neural net. This particular example illustrates the test’s
applicability in the case of a functional relation between predictors and responses. The
model is not just fitting the noise, there is some relation between predictors and responses.
It might not be captured well using a linear regression model, but the model is still able
to capture more than pure noise. Spearman’s 𝜌 test and Kendall’s 𝜏 test have also been
performed in this example, but they show a slight difference from what we see in the case
of the permutation test. Spearman’s 𝜌 test rejects the null hypothesis of independence
of 𝑋1 and 𝑌 in 99.6% of all cases and rejects the independence of 𝑋2 and 𝑌 in 9.5% of all
cases. Similarly, Kendall’s 𝜏 test rejects the null hypothesis of independence of 𝑋1 and 𝑌

5

84 Testing for no effect in regression problems

(a) Histogram of the distribution of generated 𝑅2 using permutation of 𝑦 values. The model considered here is linear regression
with the class of functions LR . The sample size is 100. The red line denotes the observed 𝑅2 for the true pairings of 𝑋 and 𝑌 , the
green line denotes the 95%-quantile of the empirical distribution of 𝑅2 (approximation using 200 permutations).

(b) Scatterplot of the 𝑅2 values for the original pairings against the 95% quantiles of the empirical distribution of 𝑅2 . The orange
line shows the identity function.

Figure 5.2: Results of the permutation test for LR with data generated in a following manner 𝑋1,𝑋2 ∼ (0,1)
and 𝑌 ∼ 𝑈 ([0,1]).

5.3 Application

5

85

(a) Histogram of the distribution of generated 𝑅2 using permutation of 𝑦 values. The model considered here is a 3-layered neural
net with the class of functions NN(30,30,30). The sample size is 100. The red line denotes the observed 𝑅2 for the true pairings
of 𝑋 and 𝑌 , the green line denotes the 95%-quantile of the empirical distribution of 𝑅2 (approximation using 200 permutations).

(b) Scatterplot of the 𝑅2 values for the original pairings against the 95% quantiles of the empirical distribution of 𝑅2 . The orange
line shows the identity function.

Figure 5.3: Results of the permutation test for NN(30,30,30) with data generated in a following manner 𝑋1,𝑋2 ∼
 (0,1) and 𝑌 ∼ 𝑈 ([0,1]).

5

86 Testing for no effect in regression problems

in 99.7% of all cases and rejects the independence of 𝑋2 and 𝑌 in 11.7% of all cases. This
shows that the relationship between 𝑋1 and 𝑌 is easier to capture than the relationship
between 𝑋2 and 𝑌 , and with high probability the test will indicate that 𝑋1 and 𝑌 are not
independent. The relationship between 𝑋2 and 𝑌 is not as easy to capture using Kendall’s
𝜏 or Spearman’s 𝜌, which is to be expected due to the application of a nonlinear function
with a minimum at the mean of 𝑋2 when defining 𝑌 .

For the remaining scenarios in this section, we consider only the linear regression
model with the class of functions LR. We inspect the influence of changing the distribution
slightly in the test in order to ensure the statistical analysis using the test is reliable and
accurate. For 𝑎 ∈ℝ let 𝑋1 ∼ (𝑎,1),𝑋2 ∼ (0,0.1) be independent and 𝑌 = log |𝑋1|+𝑋 2

2 +𝜖,
where 𝜖 ∼ (0,0.1) is the noise. Consider a sample of size 100. Note that the variance of
𝑋2 has been decreased in comparison to the previous example. Only for values of 𝑎 close
to 0, the null hypothesis is not rejected (fig. 5.6a). This makes sense, since the logarithm
changes most rapidly close to 0 and for those arguments it is difficult to fit a linear function
which describes this relationship well. This pattern is the same with average rejection rate
of 𝐻0 when repeating the experiment 100 times for each value of 𝑎, see fig. 5.6b. For values
of 𝑎 greater than 0.6, the 𝐻0 is almost never rejected. When the variance of 𝑋2 increases
to 0.5, the null hypothesis is no longer rejected for some values of 𝑎 larger than 5 (fig.
5.7). This particular case shows the influence of available information on rejecting the null
hypothesis. The less informative predictors are the more likely it is not to reject the null
hypothesis; we can see that as the parameter 𝑎 increases, the log |𝑋1| becomes flatter slowly
losing its predictive value. Meanwhile, the influence of 𝑋 2

2 on the value of 𝑌 increases and
given that the model can only predict linearly in 𝑋2, the power of the test decreases.

Fig. 5.8 and 5.9 show explicitly the influence of the sample size on the test’s capability to
reject 𝐻0 for the linear regression model with the class of functions LR. In the case when
𝐻0 is true (fig. 5.8), the null hypothesis is rejected at a rate of 2-8% on average regardless
of the sample size.† In the case when 𝐻0 is false (fig. 5.9), specifically with 𝑌 = log(𝑋)+ 𝜖
for 𝜖 ∼ (0,1), the null hypothesis is rejected much less for smaller sample sizes and the
rejection rate increases as the sample size increases reaching close to 95% at sample size
300. We can conclude that the power of our test increases until the sample size of around
300, at which point the type II error is particularly low. Meanwhile, the rejection of a true
null hypothesis is rare, even for the smallest of sample sizes.

Using the bivariate normal distribution with varying correlation, we can empirically
detect the point at which the test rejects 𝐻0 for the linear regression model with the class
of functions LR as the variables become more and more dependent. Let 0 ≤ 𝜌 ≤ 1 and
𝑋,𝑌 ∼ 𝑁 (𝜇,Σ), such that

𝜇 = [
0
0] ,Σ = [

1 𝜌
𝜌 1] .

Fig. 5.10 shows that as the correlation reaches 0.3, the test starts to reject 𝐻0 almost always
in case of sample size 𝑛 = 100.‡ We conclude that for sample size 𝑛 = 100, the dependence
is only detectable reliably by the test when the correlation between variables is greater
than 0.3. This particular example shows that for a given sample size a certain threshold of

†Again the figure is showing the error rate for Pitman’s test as a function of sample size.
‡Note that this figure is showing the error rate for Pitman’s test as a function of sample size [107, 108].

5.3 Application

5

87

(a) Histogram of the distribution of generated 𝑅2 using permutation of 𝑦 values. The model considered here is linear regression
with the class of functions LR . The sample size is 100. The red line denotes the observed 𝑅2 for the true pairings of 𝑋 and 𝑌 , the
green line denotes the 95%-quantile of the empirical distribution of 𝑅2 (approximation using 200 permutations).

(b) Scatterplot of the 𝑅2 values for the original pairings against the 95% quantiles of the empirical distribution of 𝑅2 . The orange
line shows the identity function.

Figure 5.4: Results of the permutation test for LR with data generated in a following manner 𝑋1 ∼ (1,1),𝑋2 ∼
 (0,1) and 𝑌 = log |𝑋1 |+𝑋 2

2 + 𝜖, where 𝜖 ∼ (0,1).

5

88 Testing for no effect in regression problems

(a) Histogram of the distribution of generated 𝑅2 using permutation of 𝑦 values. The model considered here is a 3-layered neural
net with the class of functions NN(30,30,30). The sample size is 100. The red line denotes the observed 𝑅2 for the true pairings
of 𝑋 and 𝑌 , the green line denotes the 95%-quantile of the empirical distribution of 𝑅2 (approximation using 200 permutations).

(b) Scatterplot of the 𝑅2 values for the original pairings against the 95% quantiles of the empirical distribution of 𝑅2 . The orange
line shows the identity function.

Figure 5.5: Results of the permutation test for NN(30,30,30) with data generated in a following manner 𝑋1 ∼
 (1,1),𝑋2 ∼ (0,1) and 𝑌 = log |𝑋1 |+𝑋 2

2 + 𝜖, where 𝜖 ∼ (0,1).

5.3 Application

5

89

(a) The plot shows the results of performing the permutation test for linear regression model with the class of functions LR . The
sample size is 100. The blue dots show the observed 𝑅2 and the orange dots show the 95% quantile of the empirical distribution of
generated 𝑅2 (approximation using 200 permutations). The test has been performed for values of 𝑎 ranging between 0 and 10.

(b) Average rejection rate of 𝐻0 with parameter 𝑎 varying from 0 to 1. For each 𝑎 100 repetitions were made.

Figure 5.6: Results of the permutation test for LR with data generated in a following manner 𝑋1 ∼ (𝑎,1),𝑋2 ∼
 (0,0.1) and 𝑌 = log |𝑋1 |+𝑋 2

2 + 𝜖, where 𝜖 ∼ (0,0.1).

5

90 Testing for no effect in regression problems

(a) The plot shows the results of performing the permutation test for linear regression model with the class of functions LR . The
sample size is 100. The blue dots show the observed 𝑅2 and the orange dots show the 95% quantile of the empirical distribution of
generated 𝑅2 (approximation using 200 permutations). The test has been performed for values of 𝑎 ranging between 0 and 10.

(b) Average rejection rate of 𝐻0 with parameter 𝑎 varying from 0 to 10. For each 𝑎 100 repetitions were made.

Figure 5.7: Results of the permutation test for LR with data generated in a following manner 𝑋1 ∼ (𝑎,1),𝑋2 ∼
 (0,0.5) and 𝑌 = log |𝑋1 |+𝑋 2

2 + 𝜖, where 𝜖 ∼ (0,0.1).

5.3 Application

5

91

(a) The plot shows the results of performing the permutation test for linear regression model with the class of functions LR .
The blue dots show the observed 𝑅2 and the orange dots show the 95% quantile of the empirical distribution of generated 𝑅2

(approximation using 200 permutations). The test has been performed for sample sizes ranging between 10 and 1000.

(b) Average rejection rate of 𝐻0 with sample size varying from 10 to 1000. For each sample size 100 repetitions were made.

Figure 5.8: Results of the permutation test for LR with data generated in a following manner 𝑋,𝑌 ∼ 𝑁 (𝜇,Σ),

𝜇 = [
0
0] and 𝜎 = [

1 0
0 1].

5

92 Testing for no effect in regression problems

(a) The plot shows the results of performing the permutation test for linear regression model with the class of functions LR .
The blue dots show the observed 𝑅2 and the orange dots show the 95% quantile of the empirical distribution of generated 𝑅2

(approximation using 200 permutations). The test has been performed for sample sizes ranging between 10 and 300.

(b) Average rejection rate of 𝐻0 with sample size varying from 10 to 300. For each sample size 100 repetitions were made.

Figure 5.9: Results of the permutation test for LR with data generated in a following manner 𝑋 ∼ (5,1) and
𝑌 = log |𝑋 |+ 𝜖, where 𝜖 ∼ (0,1).

5.3 Application

5

93

correlation exists at which the test starts to reject the null hypothesis. As the correlation
increases the rejection becomes more and more likely for a given sample size.

Lastly, we present a comparison of our permutation test with a permutation test
found in [104]. This is also a test for no effect, but specifically in the linear regression
model. Its formulation requires a sample of 𝑛 i.i.d. observations {(𝑋1, 𝑌1),… , (𝑋𝑛, 𝑌𝑛)} from
a bivariate variable (𝑋,𝑌). We assume that the variables are linked by a linear regression
𝔼(𝑌 |𝑋 = 𝑥) = 𝛼+𝛽 ⋅𝑥 , where 𝛼,𝛽 ∈ ℝ. The null hypothesis considered for this test is 𝛽 = 0,
under the assumption that responses 𝑌𝑖 can be permuted with respect to covariate 𝑋 . The
test statistic is 𝑇 ∗𝛽 = ∑𝑖𝑋𝑖𝑌𝑖 and the permutation of 𝑌𝑖 is used when approximating the
distribution of the test statistic under 𝐻0. We refer to this test as the permutation test
for linear regression after the naming convention in [104]. Note that in practice the only
difference between our approaches is the choice of test statistic. In their case, the choice of
the test statistic is driven by the null hypothesis. In our test, the test statistic can be chosen
freely as long as it can be calculated using the sample {(𝑓 (𝑥𝑖), 𝑦𝑖)}𝑖, which technically means
we could use 𝑇 ∗𝛽 as the test statistic. In that sense, we can view our test as the generalization
of the test for linear regression.

We continue using bivariate normal variables 𝑋 and 𝑌 . We compare the average
rejection rate of 𝐻0 for both tests with parameter 𝜌 varying from 0 to 1. Fig. 5.11 shows
the comparison between the tests. For sample size 𝑛 = 100, the permutation test for linear
regression detects the dependence for a slightly smaller 𝜌 than our permutation test, but
both reach the rejection rate of 1 at 𝜌 ≈ 0.4. We conclude that a context-specific test statistic,
in this case 𝑇 ∗𝛽 , outperforms more general statistic. At the same time, our test can use 𝑇 ∗𝛽 as
the test statistic.

5.3.2 Tennis serve dataset
This section concerns an application of the permutation test to a tennis serve dataset.
Seven professional athletes wearing inertial measurement units (IMUs) performed tennis
serves. Each athlete followed a protocol of first and second serves. Sensors were placed
on 4 body parts: lower and upper arms, trunk and pelvis as can be seen in fig. 5.12. Each
IMU contained a triaxial accelerometer and triaxial gyroscope. The data consists of 7
uninterrupted time series of 24-dimensional data (4 body parts × 2 types of sensors × 3
axes). The dataset is further described in the Master thesis ([2]).

Additionally, a dataset containing personal characteristics of the players and perfor-
mance characteristics of each serve has been included. The personal characteristics are the
sex, age, height and weight of the players. The performance characteristics are the ball
velocity, an indication of whether the ball went in or out and the velocity-accuracy index
(VA index). The VA index for a single serve was introduced and motivated by [109] and is
defined as follows:

VA index = (ball velocity (kph))2
100

×
achieved points

9
, (5.7)

where achieved points refer to the number of points assigned to a serve based on its
closeness to a target area on the court (see fig. 5.13). The number of points assigned to a
serve is based on a new Serve Tennis Test (STT) adapted from [109]. Originally, the point
system was devised based on the ellipses in the serve box where aces were hit in male tennis

5

94 Testing for no effect in regression problems

(a) The plot shows the results of performing the permutation test for linear regression model with the class of functions LR . The
sample size is 100. The blue dots show the observed 𝑅2 and the orange dots show the 95% quantile of the empirical distribution of
generated 𝑅2 (approximation using 200 permutations). The test has been performed for values of correlation 𝜌 ranging between 0
and 1.

(b) Average rejection rate of 𝐻0 with parameter 𝜌 varying from 0 to 1. For each 𝜌 100 repetitions were made.

Figure 5.10: Results of the permutation test for LR with data generated in a following manner 𝑋,𝑌 ∼ 𝑁 (𝜇,Σ),

𝜇 = [
0
0] and Σ = [

1 𝜌
𝜌 1].

5.3 Application

5

95

Figure 5.11: Average rejection rate of 𝐻0 with parameter 𝜌 varying from 0 to 1. For each 𝜌 100 repetitions were
made. Two different tests were considered. Blue line was generated using 𝑅2 as the test statistic, while the orange
line was generated using 𝑇 ∗𝛽 as the test statistic.

Figure 5.12: Segment model of right-handed player and racquet (back view, frontal plane).

5

96 Testing for no effect in regression problems

matches during the Australian Open ([110]). However, the system has been improved upon
since then. The points are discrete. Nine points are given for hitting the center of the
target area. Six and three points are assigned for areas further from the center. One point
is assigned for a ball much further from the target area, but still a valid ball, while zero
points are given to a serve which did go out. Each participant performed approximately 48
serves. In total, 29.6% of serves were faults (and as a result had a VA-index 0).

Figure 5.13: Target areas for the tennis serve. The scenario considered here is a serve in the wide direction. The
points given on each target area correspond to the number of accuracy points needed to calculate the VA index of
the serve.

We will use the tennis serve dataset in order to demonstrate an application of the
permutation test to real life data. We will focus on the prediction of ball speed and VA-
index prediction. The functional predictors have been transformed into vectors, using a
Fourier basis representation, in order to be able to use the linear regression model with the
class of functions LR and the neural net with the class of functions NN(300,300,300). The
choice to use Fourier coefficients as predictors was the most natural way of incorporating
information from the time series. First, a prediction of ball speed was considered. The
permutation test rejected the null hypothesis in cases of both models as seen in fig. 5.14a
and 5.14b. The test rejects the null hypothesis for both models, although higher values of
𝑅2 achieved by the neural net for the original pairings suggest greater capabilities of that
model to detect the dependence.

In the case of prediction of the VA-index as defined in (5.7), the permutation test did not
reject the null hypothesis for the linear regression model with the class of functions LR as
well as for the neural net model with the class of functions NN(300,300,300). Fig. 5.15a
shows results for the linear regression model and fig. 5.15b shows results for the neural
net. The values of 𝑅2 are quite low for both models and for many permutations of 𝑦-values
the generated 𝑅2 is much higher than the observed 𝑅2 for the true pairings. These results
convince us that a good prediction using the linear regression model or the neural net
model is not possible at the moment. The issue may lie with the current size of the dataset

5.3 Application

5

97

(a) Histogram of the distribution of generated 𝑅2 using permutation of 𝑦 values. The sample size is 46. The red line denotes
the observed 𝑅2 for the true pairings of 𝑋 and 𝑌 , the green line denotes the 95%-quantile of the empirical distribution of 𝑅2

(approximation using 200 permutations).

(b) Histogram of the distribution of generated 𝑅2 using permutation of 𝑦 values. The sample size is 46. The red line denotes
the observed 𝑅2 for the true pairings of 𝑋 and 𝑌 , the green line denotes the 95%-quantile of the empirical distribution of 𝑅2

(approximation using 200 permutations).

Figure 5.14: Results of the permutation test for the ball speed prediction using LR and NN(300,300,300).

5

98 Testing for no effect in regression problems

or the number of serves per player or simply because the relation as can be described
by the neural net is not strong. The fact that the number of Fourier coefficients used in
this prediction was increased to achieve more favourable 𝑅2 for the original pairings of
(𝑥𝑖, 𝑦𝑖) (at least in the case of the deep learning model), shows how complex this task is
and additional information is needed in the data to increase the 𝑅2.

(a) Histogram of the distribution of generated 𝑅2 using permutation of 𝑦 values. The sample size is 34. The red line denotes
the observed 𝑅2 for the true pairings of 𝑋 and 𝑌 , the green line denotes the 95%-quantile of the empirical distribution of 𝑅2

(approximation using 200 permutations).

(b) Histogram of the distribution of generated 𝑅2 using permutation of 𝑦 values. The sample size is 34. The red line denotes
the observed 𝑅2 for the true pairings of 𝑋 and 𝑌 , the green line denotes the 95%-quantile of the empirical distribution of 𝑅2

(approximation using 200 permutations).

Figure 5.15: Results of the permutation test for the VA index prediction using LR and NN(300,300,300).

5.4 Conclusion and discussion

5

99

5.4 Conclusion and discussion
This paper concerns the theoretical foundations and the application of the permutation
approach for testing whether a model can capture dependence structure between predictors
and responses. The test is a tool to determine whether a model is able to fit the data better
than pure noise. We are mostly interested whether 𝑋 has any effect on 𝑌 and we pursue
that interest with the help of a chosen, fixed model. The null hypothesis is formulated in
terms of independence of 𝑌 and (𝑓 (𝑋))𝑓 ∈ and in this form cannot be found in previous
literature. Proposition 5.2.1 allows us to consider the test as a permutation test formally and
proposition 5.2.2 allows us to consider 𝑅2 as a test statistic. This approach is data-centered
and the results of the test depend on just one model without the need to directly compare
between different models. We also do not require sample splitting thus the test can rely
on the power of the whole sample size, which can be vital in datasets of smaller size. Our
findings are supported through an application to the tennis serve dataset. In this case,
it gave evidence that a seemingly well-fitting model is not necessarily trustworthy. The
prediction is either not possible with the given sensor data and model or a larger sample
size is needed to predict the VA-index more accurately.

6

101

6
Conclusion

Sports are changing rapidly thanks to technology, which revolutionizes the way in which
the sports are played and watched. In tennis, the Hawkeye system has reduced the number
of errors made by the umpires. In football, the introduction of the goal-line technology
ensures fair judgment on the position of the ball with respect to the goal line. More than
that, athletes use technological advancements in order to train better and avoid major
injuries.

The main focus of this thesis was to utilize sensor technology to extract meaningful
insights from sensor data in football and tennis. New methods and procedures inspired
by problems arising during the investigation have been introduced when necessary. The
procedures used and methods developed for this project had to serve a very specific
purpose in the application. In many ways, this thesis would not have been possible if not
for collaborations within the Citius Altius Sanius (CAS) program. The CAS program itself
aimed to use sensor technology to address two specific problems: injury prevention and
performance improvement. Developments accomplished within this thesis relied on the
data provided by other parties within CAS and the funds provided by the sponsors of CAS.

Twomain goals have been set out to be accomplished within this thesis. First, to provide
an accurate and state-of-the-art football activity recognition model. Second, to predict two
tennis serve performance metrics, namely ball speed and the VA index using the sensor
data. The goal of delivering an activity recognition model in football has been accomplished
and the results can be found in chapter 2. Chapters 3 and 4 present developments made
while developing activity recognition models that are relevant to the topic and can be
extended to other sports as well. The results of predicting the serve performance metrics in
tennis can be seen in chapter 5, where a permutation test has been developed to determine
the capability of our model to predict the performance metrics. The following paragraphs
provide short summaries of each of the main results of this thesis.

Deep learningmodels were used to accurately recognize football-specific activities based
on sensor measurements. Multiple neural network architectures have been considered and
tested. Most of them consisted in some combination of different types of convolutional
layers and recurrent layers. Many of the models were capable of achieving high accuracies
and faster evaluation times compared to the traditional machine learning algorithms. The

6

102 6 Conclusion

proposed methodology demonstrates the potential for widespread application in other
sports and activities as well.

A novel post-processing scheme was developed to improve the prediction of football
activity recognition models, particularly in the presence of unrealistically short or misclas-
sified activities. The method significantly enhanced the performance of classifiers, offering
a practical solution for refining activity recognition outcomes in real-life scenarios. Not
unlike the deep learning models, the post-processing scheme may be used for a variety of
human activity recognition tasks. Additionally, novel quality measures were introduced to
allow greater customization and the integration of domain knowledge. The measures were
specifically designed for use with predictive models in activity recognition problems.

The prototype wearable sensor trousers used for collection of sensor data cover both the
upper as well as the lower legs of the athletes. This is not typical for the professional football
players. For the sake of their comfort, and additionally due to cost issues, a shorter version
of the sensor trousers that covers only the upper legs can be produced instead. It is very
important to consider the impact of the missing sensor data on predictive models. Given
the existence of the large dataset produced using longer trousers, it is worth considering
leveraging those data to produce a model to impute the missing sensor data using only
the upper legs sensors. We considered the data of only one player. There are various
approaches for handling missing data. We consider methods that utilize the functional
nature of the sensor data. Using functional PCA scores and functional regression models led
to promising results in recovery of the missing sensor signals. These methods showcased
the feasibility of maintaining predictive model performance despite the removal of sensors
from the dataset.

To predict the tennis serve performance metrics using sensor data, we considered two
models: a linear regression model and a deep learning model. The results of predicting
ball speed were satisfactory, but the prediction of the velocity-accuracy index (VA index)
proved more challenging. A permutation test was considered to evaluate the models
performance. The test has shown that the models we have considered were not able to
capture the dependence structures between predictors and responses in this particular
case. This data-driven approach highlighted the importance of robust model evaluation,
particularly in scenarios where traditional performance metric like 𝑅2 may be misleading.
A contribution was also provided with regards to the permutation tests: a new formulation
of the null hypothesis. The new null hypothesis has been defined in terms of independence
and its relation to the permutation test has also been proved in the thesis.

Moving forward, there are several options for future research and applications based
on the findings of this thesis:

• Continued refinement of deep learning architectures and functional data analysis
techniques to enhance the accuracy and robustness of predictive models for activity
recognition and prediction of various metrics related to the performance of the
athlete, such as the VA index in tennis.

• Use of the activity recognition model in other sports and generic activities unrelated
to sports are possible due to adaptability of the model and the methods developed
in this thesis. For this to be possible a labeled dataset needs to be provided, since
the deep learning model requires this input for training. Additionally, the methods

6

103

developed here were specifically tailored to sensor data and might not work as well
with different types of data.

• Further investigation into the impact of removing certain sensors from the trousers,
especially on previously unseen data, produced using different training drills or mock
matches and produced by different players.

• Direct comparison of the effect of using sensor data versus video recordings on the
accuracy of the activity recognition model.

• Application of the activity recognition model for data collected using smartphones
and other sensors that are more widely available.

Lastly, it is worth addressing the issue of injury prevention, as it is one of the two
main problems which CAS aimed to solve. The problem of activity recognition, extensively
considered in this thesis, does not directly translate into solutions for injury prevention.
Injury data is difficult to obtain, since it would require an extensive collection process.
Additionally, injuries occur infrequently, so even a large case study may not yield a large
amount of injury data. This necessitates the exploration of alternative methods for pre-
venting injuries. One way would be to combine the player feedback with the activity
recognition methods and recognize strenuous exercises. By collecting questionnaires filled
out by athletes, one could gauge the level of intensity of the exercise. This would still
require setting a personalized threshold for high injury risk activities. Alternatively, injury
data can be collected directly from the medical records to identify patterns and risk factors.
This can be further supported by data from physiotherapy, where data of the recovering
athletes can serve as a proxy for data about real injuries. Another approach would be to
calculate the load on specific muscles using sensors. This is a more autonomous approach
that does not require subjective feedback from the athlete and allows for determining the
intensity of the exercise.

To conclude, this thesis applied machine learning techniques and statistical theory at
large to sensor data within the context of sports. Developments presented here range from
purely applied projects, as seen in chapters 2 and 4 to a mix of application and theory, as
seen in chapters 3 and 5. Two main problems were addressed in this thesis: the activity
recognition in football and the prediction of serve performance metrics in tennis. Some
additional methods were also proposed, such as the post-processing scheme or the novel
quality measures for activity recognition problems. The methods are not constrained to
the applications considered here and can be considered for other data sources or sports.

105

Bibliography

References
[1] Annemarijn Steijlen, Jeroen Bastemeijer, Linda Plaude, Paddy French, Andre Bossche,

and Kaspar Jansen. Development of sensor tights with integrated inertial measure-
ment units for injury prevention in football. In Proceedings of the 6th International
Conference on Design4Health, volume 2, pages 219–228, Amsterdam, The Netherlands,
2020. D4H.

[2] Erik Faneker. The kinetic chain and serve performance in elite tennis players (Master
Research Project). Master’s thesis, Vrije Universiteit Amsterdam, Amsterdam, The
Netherlands, 2021.

[3] Rafael Cuperman, Kaspar M.B. Jansen, and Michał G. Ciszewski. An end-to-end deep
learning pipeline for football activity recognition based on wearable acceleration
sensors. Sensors, 22:1347, 2022. https://doi.org/10.3390/s22041347.

[4] Moaed A. Abd, Rudy Paul, Aparna Aravelli, Ou Bai, Leonel Lagos, Maohua Lin,
and Erik D. Engeberg. Hierarchical tactile sensation integration from prosthetic
fingertips enables multi-texture surface recognition. Sensors, 21:4324, 2021. https:
//doi.org/10.3390/s21134324.

[5] Salwa O. Slim, Ayman Atia, Marwa M.A. Elfattah, and Mostafa-Sami M. Mostafa.
Survey on human activity recognition based on acceleration data. Intl. J. Adv. Com-
put. Sci. Appl., 10, 2019. https://doi.org/10.14569/IJACSA.2019.
0100311.

[6] LuKun Wang and RuYue Liu. Human activity recognition based on wearable sensor
using hierarchical deep LSTM networks. Circuits Syst. Signal Process., 39:837–856,
2020. https://doi.org/10.1007/s00034-019-01116-y.

[7] Rimas Adaskevicius. Method for recognition of the physical activity of human
being using a wearable accelerometer. Elektronika ir Elektrochnika, 20:127–131, 2014.
https://doi.org/10.5755/j01.eee.20.5.7113.

[8] Andrea Mannini and Angelo Maria Sabatini. Machine learning methods for classify-
ing human physical activity from on-body accelerometers. Sensors, 10:1154–1175,
2010. https://doi.org/10.3390/s100201154.

[9] Sanne I. de Vries, Marjolein Engels, and Francisca Galindo Garre. Identifica-
tion of children’s activity type with accelerometer-based neural networks. Med
Sci Sports Exerc., 43:1994–9, 2011. https://doi.org/10.1249/MSS.
0b013e318219d939.

https://doi.org/10.3390/s22041347
https://doi.org/10.3390/s21134324
https://doi.org/10.3390/s21134324
https://doi.org/10.14569/IJACSA.2019.0100311
https://doi.org/10.14569/IJACSA.2019.0100311
https://doi.org/10.1007/s00034-019-01116-y
https://doi.org/10.5755/j01.eee.20.5.7113
https://doi.org/10.3390/s100201154
https://doi.org/10.1249/MSS.0b013e318219d939
https://doi.org/10.1249/MSS.0b013e318219d939

106 Bibliography

[10] Andrey Ignatov. Real-time human activity recognition from accelerometer data using
Convolutional Neural Networks. Appl. Soft Comput., 62:915–922, 2018. https:
//doi.org/10.1016/j.asoc.2017.09.027.

[11] Sojeong Ha, Jeong-Min Yun, and Seungjin Choi. Multi-modal Convolutional Neural
Networks for activity recognition. In Proc. of the 2015 IEEE Int. Conf. on Syst. Man.
Cybern., pages 3017–3022, Hong Kong, China, 2015. IEEE.

[12] Tahmina Zebin, Patricia J. Scully, and Krikor B. Ozanyan. Evaluation of supervised
classification algorithms for human activity recognition with inertial sensors. In
2017 IEEE Sensors, page 1–3, Glasgow, UK, 2017. IEEE.

[13] Peter Blank, JulianHoßbach, andDominik Schuldhaus. Sensor-based stroke detection
and stroke type classification in table tennis. In ISWC ’15: Proceedings of the 2015
ACM International Symposium on Wearable, pages 93–100, Osaka, Japan, 2015. ACM.

[14] Damien Connaghan, Phillip Kelly, Noel E. O’Connor, Mark Gaffney, Michael Welsh,
and Cian O’Mathuna. Multi-sensor classification of tennis strokes. In IEEE Sensors,
pages 1437–1440, Limerick, Ireland, 2011. IEEE.

[15] Benjamin Groh, Thomas Kautz, Dominik Schuldhaus, and Bjoern M. Eskofier. IMU-
based trick classification in skateboarding. In Proc. of the KDD Workshop on Large-
Scale Sports Analytics, Sydney, Australia, 2015. ACM.

[16] Thomas Kautz, Benjamin H. Groh, Julius Hannink, Ulf Jensen, Holger Strubberg,
and Bjoern M. Eskofier. Activity recognition in beach volleyball using a Deep
Convolutional Neural Network. Data Min. Knowl. Discov., 31:1678–1705, 2017.
https://doi.org/10.1007/s10618-017-0495-0.

[17] Dominik Schuldhaus, Constantin Zwick, Harald Körger, , Eva Dorschky, Robert Kirk,
and Bjoern M. Eskofier. Inertial sensor-based approach for shot/pass classification
during a soccer match. In Proc. of the KDD Workshop on Large-Scale Sports Analytics,
Sydney, Australia, 2015. ACM.

[18] Xinyu Liu. Tennis stroke recognition: Stroke classification using inertial measur-
ing unit and machine learning algorithm in tennis. Master’s thesis, Technische
Universiteit Delft, Delft, The Netherlands, 2020.

[19] Libin Jiao, Rongfang Bie, Hao Wu, Yu Wei, Jixin Ma, Anton Umek, and An-
ton Kos. Golf swing classification with multiple deep convolutional neural net-
works. Int. J. Distrib. Sens. Netw., 14, 2018. https://doi.org/10.1177/
155014771880218.

[20] Dominik Schuldhaus. Human activity recognition in daily life and sports using inertial
sensors. PhD thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg, 2019.

[21] Cheng Xu, Duo Chai, Jie He, Xiaotong Zhang, and Shihong Duan. InnoHAR: A deep
neural network for complex human activity recognition. IEEE Access, 7:9893–9902,
2019. https://doi.org/10.1109/ACCESS.2018.2890675.

https://doi.org/10.1016/j.asoc.2017.09.027
https://doi.org/10.1016/j.asoc.2017.09.027
https://doi.org/10.1007/s10618-017-0495-0
https://doi.org/10.1177/155014771880218
https://doi.org/10.1177/155014771880218
https://doi.org/10.1109/ACCESS.2018.2890675

References 107

[22] Kun Xia, Jianguang Huang, and Hanyu Wang. LSTM-CNN architecture for human
activity recognition. IEEE Access, 8:56855–56866, 2020. https://doi.org/10.
1109/ACCESS.2020.2982225.

[23] Mingqi Lv, Wei Xu, and Tieming Chen. A hybrid deep convolutional and recurrent
neural network for complex activity recognition using multimodal sensors. Neu-
rocomputing, 362:33–40, 2019. https://doi.org/10.1016/j.neucom.
2019.06.051.

[24] Francisco Javier Ordóñez and Daniel Roggen. Deep convolutional and LSTM recur-
rent neural networks for multimodal wearable activity recognition. Sensors, 16:115,
2016. https://doi.org/10.3390/s16010115.

[25] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
Cambridge, MA, USA, 2016. http://www.deeplearningbook.org.

[26] David H. Hubel and Torsten N. Wiesel. Receptive fields, binocular interaction and
functional architecture in the cat’s visual cortex. J. Physiol., 160:106–154, 1962.
https://doi.org/10.1113/jphysiol.1962.sp006837.

[27] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural Comput., 9:1735–1780, 1997. https://doi.org/10.1007/
s10739-006-9119-z.

[28] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training
recurrent neural networks. In Proceedings of the International Conference on Machine
Learning, pages 1310–1318, Atlanta, GA, USA, 2013. PMLR.

[29] Erik Wilmes, Cornelis J. de Ruiter, Bram J. C. Bastiaansen, Jasper F. J. A. van Zon,
Riemer J. K. Vegter, Michel S. Brink, Edwin A. Goedhart, Koen A. P. M. Lemmink,
and Geert J. P. Savelsbergh. Inertial sensor-based motion tracking in football with
movement intensity quantification. Sens., 20:2527, 2020. https://doi.org/
10.3390/s20092527.

[30] Erik Wilmes. Measuring changes in hamstring contractile strength and lower body
sprinting kinematics during a simulated soccer match. Master’s thesis, Technische
Universiteit Delft, Delft, The Netherlands, 2019.

[31] Daniel Berrar. Cross-Validation, pages 542–545. Elsevier, Amsterdam, The Nether-
lands, 2019.

[32] Jimmy Ba Diederik P. Kingma. Adam: Amethod for stochastic optimization. https:
//doi.org/10.48550/arXiv.1412.6980, 2015. arXiv.

[33] Yann A. LeCun, Léon Bottou, Genevieve B. Orr, and Klaus-Robert Müller. Efficient
backprop, pages 9–48. Springer, Berlin/Heidelberg, Germany, 2012.

[34] Daniel Roggen, Alberto Calatroni, Mirco Rossi, Thomas Holleczek, Kilian Förster,
Gerhard Tröster, Paul Lukowicz, David Bannach, Gerald Pirkl, Alois Ferscha, Jakob
Doppler, Clemens Holzmann, Marc Kurz, Gerald Holl, Ricardo Chavarriaga, Hesam

https://doi.org/10.1109/ACCESS.2020.2982225
https://doi.org/10.1109/ACCESS.2020.2982225
https://doi.org/10.1016/j.neucom.2019.06.051
https://doi.org/10.1016/j.neucom.2019.06.051
https://doi.org/10.3390/s16010115
http://www.deeplearningbook.org
https://doi.org/10.1113/jphysiol.1962.sp006837
https://doi.org/10.1007/s10739-006-9119-z
https://doi.org/10.1007/s10739-006-9119-z
https://doi.org/10.3390/s20092527
https://doi.org/10.3390/s20092527
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1412.6980

108 Bibliography

Sagha, Hamidreza Bayati, Marco Creatura, and José del R. Millàn. Collecting complex
activity datasets in highly rich networked sensor environments. In Proceedings of
the 2010 Seventh International Conference on Networked Sensing Systems (INSS), page
233–240, Kassel, Germany, 2010. IEEE.

[35] Jennifer R. Kwapisz, Gary M.Weiss, and Samuel A. Moore. Activity recognition using
cell phone accelerometers. ACM SigKDD Explor. Newsl., 12:74–82, 2011. https:
//doi.org/10.1145/1964897.1964918.

[36] Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, and Jorge L. Reyes-
Ortiz. A public domain dataset for human activity recognition using smartphones.
In Proceedings of the 21th International European Symposium on Artificial Neural
Networks, Computational Intelligence and Machine Learning, pages 437–442, Bruges,
Belgium, 2013. ESANN.

[37] Michał Ciszewski, Jakob Söhl, and Geurt Jongbloed. Improving state estimation
through projection post-processing for activity recognition with application to foot-
ball. Stat Methods Appl, 32:1509–1538, 2023. https://doi.org/10.1007/
s10260-023-00696-z.

[38] Wesllen S. Lima, Eduardo Souto, Thiago Rocha, Richard W. Pazzi, and Ferry Pramu-
dianto. User activity recognition for energy saving in smart home environment. In
Proc. of the 2015 IEEE Symp. on Comput. and Commun. (ISCC), pages 751–757, New
York, NY, 2015. IEEE.

[39] Markus Eckelt, Franziska Mally, and Angelika Brunner. Use of acceleration
sensors in archery. Proc., 49:98, 2020. https://doi.org/10.3390/
proceedings2020049098.

[40] MauritsWaterbolk, Jasper Tump, Rianne Klaver, Rosalie van derWoude, Daniel Velle-
man, Joost Zuidema, Thomas Koch, and Elenna Dugundji. Detection of ships at moor-
ing dolphins with Hidden Markov Models. Transp. Res. Rec., 2673:0361198119837495,
2019. https://doi.org/10.1177/0361198119837495.

[41] R. Varatharajan, Gunasekaran Manogaran, M. K. Priyan, and Revathi Sundarasekar.
Wearable sensor devices for early detection of alzheimer disease using dynamic time
warping algorithm. Clust. Comput., 21:681–690, 2018. https://doi.org/10.
1007/s10586-017-0977-2.

[42] Agata Kołakowska, Wioleta Szwoch, and Mariusz Szwoch. A review of emotion
recognition methods based on data acquired via smartphone sensors. Sens., 20:6367,
2020. https://doi.org/10.3390/s20216367.

[43] Oscar D. Lara and Miguel A. Labrador. A survey on human activity recognition
using wearable sensors. IEEE Commun. Surv. & Tutor., 15:1192–1209, 2013. https:
//doi.org/10.1109/SURV.2012.110112.00192.

[44] L. Minh Dang, Kyungbok Min, Hanxiang Wang, Md. Jalil Piran, Cheol Hee Lee, and
Hyeonjoon Moon. Sensor-based and vision-based human activity recognition: A

https://doi.org/10.1145/1964897.1964918
https://doi.org/10.1145/1964897.1964918
https://doi.org/10.1007/s10260-023-00696-z
https://doi.org/10.1007/s10260-023-00696-z
https://doi.org/10.3390/proceedings2020049098
https://doi.org/10.3390/proceedings2020049098
https://doi.org/10.1177/0361198119837495
https://doi.org/10.1007/s10586-017-0977-2
https://doi.org/10.1007/s10586-017-0977-2
https://doi.org/10.3390/s20216367
https://doi.org/10.1109/SURV.2012.110112.00192
https://doi.org/10.1109/SURV.2012.110112.00192

References 109

comprehensive survey. Pattern Recognit., 108:107561, 2020. https://doi.org/
10.1016/j.patcog.2020.107561.

[45] Jindong Wang, Yiqiang Chen, Shuji Hao, Xiaohui Peng, and Lisha Hu. Deep learning
for sensor-based activity recognition: A survey. Pattern Recognit. Lett., 119:3–11,
2019. https://doi.org/10.1016/j.patrec.2018.02.010.

[46] Charissa Ann Ronao and Sung-Bae Cho. Recognizing human activities from smart-
phone sensors using hierarchical continuous hidden markov models. Int. J. of Dis-
trib. Sens. Netw., 13:1550147716683687, 2017. https://doi.org/10.1177/
1550147716683687.

[47] Nicole A. Capela, Edward D. Lemaire, and Natalie Baddour. Feature selection for
wearable smartphone-based human activity recognition with able bodied, elderly,
and stroke patients. PLoS One, 10:e0124414, 2015. https://doi.org/10.
1371/journal.pone.0124414.

[48] Carlos Aviles-Cruz, Eduardo Rodriguez-Martinez, Juan Villegas-Cortez, and Andrés
Ferreyra-Ramirez. Granger-causality: An efficient single user movement recognition
using a smartphone accelerometer sensor. Pattern Recognit. Lett., 125:576–583, 2019.
https://doi.org/10.1016/j.patrec.2019.06.029.

[49] Ramona Rednic, Elena Gaura, James Brusey, and John Kemp. Wearable posture
recognition systems: Factors affecting performance. In Proc. of 2012 IEEE-EMBS Int.
Conf. on Biomed. and Health Inform., pages 200–203, New York, NY, 2012. IEEE.

[50] Chun Zhu and Weihua Sheng. Motion- and location-based online human daily
activity recognition. Pervasive and Mob. Comput., 7:256–269, 2011. https://doi.
org/10.1016/j.pmcj.2010.11.004.

[51] Maria Cornacchia, Koray Ozcan, Yu Zheng, and Senem Velipasalar. A survey on
activity detection and classification using wearable sensors. IEEE Sens. J., 17:386–403,
2016. https://doi.org/10.1109/JSEN.2016.2628346.

[52] Lu Li, Hong Zhang, Wenyan Jia, Zhi-Hong Mao, Yuhu You, and Mingui Sun. Indirect
activity recognition using a target-mounted camera. In Peihua Qiu, Yong Xiang,
Yongsheng Ding, Demin Li, and Lipo Wang, editors, Proc. of the 2011 4th Int. Congr.
on Image and Signal Process., pages 487–491, New York, NY, 2011. IEEE.

[53] Michael S. Ryoo and Larry Matthies. First-person activity recognition: What are they
doing to me? In Proc. of the 2013 IEEE Conf. on Comput. Vis. and Pattern Recognit.,
pages 2730–2737, New York, NY, 2013. IEEE.

[54] Yoshihiro Watanabe, Tetsuo Hatanaka, Takashi Komuro, and Masatoshi Ishikawa.
Human gait estimation using a wearable camera. In Proc. of the 2011 IEEE Workshop
on Appl. of Comput. Vis., pages 276–281, New York, NY, 2011. IEEE.

[55] Kai-Tai Song andWei-Jyun Chen. Human activity recognition using a mobile camera.
In Proc. of the 2011 8th Int. Conf. on Ubiquitous Robot. and Ambient Intell. (URAI),
pages 3–8, New York, NY, 2011. IEEE.

https://doi.org/10.1016/j.patcog.2020.107561
https://doi.org/10.1016/j.patcog.2020.107561
https://doi.org/10.1016/j.patrec.2018.02.010
https://doi.org/10.1177/1550147716683687
https://doi.org/10.1177/1550147716683687
https://doi.org/10.1371/journal.pone.0124414
https://doi.org/10.1371/journal.pone.0124414
https://doi.org/10.1016/j.patrec.2019.06.029
https://doi.org/10.1016/j.pmcj.2010.11.004
https://doi.org/10.1016/j.pmcj.2010.11.004
https://doi.org/10.1109/JSEN.2016.2628346

110 Bibliography

[56] Ivan Laptev, Marcin Marszałek, Cordelia Schmid, and Benjamin Rozenfeld. Learning
realistic human actions from movies. In Proc. of the 2008 IEEE Conf. on Comput. Vis.
and Pattern Recognit., pages 1–8, New York, NY, 2008. IEEE.

[57] Yan Ke, Rahul Sukthankar, and Martial Hebert. Efficient visual event detection using
volumetric features. In Proc. of the Tenth IEEE Int. Conf. on Comput. Vis. (ICCV’05),
volume 1, pages 166–173, New York, NY, 2005. IEEE.

[58] Chen Chen, Roozbeh Jafari, and Nasser Kehtarnavaz. Utd-mhad: A multimodal
dataset for human action recognition utilizing a depth camera and a wearable inertial
sensor. In Proc. of the 2015 IEEE Int. Conf. on Image Process. (ICIP), pages 168–172,
New York, NY, 2015. IEEE.

[59] Jamie A. Ward, Paul Lukowicz, and Gerhard Tröster. Evaluating performance in
continuous context recognition using event-driven error characterisation. In Mike
Hazas, John Krumm, and Thomas Strang, editors, Location- and Context-Awareness,
pages 239–255, Berlin, Heidelberg, 2006. Springer.

[60] Chin-Chia Michael Yeh, Nickolas Kavantzas, and Eamonn Keogh. Matrix profile IV:
Using weakly labeled time series to predict outcomes. In Peter Boncz and Ken Salem,
editors, Proc. of the VLDB Endow., volume 10, page 1802–1812. VLDB Endowment,
2017.

[61] Reza Shakerian, Meisam Yadollahzadeh-Tabari, and Seyed Yaser Bozorgi Rad. Propos-
ing a Fuzzy Soft-max-based classifier in a hybrid deep learning architecture for
human activity recognition. IET Biom., 11:171–186, 2022. https://doi.org/
10.1049/bme2.12066.

[62] Manuel Gil-Martín, Rubén San-Segundo, Fernando Fernández-Martínez, and Javier
Ferreiros-López. Improving physical activity recognition using a new deep learning
architecture and post-processing techniques. Eng. Appl. Artif. Intell., 92:103679, 2020.
https://doi.org/10.1016/j.engappai.2020.103679.

[63] Wesllen Sousa Lima, Eduardo Souto, Khalil El-Khatib, Roozbeh Jalali, and João Gama.
Human activity recognition using inertial sensors in a smartphone: An overview.
Sens., 19:3213, 2019. https://doi.org/10.3390/s19143213.

[64] Joan Serrà and Josep Lluis Arcos. An empirical evaluation of similarity measures for
time series classification. Knowl.-Based Syst., 67:305–314, 2014. https://doi.
org/10.1016/j.knosys.2014.04.035.

[65] Jamie A. Ward, Paul Lukowicz, and Hans W. Gellersen. Performance metrics for
activity recognition. ACM Trans. on Intell. Syst. and Technol., 2:6, 2011. https:
//doi.org/10.1145/1889681.1889687.

[66] Patrick Billingsley. Convergence of Probability Measures. John Wiley & Sons, Inc.,
Hoboken, NJ, second edition, 1999.

https://doi.org/10.1049/bme2.12066
https://doi.org/10.1049/bme2.12066
https://doi.org/10.1016/j.engappai.2020.103679
https://doi.org/10.3390/s19143213
https://doi.org/10.1016/j.knosys.2014.04.035
https://doi.org/10.1016/j.knosys.2014.04.035
https://doi.org/10.1145/1889681.1889687
https://doi.org/10.1145/1889681.1889687

References 111

[67] Thomas G. Dietterich. Machine learning for sequential data: A review. In Terry
Caelli, Adnan Amin, Robert P. W. Duin, Dick de Ridder, andMohamed Kamel, editors,
Struct., Syntactic, and Stat. Pattern Recognit., volume 2396 of Lecture Notes in Computer
Science, pages 15–30, Berlin, Heidelberg, 2002. Springer.

[68] Igor Kononenko, Edvard Šimec, and Marko Robnik-Šikonja. Overcoming the myopia
of inductive learning algorithms with RELIEFF. Appl. Intell., 7:39–55, 1997. https:
//doi.org/10.1023/A:1008280620621.

[69] Tressy Thomas and Enayat Rajabi. A systematic review of machine learning-based
missing value imputation techniques. Data Technol. and Appl., 55:558–585, 2021.
https://doi.org/10.1108/DTA-12-2020-0298.

[70] Craig K. Enders. Applied missing data analysis. Guilford Press, New York, NY, first
edition, 2010.

[71] Shahidul Islam Khan and Abu Sayed Md Latiful Hoque. Sice: an improved missing
data imputation technique. J Big Data, 7, 2020. https://doi.org/10.1186/
s40537-020-00313-w.

[72] Tlamelo Emmanuel, Thabiso Maupong, Dimane Mpoeleng, Thabo Semong, Bany-
atsang Mphago, and Oteng Tabona. A survey on missing data in machine
learning. Journal of Big Data, 8, 2021. https://doi.org/10.1186/
s40537-021-00516-9.

[73] Roderick J. A. Little. Regression with missing x’s: A review. Amer. Stat. Assoc.,
87:1227–1237, 1992.

[74] Per Jonsson and Claes Wohlin. An evaluation of k-nearest neighbour imputation
using Likert data. In Proc. of the 10th International Symposium on Software Metrics,
pages 108–118, Chicago, IL, 2004. IEEE.

[75] sklearn.impute.KNNImputer description. https://web.archive.org/
web/20240127115457/https://scikit-learn.org/stable/
modules/generated/sklearn.impute.KNNImputer.html. Ac-
cessed: 2024-03-28.

[76] Jim Ramsay and Bernard Silverman. Functional Data Analysis. Springer, New York,
NY, second edition, 2005.

[77] Michał Ciszewski, Jakob Söhl, Ton Leenen, Bart van Trigt, and Geurt Jongbloed.
Testing for no effect in regression problems: a permutation approach. to appear in
Statistica Neerlandica, 2024. https://doi.org/10.48550/arXiv.2305.
02685.

[78] Phillip I. Good. Extensions of the concept of exchangeability and their applications.
J. Mod. Appl. Stat. Methods, 1:243–247, 2002. https://doi.org/10.22237/
jmasm/1036110240.

https://doi.org/10.1023/A:1008280620621
https://doi.org/10.1023/A:1008280620621
https://doi.org/10.1108/DTA-12-2020-0298
https://doi.org/10.1186/s40537-020-00313-w
https://doi.org/10.1186/s40537-020-00313-w
https://doi.org/10.1186/s40537-021-00516-9
https://doi.org/10.1186/s40537-021-00516-9
https://web.archive.org/web/20240127115457/https://scikit-learn.org/stable/modules/generated/sklearn.impute.KNNImputer.html
https://web.archive.org/web/20240127115457/https://scikit-learn.org/stable/modules/generated/sklearn.impute.KNNImputer.html
https://web.archive.org/web/20240127115457/https://scikit-learn.org/stable/modules/generated/sklearn.impute.KNNImputer.html
https://doi.org/10.48550/arXiv.2305.02685
https://doi.org/10.48550/arXiv.2305.02685
https://doi.org/10.22237/jmasm/1036110240
https://doi.org/10.22237/jmasm/1036110240

112 Bibliography

[79] Daniel Commenges. Transformations which preserve exchangeability and appli-
cation to permutation tests. J. Nonparametr. Stat., 15:171–185, 2003. https:
//doi.org/10.1080/1048525031000089310.

[80] Yifan Huang, Haiyan Xu, Violeta Calian, and Jason C. Hsu. To permute or not
to permute. Bioinform., 22:2244–2248, 2006. https://doi.org/10.1093/
bioinformatics/btl383.

[81] Alan D. Hutson and Gregory E. Wilding. Maintaining the exchangeability as-
sumption for a two-group permutation test in the non-randomized setting. J.
Appl. Stat., 39:1593–1603, 2012. https://doi.org/10.1080/02664763.
2012.661707.

[82] Rosa Arboretti Giancristofaro and Stefano Bonnini. Moment-based multivariate
permutation tests for ordinal categorical data. J. Nonparametr. Stat., 20:383–393,
2008.

[83] Rosa Arboretti Giancristofaro and Stefano Bonnini. Some new results on univariate
and multivariate permutation tests for ordinal categorical variables under restricted
alternatives. Stat. Methods and Appl., 18:221–236, 2009.

[84] Wouter Duivesteijn and Arno Knobbe. Exploiting false discoveries - statistical
validation of patterns and quality measures in subgroup discovery. In Proc. 2011 IEEE
11th Int. Conf. Data Min., pages 151–160, Vancouver, BC, Canada, 2011. IEEE.

[85] Ronald A. Fisher. Statistical methods for research workers. Oliver & Boyd, Edinburgh,
Scotland, first edition, 1925.

[86] Nancy S. Hall. R. A. Fisher and his advocacy of randomization. J. Hist. Biol., 40:295–
325, 2007. https://doi.org/10.1007/s10739-006-9119-z.

[87] Kenneth J. Berry, Paul W. Mielke Jr., and Howard W. Mielke. The Fisher-Pitman
permutation test: an attractive alternative to the 𝐹 test. Psychol. Rep., 90:495–502,
2002. https://doi.org/10.2466/pr0.2002.90.2.495.

[88] Anders Oden and HansWedel. Arguments for Fisher’s permutation test. Ann. Statist.,
3:518–520, 1975. https://doi.org/10.1214/aos/1176343082.

[89] Robert J. Boik. The Fisher-Pitman permutation test: A non-robust alternative to
the normal theory 𝐹 test when variances are heterogeneous. Br. J. Math. Stat.
Psychol., 40:26–42, 1987. https://doi.org/10.1111/j.2044-8317.
1987.tb00865.x.

[90] Marti J. Anderson and John Robinson. Permutation tests for linear models. Aust. N.
Z. J. Stat., 43:75–88, 2001.

[91] John Ludbrook and Hugh Dudley. Why permutation tests are superior to 𝑡 and 𝐹
tests in biomedical research. Am. Stat., 52:127–132, 1998. https://doi.org/
10.2307/2685470.

https://doi.org/10.1080/1048525031000089310
https://doi.org/10.1080/1048525031000089310
https://doi.org/10.1093/bioinformatics/btl383
https://doi.org/10.1093/bioinformatics/btl383
https://doi.org/10.1080/02664763.2012.661707
https://doi.org/10.1080/02664763.2012.661707
https://doi.org/10.1007/s10739-006-9119-z
https://doi.org/10.2466/pr0.2002.90.2.495
https://doi.org/10.1214/aos/1176343082
https://doi.org/10.1111/j.2044-8317.1987.tb00865.x
https://doi.org/10.1111/j.2044-8317.1987.tb00865.x
https://doi.org/10.2307/2685470
https://doi.org/10.2307/2685470

References 113

[92] Joseph P. Romano. On the behavior of randomization tests without a group invariance
assumption. J. Am. Stat. Assoc., 85:686–692, 1990. https://doi.org/10.
2307/2290003.

[93] Richard L. Schmoyer. Permutation tests for correlation in regression errors. J. Am.
Stat. Assoc., 89:1507–1516, 1994. https://doi.org/10.2307/2291013.

[94] Shunpu Zhang. The split sample permutation 𝑡-tests. Neuroimage, 139:3512–3524,
2009. https://doi.org/10.1016/j.jspi.2009.04.004.

[95] Hervé Cardot, Aldo Goia, and Pascal Sarda. Testing for no effect in functional linear
regression models, some computational approaches. Commun. Stat. Simul. Comput.,
33:179–199, 2004. https://doi.org/10.1081/SAC-120028440.

[96] Rosa Arboretti Giancristofaro, Stefano Bonnini, and Fortunato Pesarin. A permuta-
tion approach for testing heterogeneity in two-sample categorical variables. Stat.
and Comput., 19:209–216, 2009.

[97] Oliver E. Lee and Thomas M. Braun. Permutation tests for random effects in linear
mixed models. Biometr., 68:486–493, 2012.

[98] Anderson M. Winkler, Gerard R. Ridgway, Matthew A. Webster, Stephen M. Smith,
and Thomas E. Nichols. Permutation inference for the general linear model. Neuroim-
age, 92:381–397, 2014. https://doi.org/10.1016/j.neuroimage.
2014.01.060.

[99] Anderson M. Winkler, Matthew A. Webster, Diego Vidaurre, Thomas E. Nichols, and
Stephen M. Smith. Permutation inference for the general linear model. Neuroimage,
123:253–268, 2015.

[100] Sonja Hahn and Luigi Salmaso. A comparison of different synchronized permutation
approaches to testing effects in two-level two-factor unbalanced anova designs. Stat.
Papers, 58:123–146, 2017.

[101] Cyrus J. DiCiccio and Joseph P. Romano. Robust permutation tests for correlation
and regression coefficients. J. Am. Stat. Assoc., 112:1211–1220, 2017.

[102] Stefano Bonnini and Michela Borghesi. Relationship between mental health and
socio-economic, demographic and environmental factors in the covid-19 lockdown
period - a multivariate regression analysis. Mathematics (MDPI), 10:3237, 2022.

[103] Cajo J. F. ter Braak. Predictor versus response permutation for significance testing
in weighted regression and redundancy analysis. J. Stat. Comp. Simul., 92:2041–2059,
2021. https://doi.org/10.1080/00949655.2021.2019256.

[104] Fortunato Pesarin and Luigi Salmaso. Permutation tests for complex data: theory,
applications and software. John Wiley & Sons, Chichester, UK, first edition, 2010.

[105] C. B. Bell and K. A. Doksum. Distribution-free tests of independence. Ann. Math.
Statist., 38:429–446, 1967.

https://doi.org/10.2307/2290003
https://doi.org/10.2307/2290003
https://doi.org/10.2307/2291013
https://doi.org/10.1016/j.jspi.2009.04.004
https://doi.org/10.1081/SAC-120028440
https://doi.org/10.1016/j.neuroimage.2014.01.060
https://doi.org/10.1016/j.neuroimage.2014.01.060
https://doi.org/10.1080/00949655.2021.2019256

114 Glossary

[106] Andrey N. Kolmogorov. Foundations of the theory of probability. Chelsea Publishing
Company, New York, second edition, 1956.

[107] E.J.G. Pitman. Significance tests which may be applied to samples from any popula-
tions. Suppl. J. Royal Stat. Soc., 4:119–130, 1937.

[108] E.J.G. Pitman. Significance tests which may be applied to samples from any pop-
ulations. ii. the correlation coefficient test. Suppl. J. Royal Stat. Soc., 4:225–232,
1937.

[109] Nikki Kolman, Barbara Huijgen, Tamara Kramer, Marije Elferink-Gemser, and Chris
Visscher. The Dutch Technical-Tactical Tennis Test (D4T) for talent identification
and development: psychometric characteristics. J. Hum. Kinet., 30:127–138, 2017.
https://doi.org/10.1515/hukin-2017-0012.

[110] David Whiteside and Machar Reid. Spatial characteristics of professional tennis
serves with implications for serving aces: A machine learning approach. J. Sports
Sci., 35:648–654, 2017.

https://doi.org/10.1515/hukin-2017-0012

115

Curriculum Vitæ

Michał Grzegorz Ciszewski

1995/05/11 Date of birth in Zawiercie, Poland

Education

10/2019-10/2023 PhD student, Statistics group, Delft Institute of Applied Mathe-
matics, Delft University of Technology, The Netherlands,
Applications of Statistical Theory to Sensor Data Analysis
Supervisor: Dr. Jakob Söhl
Promotors: Prof. dr. ir. Geurt Jongbloed, Dr. Jakob Söhl

10/2017-07/2019 MSc Applied Mathematics, Akademia Górniczo-Hutnicza im.
Stanisława Staszica w Krakowie, Poland
Bayesian Density Estimation
Supervisor: Prof. dr hab. inż. Zbigniew Szkutnik
Promotor: Prof. dr hab. inż. Bolesław Kacewicz

10/2014-07/2017 BSc Mathematics, Akademia Górniczo-Hutnicza im. Stanisława
Staszica w Krakowie, Poland
Change-point in linear regression
Supervisor: Dr Konrad Nosek

Academic Service

Co-supervisor MSc Rafael Cuperman Coifman. Football activity recognition:
A deep learning approach to football activity recognition based
on Inertial Measurement Units signals. October 2020-June 2021,
supervised jointly with prof. dr. ir. Kaspar Jansen
MSc Ricardo Tebbens. Football activity recognition: Improving
and testing football activity recognition based on signal data using
deep learning. April 2022-March 2023, supervised jointly with
prof. dr. ir. Kaspar Jansen

Teaching assistant NB2171 Statistiek 2019/20 (Q3)

116 Curriculum Vitæ

TN3104WI Statistiek 2019/20, 2020/21, 2021/22, 2022/23 (Q3)
TB131B Differentiaalvergelijkingen en Lineaire Algebra 2020/21,
2022/23 (Q1)
EE1M21 Linear Algebra and Analysis B 2021/22 (Q2)

Lecturer CSE1210 Probability Theory and Statistics 2021/22 (Q4)

117

List of Publications

 1. Rafael Cuperman, Kaspar Jansen andMichał Ciszewski: An end-to-end deep learning pipeline
for football activity recognition based on wearable acceleration sensors, Sensors, 22:1347,
2022.

 2. Michał Ciszewski, Jakob Söhl and Geurt Jongbloed: Improving state estimation through
projection post-processing for activity recognition with application to football, Stat Methods
Appl, 32:1509–1538, 2023.

 3. Michał Ciszewski, Jakob Söhl, Ton Leenen, Bart van Trigt and Geurt Jongbloed: Testing for no
effect in regression problems: a permutation approach, to appear in Statistica Neerlandica,
2024.

 Included in this thesis.

