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SUMMARY

Identification of Manual Control Behaviour
to Assess Rotorcraft Handling Qualities

Deniz Yılmaz

Flight safety has been a fundamental aspect of aircraft, and the future demand for wider
usage of aerial operations leads to more focus on the flight safety. Particularly rotorcraft
require high standards of flight safety due to their inherent features, such as compli-
cated rotary mechanisms, close-to-ground operations, and complex aerodynamic envi-
ronment. Consequently, rotorcraft pilots need to exert relatively high workload to safely
operate these vehicles. An understanding of the interaction between the rotorcraft and
the pilot is essential for improving flight safety. This interaction is elaborated by the
Handling Qualities (HQ) discipline, which aims to identify and, if possible predict any
deficiency in HQ that could potentially jeopardize safe flight.

A typical (and potentially catastrophic) example of a HQ deficiency are the Aircraft
/ Rotorcraft Pilot Couplings (A/RPC), formerly referred to as Pilot Induced Oscillations
(PIO). A/RPC is defined as the involuntary and adverse interaction between the pilot
and the vehicle under control. Generally for rotorcraft, the ‘vehicle’ part of this inter-
action is evaluated by objective HQ criteria and online Rotorcraft Pilot Coupling (RPC)
detection tools, whereas the ‘pilot’ part is assessed with subjective pilot ratings. Using
subjective ratings has several disadvantages, such as being used at very late stages of the
design when a prototype vehicle is already built. Addressing a serious HQ deficiency af-
ter this late design stage then requires immerse effort to re-design the vehicle systems
and repeat the flight tests.

Considering the involvement of the ‘pilot’ aspect of the HQ and RPC at an earlier
stage of the design, some HQ criteria explicitly include ‘paper pilot’ models, which are
essentially calculated models to meet predefined criteria requirements (e.g., the closed-
loop resonance peak in the Neal-Smith criterion). However, these criteria are solely orig-
inated from dedicated fixed-wing flight tests, and the paper pilot models of these criteria
could considerably deviate from the actual pilot behaviour due to the predefined criteria
constraints.

Considering the limitations of the objective HQ criteria in terms of pilot modeling,
and the drawbacks of the subjective pilot ratings of HQ and RPC, there is a scientific gap
in the ‘objective’ pilot model considerations, especially for determining rotorcraft HQ
deficiencies and RPC tendencies at an early design phase. This thesis targets this scien-
tific gap by introducing the identification of the manual control behaviour (i.e., through
a cybernetic approach) into the HQ and RPC domains. A new methodology, called as the
Manual Control Identification Method (MCIM), was developed to achieve this objective.
This thesis presents how to utilize the MCIM to obtain objective measures (e.g., iden-

vii



viii

tified pilot model parameters) while correlating with the HQ assessments and the RPC
susceptibility of a rotorcraft model.

In MCIM, there are two important independent variables: the added time delay and
the task difficulty. The added time delay is a typical linear RPC trigger, which can lead
the pilot to exhibit control behaviour that can cause the Pilot Vehicle System (PVS) to
become out-of-phase. If the pilot continues to apply a tight-control during such a situ-
ation, the initiated RPC may quickly proceed to a become severe RPC event. A remedy
to avoid further development of an initiated RPC event is the ‘back-off’ control strategy,
during which the pilot reduces his/her control compensation to let the PVS to return
to a more stable state. Another condition that would require the pilot to exhibit such a
‘back-off’ control strategy is the crossover regression. This phenomenon occurs during
a human-in-the-loop control task, when the task difficulty is increased (e.g., increased
task bandwidth). Consequently, human operators may need to regress the open-loop
crossover frequency, which is fundamentally important while analysing closed-loop pi-
loting tasks. Since the system stability is determined by the open-loop gain and phase
characteristics near this frequency, a noticeable reduction of the crossover frequency can
be interpreted as a HQ measure, such that the PVS could not achieve the same perfor-
mance as before the crossover regression happened.

Considering the two independent variables (i.e., the added time delay and the task
difficulty), there are five development steps of the MCIM. First, a rotorcraft model is
developed with the capability of simulating the added time delay. At the second step, a
compensatory task is designed to be used for the identification of the manual control be-
haviour, with various task difficulties. The third step is preparing a simulator experiment
campaign to identify the manual control behaviour, such that human operators are sub-
jected to experiment conditions with varied combinations of task difficulties and added
time delays. The fourth step is analysing the measured data gathered from the manual
control identification experiments, and compare parameters of identified human oper-
ator models and observe deviations between configurations. At this step of the MCIM,
frequency and time domain identification techniques are utilized, namely the Fourier
Coefficients Method with Optimization and the Maximum Likelihood Estimation, re-
spectively. The fifth step is using RPC detection tools, which are the Realtime Oscillation
Verifier (ROVER) and the Phase Aggression Criteria (PAC), to investigate the correlations
between the observed manual control behaviour changes and the RPC tendencies.

To test the applicability of the MCIM, two preliminary identification experiments
were designed, conducted and analysed. During these experiments, task difficulty was
kept constant, while solely focusing on the changes in the manual control behaviour
when additional time delay was inserted to the rotorcraft model. The first experiment
was conducted in TU Delft’s SIMONA Research Simulator (SRS) with a roll-axis rotor-
craft model during a disturbance-rejection task. In addition to the added time delay,
the sensitivity of the control manipulator (i.e., the cyclic inceptor) was doubled. Identi-
fication results showed that human operators simply adapted their control gains while
the remaining identified parameters did not show any significant variation between the
same added time delay conditions. However, there was a noticeable reduction of the
crossover frequency between the added delay conditions. Identified pilot parameters
indicated that the pilot visual gain, and the neuromuscular natural frequency were de-
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creased, whereas the lead compensation was increased.
The second preliminary experiment was conducted in the HeliFlight Helicopter Sim-

ulator (HHS) at the University of Liverpool (UoL) with a pitch-axis rotorcraft model with
three levels of added time delay conditions (i.e., none, medium and high values of added
delays). Between the none added and the medium added time delay conditions, crossover
regression was not observed, however, the high added delay condition resulted in regres-
sion behaviour. When the added time delay was increased, the identified pilot model
parameters showed that pilots had lower visual gain and neuromuscular natural fre-
quency, and higher lead compensation. In both identification experiments, RPC de-
tection tools in the MCIM (i.e., ROVER and PAC) indicated higher RPC susceptibility
with increased added time delay, and correlated well with the identified manual control
behaviour. Moreover, RPC tools also indicated the signatures of the ‘back-off’ control
strategy, such that the trend of the increased RPC susceptibility between the none to the
medium added time delay was not followed for the condition that showed a crossover re-
gression (i.e., the high added time delay). These preliminary identification experiments
demonstrated the applicability of the MCIM, and indicated that only added time delay
can already lead human operators to exhibit a crossover regression strategy, and also that
the corresponding RPC susceptibility can be determined by the MCIM.

Based on the MCIM results of the preliminary identification experiments, a follow-up
computer simulation study was performed. The aim of these simulations was to investi-
gate the manual control behaviour, which yields the optimum task performance during
the conditions in which the added time delay and the task difficulty were combined.
Based on the design of the MCIM, the developed simulation framework contained a pi-
lot model, and a rotorcraft model as a Controlled Element (CE) in a compensatory task.
While keeping the pilot limitation parameters (i.e., the pilot delay and neuromuscular
system parameters) constant, both pilot equalization parameters (i.e., visual gain and
lead compensation) were varied. Pilot remnant was either neglected or added to the pi-
lot control signal, based on the simulation conditions. In the simulation, high and low
bandwidth forcing functions were utilized to represent the task difficulty, as a part of the
MCIM. For each task difficulty condition, that is with any Power Spectrum Density dis-
tribution, the added time delay generally required lower pilot visual gain and higher lead
time constant to achieve the optimum performance.

This trend of parameter variation matches well with the results obtained from the
preliminary identification experiments. Furthermore, added time delay and increased
task difficulty also generally lead to crossover regression in the simulation. Despite the
matching general trend, it was also observed that measurement data obtained in prelim-
inary experiment show slightly higher tracking errors, with higher visual gains and lower
lead compensation as compared to the optimum performance. In other words, ‘real’
pilots may have aimed for considerably lower lead compensation than the simulation
pilot model with the optimum performance. This situation resembles the drawback of
the ‘paper pilot’ models in HQ, such that the constraints (i.e., yielding the theoretically
minimum tracking error in this simulation study) could deviate from the actual pilot be-
haviour. Therefore, a set of pilot model identification experiments were conducted as a
following step to this simulation framework, with the usage of the complete MCIM.

The MCIM experiment was conducted in the SRS at TU Delft with nine participants,
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who were subjected to nine experiment configurations as combinations of added time
delay (i.e., none, medium, high) and task difficulty (i.e., easy, medium, hard) conditions.
As described in the MCIM, the task difficulty was varied by increasing the bandwidth
of the disturbance forcing function, and the time delay was implemented as a transport
delay in the CE. Identified parameters of the manual control behaviour showed that the
visual gain and the lead time constant were the most important parameters that indi-
cated the adaptation of the exhibited manual control behaviour for different task con-
figurations. A recognizable change in the trend of decreasing visual gain and increasing
lead time constant characterized the major adaptation of the manual control strategy
among experiment task conditions. Moreover, crossover frequencies showed three clear
regression tendencies. An example of a ‘classical’ crossover regression due to increased
task difficulty, and two examples of crossover regression due to added time delay.

The most interesting crossover regression occurred during the medium task, between
medium and high levels of added time delay. At this condition, identification results
showed a clear reduction in the visual gain, and an increase in the lead compensation,
such that the human operators reduced the open-loop crossover frequency noticeably.
This condition could be considered as a ‘back off’ control strategy, during which human
operators could be avoiding to apply any tight control due to limited PVS stability. Fur-
thermore, phase margins also indicated a recognizable deviation at this condition. In
addition, RPC susceptibility of the rotorcraft model remarkably increased between none
and medium added time delay conditions. However, further added time delay (i.e., high
time delay) demonstrated a reduction of the RPC tendency. During this ‘back-off’ con-
dition, human operators might have changed their control strategy to avoid any further
increased RPC susceptibility of the PVS.

Considering the objective of this thesis, the MCIM successfully demonstrated its abil-
ity to detect the configurations where the HQ and the RPC susceptibility of a designed
rotorcraft recognizably deviate, by using objective measures such as the identified pa-
rameters of manual control behaviour. Therefore, it would be possible to determine
time delay and task difficulty combinations which could result in a noticeable change
of HQ and RPC susceptibility. Such objective measures could be used at an earlier stage
of rotorcraft design, and both the added time delay and task difficulty limitations could
be determined objectively without requiring any subjective rating or any constrained
‘paper pilot’ models.

Due to its Linear Time Invariant (LTI) structure, MCIM is not able perform well with
strong non-linearities, such as a transition from a steady condition to a fully developed
RPC event. Thus, this structure limits the applicability of the MCIM to the conditions
before and after an RPC event. However, enhancing the MCIM with Linear Time Vary-
ing (LTV) capabilities (e.g., LTV pilot modeling) could allow to investigate the transition
conditions of an RPC event. Another aspect of the MCIM to be investigated further could
be the task design, which is limited to the single-axis in the MCIM. Although such a task
design is easy to analyse, extending it to multi-axis tasks could be an important improve-
ment, particularly for rotorcraft, which mainly contain multi-axis control during their
regular operations. Moreover, adding physical motion of the simulator to the MCIM task
could lead to a more realistic task, and allow MCIM to extend its capabilities to examine
the manual control behaviour for RPC with the physical motion feedback.
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Bepaling van de besturingseigenschappen van hefschroefvliegtuigen
door het identificeren van menselijk stuurgedrag

Deniz Yılmaz

Veiligheid is een cruciaal aspect in het ontwerp en gebruik van vliegtuigen en krijgt
alleen maar meer aandacht vanwege de groeiende toekomstige vraag naar vliegen en
luchtoperaties. Het garanderen van de vliegveiligheid is vooral ook van belang voor hef-
schroefvliegtuigen1 (Engels: rotorcraft,een woord dat we in het vervolg hier gebruiken),
die vanwege hun inherente eigenschappen, zoals een gecompliceerd rotormechanisme,
maar ook door hun gebruik dichtbij de grond en in zeer complexe aerodynamische om-
gevingen, relatief risicovol zijn in het gebruik. Een direct gevolg daarvan is dat rotorcraft-
vliegers vaak een hoge werkbelasting ervaren bij het uitvoeren van hun vluchten. Een
goed begrip van de interactie tussen het voertuig en de vlieger is daarom essentieel voor
het verbeteren van de vliegveiligheid. Traditioneel wordt deze interactie onderzocht in
het onderzoeksveld van de besturingseigenschappen2, wat zich richt op het aan het licht
brengen, en zo mogelijk vroegtijdig voorspellen, van eventuele tekortkomingen in de be-
sturingseigenschappen die het veilig gebruik in gevaar zouden kunnen brengen.

Een typerend en soms catastrofaal voorbeeld van problemen met besturingseigen-
schappen zijn zogeheten Aircraft/Rotorcraft Pilot Couplings (A/RPC, “vliegtuig/rotorcra-
ft-piloot koppelingen”), in de wat oudere literatuur veelal Pilot-Induced Oscillations (PIO,
“piloot-geïnduceerde oscillaties”) genoemd. Onder de definitie van A/RPC vallen alle
onbedoelde en ongewenste interacties tussen de vlieger en het bestuurde voertuig. Voor
rotorcraft wordt het ‘voertuig’ deel van deze interactie veelal geëvalueerd met objectieve
hanteringscriteria en online tests voor de detectie van specifieke RPC symptomen. Het
‘vlieger’ deel wordt in het algemeen bepaald via subjectieve beoordelingen door ervaren
vliegers. Vooral de afhankelijkheid van deze laatste, subjectieve, beoordelingen leidt tot
verschillende beperkingen, met de meest in het oog springende het feit dat een volledig
prototype voertuig beschikbaar moet zijn voordat er langs deze weg voor mogelijke RPC
getest kan worden. Als in een dergelijk laat stadium van een ontwerptraject nog ernstige
problemen met de besturingseigenschappen worden blootgelegd, is het herontwerp en
het herhalen van de benodigde vliegproeven financieel bijna niet meer op te brengen.

Om de invloed van de vlieger op de besturingseigenschappen en RPC in vroegere fa-
sen van het ontwerpproces te kunnen meenemen, hanteren enkele bekende criteria voor
het beoordelen van besturingseigenschappen een zogenaamd ‘papieren’ vlieger-model:
een wiskundig model van het stuurgedrag van een vlieger, ingesteld om te voldoen aan
bepaalde vooraf gedefinieerde eisen (zoals bijvoorbeeld de resulterende resonantiepiek

1De Engelse term “rotorcraft” is vertaald in “hefschroefvliegtuig” of “helikopter” in het Nederlandse.
2De Engelse term “handling qualities” is vertaald in “besturingseigenschappen” in het Nederlandse.
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in het zogenaamde “Neal-Smith criterium”). Deze criteria zijn echter bepaald uit speci-
fieke vliegproeven met vliegtuigen met vaste vleugels, waardoor zowel de limieten van
deze criteria, maar ook de -modellen die gebruikt worden voor vliegerstuurgedrag, aan-
zienlijk zouden kunnen afwijken van het besturen van een hefschroefvoertuig zoals een
helikopter

Gezien deze beperkingen van de beschikbare vlieger-model-gebaseerde objectieve
criteria voor besturingseigenschappen en de nadelen van subjectieve methoden voor
het evalueren van besturingseigenschappen en RPC, bestaat er een wetenschappelijk hi-
aat in onze kennis over het ‘objectief’ modelleren van het stuurgedrag van vliegers voor
het voorspellen van problemen met besturingseigenschappen en RPC voor rotorcraft,
vroeg in het ontwerptraject. Dit proefschrift pakt dit hiaat direct aan door de identifi-
catie van het handmatige besturingsgedrag (via een cybernetische, model-gebaseerde
benadering) toe te passen binnen de domeinen van de besturingseigenschappen en
RPC, waarvoor een nieuwe methodologie, de “Manual Control Identification Method”
(MCIM, de “identificatie methode voor menselijk stuurgedrag”), is ontwikkeld. Dit proef-
schrift beschrijft hoe de MCIM gebruikt kan worden om objectieve meetdata te verza-
melen en te analyseren (bijvoorbeeld in de vorm van de geïdentificeerde parameters
van een vliegermodel) en te bewijzen hoe deze data correleren met subjectieve beoor-
delingen van de besturingseigenschappen en de RPC gevoeligheid van een bestuurd
rotorcraft-model.

Binnen de MCIM wordt gewerkt met twee belangrijke onafhankelijke variabelen: (1)
de aan de voertuigdynamica toegevoegde tijdsvertraging, en (2) de moeilijkheid van
de besturingstaak. Toegevoegde tijdvertraging is een bekende oorzaak van lineaire
RPC doordat de vlieger stuurgedrag kan gaan vertonen waardoor het “Pilot Vehicle Sy-
stem” (PVS, het “piloot-voertuig systeem”) uit fase kan raken. Als vliegers in zo’n geval
met een hoge bandbreedte blijven sturen kan een beginnende RPC zich snel ontwikke-
len tot een ernstige, volledige RPC. Verdere ontwikkeling van een geïnitieerde RPC kan
worden voorkomen als de vlieger zijn of haar besturingsbandbreedte vermindert om de
PVS naar een stabielere staat terug te brengen, een zogenaamde ‘back-off’ stuurstrate-
gie. Een tweede geval waarin vliegers een dergelijke ‘back-off’ stuurstrategie aannemen
wordt in de literatuur ook wel crossover-regressie genoemd. Dit verschijnsel doet zich
voor tijdens handmatige stuurtaken wanneer de moeilijkheid van de besturingstaak
wordt verhoogd tot een bepaald niveau (bijvoorbeeld via verhoogde opgelegde taak-
bandbreedte). Boven een bepaalde taakmoeilijkheid zullen menselijke bestuurders ge-
dwongen worden de open-lus crossover-frequentie te verlagen, een situatie die van fun-
damenteel belang is bij het analyseren van stuurtaken in gesloten lus. Aangezien de sta-
biliteit van het gesloten-lus systeem wordt bepaald door de versterkings- en fasekarak-
teristieken van de open lus dynamica in de buurt van de crossover-frequentie, kan een
merkbare verlaging van de crossover-frequentie worden geïnterpreteerd als een maat
voor verslechterde besturingseigenschappen, aangezien deze aanpassing nodig is om
vergelijkbare acceptabele PVS prestaties te halen als onder nominale condities.

De ontwikkelde MCIM bestaat uit vijf onderzoeksstappen, waarin de twee boven-
genoemde onafhankelijke variabelen een belangrijke rol hebben. Eerst wordt een no-
minaal rotorcraft-model gekozen en geïmplementeerd met de mogelijkheid een extra
tijdsvertraging aan het model toe te voegen. In de tweede stap wordt een “compensa-
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tory tracking”-taak ontworpen om het handmatige stuurgedrag van vliegers te kunnen
identificeren met verschillende taakmoeilijkheden. De derde stap is het uitvoeren van si-
mulator experimenten om menselijke stuurdata te verzamelen voor verschillende com-
binaties van de moeilijkheid van de taak en de toegevoegde tijdsvertraging. De vierde
stap bestaat uit het analyseren van de verzamelde experimentele gegevens, om op ba-
sis van geschatte parameters van geïdentificeerde menselijke stuurmodellen verande-
ringen in stuurgedrag tussen verschillende configuraties te kunnen detecteren. Hier
worden zowel frequentiedomein- (bijvoorbeeld de Fourier Coëfficiënten Methode) als
tijdsdomein-identificatietechnieken (bijvoorbeeld de Maximum Likelihood Estimation)
toegepast. De vijfde stap bestaat uit het toepassen van gangbare RPC detectietechnie-
ken, dwz. Realtime Oscillation Verifier (ROVER) en Phase Aggression Criteria (PAC), om
de geïdentificeerde aanpassingen in stuurgedrag te kunnen correleren met het neigen
naar de ontwikkeling van een RPC.

Om de toepasbaarheid van de MCIM te testen zijn twee voorbereidende identifica-
tie experimenten ontworpen, uitgevoerd en geanalyseerd. Bij deze eerste experimen-
ten is de moeilijkheid van de taak niet gevarieerd en lag de focus op het meten van
stuurgedragsveranderingen als gevolg van toegevoegde tijdsvertraging in het rotorcraft-
model. Het eerste experiment is uitgevoerd in de SIMONA Research Simulator (SRS) van
de TU Delft en instrueerde test-vliegers om een verstoringstaak om de rol-as van een
rotorcraft-model uit te voeren. Naast het variëren van de toegevoegde tijdsvertraging
werd in dit experiment ook de gevoeligheid van het stuurorgaan (d.w.z. de “laterale cy-
clic” van een rotorcraft) verdubbeld. De identificatieresultaten toonden aan dat vliegers
simpelweg hun eigen stuurversterkingfactor aanpassen aan de verhoogde gevoeligheid
van het stuurorgaan, terwijl de andere geïdentificeerde stuurparameters geen merkbare
verschillen tussen condities met dezelfde toegevoegde tijdsvertraging lieten zien. De
verschillende instellingen van de tijdsvertraging lieten een duidelijke verlaging van de
crossover-frequentie zien bij een verhoogde toegevoegde tijdsvertraging. De geïdentifi-
ceerde stuurparameters lieten verder zien dat de visuele versterkingsfactor van de vlie-
gers en de natuurlijke frequentie van hun neuromusculaire systeem waren afgenomen,
terwijl door de vliegers meer “lead”-compensatie werd toegepast.

Het tweede voorbereidende experiment is uitgevoerd in de HeliFlight Helicopter Si-
mulator (HHS) van de University of Liverpool (UoL). In dit experiment bestuurden vlie-
gers de dwars-as (pitch) van een rotorcraft-model met drie waardes van toegevoegde
tijdsvertraging: geen, een gematigde en een hoge toegevoegde vertraging. Bij het toe-
voegen van een gematigde tijdsvertraging werd geen crossover-regressie waargenomen,
maar de hoge toegevoegde tijdsvertraging resulteerde duidelijk in een regressie in het
stuurgedrag. De geïdentificeerde stuurparameters lieten zien dat met toenemende toe-
gevoegde tijdvertraging de vliegers ook in dit experiment een lagere visuele versterkings-
factor, een lagere natuurlijke frequentie van hun neuromusculaire systeem en een ver-
hoging van hun “lead”-compensatie verkozen. In beide voorbereidende experimenten
bevestigden de binnen MCIM gebruikte RPC detectietechnieken (d.w.z., ROVER en PAC)
de hogere ontvankelijkheid voor RPC bij condities met toegevoegde tijdsvertraging. Bo-
vendien lieten deze RPC detectietechnieken ook de kenmerkende effecten van de ‘back-
off’-stuurstrategie die door vliegers bij hoge tijdsvertraging werd toegepast zien: de ont-
wikkeling richting verhoogde RPC gevoeligheid die zichtbaar was tussen condities zon-
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der en met een gematigde tijdsvertraging werd niet doorgezet voor de hoogste toege-
voegde vertraging, waarbij de vliegers crossover-regressie toepasten. Deze voorberei-
dende experimenten bewezen de toepasbaarheid van de MCIM en lieten verder zien dat
zelfs alleen toegevoegde tijdsvertraging al tot crossover-regressie kan leiden en dat de
onderliggende RPC-gevoeligheid met succes gekarakteriseerd wordt door de MCIM.

Op basis van de met de MCIM behaalde resultaten uit de twee voorbereidende ex-
perimenten is vervolgens een computersimulatie-studie uitgevoerd. Het doel van deze
computersimulaties was om te onderzoeken hoe vliegers hun stuurgedrag mogelijk aan-
passen aan variaties in zowel toegevoegde tijdsvertraging als de moeilijkheid van de taak,
om telkens toch tot het optimale niveau van stuurprecisie te komen. In overeenkomst
met de MCIM, was het ontwikkelde simulatieprogramma opgezet als een compensatory
stuurtaak waarin een vliegermodel in gesloten lus een rotorcraft-model bestuurde als
het Controlled Element (CE, “bestuurde element”). In de simulaties waren de parame-
ters die natuurlijke stuurgedragsbeperkingen modelleren (d.w.z., de tijdsvertraging van
de vlieger en neuromusculaire systeemdynamica) constant gehouden, terwijl de twee
parameters die de compensatie van de vlieger voor een bepaald CE beschrijven (d.w.z.,
de visuele versterkingsfactor en de “lead” tijdsconstante) vrij werden gevarieerd. De
niet-lineaire deel (“remnant”) van het vlieger stuurgedrag werd ofwel verwaarloosd of
toegevoegd aan het gesimuleerde vlieger stuursignaal in twee verschillende gekozen in-
stellingen voor de simulaties. Om de moeilijkheidsgraad van de taak te variëren werden
in de simulaties verstoringssignalen op het CE met hoge en lage bandbreedte getest. De
computersimulaties lieten zien dat om met oplopende tijdsvertraging nog steeds opti-
male prestaties te bereiken vliegers een lagere visuele versterkingsfactor en een hogere
“lead” tijdsconstante moeten aannemen en dat dit effect vrijwel onafhankelijk is van de
moeilijkheid van de taak, d.w.z., de bandbreedte van het toegepaste verstoringssignaal.

De voorspelde stuurgedragsaanpassingen uit de computersimulaties komen erg goed
overeen met de experimentele resultaten verkregen voor echte vliegers uit de voorberei-
dende simulatorexperimenten. Bovendien voorspellen de simulaties voor zowel toege-
voegde tijdsvertraging als verhoogde moeilijkheid van de taak het optreden van crossover-
regressie. Ondanks het goed voorspellen van relatieve veranderingen werd ook duide-
lijk dat de meetgegevens uit de voorbereidende experimenten iets grotere stuurfouten
lieten zien dan de simulaties, met hogere visuele versterkingsfactoren en lagere “lead”-
tijdscontanten dan wat zou leiden tot optimale prestaties. Met andere woorden, ‘echte’
vliegers passen aanzienlijk minder “lead”-compensatie toe dan voorspeld door het si-
mulatiemodel dat optimale prestaties nastreeft. Dit resultaat is consistent met een be-
kend probleem met de ‘papieren’ vlieger modellen die vaak worden toegepast in onder-
zoek naar besturingseigenschappen, namelijk dat de gestelde randvoorwaarden (d.w.z.,
het selecteren van de instelling die leidt tot de theoretisch minimale volgfout in de simu-
latiestudie) kunnen afwijken van de voorwaarden die het gedrag van echte vliegers bepa-
len. Om deze reden is volgend op de simulatiestudie een laatste identificatie-experiment
uitgevoerd, waarbij de volledige MCIM in de praktijk is toegepast.

Het MCIM experiment werd uitgevoerd in de SRS aan de TU Delft met negen deelne-
mers, die werden onderworpen aan negen verschillende combinaties van toegevoegde
tijdsvertraging (d.w.z., geen, gemiddeld of hoog) en moeilijkheidsniveau (d.w.z., mak-
kelijk, gemiddeld of moeilijk). Het raamwerk van de MCIM volgend, werd de moeilijk-
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heid van de taak gevarieerd met verschillende bandbreedtes voor het toegepaste ver-
storingssignaal en werd de toegevoegde vertraging geïmplementeerd als een vertraging
in het CE. Geïdentificeerde stuurgedragsparameters lieten zien dat de aanpassingen in
het toegepaste handmatige stuurgedrag over de verschillende taakconfiguraties het best
zichtbaar waren in de visuele versterkingsfactor en de “lead”-tijdscontante. Een herken-
bare discontinuïteit in de trends van afnemende visuele versterkingsfactor en een toene-
mende “lead”-tijdscontante kenmerkten de meest karakteristieke aanpassing in stuur-
gedrag over de verschillende experimentele condities. Bovendien liet het verloop van de
crossover-frequentie drie duidelijke gevallen van crossover-regressie zien: de ‘klassieke’
crossover-regressie die optreedt bij hoge moeilijkheidsniveaus van de stuurtaak en twee
voorbeelden van crossover-regressie door de extra tijdvertraging.

De meest interessante instantie van crossover-regressie vond plaats tijdens de taak
van het gemiddelde moeilijkheidsniveau, tussen de gemiddelde en hoge toegevoegde
tijdsvertragingscondities. Tussen deze twee condities lieten de identificatieresultaten
een duidelijke verlaging van de visuele versterkingsfactor en een toename in “lead”-
compensatie zien, waarmee de proefpersonen de open-lus crossover-frequentie merk-
baar omlaag brachten. Deze gedragsverandering is kenmerkend voor de eerder genoem-
de ‘back-off’ stuurstrategie, waarbij menselijke bestuurders vermijden om echt strak te
sturen vanwege de beperkte stabiliteit van het PVS. De bijbehorende fasemarges lieten
ook een duidelijke afwijking zien bij dezelfde conditie. Bovendien nam ook de gemeten
RPC-gevoeligheid van het rotorcraft-model duidelijk toe tussen de condities met geen
en gemiddelde toegevoegde tijdsvertraging. Verdere toename in tijdsvertraging (d.w.z.,
de conditie met hoge tijdsvertragingsinstelling) leidde echter tot een vermindering van
de RPC-gevoeligheid. Dus, met deze ‘back-off’ strategie kiezen menselijke bestuurders
ervoor om in dit soort kritieke gevallen de verdere toename in de RPC-gevoeligheid van
het PVS te voorkomen.

Reflecterend op het doel van dit proefschrift, heeft de MCIM in de uitgevoerde stu-
dies laten zien het vermogen te hebben om configuraties waarin de besturingseigen-
schappen en de RPC-gevoeligheid van een rotorcraft herkenbaar afwijken met succes
te detecteren, door te werken met objectief bepaalde metrieken zoals geïdentificeerde
stuurgedragsparameters. Het is dus mogelijk om met deze methode de combinaties van
toegevoegde tijdsvertraging en taakmoeilijkheid te bepalen die zullen resulteren in een
merkbare verandering van de besturingseigenschappen en de gevoeligheid voor RPC.
Deze objectieve aanpak zou nu in een eerder stadium van het rotorcraft-ontwerp kun-
nen worden toegepast om de voor het voertuig geldende beperkingen wat betreft tijd-
vertraging en taakmoeilijkheid objectief te bepalen, zonder dat daar subjectieve beoor-
delingen of een beperkte ‘papieren’ vlieger studies voor nodig zijn.

Vanwege het gebruik van Lineaire Tijds-Invariante (LTI) stuurgedragsanalyse is de
MCIM niet toepasbaar op scenario’s met sterke niet-lineariteiten, zoals een instantane
overgang van een stabiele toestand naar een volledig ontwikkelde RPC. Dit beperkt de
toepasbaarheid van de MCIM tot analyse van situaties voor en na een echte RPC-gebeur-
tenis. Het uitbreiden van de MCIM met Lineare Tijds-Variërende (LTV) analysetechnie-
ken (d.w.z., LTV vliegeridentificatie) zou het expliciet onderzoeken van de overgangscon-
dities rond een RPC-gebeurtenis mogelijk maken. Een tweede aspect van de MCIM dat
verder moet worden uitgebouwd is de stuurtaak, die in de ontwikkelde MCIM beperkt
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is tot het besturen van een enkele graad van vrijheid van het voertuig. Hoewel voor een
dergelijke taak de analyse van het stuurgedrag eenvoudig is, is uitbreiding naar taken
waar meerdere assen gelijktijdig worden bestuurd erg belangrijk, aangezien vooral ook
bij rotorcraft in werkelijkheid altijd besturing op meerdere assen wordt uitgevoerd. Als
laatste kan ook het toevoegen van de fysieke voertuigbeweging aan de MCIM taak leiden
tot verbeterde toepasbaarheid op meer realistische taken en helpen bij het onderzoeken
van het handmatige stuurgedrag van vliegers rond een RPC in aanwezigheid van fysieke
bewegingsterugkoppeling.
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1
INTRODUCTION

1.1. HANDLING QUALITIES AND ADVERSE ROTORCRAFT PILOT

COUPLINGS
Safety aspects of any flying machine consume an immense amount of effort and budget
in aircraft development programs 23. With increased aviation activity in the last cen-
tury, safety aspects have been integrated into the aircraft development programs start-
ing from the initial design to the final operational phase of the vehicle 58. Although there
has been extensive technological development in safety-aid tools, such as ground colli-
sion detection devices and fault-tolerant flight control systems 141, flight safety remains
a crucial issue in commercial and military vehicle certifications, regulations, flight test
programs and regular operations 85.

In general, helicopters possess a high risk of flight safety due to complexity of the
rotorcraft system. For instance, the main rotor of the rotorcraft is responsible of both
propulsion and directional control of the vehicle, and any malfunction in the main rotor
potentially creates a dangerous situation. In addition to the complex aerodynamic en-
vironment created by both main and tail rotors, nap-of-the-earth flying mission profiles
also contribute to the flight safety risks of rotorcraft 29. Such flight safety risks have been
addressed by safety regulation authorities and institutions. For example, the consortium
of the International Helicopter Safety Team (IHST) has set a challenging goal of reducing
the civil helicopter accident rate by 80% between 2006 and 2016 86. Although this goal
was not completely achieved, the accident rate in key regions has decreased within a
range of 40% to 60%, while the worldwide civil helicopter fleet has grown by 30% and the
number of accidents has decreased up to 50% 1. Despite the encouraging worldwide ef-
forts, which have resulted in international flight safety interventions (e.g., safety toolkits
for helicopter operators 137), there is still a demand for improved helicopter flight safety 1.

1
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Accident investigation reports of safety regulation and inspection authorities, such
as IHST, show that pilot loss of control is, similar to fixed-wing aircraft, the most pro-
nounced factor that threatens helicopter safety 137,138. There are numerous reasons for
the loss of pilot control, such as inappropriate piloting techniques and rotorcraft mal-
functions. Undoubtedly, the response characteristics of rotorcraft play a vital role in
flight safety prospects. The interaction between the pilot control and the vehicle re-
sponse is the essence of a broad and challenging research field in both fixed-wing and
rotorcraft: Handling Qualities (HQ).

The common definition of HQ provided by Cooper and Harper 19 is as follows; “Han-
dling qualities are those qualities or characteristics of an aircraft that govern the ease and
precision with which a pilot is able to perform the tasks required in support of an aircraft
role (p.6)”. Considering this definition, which is also applicable to rotorcraft, deficiencies
in HQ can potentially expose safety issues and require careful considerations.

1.1.1. ROTORCRAFT PILOT COUPLINGS
Among many possible HQ deficiencies threatening flight safety, one particular persis-
tent and hazardous phenomenon has been troubling pilots, designers and flight pro-
gram managers: Aircraft / Rotorcraft Pilot Couplings (A/RPC) formerly referred as Pilot
Induced Oscillations (PIO). Briefly, A/RPC are ‘unintended’ and ‘unfavourable’ interac-
tions between the pilot and the vehicle under control, and this phenomenon has been
occurring since the first powered flight of mankind 85.

As an example inside a cockpit, a pilot comment in such an A/RPC event was 22 “...
the airplane had never done anything like that before. It surprised me, it really shocked
me... I thought something had broken and I didn’t see any warning lights (p. 53)”. An-
other example, a FedEx MD-11 experienced a PIO event while climbing out of Newark,
New Jersey on 25th of November 2000 106. The first officer was manually flying and at
a certain altitude the aircraft began to pitch up and down at a fast rate. The PIO con-
tinued until the autopilot was engaged. Post event analysis found a fault in one of the
electronically-controlled hydraulic actuators that essentially gave the Stability Augmen-
tation System (SAS) more authority than it was designed to have, leading to the unde-
sired and unintended oscillations 106.

Another example is the low frequency lateral A/RPC encountered during flight ex-
periments of the prototype tilt-rotor V-22 Osprey, which led to a ground collision 110 as
shown in Figure 1.1.

When compared to aircraft, rotorcraft are more prone to A/RPC due to their com-
plexity which arises safety critical concerns, starting from the design phase 115. For ex-
ample, when a rotorcraft pilot exerts a control input during a manoeuvre, the main rotor
responds to this control input and changes its orientation. During this transition of ori-
entation, a time delay between the pilot control and vehicle response may occur, when
combined with gyroscopic effects on the main rotor. In addition to this time delay, soft-
ware delays and filter lags may contribute to high values of ‘effective’ time delay which
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Figure 1.1: Crash of the prototype V-22 Osprey in 1991 during its initial test flight, pictures are taken from
Ref. 73.

can be up to 250ms 134. It is worth mentioning that this amount of time delay is consid-
erably higher when compared to typical delay values of fixed-wing aircraft. Moreover,
the time delay is also known to be a trigger for RPC, such that a pilot may get into out-of-
phase control with the vehicle response. For example, Ockier 108 investigated the effects
of added time delay during a slalom-tracking task with an in-flight simulator rotorcraft
(Bo-105 of German Aerospace Center (DLR)). Figure 1.2 illustrates a pronounced RPC
situation observed in the mentioned study.

As it can be seen from the results of slalom-tracking task shown in Figure 1.2-a, with
added time delay (160ms) in the roll control path (Figure 1.2-b) a RPC situation was pro-
nounced between 20 and 25 seconds (Figure 1.2-c). A peak-to-peak pilot control be-
haviour was observed in this RPC event with a sort of see-saw like time traces which are a
typical RPC symptom. In this example, combinations of the time delay and the demand-
ing task lead to a RPC event to occur. The pilot commented “... very poor HQ configura-
tion (p. 239)” for this particular flight sortie, and he perceived that the vehicle response
was out-of-phase 35. In general, poor HQ is a candidate condition for high RPC tendency,
especially when high pilot activity is required 113.

1.1.2. RPC DETECTION
Since RPC events come as a surprise to pilots, detection of an RPC event as early as pos-
sible is crucial for rotorcraft safety. Several RPC tools have been developed and recog-
nized by the aviation community to reveal the incipience and continuation of a potan-
tial RPC event. These detection tools solely use real-time flight test data, and they in-
herently aim to capture the out-of-phase control behaviour as early as possible. Then,
any installed A/RPC suppression device in the cockpit activates, or the pilot in control is
informed about the detected event. How to compensate for the A/RPC after detection
depends on the integrated tool, or the pilot’s technique within the specific task condi-
tions 85,92.
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(a) 

(b) 

(c) 

 
 
 

Trigger 

Figure 1.2: The slalom-tracking task (a), the added time delay to the pilot control manipulator (b) and time
trace of a pronounced RPC , adapted from Ref. 35.

In principle, RPC detection tools aim to find peak pilot control inputs, and corre-
sponding vehicle responses, and estimate the time difference between these two. Then,
while running real-time during the flight, they evaluate the pilot control activity, vehicle
response, severity of the delay and frequency of possible out-of-phase candidates. Two
different RPC detection tools, Realtime Oscillation Verifier (ROVER) 88 and Phase Aggres-
sion Criteria (PAC) 52 will be applied in this thesis as offline analysis tools to determine
the RPC tendency. Details of these RPC detection tools will be covered in the methodol-
ogy chapter (i.e., Chapter 3 of this thesis). It must be noted that these detection tools only
function between input and output of the vehicle, and do not contain any information
about the pilot’s control strategy.

1.1.3. ELEMENTS OF A RPC
There are four main elements in a typical RPC event 85: the pilot, the vehicle, the task and
the trigger. In an RPC scenario, the pilot should be controlling the vehicle in a demand-
ing task, and the trigger should initiate a RPC event. The four elements of an RPC event
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and their interactions are shown in Figure 1.3. Simulation and analysis of all elements
shown in Figure 1.3 are important to understand the necessary dynamics behind a pos-
sible RPC event. The roles of the four elements can be summarized as:

• The trigger: Initiation of the RPC event.

• The vehicle: Flight dynamics response of the rotorcraft.

• The task: The operational conditions that unmask the HQ deficiency/RPC ten-
dency.

• The pilot: Closing the control loop to achieve required performance and stability.

PILOT

VEHICLE

TRIGGER

 TASK 

PILOT

TRIGGER

VEHICLE

Figure 1.3: Four necessary elements of an RPC event.

1 Trigger as an RPC element
Triggers are the factors that induce the A/RPC condition during a flying task contain-
ing a vehicle and a pilot in command. The primary effect of a trigger is unmasking the
RPC potential of the PVS in a flying task. Triggers could be a sudden change in the vehi-
cle dynamics, a hidden HQ deficiency that could be apparent in a demanding task or a
change in the task. In all situations, they have the surprise effect on pilots such that they
generally comment on an ‘unexpected’ response of the vehicle 22.

The linearity of the trigger defines three categories of RPC. CAT I is the linear RPC
which can be triggered by excessive lags, e.g., time delay. CAT II is the semi-linear RPC
which can be initiated by rate-limiting in the control actuator. CAT III is the nonlinear
RPC that can be triggered by a nonlinear element in the rotorcraft system, such as mode
shifts in the flight director software 85. Only the CAT I category RPC will be investigated
in this thesis.

2 Vehicle as an RPC element
Primarily, the design of the vehicle determines its capability to perform a flying task. In
principle, HQ aspects of the vehicle reflect this capability. If HQ deficiencies accumulate
during a demanding rotorcraft task, it could quickly lead to a catastrophic danger to the
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flight crew and the rotorcraft. Thus, understanding the vehicle HQ is crucial for prevent-
ing such occurrences.

In the rotorcraft community, the ADS-33 is the most widely used HQ qualifications.
ADS-33 was used in the design stages of some recent rotorcraft development programs,
such as the RAH-66 and NH-90 helicopters 112. ADS-33 utilizes different flight tasks, so-
called Mission Task Element (MTE), with predefined task performance boundaries. Per
each task, HQ charts show designated HQ by applying certain criteria. For example, like
for the fixed-wing aircraft, one of the most widely used ADS-33 criteria is the Bandwidth
Phase Delay (BPD). BPD is calculated by the response dynamics of the vehicle in the fre-
quency domain. Basically, BPD determines two parameters of the vehicle model. First,
the frequency at which the vehicle has sufficient stability to perform a selected MTE.
Second, the available phase of the vehicle response at this frequency which is necessary
to maintain the stability. BPD can be used to predict HQ of a rotorcraft if the frequency
response is known or estimated during the design. Thus, a degradation in BPD crite-
ria (i.e., a change in the vehicle dynamic response) may indicate an HQ deficiency and
RPC proneness.

3 Task as a RPC element
Task is the element which keeps the pilot and the vehicle ‘busy’. Demanding rotorcraft
flying tasks possess a potential to drive the PVS into a dangerous instability 111. For ex-
ample, a landing task on a helipad of a moving ship deck is a demanding task, and an
additional gusty weather with lower visibility could drastically increase the RPC prob-
ability. If the vehicle has some HQ deficiencies, such a demanding task may unmask
the unfavourable HQ characteristics which could be hidden during regular operations.
Thus, the task difficulty can be considered as the operational template to bring the PVS
into its performance and stability limit.

When the task difficulty is changed, pilots can exhibit different control strategies
while flying an MTE. For example, in the Aircraft and Rotorcraft Pilot Couplings – Tools
and Techniques for Alleviation and Detection (ARISTOTEL) project 115 (a seventh frame-
work European Union project dedicated to RPC research by using flight simulators), pi-
lots exhibited different control strategies when the precision hover MTE of ADS-33 was
changed with a more demanding task setup. With increased task difficulty, HQ deficien-
cies and RPC tendency of the rotorcraft became more pronounced, and pilots adjusted
their control strategies accordingly.

4 Pilot as a RPC element
HQ and RPC assessments include two conventional methods to approach the pilot com-
ponent of a PVS. These methods are the subjective pilot ratings and the mathematical
pilot model considerations.

I. Subjective Pilot Ratings
Coherent to ADS-33 standards, the most common practice in HQ assessments is using
subjective pilot ratings, such as Cooper-Harper Handling Qualities Ratings (HQR) 19 for
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HQ and Pilot Induced Oscillations Ratings (PIOR) 136 for PIO. Subjective ratings require
pilots to assess the HQ of a flight test vehicle or a simulation model after completing
a predefined task. Pilots award HQR and/or PIOR depending on how well the require-
ments of the task are met with the corresponding pilot workload. In principle, a ro-
torcraft with good HQ is awarded level-1, which reflects that the task at hand can be
completed with a predefined desired performance with minimal pilot compensation. A
level-2 HQ implies that the task can be completed just with adequate performance with
great amount of pilot workload. At this level, HQ deficiencies warrant improvements.
Finally, a level-3 HQ shows that there are major HQ deficiencies and the pilot can not
attain adequate performance or need to apply intense pilot compensation or even aban-
don the task. Similarly, the PIOR indicates how much undesired oscillatory behaviour is
experienced during the evaluation task. The higher the subjective ratings, the worse the
RPC tendency.

Although using the subjective pilot ratings is a direct approach to assess the HQ of a
rotorcraft, there are some drawbacks of this method. First, this evaluation is mainly ap-
plied at later stages of the design, such that there is already a prototype vehicle or a high
fidelity simulation model. Bringing HQ considerations into the earlier stages of the ro-
torcraft design has been a quest for many researchers 111. If the rotorcraft is almost final-
ized with the complete design, and then if HQ are not awarded good enough, this would
lead to additional budget cost and efforts to find a remedy and redesign the vehicle. An-
other drawback of using HQR is the need of proper training of the pilots to interpret the
HQ evaluation tests. This kind of training requires specialized skills and experience to
properly point out the possible HQ deficiency of the test vehicle 32. As a result, only few
pilots are available for such dedicated HQ experiments. Consequently, obtained results
are generally statistically poor due to the limited number of participants. Related to this
condition, another drawback is the variability of the HQR due to pilot subjectivity. This
subjectivity issue has been reported in several test programs and flight simulator cam-
paigns. For example, Mitchell 87 provides examples of a wide spread of pilot ratings for
the same vehicle models with the same flight conditions, while conducting an RPC study.

II. Mathematical Pilot Model Considerations
Considering the critical role of the pilot in the HQ concept, several HQ criteria aim to
model the pilot control behaviour mathematically for offline HQ predictions. Not only
the vehicle response characteristics, but also mathematical pilot models are explicitly
included in such HQ criteria. Two well-known HQ criteria using mathematical pilot
models are the Neal-Smith 103 and the Handling Qualities Sensitivity Function (HQSF)
criteria 39. The Neal-Smith criterion assumes a simple pilot model to represent the pilot
control behaviour. This simple pilot model (so-called ‘paper’ pilot 66) is used in con-
junction with the vehicle model and the HQ of the vehicle is determined according to
the calculated PVS parameters. The Neal-Smith criterion have been mainly utilized for
fixed-wing aircraft 25,94. The HQSF contains a similar approach to model the pilot but
uses a more sophisticated pilot model. For example, the pilot neuromuscular dynamics
are included in pilot model of the HQSF criteria 39.



1

8 1. INTRODUCTION

Mathematical pilot models used in HQ criteria are theoretical models which contain
general descriptions of the pilot with constrained parameters or adjusted settings. For
example, the Neal-Smith criteria consider the pilot compensation at a predefined band-
width frequency, and the HQSF assumes a constant crossover frequency and a constant
neuromuscular setting of the pilot model. These kind of pilot models can be considered
as adjustable controllers to achieve a predefined stability and performance of the PVS in
a designed task.

Despite the pronounced simple and predictive form of mathematical pilot models
of the Neal-Smith and HQSF criteria, representing an actual manual control strategy of
a pilot requires a closer look. The next section will describe the overall pilot modeling
concept in more details.

1.2. A CLOSER LOOK AT PILOT MODELING
Even at the later stages of the design phase, a simulation model of the vehicle can be
available to be elaborated by engineering methods. However, human pilots are not de-
signed to be vehicle controllers from birth. As a result, mathematically modeling a hu-
man pilot, who could be considered to be a superior controller with a complicated sys-
tem of sensors, information processing, decision making and adaptive controlling, is an
almost impossible task when considering the physiological and psychological complex-
ities as well 39.

Despite this naturally highly non-linear human control behaviour, it has been delin-
eated in the literature that pilots establish so-called ‘behavioural control laws’ in order to
achieve a good (or adequate) performance with a given vehicle dynamics during a cer-
tain control task 80. These behavioural control laws benefits from quasi-linear describing
function theory 80, which models the non-linear human control behaviour with a dom-
inant linear part and a remaining non-linear counterpart which can not be captured by
linear modeling techniques.

McRuer and Jex 80 defined several quasi-linear manual control behaviour models de-
pending on the displayed information to the human operator. One of the most widely
used models is obtained in the compensatory task, during which human operators only
respond to the displayed error between the commanded reference signal and the current
state of the vehicle response. A single axis compensatory task is illustrated in Figure 1.4.

As illustrated in Figure 1.4, a designed input signal, which is the target signal in this
example, excites the closed-loop system. Then, the displayed error between this signal
and the vehicle response causes the human operator to apply control inputs which result
in a vehicle response. The input signal, which excites the closed-loop system, is called
the forcing function which directly affects the task difficulty by its power spectrum. For
example, when a multi-sine forcing function is used, powered frequencies of each sine
signal define the Power Spectral Density (PSD) of this forcing function. Some human
identification techniques, e.g., methods based on Fourier Coefficients 140, use these fre-
quencies to identify the linear human operator control behaviour (Hp ( jω) in Figure 1.4).
However, these techniques require low remnant levels, as high remnant indicates signs
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Figure 1.4: Schematic representation of a compensatory task. The human operator is modelled as the sum-
mation of the linear behaviour (Hp ( jω)) and the remnant (n), which represents the non-linear control antic-
ipation. The CE is represented by the linear rotorcraft dynamics which are shown as HC E ( jω). Adapted from
Refs. 26, 81, 83

of non-linearities and randomness in the control behaviour.

In order to obtain a mathematical control model of a human operator with mini-
mized remnant during a compensatory task, an identification experiment is required.
During such an experiment, data of the displayed error and the resulting pilot control
anticipation (input and output of Hp ( jω) in Figure 1.4) are measured and processed.
Various identification methods can be applied to the measured data. For example, the
Fourier Coefficients 140 is a non-parametric frequency-domain identification technique,
and the Maximum Likelihood Estimation (MLE) 57 is a parametric time-domain identifi-
cation method. These methods will be discussed in detail in the next chapter.

By using the measured data, the result of a manual control identification process is a
mathematical expression of a pilot model with parameters representing pilot compen-
sation such as the pilot visual gain or the neuromuscular system. With all parameters
combined, the identified pilot model aims to describe the relation between the input to
the pilot, e.g., the displayed error, and the corresponding pilot input, e.g., cyclic manip-
ulator input. By using this identified model, one can investigate the control behaviour
changes between varied conditions and correlate these conditions with the change of
pilot parameters.

In this identification context, the open-loop response of the combined human op-
erator and the vehicle dynamics (Hp ( jω)*HC E ( jω) in Figure 1.4 ) can be used to anal-
yse the stability of the PVS. One important feature of this open-loop response is the
frequency region around the crossover frequency, where the open-loop amplitude re-
sponse is 1 (or 0 dB). The system stability is determined by the open-loop characteristics
near this crossover frequency. Moreover, the nature of the open-loop system near the
crossover frequency determines the closed-loop modes and response 83.
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1.3. THE SCIENTIFIC GAP AND THE UNIQUE APPROACH
McRuer et al. 80 found out that on certain conditions, a high power in the forcing func-
tion (i.e., high bandwidth of the target signal in Figure 1.4) can lead pilots to regress the
crossover frequency of the open-loop PVS. This phenomenon is referred to as crossover
regression, and it shows a noticeable change in pilot control behaviour. Several stud-
ies investigated this change, e.g., Damveld 20 used the crossover regression behaviour
(achieved by changing the bandwidth of the forcing function) to assess the HQ of aeroe-
lastic aircraft models in a pursuit tracking task. This thesis is based on the same princi-
ple idea: Human operators will change their control strategies when exposed to difficult
tasks, and we can identify these changes using identification methods.

Considering the crossover regression phenomenon, McRuer and Jex 80 stated that
under certain conditions when the manual control task becomes very difficult “ ... the
pilot regresses to a low gain technique and simply ignores the high-frequency input com-
ponents (p. 238).” Similarly, for A/RPC situations, Prouty 121 describes the pilot control
strategy for RPC prone conditions as: “To avoid PIO, the pilot must ’back off ’ and operate
at lower frequency-one that might not produce the precision he would like for compen-
sating for turbulence or for tracking an enemy aircraft (p. 350).” It can be seen that both
crossover regression and RPC prone conditions suggest that human controllers try to
limit their control anticipation to avoid unfavourable task conditions. Mainly, crossover
regression studies focus on task difficulty, i.e., forcing function bandwith, and HQ defi-
ciency studies include vehicle originated instabilities, e.g., added time delay.

Subjective HQ rating studies of Smith et al. 5 with fixed-wing aircraft showed that the
combination of the trigger and the task difficulty lead to different results than their in-
dividual effects. Awarded HQR indicated a quicker degradation of HQ with added time
delay when the task is more demanding. One of the drawbacks of this study was that
it used subjective ratings which were prone to being scattered, i.e., the same condition
was awarded good and poor HQ by different pilots, during demanding tasks 87. Another
drawback was the determination of task difficulty, such that depending on the landing
task in their study, task difficulties were arranged as ‘high’ and ‘low’ stress, which were
not quantified measures 47,120.

Changing both the added time delay and the task difficulty could reveal the HQ de-
ficiencies and the RPC tendency of the rotorcraft around a boundary which depends
on both contributors. Current HQ assessments have not been used to objectively de-
termine such boundary conditions formed by both task difficulty and added time de-
lay. Regardless of such a demanding condition, limitations in theoretical pilot models in
HQ criteria and pilot evaluations with possible subjectivity issues are known to be some
of the drawbacks of current HQ assessment methods. For instance, the equivalent BPD
criteria of fixed-wing aircraft have boundaries for PIO susceptibility, whereas there is no
widely accepted PIO boundaries for rotorcraft yet. Moreover, Blanken et al. 13 mention
that one of the biggest issues of ADS-33 is the lack of information when the rotorcraft
becomes RPC prone in HQ charts. In addition, Padfield 111 points out that the effect of
task difficulty, i.e., task bandwidth, on HQ and RPC evaluations should be researched in
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conjunction with available methods in ADS-33.

Hence, there is a scientific gap on the objective assessment of the HQ deficiency and
RPC susceptibility of rotorcraft. The essential idea of this thesis is using identification of
manual control behaviour as an objective method to observe the changes of PVS charac-
teristics via varied manual control model parameters. This idea of combining objectivity
of the manual control behaviour identification as in crossover regression phenomenon,
with the vehicle triggered HQ deficiencies is summarized in Figure 1.5.

HQ and RPC Evaluations

    Mainly subjective (HQR, PIOR)

    Vehicle oriented (awarding vehicle response,

                             objective vehicle parameters) 

    Vehicle deficiencies

Crossover Regression

Objective

Pilot oriented 

(Pilot model identification)

Task difficulty

HQ and RPC Evaluations

     Objective

     Pilot and Vehicle oriented

     Task Difficulty and Vehicle Deficiencies

Figure 1.5: Using the crossover regression and vehicle oriented HQ deficiencies to develop a new approach to
be used objectively.

By using the manual control behaviour identification, any changes in the estimated
manual control model parameters could be studied when the PVS is subjected to a task
with varied task difficulty and added time delay. In this way, already at early stages of
the rotorcraft design an objective assessment of the HQ and RPC tendency could be ob-
tained, rather than using subjective HQR ratings that often require an already developed
flight test vehicle.

1.4. RESEARCH QUESTION AND METHODOLOGY
The main research question of this thesis can be stated as:

How can we objectively assess the HQ deficiency and RPC susceptibility of a
rotorcraft at an early design stage?

In order to answer this question, HQ deficiency and RPC susceptibility are elaborated
by changing the task difficulty and the added time delay. These conditions (individu-
ally and combined) are used in closed-loop manual control tasks that are designed to
unmask the HQ deficiency and RPC susceptibility of the PVS. When such conditions
possess HQ deficiencies and high RPC tendencies, human operators will try to adapt
their manual control strategy accordingly. Through identification of the human opera-
tors manual control behaviour, an objective assessment can be done. A methodology,
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referred to as the Manual Control Identification Method (MCIM), has been developed in
this thesis to accomplish this goal. The following steps summarize the methodology;

Step 1: Development of a rotorcraft model with the capability
to simulate the added time delay.

Step 2: Development of a forcing function design that can ex-
hibit various task difficulties by changing the forcing
function bandwidth.

Step 3: Development of a disturbance-rejection task to be used
in a manual control identification experiment cam-
paign in a simulator, such that human operators are
subjected to experiment conditions with varied combi-
nations of task difficulties and added time delays.

Step 4: Analyse the measured data gathered from the manual
control identification experiments, and compare pa-
rameters of identified human operator models and ob-
serve deviations between configurations.

Step 5: Use RPC detection tools to investigate the correlations
between the manual control behaviour changes and
RPC tendencies.

An example usage of these MCIM steps for the comparison of an identified manual
control parameter by using the MCIM experiment setup (i.e., Step 3) in two scenarios
(basis and RPC-prone) is illustrated in Figure 1.6.

I

II

Step 1 Steps 2&3 Steps 4&5

Rotorcraft

model Manual Control

Behaviour

 IdentificationPilot

Task Task

Difficulty

The MCIM Experiment

Task difficulty

II
I

Time delay
I

II

Time delay

Identified

Parameter

Identification Experiment

Rotorcraft

model

Manual Control

Behaviour

 IdentificationPilot

Task Task

Difficulty

Time Delay

The MCIM Experiment

Figure 1.6: Graphical representation of the steps of the MCIM methodology for a basis (I) and a RPC prone (II)
scenario in order to compare a sample identified manual control parameter.
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As exemplified in Figure 1.6, the ultimate output of the MCIM allows for comparing
the variation of manual control behaviour parameters (and corresponding RPC tenden-
cies) for various task difficulties and time delay combinations.

1.5. ASSUMPTIONS AND LIMITATIONS
There are some assumptions and limitations considered in this thesis, as listed below:

• Identification procedures are carried out with Linear Time Invariant (LTI) mod-
els only. Thus, any non-linearities in the experiment setup are aimed to be mini-
mized. For example, control loading systems in the identification experiments are
utilized to exhibit linear behaviour, e.g., breakout forces are discarded.

• Since LTI models have been used, only CAT. I (i.e., linear) RPC are investigated.

• Simple, but yet still usable for HQ applications, on-axis rotorcraft models are con-
sidered. High frequency response of the main rotor is simplified by added time
delay, and all cross-coupling and off-axis responses are neglected.

• Only compensatory displays, which are scaled-up attitude indicators, are used
without any out-of-the-window visual cues for identification purposes.

• There is no physical motion in the identification experiments performed in the
simulator, such that the compensatory task used in the identification experiment
campaign is only a visual task.

• Since the task is a simple compensatory task, manual control behaviour of the
non-pilot subjects is assumed to be close to professional pilot responses.

• Especially for the highly demanding task conditions, linear manual control be-
haviour is assumed to be achieved after five to six experiment runs with steady
task performance.

• This thesis does not aim to identify the manual control behaviour in a fully- devel-
oped RPC event. The main scope is to identify the manual control behaviour when
exposed to RPC-prone configurations, and investigate the corresponding manual
control adaptation to these configurations.

1.6. THESIS OUTLINE
A schematic representation of the thesis is shown in Figure 1.7. Chapter 2 provides a
comprehensive literature review of the rotorcraft HQ, correlated pilot modeling tech-
niques, listing RPC categorizations, criteria and detection tools. Chapter 3 continues
with the description of the new methodology, MCIM. All steps of the MCIM are provided
in detail in this chapter. Chapter 4 explains the preliminary identification experiments,
which mainly investigated the effects of added time delay on HQ, RPC and manual con-
trol behaviour. Both roll and pitch axes with varied rotorcraft models and added time
delay configurations are investigated in this chapter. Next, chapter 5 continues with an
offline simulation study, using the results of the preliminary identification experiments
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and introduces the effect of increased task difficulty accompanying added time delay.
Chapter 6 describes the final identification experiment campaign in which results of the
simulation study are used as a basis. The MCIM is applied such that both the task diffi-
culty and the added time delay are varied in experiment conditions. Results of the iden-
tified parameters, crossover regression tendencies and RPC susceptibility are provided.
Finally, chapter 7 concludes on the main findings of the MCIM.
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Figure 1.7: Graphical representation of the thesis.
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REVIEW: THE LINK BETWEEN

ROTORCRAFT HQ, PILOT

MODELING AND RPC

The previous chapter introduced the scientific gap on ’objective’ pilot model considera-
tions during determination of rotorcraft HQ deficiencies and RPC tendencies. In this chap-
ter, HQ and RPC aspects of rotorcraft will be discussed in more detail from the perspectives
of HQ criteria and available pilot models to describe the manual control behaviour of hu-
man operators. Particularly, effects of the task difficulty and the added time delay on HQ
and RPC susceptibility will be reviewed.

2.1. INTRODUCTION
HQ aspects of any manually controlled aerial vehicle play a fundamental role in oper-
ational safety and achievable task performance. It is worth recalling the classical HQ
definition of Cooper and Harper 19 : ’... Those qualities or characteristics of an aircraft
that govern the ease and precision with which a pilot is able to perform the tasks required
in support of an aircraft role (p. 2)’. Good HQ means that the vehicle follows pilot com-
mands as expected with a low level of workload with a good task performance. On the
other hand, bad HQ implies that the pilot needs to exert additional control effort, and yet
he/she may not be able to achieve an adequate task performance, even get into safety
critical flight conditions.

15
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There are many HQ related flight accidents in aviation history, starting with the first
flight 4 of the Wright brothers, whose 1902 glider showed a tendency to pilot induced os-
cillation in tight tracking tasks 65. Although new technologies and methodologies have
been developed to mitigate HQ deficiencies, such as complex control law implementa-
tions with adaptive capabilities 120, they also bring about new HQ issues which have not
been foreseen. Fly By Wire (FBW) systems in aerial vehicle controls are a good example.
Gibson 30 points out that new generation fly by wire aircraft has exhibited unexpected
and often extremely serious handling quality problems due to dominated computer con-
trol. Kun et al. 63 investigated the flight control law reduction in fly by wire aircraft sys-
tems and concluded that such electronic flight control systems can lead to downgraded
handling qualities, compromising effectiveness in fulfilling flight tasks. Therefore, in-
stead of increasing the complexity of the control automation by computer powered sys-
tems, understanding the basic HQ characteristics of an aerial vehicle in an early design
stage can be argued to be a proper step to achieve better flight safety.

This thesis aims to pursue the HQ deficiency issue by pilot model identification meth-
ods with a cybernetic approach, which will be discussed in the next chapter in detail.
Briefly, the variation in pilot control behaviour is hypothesized to be an indication of HQ,
and objective assessment by identified pilot model parameters is aimed to be achieved.
In this thesis, HQ deficiencies will be mainly introduced by;

• the additional time delay in the vehicle control path, and

• the variation in the task difficulty in a closed-loop task.

These two factors will be discussed in detail in this chapter. Moreover, as being a
sign of degraded HQ 49, will be reviewed as well. Furthermore, a detailed review will be
provided on the modeling of pilot control behaviour which are utilized with the HQ and
RPC criteria. This chapter will briefly summarize the state of the art in these fields as far
as these are related to the goals set out in this thesis.

The outline of this chapter is as follows. First, Section 2.2 aims to provide a review on
HQ, mainly focused on rotorcraft applications. Next, the role of the pilot in HQ studies,
and HQ oriented modeling techniques for pilot control behaviour will be reviewed in
Section 2.3. Following, Section 2.4 will describe the adverse RPC as an important exam-
ple of a HQ deficiency, and associated pilot modeling approaches with this phenomenon
will be briefly described. Next, Section 2.5 will focus on reviewing the effects of the added
time delay and the task difficulty on HQ and RPC. Finally, the conclusion section will
wrap up the reviewed aspects of the HQ and RPC.

2.2. ROTORCRAFT HANDLING QUALITIES

2.2.1. GENERAL DEFINITIONS OF HANDLING AND FLYING QUALITIES
In aviation terms, there is, and probably will continue to be, a definition debate between
HQ and flying qualities 96. Several definitions will be listed below in order to illustrate the
main differences and similarities on how the aerial vehicle community aim to describe
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handling and flying qualities.

Cooper and Harper 19 mention that their HQ definition is similar to the generally ac-
cepted meaning of flying qualities. Padfield et al. 113 highlight flying qualities as the syn-
ergy between internal and external influencing factors. Internal factors can be grouped
as the vehicle response, controls/displays settings and cockpit ergonomics, and external
factors are the MTE, the level of urgency and the external environment. Carlson 16 men-
tions that ’... Acceptable handling qualities meant good enough for the average, properly
trained individual for the nominal missions flown (p. 14).’ Phillips 117 interprets the fly-
ing qualities as the stability and control characteristics that have an important bearing
on the safety of flight and on the pilots.

According to the United States Air Force - Test Pilot School (USAF-TPS) 7: ’... Flying
qualities are the characteristics, or the dynamics, of the airplane. Handling qualities are
the characteristics, or the dynamics, of the pilot plus airplane.’ Gray 32, who provides an
extensive review on the evaluation of HQ in the USAF-TPS, mentions that ’... Handling
qualities evaluation requires some understanding of the entire closed-loop, starting with
the aircraft from forces and moments, to control systems and displays, and finishing with
the human system from perception to computation to action (p. 5).’

Cook 17 defines flying qualities as ’... The pilot’s perception of flying qualities is consid-
ered to comprise a qualitative description of how well the aeroplane carries out the com-
manded task. The pilot’s perception of handling qualities is considered a qualitative de-
scription of the adequacy of the short-term dynamic response to controls in the execution
of the flight task (p. 3)’. On the other hand, Key 4 has a different definitions as phrased
by Padfield 112 ’... the flying qualities are the vehicle stability, control and maneuvering
characteristics, and the handling qualities are the combination of these and the mission
task, the visual cues and atmospheric environment (p. 3).’

It can be seen from these definitions of handling and flying qualities, that the ma-
jority of the definitions include two common core elements: the vehicle response and
inherently the pilot. Differences between definitions mainly arise from the involvement
of the task. For example, this difference can easily be noticed between definitions of
Cook 17 and Key 4, as illustrated in Figure 2.1.

The task element in Figure 2.1 is responsible for representing the required perfor-
mance, definitions and limitations of the flying mission and sometimes the environmen-
tal conditions.

In this thesis, the flying task will defined as a disturbance-rejection task. A disturbance-
rejection task demands human operators to keep a state of the vehicle as steady as pos-
sible under disturbance conditions, e.g., keeping a helicopter in hover during a gusty
weather. In this example, the task difficulty can be considered as the severity of the gust.
The concepts of disturbance-rejection tasks and the task difficulty will be discussed in
more detail in the next chapter.
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VehiclePilot Task

Flying Qualities [Cook 17]

Handling Qualities [Cook 17]

Flying Qualities [Key 4]

Handling Qualities [Key 4]

Figure 2.1: Differences between handling and flying qualities definitions. Adapted and simplified from Ref. [17]
and Ref. [4].

Throughout this thesis, the term HQ will be used, without any intention to interfere
with previous definitions and concepts of HQ and flying qualities, but rather to keep the
consistency within the content of the thesis. Detailed historical reviews on HQ and flying
qualities can be found in Refs. [96, 117].

2.2.2. ADS-33 FOR THE ROTORCRAFT HQ
EVOLUTION OF ADS-33
Rotorcraft inherently pose significant HQ challenges, due to their multi-axis and cross-
coupled control structure, complex main and sub-systems, aerodynamically idiosyn-
cratic environment, and generally demanding operation envelopes with great variabil-
ity. Hoh 44 mentions that ’... Helicopter pilots have historically been willing to put up
with considerably more degraded handling qualities than have fixed wing pilots (p. 6).’
Considering the complexity of a rotorcraft within an operational flying role, HQ charac-
teristics are, not surprisingly, one of the most important concerns from the beginning
of rotorcraft history. Despite this, rotorcraft HQ evaluations were mainly considered in
military applications, which can be arguably generalized to be more related to the task
performance slightly more than the safety 111. With the rising demands on the com-
plex mission profiles for rotorcraft, more civil and military fixed-wing HQ considerations
were applied to rotorcraft. Carlson 16 provides a descriptive time line for critical improve-
ments in HQ evaluation for rotorcraft flight dynamics and simulation developments, as
summarized in Figure 2.2.

As it can be observed from Figure 2.2, the evolution of rotorcraft HQ consideration is
coupled with the developments of the control and stability methods, in-flight or ground
simulation, a large number of flight tests and corresponding research efforts. Padfield
provides an extensive historical review on the evolution of the rotorcraft HQ in Ref. [112].

As depicted in Figure 2.2, the current rotorcraft HQ standard is the ADS-33, with the
latest version ADS-33E-PRF, published in 2000 6. ADS-33 was a remarkable improvement
in HQ assessment philosophies, such that for the first time specific tasks (i.e., Mission
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Figure 2.2: Timeline of rotorcraft handling qualities, adapted from Ref.16.

Task Element MTEs) were introduced to evaluate the HQ characteristics of rotorcraft for
agility. Mitchell et al. 96 states the innovative attributes of ADS-33 as follows:

• Empirical methodology to describe the quality of visual cues.

• Specialized MTE for each helicopter category.

• Detailed descriptions of MTE for industry and evaluation pilots.

• Stabilization requirements that are graded according to visual environment.

• Control and maneuvering requirements that depend on the applicable MTE.

• New parameters to specify the short-term response to control (e.g., bandwidth).

• New parameters for large-amplitude control power (e.g., attitude quickness).

• New parameters for cross-coupling characteristics during aggressive manoeuvres.

• Incorporation of the tailoring process into the overall ADS-33 structure.

Throughout the years of ADS-33 development and application, many research insti-
tutes and rotorcraft industry partners aimed to validate and extend the usage of ADS-33
into their specific needs and new design programs. For example, Hoh and Heffley 48 used
the ADS-33 to include slung load operations for HQ evaluations, and Mitchell et al. 97 in-
vestigated HQ in helicopter-ship operations. The NH-90 (shown in Figure 2.3) is one of
the helicopters which had an extensive usage of ADS-33 during its design phase.
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Figure 2.3: The NH-90 helicopter (Source: http://www.airforce-technology.com/projects/nh90-nfh-asw).

Considering the development of the NH-90 helicopter (Figure 2.3), Bellera and Varra 10

mentioned that ’... The solution was a very rigorous development methodology based on
ADS-33 approach and innovative design choices. For the first time in the world a heli-
copter was designed and qualified with the most demanding Handling Qualities military
standards, ADS-33 (p. 8)’ Several aspects that contributed to the success of ADS-33 can
be listed as 112: 1 Clear and comprehensive description of requirements, 2 Partici-
pation of the whole community, helicopter manufacturing industry, and possible users
during the development and discussion phases of the standard, 3 Extensive usage of
experimental facilities, flight test programs, in-flight and ground simulator facilities in
several research centres, 4 Supervision of dedicated researchers who aim to generate

database for criteria development, 5 Development of test and analysis methods to en-
sure engineers could effectively use the standard in design and qualification.

These factors regulated in agreement of one set of criteria, and such agreement does
not exist in the fixed-wing community, where different criteria are applied during each
activity 49. There are several HQ criteria in ADS-33, concerning the response type of
the rotorcraft, axis (or axes) of interest, cross-couplings, short-term and mid-term re-
sponses. These criteria defined are in the time and frequency domains, and depend
on the MTE, class of the rotorcraft, forward speed, visual cues, etc. Some of the major
studies regarding the development of these criteria and their design perspectives can be
found in Refs. [6, 21, 33, 44, 50, 112, 145].

BANDWIDTH PHASE DELAY CRITERION IN ADS-33
The BPD is one of the most well-known and extensively exercised criteria of ADS-33. His-
torical background on the development of the BPD can be found in Refs. [12,99], which
include dedicated flight tests and flight simulator campaigns. Since BPD strongly corre-
lates with two keywords of this thesis, the time delay and the task, a closer investigation
of the BPD will be provided in this section. For the remaining criteria in ADS-33, the
reader is advised to refer to the original ADS-33 document 6.

The BPD criterion utilizes two descriptive parameters, the bandwidth and the phase
delay. These parameters are obtained from the frequency domain characteristics of the



2.2. ROTORCRAFT HANDLING QUALITIES

2

21

rotorcraft representing the vehicle attitude response to applied pilot control input. De-
termination of these parameters is illustrated in Figure 2.4.

Rate response-types: 
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Figure 2.4: ADS-33 definitions of the bandwidth and the phase delay for Rate and ACAH response-types,
adapted from Ref.6.

As shown in Figure 2.4, Rate and ACAH response-types are the two major rotorcraft
response characteristics that are used by the BPD to define the bandwidth parameter
(ωBWθ

). Rate-response types refer to direct control of the pilot (e.g., longitudinal cyclic)
on the vehicle rate response (e.g., pitch rate q). In other words, when the pilot applies a
constant control input in addition to the trimmed condition, the rotorcraft will keep on
rotating. On the other hand, in a typical ACAH response-type, the same applied control
will eventually result in a constant attitude, i.e., the rotorcraft will not continue rotating
after a certain altitude is reached. ACAH response-types are generally more augmented
(e.g., Stability Control Augmentation System (SCAS)) than the rate response-types 111.
Discussions on the response-types will be given in the next chapter in more detail.
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As shown in Figure 2.4, the BPD criterion can be applied in each on-axis response,
i.e., pitch (θ), roll (φ) and yaw (ψ). Since primarily the pitch response will be exam-
ined in this thesis, descriptions of BPD in pitch will be given in this section. For the rate
response-types 6, the bandwidth parameter (ωBWθ

) is the lesser of the gain bandwidth
(ωBWg ai n ) and the phase bandwidth (ωBWphase ), which are defined as in Figure 2.4. Cal-
culation of the phase delay parameter (τpθ ) is given in :

τpθ =
π

180
· ∆Φ2ω180

2ω180
(2.1)

where ∆Φ2ω180 (degrees), and 2ω180 (rad/s) are depicted in Figure 2.4. The bandwidth
parameter (ωBWθ

) represents the boundary of a range of frequencies over which a pi-
lot can exert good closed-loop control without excessive compensation 85. Beyond the
ωBWθ

frequency, the closed-loop stability is threatened. In practice, this frequency can
be defined as 111 ’... the highest frequency at which the pilot can double his/her gain or
allow a 135◦ phase lag (p. 68)’. This is also the rationale behind choosing theωBWθ

as the
lesser of ωBWg ai n and ωBWphase for rate-response types.

Although more details on rotorcraft modeling will be discussed in the next chapter,
and adverse couplings between the pilot and the vehicle will be discussed in Section 2.4,
it can be already interpreted that low values of ωBWθ

can be an indication of an RPC
tendency. For example, while flying a rotorcraft with a low ωBWθ

, a pilot may prefer to
apply high frequency inputs to minimize any small error during a demanding flying task.
Consequently, low ωBWθ

and these high frequency inputs of the pilot may bring the PVS
into undesired oscillatory behaviour due to limited stability, i.e., low ωBWθ

. This situa-
tion may force the pilot to lower his/her control anticipation, and to sacrifice the task
performance, which is also a known RPC alleviation technique among pilots 143.

The phase delay parameter (τpθ ) quantifies the characteristics of the mid- and high
frequency phase lag of the PVS, and defines the attainable closed-loop PVS bandwidth
during a high precision task. Phase lags can originate from the high frequency rotor
modes, actuator dynamics of the swash-plate, software filters on the control path, aug-
mentation filters, computational delays, etc. In practice, τpθ reflects the equivalent phase
lag between the pilot control input and the resulting vehicle attitude response. There-
fore, especially τpθ is strongly correlated with the ’time delay’ effect in a rotorcraft sys-
tem, as the available open-loop phase margin quickly reduces if τpθ has a high value.
Moreover, a high τpθ also reduces the ωBWphase because -135◦ phase starts to occur at
lower frequencies. Thus, a small increase in pilot gain can more easily drive the PVS into
instability.

PVS instability due to added time delay, and the corresponding pilot control antici-
pation are crucial elements of this thesis, and they will be discussed in Sections 2.3 and
2.4 in more detail. Two examples of HQ assessments by using the BPD criterion on sam-
ple vehicle responses, which are prone to PVS instability, are shown in Figure 2.5.
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(a) Gain margin limited system. (b) Phase margins with increased phase de-
lay.

Figure 2.5: BPD determination of (a) gain-margined limited system (from Ref. [45]) and (b) increased phase lag
configurations, adapted from Refs. [49, 103]).

From a BPD perspective, the vehicle configurations with a flat-like amplitude charac-
teristics around possible crossover frequencies are prone to PVS instability, as illustrated
in Figure 2.5a. The danger here is that any small increase in pilot gain, which can be
interpreted as a shift-up of magnitude response in Figure 2.5a, immediately consumes
available phase margin in PVS, i.e., a transition to instability. As a result, these configura-
tions force pilots to apply very careful compensations. Consequently, pilots may prefer
to keep a lower gain control strategy to avoid such ’suddenly appearing’ system instabil-
ity.

Another critical condition for such an instability can be introduced by increased τpθ ,
as illustrated in Figure 2.5b. It can be observed that the magnitude responses of two
configurations are exactly the same, whereas there is a considerable difference between
phases. Phase delay values are 0.17 sec and 0.02 sec, as shown in Figure 2.5b. It is worth
noting that the phase delay is calculated in ’seconds’, and it can be confused with the
equivalent time delay or the added time delay, which possesses the same phase roll-off.
However, a small deviation in phase delay value may represent a recognizable deviation
in HQ 49. High values of τpθ limit the available bandwidth at which the pilot can still sus-
tain stable control of the vehicle.

The BPD criterion inherently considers these instabilities, and aim to provide a phase
margin of 45◦ to the pilot, such that any change in his/her gain can be tolerated without
threatening PVS stability in a high precision task. If this phase margin is decreased dur-
ing the task, the critical -180◦ phase limit causes a fully out-of-phase response for the
applied pilot control. This condition is an adequate set-up of an RPC incipience, which
will be discussed in detail in Section 2.4.
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In order to assess the HQ using BPD criterion, calculated ωBWθ
and τpθ values are

plotted in a HQ levels chart. A sample BPD chart for rotorcraft pitch response is illus-
trated in Figure 2.6, in which fixed-wing boundaries are also additionally shown for com-
parison purposes.
In Figure 2.6, the boundaries that separate different levels of HQ of rotorcraft and fixed-
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Figure 2.6: Pitch attitude BPD boundaries with comparison of rotorcraft and fixed-wing aircraft for high pre-
cision tasks (target acquisition and tracking MTE and Category A flight phases, respectively), adapted from
Ref. [111].

wing aircraft are shown in terms of BPD parameters, especially for high precision de-
manding tasks for both aerial vehicles. These boundaries were defined after extensive
flight tests and (ground and in-flight) simulator campaigns 112. While setting the bound-
aries, mainly pilot subjective ratings were used to in order to evaluate the HQ. The most
classical HQR scale is the Cooper-Harper scale 19, and its application to HQ evaluations
and resulting levels are described in Appendix A.

In Figure 2.6, it is apparent that rotorcraft and fixed-wing aircraft have very distinct
HQ boundaries, such that a level-1 (good HQ) rotorcraft can easily be considered as
level-3 (bad HQ) in fixed-wing aircraft constraints. The differences in bandwidth and
phase delay boundaries deem from fundamental differences between rotorcraft and fixed-
wing aircraft, e.g., vehicle aerodynamics extended with rotor dynamics, control systems
and MTE that defines the vehicle task to evaluate HQ. This HQ comparison in Fig-
ure 2.6 is provided to highlight the dissimilarities of HQ applications between two types
of aerial vehicles, even though they are subjected to the same criterion (BPD) in this ex-
ample. More details on HQ comparisons between rotorcraft and fixed-wing aircraft are
discussed in Ref. [111].

HQ boundaries in BPD charts plotted in ADS-33 are ’task’ dependent, i.e., MTEs. One
of the most aggressive tasks in ADS-33 is the ’target acquisition and tracking’ task. Un-
like the other MTEs, there is not a description of the task in ADS-33. The main ratio-
nale behind this task class is to provide high precision, tight control within a high gain
task in order to reveal system instabilities around mid- and high frequencies. Tischler et
al. 135 provide examples of acquisition and tracking tasks such as slope landings, air-to-
air tracking, running landings, 60 knots quickstop and compensatory tracking tasks.
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2.3. PILOT MODELING FROM HANDLING QUALITIES PERSPEC-
TIVE

The previous section provided some insight on the rotorcraft HQ, assessed by BPD cri-
terion which depends on the vehicle response and the required task. Both the vehicle
and the desired task requirements are ’relatively’ deterministic starting from the design
phase, when compared to the most adaptive element in the PVS: the pilot. Similar to HQ
studies, pilot modeling is also a very broad discipline which will not be fully reviewed in
this thesis. However, major techniques of pilot modeling from a HQ perspective will be
introduced in this section. McRuer and Jex 80 published a famous review on quasi-linear
pilot models, which played a vital role in the development of pilot models in closed-loop
tracking tasks. Lone and Cook 68–70 provides reviews of pilot modeling techniques, tar-
geted HQ challenges caused by unsteady aerodynamics and aeroelasicity. Mitchell et
al. 96 briefly cover the topic of pilot modeling for HQ applications mainly for fixed-wing
aircraft.

Physiological pilot models mainly focus on modeling the human perception and
control activation mechanisms. Many of these studies use generally open-loop tasks to
measure and validate the models of physiological perception organs and muscle models
of the pilot, as illustrated in Refs. [102, 152]. This thesis, however, focuses on identify-
ing the manual control behaviour by using control-theoretic pilot modeling applied to
closed-loop control task measurements. The next section will review the pilot modeling
aspects dedicated to manual control behaviour.

2.3.1. CONTROL-THEORETIC PILOT MODELING

McRuer et al. 83 introduced the essence of the crossover model, which became a baseline
for several other approaches of control-theoretic pilot modeling techniques. Fundamen-
tal data for the development of the crossover model were obtained from single-loop vi-
sual compensatory (and pursuit) target tracking tasks with a random-appearing forcing
function 83. A schematic representation is shown in Figure 2.7.

-
+ +

+
Tracking
Signal

Displayed
Error

Human Operator

HP ( jω)

Remnant
Pilot

Control

Aircraft Dynamics

HC E ( jω)

Aircraft
Response

Figure 2.7: Schematic representation of a single-loop target-tracking task. The human pilot is modelled as
the summation of the linear behaviour (Hp ( jω)) and the remnant, which represents the non-linear control
anticipation, random noise, etc. Adapted from Ref. [26, 81, 83].

In a compensatory task, human pilots are required to minimize the displayed error,
which is the difference between the provided tracking signal and the aircraft response
originated from human pilot control effort, as illustrated in Figure 2.7. Based on con-
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ducted compensatory tracking experiments by McRuer et al. 83, a Primary Rule of Thumb
for Frequency Domain Synthesis was stated as 79: ’... At frequencies just within and beyond
the input bandwidth, seek or create (by equalization) a fair stretch of -20 dB/decade slope
for the amplitude ratio and adjust the loop gain so as to put the unity-amplitude crossover
frequency near the higher edge of this region, while maintaining adequate stability mar-
gins (p. 5).’ Consequently, McRuer et al. 83 formulated the crossover model as given in
equation 2.2.

HP ( jω)HC E ( jω) = HOL( jω) ≈ ωc

jω
e− jωτe ; near ωc (2.2)

where HP ( jω), HC E ( jω), HOL( jω) are the pilot, the CE and the open-loop linear dy-
namic responses, respectively. ωc is the crossover frequency and τe is the effective pilot
time delay, which represents the phase lag of HP ( jω) around ωc due to internal delays
caused by the pilot decision and activation. Determination of ωc and the phase margin
ϕm is illustrated in Figure 2.8.
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Figure 2.8: Determination of the open-loop crossover frequency and the phase margin according to the
crossover model, adopted from Ref. [79]

As shown in Figure 2.8, ωc is the frequency at which the open-loop transfer function
has a 0dB magnitude, and ϕm is the phase difference between -180◦ and the phase of
the open-loop transfer function at ωc .

From a HQ perspective 85, ’... The crossover model effectively describes how a human
pilot can adapt to the response characteristics of various aircraft (p. 121).’. McRuer’s
experiments 79 resulted in such human control behaviours that the open-loop magni-
tude

∣∣HOL( jω)
∣∣ showed a integrator like (K /( jω)), i.e., -20dB/decade amplitude slope,

around the crossover frequency (ωc ) for all examined CE configurations (HC E ( jω)=Kc ,
Kc /( jω) and Kc /( jω)2, where Kc is the CE gain).

The crossover model is perhaps the simplest, but probably the most profound, ap-
proach to pilot modeling 85. In order to improve the accuracy of the crossover model,
McRuer et al. 80 further proposed the ’extended crossover model’. The extended crossover
model introduced the ’α effect’ to account for the low frequency lag, mainly experienced
with conditionally stable systems. The extended crossover model is given by 80:

HP ( jω)α model ≈ Kv
(τL jω+1)

(τI jω+1)
e− j (τeω+α/ω) (2.3)
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where Kv is the pilot gain, τL and τI are the lead and the lag time constants, respec-
tively, which depend on the CE to be compensated in the closed-loop system. Although
the additional α parameter improves the low frequency lag, still the neuromuscular sys-
tem and the manipulator feel characteristics are not covered in the extended crossover
model. A good example of the usage of the extended crossover model can be found in
Ref. [8] in which Aponso et al. investigated pilot performance in rotorcraft tracking ex-
periments.

In order to improve the accuracy of the model to contain a wider frequency range, in
which the neuromuscular system and the manipulator dynamics are included, a higher
fidelity pilot model was proposed by McRuer et al. 83 as the ’the precision model’, given
by equation 2.4:

Hp ( jω) =

Pilot
Equalization terms︷ ︸︸ ︷

Kv

(
τL jω+1

τI jω+1

)

Low-frequency
lead-lag terms︷ ︸︸ ︷(
τK jω+1

τ′K jω+1

)

× ω2
nms

(τN jω+1)
[
( jω)2 +2ζnmsωnms jω+ω2

nms
]

︸ ︷︷ ︸
Neuromuscular system

e− jωτp

︸ ︷︷ ︸
Pilot

time delay

(2.4)

Fundamental differences between the precision and the extended crossover models
(equations 2.3 and 2.4, respectively) are:

• Low-frequency lead-lag terms

• Presence of the neuromuscular system model

• Differences between time delay terms

Low-frequency lead-lag terms are generally included to compensate for matching
the very low-frequency pilot describing function obtained from measurement data. The
dynamics that the low-frequency lead-lag terms represent exhibit very few occurrences
in the measured signal (i.e., very high periods). Thus, it exerts a low reliability while mod-
eling a certain behaviour, but instead practised to match the pilot model with the very
low-frequency content. Unlikely, the presence of the neuromuscular system strongly
influence the modeling accuracy, especially at frequencies beyond ωc . Moreover, the
neuromuscular system model changes the definitions of the time delays in the pilot de-
scribing function model. The ‘pure’ pilot delay τp includes the perception, central ner-
vous activity (e.g., decision making), and transmission of muscle activation signals. On
the other hand, τe includes additionally phase lags, mainly caused by the neuromus-
cular system. In this thesis, a modified version of the precision model is utilized, and
described in the next chapter.
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STRUCTURAL PILOT MODEL

Starting from the crossover model, various control-theoretic models have been devel-
oped. The ‘structural pilot model’ of Hess 39 is one of the famous models which has been
widely used in aircraft and rotorcraft HQ studies. The block diagram of the structural
pilot model is shown in Figure 2.9.
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Figure 10. Compensatory structural model of the human pilot as proposed by Hess.8

representation of the proprioceptive sensory model (YPF ):

YPF =

{ K(s + a)

K

K/(s + a)

(11)

The equalisation in Equation 11 is dependant on the pilot’s adaptability to changes in aircraft dynam-
ics around the crossover frequency. It may be interpreted as the pilot’s internal representation of vehicle
dynamics which in the optimal control pilot model is represented by the Kalman estimator.

The main differences from other models discussed in this report is the hypothesis that proprioceptive
cues and the pilot’s internal model allow the pilot to create the main compensation characteristics that are
appropriate for the controlled vehicle dynamics. This is quite the opposite to models that assume pilot
operation based on visually sensed feedback. Hess further postulates that during an APC, the power in the
proprioceptive feedback signal is the determining factor in a pilot’s perception of aircraft handling qualities,
but only when the crossover law is satisfied.

C. Hosman’s descriptive model

This particular pilot model was the result of Hosman’s research during the 1990s aimed at understanding
the influence of visual and vestibular stimulation on pilot’s perception and control behaviour.21 The results
have mainly been used to improve motion-based simulator realism via the optimisation of motion control
algorithms. Various stimulus-response experiments were used to distinguish the contributions of individual
senses towards pilot perception from the actual pilot response. The results were then applied to closed-loop
control tasks assuming the human being to be a finite capacity single-channel information processor with
multiple sensory inputs. This level of sensory distinction allowed for a descriptive model to be developed as
shown in Figure 11.

To obtain transfer functions relating the error signal, E(s), to the outputs of sensory systems Hosman
relied on earlier work done on modelling human vision and vestibular systems. Therefore, the overall model
was based on physiological sub-models that related aicraft states to perceived states. The visual perception
of displacement was modelled by the following function:

Hatt(s) = e−τs (12)

The time delay associated with attitude perception is given by τ , which was found to be around 50msec.
The visual perception of velocity was modelled by the following function:

Hrate(s) = e−(τ+τ1)s (13)

Here, the total time delay is the sum of that associated with the detection of stimulus by the eyes (τ) and
that associated with information processing during perception (τ1). The total time delay is effectively the
same time delay referred to by McRuer in the crossover model. However, an important part of Hosman’s
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Figure 2.9: Compensatory structural model of the human pilot as proposed by Hess 39, adopted from Ref. [69].

As can be seen from Figure 2.9, there are several switches in the structural model to
be set according to the specific application. For example, S3 can be used for assigning
the manipulator feel characteristics between position and force sensing models. The
innovative approach of the structural model is the combination of the proprioceptive
feedback concept and Optimal Control Model (OCM) principles. The proprioceptive
feedback modeling originated from Smith’s 127 pilot opinion rating concept, and inher-
ently includes the pilot compensation model of the extended crossover model. OCM
principles will be discussed later in this section, but briefly, the structural model aims
to implicitly include the minimization of a cost function idea of the OCM. Details of the
structural model can be found in Ref. [39]. Hess 38 investigated the usage of structural
pilot model for rotorcraft performance and HQ analysis with varied rotorcraft dynam-
ics. Another application of the structural pilot model for rotorcraft HQ is presented in
Ref. [40] during a ADS-33 hover task with multi-loop control. Prasad and Perhinschi 116

utilized the structural pilot model for rotorcraft HQ with varied control sensitivity and
flight speed, accompanying the BPD criterion. Weber et al. 142 used the structural pilot
model for the development of longitudinal HQ criteria in a pitch tracking task.

OPTIMAL CONTROL PILOT MODEL

Another widely used pilot model applied in HQ prospects is the Optimum Control Model
(OCM). Kleinman et al. 59 introduced the OCM with the idea that a well-trained and mo-
tivated pilot behaves in an optimal manner while remaining properties are subjected to
inherent physiological and physical limitations, which can be summarised as time de-
lay, motor and observation noises. A schematic representation of the OCM is shown in
Figure 2.10.

As indicated in Figure 2.10, a Kalman filter and a predictor are used to produce op-
timal estimates of the values of the state variables at each instant of time given noisy
measurements of linear combinations of these variables 38. With parameters shown in
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The many internal time delays associated with 
visual, central processing, integrative, and other 
operations are combined into a lumped per- 
ceptual delay, z. For simplicity, it is assumed in 
the current model that all outputs are delayed by 
the same amount. (We have noted in connection 
with the structural isomorphic model that there 
is a delay increment associated with rate 
perception.) 

The 'motor noise,' like the observation noise, is 
assumed to be a zero-mean gaussian white noise 
with spectral density proportional to the mean- 
squared operator output. An additional com- 
ponent, Vmo, is sometimes included to account 
for the fact that the human operator introduces 
noise into an undisturbed system. A motor noise 
signal ratio, Pml, of 0.003 has been found to 
provide a good match to experimental data. 

The neuromuscular system is represented by a 
lag matrix, TN. This is not explicitly modeled as 
an inherent limitation. Instead, it is imposed by 
weighting control rate terms in the cost function 
used to generate the optimal control. For single- 
loop control problems with linear, wide ban- 
dwidth manipulators, this weighting is purposely 
selected to yield TN of approximately 0.1sec to 
represent this inherent limitation. 

The remaining elements of the human operator 
are adaptive to the system characteristics and to 
changes in the explicit human operator limi- 
tations described above. Estimation of the de- 
layed state vector is accomplished via a Kalman 

filter. This delayed state estimate is fed to a least- 
mean-squared predictor to yield the estimated 
state vector, ~(t). The optimal gain matrix, L, is 
generated by solving the optimal regulator pro- 
blem for a quadratic cost function of the form 

Jful--E  lim I F } ( r ~  TJo (y'Qy+u'Ru+fi'Gfi)dt (5) 

Because the cost functional weightings preordain 
the details of the controller gain matrix, L, the 
selection of weightings is critical to the model's 
success. This is particularly the case when the 
model's purpose is to simulate human operator 
responses. For simple single-loop control si- 
tuations, excellent agreement with experimental 
measurements has been obtained with a cost 
functional of the extremely simple form: 

} ,6, 
where e is the compensatory system error and d 
=fi is the operator's control rate. The value of g 
is selected as described above to yield an approp- 
riate neuromuscular delay, TN. For more complex 
situations, the relative weights are determined 
based either on maximum allowable deviations 
or limits or from a knowledge of human pre- 
ferences and capabilities. This is similar to the 
technique suggested by Bryson and Ha (1969), 
wherein the weighting on each quadratic term is 

Figure 2.10: Block diagram of the OCM, adapted from Ref. [77].

Figure 2.10, a generic cost function of the optimization to be minimized can be given by

J (u) = E

{
lim
τ→∞

1

τ

∫ τ

0

(
yT Qy +uT Ru + u̇T Gu̇

)
d t

}
(2.5)

where Q, R and G are weightings of the displayed system output, pilot control in-
put and control rates, respectively. By defining various optimization weights, optimal
pilot control behaviour to satisfy the ’required’ PVS response can be achieved. Thus, by
changing the weighting gains, the optimization can represent various control behaviour
types for the task. This is in close correlation with the principle of the crossover model,
such that pilots adapt their control behaviour in order to achieve 1/( jω) open-loop re-
sponse around the crossover frequency, independent of the exposed CE dynamics in the
same task. McRuer et al. 77 state that for a simple single-axis control situation, excellent
agreement with experimental measurements has been obtained with a very simple OCM
cost function form:

J (u) = E

{
lim
τ→∞

1

τ

∫ T

0

(
ė2 + g u̇2)d t

}
(2.6)

where e is the displayed system error, u̇ is the human control rate, and g is the
weighting factor which can be selected to yield an appropriate neuromuscular lag 77.
Hence, for a single-axis compensatory task, it can be interpreted that the pilot aims to
find the best trade off between maximizing system performance (e.g., e displayed error)
and minimizing control activity (e.g., u̇). The OCM finds the ’best’ pilot model settings
to achieve this goal. From HQ perspective, this resembles the compromise between the
required task performance and the applied pilot workload. Detailed descriptions of the
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OCM can be found in Ref. [77, 153].

McRuer et al. 84 applied the OCM to research the pilot modeling for flying qualities
applications, mainly focused on divided attention operations during multi-axis tasks.
They found that OCM has a potential for the development of subjective HQ ratings esti-
mates, when it is ’calibrated’. Further, Thompson and McRuer 132 compared the crossover
model and OCM, and concluded that the crossover model is similar to the OCM by ap-
proximating very high order terms of the OCM by an effective delay in the crossover
model. It must be noted that pilot model in the OCM can not be identified by using
measurement data because it is over-parametrized for pilot model identification pur-
poses 61,144.

2.3.2. PILOT MODELS IN HQ CRITERIA
Some of the pilot models have been applied in HQ criteria development and applica-
tions progress. This section briefly covers some of the most relevant applications of pilot
models for HQ evaluations with respect to the contents of this thesis.

PILOT MODEL IN THE BPD CRITERION

The BPD criterion was described in Section 2.2.2 in detail. From a pilot modeling per-
spective, one can interpret the BPD as the stability and performance characteristics re-
sulting from a pure gain pilot model in the PVS 49, as shown in Figure 2.11.

-
+

Pilot Augmented

Aircraft

Kp G( jω)
θθc

Figure 2.11: Interpretation of the BPD with a pure gain pilot, where θc is the commanded tracking signal.
Adapted from Ref. [49].

According to Figure 2.11, the open-loop transfer function and the stability limit for
this case are given as follows 49:

HOL( jω) = KpG( jω) (2.7)

1+HOL( jω)︸ ︷︷ ︸
stability limit=0

⇒ Kp = −1∣∣G( jω)
∣∣ (2.8)

It can be noted in Equation 2.8 that regardless of the dynamics of the aircraft (G( jω)),
the pilot is modelled as a pure gain Kp which is the inverse of the amplitude of the air-
craft dynamics at the open-loop stability limit. Unlike the crossover model, this pure
gain pilot model does not the include any phase information of the aircraft frequency
response. The idea of setting an ’unequalized’ gain pilot in BPD is to define the band-
width frequency (ωBWθ

) as the highest frequency where the gain pilot can still achieve
stable closed-loop response 49,82. Stability margins for the gain pilot model to sustain
the stable closed-loop were quantified as 45◦ of phase margin or a 6dB of gain margin.
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Thus, in practice, ωBWg ai n and ωBWphase reflect the available stability margins for a pure
gain pilot in the PVS. The lesser is assigned as the bandwidth frequency in order to keep
the closed-loop system as stable as possible, either from gain or phase limitations.

Although this simple pure gain pilot model benefits from the ease of analysis, it is
highly limited without the phase compensation of the pilot model to interact with the
phase characteristics of the vehicle response. In other words, the phase of the open-
loop response of the PVS is exactly same as the phase response of the vehicle. When
the vehicle phase response varies noticeably around possible piloting frequencies (e.g.,
up to 15 rad/s), this pure gain representation could be incorrect from a pilot modeling
perspective, considering active pilot compensation.

PILOT MODEL IN THE NEAL-SMITH CRITERION

One of the HQ criteria with a described pilot model in its foundation is the Neal-Smith
criterion 103, which has extensive use in fixed-wing aircraft but limited applications in ro-
torcraft studies. It is not intended to discuss the details of the criteria here, but instead,
to illustrate the possibilities of integrated pilot modeling prospects into HQ assessments.

The basic idea behind the Neal-Smith criterion is to represent the pilot in a simple
form such that any deviation in parameters of this ’paper’ pilot can be related to HQ
of the vehicle at hand. By conducting extensive flight tests with NT-33 variable stability
aircraft with various selection of configurations, Neal and Smith obtained pilot ratings
and measurement data to correlate with the paper pilot model 103. The pitch attitude
tracking task is shown in Figure 2.12.

-
+

Aircraft
θθcom Pilot

Hp ( jω)

Figure 2.12: Pitch attitude tracking task, where θcom is the commanded tracking signal. Adopted from
Ref. [103].

In the illustrated pitch attitude tracking task in Figure 2.12, the pilot model is as fol-
lows:

Hp ( jω) = Kv

︸︷︷︸
gain

compensation

(
τLE AD jω+1

τL AG jω+1

)

︸ ︷︷ ︸
phase

compensation

e− jωτe

︸ ︷︷ ︸
effective

time delay

(2.9)

As given in Equation 2.9, the paper pilot model contains both a gain and a phase
compensations, and a time delay as pilot limitation. This pilot model is a version of the
McRuer’s extended crossover model (see Section 2.3.1).

In order to assign the pilot model, three adjustment parameters for the closed-loop
PVS are introduced. The bandwidth parameter is the frequency at which the closed-loop
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phase response becomes -90◦ . The closed-loop resonance parameter is the magnitude
of the maximum peak in the closed-loop response. This parameter represents the os-
cillatory behaviour of the PVS in a closed-loop task. The last parameter is the droop,
which defines the deviation of the closed-loop magnitude below 0dB for frequencies
smaller than the bandwidth parameter. These adjustment parameters are subjected to
constraints stated by Neal and Smith, after analysing flight test data accompanying pilot
HQ ratings. The constraints are listed below, and depicted in Figure 2.13.

• minimum bandwidth: 3.5 r ad/s,

• achieve minimum droop, maximum droop limit: -3dB , and

• after the bandwidth and the droop limit are satisfied, achieve minimum closed-
loop resonance peak.

Minimize droop

Minimize resonance peak

Frequency

Minimum

-90

-180

0

0

-5

+5

+10

=3.5 rad/s

.

∣∣∣ θ( jω)
θcom ( jω)

∣∣∣
, dB

∠ θ( jω)
θcom ( jω)

, deg
ωBW

ωBW

Figure 2.13: Neal-Smith constraints, adopted from Ref. [103].

In practice, the Neal-Smith criterion can be considered as an optimization problem,
which has ’minimum bandwidth’ and ’maximum droop’ as constraints and ’closed-loop
resonance peak’ as the cost function to be minimized, all depicted in Figure 2.13. This
can be related to the OCM from a conceptual pilot modeling point of view. The final
step of the Neal-Smith criterion assessment is to plot the PVS closed-loop resonance
peak and the corresponding compensation of the mathematical pilot model. This two-
dimensional chart is given in Figure 2.14.

The boundaries of the Neal-Smith HQ chart in Figure 2.14 were obtained from award-
ed HQR for the NT-33 variable stability aircraft in many hours of flight testing 103. These
boundaries are not validated for rotorcraft applications, but they still can be used for rel-
ative referencing purposes. For example, Mariano and Guglieri 74 used the Neal-Smith
criterion for HQ assessment while elaborating other HQ and RPC criteria for rotorcraft.
Sebastien and Mathieu 124 approached the problem of PIO susceptibility of UH-60 rotor-
craft while utilizing the Neal-Smith criterion for HQ evaluation.
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Figure 2.14: Neal-Smith criterion chart, adapted from Ref. [103]. PR: Cooper-Harper HQR.

PILOT MODEL IN THE HQSF CRITERION

Another well known HQ criteria with an internal pilot model is the HQSF criterion 39,142.
The HQSF is based on the PSD of the proprioceptive feedback signal of the structural
pilot model, which was described in Section 2.3.1. By using the simplified structural pilot
model as shown in Figure 2.15, the procedure of obtaining the HQSF can be summarized
as depicted in Figure 2.16.

Figure 2.15: Simplified structural pilot model with associated transfer functions, adopted from Ref. [39]

Hess 39 utilized HQSF with HQ boundaries with awarded HQR obtained from HAVE
PIO flight tests which refer to a series of experiments that collected important PIO data
during flight experiments with aircraft in various configurations 85. For rotorcraft HQ ap-
plications, boundaries can be considered as tentative, and relative comparisons can still
provide insight in the HQ. Hess 41 used the HQSF for Bo-105 helicopter model during a
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Figure 2.16: The routine to obtain the HQSF, adapted from Ref. [116].

ADS-33 hover task. Prasad 116 used the HQSF for UH-1H helicopter, particularly focused
on effects of flight speed and control sensitivity on rotorcraft HQ. It was concluded that
the HQSF parameter and BPD bandwidth were consistent such that high bandwidth im-
proves the handling qualities. In addition, variation of the HQSF with forward speed
suggested different HQ boundaries of BPD for different flight speeds.

2.4. ADVERSE ROTORCRAFT PILOT COUPLINGS
Historically, the first famous terminology for the adverse coupling between the air vehi-
cle and the pilot was PIO 85. In principle, PIOs are instabilities of the PVS which result
in undesired oscillatory response. They can be severely safety-critical and several fatal
flight accidents have been associated with this coupled behaviour 85. According to Pavel
et al. 115, ’... PIO occur when the pilot inadvertently excites divergent vehicle oscillations
by applying control inputs that are in the wrong direction or have phase lag with aircraft
motion (P. 3).’ There are also Pilot Assisted Oscillations (PAO) which are more related to
higher frequency involuntary bio-dynamic coupling between the body of the pilot and
the vehicle motion response 115. After 1995, the term PIO (and PAO) started to be recalled
as Aircraft (and Rotorcraft) Pilot Couplings. The change of terminology deemed from
two main reasons: 1 The phrase ’pilot induced’ somehow blames the pilot, whereas

these couplings are more recognized to be a HQ deficiency of the vehicle, and 2 There
are also non-oscillatory behaviours as well in the adverse couplings history. There is, and
will probably continue to be, a debate between PIO and RPC terminology 85,92. Moreover,
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Mitchell and Klye mention 10 different PIO definitions in the literature 92. Nevertheless,
the following definition of RPC will be used in this thesis:

A RPC event exists when the airplane attitude, angular rate, normal acceleration,
or other quantity derived from these states is approximately 180 degrees out of phase
with the pilot’s control inputs and both the vehicle response and the pilot’s control ex-
pose considerable activity regarding the flying task.

The terms RPC and PIO will be used interchangeably in this thesis since the category
that is relevant to the research in this thesis is a ’RPC type PIO’, which will be described
in this section.

2.4.1. CATEGORIES OF RPC
In 2010, an international European Union project (European Commission-7th Frame-
work Programme), ARISTOTEL was initiated in order to investigate the RPC phenomena
from various perspectives, such as criteria, simulator applications, design guidelines to
prevent RPC, prediction and detection tools. This project can be considered as a con-
tinuation of great number of RPC related GARTEUR projects 115. The progress in this
thesis was mainly achieved during the activities of the ARISTOTEL project. The general
classification of RPC used in the ARISTOTEL project is illustrated in Figure 2.17.
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Figure 2.17: Classification of RPC, adopted from Ref. [115].

The main three categories of RPC are rigid body, extended rigid body and aeroelas-
tic RPC as shown in Figure 2.17. For detailed descriptions of these RPC categories, the
reader is advised to refer to Ref .[85, 115]. The RPC type in this thesis belongs to relatively
low-frequency PIO, up to 1Hz, as will be discussed later in this thesis. In the ’RPC type
PIO’ class, there are three subcategories mainly described by the linearity of the RPC, as
depicted in Figure 2.17.
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CAT I category PIOs generally originate from excessive phase lags in the PVS, such as
additional time delays, and they expose linear characteristics. CAT II category PIO man-
ifest quasi-linear characteristics, such that most of the RPC occurrences can be modeled
linearly with an extra identifiable non-linear element which can be separately handled.
A classical example of this category is the RPC originated from actuator position and/or
rate limiting. CAT III category PIO are non-linear couplings that can occur from sources
like flight mode shifts and random flight control malfunctions.

Since this thesis will utilize LTI systems for manual control behaviour identifica-
tion, the added time delay was chosen to be applied as a CAT I RPC trigger to represent
the RPC susceptibility of the PVS.

The remaining RPC elements (the pilot model, the vehicle model and the task) used
in this thesis will be discussed in the next chapter. In order to provide a general insight
on these RPC elements, the following subsections will cover the general pilot modeling
approach in RPC events, effects of the task difficulty and the time delay on HQ and RPC
prospects.

2.4.2. PILOT MODELS IN RPC EVENTS
When considering the CAT I RPC, which is the relevant category for this thesis, there
are primarily two pilot modeling methods 81. The first one is the compensatory model,
which is identical to the one described in Section 2.3.1. In short, here pilot applies a
feedback loop to control the rotorcraft such that the open-loop exhibits a 1/( jω)-like re-
sponse around the crossover frequency. In the ideal case, the pilot prefers a sufficient
amount of phase margin to sustain a stable control of the vehicle. However, in a high
precision tracking task, when the available phase margin drastically reduces due to a
trigger (e.g., rate limiting) then the PVS can get into a RPC event rapidly.

The second pilot modeling method is a precognitive approach such that the pilot ex-
erts control inputs depending on his/her previously experienced control behaviour. As
a result, the pilot control behaviour simply becomes a gain, so-called ’Synchronous’ pi-
lot model 81, following the vehicle response with a perfect synchronization without any
time delay. For example, if the system inputs are of a sinusoidal shape, the pilot shows
a pure gain response, matching the frequency of the sine wave without any time delay.
This simple gain behaviour is a famous approach that fits with high accuracy to several
recorded fully developed RPC 81. It should be noted that this simple gain approach in
RPC is essentially the rationale behind the pilot model in the BPD criterion described in
Section 2.3.2.1.

Mitchell 87 investigated several actual PIO events and concluded that pilots do not
show such a synchronous pilot behaviour in compensatory tasks. Instead, compen-
satory pilot behaviours were observed during PIO events. This agrees with the first type
of pilot modeling method (the compensatory model), as introduced in this section. Mc-
Ruer et al. 85 mention that PIO frequencies are around 1 Hz when the pilot is operating
in a compensatory manner, whereas in a fully-developed synchronous operation it can
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be as high as 2.5 Hz. Therefore, compensatory pilot control behaviour during an PIO can
be expected around the crossover region. It is worth noting that this thesis does not aim
to identify the pilot in a fully-developed RPC event. The main scope is to identify the
manual control behaviour when exposed to RPC-prone configurations and investigate
the pilot control adaptation to these configurations.

2.5. TIME DELAY AND TASK DIFFICULTY WITH HQ AND RPC
PROSPECTS

As introduced at the beginning of this chapter, two key variables of this thesis are the
added time delay and the task difficulty. In this section, the primary known effects of
manipulating these variables on the HQ and RPC are investigated.

2.5.1. EFFECT OF THE TIME DELAY ON HQ AND RPC
Rotorcraft inherently exhibit delayed response, simply between the commanded pilot
control input and the resultant vehicle response. Hamel 35 provides an analysis of the
sources of the time delay in a rotorcraft control system, as shown in Figure 2.18.
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Figure 2.18: Response time analysis for the advanced digital optical control system demonstrator, adapted
from Ref. [35].

As can be seen from Figure 2.18, the control command transmission from the cyclic
input to the swash plate actuators generates a considerable amount of time delay (for
example, a total delay of 223 ms in the Figure 2.18). The rotorcraft in this analysis of
Hamel 35 is a FBW research rotorcraft, which does not include classical mechanical de-
lays present in conventional helicopter systems. However, the sophisticated control
laws and actuation technologies, such as FBW with notch filtering for flexible rotorcraft
modes, lead to additional time delays as a side effect 85.

From a HQ perspective, an additional time delay results in phase roll-off at mid- and
high frequencies, i.e., lower ωBWθ

and higher τpθ in BPD terms, as discussed in Sec-
tion 2.2.2. For the pilot, the amount of time delay is directly related to a degradation
of the ’perceived’ HQ. By using the subjective pilot ratings, such as the Cooper-Harper
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HQR in Appendix A, Hodgkinson et al. 43 investigated the primary effects of equivalent
(effective) time delays on perceived HQ, as illustrated in Figure 2.19.
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Figure 2.19: Generic rating variation with equivalent time delay, adapted from Ref. [43 ].

As shown in Figure 2.19, up to a certain amount of added time delay, pilots do not
perceive any HQ degradation. This threshold depends on the HQ tolerance of the vehicle
engaged in the task, such that the available gain and phase margins can still provide suf-
ficient stability and task performance. After this amount, additional time delays cause
quick HQ degradation with increased pilot demand, as indicated in Figure 2.19. This
threshold value is also known as the ’HQ Cliff’ 43, after which the HQ quickly deteriorate
with increasing time delay.

After the start of the ’HQ Cliff’, HQ degradation continues up to a time delay value
beyond which the task is impossible to complete and the pilot abandons the task. Thus,
the pilot HQR results shown in Figure 2.19 suggest that not only the HQ criteria such as
BPD, but also the pilot as an operator is directly adversely affected by the additional time
delay in the system.
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Mitchell et al. 93 investigated the effect of added time delay (and motion) on rotor-
craft HQ by using a flight simulator. The HQ evaluation was performed using subjective
pilot ratings, HQR. Their results of the hover and vertical translation tasks of ADS-33 are
depicted in Figure 2.20.
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Figure 2.20: Effects of added time delay on HQR for the hover and vertical translation MTE in fixed-based and
motion based simulator, adapted from Ref. [93].

As can be observed in Figure 2.20, additional time delay in the system caused pilots
to award worse HQR, both for the hover and the vertical translation MTE. Moreover, this
HQ degradation was observed in both the fixed-based and the motion-based configura-
tions of the flight simulator 93.

Hess 37 conducted a set of experiments which utilized a compensatory task with basic
controlled elements with various amounts of added time delays. The results of the open-
loop response, i.e., Hp ( jω)HC E ( jω), is shown in Figure 2.21 for the HC E ( jω) = K /( jω).

Figure 2.21 shows that increasing added time delay resulted in lower ωc and higher
ϕm . These variations arise from the pilot’s effort to compensate for the additional phase
lag originated from added time delay. When exposed to an additionally delayed CE, the
pilot has to generate extra lead to compensate for the reduced phase margin. As a re-
sult, even though the dynamics of the CE do not require any pilot lead equalization (e.g.,
YC = K /( jω)) in Figure 2.21), additional pilot lead causes a relatively flat open-loop mag-
nitude response around the crossover frequency. This can be observed in Figure 2.21b,
in which the -20dB/decade slope can not be obtained. Thus, the fundamental rule of
the classical crossover model can not be satisfied, since the open-loop does not exhibit
1/( jω)-like behaviour around crossover frequency. Moreover, it is worth recalling the
BPD (Section 2.2.2.2), especially the vehicle model illustrated in Figure 2.5a. As dis-
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(a) τd = 0.0238 s (b) τd = 0.357 s

Figure 2.21: Bode plots of measured open-loop describing functions for the controlled element YC = K /( jω),
with two distinct values of added time delay; (a) 0.0238s and (b) 0.357s, adapted from Ref. [37]. Crossover
frequencies, phase margins and the slope of open-loop magnitude responses are emphasized in the figure.

cussed in Section 2.2.2.2, flattened open-loop dynamics mean that any slight change
in pilot gain can rapidly consume the available phase margin. This is a perfect catalyst
for an RPC incipience.

As discussed in Section 2.4.1, additional time delay is a well-known CAT I RPC trigger.
For example, Ockier 107 conducted a flight test campaign with a Bo-105 helicopter in a
lateral-position task with varied added time delay. Sample data with and without added
time delay are shown in Figure 2.22.

The results shown for the added time delay, as depicted in Figure 2.22, is a typical CAT
I RPC. The saw-like pilot manipulator activity and oscillatory vehicle response, which is
not required by the task, are both signatures of a RPC event. As given in Figure 2.22,
the BPD criterion indicates a reduction in the bandwidth and an increase in the phase
delay parameters. This deviation with added time delay was already discussed in Sec-
tion 2.2.2.2. In addition, the increase of HQR (from 5 to 7) shows that pilots also noticed
the degradation of HQ, and ’bang-bang’ style control is already an indication of a HQ
deficiency from a piloting perspective, as reflected in the awarded HQR 107.
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(a) No added time delay

(b) 100 ms of added time delay

Figure 2.22: Pilot lateral cyclic and vehicle roll attitude of Bo-105 in a lateral-position task without (a) and with
100 ms of added time delay (b), adapted Ref. [107]. BPD prameters and awarded HQR are listed in the figure.

2.5.2. EFFECT OF THE TASK DIFFICULTY ON HQ AND RPC
One can interpret that the added time delay threatens the stability of the rotorcraft and
limits the available performance (and safety) of the required task. This reduced stability
may not be equally dangerous for all tasks that may need to be performed with the vehi-
cle. For instance, the difficulty of the task also defines the achievable task performance
with the capabilities of the vehicle. In any closed-loop task, the interaction between
the pilot and the vehicle depends on the required task performance, which inherently
depends on the definition of the task itself. Therefore, changing the task difficulty con-
sequently forces the pilot to compensate accordingly to achieve the same performance.
This pilot adaptation can reveal response characteristics of the vehicle within this varied
task difficulty. Thus, the task difficulty has the potential to unmask any HQ deficiency of
the vehicle via coupled pilot compensation to complete the task.
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A typical example of the deviation of pilot control with varied task difficulty is the
classical ’crossover regression’ phenomenon described by McRuer et al. 81. This phe-
nomenon will be discussed in more detail in the next chapter. McRuer and Jex 80 found
that for certain CEs in a compensatory tracking task, pilots adapt their control strategy
such that the open-loop crossover frequency quickly decrease when the task bandwidth
was increased after a certain value. This crossover regression is illustrated in Figure 2.23.

121

5.4 Forcing Function Design

In the previous sections it was explained that the experimental behavior measurement method

assesses the aircraft handling qualities by measuring the behavior of the pilot during a target

tracking task. It was assumed that the pilot will show crossover regression when tracking

the forcing function becomes too difficult with the aircraft dynamics involved. In many

cases the difficulty of the forcing function is expressed in terms of its bandwidth ωi, which

is defined as a sharp power cut-off. Examples are given in Figure 5.16.
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Figure 5.16: Power spectra of several forcing functions.

In general, forcing functions can be classified in two groups, those with power at only a

selected number of frequencies (multi-sines), and those with a continuous power spectrum.

The latter group is referred to as continuous-spectrum forcing functions, even though their

power spectra become discrete after sampling. The actual class of forcing functions used

mainly depends on the applied identification method.

The forcing function plays a very important role in the experimental behavior measure-

ment method. The goal of the forcing function is twofold:

• to force and quantify the occurrence of crossover regression,

• to enable system identification of the effective open-loop pilot describing function at

a wide frequency range.

In order to accomplish these goals, the forcing function will have to satisfy several

requirements. The requirements to force and quantify the occurrence of crossover regression

will be explained in Section 5.4.2. It will be shown that, apart from bandwidth, other aspects

of the forcing function can have a significant effect on the level of difficulty of the task as

well. A method is proposed to take these effects into account when designing the tracking

signals.

In addition, the forcing function will have to meet a number of system identification

requirements to obtain the pilot describing function over a wide frequency range. Since

(a) Forcing function bandwidth.
...

(b) Crossover frequencies with various forcing
function bandwidths and CEs.

Figure 2.23: Definition of the forcing function bandwidth (a) and the crossover frequencies with varied forcing
function bandwidth for three basic CE, adapted from Ref. [80].

The forcing function bandwidth, as shown in Figure 2.23a, characterizes the avail-
able frequency content in the tracking signal, and can be used to set the task difficulty in
a compensatory tracking task. When different CEs are utilized, a clear crossover regres-
sion was observed with double-integrator dynamics (HC E (s) = K /s2) when task difficulty
increased from ωi ≈ 2.5 r ad/s to ωi ≈ 4 r ad/s, as depicted in Figure 2.23b. This shows
that task difficulty can force the pilot to adapt his/her control strategy to certain con-
ditions, in such a way that the PVS can exhibit considerably different task performance
and stability characteristics. This situation suggests a close link between the task dif-
ficulty and the HQ. A good example of this link is the HQ research of Damveld 20 who
focused on HQ assessments of fixed-wing aircraft models in a pursuit tracking task with
various task bandwidths. In addition to the task difficulty, aeroelastic characteristics of
the aircraft models were also varied to investigate the crossover regression tendencies
based on the task bandwidth and aeroelastic aspects of the aircraft. In the present the-
sis, a similar methodological approach is followed, and a detailed comparison of both
methodologies will be discussed in the next chapter.

As discussed in Section 2.2.2, in the field of HQ standards, ADS-33 is one of the most
unique because of being explicitly ’task oriented’, among other reasons mentioned in
Section 2.2.2. There have been, and continue to be, many flight tests in several research
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institutes and flight laboratories to elaborate the desired and adequate task performance
boundaries of MTEs in ADS-33 96. For example, Figure 2.24 shows awarded pilot HQR
during a sidestep manoeuvre conducted with various sidestep durations and roll re-
sponse bandwidths.

Figure 2.24: Rotorcraft agility with pilot ratings in a side-step MTE with varied task duration and roll responses,
adapted from Ref. [111].

It can be clearly seen in Figure 2.24 that at a certain increased level of difficulty, which
is correlated to sidestep duration, pilot HQR rapidly increased, representing a big degra-
dation of HQ. Similar to the crossover regression phenomena, the HQ degradation oc-
curs faster with different CEs, which are different roll bandwidths in this example. In
Figure 2.24 it is shown that high roll bandwidth configurations can achieve shorter task
durations (i.e., higher agility) before showing the ’cliff-like’ degradation of HQ. Here, one
can make the analogy with the crossover regression behaviour observed for the double
integrator dynamics, i.e., HC E (s) = K /s2.

Akin to added time delay, task difficulty is also a contributor to the RPC characteris-
tics of a vehicle. Mitchell et al. 96 state that the task should be sufficiently hard enough
to unmask RPC susceptibility of the rotorcraft. A high gain task demands pilots to ex-
ert a tight control strategy with careful compensation and high precision. McRuer et
al. 85 highlight the importance of pilot stress as a source of adverse coupling between the
vehicle and the pilot, and he refers to the task difficulty issue as ’... Stress can also be task-
induced when the pilot attempts a high-gain, high-stress task, such as aerial refueling or
aircraft-carrier landing (p. 54).’
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The Handling Qualities During Tracking (HQDT) method for HQ evaluation for fixed-
wing aircraft used very high-gain tracking tasks, with a strict demand on pilot to elimi-
nate any displayed small error, consequently investigating PIO tendencies in high-gain
tasks 32. Although a great amount of research has been conducted with this HQ method
in the USAF-TPS, the required ’zero-error’ for high-gain tasks lead pilots to exhibit al-
most open-loop like high frequency corrective inputs, which is reported to be unnatu-
ral for pilots 125. Moreover, a lack of performance standards (only subjective PIOR were
used) makes it hard to compare the results of HQDT with existing HQ assessment meth-
ods.

Nevertheless, high-gain tasks, which exhibit high potential to unmask susceptibility
of adverse couplings between the pilot and the vehicle, have been used in many studies.
McRuer et al. 85 stated that ’... The committee1 believes that a desirable way to generate
high gains is to simulate real aircraft tasks that emphasize precision PVS performance
because realistic high-gain tasks make problems more credible. However, it is useful to
include some tasks that naturally maximize pilot gain but that may not be typical of nor-
mal flight operations. These tasks should stress the PVS to its limits, thereby ensuring that
it is not susceptible to APC phenomena under even the most extreme conditions (p. 98).’
Suggested high-gain tasks for unmasking A/RPC susceptibility can be summarized as 85:

• Aggressive Acquisition Maneuvers

• Aggressive Tracking Maneuvers

• Mode Transitions

• Formation Flying

• Aerial Refuelling (an example is shown in Figure 2.25)

• Approach and Landing

• Special Tracking Tasks with Random Forcing Functions

One can imagine the required precision and acquisition to perform a high-gain task
such as aerial refuelling, as exemplified in Figure 2.25, under serious safety critical bound-
aries such as collision of the main rotor with the fuel probe while subjected to air-wake
of the fuel carrier aircraft. This task is surely a difficult task such that if there is any RPC
tendency, which could not be observed in a regular operational task, safety of the rotor-
craft and the crew is highly threatened if the RPC gets triggered. Therefore, it is crucial
to examine the RPC susceptibility of a rotorcraft for ’difficult’ and demanding tasks to
minimize the possibility of safety critical RPC occurrences.

1The committee on the Effects of Aircraft-Pilot Coupling on Flight Safety, authors of the book ’Aviation Safety
and Pilot Control: Understanding and Preventing Unfavorable Pilot-Vehicle Interactions’ 85
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Figure 2.25: A CH-53 helicopter performing an aerial refueling task.(Source: www.defenseimagery.mil)

2.5.3. COMBINED EFFECT OF THE TIME DELAY AND THE TASK DIFFICULTY

ON HQ AND RPC
As being two key variables in this thesis, both the time delay and the task difficulty can
be effective in revealing possible HQ deficiencies and the RPC susceptibility of the rotor-
craft, as discussed in previous sections. This section will focus on the ’combined’ effect
of these two major variables as evaluated in previous investigations. For example, Smith
and Sarrafian 128 presented pilot HQR for F-8 and NT-33 aircaft flight and simulator tests,
with varied effective time delays and task stresses, as shown in Figure 2.26.
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Figure 2.26: Pilot HQRs for low and high stress flying tasks with different levels of equivalent time delays,
adapted from Ref. [128].

Figure 2.26 indicates two important observations. First, the ’HQ Cliff’, which was
discussed in Section 2.5.1, can be clearly seen for both aircraft in both stress level tasks.
Second, high and low stress tasks showed different tendencies to expose HQ degrada-
tions with increasing equivalent time delay. As highlighted in Figure 2.26, high stress
tasks have a sharper HQ degradation than low stress tasks, which confirms the impor-
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tant role of ’the task difficulty’ on HQ accompanying equivalent time delay.

During the ARISTOTEL project, the precision hover task, a MTE defined in ADS-33,
was flown by four professional rotorcraft pilots in SIMONA Research Simulator (SRS)
and HeliFlight-R Helicopter Simulator (HFR) full motion simulators. In addition to the
original hover task, an important element of the task was modified to achieve a more
demanding task, such that the vehicle under control, a high fidelity simulation model of
Bo-105 helicopter, could reveal it’s HQ characteristics accompanying it’s RPC proneness.
The altered task element was the location of the hover ball, which is illustrated in Fig-
ure 2.27.

(a) Hover ball at 75 ft (b) Hover ball at 20 ft

Figure 2.27: Outer view of the precision hover task MTE with hover ball at 75 ft (a) and 20 ft (b).

During the capture and stabilisation phases of the hover MTE, a relocated hover ball
(Figure 2.27) lead to a higher precision task which demanded tighter pilot control. This is
equivalent to increasing task difficulty. When combined with the added time delay, this
task modification also increased the RPC tendency of the PVS. Figure 2.28 shows pilot
ratings of the precision hover task with original (75 ft) and closer (20 ft) hover ball config-
urations with and without the presence of the additional time delay, in HFR simulator.
Recorded pilot ratings were HQR, PIOR and Adverse Pilot Coupling Scale (APCS), which
are provided in Appendix A.

It can be seen from Figure 2.28a that pilots awarded worse handling qualities ratings
when the task difficulty was increased, i.e., hover ball located at 20 ft. This degradation
of HQ due to task difficulty was observed with added time delay configurations as well.
For each task difficulty, added time delay degraded the HQ, such that original task (75 ft)
shifted from Level-1 to Level-2, whereas the harder task showed a deviation from Level-
2 to the border of Level-3 HQ. A similar trend can be seen in the PIOR, as depicted in
Figure 2.28b. Although the between-subject variability is relatively high for the awarded
PIOR, still a trend of increased RPC tendency with increased task and the added time
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Figure 2.28: Awarded pilot ratings for original (75 ft) and closer (20 ft) hover board location without and with
the additional time delay (250 ms); a) HQR, b) PIOR and c) APCS.

delay can be observed. Especially, the harder task resulted in dangerous RPC boundary
(PIOR 3.5 boundary in Figure 2.28-b) after which pilots need to severely reduce their gain
and switch into open-loop control. It is worth mentioning that during the total four sim-
ulator test campaigns conducted in SRS and HFR for the ARISTOTEL project, the PIOR
were found to be somewhat of confusing for the pilots, such that the numeric numbering
and the corresponding text description found be not directly descriptive of the experi-
enced RPC condition 54. Instead, a new subjective rating scale was developed and used
during the test campaign. This rating scale is called 54 and presented in Appendix A.
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The fundamental improvement of the APCS is categorizing the pilot compensation
effort and the adversely coupled conditions separate, by utilizing numeric and alpha-
betic ratings assigned with clear descriptions. Pilots commented the positive contribu-
tion of the APCS to asseses the RPC tendency of the rotorcraft. For detailed information,
reader is advised to refer to Ref. [54]. As shown in Figure 2.28c, APCS tendencies show
a clear difference between the task difficulties. The harder task configuration exposed
more RPC prone responses than the original hover, for both no time delay and added
time delay conditions. Moreover, the added time delay clearly increased the RPC suscep-
tibility of the rotorcraft, both in the original and the harder task configurations. However,
added time delay caused highly RPC prone conditions for the hard task, whereas it has
not experienced such a strong RPC susceptibility in the normal hover task. Especially
the oscillatory characteristics, which are awarded by apathetic ratings (see Figure 2.28c),
indicate the RPC problem of the rotorcraft for that configuration.

From a practical point of view, increased task difficulty brings the pilot to his/her
edge of the precise control. Then, reducing the stability of the rotorcraft, like adding
a time delay, strongly effects the closed-loop PVS response characteristics, which are
already on their boundaries due to the engaged high-precision task. Thus, a joint effect
of the task difficulty and the added time delay can actually benchmark the PVS better
than the individual effects of the task bandwidth and the added time delay.

2.6. CONCLUSIONS
A brief review on rotorcraft HQ was provided, highlighting the innovative task-oriented
ADS-33 HQ evaluations, with a particular interest in the BPD criterion. The importance
of the BPD is the inherent capability of the composing parameters to address PVS stabil-
ity. Pilot modelling techniques, which are utilized in HQ studies, were briefly introduced.
Furthermore, pilot model structures used in HQ criteria were reviewed. Unfavourable
couplings between the pilot and the rotorcraft were introduced, with definitions of cat-
egories and involved pilot modeling approached to RPC phenomenon.

Principles of McRuer’s crossover model found to be a fundamental approach to de-
scribe pilot control behaviour, and serve as an origin to various pilot modeling tech-
niques used in HQ and RPC studies.

As being two major factors in the thesis, the added time delay and the task difficulty
were reviewed in terms of their individual and combined effects on rotorcraft HQ and
RPC. It is concluded that the combination of both factors has a high potential to unmask
RPC susceptibility, which can actually be hidden if each factor has been applied individ-
ually.

In this chapter, two drawbacks of the current HQ and RPC criteria and assessment
methods are discussed. First drawback is the lack of pilot modeling with parameters
to describe the manual control behaviour. The review on the pilot modeling in HQ and
RPC shows that ’paper’ pilot models (e.g., Neal-Smith), simplified pilot models (e.g., syn-
chronous simple gain pilot) and more complicated models (e.g., structural pilot model)
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have application constraints and limitations, and they do not contain any identified pi-
lot model with parameters. Thus, understanding the manual control behaviour on the
detail of pilot model parameters is missing. Second drawback is the scatter of subjec-
tive pilot ratings during some HQ and RPC assessments. As shown in this chapter, sub-
jective ratings can have a high variety on certain conditions, and this variety can cause
unclear determination of the HQ and RPC susceptibility of the vehicle. The next chap-
ter will summarize these drawbacks, and propose a new methodology to address these
drawback with an objective HQ determination by using a parametrized and identified
manual control behaviour model.





3
METHODOLOGY

The previous chapter provided a review on rotorcraft HQ and RPC, and pilot modeling
prospects of these two elements of rotorcraft performance. Individual and combined ef-
fects of added time delay and increased task difficulty on rotorcraft HQ and RPC ten-
dency were discussed. Moreover, it was summarized that during the assessment of HQ and
RPC susceptibility, pilots award subjective ratings (e.g., HQR and PIOR) and mathemati-
cal pilot models are utilized in HQ criteria (e.g., Neal-Smith criteria) or RPC studies (e.g.
synchronous pilot model). In order to overcome drawbacks of subjective ratings and cur-
rent theoretical math pilot approaches, this chapter introduces a new methodology to be
used for objective HQ assessment, by using manual control behaviour identification tech-
niques. Details of this new methodology, referred to as the MCIM, will be thoroughly de-
scribed, including descriptions of the RPC detection tools to be used in the MCIM.

3.1. INTRODUCTION
The previous chapter presented a review on HQ and RPC prospects of rotorcraft, and
provided some typical pilot modeling approaches being used to asses these elements.
Based on this review, two important drawbacks of the current HQ and RPC assessment
methods can be summarized:

1 Limitations of the theoretical pilot models
As discussed in the previous chapter, the BPD criterion in ADS-33 can be interpreted
as a stability measure of the PVS with a pure gain pilot with assigned phase and gain
limitations of the open-loop. In addition to this simple gain pilot model, Neal-Smith cri-
teria utilize a theoretical pilot model with gain, lead and lag compensation with a certain
closed-loop bandwidth restriction. Similarly, the majority of the theoretical pilot models
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in HQ assessment methods such as BPD, Neal-Smith and HQSF criteria are subjected
to such predefined restrictions. These restrictions in HQ and RPC criteria could lead to
improper (or lacking) modeling of the pilot control behaviour 20,69. For example, Lone
and Cook 71 stated that the major contribution of the Neal-Smith criteria is successfully
linking pilot compensation to handling qualities, not pilot model development.

2 High variety in subjective pilot HQ and RPC ratings for the same flying task
A general practice of evaluating rotorcraft HQ and RPC tendency is using subjective pi-
lot assessments, e.g., HQR and PIOR. Pilots require dedicated training to apply proper
HQ and RPC assessment methods 146. Using HQR, HQDT and PIOR directly reflects the
’perceived’ HQ and the RPC tendency by trained pilots. However, these assessment
methods are often prone to high subjective variability for the same flying task 46,146.
Flynn and Lee 27 illustrated this HQR diversity as shown in Figure 3.1. As exemplified

Flying Qualities Parameter (Time delay or Phase Lag)

Pilot

Rating

(Capacity Desired)

GOOD

BAD

Uncertain

F-16

C-17

YF-22F-15

Figure 3.1: Pilot rating versus HQ correlation, adapted from Ref. [27].

in Figure 3.1, subjective ratings for very good or very bad HQ are generally well captured
by subjective pilot ratings. However, under certain conditions, a region of pilot subjec-
tive ratings shows considerable variation 27, as illustrated by the uncertain region in Fig-
ure 3.1. This high variety in subjective pilot ratings suggests that awarded HQR in such
conditions should be carefully examined before any qualitative HQ assessment 46,146.

These two drawbacks (i.e., limitations of theoretical pilot models and the diversity
in awarded pilot ratings) bring a new opportunity for a novel HQ and RPC assessment
research that utilizes objective manual control behaviour. The new methodology pro-
posed in this thesis, MCIM, originates from this idea.

Section 3.1.1 will describe the development of the MCIM. Next, Section 3.1.2 will
provide the outline of the MCIM. The following sections will describe each element of
the MCIM in detail. Section 3.2 will explain the selection of rotorcraft model and applied
additional time delay to be used in MCIM. Section 3.3 will provide information about the
selection of forcing function bandwidth as a measure of task difficulty in MCIM. Next,
the forcing function to be used in simulator experiments for manual control identifica-
tion in MCIM will be described in Section 3.4. As a fourth step, Section 3.5 will describe
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the techniques to be used for PVS analysis in MCIM. Next, RPC detection tools to be uti-
lized in MCIM will be provided in Section 3.6. Finally, Section 3.7 will conclude on the
development and methodology of the MCIM.

3.1.1. MCIM DEVELOPMENT

In 2009, Damveld 20 developed a methodology which utilizes the identification of the
pilot control behaviour for HQ assessments of fixed-wing aircraft with various aeroe-
lastic characteristics. This method, the so-called Experimental Behavior Measurement
Method (EBMM), evaluates the crossover regression as an indication of HQ when the
task difficulty is altered for tracking tasks. After a certain level of task difficulty is reached,
pilots noticeably changed their control strategies which were determined by using iden-
tification of pilot control behaviour.

MCIM adapts a similar rationale of the EBMM, such that HQ of an aerial vehicle can
be assessed by investigating the manual control behaviour in an objective manner, e.g.,
manual control identification. However, there are several differences between EBMM
and MCIM. First, EBMM focuses on the pilot control behaviour for fixed-wing aircraft
with different aeroelastic characteristics in a tracking task with various task difficulties.
Whereas the MCIM focuses on the manual control behaviour for rotorcraft with added
time delays and varied task difficulties. As discussed in the previous chapter, added
time delay and varied task difficulty are two linked contributors of HQ deficiencies and
RPC susceptibility, which are considered in MCIM. In other words, whereas the EBMM
focuses on the determination of the HQ of the aircraft, the MCIM also considers the
RPC proneness of the rotorcraft, and provides information about the relation between
the RPC susceptibility and the changes in manual control behaviour. A second difference
between EBMM and MCIM is the parametrization of the identified manual control be-
haviour. EBMM mainly uses the open-loop crossover frequency to assess the HQ of the
aeroelastic aircraft. Pilot describing functions are obtained but a pilot model structure
has not been used. The MCIM utilizes not only crossover frequencies, but also identi-
fied parameters of the estimated pilot model structure. Finally, EBMM primarily targets
high-frequency aspects of the pilot control behaviour correlated with aeroelastic modes,
whereas the MCIM focuses on low and mid-frequency manual control during which pi-
lots exhibit cognitive controls. Advantages and disadvantages of both EBMM and MCIM,
and other typical HQ assessment methods are listed in Table 3.1.



3

54 3. METHODOLOGY

Table 3.1: Summary of advantages and disadvantages of some HQ evaluation methods including MCIM. The
original table is adapted form Ref. [20].

HQ method Advantages Disadvantages
T
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ys
is Neal-Smith • Correlates handling qualities

to only two parameters (phase
compensation and resonance
peak)

• Quantifiable measures

• Prediction can be erroneous

• Limited human operator model

• Fixed bandwidth

• Restricted to simple tasks

• No feel-system present

BPD • Correlates handling qualities
to only two parameters (band-
width and phase delay)

• Quantifiable measures

• Prediction can be erroneous

• Limited human operator model

• Fixed stability margins

• Restricted to simple tasks

• No feel-system present

P
il

o
te

va
lu

at
io

n Cooper-Harper • Real pilot behaviour and opin-
ion

• Evaluates all aspects of realistic
tasks

• Lack of stress or anxiety

• Lack of insight in cause

• Quasi-quantitative (subjective)

HQDT • Reveals hidden deficiencies due
to forced high-bandwidth con-
trol behaviour

• Pilots regard piloting technique
highly unnatural

• No quantifiable measures

C
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n
tr
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lb

eh
av

io
u

r
m

ea
su

re
m

en
t EBMM • Reveals hidden high bandwidth

deficiencies

• Real pilot behaviour

• Correlates handling qualities
to a few behavioural param-
eters (open-loop crossover
frequency, phase margin, pilot
describing function)

• Feel-system present

• Pilots can use natural piloting
technique

• Restricted to simple tasks

• Does not evaluate all aspects of
realistic tasks

MCIM • Correlates handling qualities to
a few behavioural parameters

• Feel-system present

• Quantifiable measures (open-
loop crossover frequency, phase
margin, pilot describing func-
tion)

• Identified pilot model parame-
ters

• Time delay and Task difficulty
and their combined effects on
HQ and RPC tendency

• Utilized RPC detection tools

• Restricted to simple tasks

• Does not evaluate all aspects of
realistic tasks
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3.1.2. MCIM OUTLINE
In MCIM, a single-axis disturbance-rejection task is utilized with visual cues only. The
schematic representation of a disturbance rejection task is shown in Figure 3.2.

e u

n
fd

θHp ( jω) HC E ( jω)

+++

+ ++
−

0

Pilot Controlled
Element

Figure 3.2: Block diagram of the compensatory disturbance-rejection task in MCIM.

As shown in Figure 3.2, in a compensatory single-axis disturbance-rejection task in
the pitch (or roll) channel, human operators try to minimize the displayed error (e)
which is originated from the difference between the disturbance forcing function ( fd )
and the vehicle pitch θ (or roll φ) response due to applied pilot control (u). In Figure 3.2,
quasi-steady pilot model is given as the linear behaviour model (Hp ( jω) ) summed with
pilot remnant (n) accounted for nonlinear control inputs. The rotorcraft represented as
the CE is a linear on-axis frequency response of the rotorcraft (HC E ( jω)).

Considering the task in MCIM, adding a time delay to the CE causes a phase margin
reduction, and results in an open-loop instability which occurs at lower frequencies than
no delay conditions, as discussed in the previous chapter. In addition, increasing the
bandwidth of the forcing function causes the task to becomes harder. Thus, the human
operator may need to exhibit a crossover regression strategy to maintain performance at
a sufficient level, as outlined in the previous chapter. Individual and combined effects of
these two contributors, i.e., added time delay and forcing function bandwidth (here also
referred to as task bandwidth), can determine the tolerance of the rotorcraft model under
manual control to complete a given task. MCIM identifies manual control behaviour of
human operators subjected to rotorcraft models with these individual and combined
conditions. MCIM proposes that the conditions at which control strategies of human
operators noticeably change, e.g., the crossover regression, can be used as a measure
of the HQ and RPC proneness. MCIM A schematic overview of the MCIM is shown in
Figure 3.3.
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Figure 3.3: A schematic overview of the MCIM, with five steps of the methodology.

The outline of this chapter coincides with the proposed steps of the MCIM in Fig-
ure 3.3. Brief descriptions of these steps are given as follows:

• Step 1: Rotorcraft model with added time delay
The first step consists of the rotorcraft model to be used in the MCIM. The model
should be able to significantly represent the vehicle characteristics, especially aro-
und the possible crossover frequency region which can be considered as low and
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mid-frequencies when rotorcraft dynamics are taken into account. In addition,
the rotorcraft model should be able to include additional time delay, which is used
here to vary the HQ deficiencies and RPC tendencies. Details of this step will be
further described in Section 3.2.

• Step 2: Task difficulty by forcing function bandwidth
As a part of the MCIM, human operators are exposed to a random appearing forc-
ing function, i.e., disturbance, which excites the PVS. In this thesis, the bandwidth
of the forcing function represents the difficulty of the task that human operators
have to compensate with the given rotorcraft model. It can lead the human oper-
ator to adopt a ’regressed’ control strategy, which can be observed by the classical
crossover regression. This step of determination the forcing function will be de-
scribed in detail in Section 3.3.

• Step 3: Disturbance-rejection task
As shown in Figure 3.3, MCIM utilizes a compensatory disturbance-rejection task
to be used in identification experiments. In this task, a disturbance signal is in-
jected to the PVS and human subjects aim to null the displayed error originated
from the difference between the disturbance and the response of the rotorcraft
model. By using this compensatory task, it is possible to identify the manual con-
trol behaviour. Details of this task will be described in Section 3.4.

• Step 4: PVS analysis
Measured data from the disturbance-rejection task are analysed in this step. Mea-
sured time traces of the displayed error (input to the human operator) and corre-
sponding pilot control activity (output of the human operator) are processed. With
the LTI assumption, the output-to-input relation of the human operator defines
the control behaviour, which can be determined by identification techniques. The-
refore, variations in manual control strategies for combinations of added time de-
lay and task difficulty can be examined. Measured errors, manual control activ-
ities, open-loop crossover frequencies, phase margins and identified pilot model
parameters are analysed in this step. Detailed description of this PVS analysis pro-
cess will be given in Section 3.5.

• Step 5: RPC detection
This step consists of applying two RPC detection tools; ROVER and PAC. These
tools are used on the data obtained from identification experiments. Particularly,
the conditions in which human operators exhibit crossover regression tendencies
are checked with the detected RPC occurrences. As a result, correlations between
the change of pilot control strategy and RPC susceptibility of the rotorcraft model
in these conditions can be obtained. Section 3.6 will describe the application of
RPC detection tools in MCIM.
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3.2. STEP 1: ROTORCRAFT MODEL WITH ADDED TIME DELAY

IN MCIM
In this thesis, the Bo-105 helicopter (Figure 3.4) is chosen to be simulated. An interest-
ing feature of Bo-105 is the hingeless rotor mechanism which allows the rotor moments
to be transferred to the rotorcraft body. Thus, it exhibits higher manoeuvrability than
rotorcraft with conventional articulated rotor. As a result, it provides an interesting re-
search field for HQ and RPC studies. Moreover, Bo-105 is a well-known helicopter in
HQ and RPC researches due to extensive flight test and identification data which are
publicly available 56. Particularly, DLR conducted many flight tests with Bo-105, dedi-
cated to HQ and RPC research. For instance, Ockier 108 investigated the effect of added
time delay on HQ of Bo-105 during a side-step task.

Figure 3.4: Bo-105 helicopter (www.dlr.de).

Development of rotorcraft simulation models has several challenges. Some of the
major challenges arise from inherent rotorcraft characteristics such as nonlinear and
coupled responses depending on the flight speed and manoeuvre, aerodynamically chal-
lenging environment with the wake of both main and tail rotors, cross-coupled flight
controls, interacting fuselage and rotor modes, and high demand on operational per-
formance and safety with nap-of-the-earth mission profiles 36. Considering these chal-
lenges, a common follow-up question in the rotorcraft simulation community can be
addressed as: ’What would be the appropriate simulation fidelity of a rotorcraft simula-
tion model?’. The answer to this question solely depends on the ’aim’ of the simulation
effort. Depending on the aim, rotorcraft models with various fidelities have been devel-
oped, and continue to be evolved 111. For example, a decoupled and linearised model
can be considered as a simple model, whereas a sophisticated aeroelastic simulation
model with non-linear wake features can be an example of a complex model.
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Pavel 114 investigated the necessary Degree of Freedom (DoF) to be simulated in heli-
copter (and wind turbine) models by using critical pole distance criterion, which mainly
determines the couplings between the rotorcraft body and the main rotor modes. Prior
to the development of this criterion, a literature survey was conducted on rotorcraft DoF
as a measure of model complexity, as shown in Table 3.2.

Table 3.2: Simulation model complexity for various helicopter applications, adapted from Ref. [114].

Model Complexity 6 DoF 8 DoF 9 DoF 10 DoF 12 DoF 16 DoF

Basic aircraft
Low frequency articulated ■
maneuver hingeless N N N
High frequency articulated N N
maneuver hingeless ■ N N

Helicopter+SCAS system
Fuselage articulated N N
feedback hingeless N ■ N
Fuselage/Rotor articulated N N N N
feedback hingeless N N N N

Full HHQ Basic aircraft
Within Envelope N N N
At the Boundary N ■

Specific HHQ N N N

■ : model used in most of the cases 6 DoF: Fuselage + Quasi-static Rotor
N : model used for some cases 8 DoF: Fuselage + First-order Disc-Tilt Dynamics
HHQ : Helicopter Handling Qualities 9 DoF: Fuselage + Second-order Disc-Tilt Dynamics

10 DoF: Fuselage + Rotor Flap +rpm
12 DoF: Fuselage + Rotor Flap +Rotor Lead/Lag
16 DoF: Fuselage + Rotor Flap + Rotor Lead/Lag + Pitch + rpm

Table 3.2 shows that rotorcraft simulation community chooses the required DoF for
their specific needs per application. In addition, Padfield 111 provides a summary of sim-
ulation fidelities depending on the rotor modeling and corresponding applications, as
shown in Table 3.3. As Table 3.3 illustrates, Level 1 and Level 2 simulation fidelities of
rotor modeling are appropriate for parametric HQ research studies.

It is worth noting that this thesis mainly focuses on the manual control behaviour,
instead of achieving high fidelity rotorcraft models. Thus, instead of a sophisticated ro-
torcraft simulation model, a simple (yet still representative) form of a rotorcraft response
model is utilized. Moreover, this form has to be a linear model since this thesis contains
LTI identification methods, which will be described in Section 3.5. With a linear rotor-
craft model, a state-space representation of the coupled body and rotor equations of
motion can be achieved 122, as shown in Eq. (3.1).
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Table 3.3: Rotorcraft simulation fidelity based on rotor modelling and corresponding applications, taken from
Ref.[111].

Level 1 Level 2 Level 3

Aerodynamics •linear 2-D dynamic inflow •non-linear(limited 3-D) •non-linear (full 3-D)
dynamic inflow wake analyses

•local momentum theory •local momentum theory (free or prescribed)
•analytically integrated loads •local effects of BVI •unsteady 2-D compressibility

•unsteady 2-D compressibility •numerically integrated loads
•numerically integrated loads

Dynamics •rigid blades (1) rigid blades with •detailed structural
(1) quasi-steady motion as in Level 1 representation as elastic
(2) 3 DoF flap (2) limited number of blade modes of finite elements
(3) 6 DoF flap + lag elastic modes
(4) 6 DoF flap + lag +

quasi-steady torsion

Applications •parametric trends for •parametric trends for flying •rotor design
flying qualities and qualities and performance •rotor limit loads prediction
performance studies studies up to operational •vibration analysis
well within operational flight envelope •rotor stability analysis
flight envelope •medium bandwidth up to safe flight envelope

•low bandwidth control appropriate to high gain
active flight control

(3.1)

where the state vector contains the three translational velocity components u, v and w ,
the three rotational velocity components p, q and r , the Euler angles φ and θ, longi-
tudinal δx and lateral δy cyclic inputs, collective δ0 and pedal δT R inputs, longitudinal
(a0, a1) and lateral b1 rotor states. Rotor states in Eq. (3.1) can be extended with flap-
ping, lead-lag, inflow and torsion modes, with required order of harmonics. As indicated
by the dark-shaded regions in Eq. (3.1), both rigid body and rotor have their state and
control matrix partitions directly responsible for their state derivatives. In addition, cou-
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plings between the body and the rotor introduce body/rotor or rotor/body coupled state
matrix terms which are indicated by the light-shaded regions in Eq. (3.1).

In order to obtain the Bo-105 rotocraft model to be used in MCIM, three simplifi-
cations are considered starting from the coupled linearized model (Eq. (3.1)). Section
3.2.1 will describe the first simplification, which is on the rigid body and rotor mode
couplings. Then, Section 3.2.2 will continue with discussing the longitudinal and lateral
axes responses and their interaction. Finally, Section 3.2.3 will describe the simplifica-
tion on the on-axis response.

3.2.1. SIMPLIFICATION I : RIGID BODY/ROTOR COUPLINGS
In MCIM, couplings between the body and the rotor are neglected.

A high fidelity rotorcraft model generally includes the main and tail rotors, the body
(i.e., fuselage), and their coupled modes, as McRuer 78 exemplified in a roll axis model,
shown in Figure 3.5.K1-2 
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Figure I .  Roll Rate to Cyclic Transfer Function of a Large Modem Helicopter 

flight and ground tests using a variety of forcing 
functions including transient inputs, single and sums of 
sinusoids, and frequency sweeps (Refs. 2-3). The model 
transfer function determined for rolling-velocity/cyclic is 
not simply a best fit of the particular data shown. 
Instead it was developed based on compatible identifica- 
tions for all axes and measured state variables of the 
helicopter (Ref. 2). 

The Figure 1 data exemplify the sort of information 
needed to define the effective controlled element. It 
exhibits the many dynamic modes involved. To get to 
this level of thorough, yet still preliminary, under- 
standing of system interactions relies, for openers, on 
modelling, identification, and physical system meas- 
urement disciplines which themselves constitute major 
players in interactive disciplinary systems technology. 

Let us now disclose just what kinds of interactions 
underlie this dynamic model. The domain of conven- 
tional aerodynamic stability and control is reflected in the 
rigid body modes of the helicopter, shown in Figure 1 as 
the lateral hovering cubic, modified at mid-frequencies by 
the stability augmentation system (SAS). The rotor 

dynamics are present in the rotor lags, regressive and 
progressive. Structural dynamics contribute to the action 
by way of the fmt, second, and third body flexible 
modes. The propulsion system makes a minor contribu- 
tion by introducing a dipole pair due to the engine drive. 
In fact, several of the modes are represented by dipole 
pairs that nearly cancel in this particular transfer function, 
although they remain important elements in other degrees 
of fieedom, and can be sources of surprises when the 
dipoles shift or separate. Even the external load 
dynamics enter the picture: first by adding an additional 
pitchheave oscillation due to the load bouncing on cables 
and, second, by the general raising or lowering of the 
aircraft gain by virtue of the need to balance the load 
with collective. 

The major conclusion to be drawn from Figure 1 is that 
there are extensive interactions between a large number 
of phenomena that have diverse origins and that 
untangling this big mess demands further interactions 
among many cooperative disciplines. 

So far, nothing has been said about placing this messy 
set of dynamics under control. In this respect, there are 

Figure 3.5: Bode plot of a helicopter roll response, adopted from Ref. [78].
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As illustrated in Figure 3.5, rotor lag (regressive and progressive) and flexible body
modes can be beyond mid-frequency with high order dynamics. This thesis focuses on
the pilot active control in compensatory tracking, and this activity occurs at relatively
lower frequencies than rotor modes and body flexibility modes 78, as shown in Figure 3.5.
Another high fidelity rotorcraft (Bo 105) simulation model, which is a 7th order transfer
function of the roll response, is provided by Tischler and Remple 134 as follows;

φ

δl at
= 2.62

Roll−y aw︷ ︸︸ ︷
[0.413,3.07]

Lead-lag
to control︷ ︸︸ ︷

[0.0696,16.2]

Actuator︷ ︸︸ ︷
e−0.0225s

[0.277,2.75]︸ ︷︷ ︸
DutchRol l

[0.509,13.7]︸ ︷︷ ︸
Roll− f l ap

[0.0421,15.]︸ ︷︷ ︸
Lead−l ag

r ad/%− l at (3.2)

where notation [ζ,ω] represents the damping and the natural frequency of a second order
system (s2 +2ζωs +ω2). In Eq. (3.2), one can see the second order oscillatory couplings
of body roll and rotor lateral flapping modes, body Dutch roll and rotor lead-lag modes.
Although this kind of high order models can represent the characteristics of a rotorcraft
with a high fidelity 134, the aim of this thesis is more into the compensatory pilot control
behaviour which does not solely depend on high frequencies characteristics of the con-
trolled element.

By decoupling the rigid body and the rotor modes, the state-space representation of
the rotorcraft generally reduces to a 6 DoF model (i.e., classical coupled body modes)
with an equivalent time delay accounted for the high-frequency rotor dynamics. Al-
though this simplification significantly downgrades the fidelity of the simulation model,
examples of such simple models are present in the literature, specifically addressed for
HQ studies. For example, Kaletka et al. 56 conclude that models of Bo-105 with 6 DoF
including equivalent time delay, which represents the rotor dynamics, are satisfactory
for HQ applications and piloted simulations. In an AGARD report dedicated to identi-
fication of rotorcraft systems, it is concluded that 6 DoF models of Bo-105 with rotor
dynamics approximated by equivalent time delays are well suited for the lower and mid-
frequency range, where HQ aspects of the vehicle are effective 56. Moreover, Thischler
and Cauffman 133 state that ’A quasi-steady formulation in 6 DoF is commonly used in
rotorcraft system identification for application to simulations or handling qualities that
do not require high-frequency validity (p.9).’ Kaletka and Gimonet 55 conclude that a 6
DoF model is sufficient to simulate the hovering Bo-105 to be used in piloted simula-
tions and HQ applications. Similarly, Rohlfs et al. 122 states that a 6 DoF model with main
rotor dynamics approximated by equivalent time delays for the controls provide a reli-
able representation of the Bo-105 rotorcraft dynamics in low and mid-frequency range,
and this approach is appropriate and useful for applications for HQ evaluations and less
demanding control system designs.
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3.2.2. SIMPLIFICATION II : LONGITUDINAL/LATERAL COUPLINGS
In MCIM, couplings between longitudinal/heave and lateral axes are neglected.

After achieving the 6 DoF state-space form of the rigid body dynamics, lateral and
longitudinal (with heave) partitions of stability and control matrices can be grouped 36,
as shown in Eq. (3.3).

(3.3)

where the classical state matrix and state derivatives are the same as the ones given in
Eq. (3.1), without the contribution of the rotor dynamics. In other words, the state matrix
in Eq. (3.3) is the ’rigid body’ partition of the state matrix which was shown in Eq. (3.1).
Longitudinal and lateral partitions of the 6 DoF rigid body are highlighted in Eq. (3.3).

Rotorcraft, particularly hingeless rotor configurations like Bo-105, exhibit strong pitch-
roll cross-couplings. Ockier and Pausder 109 states that ’... this coupling is inherent to
the stiff rotor system and large hinge offset required to generate the large rotor moments
needed for agility and responsiveness (p. 4-12)’. However, there are examples of de-
coupling longitudinal and lateral axes responses as well, particularly used in HQ and
RPC studies, controller designs and system identification efforts. For example, Lawler et
al. 64 conducted a research on identification of the longitudinal/heave-axis bare-airframe
dynamics for the heavy gross weight hover configuration of CH-47F helicopter, as a part
of the Digital Automatic Flight Control System development program. Bottasso et al. 15

investigated the Galerkin Projection method to be used in computing optimal trajecto-
ries for rotorcraft systems, which was demonstrated by a longitudinal model only. Ku-
mar et al. 62 developed a Stability Augmentation System, by utilizing Linear Quadratic
Regulator (LQR) approach, used for helicopter longitudinal and lateral axes individually,
particularly in conjunction with ADS-33 metrics.
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3.2.3. SIMPLIFICATION III : PITCH(ROLL) RESPONSE
In MCIM, pitch (and roll) responses are chosen to be only the pitch (and roll) subsidence
modes.

This final simplification reduces the rotorcraft model into one DoF model, only effec-
tive in one axis, longitudinal or lateral in this thesis. Considering the inherent complexity
of rotorcraft response characteristics, this state-space model can only be representative
of rotorcraft dynamics in low and mid-frequencies in a single axis task in a HQ related
study. From a practical perspective, this simple model simulates the short-term dynam-
ics of the vehicle after a pilot input in a single axis task. The baseline model structure
in this thesis is a single axis quasi-steady state model for longitudinal and lateral axes,
so-called ’conceptual handling qualities model’ 111, as given in Eq. (3.4) and Eq. (3.5).

Pi tch Model :
θ

δlon
( jω) = Mδlon

jω( jω+Mq )
e−τs ( jω) (3.4)

Roll Model :
φ

δl at
( jω) = Lδl at

jω( jω+Lp )
e−τs ( jω) (3.5)

where Mδlon
and Lδl at

are control derivatives, Mq and Lp are the aerodynamic pitch and
roll dampings , q and p are the pitch and roll rates, θ and φ are the pitch and roll Euler
angles, δlon and δl at are the longitudinal and lateral cyclic inputs and τs is the inherent
delay accounting for the high-frequency rotor dynamics.

In Bo-105, as having a hingless rotor, the body pitch mode and the longitudinal flap-
ping mode are distinct real roots, unlike the coupled roll and flapping oscillations. The
main reason is the considerable difference between rotorcraft pitch and roll moment of
inertias in corresponding axes. Therefore, the rotor can be considered as an actuator in
series with the quasi-steady rigid body mode in pitch axis 134. In addition, Cooke and
Fitzpatrick 18 state that for the short-term or pitch (subsidence) mode: ’... when the pi-
lot wishes to manoeuvre the aircraft he will be only be concerned with the response in the
short-term and therefore the short-term dynamic modes along with the control deriva-
tives can be used to predict the handling qualities of the helicopter. The time constant of
the pitch subsidence mode is dependent solely on the value of Mq (p. 160).’

Several studies considered the single-axis state-space models for pitch and roll axes,
i.e., conceptual handling qualities models, for low and high bandwidth rotorcraft, e.g.,
with articulated and hingeless rotors. For example, Blanken et al. 14 used first-order
state-space models without time delay on each axis of four different class of helicopters
in a piloted simulation study focusing on ADS-33 HQ research. Ockier and Puasder 109

used both pitch and roll state-space models in a HQ study with Bo-105 helicopter, mainly
investigating the effects of additional cross-coupling terms on HQ evaluations with ADS-
33. Mitchell et al. 98 used pitch and roll quasi-state models (i.e., Eq. (3.4) and Eq. (3.5)
without any time delay as rotor dynamics τs = 0), and investigated the pilot control
adaptation to added dynamics to these baseline models.

Heffley 36 provides a general trend of on-axis pitch and roll damping for teetering,
articulated and hingeless rotors, as shown in Figure 3.6.
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Figure 3.6: Pitch and roll dampings with hinge offsets for various types of rotor systems, adapted from Ref.[36].

As a general trend, Mq and Lp are correlated with the effective hinge offset, as it can
be seen in Figure 3.6. This trend is highly coherent with the degree of transfer of blade
moments to the rotor hub, such that hingeless rotors with high equivalent hinge offset
values exhibit the largest aerodynamic damping values.

Blanken and Pausder 12 used the same state-space models (i.e., Mq and Lp ) as base-
line rate command vehicle models for their HQ research. Their HQ assessment criterion
was the BPD criterion in the ADS-33. The BPD criterion is thoroughly discussed in the
previous chapter, Section 2.2.2.2. Briefly, BPD determines two parameters based on the
frequency response of the rotorcraft; the bandwidth and phase delay. Bandwidth pa-
rameter (e.g., ωBWφ in roll-axis) represents the possible highest frequency which allows

the pilot to double his/her control gain or to attain a 135% phase lag 111. Phase delay
parameter (e.g., τpφ ) quantifies the phase lag characteristics of the vehicle at mid- and

high- frequencies. By using the BPD criterion, Blanken and Pausder 12 investigated the
sensitivity of HQ with additional time delay and varied roll aerodynamic damping term,
Lp , as shown in Figure 3.7.

Figure 3.7 is a typical roll BPD chart, in which right-down direction (i.e., high band-
width and low phase delay) represents good HQ, whereas left-up direction(i.e., low band-
width and high phase delay) is towards worse HQ. It can be seen in Figure 3.7 that de-
creasing Lp in the quasi-steady roll rate command model resulted in lower rotorcraft
bandwidth and higher phase delay for low bandwidths. Similarly, increasing added time
delay resulted in both reduced bandwidth and increased phase delay. Due to the com-
bined effect of reduced bandwidth and increased phase delay, it can be seen in Figure 3.7
that added time delay cause a more rapid HQ degradation when compared to effects of
decreased Lp .



3

66 3. METHODOLOGY

Figure 3.7: Effects of time delay and roll damping (Lp ) on roll BPD, adapted from Ref. [12].

It is worth noting that added time delay is one of the two independent variables used
in the MCIM. As illustrated in Figure 3.7, if an inherent time delay (τs ) is included in
the model describing function, then added time delay can be simply added to the τs ,
representing the new transport delay between the pilot input and the vehicle response.
Therefore, by changing the values of τs in Eq. (3.4) and Eq. (3.5), added time can be in-
cluded in the single-axis state-space model. In MCIM, this approach is used to increase
the added time delay.

3.2.4. MCIM ROTORCRAFT MODEL IN ADS-33 TERMINOLOGY

COMMAND RESPONSE-TYPE OF THE MCIM ROTORCRAFT MODEL

In ADS-33, several Response-Types are defined 6. Particularly, Attitude, Translational
Rate and (rotational) Rate Command Response-Types are the most important types to
discuss for the MCIM. Attitude Command Response-Types in ADS-33 means that a step
cockpit input (e.g., longitudinal cyclic) shall produce a proportional attitude change
(e.g., pitch), and this attitude shall remain essentially constant for a certain time. In
Translational Rate Command Response-Types, constant cockpit input shall produce a
proportional steady translational rate, with respect to the Earth, in the appropriate direc-
tion. In ADS-33, a Rate Command Response-Type is classified if a response fails to meet
the requirements defining the characteristics of an Attitude Command or a Translational
Rate Command Response-Type. A basic requirement of Rate Command Response-Types
is that the initial and final cockpit controller force shall be the same sign, following an
attitude change. Furthermore, Rate Command Response-Types do not require a specific
shape of the attitude response to control inputs 6, but it contains the proportional con-
trol of the attitude rate response of the rotorcraft (inherently including the acceleration
command). Figure 3.8 illustrated typical attitude responses to a step control input, for
different Response-Types.
As it can be seen Figure 3.8, a step control input results in a continuous attitude change

(e.g., pitching) in a Rate (and Acceleration) Command Response-Type. On the contrary,
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Figure 3.8: Several attitude responses to a cockpit step control input for various Response-Types, adapted from
Ref. [111]. The acceleration command is added for completeness.

Attitude and Translational Rate Command Response-Types bring the rotorcraft to a ‘de-
manded’ attitude, and they aim to maintain this attitude steady. This attitude stabiliza-
tion generally requires high levels of outer-loop augmentation 111, whereas Rate Com-
mand Response-Types are generally regarded as the simplest practical type found with
conventional helicopters. In Figure 3.8, the Acceleration Command Response-Type was
added for completeness, and in ADS-33 terms, it belongs to the Rate-Response Types
category.

The rotorcraft model that is used in the MCIM (i.e., Eq. (3.4)) is a Single Input Single
Output (SISO) system, which can be represented in the state-space form as :

θ̈ = Mq θ̇+Mδlon
δlon(t −τs ) (3.6)

where the parameters were described in Eq. (3.4), and the only observation term is
the pitch attitude (θ). From both Eq. (3.4) and Eq. (3.6), it can be seen that the pitch at-
titude stabilization loop behaves like an integrator up to the frequency -Mq . This means
that the pitch angle rate θ̇ (i.e., q in this SISO form) is proportional to the control input
δlon , which is applied with the inherent time delay (τs ). Beyond this -Mq frequency, the
vehicle response transforms into a double-integrator type, which means that the pilot
controls the pitch acceleration θ̈ (i.e., q̇). Therefore, the rotorcraft model in the MCIM
can be considered as a Rate Command Response-Type, which is essentially a combina-
tion of rate and acceleration command types switching at the frequency defined by the
pitch aerodynamic damping (i.e., -Mq ).

PIO PREDICTION OF THE MCIM ROTORCRAFT MODEL

The only PIO consideration in the ADS-33 is : ‘... For Attitude Command Response-
Types, if the bandwidth defined by gain margin is less than the bandwidth defined by
phase margin, or is undefined, the rotorcraft may be PIO prone. In this case flight testing
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shall be performed to determine acceptability (p. 10).’ A detailed discussion on this PIO
statement can be found in Ref. [45]. In summary, the reason is the risk of a sudden re-
duction of the PVS phase margin due to an abrupt change of the pilot gain, in Attitude
Command Response-Types. A similar characteristics was exemplified in Section 2.2.2,
as an example of a gain margin limited system (Figure 2.5). Since the MCIM rotorcraft
model is a non-augmented Rate Command Response-Type (i.e., not an Attitude Com-
mand Response-Type), this PIO consideration in ADS-33 is not applicable to the MCIM
analysis. Therefore, ADS-33 is solely used for HQ predictions in this thesis, and PIO (i.e.,
RPC) susceptibility will be determined by RPC detection tools, which will be described
in Section 3.6.

Some of the fixed-wing applications of ADS-33 indicate boundaries of PIO prone-
ness 125, which are based on fixed-wing flight test data. On the contrary, rotorcraft ap-
plications of ADS-33 do not have such globally accepted PIO boundaries on BPD charts.
Despite this lack, several rotorcraft research and development projects have used these
fixed-wing PIO boundaries, but only as a reference 115. In this thesis, such PIO bound-
aries are plotted on ADS-33 charts as well, but only to provide an insight on PIO predic-
tions based on ‘fixed-wing’ considerations. As it was exemplified in Section 2.2.2, rotor-
craft and fixed-wing BPD characteristics could differ significantly, thus, fixed-wing PIO
boundaries shall not be taken quantitatively for rotorcraft interpretations.

3.3. STEP 2: TASK DIFFICULTY BY FORCING FUNCTION BAND-
WIDTH IN MCIM

In MCIM, the disturbance signal ( fd in Figure 3.2) defines the ’flying task’, and it is used
in the manual control identification process. This task is in the form of a disturbance-
rejection task, during which human operators aim to minimize the vehicle attitude error
due to the applied disturbance. This task is equivalent to a tracking task since it is only a
visual task in this thesis, as shown in Figure 3.2. Controlling the attributes of the forcing
function allows various flying tasks to be designed by mastering the frequency content
and the resultant time history of the disturbance signal.

The aim of the disturbance forcing function is to provide sufficient excitation to the
PVS such that the manual control behaviour can be identified. If the power of the forcing
function is too low, then the human operator would not respond with sufficient control
activity to be identified, since the error (e) to be minimized would be too small. Such
insufficient excitation limits the application of system identification techniques. If the
power of the forcing function would be too high, then the human operator would be
exposed to violently changing error, and he/she would not show much active compen-
sation in this ’chaotic’ turbulence-like task. Therefore, disturbance functions should be
chosen considering the main elements of the compensatory task: the pilot and the CE,
and the power spectra should be carefully designed.

Forcing functions can be classified according to their power spectra distribution as
continuous and discrete, as demonstrated in Figure 3.9.
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5.4 Forcing Function Design

In the previous sections it was explained that the experimental behavior measurement method

assesses the aircraft handling qualities by measuring the behavior of the pilot during a target

tracking task. It was assumed that the pilot will show crossover regression when tracking

the forcing function becomes too difficult with the aircraft dynamics involved. In many

cases the difficulty of the forcing function is expressed in terms of its bandwidth ωi, which

is defined as a sharp power cut-off. Examples are given in Figure 5.16.
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Figure 5.16: Power spectra of several forcing functions.

In general, forcing functions can be classified in two groups, those with power at only a

selected number of frequencies (multi-sines), and those with a continuous power spectrum.

The latter group is referred to as continuous-spectrum forcing functions, even though their

power spectra become discrete after sampling. The actual class of forcing functions used

mainly depends on the applied identification method.

The forcing function plays a very important role in the experimental behavior measure-

ment method. The goal of the forcing function is twofold:

• to force and quantify the occurrence of crossover regression,

• to enable system identification of the effective open-loop pilot describing function at

a wide frequency range.

In order to accomplish these goals, the forcing function will have to satisfy several

requirements. The requirements to force and quantify the occurrence of crossover regression

will be explained in Section 5.4.2. It will be shown that, apart from bandwidth, other aspects

of the forcing function can have a significant effect on the level of difficulty of the task as

well. A method is proposed to take these effects into account when designing the tracking

signals.

In addition, the forcing function will have to meet a number of system identification

requirements to obtain the pilot describing function over a wide frequency range. Since
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has significantly less power per sine. It is assumed that the power in the shelf is low enough

to not affect the pilot’s low-frequency control behavior. The shelf contains nevertheless

enough power to allow the pilot describing function to be identified beyond the crossover

frequency.
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high-frequency shelf.

Figure 5.18b illustrates the effect of a high-

frequency shelf on the performance, which

has been calculated by means of the cross-

over model of Equation 5.6. The shelf con-

tains a power drop of −60 dB as shown in

Figure 5.18a. The shelf cut-off frequency has

been made dimensionless by means of τe, and

amounts to 4.139/τe rad/s.

The most significant effects of the shelf are

an increase of the normalized error, and the re-

location of the normalized error optimum e2
i /σ2

i

from the stability boundary to a lower value of

τeωc. The latter effect is more pronounced for the lower bandwidth values.

When the power of the high-frequency shelf is increased, as has been done in Fig-

ure 5.19, the performance optimum moves to even lower values of τeωc. Since τe remains

constant along the solid lines of constant τeωi, the pilot will have to reduce his crossover

frequency. This is in agreement with the work of Elkind (1956). From his B5 and B6 forcing

function data can be deduced that an increase of the shelf power indeed results in a lower

crossover frequency.

In addition, the Elkind data showed a decreased effective time delay when the shelf

power is increased. This decrease of effective time delay is similar to that occurring for

an increase in forcing function bandwidth. The effect of the power in the high-frequency

shelf apparently reveals itself as a pseudo-bandwidth which is slightly higher than the actual

bandwidth. The shelf leads to higher effective time delays and slightly lower crossover fre-

quencies than would be expected based on the defined bandwidth. Consequently, the power

in the high-frequency shelf should be chosen to be as low as possible.

When the experimental behavior measurement method is used to compare the handling

qualities of different aircraft in different experiments, the high-frequency shelves should not

unintentionally affect the results. Therefore it is recommended to develop a standardized set

of forcing functions, or at least to use the same forcing functions as have been used in the

experiment to which the results should be compared.

(d) Discrete PSD

Figure 3.9: Continuous spectra (a and b), discrete (multi-sine) spectra (c), and spectra of multi-sine with high-
frequency low-amplitude shelf (d), taken from Ref.[20].

After sampling, forcing functions with continuous-spectra can be considered as dis-
crete with the frequency resolution depending on the sampling rate 20. In MCIM, a dis-
crete PSD forcing function with sharp power cut-off is used, as illustrated in Figure 3.9-d.
In MCIM, the forcing function should be able to:

• trigger a crossover regression strategy, and

• be used in identification of manual control behaviour at a wide frequency range.

The forcing function should exhibit a Gaussian magnitude distribution. Pintelon and
Schoukens 118 state that a non-linear system will be best approximated to a linear system
when subjected to Gaussian input signal. Slack 126 mentions that five or more sines in a
multi-sine signal can be enough to provide a quasi-Gaussian distribution. A discrete-
spectrum multi-sine, so-called ’sum of sines’ can be defined as;

fd (t ) =µ fd
+

N∑

j=1
A j sin(ω j t +φ j ) (3.7)

where µ fd
is the mean, N is the number of sines, A j , ω j and φ j are amplitudes, fre-

quencies and phases of the sines respectively. In order to design the forcing function
according to the requirements of the identification method, parameters of the multi-
sine signal should be carefully considered. In MCIM, both in pitch and roll axes, applied
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forcing functions have zero mean. The number and frequencies of the sines in the forc-
ing function are generally defined by the required range of frequencies and their spacing
in frequency axis. Since only these frequencies have power in the signal, distributing this
power plays a vital role in the identification of manual control behaviour. Frequencies in
the multi-sine should cover the required range with a small enough frequency spacing,
such that any important response characteristics of the human operator is not missed 82.
Amplitudes of the sines define the power in the signal, thus, they should be carefully de-
signed. Since identification is only possible with powered frequencies, some power is
required to identify the human operator response beyond the crossover frequency. How-
ever, this generally results in crossover regression because the bandwidth of the forcing
function exceeds the crossover frequencies 81.

As a solution, amplitudes of the sines at high-frequencies are lowered and a low-
frequency high-amplitude region and a high-frequency low-amplitude shelf is formed,
as shown in Figure 3.9-d. The former region contains most of the power in the signal,
and the latter shelf is used for identification of the higher frequency response of the pi-
lot. It is assumed that the high-frequency content of the forcing function does not af-
fect the low-frequency manual control behaviour of the human subject 20. In MCIM,
disturbance forcing functions are designed to contain the same total signal power and
the same frequency resolution with various forcing function bandwidths (ωi ). Thus, the
task difficulty can be expressed byωi in MCIM. Increasingωi corresponds to more high-
frequency content in the low-frequency high-amplitude region, hence, a harder task for
the human operator.

Another parameter of the forcing function is the set of phases of the sines in the forc-
ing function. Phase characteristics of a multi-sine signal determine the signal in the
time-domain. If the phases of the sines lead sine signals to collapse or integrate with a
recognizable period, then the forcing function may appear step-like. Consequently, con-
siderable peaks in the forcing function may lead to ’predictable’ excitation. The human
operator can recognize the peak occurrences and adapt the control behaviour accord-
ingly. Damveld 20 used peak-minimization by using a crest factor, and proposed to select
the phases in such a way that the maximum absolute forcing function and its first and
second derivatives match the median of the corresponding distributions.

In MCIM, a previously used forcing function is selected and adjusted per application.
The selected ’baseline’ forcing function in the MCIM has been used in several manual
control identification experiments. Nieuwenhuizen et al. 104 have used the structure of
the baseline forcing function in a pilot control behaviour identification study in a roll-
lateral helicopter hover task. Zaal et al. 151 have used the ’baseline’ forcing function in a
simulator experiment campaign of multi-modal pilot model identification with alterna-
tive target signals like step-like ramp signals. In a similar study, Pool et al. 119 have used
the structure of the baseline forcing function in the disturbance function during identi-
fication experiments to identify the pilot control behaviour with varying ramp steepness
in tracking signals. While keeping the same structure, amplitudes of the sine signals can
be scaled all together depending on the application, e.g., the compensatory display size
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may require higher (or lower) resolution for the error to be displayed. One can argue
that such scaling of forcing function amplitudes can alter the total power of the signal.
However, McRuer et al. 83 showed in an experiment with single and double integrator
dynamics that the pilot describing function is invariant with the power of the forcing
function.

In a multi-sine forcing function, the power is included at only the multiples of the
base frequency ωb , which is defined by the measurement time Tm according to ωb =
2π/Tm . This prevents power leakage between frequencies. In addition, it is preferable to
have frequency components without being integer multiple of other frequency compo-
nents to avoid the risk of predictable trace for the human operator 100. The baseline forc-
ing function duration is to Tm = 81.92 seconds, yielding a base frequency of ωb = 0.0767
rad/s. In order to be used in wide frequency identification, a -20 dB amplitude differ-
ence is used between low-frequency high-amplitude region and the high-frequency low-
amplitude shelf.

Attributes of the forcing function with three task difficulties in given in Table 3.4.
The Easy Task (ET), the Moderate Task (MT) and the Hard Task (HT) configurations are
defined by forcing function bandwidth values of ωi ≈ 0.8, 1.8 and 2.8 rad/s, respectively,
which are marked with grey shades in Table 3.4. The corresponding PSDs of the forcing
function with varied task difficulty are shown in Figure 3.10.

Table 3.4: Attributes of the disturbance forcing functions with three bandwidths, i.e., task difficulties. The
shaded frequencies indicate the forcing function bandwidth and corresponding amplitudes in the sines signal
up to that bandwidth.

Di stur bance f or ci ng f uncti on

j k j ω j ,r ad/s φ j ,r ad A j ,r ad A j ,r ad A j ,r ad
ET MT HT

1 5 0.3850 -0.2690 0.0848 0.0698 0.0607
2 11 0.8437 4.0160 0.0848 0.0698 0.0607
3 23 1.7641 -0.8060 0.0085 0.0698 0.0607
4 37 2.8379 4.9380 0.0085 0.007 0.0607
5 51 3.9117 5.442 0.0085 0.007 0.0061
6 71 5.4456 2.274 0.0085 0.007 0.0061
7 101 7.7466 1.636 0.0085 0.007 0.0061
8 137 10.508 2.973 0.0085 0.007 0.0061
9 177 13.576 3.429 0.0085 0.007 0.0061

10 226 17.334 3.486 0.0085 0.007 0.0061
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(a) PSDs of the disturbance forcing functions for three task difficulties: ET, MT and HT.

(b) Power compositions of high-amplitude low-frequency regions and low-amplitude high-
frequency shelves of forcing functions used in MCIM.

Figure 3.10: PSDs (a) and signal power compositions (b) of forcing functions with three task difficulties: ET,
MT and HT.

It can be seen from Figure 3.10 that increasing the bandwidth of the forcing func-
tion results in more high-frequency content and higher power in the high-amplitude
low-frequency region of designed disturbance signals. Thus, the compensatory task be-
comes more demanding. The values of forcing function amplitudes will be given in each
application of the forcing function in this thesis.

3.4. STEP 3: DISTURBANCE REJECTION TASK IN MCIM
This third step of the MCIM consists of conducting human-in-the-loop experiments to
identify the manual control behaviour of human operators when subjected to various
added time delays in the CE (step 1) and changes in the task difficulty (step 2).
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3.4.1. DISPLAY SIZE AND SCALE
A visual compensatory task is prepared, as a disturbance-rejection task, as illustrated
in Figure 3.3. The error (e) between the disturbance signal and the vehicle response
is displayed in a compensatory display, e.g., the attitude indicator used in the SRS) as
shown in Figure 3.11.

Figure 3.11: Attitude indicator used as a compensatory display in a disturbance-rejection task in the SRS ex-
periments.

The size and scale of the attitude indicator is a factor to determine the maximum
available disturbance signal to be displayed in an identification experiment. Moreover, it
must be kept in mind that, in a typical MCIM application, human operators can get into
RPC occurrences, and degraded HQ configurations may cause the attitudes to archive
higher values than injected by the disturbance function. Therefore, a safety margin
should be considered in the compensatory display size and scale for such additional
attitudes. In MCIM, the scaling of the display size is performed when the identification
experiment is designed in the simulator facility prior to actual experiment campaigns.
Not only the size of the display, but also the power in the disturbance function, and the
general attitude response of the CE with the control inceptor in the simulator cockpit
are all taken into account to scale the attitude indicator while designing manual control
identification experiments in MCIM.

3.4.2. CONTROL INCEPTOR
The inceptor, which is a rotorcraft cyclic for pitch and roll in this thesis, should be avail-
able for human subject to control the CE. Since MCIM uses LTI assumptions, any non-
linearity in the inceptor dynamics should be avoided. For example, the breakout force
and friction should be removed from the feel system, whereas the force gradient (linear)
can be modelled in order to provide a sufficient feeling of the control loading. In MCIM,
the deflection of the control inceptor is used as an input to the vehicle model, thus, it
can be interpreted as a position command control system, instead of force command
feel system (i.e., direct measurement of applied force on the inceptor). The sensitivity
of the inceptor control with respect to the vehicle response is included in the control
derivative parameters Mδlon

and Lδl at
in Eq. (3.4) and Eq. (3.5), respectively. These pa-

rameters contain the transmission of the pilot control inputs (deflection in inches) to
inputs to the main rotor swashplate deflections. For example, doubling these parame-
ters would require half of the stick deflection to obtain the same vehicle response. Thus,
if the deflection scale of the control inceptor needs to be changed, e.g., due to cockpit
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limitations, these parameters also should be adjusted for comparison purposes.

3.4.3. EXECUTION OF IDENTIFICATION EXPERIMENTS

PARTICIPANTS

Although rotorcraft piloting requires extensive training, the flying task (i.e., disturbance-
rejection task) in MCIM does not require a high experience level of piloting techniques
because of the simplicity of the task. The task is a compensatory task with a single axis
response model with only attitude indicator as a display, without outer world visuals
or motion cues. Although manual control of human operators and professional pilots
could be similar in such simple tasks, when the complexity of rotorcraft systems and
tasks increases, piloting techniques become more important. Throughout the identifi-
cation experiment related sections of the thesis, the term ’pilot’ will be used to represent
the human operator, not necessarily a professional pilot, in control of the vehicle model.
However, professional helicopter pilots participated in the second preliminary identifi-
cation experiment, which will be discussed in the next chapter. In each experiment in
MCIM, more information about the participants will be provided.

MEASUREMENT DATA

Each experiment run consists of 91.92 seconds, from which the first 10 seconds are not
used in the measurement, because this run-in time segment includes the initial transient
response which originates from participant’s efforts to stabilize the PVS. Measurement
data should be logged at the frequency of the data recording system of the simulator
facility, e.g., in this thesis it is 100 Hz for both SRS and University of Liverpool (UoL) sim-
ulators.

EXPERIMENT RUN PHASES

There are two main phases in MCIM identification experiments in MCIM :

1. Familiarization phase
All conditions (combinations of added time delay and the task difficulty) are re-
peated twice. In this phase, human subjects get familiarized with the task and the
simulator environment, e.g., cyclic forces to control with precision. No data need
to be measured, and subjects are not informed about their performance by any
quantifiable measure.

2. Training and measurement phase
Each human subject completes the task with given the condition. Participants are
not informed about the condition to be experimented. A quantitative measure,
the score (Equation 3.8), is used to provide information about the performance of
the human subject after each run. The score is given as:

Scor e =
(

1− σ2
e

σ2
fd

)
×100% (3.8)
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where σ2
e and σ2

fd
are signal variances in the displayed error (e) and the applied

forcing function ( fd ), respectively. After each run, obtained scores are announced
to participants to encourage them to improve their scores, i.e., minimize the er-
ror. In order to achieve a better performance, participants are motivated to se-
lect the best and steady control strategy for themselves by tracing the announced
score after each run. Especially in MCIM, which manifests degraded HQ models
in various task difficulties, it is important to give participants sufficient time and
training to achieve steady performance for each condition. After achieving steady
scores, participants are assumed to adapt a steady control response for the sub-
jected task conditions, and a final five steady runs are recorded as measurement
data. Time-averaging these measurement data increases the signal-to-noise ratio
of all measurements for identification.

Depending on the total conditions to be investigated, inviting at least the same num-
ber of human operators to participate in the experiment can be beneficial for statisti-
cal analysis of the results, which are typically repeated-measures Analysis of Variance
(ANOVA). The ANOVA provides a strong capability of detecting the effects of the exper-
iment configurations on the dependent measures 20. The ANOVA requires several as-
sumptions to be checked before its application. The tests of assumptions to be carried
out are listed as 20:

• Homogeneity of variance tests: Levene’s test.

• Sphericity tests: Mauchly’s test.

• Interval scale checked per each dependent measure.

• Normality tests: Kolmogorov-Smirnov’s test.

These assumptions of ANOVA should be satisfied, and the execution sequence of iden-
tification experiment conditions should be balanced among all participants. A common
way of designing the test matrix for such an experiment is using a Latin square design 20.

3.5. STEP 4: PVS ANALYSIS IN MCIM
In this step of the MCIM, measured experiment data are analysed per subject and per
condition, i.e., with the task difficulty and added time delay as our main independent
variables. Then, trends in the dependent measures are obtained. Dependent measures
are task performance, control activity, pilot model parameters and open-loop crossover
frequency and phase margin.

Task performance and control activities can be calculated from time traces of dis-
played error and human control inputs, e and u respectively in Figure 3.2. Task perfor-
mance can be formulated as:

Task per f or mance = σ2
e

σ2
i

(3.9)

where σ2
e and σ2

i are the variances of displayed error and the forcing function, respec-
tively. The task performance calculated by Eq. (3.9) determines how much of the power
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of the injected disturbance signal is compensated by the participant. In MCIM , another
time-domain dependent measure is the control activity which is calculated by the Root
Mean Square (RMS) of the cyclic control input u per participant per experiment condi-
tion.

3.5.1. PILOT MODEL IN MCIM
As shown in Figure 3.2, the quasi-linear human operator control behaviour can be de-
scribed by a linear pilot response (Hp ( jω)) and the remnant (n). When LTI considera-
tions are taken into account, manual control behaviour can be represented by Hp ( jω)
while non-linear remnant n is assumed to be relatively small when compared to linear
counterpart. In MCIM, control-theoretic pilot modeling techniques are considered, as
discussed in the previous chapter. A simplified version of the ’precision model’ is uti-
lized in MCIM considering the CE models given in Eq. (3.4) and Eq. (3.5). The model of
the manual control behaviour in MCIM is given as:

Hp ( jω) = Kv (1+τL jω)

︸ ︷︷ ︸
Pilot

Equalization

ω2
nms

( jω)2 +2ζnmsωnms jω+ω2
nms

e− jωτp

︸ ︷︷ ︸
Pilot Limitation

(3.10)

where the pilot equalization parameters are the pilot visual gain (Kv ) and the lead time
constant (τL), and the pilot limitation terms are the pilot time delay (τp ), the neuromus-
cular natural frequency (ωnms ) and the damping (ζnms ). Thus, five pilot model parame-
ters to be identified from the measurement data are:

Θ= [
Kv τL τp ωnms ζnms

]
(3.11)

When human operators are subjected to various conditions with different task diffi-
culty and added time delay, they are assumed to adapt their control strategies according
to the varied condition. Thus, the variation in the identified pilot model parameters (Eq.
(3.11)) is proposed here to describe the adapted manual control behaviour. This allows
the MCIM to detect which conditions lead pilots to noticeably change their control strat-
egy. This objective method to identify pilot adaptation can be used in conjuction with
subjective measures such as ratings.

3.5.2. IDENTIFICATION METHODS IN MCIM
Two LTI identification methods are used in MCIM, frequency-domain Fourier Coeffi-
cients Method with Optimization (FCMwO) and time-domain MLE for parametric iden-
tification, which will be discussed in Section 3.5.2.1 and Section 3.5.2.2, respectively.
Both identification techniques have been utilized in conjunction while processing mea-
surement data gathered from conditions with added time delay and varied task difficulty
combinations of MCIM. This joint method is described in Section 3.5.2.3.

1. FREQUENCY-DOMAIN: FCMWO
Assuming high signal-to-noise ratios, an estimate of the pilot’s describing function can
be obtained by computing the quotients of the Fourier coefficients of the human op-
erator’s output and input signals at the frequencies that contain power injected by the
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forcing function 100. The describing function simply provides the frequency response
characteristics of the manual control behaviour, i.e., output(u)/input(e) just at the fre-
quencies of sines in the designed forcing function 20.

After obtaining the manual control describing functions, an optimization is performed
to find the parameters (Θ) of the pilot model (Hp ( jω)) that minimize the error between
the measured and modeled response of the manual control behaviour. The optimization
method that is utilized in MCIM is a nonlinear least squares solver, ’lsqnonlin’ in MAT-
LAB 3. Figure 3.12 shows the estimate of the optimized pilot model (Hp ( jω)FCMwO)
with respect to measured Hp ( jω)Measur ed .

2. TIME-DOMAIN: MLE
MLE is a time-domain identification method which has been used in estimating the
manual control behaviour in similar identification experiments 147. The principle of
MLE is to find the joint-probability density function for predicted error ε (error between
the measured and the estimated u) which makes the parameter estimate Θ̂ ‘most likely’
by maximizing the likelihood function, given as:

L(Θ) = f (ε1,ε2, ...,εN ;Θ) (3.12)

This likelihood function is maximized by the parameter vector Θ̂MLE , which is de-
fined by:

Θ̂MLE =
ar g mi n
Θ

[
m

2
lnσ2

n + 1

2σ2
n

N∑

i=1
ε2

i

]

︸ ︷︷ ︸
Optimization target

(3.13)

where m is the measurement index, σn is the standard deviation of remnant with the
zero-mean Gaussian white noise assumption, and ε is the residual, i.e., the predicted
error. In Eq. (3.13), the optimization target is marked, and a convex Gauss-Newton op-
timization is used to find the optimum solution 147. While transforming the frequency
response Hp ( jω) into state-space form during the calculations of MLE, a 5th order Pade
approximation is used to model the pilot delay τp . A sample pilot describing function
achieved by the MLE method is shown in Figure 3.12, which shows the MLE estimate of
the pilot model (Hp ( jω)MLE), together with measurement Fourier coefficients, and the
FCMwO estimation, Hp ( jω)Measur ed and Hp ( jω)FC M wO , respectively.

It is demonstrated in Figure 3.12 that both identification methods are capable of find-
ing pilot models which closely describe the measured describing functions. Next section
will describe the joint identification method which is used in MCIM.

3. JOINT FCMWO AND MLE IDENTIFICATION

A typical method to check the accuracy of the estimated pilot model with the identified
pilot parameters Θ̂, is the Variance Accounted For (VAF), which is given as;

V AF =
(

1−
∑N

i=1

∣∣um(i ) −usi m(i )
∣∣2

∑N
n=i u2

m(i )

)
×100% (3.14)
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Figure 3.12: Pilot describing function (Hp ( jω)Measur ed ) from a sample identification experiment run, and
pilot models are fitted in magnitude and phase response by using identified parameters obtained by two iden-
tification techniques: FCMwO and MLE.

where um and usi m are the measured and the modeled control inputs calculated from
identified pilot models, respectively, and N is the sample number. High VAF values indi-
cate that the simulated control behaviour, which is obtained by simulating the identified
operator model, can fairly describe the measured control behaviour. In MCIM, after the
identification procedure, the accuracy of the estimated pilot model should be checked
with VAF. This accuracy highly depends on the structure of the pilot model and the con-
vergence of the identification technique.

Since both FCMwO and MLE contains optimization routines, some well-known op-
timization issues can be encountered, such as converging to local minima, setting the
initial conditions and parameter boundaries 11. Despite their differences in their de-
fined domain, FCMwO and MLE share the same pilot model to describe the manual
control behaviour (Hp ( jω)). Thus, in order to handle the optimization issues, in case of
low accuracy of estimation, e.g., VAF<60%, identification results of both methods are set
as initial conditions to the other one. Therefore, probability of convergence to a global
minimum is aimed to be improved. It must be noted that, this joint method does not
guarantee a definite global minimum, but instead, it can be applied to overcome some
local minima issues. The schematic of the determination of the pilot model parameter
by the joint identification method is shown in Figure 3.13.

As shown in Figure 3.13 first the FCMwO was used to obtain the first parameter esti-
mate of the optimization during the identification process. Then, these parameters are
set as initial conditions to the MLE. Next, the resultant parameter set of the MLE is used
again in FCMwO as initial condition. Finally, the results are fed into the MLE again. The
final parameter set obtained by the MLE is compared with the final parameter set of the
FCMwO. If they are close enough (i.e., VAF difference < 3% ), these parameters can be
used in the identified control behaviour (Hp ( jω)). This whole procedure is repeated four
times with randomized initial conditions, and the resulting final parameters values are
compared with each other. The parameter set, which provides the best VAF accuracy
among these four processes, is selected as the final value of the pilot model parameter
set (Θ).
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Figure 3.13: Flow chart describing the determination of the identified pilot model parameters (Θ̂) per each
subject and configuration in MCIM.

3.5.3. PILOT MODEL PARAMETER AND ωc COMPARISONS
After obtaining identified pilot model parameters (Θ) for all conditions per each partic-
ipant, they are compared against each other to detect any recognizable deviation from
general trends. In addition, the open-loop crossover frequency and phase margin trends
can be showed as a function of the task difficulty and added time delay variations.

ESTIMATED ωc REGRESSION TREND

ωc comparisons is a crucial step in MCIM because it may show the occurrences of cross-
over regression between conditions. The classical crossover regression occurs with in-
creasing task difficulty, when the closed-loop resonance peak starts to be more effec-
tive in the error signal. It can be interpreted that increasing the time delay may have a
similar reduction in crossover frequency since the phase crossover frequency reduces.
Therefore, not only the classical regression due to the task difficulty, but also another re-
gression due to the added time delay can yield a ’combined’ crossover regression trend
together. This estimated ωc trend is illustrated in Figure 3.14.

There are two main rationales of the estimated crossover regression trend in Fig-
ure 3.14 associated with shown independent variable directions, i.e., added time delay
and task difficulty.

1. Classical crossover regression can be observed due to the task difficulty since the
closed-loop error would be amplified by higher frequency forcing function band-
width 132. Thus, pilot may need to regress open-loop ωc as in classical crossover
regression condition (task difficulty direction in Figure 3.14).

2. Additional time delay in the CE causes a phase drop at lower frequencies; thus,
the closed-loop instability of the PVS can start to occur at lower frequencies. De-
pending on the task, pilot may need to regress his/her control strategy drastically
to avoid this instability (added time delay direction in Figure 3.14).
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Figure 3.14: Estimated crossover regression trend with time delay and forcing function bandwidth deviations.

A combination of both the added time delay and the task difficulty originated regressions
can form-up a crossover regression zone as indicated in Figure 3.14. High resolution of
the added time delay and the forcing function bandwidth deviations between conditions
can narrow down the ωc regression zone. Similar zones for identified pilot parameters
can be estimated to represent the crossover regression tendency.

3.6. STEP 5: RPC DETECTION IN MCIM
In the previous chapter, effects of the added time delay, the task difficulty and their com-
bination on HQ degradation and RPC proneness were discussed. Considering these ef-
fects, MCIM aims to find the correlation between the identified manual control strategy
and the RPC susceptibility. In order to detect RPC susceptibility, two detection tools are
utilized in MCIM: ROVER and PAC. These RPC detection tools are described in the fol-
lowing subsections.

3.6.1. RPC DETECTION WITH ROVER
ROVER is a classical PIO detection tool, which scours real-time data of the pilot control
input and the vehicle rate response. It was designed with the main goal of warning the
pilot about the incipience of RPC events in real-time as early as possible 95. It is also pos-
sible to use the same algorithm as a post-run analysis tool to process the measured data
for any signs of RPC occurrences. For example, ROVER has been used as a PIO detection
tool while analysing historical flight accidents and ground simulation 90.

There are six general ground rules 91 that were established while developing the ROVER;

• Assume every aircraft response is an oscillation

• Limit the search to a reasonable frequency range

• Focus on aircraft response, then look for a corresponding control input
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• Check for phase differences between the aircraft response and pilot input

• Use an easily monitored aircraft state

• Check the amplitudes of peak angular rate and cockpit control inputs

Mitchel and Klyde explain these ground rules in detail in Ref. [91], and they provide
a flowchart for the ROVER detection process, as shown in Figure 3.15.

18 Literature review

low pass filter activated at a PIO situation to minimize the input of pilots. Thus the PIO
susceptibility can be suppressed. Detailed discussion of this notch filter will be performed
in section 2.1.6.

Figure 2.12: Structure of ROVER method (modified from [5])

ROVER is mainly designed for the prediction and mitigation of Category I PIO. Although
nonlinear dynamics are not considered in its formulation, rate-limiting which effectively
introduces a phase lag into the closed-loop system, can be detected during the phase lag
estimation process. Therefore, Category II PIOs can be suppressed as shown by Mitchell
and Klyde[32]. One simulated PIO detection for a tracking task performed in Boeing-747
model is shown in Appendix A. It can be seen that the detection results for PIO tendencies
are about one oscillation circle lag. PIO is true at 45, 78, 90, 112 and 118 seconds when
oscillations occurred. The detection sensitivity can be improved by reducing the thresh-
olds of the four flags, but this will lead to a problem of misjudgment of normal oscillation.
Thus, the most difficulty of adapting this detection method is the thresholds setting.

ROVER is simple and effective. It can be adapted to various kinds of aircraft by varying
the threshold settings of the four flags. The disadvantage of ROVER is that it is mainly de-
signed for the prediction and mitigation of category I PIO. Category I PIO events usually
designed out in early flight control system design work. Common PIO events happened
in modern aircraft are associated with rate-limiting, this factor is not directly considered
in ROVER.

B. Fuzzy logic detector

A fuzzy logic based PIO detector was proposed by Jeram and Prasad[7]. The detector
detects pilot signals and aircraft responses, then uses fuzzy logic system to assign values

Figure 3.15: Flowchart of ROVER, adapted from Ref. [91].

As presented in Figure 3.15, outputs of the ROVER algorithm are four flags which are
assigned based on threshold values:

• flag(FREQ): estimated oscillation frequency of vehicle angular rate response,

• flag(PHASE): phase between applied pilot control and corresponding vehicle rate
response.

• flag(RATE): amplitudes of vehicle angular rate response, and

• flag(STICK): amplitudes of pilot cyclic input.

The threshold of the estimated oscillation frequency, i.e., flag(FREQ), is the inter-
val of vehicle rate response frequencies at which ROVER evaluate as potential for RPC.
flag(PHASE) is assigned if the phase exceeds a predefined threshold. In ROVER, phase
is calculated from peak-to-peak values of control input and resultant vehicle rate re-
sponse. Control input and vehicle rate response data are usually smoothed by low-pass
filters which are capable of removing high-frequency noise and data spikes in measured
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signals 91. In MCIM, a 3r d order low-pass Butterworth filter 2 is utilized, and the result-
ing rate response and control input data are compared against predefined thresholds.
Pilot control inputs that exceed the threshold are assigned as flag(STICK), and vehicle
rate response is assigned as flag(RATE) based on a vehicle response rate threshold. In
MCIM, an RPC detection is considered if four flags are encountered simultaneously at
any analysed segment of measurement data. If consecutive three flags are detected, an
RPC warning is declared.

One drawback of the ROVER approachis the assignment of thresholds, which defines
the logic in diamond blocks in Figure 3.15. This threshold assignment is considered to be
subjective because of the uncertainty while predicting the nature of the task to be flown,
e.g., how much pilot control would be applied and from which point we should start to
be concerned about RPC incipience. Threshold assignment must be done depending on
the vehicle capabilities, and the task to be flown. Inappropriate thresholds could result
in over/under predicted PIOs. Examples of threshold values used in different studies are
given in Ref. [115].

In MCIM, ROVER is used as a post hoc analysis tool, which enables the investigation
of measured data for all conditions and all participants of MCIM identification experi-
ments. Therefore, thresholds are assigned according to the trends of variables in already
available experiment data, instead of real-time detections. However, it must be noted
that there is, and always will be, some uncertainty involved during the threshold assign-
ment 91. Nevertheless, using the ROVER method on already measured data diminishes
the uncertainty and provides better prediction than a real-time detection scenario 130. In
this thesis, ROVER thresholds will be provided for each MCIM experiment campaign.

Another drawback of the ROVER detection tool is the wrong phase calculation, even
though high-frequency control inputs and vehicle response data are filtered. Especially
in high-gain high-precision tasks, pilots need to constantly apply corrective inputs while
controlling a demanding rotorcraft model. In such a demanding task with high control
activity, relating the control peak to the vehicle response peak can be difficult which may
lead to incorrect phase delay determination 130.

As a part of the ARISTOTEL project, the ROVER algorithm is improved with detection
method of peak values. As a result, irregular phase detection cases of control input and
associated vehicle rate response are reduced 130. For example, Figure 3.16 demonstrates
the determination of the improved average peak while processing pilot control and ro-
torcraft rate response data.
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Figure 3.16: Improved average peak selection, adapted from Ref. [130].

As illustrated in Figure 3.16, by using original ROVER, a peak of the control input re-
sponsible of a peak of the vehicle rate response can be wrongly determined, e.g., with
a control input occuring later than the rate response which is physically impossible. In
enhanced ROVER, the incipience of rate response, and the corresponding average peaks
are calculated accordingly. Therefore, average control input is detected before the rate
response. As a result, the phase delay between control input and the corresponding ve-
hicle response can be determined with a better accuracy. More details about the phase
detection improvements of the enhanced ROVER can be found in Ref. [130].

The enhanced ROVER was initially tested on SRS experiment data which were mea-
sured during a single-axis roll tracking task 131. The vehicle model was a Bo-105 heli-
copter model with 0, 100, 200 and 300 ms added time delays, and two pilots participated
in the experiment. Details of the experiment can be found in Ref. [131]. As a sample ap-
plication of the enhanced ROVER, Figure 3.17 shows experiment data of one pilot lateral
cyclic, the roll rate response of the vehicle, and corresponding ROVER flag determina-
tion, with 0 and 300 ms of added time delay conditions.

It can be seen in Figure 3.17-a that without any added time delay, there are 11 ROVER
warnings (i.e., two consecutive ROVER scores of three, shown as 3.5) but there are no de-
tected RPCs by ROVER, i.e., no ROVER score of four. This detection is well matched with
the pilot subjective PIOR, which was awarded as one. The baseline simulation model
without added time delay was awarded as HQR four, which corresponds to Level-2 HQ.
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(a) No added time delay

(b) 300 ms of added time delay

Figure 3.17: Determined ROVER flags from experiment data of pilot lateral cyclic input, and roll rate response
of a Bo-105 rotorcraft model with a) 0 ms, and b) 300 ms added time delay, adapted from Ref. [130].

When 300 ms of time delay was added the baseline model, performing the same task
with the same pilot resulted in 28 occurrences of RPC detection, i.e., a ROVER score of
four, as depicted in Figure 3.17-b. This noticeable increase in RPC tendency was also
captured by the pilot PIOR, which was awarded to be four. Moreover, the HQR increased
to 7, which corresponds the Level-3 HQ. This HQ degradation and increased RPC ten-
dency are both caused by the added time delay. Results of this experiment showed that
the enhanced ROVER to be used in MCIM is indeed capable of detecting the RPC ten-
dency variations between configurations with different added time delays.
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3.6.2. RPC DETECTION WITH PAC
PAC can be considered as an extension of the ROVER by using the Pilot Inceptor Work-
load (PIW) criterion which is originally developed by Gray 32. Original PIW have two
time-domain based parameters; the Duty Cycle (DC) and the Aggression term (AG ). The
DC defines the percentage of time the pilot is applying control stick input. The AG is the
measure of the pilot control activity in terms of the magnitude of inceptor displacement
and rate. The aggression (AG ) and the DC in PIW are illustrated in Figure 3.18.

Figure 3.18: Duty Cycle and Aggression relationship to control activity, taken from Ref. [53].

As indicated in Figure 3.18, Gray 32 proposes in an PIW criterion which entails that
conditions with high aggression and high DC can lead to PIO occurrences. Based on
principles of PIW, PAC extends it by introducing the phase difference between pilot input
displacement and vehicle rate output 53. This phase difference parameter (Φ) is similar
to the phase parameter in the ROVER algorithm. In PAC, two parameters (i.e., AG andΦ)
are coupled by the control input activity, and in longitudinal axis they are given as;

AG = 1

Tq2 −Tq1

∫ Tq2

Tq1

Hs
∣∣δ̇long (t )

∣∣d t (3.15)

Φ= 360

(
Tq2 −Tδ2

Tδ2 −Tδ1

)
(3.16)

where the illustrations of how to determine pilot control input peaks (Tδ1 and Tδ2 ) and
rotorcraft rate response peaks (Tq1 and Tq2 ) are depicted in Figure 3.19, Hs describes the
vehicle attitude rate with respect to the pilot control input (i.e., Hs is the average gain
response of the vehicle), and δ̇long is the rate of the cyclic control input.
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Figure 3.19: Illustration of the calculation of pilot input – vehicle response phase lag in the time domain for
PAC calculations, adapted from Ref. [53].

When PAC is processed on measured pilot control input and vehicle response data, for
each peak-to-peak detection a pair of AG and Φ is calculated. Then, these calculated
values are plotted on phase aggression plots. Examples of such PAC plots in longitu-
dinal axis during a precision hover MTE, which was performed in HFR, are shown in
Figure 3.20. Boundaries that define zones (No PIO, Moderate PIO and Severe PIO) are
proposed after conducting several simulator experiments in HFR by using six helicopter
pilots and a rate-commanded Bo-105 with added time delay and actuator rate limits.
Details of these experiments are described in Ref. [53].

In Figure 3.20-a, it can be seen that PAC results are located in the NO PIO zone which
was also confirmed by subjective pilot ratings 53. As shown in Figure 3.20-b, when ex-
posed to added time delay configuration, higher frequency and higher amplitude control
input activity were observed, as marked in the time trace of the cyclic input historgram.
When combined with the phase difference coming from the added delay, the PAC plot
resulted in a high number of detected PIOs in moderate and severe PIO zones.
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Figure 3.20: Pilot control input and rate response of an example time history without any PIO processed with
PAC (a) and an example time history of pilot control and rate response with the presence of PIO and PAC results
(b). Adapted from Ref. [53].

3.7. CONCLUSION
This chapter introduced a new method, the MCIM, to objectively assess the HQ defi-
ciency and RPC susceptibility of a rotorcraft model by using manual control behaviour
identification. Added time delay and task difficulty are the two independent variables
used in this thesis to change the HQ and RPC proneness of the vehicle. MCIM utilizes
a single axis pitch (or roll) subsidence rotorcraft model with an additional time delay
term and a forcing function structure with adjustable bandwidths to simulate the task
difficulty. These two variables are merged in a compensatory disturbance-rejection task
to be completed in an experiment campaign conducted with human operators. Finally,
manual control behaviour for combinations of added time delay and task difficulty con-
ditions are identified from the measured data. Identification is performed by both fre-
quency and time domain techniques. Identified pilot model parameters and the open-
loop response dynamics of the PVS both provide information about conditions at which
recognizable changes in the control strategy have occurred. In addition, two RPC detec-
tion tools are applied offline on the measured data to correlate the RPC susceptibility of
the vehicle with the identified manual control behaviour.

The next chapter will describe applications of the MCIM on two preliminary identi-
fication experiments which were conducted in SRS at TU Delft and HeliFlight Helicopter
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Simulator (HHS) at University of Liverpool. These experiments mainly focused on effects
of the added time delay on manual control behaviour. In the first identification exper-
iment, a roll-axis rotorcraft model was utilized with two configurations of added time
delay. The second identification experiment consisted of a pitch-axis rotorcraft model
with three levels of added time delay, and the participants were professional helicopter
pilots. The next chapter will provide MCIM results of these experiments in terms of man-
ual control behaviour changes, crossover frequencies and RPC tendencies.



4
PRELIMINARY EXPERIMENTS ON

MANUAL CONTROL

IDENTIFICATION

The methodology applied in this thesis, referred to as the MCIM, was described in the pre-
vious chapter. This chapter will provide results of two preliminary identification exper-
iments that were designed, conducted and analysed to test the MCIM. In these experi-
ments, task difficulty was not varied, and the main focus was on elaboration of changes
in the manual control behaviour when time delay is added to the rotorcraft model. The
first experiment was conducted in the SRS at TU Delft with a roll-axis rotorcraft model
during a disturbance-rejection task. In addition to the added time delay in the rotorcraft
model, the sensitivity of the cyclic inceptor was doubled, and the combined effects of the
added time delay and the cyclic sensitivity on the identified manual control behaviour
are discussed. The second preliminary experiment was conducted in the HHS at the UoL
with a pitch-axis rotorcraft model with various added time delay conditions. Particularly,
occurrences of the crossover regression due to the added time delay are investigated. As
a part of the MCIM, RPC tendencies in both experiments are analysed, and the correla-
tion between RPC susceptibility and corresponding identified manual control behaviour
parameters are discussed.

4.1. INTRODUCTION
Additional time delay can cause rotorcraft HQ deficiencies, and is a well-known RPC trig-
ger, as discussed in Chapter 2. When time delay is added to a vehicle under manual con-
trol, the additional phase lag causes reduced closed-loop stability of the PVS. As a result,
human operators need to adapt their manual control strategies to compensate for this
increased PVS instability. This manual control behaviour adaptation due to added time
delay has been investigated in several studies, as discussed in Chapter 2. Some of these
studies investigated changes in pilot model parameters when human operators are sub-
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jected to various sources of time delays. Levision and Papizian 67 investigated the effect
of transport delay between the pilot input and the vehicle response on manual control
behaviour, by comparing subjective HQ ratings (i.e., HQR), task performance measures,
and frequency domain analysis of pilot response characteristics. The pilot control be-
haviour was modeled using the OCM 59,77, and the results showed that the adapted man-
ual control behaviour indicated tendencies of lower pilot gains, increased lead compen-
sation, lower frequencies of neuromuscular resonance peaks, and increased remnant.
Similarly, Hess 37 investigated pilot control behaviour in a compensatory task including
various simple CEs with added time delays, as discussed in Chapter 2. The structural pi-
lot model 39 was utilized to describe the manual control behaviour, and the relevant pilot
model parameters were obtained for both baseline and additional time delay conditions.
It was demonstrated that for an integrator-like CE (i.e., K /( jω)), pilots generated extra
lead compensation that is not required according to the classical crossover model 83 of
the human pilot. In addition to this lead, which is associated with PIOs and high pilot
workload 75, both neuromuscular natural frequency and damping increased. In another
study, Stegeman 129 introduced visual delay in the provided outer visual of a simulator
screen, in a disturbance-rejection task with a roll-axis model of Citation II aircraft sim-
ulation, controlled by a side-stick manipulator. Identified pilot parameters showed that
with the increased time delay, the crossover frequency, pilot control variance, pilot gain
and task performance all decreased, whereas the lead time constant and phase margin
increased. No significant deviation was observed for neuromuscular parameters and pi-
lot time delay.

Given examples indicate that added time delay causes human operators to generate
additional lead to compensate for the reduced phase of the vehicle model. This addi-
tional lead increases the positive slope of the Bode magnitude of the pilot model if the
pilot model does not have a lead term before the added time delay condition. If the
model already has a lead term before the added delay condition, then positive slope in
the magnitude starts at lower frequencies (i.e., 1/τL). Thus, the pilot gain is reduced
to provide adequate closed-loop response around the crossover frequency, as reported
in given examples. As a result, the open-loop magnitude response near crossover be-
comes more flat than the classical open-loop response, which is a single integrator 81

(i.e., 1/( jω)). Due to a more flat open-loop response around crossover frequency, a small
pilot gain change can rapidly affect the phase margin of the PVS. Although the manual
control adaptation (i.e., generated lead and reduced gain for added time delay condi-
tions) is common in the provided examples above, tendencies of neuromuscular system
adaptations vary. It must be noted that the structure of the neuromuscular system can
be lumped with the control manipulator dynamics, as discussed in the previous chapter.
Considering the differences between control inceptors (e.g., side-stick, yoke, cyclic), the
resultant neuromuscular system setting mainly depends on the inceptor characteristics.

In given examples, the open-loop crossover frequency (ωc ) is found to reduce with
added time delay. However, a systematic approach to detect the crossover regression
was not accomplished. In order to examine the effect of added time delay on crossover-
regression and manual control behaviour, MCIM is utilized in two preliminary identifi-
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cation experiments, without changing the task difficulty. Main features of preliminary
identification experiments are summarized in Table 4.1.

Table 4.1: Main features of the first and the second preliminary identification experiments.

Preliminary Axis Independent Added time Damping Simulator Participants Rating
Experiment variables delay (τd ),ms derivative,s−1 Scales

I Roll τd ,Kg 0,300 Lp (-10.94) SRS Subjects∗ N/A
II Pitch τd 0,100,200 Mq (-3) HHS Pilots HQR, PIOR, WLR

∗ Human operators without professional helicopter pilot licence

As listed in Table 4.1, active axes, CE dynamics, the number of added time delay
conditions, simulator environments, participant experience with rotorcraft piloting, and
availability of using subjective rating data differ between the two preliminary identifica-
tion experiments. The first experiment included a high-bandwidth roll model of a rotor-
craft (e.g., Bo-105), with and without 300 ms of added time delay conditions. In addition
to the added time delay, the control gearing (KG ) was varied to represent a higher sensi-
tivity control manipulator, such that human operators could use half the deflection to get
the same vehicle response. The second identification experiment was conducted with a
focus on occurrences of crossover regression due to added time delay (three levels). A
pitch-axis model with a break frequency of 3 rad/s (e.g., the Bo-105) was controlled in a
disturbance-rejection task, as a part of the MCIM.

Details of the preliminary identification experiments will be provided in Section 4.2
and Section 4.3. Section 4.4 will provide the conclusions of both experiments.

4.2. PRELIMINARY EXPERIMENT I
In the first experiment, the primary goal was to investigate changes in manual con-
trol behaviour when human operators are subjected to added time delay in the vehicle
model. The secondary goal of this experiment was to investigate the effect of control
inceptor sensitivity on manual control, when combined with added time delay condi-
tions. Although the control sensitivity is not a part of the MCIM design, effects of the
cyclic sensitivity on the pilot behaviour in delayed CE conditions with varied RPC sus-
ceptibility were also examined.

In compliance with the structure of the MCIM introduced in the previous chapter,
this section will describe the details of the first preliminary experiment.

In this thesis, the added time delay is an important variable to be used in the pro-
posed methodology, i.e., MCIM, which is thoroughly described in the previous chapter.
While keeping the task difficulty constant, two preliminary identification experiments
were conducted to particularly focus on the effect of added time on manual control be-
haviour. Details of these experiments will be provided in Section 4.2 and Section 4.3.
Based on the measured data gathered from these identification experiments, the pilot
model described in the previous chapter was used to investigate the manual control be-
haviour change due to the added time delay in these identification experiments.
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4.2.1. TASK DESIGN
As a part of the MCIM, this section delineates the design of the first preliminary ex-
periment. In this section, details of the manual control task, the CE (i.e., the rotorcraft
model), the pilot model to be identified from the measurement data, the apparatus, and
information about the participants will be provided.

ROLL CONTROL TASK

A roll-axis disturbance-rejection task was considered in the experiment. The block dia-
gram of this compensatory tracking task is shown in Figure 4.1.

e u

n
fd

φ
Hp ( jω) HC E ( jω)

+++

+ ++
−

0

Pilot Controlled
Element

Figure 4.1: Block diagram of the roll-axis compensatory disturbance-rejection task used in the first preliminary
identification experiment. The linear pilot control behaviour Hp ( jω) and the remnant n, which accounts for
the nonlinear control, forms up the pilot control (u). HC E ( jω) is the vehicle dynamics, and fd is the distur-
bance forcing function.

The task was a single-axis disturbance-rejection task in the roll channel, and human
operators were asked to minimize the displayed error (e in Figure 4.1). The displayed
error is composed of the injected disturbance forcing function ( fd ) and the vehicle roll
response (φ) due to applied pilot control (u). The disturbance forcing function ( fd ) has
a discrete PSD designed as the MT (i.e., fd bandwidth of ωi ≈ 1.8 rad/s as given in the
previous chapter). The PSD and a sample time trace of the forcing function are shown in
Figure 4.2.
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Figure 4.2: The PSD (a) and a sample time trace (b) of the disturbance forcing function.

ROTORCRAFT MODEL

The controlled element (HC E in Figure 4.1) was a roll-axis rotorcraft model. Discussions
about the model structure of the CE was provided in the previous chapter as a part of the
development of MCIM. In this experiment, the control gear gain (Kg ) is added to change
the control sensitivity, and the transfer function of the CE is given as:

HC E ( jω) = Kg
Lδl at

( jω)( jω−Lp )
e−τd ( jω), (4.1)

where the control authority term Lδl at
= 1.5643 rad/(in.s2), the aerodynamic roll rate

damping derivative Lp = −10.94 s−1, φ is the roll attitude, δl at is the lateral cyclic in-
put, τd is the added time delay. In a single-axis rate command system, the roll subsi-
dence mode is characterised by the aerodynamic damping derivative Lp , and the value
used in this experiment was taken from Bo-105 models (in hover condition) used in the
ARISTOTEL project 115. The Lδl at

parameter models the transmission gain between the
pilot control input to the vehicle response. Here, it was aimed to study the possible
effects of changing this gearing, such that the sensitivity of the cyclic (Kg in Equation
4.1) was varied, and the corresponding manual control behaviour changes were anal-
ysed. Two cyclic sensitivity settings were applied, Kg =1 and Kg =2, the latter representing
a higher control inceptor gearing. The frequency responses of the vehicle models are
shown in Figure 4.3.
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(b) Bandwidth phase delay criterion of ADS-33 for Target Tracking
and Acquisition tasks 6.

Figure 4.3: Bode diagram (a) and bandwidth phase delay criterion (b) of CEs with 0 and 300 ms of added time
delay, and two levels of control gearing sensitivity: Kg = 1 and Kg = 2.

Lp determines the break frequency of the CE, such that the vehicle response approx-
imates a single integrator until this frequency, and becomes a double integrator beyond
it, as depicted in Figure 4.3-a. According to the crossover model 81,83, the manual con-
trol equalization for a CE with single integrator dynamics is a pure pilot gain. On the
other hand, a CE with double integrator dynamics requires a lead control around the
crossover frequency to achieve an open-loop response that is a single integrator (i.e.,
K /( jω)). Thus, a high Lp provides a CE with an easier control for the human operator,
because the transition from single to double integrator CE response occurs at higher fre-
quencies. When the CE break frequency is high, it inherently exhibits a higher tolerance
to HQ deficiencies caused by added time delay, since the double integrator dynamics
starts at higher frequencies. Therefore, a 300 ms of time delay was applied in order to
change the HQ of the rotorcraft model. 300 ms can be considered as a high delay for
fixed-wing aircraft, but it is in fact a realistic value for rotorcraft systems, as discussed in
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Chapter 2. In terms of HQ prediction, the BPD criterion of the ADS-33 for the developed
models are depicted in Figure 4.3-b.

It can be seen from Figure 4.3-a that increasing added time delay results in a sharper
phase roll-off, such that the bandwidth of the vehicle (i.e., frequency at which the phase
is -180 deg) drastically reduces, as discussed in Chapter 2. The magnitude response does
not vary with added time delay, however, it is directly affected by the increased control
sensitivity. Changing Kg does not influence the phase response, as shown in Figure 4.3-
a. By using the frequency response of vehicle models with and without the added time
delay, the HQ of these models are assessed by the BPD criterion 6, as shown in 4.3-b. It
is clear that the HQ of the rotorcraft model with added time delay drastically degrades,
from Level-1 to Level-2, even close to the boundary of Level-3. Changing the control
sensitivity gain does not affect the BPD criterion, such that increased control sensitivity
causes a shift in the magnitude response, and this shift does not change the BPD param-
eters 6 (i.e., the phase and gain bandwidth).

APPARATUS

The first preliminary experiment was conducted in SRS (Figure 4.4-a) without motion. A
scaled-up attitude indicator (Figure 4.4-b) was used as a compensatory display to show
the roll tracking error. The control inceptor was a central cyclic stick from Moog FCSr,
shown in Figure 4.4-b, with a control loading system that is particularly designed for
rotorcraft simulations. During the experiment, the breakout force and friction settings of
the control loading system were set to zero in order to sustain the linearity in the control
path of the CE. Only the roll-axis cyclic control was active during the experiment, and
other axes were locked. The force gradient of the control loading system was set to 1.54
pound/in in order to provide sufficient feel of control loading system of a realistic central
cyclic. This value also belongs to Level-1 in ADS-33 Handling Qualities specifications for
allowable control force gradients 6.

PARTICIPANTS

This experiment was performed by four participants, who were all Delft University of
Technology students or staff members. All participants had prior experience with similar
human-in-the-loop experiments and manual control tasks. All participants were male,
and their ages ranged from 25 to 31 years, with an average age of 29 years. Two partici-
pants had private pilot licences for single engine fixed-wing aircraft.

PILOT MODEL

In this experiment, manual control behaviour was identified using a simplified version
of the precision model, (i.e., the pilot model utilized in MCIM), as given in the previous
chapter. After identification of manual control behaviour during conditions of the exper-
iment (i.e., the added time delay and the control gear sensitivity), identified parameters
of the pilot model were compared.
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(a) The SIMONA Research Simulator (SRS) of Delft
University of Technology.

(b) Cyclic control inceptor in the SRS
simulator.

(c) Attitude indicator used for displaying roll angle error
during the disturbance-rejection task.

Figure 4.4: The experiment was conducted in the SRS (a). Participants used a cyclic controller(b). The roll error
was displayed to the human subjects on the scaled-up attitude indicator (c). The indicator outer and inner ring
diameters were 13 cm and 9.5 cm, respectively. The display distance to eye design point of the pilot seat was
approximately 85 cm.

4.2.2. INDEPENDENT VARIABLES
The experiment had two independent variables. First, an added time delay was added to
the baseline CE model was varied. Second, the control gearing sensitivity was varied by
changing the gain of the cyclic input. Two added time delay values were applied (τd =0
and 300 ms), and two control gearing gains (Kg =1 and 2) were used in the experiment.
Hence, there were four conditions in total.

4.2.3. EXPERIMENT PROCEDURES
Prior to the experiment, all participants were briefed on the task to be completed. The
participants were instructed to minimize the displayed error (e) by using the lateral cyclic
input (u). Details of the CE or the control gearing sensitivity were deliberately not a part
of the briefing to the participants, in order to sustain compensatory control behaviour
without pre-assigned control strategies.
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The experiment was designed by considering the application of an ANOVA to the
measured data, as described in the previous chapter, and status of ANOVA assumptions
will be provided in Section 4.2.6. A Latin square design was used to ensure a balanced or-
der such that each human subject experiences each condition in a different sequence 104.
For this purpose, the number of conditions and number of participants were set as equal,
and the experiment execution order is listed in Table 4.2.

Table 4.2: 4X4 Latin square experiment design with independent variables added time delay (τd ) and control
gearing gain (Kg ).

Participants Experiment Conditions
(τd ,Kg )

I (0 ms,1) (300 ms,2) (0 ms,2) (300 ms,1)

II (300 ms,1) (0 ms,1) (300 ms,2) (0 ms,2)

III (0 ms,2) (300 ms,1) (0 ms,1) (300 ms,2)

IV (300 ms,2) (0 ms,2) (300 ms,1) (0 ms,1)

Procedures of the identification experiments were described in Chapter 3, as a part
of the MCIM. All participants were exposed to all conditions in the familiarization phase.
Next, participants continued to the training and measurement phases. During these
phases, participants were informed about their performance scores after they complete
an experiment run.

4.2.4. DEPENDENT MEASURES
During the experiment, the roll attitude (φ) of the CE, the displayed error (e) and the
pilot control input (u) were recorded. By using these measured data, several dependent
measures were calculated. First, the variances of the measured displayed error, and the
control input were interpreted as indications of task performance, and control activ-
ity, respectively. Second, by using the identification methods explained in the MCIM in
Chapter 3, pilot model parameters were identified from the measured data. Based on
the variations on these dependent measures, the pilot control behaviour adaptation to
experiment conditions is discussed. Then, open-loop crossover frequencies and phase
margins were calculated. In addition, time traces of the pilot control input and the vehi-
cle responses were used during the RPC detection processes by using ROVER and PAC,
which were described in detail in the previous chapter.

4.2.5. HYPOTHESES
This experimental approach is the essence of the MCIM, and it was primarily aimed to
investigate pilot control behaviour and PVS characteristics when subjected to variation
of added time delay in the CE. Considering the HQ and RPC review provided in Chapter
2, a primary hypothesis can be formulated as ‘added time delay in the CE will result in
a lower crossover frequency’. Based on given examples in Section 4.1, another primary
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hypothesis can be stated about identified pilot parameters as ‘added time delay in the
CE will result in a lower pilot gain (Kv ) and an increased lead time constant (τL)’.

Human operators are able to adapt their gain (Kv ) according to the gain of a con-
trolled element (|HC E ( jω)|), as described by McRuer 76. Increased control sensitivity di-
rectly shifts the gain of the controlled element, and it was hypothesised that human op-
erator could change his/her gain while maintaining a similar open-loop response, and
a similar crossover frequency. Hence, our hypothesis is ‘control gearing gain will not
have any effect on crossover frequency’. Moreover, this adaptation of Kv for varied con-
trol gearing could be independent of the added time delay, and the final hypothesis can
be stated as ‘interaction of control gearing sensitivity and the added time delay will
not have any effect on crossover frequency’.

4.2.6. METHODS USED FOR ANALYSING THE EXPERIMENT DATA

IDENTIFICATION METHODS

Two identification methods were utilized during the analyses of the measured data of the
experiment: FCMwO and MLE. Details of these methods, which are inherently included
in the MCIM, the order of their execution on the measured data, and the VAF for exam-
ining the accuracy of the identified manual control behaviour have all been described
in the previous chapter. High values of the VAF indicate that the identified manual con-
trol behaviour can describe the actual control behaviour of the corresponding human
operator participated in the experiment.

STATISTICAL ANALYSES

In order to analyse the statistical significance of the variations among configurations,
a two-way repeated-measures ANOVA was applied to the results of the experiment, as
described in the previous chapter. Measured data of this experiment showed that the in-
terval scale assumption was satisfied for all dependent measures analysed with the two-
way repeated-measures ANOVA. The normality assumption was rarely violated, but the
ANOVA is fairly robust for such instances 105. If the sphericity assumption was violated,
the Greenhouse-Geisser correction was applied 20.

RPC DETECTION TOOLS

As a part of the MCIM, two RPC detection tools were used: ROVER and PAC, which are
described in the previous chapter. These detection tools were applied to investigate the
correlation between identified manual control behaviour and RPC susceptibility of the
PVS with added time delay. In the previous chapter, ROVER flags and their thresholds
were described in detail for the pitch-axis, and for the first experiment, equivalent roll-
axis flags and their thresholds are given in Table 4.3. PAC detects the control aggression
and phase delay in the measured data, and locates these detected parameter pairs on a
phase-aggression chart with PIO susceptibility boundaries, as described in the MCIM.
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Table 4.3: ROVER variables and their threshold values used in the first experiment. Here, ωp is the roll rate

frequency, θ̂l at is the lateral cyclic stick deflection, p is the roll rate response of the rotorcraft, and φφ is the
phase between pilot control peaks and resultant rotorcraft body rate response p.

Variables as ROVER flags Threshold

Frequency ωp 8 rad/s

Stick amplitude θ̂l at 0.97 in

Roll rate p 0.29 rad/s

Phase φφ 85 deg

4.2.7. RESULTS

TASK PERFORMANCE AND CONTROL ACTIVITY

The task performance was measured by the normalized error variance (σ2
e /σ2

i ), whereσ2
e

and σ2
i are the variances of the tracking error and the dsiturbance forcing function, re-

spectively. Low values of the normalized error variance indicate good task performance.
If normalized error variance values are above one, instead of attenuating the error, the
operator actually amplifies the error. RMS of the control input was used as a measure of
pilot control activity. Figure 4.5 depicts the task performance and the control activity.
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Figure 4.5: Mean and 95% confidence intervals of measured task performance (a) and control activity (b), all
corrected for between-subject variability.

It can be seen from Figure 4.5-a that increasing added time delay resulted in in-
creased error for both control gearing settings. Moreover, normalized errors for the same
added time delay conditions were very similar regardless of the control gearing gains.
The effect of control gearing on the control activity is clearly visible in Figure 4.5-b. When
the control gear sensitivity is increased Kg = 2, the control activity reduced by approxi-
mately 50%, regardless of the added time delay. These observations were checked with
an ANOVA analysis, see Table 4.4.

The ANOVA results show that the added time delay has a highly significant effect on
the normalized error variance [F(1,3)=112.5,p<0.05], whereas the control gearing gain
has no significant effect [F(1,2)=9.23,p ≥0.1]. On the other hand, the control gearing gain
has a highly significant effect on control activity [F(1,3)=371.06,p<0.05], and the added
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Table 4.4: Two-way repeated-measures ANOVA results for the control activity and task performance, where **
is highly significant (p< 0.05) and - is not significant (p ≥ 0.1).

Dependent Independent
measures variable factors

τd Kg τd ×Kg

dF F Sig. dF F Sig. dF F Sig.

σ2
e /σ2

i 1,3 112.45 ** 1,3 9.23 - 1,3 0.04 -
RMSu 1,3 0.248 - 1,3 371.06 ** 1,3 3.17 -

time delay has no significant effect on control activity [F(1,2) = 0.248,p ≥0.1]. The com-
bination of added time delay and the control gearing gain did not show any significant
effect on both the normalized error and the control activity [F(1,2) = 3.71,p ≥0.1].

IDENTIFIED PILOT MODEL PARAMETERS

Identification of manual control behaviour depends on the assumption that human op-
erators exhibit a linear control behaviour, as discussed in the previous chapter. The lin-
earity of the pilot control behaviour at the frequencies excited by the forcing function
was checked by the squared correlation coefficient(ρ2), defined by McRuer et al. 83 as:

ρ2( jω) = 1− Snn( jω)

Suu( jω)
(4.2)

where Snn and Suu are the periodgrams of the noise and the control signal, respectively,
at the powered frequencies of the forcing function. Snn was calculated based on the
discussion in the previous chapter, such that the noise is accounted for the control non-
linearities which could not be modeled in aN LTI model. In addition to the correlation
coefficient, the VAF of the identified model can also be considered as evaluation of the
linearity of the system, depending on the accuracy of the estimated pilot model. An
example of the average correlation coefficient for one typical participant, and VAF values
which were corrected for between-subject variability, are shown in Figure 4.6.

As illustrated in the Figure 4.6, the correlation coefficients were generally found to
be close to one, which shows that manual control behaviour can indeed be considered
linear in all experiment conditions. Moreover, VAF values obtained for all subjects were
between 90% to 97%, with a grand average of 93.7%, as shown in Figure 4.6. In other
words, the estimated describing function (Hp ( jω)) with identified parameters captures
the majority of the measured manual control behaviour in all experiment conditions.

This allows for high-accuracy identification using the pilot model proposed in the
MCIM. Considering the estimated pilot model given in Section 4.2.1 describing the man-
ual control behaviour of human operators, pilot equalization parameters were the pilot
visual gain (Kv ) and lead time constant (τL). Pilot limitation parameters were the pilot
delay (τp ), neuromuscular damping (ζnms ) and natural frequency (ωnms ). Figure 4.7 de-
picts the estimates of these parameters with their means and 95% confidence intervals
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Figure 4.6: Average correlation coefficient values for Participant 3 (a), and mean and 95% confidence intervals
of VAF values, corrected for between-subject variability (b).

for each condition of the experiment. Results of the two-way repeated-measure ANOVA
performed on the pilot parameters are listed in Table 4.5.

Table 4.5: Two-way repeated-measures ANOVA results for the identified pilot model parameters, where ** is
highly significant (p< 0.05), * is significant (0.05 ≤p <0.1), and - is not significant(p ≥ 0.1).

Dependent Independent
measures variable factors

τd Kg τd ×Kg

dF F Sig. dF F Sig. dF F Sig.

Kv 1,3 10.52 ** 1,3 12.55 ** 1,3 0.941 -
τL 1,3 1.275 * 1,3 2.437 - 1,3 0.176 *
ωnms 1,3 4.899 ** 1,3 1.382 - 1,3 2.829 *
ζnms 1,3 0.07 - 1,3 3.292 - 1,3 0.233 -
τp 1,3 4.394 - 1,3 0.914 - 1,3 0.463 -

As can be seen from Figure 4.7-a, the added time delay caused a strong reduction
in the visual gain of the pilot, in both control gearing conditions [F(1,3)=10.52,p<0.05].
Moreover, increased control gearing resulted in reduced pilot gain (Kv ) with a highly sig-
nificant statistical effect [F(1,3)=12.55,p<0.05]. However, the interaction of the added
time delay and the control gear gain did not show a significant effect on the pilot visual
gain, [F(1,3)=0.941,p ≥0.1]. It can be observed in Figure 4.7-b that the confidence inter-
vals in the lead time constant parameter (τL) for all conditions are large when compared
to the confidence intervals of the pilot gain parameter. However, average-means of τL

show a clear increase with the added time delay for all control gain conditions. Added



4

102 4. PRELIMINARY EXPERIMENTS ON MANUAL CONTROL IDENTIFICATION

 

 

τd = 300 ms
τd = 0 ms

K
v

,i
n

/r
a

d

Kg = 1 Kg = 2

5

10

15

(a) Visual gain.

τ
L

,s

Kg = 1 Kg = 2
0

0.5

1

1.5

(b) Visual lead time constant.

ω
n

m
s,

ra
d

/s

Kg = 1 Kg = 2
0

2

4

6

8

10

12

(c) Neuromuscular natural frequency.
ζ

n
m

s,
−

Kg = 1 Kg = 2

0.2

0.4

0.6

0.8

1

1.2

(d) Neuromuscular damping.

τ
p

,s

Kg = 1 Kg = 2
0.1

0.2

0.3

0.4

(e) Pilot time delay.

Figure 4.7: Mean and 95% confidence intervals of estimated pilot visual gain (a), lead time constant (b), neuro-
muscular natural frequency (c), neuromuscular damping (d), and pilot time delay (e) parameters, all corrected
for the between-subject variability.

time delay showed a significant effect on τL [F(1,3)=1.275,0.05≤p<0.1], whereas the con-
trol gearing and its interaction with the added time delay do not show a statistically sig-
nificant effect, [F(1,3)=2.437,p ≥0.1] and [F(1,3)=0.176,p ≥0.1], respectively. Added time
delay caused the neuromuscular natural frequency (ωnms ) to decrease with a highly sig-
nificant effect [F(1,3)=4.899,p<0.05]. Varied control gear gain does not show a significant
effect on ωnms , [F(1,3)=1.382,p ≥0.1]. The neuromuscular system damping (ζnms ) pos-
sesses the highest relative confidence variation, as shown in Figure 4.7-d. Both ζnms and
the pilot delay (τp ) parameters were not significantly affected by either of the indepen-
dent variables or their combinations. By using the means of the identified pilot model
parameters, the average manual control behaviour for each independent experiment
variable is depicted in Figure 4.8.
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Figure 4.8: Manual control behaviour of human operators described by the pilot model using grand averaged
identified parameters in 0 and 300 ms of added time delay and increased control gear gain, Kg =1 and 2.

Figure 4.8 illustrates the major differences between manual control behaviour over
all tested conditions. Adaptation of the human operator to the increased control sensi-
tivity is a matching shift in the magnitude response while the phase response is identical
for both control gear conditions. However, the manual control adaptation to the added
time delay has a number of characteristic deviations in the identified manual control re-
sponse, as summarized in Table 4.6.

Table 4.6: Main observations and their indications from identified pilot parameters of manual control be-
haviour adapted to the added time delay condition.

Observations Relevant pilot parameter deviation
when τd ⇑

Shift of magnitude response Decrease in pilot visual gain Kv ⇓
at low and mid-frequencies

Increased magnitude slope Increase in lead time constant τL ⇑
at low and mid-frequencies

Increased phase response Increase in lead time constant τL ⇑
at low and mid-frequencies

Decreased frequency of Decrease in neuromuscular natural frequency ωnms ⇓
the magnitude peak at mid- and high frequencies

As listed in Table 4.6, added time delay resulted in a lower plot gain at low and mid-
frequencies, with an increased magnitude slope. This steeper magnitude slope is an
indication of increased lead time constant, which is also coherent with the increased



4

104 4. PRELIMINARY EXPERIMENTS ON MANUAL CONTROL IDENTIFICATION

phase response around low and mid-frequencies. Another observation is the reduction
of the natural frequency of the neuromuscular system (ωnms ). This decrease of the nat-
ural frequency of the second order neuromuscular system model can be interpreted as
adaptation of human operators to apply muscular activation at lower frequencies com-
bined with linear control inceptor system, when subjected to degraded HQ conditions.
In degraded HQ conditions human operators may inherently avoid to exhibit high fre-
quency neuromuscular activity which would amplify the response of the degraded HQ .

CROSSOVER FREQUENCIES AND PHASE MARGINS

By using the identified pilot parameters from the previous section, the open-loop crosso-
ver frequencies and corresponding phase margins could be obtained, see Figure 4.9 with
means and 95% confidence intervals, corrected for between-subject variability. In order
to evaluate the statistical significance of the added time delay and the control gear on
crossover frequencies and phase margins, a two-way repeated-measure ANOVA was ap-
plied, and the results are listed in Table 4.7.
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Figure 4.9: Mean and 95% confidence intervals of the crossover frequency(a) and the phase margin(b), all
corrected for the between-subject variability.

Table 4.7: Two-way repeated-measures ANOVA results for the crossover frequencies and phase margins, where
** is highly significant (p< 0.05), * is significant (0.05 ≤p <0.1),- is not significant (p ≤ 0.1).

Dependent Independent
measures variable factors

τd Kg τd ×Kg

dF F Sig. dF F Sig. dF F Sig.
ωc 1,3 52.63 ** 1,3 3.68 - 1,3 4.94 -
φm 1,3 2,45 * 1,3 0.22 - 1,3 14.34 -
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Figure 4.9 shows that the crossover frequency (ωc ) decreased, with a highly signif-
icant effect of added time delay, [F(1,3)=52.63,p<0.05]. Increased control gearing does
not show a significant effect on the crossover frequency, even with the combination of
the added time delay. Moreover, the control gearing does not effect the phase margin
(φm) as well, whereas added time delay showed a significant effect on φm , [F(1,3)=2.45
,0.05≤p<0.1]. Combined effects of the added time delay and the control gear gain also
did not show a significant effect on phase margin. Similar to the identified pilot parame-
ter comparisons, the added time delay was the most effective independent variable that
influenced the adaptation of the manual control behaviour, observed with the crossover
frequency and the phase margin comparison as well. These results agree with the hy-
potheses given in Section 4.2.5.

ROVER AND PAC RESULTS

In order to investigate the correlation between the identified manual control behaviour
and the RPC tendency, the measured data was processed with ROVER and PAC, as a part
of the MCIM described in the previous chapter. ROVER results are shown in Figure 4.10,
and corresponding two-way ANOVA statistical analysis table is given in Table 4.8.
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Figure 4.10: Mean and standard deviations of the detected ROVER flags for all experiment conditions.

Table 4.8: Two-way repeated-measures ANOVA results for the number of ROVER detections, where ** is highly
significant (p< 0.05) and - is not significant (p ≤ 0.1).

Dependent Independent
measures variable factors

τd Kg τd ×Kg

dF F Sig. dF F Sig. dF F Sig.

ROV ER f l ag s 1,3 7.558 ** 1,3 1.939 - 1,3 4.11 -
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From Figure 4.10, it can be clearly seen that added time delay indeed increased the
RPC susceptibility, such that the number of RPC detections (i.e., four simultaneously de-
tected ROVER flags) significantly increased, [F(1,3)=52.63,p<0.05]. Both control gearing
and combination of added time delay and control gearing do not show any significant ef-
fect on the number of ROVER detections, [F(1,3)=1.939,p≥0.1] and [F(1,3)=4.11,p≥0.1],
respectively. It must be noted that the scope of this experiment was not to identify the
manual control behaviour during a fully developed RPC event. Instead, manual control
behaviour in RPC prone conditions were investigated by using the MCIM. Therefore, the
identification of the manual control behaviour was performed on the human operator
who could still maintain the control of the vehicle but with a change of his/her control
behaviour to adapt to the RPC prone task. Similar to the ROVER, PAC was processed on
the measured data and, its results are demonstrated in Figure 4.11.

It can be seen in Figure 4.11 that, added time delay caused pairs of phase-aggression
detections in PAC to shift from the ’NO PIO’ zone to closer to the ’Moderate PIO’ zone,
where the RPC susceptibility is higher, as described in the previous chapter. It is worth
noting that the translation of these detections was mainly due to the phase parameter
of the PAC. Moreover, it can be observed from Figure 4.11 that the average aggression
parameter of the detected points became approximately its half value when the control
gear gain was doubled, independent of the added time delay condition. This behaviour
is highly correlated with the gain of the pilot model such that in order to attain a similar
vehicle response, human operators adjusted their gain (i.e., shift the magnitude of the
pilot response) when subjected to a higher control gearing gain.
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Figure 4.11: PAC detection results for Participant 2 in conditions with 0 and 300 ms of added time delays, for
the two levels of control gearing values.

4.2.8. DISCUSSION ON THE FIRST EXPERIMENT
The first preliminary experiment investigated the effects of added time delay and in-
creased control gearing on manual control behaviour. The MCIM, which was introduced
in the previous chapter, was used in all its proposed stages except for changing the task
difficulty. Two levels of added time delays (τd = 0 and 300 ms) and two values of con-
trol gains (Kg =1 and 2) were used. The rationale of the control gearing variation was
to investigate the control behaviour changes if participants were exposed to a higher-
sensitivity manipulator, e.g., different control manipulator gearings in different simula-
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tors, in a test campaign with various conditions of added time delay in the vehicle model.

Four participants completed a roll-axis disturbance-rejection task. The primary scope
was to investigate the adaptation of manual control behaviour for the added time delays,
since literature shows that increased control gearing would only change the gain of the
control behaviour accordingly, such that a similar open-loop response near crossover
frequency is achieved. This result is a good example of one of the classical verbal adjust-
ment rules of McRuer 80 (i.e., Kc -ωc independence). This rule states that after an initial
adjustment, any change in the CE gain (Kc ) is offset by the pilot gain, thus, crossover
frequency(ωc ) is invariant of the CE gain.

The CE was a single-axis steady-state roll model which was characterized by the roll
subsidence. A high value of the roll subsidence (-10.94 s−1) was used in order to sim-
ulate a high bandwidth rotorcraft, e.g., the Bo-105. After completing the first prelimi-
nary identification experiment, measured data were analysed and processed to identify
the linear control behaviour of participants. Particular interest was given to the change
of crossover frequency and the corresponding pilot model parameters. It was observed
that control gearing did not change the crossover frequency, and there was no significant
variation in the pilot model parameters due to Kg except for the pilot gain. Added time
delay significantly changed the control behaviour, and decreased open-loop crossover
frequencies and increased phase margins were obtained. Moreover, by using the RPC de-
tection tools of the MCIM, it was observed that RPC susceptibility was increased with the
added time delay. Identified pilot parameters showed that with the added time delay,
human operators decreased their visual gains, increased their lead time constants, and
reduced their neuromuscular natural frequencies. Neuromuscular damping and pilot
delay parameters did not show a clear trend of change. Therefore, the first preliminary
identification experiment showed how human subjects adapted their manual control
strategies to cope with the reduced PVS stability caused by added time delay.

Although a reduction in crossover frequency with added time delay was observed, it
was not clear whether it was a crossover regression or not. Crossover regression is a phe-
nomenon that shows a clear regression between two conditions(e.g., forcing function
bandwidths), as described by McRuer and Jex 80. In principle, human operators can re-
duce their crossover frequencies for stability reasons or due to the difficulty of the task 80.
In addition, participants commented that the roll error in the display could not be per-
ceived with high precision. Several studies also indicated a similar issue, for example
Nieuwenhuizen et al. 105 also showed that in a multi-axis compensatory task (pitch and
roll) pilots showed less noisy control anticipation for the pitch axis, and they aimed to
minimize the pitch error with a higher precision and priority, rather than the roll error.
The error of the roll attitude requires human operators to apply sidewards cyclic input.
The response of the neuromuscular system is less linear in this direction since the ac-
tivated muscular system is less symmetrical when compared to longitudinal control 51.
Considering the demanding MCIM experiment conditions (e.g., degraded HQ and in-
creased RPC susceptibility during possibly harder tasks), it was decided to use the pitch-
axis model of the MCIM to result in a more linear human control behaviour when both
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added time delay and task difficulty were proposed to be altered. As the next step, a
second preliminary identification experiment was designed, and described in the next
section.

4.3. PRELIMINARY EXPERIMENT II
The first experiment showed that when exposed to a CE with added time delay, sig-
nificant changes in the pilot model parameters were: decreased pilot visual gain, in-
creased lead time constant and the lower neuromuscular natural frequencies. Open-
loop crossover frequency was decreased with added time delay, but the tested condi-
tions were not sufficient to determine the crossover-regression tendency by comparing
just two crossover frequencies. In order to detect the crossover regression better, the sec-
ond preliminary experiment tested a higher resolution of the added time delay. Akin to
the first preliminary experiment, the main goal of this experiment was investigating the
effects of added time delay on manual control behaviour with a particular focus on the
crossover regression determination, while keeping the task difficulty constant. In com-
pliance with the structure of the MCIM introduced in the previous chapter, this section
will describe the details of the second preliminary experiment.

4.3.1. TASK DESIGN

PITCH CONTROL TASK

In this experiment, the disturbance-rejection task of the MCIM in the pitch-axis was
used, as described before. Moreover, task difficulty was not.

ROTORCRAFT MODEL

The controlled element (HC E ) was the single axis (pitch) rotorcraft model of the MCIM,
as described in the previous chapter. In this experiment, the control authority term
Mδl on

was 4.095 rad/(in.s2), and the aerodynamic pitch rate damping derivative Mq was
−3 s−1. Three levels of added time delay (τd ) were tested; 0, 100 and 200 ms. Consider-
ing the pitch subsidence which determines the break frequency of the CE, this rotorcraft
model starts to behave like a double integrator at lower frequencies (3 rad/s) than the
roll model (≈10 rad/s) of the first experiment. Therefore, the added time delay values
were chosen to be lower than 300 ms. The Bode plot of the CE is shown in Figure 4.12.

As can be seen from Figure 4.12, increasing the added time delay results in larger
phase lag of the CE; whereas it does not affect the magnitude response. Corresponding
BPD criterion assessments of the CE with added time delay are shown in Figure 4.3.
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Figure 4.12: Bode diagram of the CE with 0, 100 and 200 ms of added time delay.

 

 

Fixed-wing boundaries

PIO Resistant

PIO Prone
Level-3

Level-2 Level-1τ
p
θ

,s

ωBWθ
,r ad/s

τd = 200ms

τd = 100ms

τd = 0ms

0 1 2 3 4
0

0.1

0.2

Figure 4.13: Bandwidth phase delay criterion of the CE with 0, 100 and 200 ms of added time delay.

It can be observed from Figure 4.13 that the baseline model (i.e., τd =0 ms) exhibits
Level-1 HQ , whereas 100 ms of added time delay degrades the HQ to the border of Level-
2 HQ. Furthermore, 200 ms of added time delay resulted in Level-2 HQ. In Figure 4.13,
PIO boundaries of fixed-wing aircraft are superimposed on the BPD chart with dashed
lines for comparison reasons, since boundaries for rotorcraft have not been determined
yet 115. According to the fixed-wing boundaries, all added time delay conditions were
still predicted to be PIO resistant.

APPARATUS

The experiment was conducted in the HHS (Figure 4.14-a) without motion. A scaled-
up attitude indicator (Figure 4.14-c) was used as a compensatory display to show the
pitch error. The control inceptor was a generic central cyclic stick (Figure 4.14-b) with a
rotational spring, and without the breakout force and friction to sustain the linearity in
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(a) The Heliflight Helicopter Simulator (HHS) of the
University of Liverpool.

(b) Cyclic control inceptor in the HHS
simulator.

(c) Attitude indicator used for displaying pitch error during
the disturbance-rejection task.

Figure 4.14: The second preliminary identification experiment was conducted in the HHS. Participants used
the cyclic controller(b). The pitch error was displayed to the pilots on the scaled-up attitude indicator (c).
The indicator outer and inner ring diameters were 15 cm and 13 cm, respectively. The display distance to eye
design point of the pilot seat was approximately 90 cm.
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the control path of the CE. Only the longitudinal cyclic control was enabled during the
experiment, while all other axes of control were locked.

PARTICIPANTS

This experiment was performed by three participants, all professional rotorcraft pilots.
All pilots had prior experience with similar human-in-the-loop experiments with man-
ual control tasks. All subjects were male and their ages ranged from 42 to 63 years, with
an average age of 50.7 years. The same pilots also participated in the rigid body simu-
lator test campaigns of the ARISTOTEL project, which focused on triggering RPC events
in full motion simulator environments through added time delay and rate limiting in
Bo-105 simulation models 115.

Table 4.9: Flying and simulator experiences of the participant pilots in the second preliminary identification
experiment. Listed flying hours belong to 2012, taken from Ref.[53].

Pilot Job title Rotary wing hours Fixed-wing hours Simulator hours

I Senior First Officer for 7800 8000 1300
commercial airline/British Royal Navy

II Royal Netherlands Airforce 1500 200 230
Chinook Test Pilot

II Royal Netherlands Airforce 2000 6150 400
Apache Test Pilot

4.3.2. INDEPENDENT VARIABLES
The only independent variable was the added time delay in the CE for 0, 100 and 200 ms
(i.e., three conditions).

4.3.3. EXPERIMENT PROCEDURES
The experiment was designed and executed according to MCIM, such that all pilots were
briefed on the task to be completed (i.e., minimize the displayed pitch error by using the
longitudinal cyclic input). Scope of the experiment and any configuration details were
not provided to pilots to avoid any pre-assigned control strategy.

Since the ANOVA was used while analysing the measured data, the execution order
of experiment conditions was designed as a Latin square, as listed in Figure 4.10.

4.3.4. DEPENDENT MEASURES
Similar to the first preliminary identification experiment, the dependent measures were
the task performance (i.e., the normalized error varience), the control activity, identified
pilot model parameters, the crossover frequency, the phase margin and RPC tendencies
that were detected by ROVER and PAC.
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Table 4.10: 3x3 Latin square experiment design with the independent variable, i.e., added time delay (τd ).

Participants Experiment Condition
τd

I 100 ms 0 ms 200 ms

II 200 ms 100 ms 0 ms

III 0 ms 200 ms 100 ms

Finally, pilots were asked to subjectively evaluate the HQ and RPC of experiment con-
ditions by using HQR and PIOR, respectively. Details of these subjective ratings are given
in Appendix A. For the HQR, ± 10◦ pitch error was set as desired performance, and ± 15◦

was set as adequate performance for the tracking task. Although these performance lev-
els were not taken from a realistic task, experimental trial runs conducted with pilots re-
sulted in these levels to be applicable in this experiment. It is worth noting that the com-
plete simulator environment directly affects the execution of the task, such as the cyclic
forces and the error display size. As a part of the ARISTOTEL simulator test campaigns,
pilots, who also participated in this experiment, had already been familiarized with the
rating scales and the simulator environment. Pilots awarded the HQ and RPC ratings of
the configuration after each measurement run (last 4 runs with steady scores). More-
over, pilots also awarded Bedford pilot workload ratings (see Appendix A.4) to evaluate
the change in the subjective workload between experiment conditions.

4.3.5. HYPOTHESIS
Human operators were expected to exhibit a noticeable change in their manual control
behaviour after some value of added time delay, similar to the ’HQ cliff’ occurrences 5,5,
which were discussed in Chapter 2. Hence, it was hypothesized that ’added time delay
would induce crossover regression’. Such occurrences of manual behaviour changes
will be captured by using the objective measures of MCIM, i.e., identified pilot model
parameters.

4.3.6. METHODS USED FOR ANALYSING THE EXPERIMENT DATA

IDENTIFICATION METHODS

Akin to the first preliminary experiment, both FCMwO and MLE identification methods
were used while analysing the measured data, as described in the MCIM.

STATISTICAL ANALYSES

In order to analyse the statistical significance of the variations among configurations, an
one-way repeated-measures ANOVA was applied to the results of the second preliminary
experiment. Measured data of this experiment showed that the interval scale assump-
tion was satisfied for all dependent measures analysed. The normality assumption was
rarely violated, but the ANOVA is fairly robust for such instances 105. If the sphericity
assumption was violated, the Greenhouse-Geisser correction was applied 20.
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RPC DETECTION TOOLS

ROVER thresholds were assigned according to the post-run analysis of the measured
data of the experiment, as explained before, and they are given in Figure 4.11.

Table 4.11: ROVER variables and their threshold values used in the second experiment. Here, ωq is the pitch

rate frequency, θ̂l on is the longitudinal cyclic stick deflection, q is the pitch rate response of the rotorcraft, and
φθ is the phase between pilot control peaks and resultant body rate response.

Variables as ROVER flags Threshold

Frequency ωq 8 rad/s

Stick amplitude θ̂l on 0.49 in

Pitch rate q 0.18 rad/s

Phase φθ 85 deg

4.3.7. RESULTS
This section will provide the results of the dependent measures of the second prelimi-
nary experiment that were described in the previous section. Since the only indepen-
dent variable was the added time delay, a one-way repeated measures ANOVA is used
to analyse statistical significance of the added time delay in these dependent measures,
and the ANOVA results are provided in Table 4.12.

Table 4.12: One-way repeated-measures ANOVA results for the dependent measures of the second preliminary
experiment, where ** is highly significant (p< 0.05), * is significant (0.05 ≤p <0.1), and - is not significant (p ≥
0.1).

Dependent Independent
measures variable

τd

dF F Sig.

σ2
e /σ2

i 2,4 8.203 **
RMSu 2,4 1.213 -
Kv 2,4 3.723 **
τL 2,4 12.328 **
ωnms 2,4 1.865 *
ζnms 2,4 1.968 -
τp 2,4 0.685 -
ωc 2,4 1.851 **
φm 2,4 1.748 *
ROV ER f l ag s 2,4 1.583 **

Following subsections will provide the results obtained from the experiment, and use
Table 4.12 to provide statistical information about the observed variations of dependent
measures.
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TASK PERFORMANCE AND CONTROL ACTIVITY

Similar to the first identification experiment, task performance was measured by the
normalized error variance (σ2

e /σ2
i ), while the RMS of the control input was used as a

measure of pilot control activity. Figure 4.15 depicts the task performance and the con-
trol activity, calculated from measurement data.
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Figure 4.15: Mean and 95% confidence intervals of measured task performance (a) and control activity (b), all
corrected for the between-subject variability.

It can be seen from Figure 4.15-a that increasing added time delay resulted in in-
creased error. Moreover, ANOVA results in Table 4.12 also shows that added time delay
has a highly significant effect on the normalized error variance, [F(2,4)=8.203,p<0.05].
However, added time delay did not show a clear deviation tendency in control activity,
as shown in Figure 4.15-b, and statistically not effective as well ([F(2,4)=1.213,p >0.1].

IDENTIFIED PILOT MODEL PARAMETERS

In order to check the linearity of the pilot control behaviour, the correlation coefficients
and VAF values were examined, similar to the first identification experiment. VAF values
represent the accuracy of the estimated pilot model behaviour when compared to the
measured data. Since linear manual control models were considered in MCIM, high
VAF values inherently may indicate the linearity of the control behaviour. The opposite
argument is not true such that low VAF values do not strictly indicate the non-linearity
of the measured response, but instead improper estimated pilot model structure can be
a reason as well. An example of the average correlation coefficient for a pilot, and VAF
values, which were corrected for between-subject variability, are shown in Figure 4.16.

As illustrated in Figure 4.16, the correlation coefficients were close to one. Moreover,
VAF values obtained for all subjects were between 89% to 93%, with a grand average of
91.1%, as shown in Figure 4.16. Such high values of VAF indicates the good fit of the esti-
mated linear control behaviour model to the measured data.

Since the linearity of the control response was checked, the identified pilot model
can be considered to well describe the manual control behaviour of the participant pi-
lots. Means and 95% confidence intervals of the identified parameters of the pilot model
are depicted in Figure 4.17.
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Figure 4.16: Average correlation coefficient values for Pilot 2 (a), and mean and 95% confidence intervals of
VAF values, corrected for between-subject variability (b).

It can be observed from Figure 4.17-a that with increasing added time delay, pilots
reduced their visual gain, which agrees with the highly significant effect of added time
delay on the visual gain according to ANOVA results ([F(2,4)=3.723,p<0.05] in Table 4.12).
Particularly, the reduction was more noticeable when added time delay increased from
100 ms to 200 ms. In correlation with this trend, the lead time constant parameter in-
creases with added time delay, which showed a statistically highly significant effect on
the lead time constant [F(2,4)=12.328,p<0.05]. Similarly, for the 200 ms condition the in-
crement was noticeably higher than the increase from 0 to 100 ms of added time delay.
With increasing added time delay, natural frequency of the neuromuscular system was
decreased [F(2,4)=1.865,0.05≤p<0.1], and a noticeable change can be observed with 200
ms of added time delay. Both neuromuscular damping and the pilot delay did not show
any noticeable trend with the added time delay.

In order to visualize the overall effect of the change in manual control behaviour,
frequency responses of grand-average pilot models obtained from the mean values of
the identified pilot models are depicted in Figure 4.18.

The grand-mean pilot model for 200 ms added time delay condition is noticeably
different than the pilot models for the 0 and 100 ms added time delay conditions. This
change of manual control behaviour suggests that between 100 and 200 ms of added
time delay conditions, there could be a ’cliff-like’ sudden change in HQ .

CROSSOVER FREQUENCIES AND PHASE MARGINS

Crossover frequencies and phase margins with their means and 95% confidence inter-
vals, corrected for between-subject variability are depicted in Figure 4.19.
Figure 4.19 shows that with increasing added time delay, the crossover frequency stays
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Figure 4.17: Mean and 95% confidence intervals of the estimated pilot visual gain (a), the lead time constant
(b), the neuromuscular natural frequency (c), the neuromuscular damping (d), and the pilot time delay (e)
parameters, all corrected for the between-subject variability.

almost steady from 0 ms to 100 ms. However, when the added time delay was increased
to 200 ms, a clear crossover regression tendency (≈ 30%) was observed. In addition,
ANOVA results show that added time delay has a highly significant effect on crossover
frequency ([F(2,4)=1.851,p<0.05] in Table 4.12). Similarly, the phase margin values show
a noticeable difference (≈ 30%) when 200 ms of added time delay was applied. Added
time delay showed a significant effect on the phase margin. Unlike the classical crossover
regression 81,83, this regression due to added time delay did not require the change of the
task difficulty, i.e., bandwidth of the forcing function. Instead, HQ degradation due to
the added time delay can be interpreted as a harder task from a classical crossover re-
gression perspective.
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Figure 4.18: Manual control behaviour of human operators described by the pilot model using grand averaged
identified parameters in 0, 100 and 200 ms of added time delay conditions.
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Figure 4.19: Mean and 95% confidence intervals of the crossover frequency(a) and the phase margin(b), all
corrected for the between-subject variability.

ROVER AND PAC RESULTS

As a part of the MCIM, ROVER and PAC were used to investigate the correlation between
occurrences of the crossover regression and the RPC susceptibility caused by the added
time delay Results are shown in Figure 4.20 and Figure 4.21, respectively.

The ROVER results in Figure 4.20 indicate that from 0 ms to 100 ms, detected RPC num-
bers increased from 0 to 10 detections. This deviation illustrates that the RPC tendency
of the rotorcraft in the task increased considerably. However, when added time delay
was increased to 200 ms, the detected RPC occurrences remained almost constant. It
is suggested that pilots preferred to exhibit a ’back-off’ strategy here, and consequently
avoid any further RPC tendency between 100 ms and 200 ms of added time delay condi-
tions. Added time delay showed a highly significant effect on the detected ROVER flags
[F(2,4)=1.583,p<0.05]. Similarly, PAC results shown in Figure 4.21-b demonstrate that
from 0 ms to 100 ms of added time delay, the detected PAC parameters shifted from ’NO
PIO’ to ’Moderate PIO’ zone, by both increased aggression and phase detections. As de-
picted in Figure 4.21-b, PAC detections show that 200 ms of added time delay condition
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Figure 4.20: Mean and standard deviations of ROVER detections.
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Figure 4.21: PAC results of subject 2 for 0, 100 and 200 ms of added time delay conditions.

resulted in ’NO PIO’ zone, which again indicates that pilots preferred to avoid the in-
creased risk of severe RPC tendencies as added time delay became 200 ms.

PILOT SUBJECTIVE RATINGS

As described in Section 4.3.2, three subjective pilot ratings were used in the second pre-
liminary identification experiment by professional pilots. It must be noted that these
subjective scales are not part of the MCIM, but they were used for comparison purposes.
These three subjective pilot ratings were: the Cooper-Harper HQR for the HQ assess-
ment, PIOR for the RPC susceptibility, and Bedford Work Loading Scale Ratings (WLR) ,
which are provided in Appendix A. Awarded ratings of these rating scales in the second
preliminary identification experiment are depicted in Figure 4.22.

It can be seen from Figure 4.22 that all ratings got worse as the added time delay in-
creased. HQ stayed in Level-2 (i.e., ratings from four to six in HQR), but 200 ms of added
time delay was awarded on the border of Level-3. The PIOR indicated that for the base-
line condition, mean of the PIOR was awarded two, which is described as (Appendix A.2)
‘Undesirable motions tend to occur when pilot initiates abrupt maneuvers or attempts
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Figure 4.22: Awarded HQR, PIOR and WLR for 0, 100 and 200 ms of added time delay conditions.

tight control. These motions can be prevented or eliminated by pilot technique’. For the
200 ms added time delay condition, the PIOR was awarded four, which is described as
‘Oscillations tend to develop when pilot initiates abrupt maneuvers or attempts tight con-
trol. Pilot must reduce gain or abandon task to recover.’ This PIOR deviation suggests
that the 200 ms added time delay condition enforced pilots to exhibit precarious con-
trol to avoid potential RPC occurrences, and a reduced gain strategy was applied since
pilots did not abandoned the task. These subjective ratings are in good agreement with
the ROVER and PAC detections, such that they also indicated the change of RPC occur-
rences due to adapted control strategy. WLR was explicitly considered for comparison
purposes only because such an identification experiment severely limits capacity for ad-
ditional piloting tasks. It can be observed from WLR that pilots were already exerting
high workload for the identification experiment, i.e., WLR in Level-3 (ratings between 7
and 9). Overall, awarded WLR showed a gradual increase in pilot workload with added
time delay conditions during which degraded HQ required higher attention, as depicted
in Figure 4.22. This result is also highly correlated with the identified parameters, for
instance, increased lead time constant is an indication of increased pilot workload 75.

4.3.8. DISCUSSION ON THE SECOND EXPERIMENT
The second identification experiment was conducted with a focus on occurrences of
crossover regression due to added time delay. During this experiment, human subjects
were three professional helicopter pilots who also had participated in the ARISTOTEL
project during RPC test campaigns. Three levels of added time delay were applied in
order to expose possible crossover regression behaviour of pilots. A pitch-axis model
with a break frequency of 3 rad/s, which is located in the expected crossover frequency
range, was controlled in a disturbance-rejection task, as described in MCIM. Analyses on
measured data showed that a similar pilot model adaptation as in the first preliminary
identification experiment was observed in the second experiment as well. Moreover, a
considerable occurrence of crossover regression (≈ 30%) between 100 ms and 200 ms
of added time delay conditions was observed. The change in pilot model parameters
which were also the most effective parameters in the first experiment (i.e., Kv , τL , and
ωnms ), became more apparent. Consequently, RPC tendencies indicated that from 0 ms
to 100 ms of added time delay, RPC occurrences already drastically increased, whereas
for 200 ms condition the RPC tendency remained almost the same as the 100 ms condi-
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tion, as detected by both ROVER and PAC. Apparently, pilots tried to avoid any further
RPC events to be triggered when the condition changed from 100 ms to 200 ms of added
time delay.

In addition to objective HQ assessments and identified manual control behaviour,
three subjective rating scales were used. Awarded HQR showed that HQ degraded grad-
ually with added time delay, mainly staying in Level-2 regime of Cooper-Harper rating
scale. Similarly, awarded WLR ratings indicated that pilots awarded higher workload
with added time delay. PIOR results illustrated that RPC tendencies increase with added
time delay, and awarded PIOR for the 200 ms added time condition indicate that pilots
needed to reduce their gain to complete the task. This reduction was identified from
the measured data as well. It is worth noting that RPC detection tools notify the occur-
rences of RPC insistences in the measured data, whereas PIOR show the RPC tendency
of the vehicle in general. Thus, if pilots experience a general over-shooting response
of the vehicle with moderate pilot control input, they may prefer to reduce their con-
trol efforts, i.e., reduce their gain. Therefore, they would award a high PIOR whereas
detected RPC would be almost the same due to already reduced aggression. Moreover,
fixed-wing PIO boundaries for the bandwidth phase delay criterion predicted all condi-
tions to be PIO resistant, however subjective ratings showed that especially for the 200
ms added time delay condition, it was not verified. The need for adjusting the fixed-wing
PIO boundaries for the rotorcraft already has been an ongoing process in literature 115,
while ADS-33 only provides a warning about the PIO tendency for attitude command
systems 13.

4.4. CONCLUSIONS
By using the MCIM discussed in the previous chapter, two preliminary experiments were
conducted. A common goal of both experiments was to identify the adaptation of man-
ual control behaviour when CEs included different levels of added time delay. Especially,
possible crossover regression behaviour was examined. Even though the two experi-
ments had several differences, e.g., different CE models in different axes, identification
results of manual control behaviour in both experiments revealed that pilots showed
lower visual gain and neuromuscular natural frequencies, and higher lead compensa-
tion, when the added time delay was increased. In addition, changed control gearing
gain in the first experiment showed no effect on the manual control behaviour except
for direct gain adaptation of human operators. The second experiment revealed the
crossover regression due to added time delay. Furthermore, RPC detection tools showed
the increased RPC susceptibility with increased added time delay, and correlated well
with the identified manual control behaviour.

Using MCIM starting from the initial design to the final analyses phases of identifi-
cation experiments successfully demonstrated its applicability for the added time delay
conditions in different simulators, vehicle active axes, participant profiles, and added
delay values. Adaptation of manual control behaviour to added time delay conditions
were also successfully determined and correlated with the RPC susceptibility in both
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preliminary identification experiments. Particularly the second experiment showed crossover
regression tendency of human operators when exposed to added time delay conditions.

The results of the present chapter demonstrate the capability of the MCIM to detect
crossover regression due to added time delay. The next chapter will introduce the second
important variable of the MCIM: task difficulty. Crossover regression due to task diffi-
culty is a well-known phenomenon, as discussed in Chapter 2. In addition to the classical
occurrences, the MCIM aims to identify the control behaviour changes, when task diffi-
culty and added time delay are varied individually and in combination. A fundamental
follow-up question in such conditions can be stated as: ‘What would be the optimum
pilot parameters that could provide the best performance when task difficulty and added
time delay are varied?’. In the next chapter, a theoretical simulation study will be per-
formed to address this question. Particularly, finding the optimum pilot parameters that
can provide the best performance will be the main focus of the simulation. Then, corre-
sponding PVS characteristics and signatures of crossover regression with these optimum
pilot parameters will be further elaborated.



5
SIMULATION FRAMEWORK

In the previous chapter, preliminary human-in-the-loop identification experiments, which
were conducted in the SRS at Delft University of Technology, and HHS at University of Liv-
erpool, were analysed. This chapter uses the results of these experiments and provides
a follow-up computer simulation study in order to investigate the manual control be-
haviour model in a compensatory task with additional time delay in CE, and various
forcing function bandwidths. In MCIM, various forcing function bandwidths represent
different levels of ‘task difficulty’. Crossover regression tendencies in simulated manual
control behaviours that yield optimum task performance will be emphasized, based on
variation of additional time delay and the task difficulty. In the simulation study, dis-
crete and continuous forcing functions will be used with and without the presence of pilot
remnant.

5.1. INTRODUCTION
In the previous chapter, the preliminary identification experiments showeed that when
human operators are exposed to CEs with added time delay, they exhibit a manual con-
trol behaviour to compensate for the reduced phase of the PVS due to the added time
delay. From a handling qualities perspective, additional time delay plays a vital role in
defining the available bandwidth of the vehicle from phase-drop restrictions, while the
magnitude response remains same. As shown in Chapter 2, this information could al-
ready provide an indication of the HQ of the vehicle. For example, ADS-33 contains the
BPD criterion, which only considers the transfer function between pilot input and the
rotorcraft(i.e., CE) response. The effect of time delay can easily be noticed by increased
phase delay and reduced bandwidth, as together these degrade HQ of the rotorcraft (e.g.,
from Level-1 to Level-2). Although this HQs degradation is a very useful measure to per-
form an initial assessment of the HQs deficiency of the vehicle, the ‘pilot’ is the ultimate
element of the closed-loop PVS who perceives the handling qualities 17. Therefore, in-
vestigation of the pilot control behaviour adaptation to various time delay conditions
would likely bring a different perspective to the evaluation of HQ. Moreover, increased
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time delay also provokes higher adverse A/RPC proneness, which consequently requires
a pilot to adjust his/her control strategy.

In the previous chapter, preliminary identification experiments showed that human
operators change their control strategy to retain satisfactory task performance when
subjected to CEs with added time delay. This adaptation of the manual control strat-
egy was clearly more recognizable after a certain level of added time delay in the sec-
ond preliminary experiment. This kind of noticeable change in the control strategy for
certain conditions resembles the well-known crossover regression strategy 81,83 which is
discussed in Chapter 3 in detail. Briefly, it can be summarized as a recognizable manual
control change after exceeding a certain task difficulty (i.e., forcing function bandwidth).
In this thesis, the proposed methodology, so-called the MCIM, is designed to investigate
the changes in manual control behaviour based on these two crossover regression occur-
rences (i.e., due to the added time delay and the task difficulty), as provided in Chapter 3.
Not only individual occurrences of these crossover regression tendencies, but also their
combination is a part of the main research targets of the MCIM.

Considering the effects of the added time delay and varied task difficulty on manual
control behaviour, several questions can be listed as a follow-up to the results presented
in the the previous chapter:

• Which pilot compensation scheme would provide the best performance in MCIM
tasks with varied added time delay and different task difficulties?

• What would be the corresponding PVS characteristics (e.g., crossover frequencies)
with these pilot compensation schemes that provide the best performance?

• Would there be any trace of noticeable change in these PVS characteristics (e.g.,
crossover regression) due to the altered task difficulty and added time delay?

In order to address these questions, a computer simulation framework was set-up,
utilizing by the general task design of the MCIM. This chapter describes the develop-
ment of the simulation framework and provides the main results and conclusions of the
simulation analysis.

5.1.1. METHODOLOGY OF THE SIMULATION FRAMEWORK
The general scheme of the methodology of the simulation framework is illustrated in
Figure 5.1. The methodology can be summarized as:

1. Gather baseline parameters and values from the preliminary identification exper-
iments.

2. Set-up a simulation framework that uses the gathered parameters. Then, change
the pilot gain (i.e., Kv ) and the lead time constant (i.e., τL) in the pilot model (i.e.,
Hp ( jω)) to create control activity and task performance maps for various configu-
rations of forcing function and levels of additional time delay.
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3. Find the pairs of Kv and τL that provide the optimal task performance.

4. Investigate crossover regression tendencies and PVS characteristics of the optimal
task performance configurations.

Preliminary Pilot Model 
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Figure 5.1: Methodology of the simulation framework
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5.2. SIMULATION FRAMEWORK DEVELOPMENT
In the simulation framework, the compensatory disturbance-rejection task of the MCIM
was used as the baseline, as explained in Chapter 3. Summarizing, in a disturbance-
rejection task, the linear pilot describing function (Hp ( jω)) and the pilot remnant (n)
creates the pilot control signal (u) to the controlled element (HC E ( jω)). CE generates
the pitch attitude (θ), and the displayed error (e) is generated by this θ and the injected
disturbance forcing function ( fd ). This error is the input of the pilot model, which is the
summation of the Hp ( jω) and the remnant. The same task structure was used for the
identification of the manual control behaviour in the previous chapter while analysing
the preliminary identification experiments. Although the task structure was kept the
same in the simulation framework as well, several task properties were varied during the
simulation analysis: the forcing function bandwidth (ωi ), the added time delay (τd ) in
the CE, pilot model parameters and remnant properties.

In the simulation study, the disturbance forcing function contains sharp power cut-
off on a certain frequency 81, which defines the forcing function bandwidth (ωi ). As de-
scribed in detail in Chapter 3, the forcing function bandwidth defines the transition be-
tween the high-amplitude low-frequency content and the low-amplitude high-frequency
shelf in the signal 83. Hence, akin to the MCIM, the forcing function bandwidth is the
crucial element that defines the task difficulty in this simulation framework. Two forcing
function bandwidths were used: ωi ≈ 1.8 r ad/s and ωi ≈ 2.8 r ad/s, which were given
as the MT and the HT, respectively, with their attributes in Chapter 3. In this simula-
tion framework, in order to comply with the MCIM, selection of the forcing function
bandwidth was checked for two conditions stated in the MCIM (i.e., the forcing function
should provide enough excitation without compromising the identification procedure,
and it should allow the detection of possible crossover regression occurrences). The first
condition of the ωi selection was satisfied by the fact that the baseline forcing function
had already been used in the preliminary identification experiments successfully. The
second condition will be investigated in this chapter, since investigating the tendency of
the crossover regression is the goal of the simulation study and the MCIM.

The simulation study was performed offline (i.e., without identification experiments
with human operators), thus, it was possible to investigate the simulation results of the
analysis with forcing functions with continuous PSD. Generally, forcing functions with
continuous PSD have more applications in theoretical studies, whereas discrete PSD
usually associates with experimental studies 20,81,83,100. Since MCIM utilizes a forcing
function with a discrete PSD as discussed in Chapter 3, this chapter will provide results
of the discrete PSD.

As described in Chapter 3, there is an amplitude reduction (-20 dB) at frequencies be-
yond bandwidths in forcing functions with discrete and continuous PSDs. Moreover, the
total power of the forcing function was kept constant for all PSD distributions and band-
widths. Therefore, forcing functions with higher bandwidths have lower amplitudes in
all frequencies. The simulation framework was designed to analyse the PVS character-
istics essentially in the frequency domain. Therefore, the phase characteristics of the
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forcing function has no impact on the simulation analysis.

In the simulation framework, the controlled element (i.e., HC E ( jω) in pitch-axis) was
taken from the second preliminary identification experiment, as provided in the previ-
ous chapter. Moreover, akin to the second preliminary identification experiment, three
levels of added time delay were applied(i.e., 0, 100 and 200 ms). As a part of the MCIM,
the BPD criterion was applied to assess the HQ of the CE. According to the BPD, HQ of
the rotorcraft degrade from Level-1 to Level-2 with increasing add time delay, as dis-
cussed in the previous chapter.

In the simulation framework, the linear pilot model (i.e., Hp ( jω)) of the MCIM was
utilized, as it was used for the identification of manual control behaviour in the prelimi-
nary identification experiments described in the previous chapter. The main goal of this
simulation framework was to investigate the optimal pilot equalization (i.e., Kv and τL

pairs that result in the best task performance) for CEs with added time delay configura-
tions in the task with various forcing function bandwidths. The simulation framework
utilized a grid search method, such that Kv and τL were varied in the model, and resul-
tant parameters (e.g., crossover frequency) were investigated in a grid made of Kv and
τL pairs. Resolutions and limitations of the equalization parameters in the grid search is
given in Table 5.1. Pilot limitation terms (i.e., pilot time delay (τp ), neuromuscular nat-
ural frequency (ωnms ) and damping (ζnms )) were kept constant in order to focus on the
effects of the pilot equalization terms on the PVS. Values of the pilot limitations terms
are based on the results of the second preliminary identification experiment, and these
values are given in Table 5.1.

In experimental conditions (e.g., identification experiments described in the MCIM),
human operators can exhibit non-linear control behaviour (i.e., the pilot remnant) which
was described in Chapter 3 in detail. In order to simulate a similar behaviour in the simu-
lation framework, the pilot remnant (n) was added to the linear pilot describing function
(Hp ( jω)), and the summation of the linear response and the remnant describe the final
pilot control input (u) to the CE. Based on the PSD of the measured n from the second
preliminary identification experiment, the structure of the noise was selected to be as a
second-order system, as exemplified in Figure 5.2.

As shown in Figure 5.2, the remnant is modelled as a Gaussian white noise unatten-
uated by a second-order filter 81 given as:

Hn( jω) = Kun

( jω)2 +2ζunωun( jω)+ω2
un

(5.1)

where Kun is the filter gain,ωun and ζun are the filter natural frequency and damping
respectively. It was observed that a second order filter structure (Hn( jω)) could repre-
sent the noise power distribution globally for all added time delay configurations in the
experiment (see Figure 5.2). In the simulation framework, ωun and ζun were kept con-
stant (see Table 5.1) and Kun was calculated for each time delay, task difficulty, Kv and τL

variation during the grid search, such that the remnant power was 10% of the simulated
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Figure 5.2: PSD of measured remnants of three pilots in preliminary identification experiments for pitch axis
with 0, 100 and 200 ms of added time delays. The filter structure(Hn ( jω)) used for pilot remnant modeling in
simulation framework analysis was provided to illustrate the fit of selected filter structure to measured remnant
PSDs.

control input power (i.e., σ2
n/σ2

u=0.1) based on the results of the preliminary identifica-
tion experiments.

Table 5.1 provides the constant parameters, resolution and interval values of varying
parameters in the simulation framework.

Table 5.1: Parameters used in the simulation framework.

Pilot Limitation terms Pilot Equalization terms Remnant filter terms
ωnms ζnms τp Kv τL ωun ζun Kun

(r ad/s) (−) (s) (i n/r ad) (s) (r ad/s) (−) (−)

6.5 0.32 0.28 0.02 → 3 0 → 3 7 0.5 attain
∆Kv = 0.02 ∆τL = 0.02 σ2

n/σ2
u=0.1

During the simulation framework development, integrations were handled numer-
ically, and remaining calculations of the simulated PVS were performed analytically in
the frequency domain. Throughout the simulation framework, pilot equalization pa-
rameters (Kv and τL) were varied as shown in Table 5.1, and some resultant parameters
were analysed. One of the critical parameters was the normalized error variance (σ2

e /σ2
i )

which is the task performance per forcing function. The optimum task performance is
determined by the minimum value of this parameter for each condition. Another resul-
tant parameter was the crossover frequency (ωc ) which inherently reflects the open-loop
pilot vehicle system characteristics. In addition, the phase margin (P M) of the open-
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loop system was considered as an indication of the system stability, and the RMS of pilot
control activity (RMSu) were analysed. Independent variables and dependent measures
in the simulation framework are given in Table 5.2.

Table 5.2: Independent variables and dependent measures in the simulation framework.

Independent variables Dependent measures

added time delay (τd ) normalized error variance (σ2
e /σ2

i )
forcing function bandwidth (ωi ) crossover frequency (ωc )
pilot gain (Kv ) phase margin (P M)
lead time constant (τL) pilot control activity (RMSu)

optimal Kv and τL pair

5.3. SIMULATION RESULTS
This section provides the primary results of the simulation framework. First, pilot equal-
ization terms (Kv and τL pairs) were varied independently within their parameter inter-
val (see Table 5.1) for each combination of added time delay (τd ∈ {0,100,200} ms) and
forcing function bandwidth (ωi ∈ {1.8,2.8} rad/s) for both discrete and continuous PSDs,
as a part of the second step in Figure 5.1. Although this grid search approach depends
on the parameter step resolution (e.g., 0.02 for Kv and τL in the simulation framework),
it is computationally beneficial when compared to regular optimization for the global
minimum, which could bring local minima issues. Each combination of Kv and τL was
checked for the stability of closed-loop transfer functions and the availability of finding
a remnant filter gain (Kun) which could provide 10% remnant power in total pilot con-
trol (u). If both conditions were satisfied, then a scheme of available pilot visual gain and
lead time constant parameters for each τd andωi combination was generated. Then, the
best performance achievable within the scheme (Kv and τL pairs) was determined by us-
ing the normalized error variance (σ2

e /σ2
i ), as the third step in Figure 5.1. The minimum

value of the normalized error variance determines the best task performance based on
the Kv and τL pairs in each condition. Optimal pilot equalization parameters (Kv and τL

pairs), which lead to this best performance point, were determined per condition. After
achieving the optimal pilot equalization parameters, corresponding crossover frequen-
cies, phase margins, pilot control activities and PSD distributions were determined, as
the fourth step in Figure 5.1.

In this section, the visual gain (Kv ) and dependent measure are plotted by showing
the lead time constant (τL) isolines (i.e., lines on which τL is constant). Darker to lighter
isolines represents 0 to 3s of τL with an increment of 0.1s in the figures in this section.
Moreover, the optimal parameter pair (i.e., Kv and τL that provides the minimum error)
is marked in the figures. Figure 5.3 exemplifies the description of τL isolines.



5

130 5. SIMULATION FRAMEWORK

𝜏𝐿 = 0 𝑠 
𝜏𝐿 = 0.1 𝑠 

𝜏𝐿 = 3 𝑠 

𝜏𝐿 = ⋯ 

𝜏𝐿 = 2.9 𝑠 

𝝉𝑳 𝒊𝒔𝒐𝒍𝒊𝒏𝒆 𝒊𝒏𝒄𝒓𝒆𝒎𝒆𝒏𝒕  
𝒊𝒏 𝒇𝒊𝒈𝒖𝒓𝒆𝒔    

(∆τL = 0.1 s) 

𝑶𝒑𝒕𝒊𝒎𝒂𝒍 𝑲𝒗   

𝑶𝒑𝒕𝒊𝒎𝒂𝒍 
 𝝉𝑳 𝒊𝒔𝒐𝒍𝒊𝒏𝒆 

Figure 5.3: Description of τL isolines in simulation framework plots.

As demonstrated in Figure 5.3, figures in the following subsections will mark the op-
timal τL lines, and a circular marker to indicate the corresponding optimum Kv . More-
over, the optimal τL will be given in figures of all results (i.e., the dependent measure
parameters) obtained by the grid search.

5.3.1. DISCRETE PSD AND THE PILOT MODEL WITHOUT REMNANT
The simulation framework was initially analysed with the discrete forcing function and
without the pilot remnant (n = 0). Following the simulation settings described in the
previous section, corresponding isoline plots of normalized error variance (σ2

e /σ2
i ), RMS

of pilot control activity (RMSu), crossover frequency (ωc ) and phase margins (P M) for
forcing function bandwidth ωi ≈ 1.8r ad/s and ωi ≈ 2.8r ad/s and CE time delay of τd =
0,100, and 200ms are depicted in Figures 5.4 to 5.9.
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Figure 5.4: Normalized error variance for forcing func-
tion bandwidth ωi ≈ 1.8r ad/s and discrete PSD and
CE configurations of 0, 100 and 200 ms of time delays,
without pilot remnant.
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Figure 5.5: Normalized error variance for forcing func-
tion bandwidth ωi ≈ 2.8r ad/s and discrete PSD and
CE configurations of 0, 100 and 200 ms of time delays,
without pilot remnant.

Figure 5.4 and 5.5 show the normalized error variance for three levels of additional
time delay (0,100 and 200 ms) in the CE for two forcing function bandwidths: ωi ≈
1.8r ad/s and ωi ≈ 2.8 rad/s, respectively. Since the high forcing function bandwidth in-
duces more frequency content in high amplitude-low frequency shelf (thus, results in a
harder task), attainable performance is lower withωi ≈ 2.8r ad/s when compared toωi ≈
1.8 rad/s, regardless of the applied time delay. Increasing the time delay shows degraded
performance (i.e., lower optimum σ2

e /σ2
i ) for both forcing function bandwidths. The

optimal performance operating points for the high forcing function bandwidth (ωi ≈
2.8r ad/s) configurations demanded the maximum lead time constant (τL = 3 s) that
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was set during the simulation. The area that covers the vicinity of the optimum point di-
minishes with increasing time delay. This trend implies that attaining good performance
is more restricted in terms of possible Kv and τL pairs. Especially, the high forcing func-
tion bandwidth configuration reflects this behaviour in Figure 5.5. Although a similar
trend (i.e., reduced area in the vicinity of the optimum point) was observed for the forc-
ing function with low bandwidth, the optimum point had a higher pilot visual gain and
a lower lead time constant for 100 ms time delay, when compared to 0 and 200 ms time
delay conditions (see Figure 5.4). Values of the optimal pilot compensation terms, open-
and closed-loop parameters are listed in Table 5.3.
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Figure 5.6: Root mean square of pilot control (RMSu )
for forcing function bandwidthωi ≈ 1.8r ad/s and dis-
crete PSD and CE configurations of 0, 100 and 200 ms
of time delays, without pilot remnant.
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Figure 5.7: Root mean square of pilot control (RMSu )
for forcing function bandwidthωi ≈ 2.8r ad/s and dis-
crete PSD and CE configurations of 0, 100 and 200 ms
of time delays, without pilot remnant.
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RMSu comparisons in Figures 5.6 and 5.7 show that the optimal performance was
achieved for relatively high pilot control activity. Although the simulation framework
can calculate any pilot activity, in experiment conditions actual application could de-
pend on the control device characteristics, e.g., required deflections could be hard to
expose due to the high forces required to move the manipulator. In the conditions with-
out the remnant, the control activity for the high bandwidth forcing function was higher
than the low bandwidth conditions, except 300 ms time delay configurations.
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Figure 5.8: Crossover frequency (ωc ) for forcing func-
tion bandwidth ωi ≈ 1.8r ad/s and discrete PSD and
CE configurations of 0, 100 and 200 ms of time delays,
without pilot remnant.
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Figure 5.9: Crossover frequency (ωc ) for forcing func-
tion bandwidth ωi ≈ 2.8r ad/s and discrete PSD and
CE configurations of 0, 100 and 200 ms of time delays,
without pilot remnant.
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Since ωc is determined by the open-loop magnitude response, the added time delay
in the CE does not affect the shape of the τL isolines, as depicted in Figures 5.8 and 5.9.
However, pairs of the available pilot equalization parameters (i.e., Kv and τL) reduced
for increasing time delay, as can be seen by smaller total isoline areas in Figures 5.8 and
5.9. For ωi ≈ 1.8r ad/s, crossover frequencies of the optimum are close for all time delay
values, and between 3.5 and 4.5 rad/s (see Figure 5.8). However, there is a drastic change
in the crossover frequency of the optimum for the high forcing function bandwidth (ωi ≈
2.8r ad/s) with increasing time delay. The main source of this difference is related to
whether the frequency of the peak of the closed-loop system coincides with any powered
frequencies of the forcing function. This effect, which also appears in phase margin plots
in Figures 5.10 and 5.11, will be discussed in the closed-loop PSD comparisons later in
this section.
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Figure 5.10: Phase margin (P M) for forcing function
bandwidth ωi ≈ 1.8r ad/s and discrete PSD and CE
configurations of 0, 100 and 200 ms of time delays,
without pilot remnant.
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Figure 5.11: Phase margin (P M) for forcing function
bandwidth ωi ≈ 2.8r ad/s and discrete PSD and CE
configurations of 0, 100 and 200 ms of time delays,
without pilot remnant.

Figures 5.10 and 5.11 illustrate that for the settings resulting in optimal tracking per-
formance, the phase margin for the low forcing function bandwidth (ωi ≈ 1.8r ad/s) is
almost 0 degrees regardless of applied time delay, whereas the high forcing function
bandwidth (ωi ≈ 2.8r ad/s) shows an increase up to 100 degrees with increasing time
delay. Akin to the observed high crossover frequency (see Figure 5.8) withωi ≈ 1.8r ad/s,
almost 0 phase margin is actually a result of the closed-loop system response, which are
only powered with the frequencies of the discrete forcing function. Thus, any resonance
peak of the closed-loop system has no effect on the task error if the resonance peak does
not coincide with one of the discrete frequencies of the disturbance forcing function.
Hence, the optimum points could avoid these peaks, and they may result in optimum
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performance while system stability as at its limits. Figure 5.12 illustrates this situation
for the ωi ≈ 1.8r ad/s condition by showing the PSD of error, and corresponding closed-
loop error responses of CE with 0, 100 and 200 ms of time delays. Closed-loop transfer
function between forcing function to error is given as;

He, fd
( jω) = −1

1+HOL( jω)
(5.2)

where;
HOL( jω) = Hp ( jω)HC E ( jω) (5.3)
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Figure 5.12: PSD of the minimum error (a) and closed-loop response (b), which shows the powered frequencies
by markers, and the forcing function bandwidth ωi ≈ 1.8r ad/s.

As can be seen from Figure 5.12, PSD of the error(e) only has power at the frequencies
of the forcing function, and the spectrum magnitudes depended on the corresponding
closed-loop responses at the same frequencies. Since the forcing function was com-
posed of two shelves, the resultant PSD of error was simply scaled by the closed-loop
response according to ratios of these two shelves. It is clear from Figure 5.12 that even
though there were considerable closed-loop resonance peaks in the response, the effec-
tive power spectrum (markers in the figure) just depends on frequencies of the applied
forcing function. In this case, the closed-loop peaks were not reflected in the error. Thus,
pilot parameters could achieve such values that closed-loop system could reach to insta-
bility limit, whereas performance still could be optimal. A slightly different situation is
shown for the high bandwidth forcing function conditions in Figure 5.13.

As shown in Figure 5.13, when the forcing function with the high break frequency
(ωi ≈ 2.8r ad/s) was used in the simulation framework, higher frequencies of the closed-
loop response were transmitted into the error. Therefore, the resonance peak of the
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Figure 5.13: PSD of the minimum error (a) and closed-loop response (b), which shows the powered frequencies
by markers, and the forcing function bandwidth ωi ≈ 2.8r ad/s.

closed-loop system had more effect on the development of the system error. Conse-
quently, system stability could not be sacrificed easily like the case with the forcing func-
tion with low bandwidth, because neighbour frequencies towards the resonance peak
would be amplified in the system error. When CE with 0 ms time delay condition was
used, the closed-loop response was able to position the resonance peak between the
powered frequencies, whereas 100 and 200 ms conditions could not manage to achieve
the same. In return, a drastic drop of crossover frequencies, and considerably higher
phase margins were obtained. It must be also noted that for the high break frequency
and high time delay conditions, the closed-loop system could only provide limited op-
tions for pilot parameters to achieve the optimum performance (see Figure 5.5), such
that on 200 ms time delay condition, almost all pilot equalization term combinations
(Kv and τL) amplify the error (σ2

e /σ2
i ≥ 1).

As a summary, calculated parameters for the optimum performance points for both
bandwidths of forcing function with discrete PSD, and 0, 100 and 200 ms of added time
delay in CE are listed in Table 5.3.

When time delay increases in the CE, the phase of the CE drops in lower frequen-
cies. Consequently, the phase crossover frequencies of the open-loop system decreases.
Therefore, the closed-loop resonance peaks shift to lower frequencies. Thus, with the
application of the high forcing function bandwidth, the peaks become more effective
with increasing time delay. As a result, the pilot model should contain very high lead
generation to shift the phase crossover frequencies to higher values in order to reduce
the amplification of the closed-loop resonance with high bandwidth forcing function. It
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Table 5.3: Parameters of optimum points for forcing function bandwidths ωi ≈ 1.8 and 2.8 rad/s, and CE with
0, 100 and 200 ms time delays, while pilot model excludes remnant (n).

ωi ≈ 1.8r ad/s ωi ≈ 2.8r ad/s
Parameter τd τd τd τd τd τd

0 ms 100 ms 200 ms 0 ms 100 ms 200 ms

σ2
e /σ2

i - 0.29 0.39 0.39 0.42 0.74 0.99
Kv in/rad 0.74 1.62 0.34 0.3 0.26 0.04
τL s 1.2 0.46 2.6 3 3 3
RMSu in 0.21 0.25 0.21 0.30 0.38 0.05
ωc rad/s 4.51 3.39 3.53 4.46 1.67 0.05
P M deg 0.08 0.37 0.72 8.48 93.11 96.54

can be seen in Table 5.3 that the lead time constant (τL) reached to three seconds, which
is the upper boundary during the simulation analysis, for optimums of all values of time
delay, with high forcing function bandwidth (ωi ≈ 2.8 rad/s ).

Crossover regression
In order to investigate the crossover regression tendencies, crossover frequencies of op-
timum performance points for CEs with 0, 100 and 200 ms of added time delay within a
task excited by forcing functions with discrete PSD with two bandwidths are plotted in
Figure 5.14.
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Figure 5.14: Crossover frequencies of open-loop systems with optimum performance pilot models and CEs
with 0, 100 and 200 ms of time delays, when subjected to forcing function with discrete PSD with bandwidths
of 1.8 and 2.8 rad/s.

Figure 5.14 shows that a crossover regression tendency is observed especially for the
high bandwidth (ωi ≈ 2.8 rad/s), when time delay of the CE is increased to 100 ms. For
the low bandwidth, it must be noted that crossover frequencies were able to achieve high
values while threatening closed-loop system stability up to its limits, when the forcing
function with discrete PSD was utilized forωi ≈ 1.8 rad/s. It must be noted that in exper-
iment conditions, it is unlikely for human operators to aim for such low phase margins
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(i.e., high crossover frequencies in the simulation framework conditions for this config-
uration) due to the stability concerns. Besides, this simulation framework aimed for the
numerically optimum performance obtained by pilot equalization term pairs.

5.3.2. DISCRETE PSD AND PILOT MODEL WITH REMNANT
In this section, the pilot remnant (n) was added to the pilot model output, and the same
forcing function from the previous section was utilized (i.e., with the discrete PSD). As
described in Section 5.2, the remnant model was modelled as white noise with a sec-
ond order low-pass filter, and the remnant filter gain was adjusted to attain a remnant
power of 10% of the total pilot control (u) power for each available active pilot parameter
pair (Kv and τL) for all time delay configurations of the CE. Akin to the no remnant case
(Section 5.3.1), isolines of available normalized error variance are plotted in Figures 5.15
and 5.16, and equalization parameters that result in the minimum error (i.e., optimum
points) are marked. When compared with the case without remnant (Figures 5.4 and
5.5), higher errors were achieved, especially for the low bandwidth (ωi ≈ 1.8 rad/s) forc-
ing function. The similar trend of increasing error with bandwidth was also clear, with
the condition including pilot remnant.

Pilot remnant introduces a new input signal to the PVS (i.e., a new contributor to er-
ror signal). The closed-loop transfer function, which relates the pilot remnant (n) to the
error(e), is given in Equation (5.4) as:

He,n( jω) = −HC E

1+HOL( jω)
(5.4)



5

140 5. SIMULATION FRAMEWORK

ωi ≈ 1.8r ad/s ωi ≈ 2.8r ad/s
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Figure 5.15: Normalized error variance for forcing
function bandwidth ωi ≈ 1.8r ad/s and discrete PSD
and CE configurations of 0, 100 and 200 ms of time
delays, with pilot remnant.
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Figure 5.16: Normalized error variance for forcing
function bandwidth ωi ≈ 2.8r ad/s and discrete PSD
and CE configurations of 0, 100 and 200 ms of time
delays, with pilot remnant.

He,n( jω) and He, fd
( jω), Equations (5.4) for n and (5.2) for fd , respectively, together

compose the closed-loop error. Figure 5.17 shows magnitude responses of the closed-
loop forcing functions and the PSD of the error of the optimum points for 0, 100 and 200
ms of time delays for the forcing function bandwidth ωi ≈ 1.8 rad/s.

Since the remnant was modelled as a second-order low-pass filter on a Gaussian
white noise signal, the contribution of remnant to the error has power on each frequency.
This remnant signal contained lower magnitudes than the contribution of the forcing
function (see Figure 5.17-b). When comparing the PSD of the error without and with the
remnant (Figures 5.12-a and 5.17-a, respectively), the major effect of the remnant is the
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Figure 5.17: PSD of the error (a), and the closed-loop response (b and c) of the optimal performance points for
0, 100 and 200 ms of time delays, withωi ≈ 1.8r ad/s. Markers indicate the frequencies with power and dashed
lines indicate the closed-loop response.

amplification of power around the closed-loop system resonance peaks. As a result, the
closed-loop systems of the optimum points cannot expose large resonance peaks like
the ones for the no remnant configurations. This difference can be observed by compar-
ing the dashed lines in Figure 5.12-b with Figure 5.17-b.

Table 5.4 summarizes the parameter values of the optimum points in the simulation
framework with discrete PSD forcing function, CE with 0, 100 and 200 ms of added time
delays, and the pilot model with remnant.

Table 5.4 shows that errors of the optimum points increase with increased time delay,
regardless of forcing function bandwidth. The pilot visual gain shows a drastic decrease
with increasing time delays for the low bandwidth forcing function condition, for the
0 and 100 ms conditions. For the low bandwidth forcing function, the lead time con-
stant rapidly increases with the addition of time delay for the 100 ms case, and keeps
around the same value for the 200 ms condition. However, the same change could not
be observed with the high bandwidth forcing function, simply due to already severely
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Table 5.4: Parameters of optimum points for forcing function bandwidths ωi ≈ 1.8 and 2.8 rad/s, and CE with
0, 100 and 200 ms time delays, while pilot model includes remnant (n).

ωi ≈ 1.8r ad/s ωi ≈ 2.8r ad/s
Parameter τd τd τd τd τd τd

0 ms 100 ms 200 ms 0 ms 100 ms 200 ms

σ2
e /σ2

i - 0.42 0.53 0.56 0.67 0.95 1.00
Kv in/rad 0.6 0.24 0.32 0.3 0.20 0.02
τL s 1.24 2.66 2.26 2.44 3 3
RMSu in 0.23 0.17 0.2 0.29 0.26 0.02
ωc rad/s 1.89 0.63 1.2 1.25 0.46 0.03
P M deg 82.84 120 97 111.91 122.8 93.27

limited available error compensation parameter pairs for delayed configurations (see
Figure 5.16). Pilot control activity does not show major deviations, except the 200 ms
condition for the high bandwidth forcing function. Phase margins also stay in the inter-
val of 82 to 122 degrees, for both forcing function bandwidths, which show that optimal
performance points had a higher stability than the ones with the no remnant conditions
(e.g., P M was almost 0 degrees for the low bandwidth forcing function cases as given in
Table 5.3).

Crossover regression
When the pilot model contains remnant, the crossover frequencies of the optimum points
with the CEs including 0, 100 and 200 ms of added time delays are shown in Figure 5.18.
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Figure 5.18: Crossover frequencies of open-loop systems with optimum performance pilot models with rem-
nant and CEs with 0, 100 and 200 ms of time delays, when subjected to forcing function with discrete PSD with
bandwidths of 1.8 and 2.8 rad/s.

As depicted in Figure 5.18, the configurations without time delay show a crossover
regression tendency when forcing function is increased toωi ≈ 2.8 rad/s. This behaviour
is similar to ’classical’ crossover regression considerations. In addition, when 100 ms
of time delay was introduced, further regression was noticed due to the additional time
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delay, in both forcing function bandwidth conditions. However, for the low bandwidth
configuration, 200 ms of added time delay resulted in a higher crossover frequency than
the condition with 100 ms added time delay. When normalized error graphs of both con-
ditions are compared (Figure 5.15-b and -c), optimum of the 200 ms of added time delay
could be with a lower pilot visual gain and higher lead time constant if a higher param-
eter variation resolution (i.e., smaller than 0.02) could have been used. Thus, it could
be possible that the resultant crossover frequency would then also be lower than 100 ms
case. Nevertheless, a crossover regression tendency due to forcing function bandwidth
and added time delay was observed for this configuration.

5.3.3. COMPREHENSIVE RESULTS
By using the values in Tables 5.3 and 5.4, and simulation framework results gathered
from the analyses performed with a continuous PSD, the variation of resultant parame-
ters (i.e., dependent measures) are depicted in Figure 5.19 for comparison purposes.

Figure 5.19 shows the complete overview of the results of the simulation framework
which was carried out by using optimum performance points. Table 5.5 summarizes
these results.

Table 5.5: General trends of parameter variation when time delay and task bandwidth are increased.

Increasing time delay: Increasing task bandwidth:

• Mainly reduced pilot visual gains.

• Mainly increased lead time con-
stant in both bandwiths of forcing
function.

• Increased errors.

• Slightly reduced control activity
(RMS(u)) for low bandwidth case
but drastic decrease for high band-
width case.

• Mainly increased phase margins.

• Mainly reduced crossover frequen-
cies.

• Mainly reduced pilot visual gains.

• Slightly increased lead time con-
stants.

• Increased errors.

• Slightly reduced control activity
(RMS(u)) for low bandwidth case
but drastic decrease for high band-
width case.

• Slightly increased phase margins.

• Mainly reduced crossover frequen-
cies.

Overall, the major parameter variation (see Table 5.5) when time delay or task band-
width were increased showed similar trends in all simulation cases. Eventually, increased
task bandwidth (i.e., harder tasks) require higher pilot workload. Depending on the
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Figure 5.19: PVS parameters for the optimum performance points, for forcing functions with discrete and con-
tinuous PSDs and two bandwidths, CE with various time delays, and pilot model with or without the remnant.

controlled element, the pilot may prefer to ’back off’, as in the definition of classical
crossover regression. Similarly, pilot may need to back off if any added time delay threat-
ens the system stability considerably. Therefore, a similar parameter variation trend in
Table 5.5 indicates that there could be a crossover regression due to added time delay, as
well as the classical regression due to forcing function bandwidth (i.e., task difficulty).

5.3.4. COMPARISON TO EXPERIMENT CONDITIONS
Since the forcing function is the element that defines the task in this simulation frame-
work, the PSD distribution is a key variable, accompanying the bandwidth of the forcing
function. Accompanying the discussion in section 5.3.1, in an offline simulation study,
simulating a discrete PSD without pilot remnant has a drawback of finding the optimum
performance with almost no stability margin, which does not match with the trends in
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other configurations (see Figure 5.19). The explanation for this is the possibility of align-
ing the closed-loop resonance peak between powered frequencies, as described in Sec-
tion 5.3.1. It can be seen from Figure 5.19 that adding pilot remnant reduced that effect,
hence, discrete and continuous PSD with and without pilot remnant conditions show
similar parameter variation trends.

It is worth mentioning that the optimum performance pilot settings, which were cal-
culated in the simulation framework, may not in fact be achieved in experiment con-
ditions. One of the reason is that the lowest task error can be achieved with a large set
of possible pilot equalization terms (e.g., the flat isolines in normalized error variance
figures). Therefore, a real human operator could prefer to achieve almost the same per-
formance with a control behaviour that is in fact different from the ’numerically’ optimal
settings. In order to check this hypothesis, the simulation framework was prepared such
that for each time delay condition, the pilot limitation terms and remnant power ratio
were set according to the measured pilot specific values. For example, Figure 5.20 shows
the PSD of error with calculated optimum, experiment and simulation framework results
with the usage of pilot limitation parameters gathered from experiment.
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Figure 5.20: PSD of the error (e) calculated in the simulation frame for the optimal performace, measured from
the preliminary identification experiment, and calculated in the simulation framework by using the experi-
ment parameters.

Figure 5.20 illustrates that the optimal performance points calculated by the simula-
tion framework (star markers in the figure) do not represent what actually happened in
the sample experiment (diamond markers), which was taken from the preliminary iden-
tification experiments. There is a clear difference at the lowest frequency with power
and, around 3 rad/s. In order to observe the validity of the simulation framework, mea-
sured experiment values were fed in to the simulation framework(triangular markers),
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and it is resulted in very close representation of the measured response. This illustrates
that, the simulation framework has potential to be used to analyse: ’What was the opti-
mum during a sample experiment run with a human operator, and did he/she achieve
the optimum performance?’.

In addition to Figure 5.20 that showed a difference in the PSD of errors obtained from
measurement data and the calculated optimal performance, Figure 5.21 shows the error
isolines accompanying conditions in Figure 5.20.
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Figure 5.21: Normalized error variance and crossover frequency isolines adjusted by measured pilot data.

Figure 5.21 exemplifies for one of the pilots from the second experiment that he did
not show the characteristics of the optimum. Instead, he exhibited a higher error, but
also a higher crossover frequency. This example illustrates that pilots would not strictly
aim for the optimum performance, but probably a more convenient strategy that they
exhibit to attain system stability while considering the experiment conditions.

5.4. CONCLUSIONS
To investigate the crossover regression tendencies of a PVS subjected to various task dif-
ficulties and added time delay in the CE, a simulation framework was developed. The
simulation framework contained a pilot model, and a CE in a compensatory task, based
on the design of the MCIM, as described in Chapter 3. In the pilot model, all pilot limita-
tion parameters (i.e., the pilot delay and neuromuscular system parameters) were kept
constant based on the values measured in the preliminary identification experiment, as
described in the previous chapter. Both pilot equalization parameters (Kv and τL) were
varied in the simulation framework. If available, the pilot remnant was added to the pilot
control signal with 10% of the pilot control signal power.

Task difficulty was varied by altering the bandwidth of the forcing function. Two
bandwidth values were chosen to represent task difficulty while the higher bandwidth
being the hardest task, and visa versa.

It was observed that an additional time delay caused pilot compensation similar to
that found in preliminary identification experiments, such that reduced gains and higher
leads provided the optimum performance points. Adding remnant to the pilot control
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signal significantly changed the optimum points for the forcing function with discrete
PSD. Classical crossover regression due to the task difficulty was observed, and addi-
tional regression due to the added time delay was apparent around 100 ms. Thus, by
using crossover regression and accompanying system parameters, the simulation frame-
work highlighted the HQ of the rotorcraft model would be limited around 100 ms for low
bandwidth tasks, whereas the hard task already imposes regression without any added
time delay.

Although the simulation framework aimed to cover a broad range of conditions, in
experiment settings, the results would also depend on several other factors, primarily the
perception and control strategy of the pilot. Therefore, it is planned to conduct a set of
pilot model identification experiments as a following step to this simulation framework.
The next chapter will describe the identification experiment which was designed, exe-
cuted and analysed by the MCIM principles, and will discuss results of the adaptation of
identified manual control behaviour when exposed to added time delay and varied task
difficulty.





6
MANUAL CONTROL

IDENTIFICATION METHOD

(MCIM) EXPERIMENT

In the previous chapter, a simulation study was carried out in order to investigate the ef-
fects of task difficulty and the added time delay on pilot control behaviour, particularly
resulting in the optimal task performance (i.e., the minimum tracking error). Although
promising results were obtained during the simulation study (e.g., signatures of crossover
regressions), it was also demonstrated that human operators were not able to attain the
‘best’ performance. While aiming for the optimal task performance, the simulation study
required very high values of the lead compensation (i.e., very high pilot workload) which
would not be preferred by the human operators during a demanding task. Instead, hu-
man operators have preferred slightly higher task errors with significantly lower lead time
constant values. This difference between the simulated manual control and the identified
human operator response is a good example of the drawback of some HQ criteria with ‘pa-
per’ pilot models with restrictions and limitations, as discussed in Chapter 2. Therefore, it
was concluded that the simulation study would not be representative of the control strat-
egy choice of human operators in such demanding tasks.

This chapter continues with the complete application of the MCIM by conducting a human-
in-the-loop experiment to identify the manual control behaviour. In this experiment, par-
ticipants are exposed to nine different combinations of added time delay and task diffi-
culty in a disturbance-rejection task in pitch-axis (both varied at three levels). There were
nine configurations which were combinations of three levels of task difficulty and three
levels of added time delay. Akin to the simulation study, task difficulty was varied by in-
creasing the bandwidth of the disturbance forcing function, and the time delay was im-
plemented as a transport delay in the CE. The experiment was conducted in the SRS at TU
Delft with nine participants. As a part of the MCIM, frequency and time domain identifi-
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cation methods are used to identify the parameters of the manual control behaviour from
the measurement data. Changes of the identified parameters, task performance measures,
open-loop crossover frequencies and phase margins are investigated for all task configura-
tions. Corresponding RPC tendencies are elaborated by the detections tools in the MCIM.

6.1. INTRODUCTION
In the previous chapter, a computer simulation framework was used to investigate man-
ual control behaviour that could result in the best task performance (i.e., minimum
tracking error) when task difficulty and added time delay were varied. The simulation
framework had two varying pilot equalization parameters (i.e., the pilot visual gain Kv

and the lead time constant τL) to achieve the optimal task performance per each con-
figuration. Particularly, crossover regression tendencies were examined for varied task
difficulty and added time delay conditions, and results were discussed in the previous
chapter.

Eventually, it is hypothesised that human operators can exhibit different control strat-
egies than the computer simulation which was specifically utilized to achieve the opti-
mal task performance in a simulated task. In this chapter, the experimental approach of
MCIM is followed to investigate the manual control behaviour when participants were
exposed to combinations of task difficulty and added time delay in the CE, as discussed
in the MCIM development in Chapter 3. As a result, measured manual control behaviour
will be identified for varied task configurations, and HQ deviations and adapted control
strategy to avoid RPC occurrences will be investigated.

6.2. TASK DESIGN
This section describes the design of the conducted experiment, which is one of the fun-
damental elements of the MCIM. Section 6.2.1 defines the pitch control task in the ex-
periment. Section 6.2.2 explains the CE (i.e., the rotorcraft model) in the disturbance-
rejection task. Section 6.2.3 provides information about the participants and the appara-
tus used in the experiment. Finally, Section 6.2.4 describes the manual control behaviour
model to be identified by using the measurement data.

6.2.1. PITCH CONTROL TASK
Similar to the second preliminary experiment and the simulation framework (Chapters
4 and 5, respectively), this experiment was conducted by using a disturbance-rejection
task in the pitch-axis as described by the MCIM in Chapter 3.

As a part of the MCIM, three task difficulty levels were used in the final experiment:
ET, MT and HT. These task difficulties are defined by the forcing function bandwidth
values of ωi ≈ 0.8, 1.8 and 2.8 rad/s, respectively, as summarized in Table 6.1.
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Table 6.1: Task difficulty definitions.

Forcing Function Bandwidth Task Difficulty
(ωi ,rad/s) Abbreviation

0.84 ET : Easy Task

1.76 MT : Moderate Task

2.84 HT : Hard Task

6.2.2. ROTORCRAFT MODEL
In this experiment, a pitch-axis rotorcraft model was used, as described in the MCIM.
Similar to the simulation study, the CE is a single-to-double integrator form with an in-
herent delay representing the rotor dynamics, as discussed in Chapter 3. Parameter val-
ues of the CE model of a Bo-105 helicopter in hover 111, and the transfer function of the
CE is given as:

θ

δlon
( jω) = Mδlon

( jω)( jω+Mq )
e−τs ( jω)

︸ ︷︷ ︸
Baseline CE

e−τd ( jω)

︸ ︷︷ ︸
Additional
time delay

(6.1)

where the control authority term (i.e., longitudinal cyclic control derivative) Mδlon
=

0.8693 rad/(in.s2), the aerodynamic pitch damping Mq = −3.74 s−1, and the inherent
delay accounting for the rotor model τs = 50 ms. Three levels of added time delays (τd )
were used in the experiment to consider different levels of HQ : 0, 100 and 200 ms. These
added time delay values were also used in the second preliminary identification exper-
iment (Chapter 4) and the simulation framework (Chapter 5). Bode plots of CEs with
different levels of added time delay are depicted in Figure 6.1. As discussed in Chapter 3,
BPD is used to assess the HQ of the CE as shown Figure 6.1.

As it can be seen from Figure 6.1, increasing added time delay results in more phase
lag, while magnitude responses do not change. Corresponding BPD shows the degra-
dation of the HQ (i.e., from Level-1 to Level-2) with increased time delay. As discussed
in Chapter 2, the BPD criterion does not account for the task difficulty. In addition, PIO
boundaries of fixed-wing aircraft are superimposed on the BPD chart with dashed lines
for only comparison reasons. According to the fixed-wing boundaries, all added time
delay conditions were predicted to be PIO resistant.

It can be noted that CEs of the simulation framework and this experiment were not
exactly identical. First, the aerodynamic pitch damping of the CE was set to the Bo-105
helicopter value (Mq = −3.74 s−1) 111 in the experiment, whereas the simulation study
used a generic high bandwidth value (Mq = −3 s−1). In addition, the gearing (Mδlon

)
between the pilot longitudinal cyclic input to the pitch acceleration was defined by the
characteristics of the cyclic in the SRS, accompanying the experiment set-up, whereas
the simulation study used the value from the preliminary experiments conducted in
HHS. Finally, the CE in the experiment included an inherent delay (50ms), represent-
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Figure 6.1: Bode diagram (a) and bandwidth phase delay criterion (b) of CEs with 0, 100 and 200 ms of added
time delay.

ing the simplified effect of rotor dynamics whereas the simulation study was carried out
by assuming a model without this delay term, as in the preliminary identification exper-
iments.

Despite the listed differences, the overall CE responses have highly similar charac-
teristics. Since the experiment was designed to investigate the effect of the time delay,
the inherent delay in the CE of the experiment and the added time delay can simply be
added together. Thus, the methods and interpretations are very similar for the two CEs
of the simulation study and the experiment. Moreover, these two CEs possess the same
HQ levels (see Figures 4.13 and 6.1b).

6.2.3. APPARATUS AND PARTICIPANTS

APPARATUS

The experiment was conducted in the SRS at TU Delft without physical motion. As it
was shown in Chapter 4, a scaled-up attitude indicator was used as a compensatory dis-
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play to indicate the pitch tracking error. The control inceptor was a central cyclic stick
(Moog FCSr) with a control loading system which is particularly designed for rotorcraft
simulations. Akin to the preliminary identification experiments (Chapter 4), during this
simulator experiment, the breakout force and friction settings of the manipulator were
disabled in order to keep the linearity in the control path. Participants could only con-
trol the pitch-axis of the cyclic during the experiment, and other axes were locked. The
force gradient of the control loading system was set to 0.77 pound/inch in order to pro-
vide sufficient feel of a realistic central cyclic in longitudinal axis. This force gradient
value corresponds to Level-1 in ADS-33 Handling Qualities specifications for allowable
control force gradients in pitch-axis 6.

PARTICIPANTS

The experiment was performed by nine participants, who were all Delft University of
Technology students or staff members. All participants had prior experience with similar
human-in-the-loop experiments with manual control tasks. Eight of the participants
were male and one of the participants was female. Their ages ranged from 23 to 44 years,
with an average age of 28.4 years. Three participants had pilot licences for single engine
aircraft, and one participant was an active helicopter pilot.

6.2.4. PILOT MODEL
As described in Chapter 3, MCIM utilizes a simplified version of the precision pilot model.
The same model was used for the identification of the manual control behaviour in pre-
liminary experiments (Chapter 4), and the simulation framework (Chapter 5). In sum-
mary, the pilot visual gain (Kv ) and the lead time constant (τL) parameters are the pilot
equalization term, and the pilot delay (τp ), the neuromuscular frequency (ωnms ) and the
damping (ζnms ) are the pilot limitation terms (see Equation 3.10). These parameters will
be identified by using the measurement data gathered from the experiment, and their
changes with varying experiment conditions will be discussed in this chapter.

6.3. INDEPENDENT VARIABLES
This experiment aimed to investigate the effects of task difficulty and the added time
delay on the manual control behaviour. Hence, there were two independent variables
in this experiment. First, three levels of time delay (i.e., 0, 100 and 200 ms) were added
to the CE model, like in the second identification experiment (Chapter 4) and the sim-
ulation framework (Chapter 5). Second, the task difficulty was varied by changing the
forcing function bandwidth, as described in Section 6.2.1. Thus, combinations of these
two independent variables resulted in nine conditions in total, as given in Table 6.2.



6

154 6. MANUAL CONTROL IDENTIFICATION METHOD (MCIM) EXPERIMENT

Table 6.2: Experiment conditions.

Experiment Forcing Function Added
Condition Bandwidth Time delay (ms)

1 ET (ωi ≈0.8 rad/s) 0

2 ET 100

3 ET 200

4 MT (ωi ≈1.8 rad/s) 0

5 MT 100

6 MT 200

7 HT (ωi ≈2.8 rad/s) 0

8 HT 100

9 HT 200

6.4. EXPERIMENT PROCEDURES
Prior to the experiment, all participants were briefed about the objective of the experi-
ment and the task (i.e., minimizing the displayed pitch error by using the longitudinal
cyclic input). Details of the CE or task difficulty settings were not conveyed to the par-
ticipants, to sustain compensatory control behaviour without pre-assigned, or biased
control strategies.

Akin to the preliminary experiments (Chapter 4), the final experiment was designed
by considering the application of an ANOVA. Therefore, the experiment execution order
was designed as a Latin square sequence as listed in Table 6.3.

Table 6.3: Latin square experiment design.

Participants Experiment Conditions

I 8 1 2 6 9 4 5 7 3

II 7 9 1 5 8 3 4 6 2

II 2 4 5 9 3 7 8 1 6

IV 4 6 7 2 5 9 1 3 8

V 3 5 6 1 4 8 9 2 7

VI 5 7 8 3 6 1 2 4 9

VII 9 2 3 7 1 5 6 8 4

VIII 1 3 4 8 2 6 7 9 5

IX 6 8 9 4 7 2 3 5 1

As described in Chapter 3, there were two phases of the identification experiment.
The familiarization phase consisted of two repetitions of each condition in Table 6.3.
During this phase, each participant experienced all available conditions with increasing
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difficulty, and they got familiarized with the task and the simulator environment, e.g.,
cyclic forces and the display. No data were recorded in this phase, and no performance
measures were used as feedback to participants. The second experiment phase was the
training and measurement phase, during which each participant repeated the condition
assigned according to the Latin square designed experiment matrix, as shown in Table
6.3. Participants were not informed about the applied condition. They repeated each
condition until they got steady scores for that condition, as described in Chapter 3.

During the training phase, all participants aimed to achieve their best performance
(i.e., the highest score) for the configuration at hand. After achieving steady scores, four
or five runs were recorded as the measurement data, which reflect the preferred control
strategy of participants for the applied configuration. After completing each configura-
tion, which approximately lasted 10 to 12 repetitions, a small break was provided in order
to avoid fatigue. Furthermore, after two configurations, a longer break was given for each
participant. The total execution of the experiment per participant was approximately six
hours including all breaks.

6.5. DEPENDENT MEASURES
As described in Chapter 3, during the experiment, the pitch attitude of the CE, the dis-
played error, and the pilot control input were recorded. By using these measured data,
several dependent measures were calculated. Similar to the preliminary identification
experiments (see Section 4.2.4 and Section 4.3.4 in Chapter 4), the variances of the dis-
played error and the control input were interpreted as indications of the task perfor-
mance and the control activity, respectively. Second, by using the identification meth-
ods, which were described in Chapter 3, parameters of the manual control behaviour
were identified, and the manual control behaviour adaptation to varied experiment con-
ditions were discussed.

In terms of PVS analysis, open-loop crossover frequencies and phase margins were
calculated. Consequently, tendencies of crossover regression strategies were investi-
gated. In addition, as a part of the MCIM, ROVER and PAC were utilized for RPC de-
tection, by using the time traces of the pilot control input and the vehicle responses
recorded for all conditions of the experiment.

6.6. HYPOTHESIS
This experimental approach is an extension of the preliminary identification experi-
ments (Chapter 4) and the simulation study (Chapter 5). In summary, these chapters
investigated the manual control behaviour and PVS characteristics with varied added
time delay and forcing function bandwidth. Considering the findings of these chapters,
a primary hypothesis can be formulated as ‘manual control behaviour of participants
will show crossover regression tendencies because of individual and combined effects of
the task difficulty and the added time delay’. Furthermore, HQ variation of the vehicle,
as well the RPC tendency, can also be related to these crossover regression occurrences.
As discussed in Chapter 2, it was proposed in MCIM that the crossover regression is an
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indication of a ‘back-off’ control strategy, which ultimately aims to avoid any instability
in the PVS.

6.7. METHODS USED FOR ANALYSING THE EXPERIMENT DATA
This section provides information about the identification methods, statistical tools, and
RPC detection criteria that were used in the analysis of this experiment. Section 6.7.1 de-
scribes the application of identification techniques. Section 6.7.2 describes the ANOVA
assumptions to be used while analysing statistical data. Section 6.7.3 provides informa-
tion about the methods of RPC detection, and their settings.

6.7.1. IDENTIFICATION METHODS
In order to identify the manual control behaviour, two LTI identification methods were
used as a part of the MCIM: the frequency-domain FCMwO and the time-domain MLE.
Details of these methods were provided in Chapter 3. In summary, FCMwO method
computes the Fourier coefficients in the data measured between displayed error (e),
and the manual control input (u). Then, by using the predefined manual control model
structure (Hp ( jω)), an optimization is performed in the frequency-domain to find the
model parameters. MLE uses the same control model structure, and the model parame-
ters are identified in time-domain. The reader is advised to refer to Chapter 3 for details
of these methods and their application in MCIM. Figure 6.2 shows a sample identifica-
tion result for a participant, during the ET with 200 ms of added time delay condition.
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Figure 6.2: Frequency-domain results of two identification methods (i.e., FCMwO and MLE) on the measured
data of the Participant 6, during the ET with 200 ms of added time delay condition.

Figure 6.2 exemplifies that both FCMwO and MLE techniques were able to describe
the manual control behaviour that was measured during a sample experiment run, such
that measured Hp ( jω) was very closely captured by both techniques. As described in
Chapter 3, the VAF 105 was used to assess the accuracy of the described model. VAF=
100% indicates that all the measured manual control can be presented by the estimated
linear model, i.e., Hp ( jω). Thus, high values of VAF are required to claim that Hp ( jω) in-
deed describes the actual control behaviour that was measured during the experiment.
For example, Figure 6.3 depicts a sample time history which shows both measured and
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identified control signals with corresponding VAF values.
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Figure 6.3: Time-domain results of two identification methods (i.e., FCMwO and MLE) on the measured data
of Participant 6, during the ET with 200 ms of added time delay condition. VAF values of both methods are also
given in the figure.

Similar to the frequency-domain comparisons (Figure 6.2), both identification meth-
ods showed good accuracy of estimation of the manual control behaviour in time-domain
(Figure 6.3), as indicated by VAF values around 90%. These VAF values imply that the
measured control behaviour can be modelled by the identified parameters in the esti-
mated linear pilot model structure with an accuracy of ≈90%. The remaining ≈10% re-
flects the remnant, resulting from all sorts of non-linearities, which can not be included
in a LTI model, as discussed in Chapter 3.

6.7.2. STATISTICAL ANALYSES
In order to check the statistical significance of the variations among configurations, a
two-way repeated-measures ANOVA is applied on the results of the experiment, as dis-
cussed in Chapter 3. The interval scale were satisfied for all dependent measures anal-
ysed with the two-way repeated-measures ANOVA. The normality assumption was rarely
violated, but the ANOVA is fairly robust for such instances, as discussed in the Chapter 3.
If the sphericity assumption was violated, the Greenhouse-Geisser correction was ap-
plied 20. Such occurrences are marked in the ANOVA tables of Section 6.8.

6.7.3. RPC DETECTION
As a part of the MCIM, ROVER and PAC were used for RPC detection. Details of these de-
tections tools can be found in Chapter 3. These detection tools were used to investigate
the correlation between identified manual control behaviour and RPC susceptibility of
the PVS with added time delay and various task difficulties. In summary, ROVER uses
the frequency of the vehicle response, amplitude of the control stick, the pitch rate and
the phase between the control input and the pitch response. Then, ROVER assigns flags
per each parameter depending on their thresholds. Based on the measured data, ROVER
thresholds used in this experiment are given in Table 6.4.
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Table 6.4: ROVER variables and their threshold values used in the experiment. Here, ωq is the pitch rate fre-
quency, θl ong is the cyclic stick deflection, q is the pitch rate response of the rotorcraft, and φθ is the phase
between pilot control peaks and resultant body rate response (q).

Variables as ROVER flags Threshold

Frequency ωq 8 rad/s

Stick amplitude θlong 0.95 in

Pitch rate q 0.21 rad/s

Phase φθ 85 deg.

As described in Chapter 3, PAC detects the control aggression and phase delay in the
measured data, and locates these detected parameter pairs on a phase-aggression chart
with PIO susceptibility boundaries, as described in the MCIM. In the following section,
both ROVER and PAC results will be investigated.

6.8. RESULTS
This section provides the analysis of the obtained results. First, Section 6.8.1 will pro-
vide sample time histories of displayed error and pilot control inputs. Section 6.8.2 will
show the control activity and the task performance achieved during the experiment. Pi-
lot model identification results and corresponding identified pilot model parameters will
be provided in Section 6.8.3. Then, the results of the open-loop crossover frequency and
the phase margin will be elaborated in Section 6.8.4. Finally, the results of the RPC de-
tection tools will be presented in Section 6.8.5.

6.8.1. SAMPLE TIME HISTORIES
Before performing any frequency-domain analysis, time traces of the measured data can
provide an initial overview on the general control strategy approach of participants to
the given task with varied configurations. Sample time histories of applied control and
displayed error of a typical participant are shown in Figures 6.4 and 6.5, respectively.

Time histories of the control input (u), as shown in Figure 6.4, indicate that Partici-
pant 7 applied approximately equal control inputs for all three levels of added time delay
conditions during the ET. However, when the task difficulty was increased to moderate
(i.e., MT), the participant showed lower amplitude controls for the 200 ms added time
delay condition than the ones with 0 and 100 ms added time delay. When the task diffi-
culty was further increased (i.e., HT), amplitudes of the control input were the lowest of
all task difficulty configurations. In summary, time histories of the control input (u) of
Participant 7 indicate that:

• ET and MT tasks incited more control activity than the HT.

• Added time delay in the controlled element has the most noticeable deviation in
the control activity during the MT, for the 200 ms of added time delay configura-
tion.
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Figure 6.4: Control input time histories of the time-averaged measurement runs of Participant 7, with all com-
binations of varied task difficulty and added time delay configurations.
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Figure 6.5: Displayed error time histories of the time-averaged measurement runs of Participant 7, with varied
task difficulty and added time delay configurations.

Displayed pitch errors, which are also indication of the task performance, were inher-
ently related to the forcing function bandwidth. This effect can be observed in the time
histories which are depicted in Figure 6.5. In the ET condition, all three added time delay
configurations showed nearly identical displayed errors. However, for the moderate task,
200 ms of added time delay condition resulted in higher displayed errors than seen for
the 0 and 100 ms time delay conditions. The hardest task (i.e., HT) conditions showed the
highest errors of all task difficulty configurations, as previously discussed in Chapter 5.
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Similar to the easy task, the time traces of the error do not clearly show a remarkable dif-
ference between added time delay configurations. In summary, the displayed error time
histories show that;

• Increasing the forcing function bandwidth resulted in increased displayed error.

• The effect of the added time delay was noticeable during the MT, particularly for
the 200 ms added time delay condition.

6.8.2. TASK PERFORMANCE AND CONTROL ACTIVITY

The task performance was measured by the normalized error variance (σ2
e /σ2

i ), and RMS
of the control input (u) is used as a measure of manual control activity, as described in
Chapter 3. Figure 6.6 depicts the task performance and the control activity, which are
both calculated from the time averaged data of the measurement runs per participant
per configuration.
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Figure 6.6: Mean and 95% confidence intervals of measured task performance (a) and control activity (b), all
corrected for between-subject variability.

It can be seen from Figure 6.6 that increasing the task difficulty resulted in larger
errors. This is expected since the task becomes harder to compensate with increased
forcing function bandwidth, which represents the task difficulty in MCIM. For each task
difficulty level, it can be observed that increasing the added time delay resulted in worse
performance as well. This is due to the fact that the added time delay increases the phase
lag of the CE, as shown in Figure 6.1.

Pilot control activity comparisons in Figure 6.6 shows a difference between task dif-
ficulties and added time delay configurations. One obvious deviation can be noticed
between 100 and 200 ms of added time delay configuration in the MT. Another major
deviation can also be seen in the HT between 0 and 100 ms of added time delay. Fur-
thermore, it can be noted that confidence intervals of the control activity for the HT are
bigger than the other task difficulties. This suggests that the control inputs for the HT
varied the most between the participants, when compared to other task difficulties. For
example, the time traces of the control input of Participant 7 (Figure 6.4) do not indicate
this change in RMSu for the HT. However, for the same participant, the noticeable devi-
ation of the control activity in MT complies with change of the mean control activity for
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all participants.

Table 6.5 shows the ANOVA results of the task performance and the control activity.

Table 6.5: Two-way repeated-measures ANOVA results for the control activity and task performance, where **
is highly significant (p< 0.05).

Dependent Independent
measures variable factors

ωi τd ωi ×τd

dF F Sig. dF F Sig. dF F Sig.

σ2
e /σ2

i 2,16 457.96 ** 2,16 103.72 ** 4,32 11.38 **
RMSu 2,16 6.50 ** 2,16 10.05 ** 4,32 4.29 **

The ANOVA results in Table 6.5 show that effects of the forcing function bandwidth
and the added time delay on task performance are highly significant, [F(2,16)=457.96,
p<0.05] and [F(2,16)=103.72,p<0.05], respectively. Moreover, the interaction between ef-
fects of the task difficulty and the added time delay is also found to be statistically highly
significant [F(4,32)=11.37,p<0.05]. Similar to the achieved task performance, both the
task difficulty and the added time delay showed significant effect on pilot control ac-
tivity, [F(2,16)=6.5,p<0.05] and [F(2,16)=10.05,p<0.05], respectively. In addition, highly
significant interaction between the task difficulty and the added time delay was found
for the control activity as well [F(1.15,12,12)=4.3,p<0.05]. These statistical analyses in-
dicate that both task performance and control activity are significantly affected by the
added time delay, the task difficulty and their interactions.

6.8.3. IDENTIFIED PILOT MODEL PARAMETERS
The identification procedure described in Chapter 3 requires an LTI system, and the lin-
earity of the pilot control behaviour was checked by the squared correlation coefficient
(ρ2), as described in Chapter 4. In summary, ρ2 uses the ratio of the noise and manual
control input periodograms to evaluate the linearity of the signal at the powered fre-
quencies of the forcing function. In addition, the VAF can also be taken into account as
an evaluation of the linearity of the system, depending on the accuracy of the estimated
pilot model, as discussed in Chapter 3. An example of the average ρ2 for one typical
participant, and VAF values, which were corrected for between-subject variability for all
experiment conditions, are shown in Figure 6.7.

It is depicted in Figure 6.7 that average ρ2 values for a typical participant were gen-
erally found to be close to one, which indicates that manual control behaviour can be
considered linear. In addition, VAF values obtained for all participants were between
82% to 92% with a grand-average of 88%, as shown in Figure 6.7. This indicates that the
estimated describing function (Hp ( jω)) with identified parameters captures almost 90%
of the measured manual control behaviour in all experiment conditions. The remaining
10% are generally the non-linear control behaviour (i.e., remnant), which could not be
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Figure 6.7: Average ρ2 values for Participant 5 (a) during HT, and mean and 95% confidence intervals of VAF
values, corrected for between-subject variability (b).

captured by an LTI oriented model.

High values of ρ2 and VAF allow for high-accuracy identification using Hp ( jω). As
described in the MCIM, Hp ( jω) contains equalization parameters (i.e., the pilot visual
gain (Kv ) and the lead time constant (τL)), and pilot limitation parameters (i.e., the pilot
delay (τp ), the neuromuscular damping (ζn) and natural frequency (ωn)). After correct-
ing for the between-subject variability, Figure 6.8 depicts the identified parameters with
their mean values and 95% confidence intervals for each condition of the experiment.

In compliance with Figure 6.8, the results of a two-way repeated-measure ANOVA on
pilot model parameters are given in Table 6.6.

Table 6.6: Two-way repeated-measures ANOVA results for the identified pilot model parameters, where ** is
highly significant (p< 0.05), * is significant (0.05 ≤p <0.1),- is not significant(p ≥ 0.1) and g g is the Greenhouse-
Geisser sphericity correction.

Dependent Independent
measures variable factors

ωi τd ωi ×τd

dF F Sig. dF F Sig. dF F Sig.
Kv 2,16 125.5 ** 2,16 86.11 ** 4,32 3.23 **
τL 2,16 48.39 ** 2,16 12.32 ** 1.7,13.8g g 4.446 *
ωnms 2,16 0.35 - 2,16 61.337 ** 4,32 0.22 -
ζnms 2,16 5.28 * 2,16 4.417 * 2,16 4.49 -
τp 2,16 3.11 * 2,16 0.44 - 2.2,17.7g g 2.522 -
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Figure 6.8: Mean and 95% confidence intervals of estimated pilot visual gain (a), lead time constant (b), neu-
romuscular natural frequency (c), damping (d), and pilot time delay (e) parameters, all corrected for between-
subject variability.

Identified pilot visual gain (Kv ) shows a dependence on the task difficulty and the
added time delay, as shown in Figure 6.8. ANOVA also shows the high significance of
the effect of task difficulty and the added time delay on Kv , [F(2,16)=125.5, p<0.05] and
[F(2,16)=86.11, p<0.05], respectively. Moreover, the interaction of the task difficulty and
the added time delay is found to be highly significant as well, [F(4,32)=3.23, p<0.05].
Similar to Kv , pilot lead time constant (τL) is found to be highly significantly affected by
the task difficulty and the added time delay, [F(2,16)=48.39, p<0.05] and [F(2,16)=12.32,
p<0.05], respectively. Figure 6.8 shows that during the condition with MT with 200 ms of
added time delay, both Kv and τL resulted in a noticeable deviation when compared to
the trends in other task difficulty conditions. A quantified comparison of the parameter
deviations of Kv and τL for all task configurations are given in Figure 6.9.
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Figure 6.9: Absolute parameter deviations (%) of Kv , τL and ωc based on the minimum and the maximum
of each parameters mean values for all task configurations. Conditions with tracking error amplification (i.e.,
σ2
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i > 1) are greyed out in the figure.

Figure 6.9 shows that for the MT, Kv deviated from 21 % to 37 % between 0 and 100
ms of added time delay levels, respectively. However, when the added time delay was
further increased to 200 ms, the deviation became recognizably higher as 68 %. A similar
noticeable deviation for the 200 ms condition has occurred for the τL as well, such that
34 %, 46 % and 70 % deviations were observed for 0, 100 and 200 ms of added time delay
levels, respectively. As it will be discussed in Section 6.8.4, the HT without added time
delay condition is an example of a typical crossover regression due to the increased task
difficulty, and the HT without added time delay condition showed very similar Kv and
τL deviations to this crossover regression condition.

In Figure 6.8, neuromuscular natural frequencies (ωnms ) appear to be highly depen-
dent on the added time delay but not on the task difficulty. The ANOVA results agree
with the same observation, such that task difficulty showed no significant effect onωnms ,
whereas the added time delay affects ωnms highly significantly [F(2,16)=61.33, p<0.05].
The interaction between task difficulty and the added time delay did not show a signif-
icant effect on ωnms . The neuromuscular damping (ζnms ) parameter shows the largest
confidence intervals of all identified pilot parameters. This indicates that the spread be-
tween participants is the highest for this parameter. Task difficulty and the time delay
significantly affect the ζnms , [F(2,16)=0.35, 0.05≤p<0.1] and [F(2,16)=4.42, 0.05≤p<0.1],
respectively. However, the interaction between the task difficulty and the added time de-
lay does not have a significant effect on ζnms . Finally, pilot time delay (τp ) is significantly
affected by task difficulty only, [F(2,16)=3.11, 0.05≤p<0.1]. The added time delay or its
interaction with task difficulty do not show any significant effect on τp .

Considering the identified pilot model parameters, one of the largest overall devia-
tion in identified control behaviour was observed for the MT, particularly between 100
ms and 200 ms conditions. By using the means of the identified parameters, the resul-
tant mean pilot describing functions for the MT are depicted in Figure 6.10.



6.8. RESULTS

6

165

 

 

τd = 200 ms
τd = 100 ms
τd = 0 ms

∠
H

P
(j

w
),

d
eg

ω,r ad/s

|H
P

(j
w

)|,
d

B

100 101

100 101

−400

−200

0

10

20

30

Figure 6.10: Mean pilot describing functions in the MT for 0, 100 and 200 ms of added time delays. Powered
frequencies of the forcing function are emphasized by markers.

Figure 6.10 points out the noticeable pilot control behaviour change between 100
and 200 ms of added time delay in the MT. Basically, reduced Kv can be traced by the
drop of magnitude of Hp ( jω) at low frequencies. Second, an increased lead time con-
stant can be recognized by the initiation of the slope of the magnitude in low and mid-
frequencies until 5 rad/s. Another indication of increased τL in Figure 6.10 is the posi-
tive phase, which suggest that participants tried to cope with the reduced stability due
to added time delay by providing additional phase into the PVS at low frequencies. Al-
though ωnms also shows a decreasing trend with increasing added time delay, this trend
is nearly identical for all task difficulties (Figure 6.8), and not particularly different for
the MT.

In summary, the pilot equalization parameters, Kv and τL , show a noticeable devi-
ation in their trends in MT between 100 and 200 ms of added time delay, as depicted
in Figure 6.9. This deviation suggests that the crossover regression, or the pilot control
strategy to avoid a possible RPC, may be observed in between these two configurations.

6.8.4. CROSSOVER FREQUENCIES AND PHASE MARGINS
By using the identified manual control behaviour in the previous section, the open-loop
crossover frequencies and corresponding phase margins were obtained. In order to in-
vestigate the degradation of the handling qualities, the focus was on crossover regression
occurrences. Figure 6.11 shows the crossover frequencies and the phases margins with
means and 95% confidence intervals, corrected for between-subject variability. In order
to evaluate the statistical significance of possible effects of task difficulty and added time
delay on crossover frequency and phase margin, a two-way repeated-measures ANOVA
was applied, and the results are listed in Table 6.7.
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Figure 6.11: Mean and 95% confidence intervals of the crossover frequency(a) and the phase margin(b), all
corrected for between-subject variability.

Table 6.7: Two-way repeated-measures ANOVA results for the crossover frequencies and phase margins, where
** is highly significant (p< 0.05).

Dependent Independent
measures variable factors

ωi τd ωi ×τd

dF F Sig. dF F Sig. dF F Sig.
ωc 2,16 95.333 ** 2,16 53.228 ** 4,32 4.196 **
φm 2,16 143.605 ** 2,16 4.54 ** 4,32 5.631 **

It can be seen in Figure 6.11 that a noticeable crossover regression occurs in the MT
between 100 and 200 ms added time delays. Moreover, further crossover regression can
be observed between 0 and 100 ms of added time delay in the HT. Although the mag-
nitude of the drop in ωc is very close for these two occurrences (both approximately
0.5 rad/s), the regression in the MT is thought to be more important. The reason for
this is due to the fact that the manual control compensation of the error in the HT was
already hard, because of the high forcing function bandwidth even without the added
time delay, as previously shown in Figure 6.9. It can be seen in Figure 6.11 that the ‘clas-
sical’ crossover regression due to the task difficulty has already been present between
MT and HT for the conditions without the added time delay. The ANOVA results in Table
6.7 shows that task difficulty, the added time delay and their interaction all have highly
significant effects on the crossover frequency, [F(2,16)=95.33, p<0.05], [F(2,16)=53.23,
p<0.05] and [F(4,32)=4.2, p<0.05], respectively. Thus, the stated hypothesises in Section
6.6 is indeed fulfilled.

Not only crossover frequencies, but also phase margins were found to be significantly
affected by the added time delay, the task difficulty and their interaction, [F(2,16)=143.6,
p<0.05], [F(2,16)=4.54, p<0.05] and [F(4,32)=5.63, p<0.05], respectively. It can be seen
in Figure 6.11 that the task difficulty determined some sort of regimes of the available
phase margins. For the ET, phase margins ranging from 10 to 50 degrees were observed,
whereas the MT showed a regime of phase margins ranging from 50 to 85 degrees. The
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HT showed the highest phase margins with the smallest variation between 85 to 100
degrees, as depicted in Figure 6.11. Although the effect of the added time delay does
not show a trend in Figure 6.11 within each task difficulty, the phase margin deviation is
noticeably higher between 100 and 200 ms in MT.

6.8.5. ROVER AND PAC RESULTS
The algorithms of both ROVER and PAC were described in Chapter 3 in detail, and the
settings used for their application here were given in Section 6.7.3. Mean and standard
deviations of the detected ROVER flags are shown in Figure 6.12, and two-way ANOVA
results are given in Table 6.8.
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Figure 6.12: Mean and standard deviations of the detected ROVER flags for all experiment conditions.

Table 6.8: Two-way repeated-measures ANOVA results for the ROVER detections, where ** is highly significant
(p< 0.05).

Dependent Independent
measures variable factors

ωi τd ωi ×τd

dF F Sig. dF F Sig. dF F Sig.
ROV ER f l ag s 2,16 3.74 ** 2,16 3.98 ** 4,32 3.17 **

Figure 6.12 indicates that for the ET, there is a slight increase in the number of de-
tected ROVER flags for 100 ms and 200 ms of added time delay. However, given the
spread in the data, it is hard to conclude on a certain trend among these configurations.
On the other hand, the MT shows the most interesting differences among the added
time configurations. When the added time delay was increased from 0 ms to 100 ms, an
obvious increase of detected ROVER flags was observed, as shown in Figure 6.12. This
suggests that the rotorcraft model features considerably higher RPC susceptibility with
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this configuration. Increasing the added time delay to 200 ms made the CE more un-
stable and it could be expected to result in even more ROVER flag detections. However,
RPC tendency is seen to decrease. This behaviour suggests that participants reverted to a
less RPC-prone control strategy, such as the ‘back-off’ strategy to avoid RPC incipiences.
This strategy reveals itself also in the HT, since all added time delay configurations dur-
ing this task showed low RPC tendencies, when compared to 100 ms in MT.

In order to focus on the interesting RPC tendency in the MT, PAC was utilized. Figure
6.13 depicts PAC detection results of a typical participant data, for 0 ms, 100 ms and 200
ms of added time delay in the MT.
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Figure 6.13: PAC detection results for Participant 7 during the MT with 0, 100 and 200 ms of added time delays.

It can be seen in Figure 6.13 that increasing the added time delay from 0 ms to 100 ms,
both aggression and phase distortion detections increase and the task moves from ‘No
PIO’ to ‘Moderate PIO’. As discussed in Chapter 3, these PIO boundaries can not be
definite, but the PAC plots still provide the characteristics of the detected response of the
vehicle. When the added time delay was further increased to 200 ms seconds, aggression
became less, but the phase distortion became higher, bringing the task back to the ‘No
PIO’ region. Similar to the ROVER results for the MT, this suggest a back-off control
strategy to avoid higher RPC tendencies.
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6.9. DISCUSSION
This chapter presented the results of the MCIM experiment, and only briefly discussed
the results. This section provides a more detailed discussion of fundamental aspects
of crossover regression and correlated adverse RPC tendencies. As a complete applica-
tion of the MCIM, the main objective of this experiment was to detect configurations in
which human operators exhibit crossover regression, e.g., ‘back-off’ strategy. Moreover,
RPC susceptibility of the PVS was assumed to show a similar tendency, such that human
operators would prefer to avoid higher risks of getting into adverse couplings, and adjust
their control strategy accordingly.

It was found that task difficulty, the added time delay and their interaction had in-
deed highly significant effects on both the task performance and the control activity.
When the task difficulty or the amount of added time delay was increased, task perfor-
mance degraded. This could be predicted because both the stability of the CE and the
number of powered sinusoids in the forcing function could result in larger errors in a
disturbance-rejection task. Manual control activity, on the other hand, did not show
such a clear trend with varied task configurations, despite being statistically significant.
However, especially the reduction of the control activity in the MT between 100 ms and
200 ms of added time delays was noticeable. Similarly, a remarkable reduction in con-
trol activity was also observed in the HT between 0 ms and 100 ms of added time delay.
These deviations could be an initial indication of a ‘back-off’ strategy, such that partic-
ipants might have noticeably changed their control amplitudes. Although these recog-
nizable control activity deviations did not result in a such a noticeable deviation in task
performance. This may mean that participants consciously preferred to adapt their con-
trol strategy instead of completely ignoring the task.

As a part of the MCIM, both FCMwO and MLE were used to identify the manual con-
trol behaviour, and it was observed that the active compensation parameters, i.e., Kv and
τL , were significantly affected by the added time delay, task difficulty and their interac-
tion. This result was expected since these parameters define the active compensation,
which was already seen to be varied for different configurations in preliminary identifi-
cation experiments. With increasing added time delay and task difficulty, Kv reduces and
τL increases. Considering the active compensation parameters, lead time constant (τL)
is the only parameters that could provide additional positive phase to the PVS. There-
fore, when the stability was threatened by added time delay, participants needed to ex-
hibit higher lead to increase the stability. However, high lead compensation is known to
be correspond to high pilot workload 75, and human operators can not keep the same
visual gain and increase the lead at the same time. Moreover, the closed-loop resonance
peak can be amplified with increased Kv × τL which defines the the pilots’ magnitude
responses around crossover.

Investigation of the pilot limitation terms in the pilot model showed that the added
time delay had a highly significant effect on the neuromuscular frequency ωnms . Very
similar values ofωnms were obtained for the task difficulty variable with the same added
time delay configurations. From a stability point of view, lowering the ωnms results in a
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reduced phase margin, since the neuromuscular actuation was modelled as a second-
order system. This behaviour of ωnms deviation can be explained by the preference of
the human control strategy, but as a side-effect while dealing with the demanding task,
instead of a conscious decision. First of all, it must be noted that ωnms can be related to
the stiffness of the neuromuscular system, like the connection between the natural fre-
quency and the spring constant in a typical second-order spring-damper system. During
the no added time delay configurations, participants probably were more confident with
the input-to-response characteristics, and this might encourage them to have a tighter
neuromuscular system, regardless of the task difficulty. However, when the added time
delay was increased, participants might have preferred to have a looser neuromuscular
system simply because the response of the CE was less predictive. Thus, instead of a
tightly settled limb muscle system, a more relaxed system could provide to correct pos-
sible overshoots originating from the added time delays. This neuromuscular system
adaptation was applied almost equally during each task difficulty, suggesting no specific
interaction with crossover regression tendency but an adaptation to increased time de-
lay.

Both ζnms and τp observed to be not being highly significantly affected by any in-
dependent variable or their interactions. In general, HT resulted in lower ζnms and the
means of τp varied between 0.21 s to 0.27 s. Statistically, ζnms was observed to be affected
by the added time and the task difficulty, but not their interaction. τp was only affected
by the task difficulty. None of these effects were highly significant, however. Especially,
the regression candidate configurations, i.e., in the MT with 100 ms and 200 ms of added
time delay conditions, showed very similar ζnms and τp values. Therefore, the variation
in control behaviour between these candidate configurations did not include the devia-
tion of ζnms and τp . Overall, it was shown that the manual control behaviour change is
easily recognizable between 100 ms and 200 ms of added time delay conditions in the
MT.

Another critical measure to observe a change in manual control behaviour is the
open-loop crossover frequency and the corresponding phase margin. The results of the
crossover frequency showed that increasing time delay in each task difficulty leads to re-
duced crossover frequencies. This is simply due to the fact that the CE with increased
added time delay reduces the PVS stability. In the MT with 100 ms and 200 ms of added
time delay conditions, the reduction was considered to be more important since the ac-
tive participation of the pilot was more pronounced between these configurations. On
the other hand, the manual control strategy was only able to amplify the error between
0 and 100 ms of added time delay in the HT.

In addition, the classical crossover regression tendency, which originates from in-
creased task difficulty 81,83, was also observed in the experiment. This regression can be
traced between MT and HT for no added time delay configurations. Obviously, added
time delay on these configurations continued the reduction of the crossover frequency
for each task difficulty, as discussed above.
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Phase margin results showed that the task difficulty grouped the phase margins into
three distinct ranges. ET ended up with the lowest phase margins, around 40 degrees.
MT showed a variation approximately between 60 and 80 degrees. HT resulted in the
highest phase margins, around 90 degrees. This variation of phase margins according to
the task difficulty is an indication of how participants aimed to prioritize the PVS stability
when it was threatened by added time delay and varied task difficulty. The most notice-
able change in phase margins for each task difficulty were between 100 ms and 200 ms
added time delay conditions in the MT. Unlike the crossover regression tendency, the
deviation of phase delay was hardly recognizable between 0 and 100 ms of added time
delay in the HT.

As discussed in detail in Chapter 2, adding a time delay is a well-known CAT.I RPC
trigger in rotorcraft studies, e.g., additional time delay in BO-105 in Ockier’s study 107.
Moreover, the crucial interaction of the task difficulty accompanying the added time de-
lay on exposing RPC was discussed as well, e.g., precision hover task in the ARISTOTEL
project 115. In this experiment, ROVER and PAC were used as two RPC detection tools
as a part of the MCIM. Results of RPC detection tools on showed that in the MT, RPC
tendency was noticeably increased when 100 ms of time delay was added. However,
when the added time delay was further increased to 200 ms, RPC occurrences reduced.
This suggests that participants adapted their control strategy in order to avoid great risk
of getting into more RPC prone conditions during the task. In the HT, all conditions
showed lower RPC tendencies than the 100 ms and 200 ms added delay conditions of
the MT. This was also expected, such that when the task is the hardest (i.e., HT), human
operators already exhibited ‘classical’ crossover regression for the no added time delay
condition, solely due to the increased task difficulty. This means human operators were
exhibiting a cautious control strategy from the start, to sustain the stability of the PVS,
and RPC occurrences in these conditions were expected to be lower than the conditions
when human operators were fully engaged without any crossover regression.

6.10. CONCLUSIONS
The previous chapter showed that the simulation framework had the disadvantage of the
PVS constrain (i.e., the optimal task performance) which resulted in control behaviours
that were not preferred by the human operators in experiment conditions. The main
objective of the present chapter was to investigate the rotorcraft HQ degradation by ob-
jectively considering the manual control behaviour in an RPC-prone task in human-in-
the-loop simulator experiments. It was ultimately aimed to find the task configurations
that cause a clear deviation in manual control strategy, elaborated by using the identified
pilot parameters and relevant PVS characteristics. This method, MCIM, was described
in Chapter 3 in detail, and it was utilized for the identification experiment described in
this chapter.

After identifying the manual control behaviour, the pilot equalization term was ob-
served to be the primary term in the pilot model that reflected a clear variation in con-
trol behaviours for configurations with different task difficulties and added time delays.
Therefore, the most crucial parameters of the pilot describing function were the visual
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gain (Kv ) and the lead time constant (τL). A sudden decrease in Kv and an increase in τL

were the symptoms of a recognizable manual control behaviour change. Neuromuscular
natural frequency (ωnms ) observed to be reduced with added time delay, independent of
the task difficulty. Crossover frequencies showed three clear regression tendencies. First,
a regression due to the added time delay, between 100 ms and 200 ms added time delay
in the MT. Second, the ‘classical’ crossover regression between no added time delay con-
ditions between MT and HT. Third, a regression due to 100 ms of added time delay in
the HT, although this regression was already occurred in a ‘classical’ regressed condition.
The most interesting regression is the first one, which is also the essence of the MCIM
application. At this condition, phase margins also indicated a recognizable deviation.
Moreover, applied RPC tools showed that RPC susceptibility of the rotorcraft model re-
markably increases from 0 to 100 ms of added time delay. However, further added time
delay (i.e., 200 ms of added time delay) demonstrated a sudden decrease of detected
ROVER flags and transition form ‘Moderate PIO’ to ‘No PIO’ regions in PAC detection
map. RPC investigations also suggest that human operators changed their control strat-
egy to avoid increased RPC tendency of the closed-loop.

In this chapter, MCIM successfully demonstrated its ability to detect the configura-
tions where the HQ and the RPC susceptibility of a designed rotorcraft recognizably de-
viate, by using objective measures such as the identified pilot model parameters. These
findings of MCIM can determine how much time delay can lead to drastic changes of
HQ and RPC tendencies, in which level of task difficulty, all from identified parameter
perspectives. Unlike the HQ cliff phenomena 5 discussed in Chapter 2, the variations of
HQ were provided by objective measures of the MCIM, in addition to RPC susceptibility.

Next chapter will provide the conclusions of this dissertation, and the recommenda-
tions for the future work.



7
CONCLUSIONS AND

RECOMMENDATIONS

7.1. CONCLUSIONS

7.1.1. THEORY
This study was initiated to investigate new objective measures of rotorcraft Handling
Qualities (HQ) deficiencies and Rotorcraft Pilot Coupling (RPC) susceptibility during
an early stage of a rotorcraft design. HQ deficiencies and RPC events are still a major
threat to the operational safety of both fixed wing and rotorcraft operations. Gener-
ally, rotorcraft HQ and RPC susceptibility are assessed by subjective pilot ratings, such
as Handling Qualities Ratings (HQR) and Pilot Induced Oscillations Ratings (PIOR), re-
spectively. Such subjective pilot assessments mainly occur at later phases of a vehicle
development program, when a prototype rotorcraft has already been built. Addressing
any detected HQ deficiency at this late design stage may cause extra costs, delays in the
development schedule, more flight tests and higher operational safety risks. Moreover,
subjective pilot ratings during some HQ and RPC assessments are generally considerably
scattered, which lead to unreliable determination of HQ deficiency and RPC proneness.

In addition to the subjective pilot ratings, there are several objective rotorcraft HQ cri-
teria in the literature as well. One of the well-known HQ criteria for rotorcraft design is
Bandwidth Phase Delay (BPD) criterion from the Aerodynamic Design Standard (ADS)-
33. Despite its wide range of application in both fixed and rotary wing industries, the
BPD criterion does not directly account for the pilot, who has a vital role in an RPC event.
There are several other HQ criteria (e.g., the Neal-Smith criterion), however, which uti-
lize ‘paper’ pilot models. Such paper pilot models are generally included in criteria re-
quirements (e.g., the closed-loop resonance peak in Neal-Smith criterion). Such pre-
determined assignments of pilot models may limit the understanding of the ‘actual’
manual control behaviour on the detail of model parameters.
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Considering these drawbacks, this thesis aimed to fill the scientific gap on the objec-
tive criteria for rotorcraft HQ and RPC susceptibility assessments by utilizing identifica-
tion of manual control behaviour.

7.1.2. DEVELOPMENT OF THE MANUAL CONTROL IDENTIFICATION METHOD

(MCIM)
Human operators tend to sacrifice task performance and show a ‘back-off’ control strat-
egy to avoid significant Pilot Vehicle System (PVS) instabilities, as described in Chap-
ter 2. In this thesis, the idea behind the developed methodology (i.e., MCIM) is to use the
identification of manual control behaviour for conditions that may cause these control
strategies. This would allow us to objectively determine under which conditions a ro-
torcraft design may lead human operators to change their control strategy significantly.
Parameters of identified models of the manual control behaviour, open- and closed-loop
characteristics of the PVS can then be used as objective measures of HQ and RPC ten-
dency of the design. Chapter 3 thoroughly describes the development of the MCIM,
which consists of five steps.

The first step is the development of a rotorcraft model, which must be capable of
including added time delay. The second step is the compensatory task, which must in-
clude a forcing function to determine the task difficulty with its bandwidth. The third
step requires an MCIM identification experiment which must be designed considering
the statistical requirements (e.g., Latin square test matrix), and the eligibility for Linear
Time Invariant (LTI) identification procedures (e.g., removed non-linearities of the con-
trol manipulator). The fourth step is the analyses of the MCIM identification experi-
ment, particularly focused on the identified pilot model parameters, crossover frequen-
cies, and several other PVS characteristics (e.g., phase margins). The fifth step consists of
applying RPC detection tools to the results of the MCIM identification experiment, and
investigating the relation between the identified manual control behaviour and the RPC
susceptibility.

Conditions of the MCIM identification experiment are determined by two indepen-
dent variables: the task difficulty and the added time delay. Increased task difficulty
is a well-known condition that may cause a ‘back-off’ control strategy (e.g., crossover
regression 80). Moreover, increased added time delay is a typical trigger for a possible
RPC event, because the reduced phase margin in the PVS forces the operator to reduce
the control gain, i.e., to ‘back-off’, to avoid a potential loss of control. Therefore, by com-
bining these two independent experiment variables, the MCIM can determine limiting
conditions of a rotorcraft design in terms of HQ deficiency and RPC susceptibility.

7.1.3. APPLICATION OF THE MCIM
Two preliminary identification experiments were conducted, to identify possible changes
in manual control behaviour under conditions with various levels of added time delay.
Both experiments indicated that increasing the added time delay may result in a con-
siderable reduction in the crossover frequency. Moreover, in the second identification
experiment, between the 0 ms and 100 ms added time delay conditions, no crossover
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regression was found, whereas the 200 ms condition did result in regression-like be-
haviour. This result suggests that added time delay may have boundaries that would
limit the vehicle design in terms of added time delay. When the added time delay was in-
creased, identified pilot model parameters indicated that human operators show lower
visual gain and neuromuscular natural frequency, and higher lead compensation.

In the first experiment, the control manipulator gearing was also deliberately var-
ied (e.g., configurations with a higher-sensitivity cyclic that could represent a different
simulator control manipulator) to observe the resulting adaptation of the manual con-
trol behaviour. Increasing the control gearing sensitivity is equivalent to increasing the
Controlled Element (CE) gain, which normally causes human operators to simply adapt
their gains. Despite this well-known adaptation, particular interest was on the added
time delay conditions. Identification results showed that human operators adapt only
their gains, and the remaining identified parameters did not show any significant varia-
tion with the control gearing between same added time delay conditions.

In both experiments, existing RPC detection tools in the MCIM (i.e., Realtime Oscil-
lation Verifier (ROVER) and Phase Aggression Criteria (PAC)) showed an increased RPC
susceptibility with increased added time delay, and correlated well with the identified
manual control behaviour. In the second experiment, both ROVER and PAC detected
noticeably increased RPC proneness when added time delay was increased from 0 ms to
100 ms. However, when the added time was further increased to 200 ms, ROVER showed
a relatively similar number of RPC detections, and PAC’s detected RPC proneness shifted
from the ‘Moderate Pilot Induced Oscillations (PIO)’ zone to the ‘No PIO’ zone. Thus,
very similar to the identified manual control behaviour, RPC susceptibility also changed
its trend when added time delay was further increased.

In the preliminary identification experiments of this thesis, MCIM showed that apart
from the increased forcing function bandwidth (i.e., the ‘typical’ cause of a crossover re-
gression), only added time delay can also lead human operators to exhibit a crossover
regression behaviour, and the corresponding RPC susceptibility can be determined.

Considering the MCIM results of the preliminary identification experiments, a follow-
up computer simulation study was performed. The developed simulation framework
contained a pilot model, and a CE in a compensatory task, matching the MCIM exper-
iments. The aim of the simulation study was to predict the manual control behaviour
that yields the optimum task performance during conditions with combinations of the
additional time delay and the task difficulty.

While keeping the pilot limitation parameters (i.e., the pilot delay and neuromus-
cular system parameters) constant, based on the values measured in the preliminary
identification experiment, both pilot equalization parameters (i.e., visual gain and lead
compensation) were varied in the simulation. Moreover, based on the simulation condi-
tions, the pilot remnant was neglected or added to the pilot control signal. In addition,
high and low bandwidth forcing functions, with discrete or continuous Power Spectral
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Density (PSD), were applied to represent the task difficulty.

For each task difficulty condition with added time delay generally lower pilot visual
gain and higher lead time constant were predicted to yield the optimum performance.
This trend of parameter variation matches well with the identified pilot model parame-
ters in the preliminary identification experiments. Moreover, crossover regressions were
generally found when the added time delay was increased, and also when the task diffi-
culty was increased.

It was demonstrated that when the exact same pilot limitation parameters from the
preliminary experiment were used in the simulation study, human operators have pre-
ferred slightly higher tracking errors with higher visual gains and lower lead compensa-
tion when compared to the optimum performance parameters as predicted by the sim-
ulation study.

A clear difference between the optimum performance parameters of the simulation
framework and the identified parameters was the lead time constant. The simulation
study required considerably higher lead time constants when compared to the identified
ones. Typically, the lead time constant is related to pilot workload 75, and the simulation
would aim for very high workload for the best performance, whereas human pilot would
prefer less workload in the real task. Akin to the ’paper’ pilot limitations in some ex-
isting HQ criteria, the simulation study was considered to be not entirely representative
of the preference of a human operator in a real tracking task with demanding conditions.

Finally, the MCIM was fully applied in a simulator experiment with combinations of
three levels of added time delay (i.e., 0 ms, 100 ms and 200 ms) and three levels of task
difficulty (i.e., easy, moderate and hard tasks, represented as Easy Task (ET), Moderate
Task (MT) and Hard Task (HT), respectively). These task difficulties were determined by
the forcing function bandwidth. The objective of this MCIM experiment was to find the
task configurations that cause a clear deviation in manual control strategy, elaborated
by using the identified pilot parameters and relevant PVS characteristics.

Experiment results showed that the visual gain and the lead time constant were the
most crucial parameters that indicated the adaptation of the exhibited manual control
behaviour for different task configurations. Akin to the preliminary experiments and the
simulation study, a recognizable change in the trend of decreasing visual gain and in-
creasing lead time constant characterized the major adaptation of the manual control
strategy among experiment task conditions. Consequently, crossover frequencies indi-
cated three clear regression tendencies.

The first crossover regression was due to the added time delay, between 100 ms and
200 ms conditions in the MT. A very similar observation was made also during prelimi-
nary identification experiments. The second was a ‘classical’ crossover regression due to
increased task difficulty, mainly recognizable between MT and HT. The third crossover
regression occurred in HT when added time delay was increased to 100 ms. Particularly
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the first crossover regression is an excellent example of the fundamental objective of the
MCIM.

At the conditions of the first crossover regression, it is worth nothing that the conven-
tional BPD criterion did not predict any RPC proneness based on either the internal PIO
notification in the ADS-33, nor the superimposed fixed-wing PIO proneness boundary.
Moreover, it does not also account for the task difficulty, such that the same HQ chart
would be applicable to all task difficulties. However, the MCIM showed that when added
time delay was increased to 100 ms, there was a clear increase in the RPC tendency. Next,
when added time delay was further increased to 200 ms, RPC tendencies were reduced,
which corresponds to the crossover regression found.

In other words, operators noticeably changed their control strategy to still perform
the same disturbance rejection task when the added time delay increased from 100 ms to
200 ms. As mentioned before, identified parameters showed that their visual gains were
noticeably reduced and lead time constants were increased. In return, they were able to
avoid any further RPC tendencies that would jeopardize the task completion.

7.1.4. CONCLUSIONS ON THE MCIM STEPS

STEP 1: ROTORCRAFT MODEL

A single-axis rate-command rotorcraft model with inherent time delay (i.e., the ‘concep-
tual handling qualities model’ 111) was successfully used in the MCIM. The rotorcraft
model had a relatively high pitch (or roll) damping value (i.e., high bandwidth) of a typ-
ical hingeless rotor type (e.g., Bo-105). In the MCIM, the bandwidth of the rotorcraft
model defines the frequency at which the response characteristics of the model trans-
forms from a single-integrator to a double-integrator, which causes a increased phase
lag in the response (e.g., phase ‘roll-off’). In addition, as a part of the MCIM, adding
more time delay to the model increases this phase lag even further. Therefore, having a
high-bandwidth rotorcraft model was beneficial to investigate the effects of the added
time delay, because the phase ‘roll-off’ happened at high frequencies. This allowed hu-
man operators to apply control at a wide range of frequencies, without threatening the
PVS stability. Moreover, the added time delay was easily added to the inherent delay,
which accounts for the high-order rotor dynamics in the rotorcraft model. Thus, there
was no need to change the structure of the model. This advantage significantly simpli-
fied the analysis of the rotorcraft model and the PVS response for all conditions.

STEP 2: TASK DIFFICULTY

A single-axis disturbance-rejection task was successfully applied in the MCIM by inject-
ing a forcing function in the form of sum-of-sines. In the MCIM, the discrete power
distribution of the forcing function was composed of two partitions: a high-amplitude
low-frequency region and a low-amplitude high-frequency shelf. The forcing function
bandwidth determines the frequency at which a transition between these two partitions
occurs. Therefore, this power distribution of the forcing function design allows for direct
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easy control of the task difficulty, i.e., by changing the forcing function bandwidth while
keeping the same total power. As a result, the comparison of conditions with various
task difficulties and corresponding PVS analyses were easily accomplished. Moreover,
the participants in simulator experiments showed highly linear responses during vari-
ous task difficulties, which indicates that the forcing function design was indeed ade-
quate for these experiments even for the more demanding conditions with added time
delay.

STEP 3: DISTURBANCE-REJECTION TASK

A disturbance-rejection task was designed for the MCIM and used in two simulators, the
SIMONA Research Simulator (SRS) and the HeliFlight Helicopter Simulator (HHS), with-
out motion feedback. The purpose of the task was to excite the PVS for manual control
behaviour identification. This task was designed as a compensatory task, such that hu-
man operators were required to null the disturbance (i.e., difference between the forcing
function and the vehicle response) that was displayed on scaled-up attitude indicators
in both simulators, without any outer screen visual. Considering the noticeable differ-
ences between the simulators, the simplicity of the task allowed a quick integration in
both simulators. Although these two simulators had different control manipulators (e.g.,
cyclic control), setting-up linear configurations (e.g., no breakout-force) minimized any
effects of manipulator differences in terms of MCIM applications. Moreover, the MCIM
experiments were conducted by professional helicopter pilots and participants without
such a piloting profession, in different experiment campaigns. Since the MCIM mainly
focuses on the ‘variation’ of the manual control strategy, it was shown that the MCIM was
able to detect the same parameter variation trend for the added time delay conditions
(i.e., reduced visual gain and increased lead time constant) for both participant groups,
and in different simulators. Despite the limited number of experiment campaigns, this
result was found to be promising for the robustness of the MCIM. During the MCIM
training phases of the identification experiments, it was recognized that the Latin square
test matrix, which was required for the Analysis of Variance (ANOVA) statistical analyses,
required human operators to adapt to each condition in a mixed order, and prevented
them to apply predicted control strategies. It was also noted that giving enough time
breaks between experiment conditions improved the focus and the performance of hu-
man operators.

STEP 4: PVS ANALYSES

Based on the independent variables (i.e., the task difficulty and the added time delay),
dependent measures were investigated during the PVS analyses. These dependent mea-
sures were task performance, control activity, pilot model parameters, crossover fre-
quency and phase margin. These metrics were measured during identification experi-
ments for all conditions. Task performance and control activity were calculated in the
time domain. Each participant of an identification experiment was informed about
his/her task performance in the form of a ‘score’, just after each experiment run. This
score represented the ratio of the powers of the displayed error to the injected forcing
function. Keeping track of these scores allowed tracing of general trends of task perfor-
mance for different configurations during the experiment campaign, before performing
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any ad hoc PVS analysis. Moreover, announcing the task performance after each exper-
iment run helped participants to find their ‘best’ control strategy, i.e., the strategy that
resulted in the highest score to be achieved by each participant.

Pilot model parameters, crossover frequency and phase margin were calculated in
the frequency domain by analysing the measured data from the identification experi-
ments, for all human operators who participated in all experiment conditions. These
measured data were processed by two LTI identification techniques (i.e., Fourier Co-
efficients Method with Optimization (FCMwO) and Maximum Likelihood Estimation
(MLE)), which were used in conjunction to mitigate possible optimization issues, e.g.,
converging to local minima. Pilot model parameters were based on the estimated man-
ual control behaviour (i.e., the pilot model), and the identified parameters showed that
the identification process using the estimated pilot model resulted in high values of
Variance Accounted For (VAF) (i.e., the accuracy of the estimated output). Therefore,
not only the LTI identification methodology, but also the estimated pilot model exhib-
ited a good accuracy for capturing the manual control behaviour, including demanding
experiment conditions (e.g., hard tasks with high added time delay conditions).

Variation of the pilot model parameters, crossover frequency and phase margin were
examined with the ANOVA statistical method, which required a Latin square design for
the execution of identification experiment conditions. ANOVA statistical results were
correlated well with the observations on the change of dependent measures, and also
provided insight on the ‘combined’ effects of task difficulty and added time delay.

STEP 5: RPC DETECTION

In the MCIM, although the BPD criterion of the ADS-33 was used for HQ considera-
tions, the PIO notification of the BPD was not applicable to the rate-command rotorcraft
model of the MCIM. Alternatively, two RPC detection tools were utilized: the ROVER and
the PAC, for the determination of RPC tendencies. These tools are originally developed
for warning the pilot ‘online’ about an incipience of an RPC event. However, in the MCIM
they were used as ‘offline’ analyses tools to investigate the RPC susceptibility, based on
the measured experiment data.

An enhanced version of the ROVER was utilized in the MCIM (e.g., improved peak-
to-peak detection), and improvements on RPC detections during several irregular cases
were examined during the Aircraft and Rotorcraft Pilot Couplings – Tools and Techniques
for Alleviation and Detection (ARISTOTEL) project as well. A typical drawback of the
ROVER is the determination of flag thresholds ‘prior’ to a flying task. Generally, historic
data from similar flight conditions are used for these thresholds, before any flying task.
However, these thresholds do not guarantee to cover the characteristics of the flying task,
particularly when the vehicle is exposed to the task for the first time (e.g., a new design).
In the MCIM, it was advantageous to use ROVER with measured data ‘after’ the experi-
ment campaign. Therefore, the experiment data gathered from all conditions flown by
all human operators lead to overview the overall MCIM experiment, in terms of ROVER
threshold considerations.
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The second RPC detection tool of the MCIM was the PAC, which was developed dur-
ing the ARISTOTEL project. The PAC can be considered as an extension to the ROVER,
with an aggression parameter accounting for the pilot control activity between detected
peaks of vehicle rate response. Akin to the ROVER, PAC was primarily developed for
‘online’ RPC detection, whereas, MCIM utilized it for ‘offline’ analyses. Using the PAC
extended the understanding of the manual control aggressiveness with respect to the
phase delay, which was inherently altered with added time delay conditions. It was par-
ticularly useful while interpreting the hypothesized ‘back-off’ strategy when human op-
erators aimed to avoid RPC occurrences.

7.1.5. GENERAL CONCLUSION
Considering the objective of this thesis, the MCIM was able to successfully determine the
configurations where the HQ and the RPC susceptibility of a designed rotorcraft notably
deviate, by using the identified parameters of manual control behaviour as objective
measures. Therefore, it would be possible to elaborate the added time delay and task
difficulty combinations that cause a recognizable change of HQ and RPC susceptibility.
Such objective measures then could be used at an earlier stage of rotorcraft design, and
both the added time delay and task difficulty limitations could be determined objectively
without requiring any subjective rating or any constrained ‘paper pilot’ models.

7.2. RECOMMENDATIONS
In this section, the most important recommendations are categorized for each of the
MCIM steps.

7.2.1. STEP 1: ROTORCRAFT MODEL
Considering the complicated flight dynamics of a rotorcraft, a very simple rate-response
type was used in the MCIM, since it was aimed for the very early stages of the design.
However, when the maturity of the vehicle increases with the later stages of the design,
the MCIM could still be used if a proper linear vehicle model is provided. Therefore, the
MCIM could be integrated to a comprehensive design development program (e.g., part
of a development program milestone).

In the MCIM, the selection of the hingeless Bo-105 helicopter model, which was also
used for RPC studies during the ARISTOTEL project, provided the ease of using a singu-
lar aerodynamic damping term (i.e., Mq ). This assumption only holds for the hover and
low speed regimes, and it becomes less accurate with increased speed (e.g., the pitch and
the heave axes become strongly coupled). The rotorcraft dynamics model could be ex-
tended with higher fidelity terms, as exemplified in Section 3.2. Particularly, oscillatory
rotor responses, which could couple with the body response within the interested fre-
quency range of the MCIM, could be interesting to examine (e.g., coupling of the short-
period mode with the regressive flap mode for moderate and high speed). However, it
must be kept in mind that increased rotorcraft model fidelity could require more com-
plex dynamics that would have to be identified. This should be carefully assessed since
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the MCIM utilizes a parametric pilot model such that the manual control behaviour is
represented by an estimated and identified parametric pilot model. In addition, address-
ing an articulated rotorcraft design at hover condition resembles the typical fixed-wing
longitudinal modes (e.g., short-period and phugoid modes), thus, pilot models used in
fixed-wing research could be applied, with appropriate adaptations.

Another approach to extend the application of the MCIM rotorcraft model would be
investigating multi-axis tasks, while still using approximate body modes. In literature,
there are examples of manual control behaviour identification performed in multi-axis,
such as Ref. [9, 42, 149, 150]. For MCIM applications, this would require the rotorcraft
model to include coupled or decoupled multiple modes (e.g., longitudinal and heave).
Corresponding parametric pilot models must be carefully considered for modeling and
identification purposes. Such attempts to extend the rotorcraft model fidelity could also
benefit from the ‘added dynamics’ research in the literature, such as Ref. [72, 89]. Es-
sentially, such studies aim to find which added dynamics could be recognized by human
operators, and how they alter their control strategy accordingly. Combining with the
scope of the MCIM, such studies could be beneficial to investigate the manual control
behaviour for various rotorcraft models with added dynamics, and eventually the MCIM
could guide the designer for a larger subset of rotorcraft models.

7.2.2. STEP 2: TASK DIFFICULTY
Akin to the added time delay, the task difficulty could also be applied with a higher preci-
sion (i.e., smaller frequency differences between task bandwidths of conditions) around
candidate conditions at which crossover regression behaviour would possibly be ob-
served. There are several approaches that could introduce a more realistic task design
than the compensatory task that is used in the MCIM. For example, one approach could
be using a pursuit task 80 , during which both the reference signal and the rotorcraft state
are displayed to the human operator. Then, the human operator can be considered as
performing a ‘pursuit’ to match the rotorcraft response to the displayed reference signal,
thus, inherently minimizing the tracking error.

Another approach to increase the realism of the task could be using a predictive
tracking task, requiring another type of control: the precognitive control. During this
control strategy, the human operator could use a feed-forward control as he/she pre-
dicts the rotorcraft response and the task to be flown 24. Particularly for RPC studies, this
control strategy could potentially help to understand the incipience of an RPC event,
during which the ‘mental’ model of the vehicle perceived by the pilot may change after
a triggering condition. This transition is a complicated phenomenon of interest, which
was pointed out by McRuer et al 85. Although such a task would not be applicable to the
current LTI structure of the MCIM, it is a considerable potential for further RPC research.

An alternative other approach to could be designing multiple-axis tasks, which could
be typical for rotorcraft operations, as discussed in the previous step. However, design-
ing a multi-axis tracking task would require a task design with at least two signals to be
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injected to the PVS 101,147. Therefore, considering a possible coupling of the manual con-
trol behaviour due to the divided attention between these axes, the PSD distribution and
task bandwidths of all tasks shall be carefully designed in an RPC study, accompanying
the rotorcraft model to be investigated.

A well-known flying task for PIO studies is the Boundary Avoidance Tracking (BAT) 31,
which was also investigated during the ARISTOTEL project 115. In summary, the BAT sug-
gests that when a pilot is performing a tracking task, if a task boundary is presented (e.g.,
high obstacles during a nap-of-the-earth helicopter flight), the pilot switches from the
tracking task to a control strategy to prevent from hitting the boundary. Consequently,
this means that the pilot utilizes a hybrid control strategy during such a task. Although
the current LTI structure of the MCIM is not suitable for such hybrid control behaviour
models for identification, extending the MCIM with Linear Time Varying (LTV) capability
could bring a beneficial potential to be able use BAT tasks to investigate RPCs.

7.2.3. STEP 3: DISTURBANCE-REJECTION TASK
As mentioned in the previous steps, higher resolutions of added time delay and task dif-
ficulty may reveal the limiting conditions (i.e., when human operators exhibit crossover
regression strategy) with higher precision, while focusing on a particular PVS design. It
must be kept in mind that increasing the number of conditions would also require to
increase the number of participants. Therefore, there could be several stages of a MCIM
experiment campaign which may be arranged consequentially. For example, since the
noticeable regression has occurred at MT with 100 ms of added time delay in the last
MCIM experiment, with the same number of participants another MCIM experiment
could be conducted by using two closer task difficulties to MT and higher resolution
added time delay values between 100 ms and 200 ms (e.g., 100 ms, 150 ms and 200 ms).
The limiting conditions could then be more precisely determined.

Although the MCIM utilizes a compensatory display, enabling the physical motion
of the simulator may improve the perception of the task by human operators. Thus,
corresponding changes of the manual control behaviour with motion may improve the
understanding of the combined effects of the added time delay and the task difficulty.
It must be noted that including the motion will also require extending the pilot model
with the motion cue terms (e.g., the vestibular channel), thus, it would make the anal-
yses more complicated than the current version of the MCIM. Moreover, with the mo-
tion cues being included, one must pay attention to the composition of a tracking and
a disturbance-rejection task 20. For example, the motion cues could be considered as a
turbulence field in a disturbance rejection task, whereas in a compensatory task it rep-
resents the response of the rotorcraft to a given control input.

A key parameter of the MCIM is the added time delay, which is included as a delay
at the control input of the human operator to the rotorcraft model. During the MCIM
simulator experiments, possible inherent delays due to control manipulator hardware,
real-time software execution and attitude indicator displays were neglected (i.e., we as-
sumed an ideal simulator without any delay). However, such delays could potentially
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build-up to considerable values that would affect the PVS analyses, as exemplified for the
visual delay in the SRS in Ref. [129]. A remedy would be identifying all sources of such
delays in the simulator environment prior to the identification experiments of MCIM,
and including these delays in the identification experiment design, and PVS analyses.

7.2.4. STEP 4: PVS ANALYSES
As mentioned in the previous steps, an important limitation of the MCIM is that it uses
LTI models. This means that the MCIM cannot function well with strong non-linearities
in the PVS, such as a transition from a steady flight to a full-blown PIO. Therefore, the
MCIM is limited to pre- and post-PIO conditions, both considered applicable to linear
analysis. However, triggering conditions would easily create a transition, which can be
only captured by LTV methods. For example, Mitchell and Klyde 89 discussed the use of
wavelet-based scalograms to identify the effects of added dynamics on rotorcraft-pilot
interaction, in both the frequency and time domain. Such an LTV approach could be
integrated in the MCIM with an appropriate pilot modeling technique, such as the LTV
model used in Ref. [101, 139, 148, 150]. It would enhance the capability of the MCIM to
capture the transient manual control behaviour during the incipience and development
of a full RPC event.

The estimated pilot model in the MCIM contains a second order system, which lumps
the neuromuscular system and the control manipulator dynamics. Starting with McRue-
r 80, this model has been widely used in pilot model identifications studies 24,104. This
modeling technique requires as linear as possible control inceptor dynamics (e.g., ex-
cluding the friction and the breakout force) for LTI studies (i.e., minimized non-linearity),
as described in this thesis. In terms of helicopter controls, Mitchell et al. 94 state that
’... the low effective mass of the cockpit controls makes the feel-system frequency less im-
portant (p. 10).’ Besides, with the fly-by-wire (or -light) technology, and active side-
stick control manipulators becoming more common in helicopter control 30,34, some
RPC studies have been addressing them. For example, Klyde at al. 60 investigated PIO
events with a fly-by-wire system, by using a scalogram-based PIO metric. Considering
the future applications of the MCIM, the control inceptor dynamics shall be reconsid-
ered based on the adapted control mechanisms (e.g., decoupling of the neuromuscular
system and control manipulator dynamics).

7.2.5. STEP 5: RPC DETECTION
An enhanced version of the ROVER, and the PAC are used in the MCIM as RPC detection
tools, which are used for post experiment analyses to determine the RPC susceptibil-
ity. An interesting application of MCIM would be designing experiment conditions with
‘online’ warning ability of these tools, and then comparing the differences between iden-
tified manual control behaviours. Therefore, one can objectively assess the effectiveness
these RPC warning systems, and understand the conditions that human operators pre-
fer to alter their control strategy. A further improvement would be having a time-variant
identification, such that the transition in the control strategy could be captured.
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In the PAC, an approximation of average gain response of the vehicle (i.e., Hs ) is used
as default. Considering the MCIM rotorcraft model, this approximation could be im-
proved by combining the break frequency (i.e., Mq in MCIM) with the corresponding
control input frequency. Therefore, particularly high frequency input conditions would
be represented more accurately. One could expect that the aggression terms of the PAC
would have lower values for such high frequency inputs.

During the ARISTOTEL project, the novel PIO rating scale, Adverse Pilot Coupling
Scale (APCS) 54, showed promising improvements on the common PIO rating scale. Al-
though such subjective rating scales are not in the scope of MCIM, objective measures
of the MCIM could still be cross-checked with such ratings, which shall be provided by
trained human operators.
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A
SUBJECTIVE RATING SCALES

This appendix provides the subjective rating scales that have been referred to in the the-
sis. The first section provides the HQR for handling qualities assessment. The second
section presents the PIO rating scale. The third section provides the APCS subjective
rating scale which was developed and tested during the ARISTOTEL project. The last
section describes the BedfordWork Loading Scale Ratings (Bedford Work Loading Scale
Ratings (WLR)) to assess the pilot workload.
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A.1. HANDLING QUALITIES RATING SCALE
Cooper-Harper handling qualities rating scale 19, i.e., HQR, is shown in Figure A.1.
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Figure A.1: Cooper-Harper handling qualities ratings scale 19, adapted from Ref. [20].
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A.2. PILOT INDUCED OSCILLATIONS RATING SCALE
Pilot induced oscillations rating scale 136, i.e., PIOR, is shown in Figure A.2.

Figure A.2: PIOR scale, adapted from Ref. [136]
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A.3. ADVERSE PILOT COUPLING SCALE
The APCS 54, which was developed and used in the flight simulator test campaigns of
ARISTOTEL, is provided in Figure A.3.

Figure A.3: APCS, adapted from Ref. [54]
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A.4. WORKLOAD RATING SCALE
The Bedford workload ratings scale 123 is a 10-point subjective rating scale, which re-
flects the pilot’s spare capacity to perform additional tasks. In WLR, a rating of one is
assigned to tasks that present the least difficulty, and higher ratings represent increasing
task difficulty such that pilot’s capacity to perform additional tasks diminishes, as shown
in Figure A.4. WLR is based on the established HQR 19,28.

Figure A.4: WLR scale, adapted from Ref. [123]
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Paşa and our cat Çirkin) have been staying in their house together for months, and yet
still feeling at home. I can not describe how much I appreciate their support.

During this journey, one of my main distractions was attending to metal festivals
for couple of days to clear my mind. I want to mention here that in these years, I have
collected invaluable friendships with strong bonds. I can not name them all but some
special ones I want to thank for joining me: Laura, Magchiel, Pascal, Arthur, Deb, all my
Dutch tribe members, Nathalie, Eline, Seb, Franzi, Julie, Barth, Jas, Sam, Basak, Oliver,
Guido, Manu, Hagen, Laura (Gr), Konnie, Michail, Chris, Dona, Stef, etc. Travelling,
camping, BBQ, headbanging, and listening to music in huge crowds in isolated land-
scapes had been a wonderful experience with these friends, and it helped me to refresh
my mind during this journey.

Deniz Yılmaz Maastricht, October 2018





CIRRICULUM VITAE

Deniz Yılmaz was born on April 26, 1980 in Samsun, Turkey. He stud-
ied in Yomra Fen Lisesi (Scientific High School) in Trabzon, Turkey,
and in 1999 he enrolled as a student at the Faculty of Aerospace En-
gineering at the Middle East Technical University (METU) in Ankara,
Turkey. As a part of his Aerospace Engineering studies, he performed
an internship on the Elastomeric Articulation helicopter rotor hubs
at 5th Main Maintenance Command Centre, where full spectrum
maintenance, modernization, ground and flight testing of the com-
plete helicopter fleet of the Turkish Army is performed. During his
last two years of Bachelor studies, he worked as a software developer of the Sikorsky S-70
and the Bell AB-206 helicopter simulators, in Gate Elektronik.

After his graduation, in 2005 he started his M.Sc. studies on the ‘Evaluation and
Comparison of Helicopter Simulation Models with Different Fidelities’, which has been
granted by the TUBITAK (The Scientific and Technological Research Council of Turkey).
During his first year of M.Sc. studies, he also worked as a certified flight simulator devel-
oper and operator for Cessna C-172S FNPTII (Flight Navigation and Procedure Trainer)
in Sindel Aviation Flight Academy. During his M.Sc. studies, he has also participated
in several part-time jobs in both helicopter and simulation fields, such as development
of a real-time Stability Augmentation algorithm for a big scale rotorcraft UAV, and flight
model enhancement for Sikorsky S70-A Black Hawk level-D simulators.

In 2008 he started his Ph.D. research at the Faculty of Aerospace Engineering at Delft
University of Technology (TU Delft), granted with a Nuffic HSP scholarship (the Dutch
organisation for internationalisation in education). His research project, with the title
‘Increasing Safety of Helicopter Operations’, involved investigating new Handling Qual-
ities criteria focusing on vibrational loads and rotorcraft performance. After one year of
the research, he had to return to Turkey for the mandatory military service that lasts six
months, and the Nuffic scholarship could not continue to support the Ph.D. research af-
terwards. After the military service, in March 2010 he started to work as a lead research
engineer in the MODSIMMER (Modeling and Simulation Research Centre) in METU,
with his project on developing a multi-purpose simulator with a motion base (i.e., con-
figurable simulation base and cockpit to be used for land, air and marine vehicle simula-
tions). In December 2010, he has started his Ph.D. project in TU Delft, in the ARISTOTEL
(Aircraft and Rotorcraft Pilot Couplings - Tools and Techniques for Alleviation and Detec-
tion) project, which is an EU 7th Framework program. His research, as described in this
thesis, involved the development of an objective method (i.e., a cybernetic approach)
for assessing rotorcraft handling qualities and adverse rotorcraft pilot couplings based
on measurements of human operators’ manual control behaviour.

211



212 ACKNOWLEDGEMENTS

In 2015 he has started to work in the Flight Simulation Division of the US defence
company Lockheed Martin (LM) in Sassenheim, The Netherlands, as a software engineer
on flight performance and system design for level-D Boeing 787 flight simulators. A year
later Canadian simulation and training company CAE acquired this LM division, and he
continued on working in level-D Citation-M2 simulator, as a team leader for ancillary
system design and development. After completing the Citation-M2 project, he worked
as a product owner/team leader for the Boeing 737 control loading development project
in the same company. In January 2018, Deniz started to work in CAE Elektronik GmbH
in Stolberg, Germany, as a software developer. He is currently involved in a project with
Eurocopter EC-135 helicopter simulators.



PUBLICATIONS

19. M.D.Pavel, D.Yilmaz, M. Jump, L. Lu, et al., Practices to identify and prevent adverse aircraft-
and-rotorcraft-pilot couplings—A ground simulator perspective, Journal Progress in Aerosp-
ace Sciences, volume 77, 54-87, 2015.

18. M.D.Pavel, D.Yilmaz, M. Jump, L. Lu, et al., Practices to identify and preclude adverse Aircraft-
and-Rotorcraft-Pilot Couplings – A design perspective, Journal Progress in Aerospace Sci-
ences, volume 76, 55-89, 2015.

17. L. Lu, D.Yilmaz, M. Jump., et al., Comparison of Simulator Platform and Flight Tasks on
Adverse Rotorcraft Pilot Coupling Prediction, 70th AHS (American Helicopter Society) Con-
ference, Montreal, Canada, 2014.

16. M.D.Pavel, D.Yilmaz, B. D. Vu, M. Jump., L. Lu, M. Jones, Adverse Rotorcraft Pilot Couplings-
Modeling and Prediction of Rigid Body RPC, 39th European Rotorcraft Forum, Moscow, Rus-
sia, 2013. [Selected as ‘ The Best Paper’, achieved the Cheeseman Award, and re-presented
in the 70th AHS Conference, Montreal, Canada, 2014.]

15. D.Yilmaz, M. Jones, B. D. Vu, Rotorcraft Pilot Coupling Susceptibility Accompanying Han-
dling Qualities Prospects In Preliminary Rotorcraft Design, 39th European Rotorcraft Forum,
Moscow, Russia, 2013.

14. M. Jump, L. Lu, M. Jones, D.Yilmaz, et al., Exposing Rotorcraft Pilot Couplings Using Flight
Simulation, 39th European Rotorcraft Forum, Moscow, Russia, 2013.

13. M.D.Pavel, D.Yilmaz, M. Jump, L. Lu, et al., Adverse Rotorcraft Pilot Couplings-Past, Present
and Future Challenges, Journal Progress in Aerospace Sciences, volume 62, 1-51, 2013.

12. D.Yilmaz, M.D.Pavel, M.Jones, M. Jump, L. Lu, Identification of Pilot Control Behavior Dur-
ing Possible Rotorcraft Pilot Coupling Events, 38th European Rotorcraft Forum, Amsterdam,
Netherlands, 2012.

11. S.Suliman, D.Yilmaz, M.D.Pavel, Harmonizing Real-Time Oscillation Verifier (Rover) With
Handling Qualities Assessment For Enhanced Rotorcraft Pilot Couplings Detection, 38th Eu-
ropean Rotorcraft Forum, Amsterdam, Netherlands, 2012.

10. J.Venrooij, D.Yilmaz, M.D.Pavel, G.Quaranta, M. Jump, M. Mulder, Measuring Biodynamic
Feedthrough in Helicopters, 37th European Rotorcraft Forum, Gallarate, Italy, 2011.

9. B.van der Meer, D.Yilmaz, J.A.A.M Stoop, M.D.Pavel , Helicopter Safety: A contradiction in
terms? An overview of the status at the beginning of the 21st century, 37th European Rotor-
craft Forum, Gallarate, Italy, 2011.

8. D.Yilmaz, A.Yilmaz, A.M. Senyigit, B.K. Gorur, V.Isler, Development of a Multi-Purpose Gener-
ic Research Simulator, Ulusal Savunma Uygulamaları Modelleme ve Simülasyon Konferansı
USMOS (National Modeling and Simulation Symposium),Ankara, Turkey, June 2011

213



214 PUBLICATIONS

7. I. Yavrucuk, D.Yilmaz, O. Tarimci, A New Helicopter Simulation and Analysis Tool: HeliDYN+,
36th European Rotorcraft Forum, Paris France, 2010 .
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