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Abstract

Composite materials can be used to fabricate flexible marine propellers, which can improve efficiency and
reduce underwater radiated noise. Since the hydrodynamic performance of flexible propellers is determined
by their deformation under fluid loading, similarity laws for flexible propeller scaling should account for the
deformation in model experiments. This study introduces a non-dimensional parameter to characterise the
deformation of flexible propellers and evaluates it through time-domain fluid—structure interaction simulations.
A coupled solver combines unsteady Reynolds-Averaged Navier—Stokes equations with a finite-element struc-
tural solver. The study focuses on the Wageningen C4-40 propeller geometry under uniform inflow and is
limited to isotropic materials.

A set of non-dimensional relations is derived through dimensional analysis, with a form of the Cauchy
number expressing deformation amplitude. Validation using a Reynolds—Cauchy similarity approach on two
geometrically similar propellers of different diameters confirms consistent deformation and less than 5% differ-
ence in thrust and torque coefficients between model and full-scale propeller. The disparities in performance
results are attributed to numerical artefacts in the fluid solver, as the results indicate that the k¥ —w SST turbu-
lence model is sensitive to near-wall resolution.

Achieving full-scale Reynolds numbers in propeller test facilities is not feasible, yet simulations demon-
strate that flexible propellers are sensitive to viscous forces. The study observes disparities in deformation
extent across Reynolds numbers. The deformation of flexible propellers improves flow attachment over the
blades. The overall Reynolds-number trends remain similar to the rigid results: thrust coefficients increase
and torque coefficients decrease as Reynolds numbers increase. The open-water efficiency depends on both
coefficients, and larger Reynolds numbers result in higher efficiencies.

The Froude—Cauchy scaling approach proves suitable for model experiments; however, material availabil-
ity limits practical implementation. This study indicates that the steady-state deformation is primarily governed
by stiffness, with negligible impact from the structural-to-fluid density ratio. In contrast, in unsteady conditions,
the structural-to-fluid density ratio affects the modal frequencies, which describe the dynamic behaviour of pro-
peller blades. Particularly, propellers with high skew, rake, or with anisotropic material properties are affected
by structural-to-fluid density. Furthermore, this analysis observes that the first blade mode of a zero-skew an-
gle propeller is pure bending, and a 30% variation in structural density does not alter the natural frequency of
this blade. However, coupled bend-twist modes are sensitive to the structural density, which therefore affects
blade deformation in unsteady conditions.

In conclusion, the extent of propeller deformation can be controlled by a non-dimensional parameter ex-
pressing the ratio of elastic to hydrodynamic forces. For steady open-water conditions, deformation is addi-
tionally a function of Reynolds number. In unsteady conditions, the structural-to-fluid density ratio becomes
relevant, as it alters coupled bend-twist modal frequencies. Thus, the deformation extent in this regime is, in
addition to the Reynolds number, a function of fluid damping and the ratio of natural frequency to revolution
rate. This study offers a basis for accurate scaling of flexible propellers in both experimental and computational
studies.

i
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Introduction

Since the introduction of marine propellers, design innovations have continuously aimed to enhance ship
speed and propulsive efficiency. In 1894, Parsons identified thrust breakdown caused by vapour cavitation as
a significant issue [11]. Cavitation not only affects thrust but also causes vibrations, erosion, and underwater
radiated noise [5, 6, 55]. Underwater radiated noise has risen significantly due to the growth in ship size
and global shipping traffic [35]. The noise has critical implications, particularly for military vessels that rely
on low acoustic signatures and ships using systems like sonar that require quiet operational environments
[5]. Additionally, increasing research shows that chronic exposure to ship noise affects the behaviour of ma-
rine animals [28, 63], leading to stricter noise regulations, such as those introduced by the European Union
[20] and the International Maritime Organization [40]. Meanwhile, the maritime sector also has to reduce its
greenhouse gas emissions to minimise its ecological footprint [39]. Adjusting propeller geometry to mitigate
cavitation often results in reduced efficiency. Designers frequently accept cavitation as a necessary compro-
mise, with efficiency losses estimated at 5 to 10% [61]. However, with the new noise regulations, there is a
need for new propeller designs that are both efficient and cavitation-free.

Composite materials offer possibilities in the optimisation of marine propellers. While ship propellers are
traditionally made of metals, more recent research shows the advantages and potential of composite laminates.
Composites have better seawater corrosion resistance than metals [79]. Generally, the fatigue resistance of
composites is better than that of metals [70, 79, 101]. In addition, composites have lower magnetic signatures
than metals, particularly interesting for naval use [70, 79]. Optimising material properties enables compos-
ites to achieve a high strength-to-stiffness ratio while maintaining a low weight [34, 70, 79]. Moreover, using
composite laminates can result in a flexible marine propeller [4, 65, 67]. A flexible propeller can deform to
variations in fluid loading. Therefore, flexible propellers can lead to better vibration control, higher cavitation
inception speeds, and greater efficiencies in off-design conditions [15, 71, 80, 90]. Furthermore, larger pro-
peller diameters can be applied [60].

The ability of flexible propellers to passively adapt to variations in fluid loading introduces additional free-
dom in propeller design, but also adds complexity to scaling propellers for model tests. Open-water character-
istics are frequently determined through model experiments. Essential for scaling flexible marine propellers
is that the flexible model propeller retain the shape of its full-scale counterpart when deforming [97]. Achiev-
ing equal deformation between the model and full-size propellers requires consistently scaled fluid-structure
interaction [53, 100]. Combined Froude-Cauchy similarity or Mach similarity results in consistently scaled fluid-
structure interaction [21]. The Young’s modulus must be scaled by the scale factor when applying combined
Froude-Cauchy similarity. Finding an appropriate material for the model scale propeller is challenging, as
highlighted by Young [101]. Applying Mach scaling to test fast vessels is also a challenge in testing facilities,
as tests must be performed at full-scale speed [21]. If this is possible, measuring equipment may not be used
at such high thrust and torque values, and model tests still cannot be performed [97].

The objective of this study is to examine scaling approaches to perform model-scaled open-water tests of
flexible propellers. In particular, flexible marine propellers require a non-dimensional parameter to characterise
the extent of their deformation. Accordingly, the research question to investigate during the thesis is:

Which non-dimensional parameter controls the deformation extent of
flexible marine propellers?

This report presents the findings of this thesis. The following sub-questions are defined to answer the main
research question:

* Which non-dimensional parameters follow from the relevant variables for flexible marine propellers?

* What are the Reynolds number effects on the performance of rigid marine propellers in the applied
simulations?



» What are the scale effects when satisfying the Cauchy number using a combined Reynolds-Cauchy
similarity approach for flexible marine propellers?

» What are the Reynolds number effects on the performance of flexible marine propellers?

* What is the influence of structural density on the steady and dynamic response of a flexible marine
propeller?

Within the scope of this thesis, time-domain Fluid-Structure Interaction simulations of flexible marine pro-
pellers are performed. The workflow developed by Lagendijk [62] is used to perform these simulations. In
this workflow, a flow solver using unsteady Reynolds-Averaged Navier-Stokes equations is coupled with a
Finite Element Method structural solver. This partitioned approach enables the assessment of the interaction
between the deformable propeller and fluid. The fluid solver uses a finite-volume method. The k—w SST
turbulence model of Menter [82] is implemented, without any transition models.

Open-water characteristics determined from model experiments are typically tested in a towing tank or a
cavitation tunnel. These tests result in a steady loading by definition. The simulations are performed using a
uniform inflow field. The fluid flow is described in an absolute formulation, known as an AFM steady approach.
Using this formulation, the flow equations are solved in the moving reference frame but written in terms of
absolute reference frame quantities [75].

The structural characteristics of a composite material depend on its components, geometry, and the distri-
bution of the fibres and matrix [19]. The composite structure produces an anisotropic material response, en-
abling the use of bend-twist coupling in the design of flexible marine propellers [62]. Optimising the structural
characteristics of a composite material is not within the scope of this study. To limit computational complex-
ity, this study uses isotropic material properties in the numerical simulations to investigate the deformation
behaviour.

The time domain simulations are performed using the unsteady Reynolds-Averaged Navier-Stokes equa-
tions with a linear two-way coupling to the structural solver [62]. The numerical simulations use a strongly
coupled approach. Within each time step, the solutions for both the flow and structural domains are ex-
changed multiple times until a converged solution is reached and the forces are in equilibrium [45]. A linear
constitutive relation governs the structural response. The bending stiffness remains constant during deforma-
tion, provided that the deformations are sufficiently small.

This study consists of ten chapters. Chapter 2 provides background on marine and composite propellers.
Chapter 3 introduces the derivation and relevance of non-dimensional parameters for model-scale testing,
answering the first sub-question. Chapter 4 explains the working principles of the Fluid-Structure Interaction
solver used in this study. These three chapters partly build on the definition study completed earlier in this
thesis project [96]. Chapter 5 answers the second sub-question by analysing Reynolds effects on rigid marine
propellers. Chapter 6 addresses the third sub-question, comparing results from full-size and model-scale
propellers using a combined Reynolds-Cauchy similarity approach. Chapter 7 focuses on the Reynolds effects
on flexible propellers, answering the fourth sub-question. Chapter 8 discusses results for different material
densities, covering both steady-state performance and dynamic behaviour, thereby answering the final sub-
question. Chapter 9 provides a discussion that validates the rigid simulation results. Additionally, this section
evaluates the assumptions made, discusses their impact, and offers suggestions for future research. Finally,
Chapter 10 presents the conclusions to answer the main research question and provides recommendations
for model testing of flexible marine propellers.



Marine Propellers

This chapter provides relevant background information on marine propellers and composite propellers. The
goal of this chapter is to provide the necessary context for understanding the study presented in this report.
This chapter partially builds on the definition study completed earlier in this thesis project [96]. The following
questions will be answered:

» What are the working principles of a marine propeller?

* What are the classical design variables of a marine propeller blade?

* How are propellers compared in terms of performance?

* What are the design challenges involved in optimising marine propeller performance?
» What benefits do the properties of composite materials offer for propellers?

The first section outlines the operating principles of a marine propeller, while the second section focuses
on the classical design variables of a propeller blade. The section that follows explains the concept of open-
water efficiency, which is used to compare propeller performance. The fourth section focuses on the design
challenges of propellers. The final section presents the benefits of composite propeller blades.

2.1. Working Principle

A right-handed Cartesian reference frame is used throughout this thesis. The z-axis is positive in the forward
direction and aligned with the shaft axis, the y-axis is positive towards the port side, and the z-axis is positive
vertically upwards. Figure 2.1 presents several propeller parameters. The leading edge, abbreviated as
LE, is the edge that first encounters the fluid. The propeller shown in Figure 2.1 is right-handed, rotating in
a clockwise direction. The trailing edge, in short TE, lies opposite the leading edge. In forward operating
conditions, the propeller face is the pressure side of the blade, while the propeller back is the suction side.
The propeller reference line, also called the directrix, lies perpendicular to the shaft axis, aligns with the z-axis
and crosses the propeller root at the mid-chord position.

propeller back propeller reference

(not visible) line leading edge

propeller tip -sections

propeller face N .

trall 4 intersection

rafling ecge / propeller - cylinder
cylindrical surface 4 X

with radius r

Figure 2.1: Propeller variables. A right-handed Cartesian reference frame is used. From MARIN [74]
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2.1.1. Profiles

A propeller generates a lift force, denoted as L, with its blades using foil-shaped profiles. These profiles,
referred to in Figure 2.1 as "sections”, are obtained by examining a cross-section of a blade at a constant
radius from the hub. Figure 2.2 illustrates a typical foil section. The straight line connecting the leading edge
to the trailing edge is termed the chord line, and its length is called the chord length, c. The camber line is the
curve passing midway between the upper and lower surfaces of the section. In this thesis, the term "camber”
is defined according to the definition provided by Carlton [12]. The camber of the section, marked with f, is
the distance of the camber line above the chord line measured perpendicular to the chord line. Camber leads
to an asymmetry between the pressure and suction sides.

trailing edge

Figure 2.2: Foil-shaped profile. From Kundu et al. [59]

2.1.2. Lift

A profile generates lift through the flow of fluid over its surface. This section provides a more in-depth un-
derstanding of the principles governing lift generation, enabling a deeper understanding of the various pro-
peller geometries. For simplicity, the analysis assumes an ideal flow, which neglects the effects of viscosity.
Streamlines visualise the flow over a profile, and a fluid particle on one of these streamlines is considered.
This particle has a height dn normal to the foil surface, a width dz and a depth dy. Gravity effects are negligible.
The particle is moving along the streamline. Therefore, the weak form of the Bernoulli equation is valid:

p+1/2pU? = Constant along a streamline (2.1)

In Equation 2.1, p represents the static pressure term, while the velocity U together with the fluid density p
contribute to the dynamic pressure term, 1/2pU?2. According to Bernoulli’s principle, if the speed of a particle
moving along a streamline remains constant, the pressure along the streamline must also remain unchanged.
A curved streamline causes the velocity vector to change direction. Any change in direction requires an
acceleration, a, which is caused by a force following Newton’s second law: F' = m-a. The mass of the fluid
particle is equal to m = ps-dz-dy- dn, in which p; the fluid density is. The centripetal force, responsible for the
change in velocity direction, acts perpendicular to the flow:

mU?
R
In Equation 2.2, R represents the radius of the curvature of the streamline. The centripetal force acting
on the fluid particle must arise from a pressure differential across the height dn, as gravity and viscosity are
neglected. The force generated by this pressure differential is given by:

F= (2.2)

F=dp-A (2.3)
The term dp in Equation 2.3 represents the pressure difference, and A is the area, which for the fluid
particle is equal to dz-dy. Combining Equations 2.2 and 2.3 results in:

p-dx-dy-dn-U?
R

=dp-dx-dy (2.4)
So that:

dp _p- U?

dn R
When dpl/dn < 0, the fluid accelerates, and the curvature is in the opposite direction to dn. Figure 2.3
illustrates this for the upper surface. The curvature opposing dn causes the flow to accelerate, and the pres-
sure near the foil is smaller than p,.,,. Near the lower surface, the pressure is higher than p,;.,, and there

(2.5)
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is a decrease in velocity. In an ideal, irrotational flow, the fluid would wrap around the trailing edge, causing
a large pressure gradient and a locally infinitely large velocity gradient. In real flows, viscosity enforces the
Kutta condition, ensuring the flow leaves the trailing edge smoothly. This requirement determines the amount
of circulation around the foil, which is proportional to the lift force. Thus, lift arises because curved streamlines
create a pressure differential, and any shape that induces asymmetric curvature can generate lift.
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Figure 2.3: Streamlines around a foil-shaped profile. Modified Figure 2.4: Pressure vectors due to the flow over a profile. From
from Samya [89] Aviation Stack Exchange [66]

A cambered foil section curves the flow and generates lift even when the angle of attack is zero. In Figure
2.5 of Gudmundsson [31], the lift coefficient is plotted against the angle of attack for three profiles with different
camber. The lift coefficient is a non-dimensional value of the lift force and given as Cr, = L/(0.50U?A). The
slopes of the lift curves are consistent across the three profiles. Cambered sections produce additional lift,
comparable to the effect of an increased incidence angle. For positively cambered sections, the lift curve
shifts upward and to the left, while for negatively cambered sections, it shifts downward and to the right.

Lift Coefficient versus Angle-of-Attack

2.0 1
C = Cambered airfoil

S = Symmetric airfoll

Lift Coefficient, C,

Positlve camber

Symmelric

Negativo camber

-1.5-4

Angle-of-Attack, degrees

Figure 2.5: Lift Coefficient versus angle of attack for three foil sections with different camber. Cambered sections produce additional lift,
while stall effects occur at lower angles of attack. From Gudmundsson [31]

2.1.3. Boundary Layer Flow

The viscous effects of flows are typically confined to a thin layer near the surface of the foil, known as the bound-
ary layer. Much of the following explanation of boundary layer flow and separation is provided by Kundu et
al. [59]. Ideal flow analysis can predict fluid velocity away from solid surfaces and surface-normal pressure
forces (when the boundary layer on the surface is thin and attached). However, viscous effects, such as skin
friction and energy dissipation, are neglected.

A viscous fluid flowing over a solid surface must satisfy the no-slip boundary condition. This boundary con-
dition states that a fluid layer in contact with a solid boundary must have the same velocity as the boundary
itself. The relative velocity components (u and v) are equal to zero. Viscous fluids cannot resist shear. The
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velocity rapidly increases, reaching the external flow speed a small distance away from the wall. The result is
that the velocity gradients and viscous shear stresses are large near the body in the boundary layer.

Depending on the length, velocity, and viscosity of the fluid, as well as the properties of the body, the
boundary layer can be either laminar or turbulent. A laminar flow is a flow regime characterised by a smooth,
orderly fluid flow without any mixing between layers of fluid. There are gradual changes along the length of
the boundary layer in a laminar flow. A turbulent regime is highly unsteady. A turbulent flow is characterised
by mixing, with elements of the fluid moving somewhat randomly throughout the boundary layer. A turbulent
boundary layer is much thicker, has more momentum, and the wall shear stress, denoted as 7,,, is much
greater. Consequently, the friction force is larger compared to a laminar boundary layer.

As presented by Kundu et al. [59], the pressure gradient can be favourable or adverse in a boundary
layer. A favourable pressure gradient is present in an accelerating stream, where dp/dxz < 0. An adverse
pressure gradient is present when dp/0x > 0. An adverse pressure gradient causes the boundary-layer flow
to decelerate, thicken, and develop a point of inflection, illustrated in Figure 2.6. If the adverse pressure
gradient is strong enough or extends over a long distance, the flow next to the surface can reverse direction.
This reverse flow causes boundary layer separation, commonly referred to as stalling on the surface of a
foil. Stall onset depends on several factors, including the foil's shape and surface roughness. Stall effects
are important to consider in propeller designs. Profiles with a large angle of attack can result in a pressure
difference between the pressure and the suction side of the profile at the trailing edge. This pressure differential
at the trailing edge between the sides causes instabilities, referred to as trailing-edge separation. A profile
with a positive camber generates a stronger adverse pressure gradient near the trailing edge, causing stall
at lower angles of attack [31]. Boundary layer separation reduces the lift force generated by propeller blades
and increases pressure drag. Figure 2.5 shows that for a symmetric airfoil, stall effects cause a decrease in
lift coefficient for angles of attack larger than 16 degrees.

‘.‘.E-:O

dx i})
& =0

Figure 2.6: Velocity profiles across a boundary layer with favorable (9p/dx < 0) and adverse (Op/dx > 0) pressure gradients. The
streamline emerges from the surface at the separation point, located at .S, and the inflection point is indicated as I. Modified from
Kundu et al. [59]

2.1.4. Resulting Forces

A propeller blade operating in water experiences a resulting force, which can be decomposed into multiple
force components. The previous section explained how a profile generates a lift force through the flow of
fluid over its surface. Viscous effects in the boundary layer will also result in a drag force, denoted as D.
The lift force and the drag force act respectively perpendicularly and oppose the blade’s motion. The result-
ing hydrodynamic force, R, can be resolved in an axial and tangential direction as well. The force in the axial
direction is termed the thrust force, T'. The torque is the force in the tangential direction and is indicated with Q.
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Figure 2.7 of Klein Woud and Stapersma [98] illustrates a simplified propeller blade cross-section along
with the resulting forces. The resultant velocity, denoted with V., that impacts the propeller is a combination
of the advance velocity, V,, and the propeller’s circumferential speed, which is 27rn,. This resultant velocity
interacts with the propeller blade at a specific angle «, known as the angle of attack, AoA. The angle of attack
is the difference between the pitch angle, denoted by 6, and the resultant flow angle, which is also known as
the hydrodynamic pitch angle and expressed as S.

I, N |
0

Figure 2.7: Cross section of a propeller blade with forces resulting from the inflow- and rotational velocity. From Klein Woud and
Stapersma [98]

2.2. Propeller Geometry

The foil-shaped profiles make up the propeller blade. The basic outlines commonly used to describe the
shape of the propeller blade, as defined by Carlton [12], are illustrated in Figure 2.8. The projected outline,
Ap, is determined by looking at a propeller blade normally, along the shaft centre line, into the y-z plane. The
developed outline, denoted by Ap, represents a helical view where the pitch of each section is zero. The
expanded outline, Ag, is not an outline in a true geometric sense. The expanded outline plots the chord
lengths at their correct radials about the propeller reference line while the pitch angle of each section is zero.

Leading edge

/ F ' K Projected outline \ ‘

{ A\ . \
: A

s e

Developed outline Expanded outline

Figure 2.8: Propeller outline definitions. From Carlton [12]

2.2.1. Pitch

The pitch of a propeller represents the horizontal distance it would theoretically cover over one revolution,
considering no camber and no thrust. This distance is defined as P, as it moves over the surface of a cylinder
with radius, r. The pitch angle, denoted by 6 is given by Equation 2.6:

2 (2.6)

0 =tan ' (-—
an (27'('7’
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In the literature, different definitions of the
pitch line can be found. These are the nose-
tail pitch, face pitch, effective or "no-lift” pitch
and hydrodynamic pitch. Figure 2.9 illustrates
these pitch lines. The nose-tail pitch line is
the most commonly used pitch reference. In
this study, "pitch” refers to the nose-tail pitch
unless stated otherwise. Often, the pitch ra-
tio is used instead of the pitch distance. The
pitch ratio is the ratio between the pitch dis-
tance and propeller diameter, equal to P/D.
This ratio is used because it has no dimen-
sion and thus remains constant at different
propeller scales.

Figure 2.9: Pitch lines. From Carlton [12]

The effective pitch or zero lift line is the line at which the inflow would produce zero lift from the foil section,
and it is thus dependent on the camber of the section. The hydrodynamic pitch is the angle of the incident
flow, representing a hydrodynamic inflow. It is not a geometric characteristic of the propeller [98]. The angle
05 in Figure 2.7 represents the hydrodynamic pitch.

Figure 2.7 shows that the angle of attack from the resultant velocity is the difference between the pitch and
inflow angles. The pitch angle and camber determine the angle of attack, which in turn affects the load on the
propeller blades and the generated lift. However, as Figure 2.5 illustrates, a too-large angle of attack will lead
to stall.

2.2.2. Skew

Skew is an asymmetry a blade has in the y-z-plane, i.e. in the projected O
propeller outline. The skew angle, 0,(x), of a blade section is the angle /7;7
between the directrix and a line through the midchord point of a section as =
a function of the radius, with = defined as r/R. An angle forward in the
direction of the rotation is considered negative. Carlton [12] defines the
propeller skew angle, §,,, as the largest angle between the shaft centre line
and the mid-chord point of the entire blade. He also categorises propeller
skew into two types: balanced and biased skew designs. In the balanced
skew design, the line through the mid-chord points intersects the directrix
at least twice within the inner regions of the blade. In biased skew designs,
this is not more than once. Figure 2.10 shows both 6,(x) and 0.

(Projected view)

Skew can reduce unsteady pressure forces and increase cavitation inception
speeds [18]. Skew can also limit sheet cavitation, as the sheet cavitation Distance CD = r6, (x)
immediately changes to tip cavitation [5]. In addition, a high-skew propeller

distributes the pressure fluctuations on the hull caused by the blade passing, Figure 2.10: Definition of skew. From
which helps to reduce vibrations [29]. Carlton [12]

2.2.3. Rake

Rake is the backwards slope of a profile in the z-z-plane; it represents the axial shift of the blades from the
origin. Propeller rake is divided into two components: generator line rake, i and skew-induced rake, is. The
total rake of the section to the propeller reference line, which is i, is the sum of these two. The generator line
rake represents the distance, parallel to the z-axis, from the directrix to the point where the section’s helix at
a given radius intersects the x-z-plane [12].

Skew and rake are linked because the helical effect of blade sections introduces a cross-coupling effect.
Figure 2.11 shows two cylindrical sections, one at the root of the propeller and the other at some radius (r)
between the tip and root of the blade. The skew-induced rake is the helical distance around the cylinder from
the mid-chord point of the section to the projection of the propeller reference line when viewed normally to the
y-z-plane. The propeller rake, i,, and propeller rake angle, 6;,, are measured at the propeller tip, shown in
Figure 2.12 [12].
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Rake directed away from the ship hull (along the negative z-axis) is called positive rake or backward rake.
Backwards rake is used to increase the tip clearance, which is the distance between the propeller tip in its top

position and the hull. The rake distribution is primarily linear when increased tip clearance is the only purpose
[55].

X dia
Intersection of directrix
and root section

Generator line

. Generator / Onlr)

< rake (ig(r) .

oy R
g % Skevt induced . >~ Intersection of
Fl=  rake (ig(r)) | generator line
A 2 and cylinder of

radius r
v
r.es (r)

Intersection of blade
reference line and
cylinder of radius r

(Expanded view)

Figure 2.12: Tip rake definition. From

Figure 2.11: Definition of total rake. From Carlton [12] Carlton [12]

To assess and compare the performance of different propellers, it is essential to define hydrodynamic per-
formance measurement methods. The Rankine—Froude momentum theory [27] derives the ideal efficiency
of a propeller. The ideal efficiency represents the maximum possible efficiency under theoretical conditions
by modelling the propeller as an actuator disk operating in an inviscid, irrotational, and incompressible flow.
However, the ideal efficiency does not include rotational, viscous, or non-uniformity losses.

In comparison, open-water efficiency includes all hydrodynamic losses from axial, rotational, and viscous
effects. The open water efficiency is obtained with a uniform inflow and does not account for interaction losses
between the ship and the propeller. Open water characteristics are frequently determined from model exper-
iments, typically tested in a towing tank or cavitation tunnel [13]. These tests result in a steady loading by
definition. Non-dimensional characteristics are used to express and compare the general performance of dif-
ferent propellers. The definition of the thrust coefficient, K1, the torque coefficient, K and the advance ratio,
J, are given in Equation 2.7, 2.8 and 2.9 respectively. The physical importance of J is that it is proportional
to the tangent of the angle between the advance velocity and the circumferential speed of the propeller.

T

Kr = pn2DA (2.7)
_ . Q

Kq = pn2D5 (2.8)
Va

- = (2.9)

The open-water propeller efficiency, 7,, is measured as the ratio between delivered power by the torque,
Pp and the effective power of the thrust, Pg:

Py TV,  KpJ

N FD ©27Qn - Kq2m

Figure 2.13 shows an open-water propeller diagram of the Wageningen B-Series propellers with four
blades and an expanded blade area ratio of 0.7. The diagram presents the thrust coefficient, torque coeffi-
cient, and open-water efficiency for different pitch ratios. This figure represents a typical open-water diagram
for a set of fixed-pitch propellers operating in a non-cavitating environment at a positive advance ratio.

o (2.10)
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Figure 2.13: The open water diagram of the Wageningen B-Series propeller with four blades and an expanded blade area ratio of 0.7.
From Bernitsas et al. [2]

The diagram shows that the thrust and torque coefficients decrease as the advance ratio increases. The
maximum value for the thrust and torque coefficients occurs for a J-value equal to zero, which is called the
bollard pull condition.

2.3. Propeller Design Challenges

The key challenge for a propeller designer is to achieve the highest possible efficiency for the required thrust
force. However, the performance of a propeller operating behind the hull differs from its open-water charac-
teristics due to the unsteady inflow generated by the wakefield. Moreover, higher efficiency often leads to
cavitation, which in turn causes noise and vibrations.

A ship’s movement through the water induces uneven flow velocity, contributing to the wakefield at the
propeller plane. The wake in the propeller plane is called the nominal wake and represents only a small part
of the total wakefield [12]. Generally, the axial velocities of the wake are expressed as a fraction of the ship’s
speed. The wake fraction, denoted as w, is the difference between the ship’s speed, V;, and advance velocity
in front of the propeller and is defined as [98]:

(2.11)

The advance velocity can be expressed in terms of ship speed with the definition in Equation 2.11 as:

V,=(1—w)-V, (2.12)

The axial and tangential inflow velocity changes throughout one propeller revolution, causing fluctuations
in the angle of attack. Specifically, at the top or 12 o’clock position, the axial inflow velocity is lower than
in other positions. Lower inflow velocities lead to a greater angle of attack and increased loading on the
blade in this position [29]. As a result, the effective thrust force lies above the shaft axis. Furthermore, thrust
eccentricity exists because of the tangential velocity components in the wakefield and the propeller’s rotation.
The variation of velocity components throughout one propeller revolution leads to an imbalance in loading.
The fluctuation in loading is reacted at the bearings, forming a substantial contribution to the bearing forces
[12]. Fluctuations in loads can lead to undesirable effects such as cavitation dynamics, pressure pulses, and
underwater radiated noise [29].
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Figure 2.14: Influence of the ship’s wakefield. The non-uniform inflow field leads to varying angles of attacks, which then result in
cavitation dynamics and fluctuations in reaction forces. From Lagendijk [61]

2.3.1. Cavitation

When the pressure of a liquid drops below its vapour pressure, a phase change occurs. The change of phase
from liquid to vapour due to a reduction of pressure is termed cavitation. Cavitation has several negative ef-
fects, including noise generation [5] and erosive damage to the propeller blade [55]. Excessive cavitation can
lead to a decline in hydrodynamic performance [12]. Local high flow velocities, as well as accelerations and
oscillations of the flow, can cause low pressures. A prerequisite for cavitation is the occurrence of weak spots
in the flow, which break the bond between the water molecules. The presence of nuclei, i.e. microbubbles in
the water, results in those weak spots. The presence of nuclei in the water depends on the circumstances.
In seawater, for example, there are nuclei of all sizes, and the inception pressure will be equal to the vapour
pressure [55, 91].

The initiation of cavitation is referred to as cavitation inception. Cavitation inception and the development
of a cavity depend upon the geometry of the propeller blade and the flow condition [84]. The cavitation number,
known as o, is a dimensionless number used to characterise the flow condition. The definition of the cavitation
number is:

o= pool—ipz;(T) (2.13)
3PU
In Equation 2.13, p., stands for the free stream static pressure; p, for the liquid vapour pressure; U for the
free stream velocity; and p the liquid density.

The local pressure, symbolised as p, is expressed in non-dimensional terms as the pressure coefficient,
which is denoted as C,, [55]:

P — Poo
—-C, =— 2.14
P %pUz ( )
Cavitation inception will occur if the local pressure is equal to or smaller than the vapour pressure, i.e. p
< p,. Therefore, cavitation inception will occur if:

7Cpmin 2

Oy

Here, C, n.» represents the minimum value of the pressure coefficient on the profile. Cavitation can
develop in several forms, depending on the blade geometry, water quality and operating conditions [55]. Sheet
cavitation arises when the pressure minimum is fixed at a surface location, resulting in a phase discontinuity
that forms a sheet [57]. Vortex cavitation occurs when the pressure minimum is centred in a vortex, creating
a rotating tube. This type of cavitation is not erosive when it is not excessive, but it is a source of noise [58].
Bubble cavitation develops when the pressure minimum is present in the fluid or on a surface without forming a
sheet or vortex cavity. Bubble cavitation often results from a sudden pressure drop across the blade, lowering
the local C), below the vapour pressure and producing bubbles. The phase discontinuity of bubble cavitation
is approximately spherical. The dynamic behaviour of bubble cavitation can lead to severe erosion, similar to
sheet cavitation [56]. Figure 2.15 presented by Bosschers [5] illustrates these cavitation types and additional
patterns found on ship propellers.
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Figure 2.15: lllustration of possible cavitation patterns on ship propellers. From ITTC procedure 7.5-02-03-03.2 [86] modified by
Bosschers [5]

The curvature of a fluid particle’s path near the foil causes the fluid to accelerate. This acceleration results
in a low-pressure peak on the suction side of the blade profile near the leading edge. Such a low-pressure
peak makes the propeller blade vulnerable to cavitation inception [25]. Specifically, at the top or 12-0’clock
position, where the axial inflow velocity is lower than in other positions, the increased angle of attack further
enhances the acceleration, increasing the probability of cavitation [29]. Moderate levels of cavitation do not
affect the propeller’s performance. Serious cavitation activity is necessary to obtain thrust and torque break-
down. Cavitation-related issues, including hull vibrations, noise, and material erosion, can arise regardless
of the cavitation level necessary to impact thrust and torque. Even minimal cavitation can lead to these prob-
lems [13]. To achieve high efficiency, propellers inevitably experience some cavitation. Designers frequently
accept cavitation as a necessary compromise, with efficiency losses estimated at 5 to 10% [61].

2.3.2. Underwater Radiated Noise

Ship noise is relevant both onboard and underwater. Underwater radiated noise, abbreviated as URN, has
increased significantly over the past 50 years due to anthropogenic sources. This rise is partly due to the
growth in ship sizes and shipping traffic during this period [35]. Underwater radiated noise is crucial for, e.g.,
the acoustic signature of military ships and the effective operation of low-noise onboard systems, such as
sonar. However, underwater shipping noise can also harm marine life [5, 63].

Propeller cavitation significantly contributes to underwater radiated noise [5]. Cavitation, hull vibration, and
engine noise form the acoustic footprint of a ship. Most ship-generated noise is continuous and low-frequency.
An increasing number of studies, including those by Gétz et al. [28] and Lancaster et al. [63], show that chronic
exposure to ship noise affects the behaviour of marine animals. In particular, sound masking negatively im-
pacts their behaviour and overall ocean health. Sound masking occurs when ship noise interferes with the
sounds generated by marine animals, fish, and molluscs.

Cavitation and the resulting noise are strict constraints for military, oceanographic, and research vessels,
where any cavitation is unacceptable due to their specific operations. For most other ships, however, effi-
ciency is prioritised. Completely avoiding cavitation, especially at the blade tip near the 12 o’clock position,
requires significant unloading of the blade tip. Tip unloading compromises propeller efficiency and increases
fuel costs. As a result, cavitating tip vortices, and occasionally sheet cavitation near the tip, are commonly
accepted on these ships as a practical trade-off [5].

There are increased regulations regarding noise levels, as research has shown that underwater shipping
noise can harm marine life. The European Union has adopted recommendations for maximum acceptable lev-
els of continuous underwater noise, such as that generated by shipping [20]. Additionally, the Sub-Committee
on Ship Design and Construction of the International Maritime Organization, known as IMO, has developed an
Action Plan to prevent and reduce underwater radiated noise from ships. The goal is to minimise the negative
effects of underwater noise on the marine environment. The action plan includes the development of targets
and policies for underwater noise reduction [40].
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2.4. Composite Marine Propellers

Composite materials offer possibilities in the optimisation of marine propellers. A composite material system
consists of two or more phases on a macroscopic scale, designed to have better mechanical properties than
the individual materials. The structural characteristics of a composite material depend on its components,
geometry, and the distribution of the phases. The distribution of the components determines the homogeneity
and uniformity of the composite. Many material properties, such as stiffness and strength, are direction-
dependent. A material is isotropic when the properties are the same in all directions or are independent of
the orientation of reference axes. A material is anisotropic when the properties at a specific point change
depending on the direction [19].

While ship propellers are traditionally made of metal, recent research has shown the advantages of com-
posite laminates for propellers. The most common reinforcement materials used for marine applications are
glass and carbon fibres. Glass fibres are commonly used for their cost-effectiveness and workability. Carbon
fibres are used for highly optimised structures. Typical matrix materials used for marine composites include
polyesters, vinyl esters, and epoxies [101].

2.4.1. Benefits of Composite Marine Propellers

Using composites in marine propeller design can improve efficiency, durability, and performance. Some ben-
efits of composite propellers come from the inherent properties of the composite material. Composites have
better seawater corrosion resistance than metals [79]. Nonetheless, galvanic corrosion problems can occur
and need to be considered. Particularly for naval use, the low magnetic signature of composites can be ben-
eficial [70, 79].

Additional advantages arise from optimising material properties through adjustments in ply orientations,
fibre volume fraction, and stacking sequence. This optimisation enables composite materials to achieve a
high strength-to-stiffness ratio while maintaining a low weight [34, 70, 79]. Furthermore, the use of compos-
ites can result in flexible marine propellers [4, 65, 67]. A flexible propeller can deform to variations in fluid
loading. The material properties of composites can cause an effect called bend-twist coupling. When the
propeller is loaded with positive ship speed and positive propeller speed, the thrust generates a bending force
in the forward direction on the blades, causing rake deformation. The bend-twist coupling causes the blade
to twist, resulting in a reduction in the pitch angle. Since the blade root is rigidly connected to the hub, no
pitch reduction occurs near the root, and the most significant pitch reduction occurs at the tip. This reduction
in pitch at the tip leads to tip unloading, resulting in a decrease in thrust [62]. The bend-twist coupling can be
used to passively adjust the pitch distribution of the blades and help maintain a near-optimal angle of attack
for a blade section [101].

This deformation can lead to better vibration control and higher cavitation inception speeds, therefore
reducing noise and cavitation [71]. Tip unloading reduces pressure pulses, allowing for a larger propeller
diameter and a smaller tip clearance [60]. The tip unloading also results in increased cavitation inception
speeds. Solomon and Ravinder [90] found improved cavitation properties in their study. In addition to cavita-
tion behaviour, flexible propeller designs could improve performance. Mulcahy et al. [80] show in their study
that flexible composite propellers can improve performance in off-design conditions and improve propulsive
efficiency. As stated by Marsh [76], improved propulsive performance will lead to fuel savings. Consequently,
composite propellers could provide a solution to the growing international regulations on emissions and un-
derwater radiated noise, as also suggested by Maljaars and Kaminski [71].



Scaling Laws for Model Tests

Composite materials offer possibilities in the optimisation of marine propellers, as composites can improve
the propeller’s efficiency, durability, and performance. Furthermore, the use of composites can result in flex-
ible marine propellers [4, 65, 67]. The ability of composite propellers to passively adapt to variations in fluid
loading introduces additional design freedom. However, the flexibility of these propellers also adds complex-
ity to the scaling of the propellers for model tests, as model-scaled propellers must replicate the full-scale
deformation. Model tests are essential for evaluating performance and comparing different propellers. Open
water tests assess and compare the performance of propellers in uniform flow. These tests are conducted
with model-scale propellers in cavitation tunnels and towing tanks, as this approach is both technically feasible
and more cost-effective. Nonetheless, significant differences between model and full-scale performance can
arise due to model, scale and measurement effects. Dimensional analysis can help develop scaling laws and
understand scale effects. This section will answer the following research sub-question:

‘Which non-dimensional parameters follow from the relevant variables for flexible marine propellers?’

These non-dimensional parameters lead to the scaling laws that must be satisfied during model tests. The
first section explores dimension analysis using Buckingham’s II-theorem. The following section discusses
the considerations for model-scale testing. The third section focuses on the practical aspects of scaling rigid
marine propellers for open-water tests. This section also highlights important factors to consider. The final
section addresses the challenges of scaling flexible structures and explains how scaling flexible propellers
differs from scaling rigid propellers.

3.1. Dimensional Analysis

In dimensional analysis, physical quantities and their units are used to understand the relationships between
different physical quantities. Natural laws are independent of any unit system created by humans. Therefore,
all physical relationships can be expressed in dimensionless form. This approach is convenient for compari-
son since scientists and engineers use various units (for instance, meters or inches) worldwide. Moreover, it
can also help simplify problems and develop scaling laws. Dimensional analysis is important for comparing
different propellers and testing model-size propellers to derive results applicable to full-size propellers.

E. Buckingham presented a general method for deriving non-dimensional parameters through dimensional
analysis [10]. This method is known as the II-theorem. In this theorem, an equation describes the relationship
between n different physical quantities. The symboils ¢1, ¢o, . . ., ¢,, represent these n variables involved in the
equation. There must be a functional relationship that can be expressed in the following form:

fla1,92,,qn) =0 (3.1)

Buckingham states that the number of independent non-dimensional groups equals the number of physical
quantities involved minus the number of dimensions involved. Each non-dimensional group is called a IT-group.
So for n different variables with r independent dimensions, n —r independent II-groups can form the complete
set that spans the parametric solution space:

¢(H1, HQ, ceey anr) =0orll; = ¢(H2,H3, ceny anl)' (32)

The process of dimensional analysis involves multiple steps. The first step is to select the relevant variables
and parameters to include in the analysis. These variables and parameters come from the problem’s geometry,
boundary conditions, initial conditions, and material properties. Assumptions regarding the flow, such as
whether it is isothermal or incompressible, can simplify the analysis by reducing the number of variables. For
example, parameters like thermal conductivity, heat capacities, and thermal expansion coefficients may not be
considered. All physical quantities can be expressed in terms of fundamental dimensions. Table 3.1 provides
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the parameters related to (flexible) propellers. The three fundamental dimensions, mass (M), length (L), and
time (7), express these parameters.

Physical Quantity or Property | | Dimensions
Fundamental Quantities

Time [T]

Mass [M]

Length (L]

Angle 1]

Physical parameters

Diameter D [L]

Thickness t [L]

Chord c [L]

Pitch P ]

Camber f [L]

Rake Rake | [L]

Skew Skew | [1]

Revolution rate n T

Density P) ML™3]

Velocity u LT~

Dynamic Viscosity 1 ML='T-1

Surface Tension o MT=?

Gravitational Acceleration g [LT—?]

Force F [MLT—?

Pressure P [ML™IT—?]

Moment M [ML?T?]

Young’s Modulus E [ML™IT—?]

Poisson’s Ratio v 1]

Frequency f [T~1]

Table 3.1: Physical quantities and dimensions related to flexible propellers

With these variables, a dimensional matrix is formed. The dimensional matrix is created by listing the
powers of the dimensions for each parameter.

‘ D t ¢ P f Rake Skew n p w pu o g F p M E v f
M| 0 0O O O O 0 o o 1 0 1 1 0 1 1 1 1 0 O
L 1T 1 1 1 1 1 o o -3 11 0 1 1 -1 2 1 0 O
T 0O 0 0 0 O 0 o -1 0 -1 1 -2 2 -2 -2 -2 -2 0 -1

Table 3.2: Dimensional matrix listing the powers of the dimensions for each parameter

The rank of this matrix, the size of the largest square submatrix with a nonzero determinant, equals three.
It follows that the number of dimensionless groups equals 19 — 3 = 16. The dimensionless groups can be
constructed by exponent algebra or by inspection. The non-dimensional relationships found for flexible ma-
rine propellers are given in Table 3.3, which answers the first sub-question. Some familiar non-dimensional
numbers can be recognised in these II-groups or by combining these groups.
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II-group | Relation Known as Also written as
1 t/c Thickness-to-chord ratio
2 ¢/D Chord-to-diameter ratio
3 P/D Pitch ratio
4 fle Camber-to-chord ratio
5 Rake/D Rake-to-diameter ratio
6 Skew® Skew angle
7 u/ nD Advance ratio J=V,/nD
8 w/ puD Reynolds number Re=pUL/pu
9 o/ pu’D Weber number We = pU?L/o
10 u? /gD Froude number Fr=U/\/gD
11 F/pu?D? | Force (Thrust) coefficient Kr =T/pn?D?
12 p/p u? Euler number Eu = Ap/0.5 % pU?
13 M/pu?D? | Moment (Torque) coefficient | Kq = Q/pn?D®
14 E/pu? Cauchy number
15 v Poisson’s ratio
16 fD/u Strouhal number

Table 3.3: Matrix of II-groups with their dimensionless definitions and physical significance.

3.2. Similarity Laws
Most experiments in ship hydrodynamics, such as open-water propeller tests, are carried out with model
scales. Model, scale and measurement effects may influence the test results. Consequently, considerable
differences can arise between the model scale and the full-size prototype. Model and scale effects can be
avoided by satisfying all similarity laws. These laws are defined using non-dimensional parameters, such as
those listed in Table 3.3. The parameter \ describes the scaling ratio or scale factor:
Lp
A Tor (3.3)

The subscript F' describes the full size, and the subscript M is the model size. Generally, scale effects
for a specific phenomenon increase with the scale ratio as not all similarity laws can be satisfied [37]. The
selected scale balances technical requirements for similitude and what is economically feasible. In the case
of propeller tests, the dimensions of the towing tank or cavitation tunnel constrain the model scale sizes. A
physical scale model exactly replicates its full-size prototype and has no scale effects if it satisfies the following
criteria:

* Geometric similarity
» Kinematic similarity
* Dynamic similarity

Geometric similarity requires that both the full-size prototype and the scaled model have the same shape,
i.e. all length dimensions in the model are scaled down by a factor A. Consequently, model lengths, areas and
volumes scale with A, A2 and A3, respectively, in relation to the full size prototype. While geometric similarity
is essential, it does not need to include the most minor details. For instance, it is nearly impossible to scale
surface roughness exactly. This discrepancy is generally acceptable if the roughness is sufficiently small or
effects can be considered empirically [64].

Kinematic similarity refers to the consistent ratio of time and velocities between model size and full size.
Kinematic similarity refers to the similarity in motion between the model scale and the full-scale system. This
concept requires that the ratios of time, velocity, and acceleration remain constant between the model scale
and the full scale at all times [64].

Dynamic similarity refers to the condition where all forces in the flow are scaled by the same factor, meaning
that the force vectors retain the same direction for both the model and the real-world prototype. Ergo, dynamic
similarity requires constant ratios of all forces, and the ratios among different forces must be identical in both
the model and the full-size version. The non-dimensional parameters, such as the Froude, Reynolds, Weber,
Cauchy, Strouhal, and Euler numbers, represent ratios between forces and must be equal between the scaled
model and the full-size model. These non-dimensional parameters can also be used to interpret physical phe-
nomena in the flow [59, 64].
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3.3. Scaling of Rigid Marine Propellers for Open Water Tests

For traditional, rigid marine propellers, scaling laws for open-water tests are well established [78]. The main
parameter that needs to be determined in a propulsion test is the thrust (and, similarly, the torque) for a given
full-scale ship speed. Appropriate scaling methods result in equal thrust and torque coefficients between the
scaled model and the full-size propeller. The non-dimensional parameters, defined in Table 3.3, must be
equal for both the model and the full-scale propeller for correct scaling. A function of the non-dimensional
parameters expresses the thrust coefficient:

K= f(t/e,C/D,P/D, f/C,rake/D, skew®, J, Re,We, Fr,o,Ca) (3.4)

The resulting thrust coefficient will be identical for the model and full-scale propeller if the quantities on
the right-hand side of Equation 3.4 are appropriately scaled [97]. These quantities express the geometric,
kinematic and dynamic similarity laws.

Geometric similarity can always be obtained regarding the thickness-to-chord ratio, chord-to-diameter ra-
tio, camber-to-chord ratio, skew angle and pitch ratio. Propeller blades have a non-uniform cross-section to
maximise efficiency and control, avoid cavitation, and ensure structural integrity. As a result, blade thickness,
camber, chord length, skew, rake, and pitch angle vary along the radial direction. It is thus crucial to satisfy
geometric similarity in all three dimensions so that the model-scale propeller accurately replicates the full-size
propeller hydrodynamics [100].

Kinematic similarity is obtained by performing model-scale tests with the same advance ratio as the full-
size propeller. The advance ratio establishes a fixed relationship between advance velocity and revolution
rate. Kinematic similarity is always ensured, as either or both advance velocity and revolution rate can be
adjusted. When performing model tests considering a non-uniform wake, an extra kinematic scaling require-
ment is to scale the propeller inflow properly. The ratio of local velocity should be similarly distributed as in
the full-scale wake [97].

Dynamic similarity between model- and full-scale propellers is impossible to achieve when using the same
fluid. The non-dimensional numbers representing the different force ratios help simplify the scaling. The num-
bers highlight the importance of keeping specific non-dimensional numbers consistent during model tests to
ensure meaningful results.

The Cauchy number represents the ratio between elastic forces and inertial forces. The Cauchy number
must be considered for elastic structures, but is not significant for rigid marine propellers. The Mach number
replaces the Cauchy number for compressible flows, which are isentropic processes. The Mach number is
defined as M = U/c,, where ¢, is the speed of sound [59]. Mach number similarity can typically be disre-
garded for marine propulsors as the flow compressibility effects of water are negligible. [59] [99].

The Strouhal number defines the ratio of unsteady acceleration to advective acceleration. This number
determines the importance of unsteady fluid acceleration in flows with oscillations [59]. It is relevant for peri-
odic flows, such as oscillations in vortex streets behind bluff bodies or flows driven by imposed frequencies
[46]. Similarity of this number is not needed for propeller model tests.

The Weber number expresses the ratio between inertial and surface tension forces [59]. This parameter
becomes significant when the flow involves a free surface, such as when a propeller operates sufficiently
close to the surface, disturbing the free surface or drawing air [13]. Additionally, it is used for precise scaling
of cavitation (inception). Weber similarity is not required for open water propeller model tests as the propeller
is assumed to be sufficiently submerged [13].

Alongside the Weber number, the cavitation number is critical for scaling cavitation [54]. The cavitation
number has a similar structure to the Euler number [64]. The Euler number is important in determining the ab-
solute pressure level in the fluid. An increase in the atmospheric pressure at the water’s surface will increase
the pressure everywhere in the water, influencing the hydrostatic pressure [64]. The International Towing
Tank Committee, abbreviated as ITTC, provides guidelines for model-scale propeller open-water tests. The
open water tests in towing tanks should be conducted under atmospheric conditions and with a minimum shaft
immersion of 1.5 times the propeller diameter [42].
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The Reynolds number describes the ratio of inertial to viscous forces and is essential in viscous regimes.
Phenomena such as boundary layer behaviour depend highly on this parameter [59]. Achieving Reynolds
number similarity is difficult in cavitation tunnels or towing tanks because the model-scale speed must be
faster than the full-scale speed. The viscous effects are relatively small compared to inertial forces for most
design conditions. Specifically, when the Reynolds number exceeds 5 * 109, the flow over the blades is fully
turbulent, and the response becomes practically independent of the Reynolds number. Most full-scale pro-
pellers operate at a large enough Reynolds number to have primarily turbulent flow over the blade surface. In
contrast, model-scale propellers often experience laminar flow over significant portions of the blades, partic-
ularly near the leading edge. This discrepancy arises because model-scale Reynolds numbers are typically
around 1 * 10° or lower in most test facilities due to size and speed limitations. Therefore, careful assess-
ment of whether laminar or transitional flow may develop on certain parts of the blade surface is necessary
[101]. These scale effects arising from differences in boundary layer phenomena depending on the Reynolds
number can influence the performance characteristics [13]. A turbulent boundary layer significantly reduces
the performance characteristics of the propeller as a result of reduced thrust and increased torque. Laminar
boundary layers, on the other hand, are prone to flow separation under adverse pressure gradients, which
also reduces the thrust and increases pressure drag [50].

The ITTC guidelines specify that propeller open water tests should be conducted at a minimum of two
Reynolds Numbers. One should match the Reynolds number used for evaluating the propulsion test and
must not be lower than 2 x 10°. The other should be as high as possible [42]. The ITTC also provides a
procedure describing an analytical method to predict full-size propeller performance from model test results
[41].

The Froude number expresses the ratio of inertial forces to gravitational forces. Froude similarity allows
for smaller advance velocities more easily achieved in cavitation tunnels and towing tank studies [78]. How-
ever, Froude scaling is typically less relevant for most hydrofoils and marine propellers, as gravitational forces
are usually minor compared to inertial and viscous forces [21]. In open-water tests, where the propeller is
sufficiently submerged and operates in a non-cavitating environment, Froude similarity is not required. By ne-
glecting Froude similarity, open-water model tests can be conducted at higher speeds, enabling experiments
at higher Reynolds numbers [92]. Increased Reynolds numbers during model tests minimise any flow sepa-
ration at the trailing edge or laminar flow on the suction side of the blade [13].

The Froude number is essential in flows influenced by gravity, such as when surface waves are gener-
ated, and for model tests investigating cavitation behaviour. Given a specific ambient pressure, an equal
Froude number between the model and full-scale propeller ensures that the cavitation number remains con-
stant throughout the flow field. When neglecting Froude similarity, the local cavitation number over the height,
symbolised by z, will change. Taking into account the change in pressure over the height results in:

_P—=pPge —Pv P~ Pv pPygz pPgz 2
oy(2) = _Po=

1pU? N 1pU? a 1pU? - 1pU? o Fr(z)?

The local cavitation number scales with 1/Fr2. A difference in the Froude number results in a difference in
the local cavitation number based on the model’s height. The local cavitation number is closer to the surface
for model tests where the Froude number is unequal.

Table 3.4 overviews the non-dimensional numbers and their influence when testing rigid model scale ma-
rine propellers for open water tests.



3.4. Scaling of Flexible Propellers

22

Number Ratio When significant? | Example flow Rigid propeller open
water test

Cauchy Elastic force/Inertial Fluid-structure in- Elastic structure Rigid, so not significant

number force teractions

Mach Compressibility Compressible Shock waves Not significant

number force/lnertial force flows

Weber Inertial force/Surface | Flow involves a Precise scaling Not significant

number tension force free surface cavitation/propeller

close to surface

Strouhal Unsteady/Steady Periodic flows Vortex street Not significant

number acceleration

Euler Pressure force/lner- Highly pressured Cavitation Towing tank: ITTC

number tial force flows guidelines; Cavitation
tunnel: adjustable

Reynolds | Inertial force/Viscous | Viscous flows Boundary layers Impossible: ITTC

number force guidelines

Froude Inertial force/Gravita- | Gravitational influ- | Free surface Similarity is possible,

number tional force enced flows waves if Reynolds is high
enough

Table 3.4: An overview of the non-dimensional numbers and their influence when testing rigid model scale marine propellers for open
water tests

3.4. Scaling of Flexible Propellers

The ability of composite propellers to passively adapt to variations in fluid loading introduces additional free-
dom in propeller design but also adds complexity to scaling flexible propellers for model tests. Essential for
scaling flexible marine propellers is that the flexible model propeller retains the full-scale deflected shape dur-
ing operation [97]. Both steady deflections in open water conditions and unsteady vibrations of the propeller
blades during in-behind ship operation must be appropriately scaled.

A model propeller deforms equally to the full-size propeller for consistently scaled fluid-structure interac-
tion. The 3-D deformation patterns and load-deformation behaviour must be preserved during model tests. To
maintain the same inertial coupling between bending and torsion, the elastic axis must be identical between
the model and the prototype. Ergo, the normalised variation of the effective bending rigidity, E'I, torsional
rigidity, G.J, and bend-twist coupling rigidity, K, along the radial direction must be the same [53, 100].

The performance of flexible propellers is dependent on the propeller shape and deformation. The modal
frequencies describe the dynamic behaviour of structures, such as propeller blades. The first bending fre-
quency, wg, depends on the bending stiffness, structural mass and hydrodynamic added mass:

Kp
m-+ma

Here K is the bending stiffness, m is the structural mass, and m, is the hydrodynamic added mass.

(3.5)

wp X

EI

KBO(ﬁ, m o ps D3, on<pr3 (3.6)
Geometric similarity is always ensured, accordingly I o D*. From this follows:
ED4 1 E
W X | = = Wwp X — (3.7)
DS(ps + ps) D\ s+ ps

For complex geometries and blades made of anisotropic material, the first bending frequency of a blade
may not be pure bending. Generally, the modal frequencies can be expressed as multiples of the bending
and torsional frequencies [100]. The torsional deflection forces are similar to the elastic bending forces. The
shear modulus, G, takes the place of Young’s modulus. The shear modulus for an isotropic material is equal
to:

(3.8)
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When flexible marine propellers operate in a wake, the blades deform dynamically. Therefore, the modal
frequencies should be scaled properly. The bending frequencies should scale with the propeller’s revolution
rate to obtain similar blade deformation during a revolution:

Wm Wf Em Ef
T _ (3.9)

This form represents the ratio between bending forces, which are proportional to £D? and hydrodynamic
inertial forces, proportional to psn?D? and propeller inertial force, proportional to p,n?D?. The elastic force,
hydrodynamic inertial force and propeller inertial force are represented by Fg, Fy and Fy, respectively.

In addition to the scaling of the model frequency during a revolution, the relative blade deformation should
also be considered. The amplitude of the bending, denoted by A/D, can be expressed as [100]:

A FyD? 2p?
5 o S frsi (6 2) o I p () (3.10)

In this equation, frsr(¢, %) is a function of the damping coefficient, described by ¢, and the frequency
ratio, derived in Equation 3.9. This function is related to the fluid damping and the inertial forces caused by
the fluid-structure interaction. The amplitude of the twisting, described by 6, should also be taken into ac-
count. A similar expression to Equation 3.10 can be formulated for the twisting; however, the shear modulus
replaces the Young’'s modulus [100]. Equation 3.10 is a representation of the Cauchy number, similar to that
given in Table 3.3, and is important to consider for flexible propeller model tests. In addition to elastic bending,
hydrodynamic inertial and propeller inertial forces, other forces involved in the deformation of flexible marine
propellers are the gravitational and viscous forces.

The ratio of inertial to gravitational forces leads to the Froude number. The gravitational forces acting on
the propeller are small compared to the inertial forces when the propeller is sufficiently submerged [21]. The
gravitational force has a negligible effect on the deformation of flexible propellers in open-water tests with
non-cavitating flow. For these tests, strict adherence to Froude similarity is not required [92, 100].

Itis known that similarity in Reynolds number, representing the inertial to viscous forces ratio, is impossible
to obtain in towing tanks or cavitation tunnels [100, 101]. This discrepancy can lead to different boundary layer
regimes [59], which in turn influence the performance characteristics of the propeller and introduce viscous
scale effects [12, 49]. When the Reynolds number is sufficiently high, viscous effects have a negligible impact
on the propeller’s hydroelastic response [21]. However, as tests at typical towing tank or cavitation tunnel
speeds are performed at lower Reynolds numbers, this could affect the deformation behaviour. Model testing
at low Reynolds numbers may not only influence the propeller’s thrust and torque as experienced for rigid
model testing but also alter its deformation behaviour. This effect, in turn, could further impact the overall
performance characteristics of the flexible propeller.



Simulation Methodology

Simulations of flexible marine propellers are performed to evaluate the deformation behaviour and to test dif-
ferent scaling methods. This thesis applies the workflow developed by Lagendijk [62] to perform time-domain
Fluid-Structure Interaction, abbreviated with FSI, simulations of flexible marine propellers. The geometric de-
scription of an undeformed propeller serves as input for this workflow. The result of the workflow is a new
geometry description of the deformed geometry, which allows visualisation of the blade deformation. This
Chapter will answer the following questions:

« How does the structural solver work?
* How does the fluid solver work?
* How are the structural and fluid solvers combined in a Fluid-Structure Interaction Solver?

The first section will explain how the structural solver works, which uses a Finite Element Method. The
second section will dive into the flow solver, which is based on unsteady Reynolds-Averaged Navier-Stokes
equations. The last section will describe how these two solvers are combined and used for the FSI simulations
of flexible marine propellers.

4.1. Structural Solver

A marine propeller blade has a non-uniform cross-section to maximise efficiency, maximise control and avoid
cavitation. A propeller blade is a continuous mechanical system, and the equation of motion cannot be solved
analytically. This workflow uses a Finite Element Method (FEM) structural solver. A FEM structural solver
approximates continuous functions as discrete models. A Procal Propeller Geometry file describes the ge-
ometry of an undeformed propeller shape using the classical propeller design parameters at various sections
and serves as input for the solver. The CAD program Rhinoceros [1] transforms this propeller description into
a solid propeller geometry, which is discretised and simulated.

4.1.1. Equation of Motion

The mass, damping, and stiffness properties of a structure describe its dynamic behaviour. For larger struc-
tures, such as marine propeller blades, the system typically has multiple degrees of freedom, and matrices
represent the mass, damping, and stiffness, denoted as [M], [C], and [K], respectively. The acceleration, ve-
locity, and displacement are vectors with their length corresponding to the number of degrees of freedom for
a system, and are denoted by {#}, {#} and {x}, respectively. The equation of motion is equal to [87]:

[M{E} + [CHa} + [K]{z} = {F} (4.1)

A discrete system consists of a finite number of well-defined components, while a continuous system
implies an infinite number of elements. As the number of degrees of freedom increases, solving the motion
equations becomes more complex, necessitating the use of numerical methods. Partial differential equations
describe the equations of motion for continuous systems.

4.1.2. Finite Element Method

Finite systems can approximate continuous problems and can subsequently be solved numerically. This study
uses a FEM solver. The problem’s domain, in this case, the propeller blade, is discretised into a finite num-
ber of points and subdomains, termed nodes and finite elements, respectively. The elements connect at the
nodes. Figure 4.1 illustrates a system discretised into finite elements and nodes. Within each finite element,
an approximation of the equation of motion is defined. The values of this function depend on the values spec-
ified at the nodes of each element. The result is an algebraic equation set that can be solved. The steps
of the finite element analysis involve discretisation, formation of element equations, assembly of the element
equations, modification, and interpretation [93, 102].

24
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Discretisation

A mesh is a collection of discretised elements representing the problem domain, and its construction process
is called meshing. A finer mesh has more elements. Using a finer mesh or introducing more nodes on an
element will result in more accurate solutions. However, both increase the computational cost of the FEM
analysis [17]. A mesh can be refined in selected areas to reduce computational cost while increasing accu-
racy. The refinement will increase fidelity in those areas.

In this workflow, only one blade is discretised. This blade is copied to make a mesh for the propeller. The
hub is considered rigid and is not part of the mesh. The blade grids consist of hexahedral elements where
the propeller is discretised over the face and back surface and in the thickness direction [62]. Hexahedral ele-
ments are 3-dimensional elements that yield more accurate solutions than other 3-D elements [3]. The mesh
is refined over the face and back surface of the blade. The desired number of cells over the blade surface is
prescribed as input for the simulation. There is also a mesh refinement in the radial direction at the blade root
region. This refinement improves the convergence behaviour of the FSI simulations. The distribution of cells
over the blade surface and in the chordwise direction depends on the blade’s geometry to ensure that the
cells are approximately square in shape. The thickness discretisation is explicitly prescribed. Quadratic ele-
ments are used, which are elements with an extra node on each edge. Quadratic elements create elements
with curved boundaries [102] to obtain quadratic rather than linear relations, which prevents shear locking [62].
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Figure 4.1: A systems domain is discretised into triangular elements. The nodes connecting the elements hold local approximations of
the function. From Tekkaya and Soyarslan [93]

Structural Simulation

The code Aster [26] structural solver simulates the structural grid. The blade-hub connection is a clamped
boundary condition, with the hub assumed to be rigid. The simulation provides the mass matrix, stiffness
matrix, and dry modes of a single blade. The solver constructs mapping files that relate the surface nodes to
specific locations in the mass and stiffness matrices. There is also an intnodes file generated, which contains
the nodes at the interface between fluid and structure [62].

4.2. Flow Solver

The motion of a fluid is described with the Navier-Stokes equations. These are non-linear partial differential
equations, and generally, an analytical solution cannot be found. Computational Fluid Dynamics, abbreviated
as CFD, is used to find numerical solutions to fluid motion problems. This workflow uses ReFRESCO, which
is a viscous-flow CFD code that solves multiphase (unsteady) flows using the incompressible Navier-Stokes
equations, complemented with turbulence models. The equations are discretised using a finite-volume ap-
proach [75].

4.2.1. Navier Stokes Equations
The Navier-Stokes equations are partial differential equations which describe the motion of viscous fluids. The
equations originate from conservation laws.

Conservation laws

Certain quantities are conserved in nature, as they are neither created nor destroyed. In a fluid, these quan-
tities are mass, momentum and energy. The equation of conservation for energy comes into play for highly
compressible flows, high Mach numbers and temperature changes or chemical reactions [9]. Therefore, this
section will only dive deeper into the mass and momentum equations.
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The conservation of mass states that the rate of change in mass is equal to a net flux. This equation is
also called the continuity equation. For an arbitrary control volume, V, enclosed by a surface, S, with unit
outward normal vector 7, the continuity equation is written at the integral scale as:

g/pdV—i—/pu-ﬁdS:O (4.2)

The momentum equation follows from Newton’s Second Law, F' = ma = %(mu). For a fluid, this principle
states that the rate of change of momentum equals the sum of the momentum flux, body forces, and surface
forces. Body forces, here represented by B, commonly arise from gravitational or electromagnetic force fields.
Body forces are proportional to mass and distributed through the fluid. Surface forces, here denoted by T,
act on fluid elements through surface contact and are proportional to the contact area [59]. The momentum
equation is expressed as:

%(pg)+v.(pz@):V~T+pB (4.3)

Assumptions

Two key assumptions simplify these equations. The first assumes that the fluid (water) behaves as a Newto-
nian fluid. The relationship between stress and deformation follows a linear constitutive equation for Newto-
nian fluids. The second assumption states that the fluid is incompressible, meaning that the density of a fluid
particle remains constant over time. The shear stress, 7;;, for a Newtonian, incompressible fluid is given as:

- 8u1 auj

In this equation, p is the dynamic viscosity, u; and u; are velocity components and z; and x; spatial
coordinates. The surface forces are distinguished in a viscous part as given in Equation 4.4 and a pressure
term pl. With these assumptions, the momentum equation of Equation 4.3 can be written in integral form as:

9 / (pu) dV + / puu-ndS= [ T-ndS+ / pBdV, With T = —pl + pu(Vu + VuT) (4.5)
ot Jy ' - g - g v = Z

The continuity equation described in Equation 4.2 and the momentum equation of Equation 4.5 form the
Navier-Stokes Equations for incompressible flows.

4.2.2. Finite Volume Method

The Navier-Stokes Equations are non-linear partial differential equations, and an analytical solution can only
be found for a few relatively simple cases. CFD is used to find numerical solutions to the Navier-Stokes equa-
tions [59]. A mesh is generated of the continuous fluid domain to obtain numerical approximations. Discrete
equations that relate the discrete values describe the fluid flow and replace the partial differential equations.
Various discretisation methods, similar to the Finite Element Method, can be used. ReFRESCO discretises
the equations using a finite-volume approach [75].

A Finite Volume Method, FVM, discretises the total fluid domain
into control volumes. The mesh size strikes a balance between
the accuracy of the calculation and the computational costs. The
Finite Volume Method uses the integral form of the Navier-Stokes ‘
Equation, as presented in Equation 4.2 and 4.5, to calculate P
fluxes across the surfaces of the control volumes. These fluxes ; R
have to maintain mass conservation. The fluid variables are ot
defined in the centre of the cells and considered as the averages / _______

of the cell’s volume [75]. Figure 4.2 shows a control volume.

I
The fluid grid in the simulations is a cylindrical domain surround- v
ing the propeller with a diameter 10 times the propeller diameter.
This unstructured grid mainly consists of hexahedral elements and

some tetrahedra and pyramids at the connection layer between re- Figu(’je f‘_‘-zijcf't';]ce”tflfd F\t/'V'i F'zi‘fjl variables
- are aetinea a e cell centre, an uxes are
finement levels [62]' computed across its surfaces. From Haider et

al. [33]



4.7. Flow Solver 27

Time Step
The time step in the simulations is an important factor to consider. The Courant number represents the coupling
between the time step, mesh size and flow velocity:

UAt

Ax

In Equation 4.6, the fluid velocity equals U, the time step is At, and the cell length is Ax. If the Courant

number exceeds one, a fluid particle moves through multiple grid cells in a single time step. This reduces
solution accuracy and can lead to numerical instabilities [38].

C:

(4.6)

4.2.3. Turbulence

Turbulence is a highly unsteady, three-dimensional phenomenon that occurs at very low length and time
scales. This study will not resolve all fluid motion scales using Direct Numerical Simulation, known as DNS.
DNS requires a very fine mesh, making the simulations computationally intensive and costly. The flow solver
models turbulence effects by averaging the flow equations and applying additional closure models, rather than
directly resolving turbulence.

The averaging process of the flow equations is called Reynolds averaging. The Reynolds-Averaged Navier-
Stokes, or short RANS equations are obtained by averaging the Navier-Stokes equations. The average of
the non-linear term in the Navier-Stokes equations gives two terms: the product of the average and the co-
variance. The covariance of two quantities is non-zero if the quantities are correlated, which is often the case
in turbulent flows. Therefore, the averaging process will result in extra terms. The RANS equations are not
closed due to these extra terms, and additional turbulence models are needed.

The RANS equations can be solved in a time-dependent manner, allowing for time-dependent changes
in the flow field. These unsteady Reynolds-Averaged Navier-Stokes equations, shortened by URANS, still

utilise the Reynolds averaging of the Navier-Stokes equations but do not average the flow in time as strictly
as RANS. Figure 4.3 visualises the difference between URANS, RANS and DNS for a quality ¢ over time.

RANS

—— URANS
d) — DNS

;\ v

Figure 4.3: Visualisation of the difference between URANS, RANS and DNS simulations for a quality ¢ over time

Turbulence Models

The effect of turbulence can be interpreted as an increase in viscosity when using the URANS equations.
This turbulent viscosity, or eddy viscosity, is computed using turbulence models and is characterised by the
velocity and length scales of the turbulence eddies. The turbulence model implemented in ReFRESCO is the
k — w SST model of Menter [82]. This model is a so-called 2-equation model, which provides equations for
the turbulence kinetic energy and the turbulence length scale. The model can be used to predict properties
of a given turbulent flow with no prior knowledge of the turbulent structure [75].
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Y-Plus Value

A viscous fluid flow over a solid surface must satisfy the no-slip boundary condition [59]. In a turbulent flow,
the turbulent fluctuations must therefore go to zero at the wall to satisfy this condition. The near-wall flow has
very strong velocity gradients. The time mean velocity, @, near a solid boundary, depends upon fluid density,
kinematic viscosity, shear stress at the wall and on the distance from the wall, denoted by p, v, 7, and y,
respectively [72]. A friction velocity, .., is introduced and defined by [8]:

w = \/? 4.7)

This velocity is used in dimensional analyses to obtain two non-dimensional quantities, namely a non-
dimensional length, y™, and non-dimensional velocity, u™ [8]:
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From dimensional analysis, it follows that the non-dimensional velocity is a function of only the non-
dimensional length: u™= f(y™), known as the law of the wall. In a turbulent flow, the turbulent fluctuations
must go to zero at the wall to satisfy the no-slip condition. This results in a very small layer next to the wall,
where vt = yT. This layer is known as the viscous or laminar sublayer [8]. One can interpret y* as a local
Reynolds number, which means that its magnitude determines the relative importance of viscous forces. The
viscous sublayer is the region very close to the wall, for y™-values below five. Here, the fluid velocity is very
low, and the viscous force is completely dominant. In this layer, the wall gradients are substantial, and an ac-
curate representation of the near-wall region is necessary for a successful prediction of wall-bound turbulent
flows [81].

Turbulence models are modified to resolve the entire viscosity-affected region, including the viscous sub-
layer. The first cell centre must lie in the viscous sublayer when using a turbulence model, such as the k — w
SST turbulence model, to solve the near-wall region [81]. Determination of the shear-stress at the wall re-
quires the use of near-wall cells typically present with a non-dimensional height of 4™ equal to 1 or less [43].

4.3. Fluid Structure Interaction Simulation

The numerical simulation enables fluid-structure interaction simulations of the propeller, allowing visualisation
of blade deformation and performance characteristics [62].

This study employs a partitioned approach, utilising separate software for the fluid and structural compo-
nents [62]. This approach has the advantage that the software is optimised for fluid and structural problems,
and the existing solution methods do not need to be changed. A coupling mechanism is necessary to manage
interactions between solvers. The partitioned approach allows for the use of distinct grids for the fluid and
structural domains. Typically, the fluid domain requires a finer mesh than the propeller blade for accurate
solutions [45]. One drawback of the partitioned approach is that the equations are not solved simultaneously
in time, which potentially results in additional errors.

A strongly coupled approach can minimise the possible errors due to the fluid-structure interaction cou-
pling. In the strongly coupled approach, the solutions for both the flow and structural domains are exchanged
multiple times per time step until a converged solution is reached [45]. The solver uses a grid deformation
method where the loads and displacement are transferred using radial basis functions. Radial basis functions
are mathematical functions whose value depends on the distance between the nodes. Radial basis function
interpolation is used to propagate the effect of blade deformation to the whole fluid domain and the effect of
the fluid load on blade deformation [30]. Compact support radial basis functions are applied with a support
radius of D/6. This radius defines the region around the surface nodes within which the grid points deform.
Outside this radius, the grid remains undeformed [62].

The FSI simulation starts with a simulation of a rigid propeller to obtain a converged initial flowfield. After
this, the FSI simulation for the flexible propeller is performed. The workflow results in a new geometry descrip-
tion of the deformed geometry. The results enable comparison between input and output geometry, allowing
for the determination of propeller deformation based on changes in classical design parameters. Furthermore,
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the results facilitate the evaluation of the sectional deformations of the blades at different radial positions [62].
Figure 4.4 shows a flow chart for the procedure for a single time-step of the simulation [75].

compute loads

[solve equations of motion]

= [update geometry}
5 [deform field grid]

[compute flow solution]

l

converged?

Figure 4.4: Flow chart for a time-step of the fluid-structure interaction simulation using a strongly coupled approach. From Jongsma et
al. [45]

4.4. Propeller Geometry and Material Properties

All simulations in this report use the Wageningen C4-40 pro-
peller, which has four blades, a 40% blade area ratio, and a
pitch ratio of P/D = 0.8. This geometry has been designed
and tested at the Maritime Research Institute Netherlands,
known as MARIN. The performed propeller tests included
experiments with flexible materials for this geometry. Figure
4.5 presents the outline of the C4-40 propeller geometry.
MARIN constructed their flexible model propeller from
POM-C, a thermoplastic polymer with isotropic properties
and a Young’s modulus of 3 GPa. The Young’s modulus
applied in the flexible simulations of this study is derived
from the Cauchy number defined in Equation 3.9 of the
MARIN experiments, to ensure comparable values across
all cases.

Geometric propeller properties follow from the CAD program

Rhinoceros [1], which transforms a tabular propeller descrip- Figure 4.5: Outline of the Wageningen C4-40
tion into a solid propeller geometry. Table 4.1 lists the geo- propeller

metric propeller properties.

C4-40 Propeller Properties \

Projected blade area ratio Ap/Ao 0.362 [-]
Expanded blade area ratio Ag/Ao 0.396 [—]
Skew angle 0 28.27 7]
Pitch ratio at r/R=0.7 (P/D)o.7 0.800 [-]
Mean pitch ratio (P/D)mean | 0.768  [—]
Chord-to-diameter ratio at /R=0.7 | ¢q.7/D 0.2545 [-]
Thickness-to-chord at r/R=0.7 tor/c 0.044 [—]

Table 4.1: Geometric propeller properties of the C4-40 propeller



Reynolds Effects on Rigid Propellers

The model scale effects due to differences in Reynolds numbers are known as the Reynolds effects and pose
challenges in predicting propeller performance at model scales. Reynolds effects can impact the propeller
performance characteristics, and significant differences can arise between the results of various procedures
[12]. This chapter will answer the following sub-question:

'What are the Reynolds number effects on the performance of rigid marine propellers in the applied simula-
tions?’

This chapter presents the open-water characteristics of a rigid propeller for different Reynolds numbers,
helpful in analysing the scale effects of flexible propellers in the following chapters. The first section presents
the input of the numerical simulations. The second section presents the test results, including the open-water
diagram, the relative difference between the various Reynolds numbers tested, and visualisations of the skin
friction coefficient and streamlines over the blade. The final section summarises the main conclusions.

5.1. Simulation Input

Numerical simulations are conducted to determine the rigid propeller performance for a range of positive ad-
vance ratios in open-water conditions. These simulations are performed with the Wageningen C4-40 propeller,
with a pitch ratio of 0.8. Figure 4.5 shows the outline of this propeller. Table 4.1 lists the main propeller prop-
erties. All simulations are performed with a propeller diameter of 2 meters.

This chapter presents the results of simulations conducted for various Reynolds numbers. The Reynolds
number is defined following the ITTC definition:

60,7\/‘/3 —‘rV(O.?TrnD)? (51)

Here, ¢y 7 is the propeller chord length at position /R = 0.7, V, the advance velocity of the fluid, n the
propeller revolution rate, D the propeller diameter and v the kinematic viscosity of the fluid. The revolution
rate and advance velocity are adjusted to ensure a constant Reynolds number over the range of advance
ratios. The lowest value is slightly below the minimum Reynolds number of 2 x 10° recommended by the ITTC
guidelines for open-water propeller tests [42]. Since full-scale propellers operate at Reynolds numbers of the
order 107 [49], a maximum value of 5.0 * 107 is selected for the simulations. Table 5.1 lists the input settings
for all Reynolds numbers for the range of advance ratios.

Regr =

Re[] 1.0 % 107 1.0 % 10° 1.0 % 107 5.0 % 107
JI | n[RPM] V, [m/s] | n [RPM] V, [m/s] | n [RPM] V, [m/s] | n [RPM] V, [m/s]
0 3.187  0.000 | 31.87  0.000 | 3187  0.000 | 1593 0.000

0.1 3.183 0.011 31.83 0.106 318.3 1.061 1592 5.306
0.2 3.174 0.021 31.74 0.212 317.4 2.116 1587 10.57
0.3 3.157 0.032 31.57 0.316 315.7 3.157 1579 15.78
0.4 3.135 0.042 31.35 0.418 313.5 4.180 1568 20.90
0.5 3.107 0.052 31.07 0.518 310.7 5.179 1554 25.89
0.6 3.074 0.061 30.74 0.615 307.4 6.149 1537 30.74
0.7 3.037 0.071 30.37 0.709 303.7 7.085 1518 35.42
0.8 2.995 0.080 29.95 0.799 299.5 7.986 1497 39.92
0.9 2.949 0.088 29.49 0.885 294.9 8.848 1475 44 .23

Table 5.1: Operational input settings for various Reynolds numbers for a range of positive advance ratios.
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5.2. Results

This section presents the results of rigid propeller simulations to examine the effects of Reynolds numbers.
First, the open-water diagram is presented and discussed. Then, plots of the percentage difference for the
tested range of Reynolds numbers are given. Finally, the skin friction coefficient over the blade surface and
the streamlines over the blade surface are provided and analysed.

5.2.1. Open Water Diagram

Figure 5.1 shows the open water results for positive advance ratios, for the range of Reynolds numbers tested.
The open-water diagram displays the non-dimensional thrust coefficient, torque coefficient, and open-water
propeller efficiency, as defined in Equations 2.7, 2.8, and 2.10, respectively.

Figure 5.1 shows that the Reynolds number has a visible effect on both thrust and torque coefficient. A
higher Reynolds number shows a higher K1 value for a certain J value. The variation in K shows a trent
opposite to K. Higher Reynolds numbers result in a lower K value for a certain advance ratio. Looking at
the efficiency, the higher the Reynolds number, the higher 7,.

The Reynolds number determines the boundary layer flow over the blade’s surface. The flow solver calcu-
lates the flow using a turbulence model and does not use transition models. So for all Reynolds numbers, a
fully turbulent flow is solved. Higher Reynolds numbers result in a thinner turbulent boundary layer, which can
more easily follow the blade’s curvature [59]. This reduces boundary layer separation, allowing the propeller
blades to generate more lift while experiencing less drag. The open-water efficiency depends on both the
thrust and the torque coefficient. The efficiency increases for higher Kr values as well as for smaller K
values.
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Figure 5.1: Open water diagram of the rigid Wageningen C4-40 propeller with a pitch ratio of 0.8 for different Reynolds numbers. The
thrust coefficient and open-water efficiency increase for increasing Reynolds numbers, while the torque coefficient decreases as the
Reynolds number increases.

5.2.2. Percentage Difference Between Reynolds Numbers

In the simulations, the predicted performance of the rigid propeller is sensitive to variations in Reynolds num-
ber. If variations do not influence the deformation of flexible propellers in terms of Reynolds number, the same
magnitude of differences between Reynolds numbers is expected for flexible propeller simulations. This sec-
tion quantifies the order of magnitude of the Reynolds effects for the rigid propeller simulations.
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Figure 5.2 shows the percentage difference between the thrust coefficient, torque coefficient and open
water efficiency for the different Reynolds numbers. All percentage differences are relative to the case with a
Reynolds number of 5% 107, which corresponds to a typical order of magnitude for full-scale Reynolds numbers
[49]. Figure 5.2 presents the results for an advance ratio of 0.8, where the most considerable difference be-
tween results is found. Similarly, Rijpkema et al. [88] found the largest variations in thrust, and consequently in
propeller efficiency, at higher advance ratios. Their study attributed this to the larger extent of the leading-edge
vortex at the lower advance ratios. This leading-edge vortex induces reattachment and a turbulent boundary
layer, resulting in better agreement between Reynolds number cases. At higher advance ratios, the influence
of Reynolds number becomes more pronounced as boundary-layer behaviour differs more strongly. Appendix
A presents the results of other advance ratios.

For the operational condition of Figure 5.2, the relative difference of the torque coefficient between Re
= 1%10° and Re = 5 * 107 equals 14.8%. This difference is equal to 1.1% for the advance ratio of 0.1. The
thrust coefficient has a difference of -11.3% when comparing Re = 1 x 10°> and Re = 5 % 107 for .J equals 0.8.
For all advance ratios below 0.6, this difference is around -5% between Re = 1 % 10° and Re = 5 x 107.

The difference in open water efficiency between Re = 1 x 10° and Re = 5 * 107 is -22.5% for .J equals
0.8. The open-water efficiency is a combination of trust and torque coefficient and will decrease for both lower
K values and for higher K¢ values. Ergo, for all positive advance ratios 7, increase for higher Reynolds
numbers. The smallest relative difference for the open-water efficiency is for J equals 0.1, when disregarding
the bollard pull case, for which efficiency is always zero by the definition in Equation 2.10. For J equals 0.1,
the difference in efficiency is equal to -2.4% between Re = 1 % 10° and Re = 5  107.

10° 106 107
Re [-]

Figure 5.2: Percentage differences in K1, K¢, and 7, across Reynolds numbers, with respect to the case of Re = 5 107. Results
are for the rigid C4-40 propeller at an advance ratio of 0.8. The variation of the Reynolds number shows an increase in the thrust
coefficient and a decrease in the torque coefficient as the Reynolds number increases.

5.2.3. Skin Friction Coefficient and Streamlines

This section analyses the skin friction coefficient and streamlines over the blade surfaces for different Reynolds
numbers, helping to explain the differences in open-water performance visible in Figure 5.1. Skin friction, also
known as wall shear stress, is the flow tangential stress on a solid surface. A viscous fluid flowing over a solid
surface must satisfy the no-slip boundary condition. The no-slip condition results in a velocity gradient at the
surface, causing a shear force. The shear stress acting on a surface by a flowing viscous fluid is known as
wall shear stress [59]. The skin friction is defined as the non-dimensionalised skin friction coefficient, Cr:

.
Cp—= 0
3psU2,

Where 7, is the local wall shear stress, p; expresses the fluid density and U, denotes the free-stream velocity.

(5.2)
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The free-stream velocity is usually taken at the inlet of the fluid domain [14], in this case equal to V,,. The skin
friction coefficient is a valuable parameter in boundary layer flows. This coefficient specifies the fraction of the
local dynamic pressure that is felt as shear stress on the surface. An increase in the Reynolds number for a
fully turbulent flow will result in a lower Cr value [59]. As the Reynolds number increases, the viscous forces
become relatively smaller compared to the inertial forces. Consequently, the shear stress exerted by the flow
on the surface decreases for the same local dynamic pressure, resulting in a lower skin friction coefficient.

Figures 5.3 and 5.4 illustrate the skin friction coefficient and streamlines over the propeller blades’ suction
and pressure side for the tested Reynolds numbers for a J-value of 0.1. A slight decrease in the skin friction
coefficient is visible with an increase in the Reynolds number on both the pressure and suction sides. The
streamlines become more circumferentially directed with increasing Reynolds numbers for both sides. For all
Reynolds numbers, the streamlines show flow separation near the trailing edge on the blade’s suction side.
This separation region near the trailing edge decreases in size as the radius decreases from higher to lower
values on the suction side. For all cases, the streamlines also show some extent of leading-edge flow sepa-
ration on the suction side of the blades. However, only the streamlines in Figure 5.3c and 5.3d reveal a clear
leading-edge vortex. Figure 5.4a presents an increase in skin friction coefficient near the trailing edge on the
pressure side of the blade at a Reynolds number of 1« 10°. In addition, the streamlines are less circumferen-
tially directed compared to the three cases with higher Reynolds numbers. The streamlines and skin friction
coefficient indicate flow separation near the trailing edge, which does not occur at the three higher Reynolds
numbers.

(@) Re = 1% 10° (b) Re = 1  10° (c) Re = 1% 107 (d) Re =5 % 107

Figure 5.3: Streamlines and skin friction coefficient on the suction side of the rigid C4-40 propeller blade tested at a J of 0.1. For
increasing Reynolds number, the skin friction coefficient decreases slightly. The streamlines are more circumferentially directed for
higher Reynolds numbers.
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(@) Re = 1% 10° (b) Re = 1  10° (€) Re = 1% 107 (d) Re = 5+ 107

Figure 5.4: Streamlines and skin friction coefficient on the pressure side of the rigid C4-40 propeller blade tested at a J of 0.1. For
increasing Reynolds number, the skin friction coefficient decreases. The streamlines are more circumferentially directed for higher
Reynolds numbers.

Figures 5.5 and 5.6 illustrate the skin friction coefficient and streamlines over the propeller blades’ suction
and pressure side for a J-value of 0.7. This advance ratio is around the most optimal working point of the
propeller, as visible in Figure 5.1. A decrease in CF is visible with an increase in the Reynolds number on both
the pressure and suction sides. The streamlines become more circumferentially directed for both sides as the
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Reynolds number increases. For Re = 1% 10° and 1 x 10°, the separation near the trailing edge on the suction
side is over almost the entire length of the trailing edge. In contrast, for Re = 1x107 there is some trailing edge
separation at the lower radii, and Figure 5.5d presents hardly any trailing edge separation. Figures 5.6b, 5.6c,
and 5.6d show a small leading-edge vortex on the pressure side of the blades. The size of the vortex and
the radial position at which it forms vary depending on the Reynolds number. The leading-edge vortex is less
pronounced looking at the streamlines of Figure 5.6a. For this Reynolds number, the increase in skin friction
near the trailing edge and streamlines reveals flow separation at the pressure side. For all these cases, there
is less boundary layer separation for the optimal working point compared to Figure 5.3 for the more heavily
loaded cases.

(@) Re = 1 % 10° (b) Re =1 %108 () Re =1 %107 (d) Re =5 % 107

Figure 5.5: Streamlines and skin friction coefficient on the suction side of the rigid C4-40 propeller blade tested at a J of 0.7. As the
Reynolds number increases, the skin friction coefficient decreases, and the streamlines become more circumferentially directed.

(@) Re = 1% 10° (b) Re = 1  10° (€) Re = 1% 107 (d) Re =5 %107

Figure 5.6: Streamlines and skin friction coefficient on the pressure side of the rigid C4-40 propeller blade tested at a J of 0.7. As the
Reynolds number increases, the skin friction coefficient decreases, and the streamlines become more circumferentially directed.

The momentum of the boundary layer flow close to the hub cannot follow the propeller’s blade shape. For
higher Reynolds numbers, the boundary layer becomes thinner and has more energy [59]. Consequently, the
flow follows the blade’s shape more easily, which explains the decrease in flow separation as the Reynolds
number increases. This explains that the boundary-layer shows a more circumferentially directed flow at
higher Reynolds numbers. For J equals 0.1, all cases experience some trailing edge separation on the suc-
tion side. In contrast, for a J of 0.7, the highest Reynolds number shows no flow separation on the suction
side. In heavily loaded conditions, such as those occurring near bollard pull, the flow must follow a greater
curvature as a result of an increased AoA. Thus, there is less boundary layer separation around the optimal
working point compared to more heavily loaded cases.

The results are consistent with Reipema et al. [88]. At lower advance ratios, all blades exhibit some extent
of a leading-edge vortex on the suction side of the blades. This leading-edge vortex induces flow reattach-
ment, producing a turbulent boundary layer. Consequently, there is an improved agreement of flow between
Reynolds number cases, as evidenced by the minor differences in the skin-friction coefficient for the low ad-
vance ratios. At higher advance ratios, the influence of Reynolds number becomes more pronounced. The
skin friction coefficient decreases more with the increase of Reynolds number, as boundary-layer behaviour
differs more strongly. Appendix A shows the blade figures of other advance ratios.
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5.3. Conclusion

In this chapter, FSI simulations were carried out for rigid propellers in open-water conditions to answer the
second sub-question of this thesis: 'What are the Reynolds number effects on the performance of rigid marine
propellers in the applied simulations?’ The performance prediction and boundary-layer flow are analysed in
detail for a range of Reynolds numbers, from minimal model scale Reynolds number (Re = 1 x 10°) up to
full-scale (Re = 5 % 107) Reynolds numbers. The flow solver is implemented with the & — w SST turbulence
model without the use of a transition model.

The Reynolds number determines the boundary layer flow over the propeller blades. A turbulent boundary
layer becomes thinner and has more energy for higher Reynolds numbers [59]. Therefore, the boundary-layer
flow becomes more circumferentially directed for increasing Reynolds numbers. The skin friction coefficient
decreases, and blades experience less flow separation as the Reynolds number increases. Independent of
the Reynolds number, there is less boundary layer separation around the optimal working point compared to
more heavily loaded cases. For advance ratios around the propeller’s most efficient operating condition, simu-
lations with larger Reynolds numbers show noticeably less flow separation, while at lower Reynolds numbers,
there is still some flow separation for these near-optimal operating conditions. In contrast, for heavily loaded
cases with a large angle of attack, this relative difference is less, as all blades experience trailing-edge flow
separation independent of the Reynolds number. For these lower advance ratios, the blades exhibit some
extent of a leading-edge vortex on the suction side. As a result of the turbulent flow reattachment, there is
better agreement between Reynolds number cases in the skin friction coefficient. At higher advance ratios,
boundary-layer behaviour differs more strongly, and the influence of Reynolds number becomes more pro-
nounced.

Those effects are visible in the open water diagram of the rigid C4-40 propeller. The variation of the
Reynolds number shows an increase in the thrust coefficient and a decrease in the torque coefficient as
the Reynolds number increases. Within the performed simulations of this study, the effect comparing the
results between Re = 1 % 10° and Re = 5 % 107 on K is between -5 and -11.3%, depending on the operating
condition. This difference between Re = 1x10° and Re = 5107 on K, is between 1.1 and 14.8%. The open-
water efficiency is a combination of both and increases for higher Reynolds numbers. The relative difference
between Re = 1 % 10° and Re = 5 * 107 on 1, is between -2.4 and -22.5% depending on the advance ratio.



Scaling Flexible Propellers using the
Cauchy Number

Scaling flexible propellers for model tests adds complexity to the scaling methods. The deformation of a flex-
ible propeller must remain consistent during a revolution and be scaled accurately. Equation 3.10 derives a
representation of the Cauchy number. This number should be equal between the model and the full-scale
propeller to obtain equal blade deformation. This chapter will answer the following sub-question:

‘'What are the scale effects when satisfying the Cauchy number using a combined Reynolds-Cauchy simi-
larity approach for flexible marine propellers?’

The first section will elaborate on various scaling methods, while the second section provides an overview
of the input settings used in the performed simulations. The third section presents the results, including the
open-water diagram, the relative difference in results between the cases, plots of the flexible propeller defor-
mation, and visualisations of the skin-friction coefficient and flow streamlines over the blades. A discussion of
the results follows, and the chapter concludes with the main insights.

6.1. Scaling Flexible Propellers using Froude-Cauchy, Reynolds-Cauchy
and Mach Similarity

The deformation of flexible propellers must scale appropriately, as the performance of flexible propellers is
dependent on the deformed geometry. The following representation of the Cauchy number is derived in
Chapter 3 to replicate the correct relative blade deformation:

FE w

= ool (6 (6.1)

This non-dimensional number is investigated using the coupled URANS-FEM FSI solver. This coupled
solver accounts for the interaction between fluid flow and structural velocities and acceleration, incorporating
the fluid damping. The ratio of bending frequency to revolution rate, given in Equation 3.9, depends, among
the propeller stiffness, fluid mass and diameter, on the structural mass of the propeller blade. For all these
variables, a scaling relation has to be derived to obtain similarity. The parameter A describes the scaling
ratio, and the model length scale is defined as: L, = %LF. For propeller model tests, the fluid density is
considered comparable between freshwater and seawater. Hence, the scaling ratio between the model and
full-scale fluid density equals 1. The structural density must follow this same scaling relation and must also
be equal between the full-scale and model-scale propellers. The Young’s modulus and angular velocity can
be scaled using a combined Froude-Cauchy similarity, a Mach similarity or a combined Reynolds-Cauchy
similarity approach to satisfy Equation 6.1. Table 6.1 summarises the scaling factors required to satisfy these
similarity approaches, while Appendix B gives the derivation of these scaling relations.

Ca

Model tests that apply Mach similarity can use the same materials and employ similar composite layering
strategies [48]. Elasticity, blade density, and Poisson’s ratio should remain the same as in the full-scale case.
The model tests should be conducted at full-size inflow velocity using Mach similarity [21]. This requirement
imposes constraints on testing model-scaled propellers for fast vessels, as most facilities are unable to test at
such high velocities or forces. The revolution rate is scaled with A™! to obtain an equal advance ratio. Mach-
scaled model tests are performed at higher Froude numbers, underpredicting the gravitational force compared
to the elastic and inertial forces.

The challenge of applying combined Froude-Cauchy similarity for model tests is finding an appropriate
material [101]. A composite lay-up must be used, effectively reducing the Young’s modulus by the scale fac-
tor while keeping the material density and Poisson ratio identical to those of the full-scale propeller material.

36
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An advantage of Froude similarity is that the gravitational, elastic and inertial forces are equally scaled, only
underpredicting the viscous force due to Reynolds number inequality.

Reynolds’ similarity is impossible to obtain in towing tanks or cavitation tunnels [12], but can be obtained in
numerical simulations. Viscous effects influence the rigid propeller performance characteristics, as concluded
in Chapter 5. In the case of flexible propellers, boundary layer flow may affect the deformation of these
propellers, which in turn impacts the overall performance indicators. Thus, Reynolds number considerations
are important for model tests.

Variable Definition Froude scale | Reynolds scale | Mach scale
Froude number [-] Fn=V,/v/gD 1 \3/2 AL/2
Reynolds number [-] Re = pV,D/pu A3/2 1 A1
Mach number [-] Ma =V,/cs A1/2 Al 1
Advance velocity [m/s] Va AT1/2 Al 1
Angular velocity [1/s] n AL/2 A2 Al
Density [kg/m?] p 1 1 1
Young’s modulus [Pa] E A1 A2 1
Elastic force [N] F, < ED? A3 1 A2
Gravitational force [N] F, o psgD? A3 A3 A3
Hydrodynamic inertial force [N] | Fy oc pn?D* A3 A2
Propeller inertial force [N] F; < psn?D* A3 A2
Viscous force [N] F, o uV,D A73/2 At

Table 6.1: Scaling relations for Froude, Reynolds and Mach similarity

6.2. Simulation Input

Numerical simulations are conducted to determine the flexible propeller performance for a range of positive
advance ratios in open-water conditions, as well as the deformation behaviour of the flexible propellers. These
simulations are performed with the Wageningen C4-40 propeller, with a pitch ratio of 0.8. Figure 4.5 shows
the outline of this propeller. Table 4.1 lists the main propeller properties.

This chapter compares a full-scale propeller with a diameter of 2 meters and a scaled propeller with a
diameter of 0.25 meters. The numerical input is derived using the Reynolds—Cauchy similarity method, so
the model-scale propeller has equal Reynolds and Cauchy numbers as the full-size propeller. The Cauchy
number in these simulations is based on that of the model experiments conducted at MARIN. Table 6.1 lists
the corresponding scaling relations used to determine the input setting. These settings are listed in Table 6.2.
The simulations assume a submerged propeller operating in non-cavitating flow, where gravitational forces are
small relative to inertial, elastic, and viscous forces [100]. As a result, the inequality in Froude number inherent
to Reynolds—Cauchy scaling should not affect the results. Both Froude—Cauchy and Mach number scaling
underestimate viscous forces due to inconsistent scaling of the Reynolds number. This chapter focuses solely
on the scale results using the Cauchy number, whereas Chapter 7 examines the influence of the Reynolds
number on the performance of flexible propellers.

Full size propeller | Scaled propeller
D [m] 2 0.25
E [Pa] 2% 108 1.28 % 1010
J n [RPM] V, [m/s] | n[RPM] V, [m/s]
0.0 31.87 0.000 2039 0.000
0.1 31.83 0.106 2037 0.849
0.2 31.74 0.212 2031 1.693
0.3 31.57 0.316 2021 2.526
0.4 31.35 0.418 2007 3.344
0.5 31.07 0.518 1989 4.143
0.6 30.74 0.615 1968 4.919
0.7 30.37 0.709 1943 5.668
0.8 29.95 0.799 1917 6.389

Table 6.2: Input settings of the flexible full-size propeller and Reynolds-Cauchy model scaled propeller
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6.3. Results

This section outlines the results for flexible propellers, comparing a model-scale propeller to a full-size con-
figuration. The first part presents an open-water diagram displaying the open-water characteristics of both
propellers. The following section presents the percentage differences in thrust and torque coefficients, as well
as open-water efficiency. The third subsection shows plots of the steady-state propeller deformation. Finally,
visualisations of the skin-friction coefficient and flow streamlines over the blades are given.

6.3.1. Open Water Diagram

Figure 6.1 presents the open water characteristics for positive advance ratios for the full-size and scaled flex-
ible propellers. The open-water diagram displays the non-dimensional thrust coefficient, torque coefficient,
and open-water propeller efficiency, as defined in Equations 2.7, 2.8, and 2.10, respectively.

Figure 6.1 shows that scale effects influence the open-water performance of the propeller. Both the thrust
and torque coefficients are lower for the model-scale propeller compared to the propeller with D = 2 meters.
The open-water efficiency is also reduced for the smaller propeller, since 7, depends on both coefficients.
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Figure 6.1: Open water diagram of the flexible Wageningen C4-40 propeller with a pitch ratio of 0.8 for two scales. Both the thrust and
torque coefficients are lower for the model-scaled propeller compared to the full-size propeller, resulting in a decreased open-water
efficiency for the propeller with D = 0.25 meter.

6.3.2. Percentage Differences Between Two Different-Sized Propellers
This section quantifies the order of magnitude of the difference between full-size and scaled propeller open
water performance, which is visible in the open-water diagram in Figure 6.1.

Figure 6.2 shows the relative difference between the model-scale and full-scale propellers for the thrust
coefficient, torque coefficient, and open-water efficiency over the tested range of advance ratios. The thrust
coefficient of the model propeller differs by about -1.5% compared to the full-size case for the bollard pull
condition. This difference is maximum for J equals 0.8 and equals -25.2%. The difference in K, lays between
-0.8% and 3.1%. The maximum difference is found for an advance ratio of 0.1, while the smallest relative
difference is found for J equals 0.6. The open-water efficiency is a combination of both K1 and K¢, and the
results can counteract each other when looking at the difference in 7,. The smallest percentage difference in
open water efficiency is found for J equals 0.1, neglecting the bollard pull condition for which the open water
efficiency, as defined in Equations 2.10, is always zero. This difference increases to -24.3% for J equals
0.8, mainly influenced by the large difference in thrust coefficient for this advance ratio when comparing the
model-scale to the full-size propeller.
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Figure 6.2: The percentage difference in K7, K¢, and n, comparing the flexible model-scale propeller to the flexible full-size propeller
over the tested range of advance ratios.

6.3.3. Flexible Propeller Deformation

The flexible propeller deformations influence the open-water performance. The bend-twist coupling of flexi-
ble blades results in a reduction in the pitch angle. This reduction in pitch at the tip leads to tip unloading,
resulting in a decrease in thrust [101]. However, the deformation of flexible blades could also lead to camber
deformation, as found by Lagendijk [62]. An increase in camber can counteract the effect of reduced pitch
and enlarge the thrust. This section, therefore, examines the pitch and camber deformation to analyse their
respective contributions to the performance of flexible propellers.

Figure 6.3 presents radial plots of the pitch and camber deformation of both full-size and model-scaled
propellers for an advance ratio of 0.1. Figure 6.3a shows that the pitch ratio differs somewhat between the
model-scale and full-scale propellers. The full-size propeller exhibits a more pronounced reduction in pitch
ratio from mid-radius to the tip. The full-size propeller would therefore generate slightly less thrust compared
to the scaled propeller. Figure 6.3b also reveals a minor difference in camber deformation for this heavily
loaded case. The enhanced camber deformation observed for the model-scale propeller may contribute to
a minor increase in thrust relative to the full-scale case. Nevertheless, the open-water diagram in Figure 6.1
indicates that the full-size propeller produces more thrust, opposite to the effect expected from the propeller
deformations.
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(a) Radial plot depicting the pitch deformation of both propellers, including (b) Radial plot depicting the camber deformation of both propellers, including
the rigid C4-40 pitch ratio. the rigid C4-40 pitch ratio.

Figure 6.3: Radial plots depicting the deformation of both the 2-meter diameter propeller and the 0.25-meter diameter propeller,
including the rigid C4-40 pitch ratio for J equals 0.1.
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Figures 6.4 present radial plots of the pitch and camber deformation of both full-size and model-scaled pro-
pellers for a J-value of 0.6. This advance ratio is around the optimal working condition of the flexible propeller.
There is a minor difference in pitch deformation, as shown in Figure 6.4a. The full-size propeller depitches
more at the tip, leading to tip unloading. Figure 6.4b indicates no differences in camber deformation between
the two propellers. Thus, more thrust would be expected for the model scale propeller compared with the
full-size propeller. However, the open-water diagram in Figure 6.1 shows the opposite, indicating that the
scaled propeller generates less thrust than the full-size propeller.
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(a) Radial plot depicting the pitch deformation of both propellers, including (b) Radial plot depicting the camber deformation of both propellers, including
the rigid C4-40 pitch ratio. the rigid C4-40 pitch ratio.

Figure 6.4: Radial plots depicting the deformation of both the 2-meter diameter propeller and the 0.25-meter diameter propeller,
including the rigid C4-40 pitch ratio for J equals 0.6.

Appendix C includes the camber and pitch deformations
across the full range of tested advance ratios. There is a
clear trend in which camber deformation decreases with in-
creasing advance ratio, with no deformation detected for ad-
vance ratios near the most optimal working point. Heavily
loaded cases exhibit the most camber deformation, predom-
inantly located between r/R = 0.8 and 0.9. All advance ra-
tios result in a reduction in pitch ratio. At higher J-values,
this reduction is most significant at the tip, leading to tip un-
loading. For lower advance ratios, the location of maximum
pitch reduction moves from the tip to radial positions around
r/R = 0.85-0.9. This radial position aligns with the location
of the most pronounced camber deformation. The plots in-
dicate that under heavier loading, maximum deformation oc-
curs between the tip and r/R = 0.7, with the pitch ratio rising
again toward the tip. This behaviour is attributed to the heli-
cal geometry of the blade sections and the definitions of the
classical design variables of marine propeller blades. Fig-
ure 6.5 shows the total blade deformation of both J equals

B =01
B =038

0.1 and 0.8 for the propeller with a diameter of 0.25 meters.
The light blue coloured blade represents the deformed blade
for a J value of 0.1, while the dark blue blade illustrates the
blade deformation for an advance ratio of 0.8.

Figure 6.5: Blade deformation of the propeller with a
diameter of 0.25 meters. The light blue coloured
blade represents the deformed blade for a J value of
0.1, and the dark blue coloured blade for a J value
of 0.8.

6.3.4. Skin Friction Coefficient and Streamlines

The flexible propeller deformations show opposite behaviour compared to what is found in the open-water re-
sults of the 2-meter diameter and the 0.25-meter diameter propellers. To explain the difference in open-water
results between the two propellers, this section analyses the skin friction coefficient and streamlines over the
blade surfaces for both propellers. Equation 5.2 expresses the skin friction in a non-dimensional form.

Figures 6.6 illustrate the skin friction coefficient and streamlines over the blades’ suction and pressure
sides for an advance ratio of 0.8 for both full-size and model-scale propellers. The most considerable relative
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difference between the two propellers occurs at this advance ratio. The skin friction coefficient is higher on
both the pressure and suction sides of the model-scaled propeller compared to the propeller with a diameter
of 2 meters. The streamlines on the suction side of the propeller’s blade with a diameter of 2 meters exhibit
flow separation over almost the entire trailing edge, except for the tip region. In contrast, the model-scaled
propeller has far less trailing edge separation. The direction of the streamlines is more circumferential, and flow
separation only appears at the lower radii. The pressure side of the model-size blade exhibits a considerable
leading edge vortex, while in Figure 6.6a this vortex is not so clear on the pressure side of the full-scale
propeller. This vortex changes the load distribution over the blade [95], explaining the reduced thrust coefficient
of the model scaled propeller in comparison with the full-size propeller for this operational condition.

(a) Pressure side of the propeller  (b) Suction side of the propeller with  (c) Pressure side of the propeller  (d) Suction side of the propeller with
with D = 2[m)] D = 2[m)] with D = 0.25[m] D = 0.25[m]

Figure 6.6: Streamlines and skin friction coefficient on the suction side of the flexible C4-40 propeller blade tested at a J of 0.8.

6.4. Discussion

The open-water diagram of a flexible propeller shows noticeable differences between the full-size and model-
scale propellers, even with Reynolds-Cauchy similarity. Although minor variations in deformation are present,
the open-water results do not align with what would be expected based on these deformation patterns. Addi-
tionally, the skin friction coefficient and streamlines reveal distinct flow patterns over the blades for both cases.
For the higher advance ratios, the pressure side of the model-size blade exhibits a considerable leading-edge
vortex, while this is not the case for the full-scale propeller. This vortex influences the load distribution over
the blade [95], which in turn affects the performance results. This section examines additional aspects to
investigate the causes of these differences.

Appendix C includes the rigid open water performance of both propellers. This open-water diagram also
displays a difference in the results between the two different-sized propellers. The relative differences between
the rigid cases, also provided in Appendix C, are generally of the same order of magnitude as those observed
for the flexible propellers across most advance ratios. For all advance ratios, the differences between rigid
and flexible results remain within 1.5%, except for J equals 0.8, where the thrust coefficient differs by —-13.3%
between the rigid propellers and -25.2% between the model and full-scale flexible propellers. Given that the
rigid propellers are geometrically similar in non-dimensional terms, the observed performance discrepancies
must arise from differences in the fluid flow. The Reynolds number is equal for both cases, and no cavitation
models are used. Itis thus reasonable to attribute these discrepancies to numerical artefacts in the flow solver
rather than physical scale effects. These artefacts may also explain the minor differences observed in the de-
formation of the flexible propellers, despite the use of scaled material properties to obtain Cauchy similarity.

The ReFRESCO code executes in double-precision, so the impact of round-off errors is assumed negligi-
ble compared to the other errors [49]. The forces are converged for all instances, which Figures C.12-C.18 in
Appendix C demonstrate. Hence, the results are arguably the result of discretisation errors.

Two additional simulations have been conducted to investigate this statement. First, the deformed geome-
try resulting from the flexible full-scale propeller simulation is scaled to a model-sized propeller with a diameter
of 0.25 meters. This geometry is then tested in as a rigid configuration with an advance ratio of 0.7, using
the same revolution rate, advance velocity, and similar mesh size as the initial model-scale propeller case
for the same advance ratio. For J equals 0.7, the original full-scale propeller compared to the initial model
scale propeller exhibited more flow separation near the trailing edge on the suction side, similar to Figure
6.6b. Figure 6.7 illustrates the skin friction coefficient and streamlines over the blades’ suction and pressure
sides for this new case. By comparison, Figure 6.7b shows less trailing edge flow separation on the suction
side for the new case, with streamlines more aligned with those of the initial model-scale propeller. The figure
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indicates that the observed differences in results are not due to the pitch ratio differences between the flexible
propellers of Figure 6.4a. The relative difference in thrust coefficient of the initial propeller with D = 0.25 meter
compared to the propeller with D = 2 meter is +7.7%. This difference is -4.8% for the new case (with D =0.25
meter) compared to the initial model-scaled propeller. This decrease in K is in line with the minor difference
in tip pitch ratio between the propellers, as argued in Section 6.3.3. When comparing the torque coefficient,
the relative difference between the full-size and model propeller was +1.3%. This difference is equal to -3.6%
for the new propeller case compared to the initial model-scaled propeller.

The second additional simulation is similar. Yet, now the deformed geometry resulting from the flexible
model-scale case is upscaled to a propeller with a diameter of 2.0 meters. This geometry is tested again as a
rigid configuration with an advance ratio of 0.7, using the same revolution rate, advance velocity, and similar
mesh size as the initial full-size case for this advance ratio. Figure 6.7 illustrates the skin friction coefficient and
streamlines over the blades’ suction and pressure sides for this additional second case. Figure 6.7b shows
less trailing edge flow separation on the suction side for this case, again with streamlines more aligned as
those of the initial model-scale propeller. The grid refinement level of this second case and the initial case of
the 2-meter diameter propeller is equal. Therefore, similar flow behaviour would be expected if the used grid
was too coarse to capture certain flow behaviour. However, less trailing-edge flow separation is observed for
this additional test compared to the initial full-size case. The relative difference in thrust coefficient of the initial
propeller with D = 2.0 m compared to the propeller with D = 0.25 m is -7.2%. This difference is -9.6% for the
new case (with D = 2 [m]) compared to the initial 2-meter diameter propeller. As there is more tip unloading
for the initial full-size propeller, this extra decrease in K is opposite of what would be expected from the slight
discrepancy in pitch ratio. When comparing the torque coefficient, the relative difference was -1.2% and is
-3.5% for the new propeller case compared to the initial full-size case.

(a) Pressure side (b) Suction side (a) Pressure side (b) Suction side
Figure 6.7: Deformed propeller geometry resulting from the Figure 6.8: Deformed propeller geometry resulting from the
flexible full-size propeller simulation tested as a rigid propeller with flexible model-scale propeller simulation tested as a rigid propeller
D = 0.25 meters for J equals 0.7. D = 2 meters for J equals 0.7.

The results suggest that the observed inequalities arise from numerical rather than physical scaling effects.
The differences are arguably the result of discretisation errors, as the results are converged for all instances.
Meanwhile, the additional tests showed that the same grid refinements still obtain different results. Therefore,
the influence of the near-wall region is also researched. The average y*-value of the initial simulation of the
propeller with a diameter of 0.25 meters is 0.52, and that of the initial propeller with a diameter of 2 meters
is 0.90. Both cases are below one, assumed sufficient to accurately represent the near-wall region and the
shear-stresses [43]. However, the study of Eca et al. [23] concluded that with the use of the k-w SST model
of Menter [82], the numerical accuracy of a solution is more dependent on the magnitude of ' than on the
grid refinement level. A third additional case is conducted. The flexible propeller with a diameter of 2 meters
is simulated again for advance ratios of 0.6, 0.7 and 0.8, as these cases show the most significant percentage
differences. The average y'-value of these new simulations is 0.54. Figure 6.9 displays the open water
diagram of the advance ratios for these additional tests for the flexible propeller with a diameter of 2 meters,
as well as the initial results of the model scaled propeller for these three advance ratios. These new results
show no discrepancies with the model-scaled propeller results.
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Figure 6.9: Part of the open water diagram of the flexible Wageningen C4-40 propeller with a pitch ratio of 0.8 for two scales. The
results of the additional tests for the flexible propeller with a diameter of 2 meters are equal to those of the initial results of the

model-scaled propeller.

For J equals 0.6, there is a percentage difference of -0.3% in thrust coefficient. The torque coefficient is
-0.2% comparing the flexible model scale propeller with the flexible propeller with D=2 meters. For J equals
0.7, a percentage difference of +0.1% is found for the difference in thrust coefficient, and the torque coefficient
is the same when comparing the flexible model scale propeller with the flexible propeller with D=2 meters. For
J equals 0.8, these percentage differences are about -5% for the thrust coefficient, and -1% for the torque

coefficient.
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Figure 6.10: The percentage difference in K1, K, and n, comparing the flexible model-scale propeller to the flexible full-size
propeller for the three advance ratios of the additional tests.

Moreover, the deformation is identical between the two flexible propellers with different scales for both
advance ratios. Figure 6.11 shows the radial plot depicting the pitch deformation of both propellers for .J
equals 0.8, including the rigid C4-40 pitch ratio.
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Figure 6.11: Radial plots depicting the pitch deformation of both the additional test of the 2-meter diameter propeller and the 0.25-meter
diameter propeller, including the rigid C4-40 pitch ratio for J equals 0.8.

These results align with the conclusions of Eca et al. [23]. This study also found numerical errors larger
than 5% for y*-values ~ 1. The simulations highlight the sensitivity of the near-wall region when using the
k —w SST model. Based on these observations, the disparities cannot be ascribed to physical scaling effects
but rather to numerical artefacts. An equivalent Cauchy number, therefore, leads to an equal ratio between
bending and inertial forces, resulting in correctly scaled relative blade deformation across propeller sizes.
These findings indicate that Cauchy similarity can be applied in model testing to achieve comparable blade
deformation and performance.

6.5. Conclusion

In this chapter, FSI simulations were carried out for flexible propellers in open-water conditions to answer the
third sub-question of this thesis: 'What are the scale effects when satisfying the Cauchy number using a com-
bined Reynolds-Cauchy similarity approach for flexible marine propellers?’ The results for two different-sized
propellers are studied, including the open water diagram, the relative difference in results between the two
propellers, plots of the flexible propeller deformation, and visualisations of the skin-friction coefficient and flow
streamlines over the blades. All tests are performed with equal Reynolds number and Cauchy number.

The model-scaled propeller exhibits a relative difference in thrust and torque coefficient of less than 5%
compared to the full-scale propeller. This difference in performance results is attributed to disparities in fluid
flow, as equal deformation extents are found between both scales. Although initial simulations suggested
larger-scale effects in the open-water results, as well as distinct pitch and camber deformation extents, addi-
tional tests revealed that numerical rather than physical scaling effects caused these disparities. In particular,
the sensitivity to the y*-value using the k& — w SST turbulence model of Menter [82] can lead to numerical
errors larger than 5% for y™-values ~ 1. These numerical disparities alter the flow behaviour over the blades,
as seen in the streamlines and skin-friction distribution, which may in turn influence the flexible deformation.
Nevertheless, the simulations without these numerical artefacts confirm that Reynolds-Cauchy similarity for
flexible marine propellers leads to correctly scaled blade deformation for propellers of different sizes. The
elastic bending and inertial forces define the deformation extent, for which the Cauchy number, as defined in
Equation 6.1, ensures a consistent ratio between these forces.



Reynolds Effects on Flexible Propellers

The forces involved in the deformation of flexible propellers include viscous forces, making Reynolds number
considerations important. The Froude-Cauchy scaling and Mach scaling methods, presented in Chapter 6,
both underpredict the viscous force compared to the other forces. The Reynolds number influences the rigid
propeller open water performance, as concluded in Chapter 5. The inequality of Reynolds number during
flexible propeller tests could affect the deformation of flexible propellers, further impacting the open-water
characteristics. This chapter will answer the following sub-question:

‘What are the Reynolds number effects on the performance of flexible marine propellers?’

This chapter presents the open-water characteristics of the flexible propeller for various Reynolds numbers,
quantifying the effects of Reynolds numbers on flexible propellers in the numerical simulations. The first
section gives an overview of the input settings. The second section presents the various results, including
the open-water diagram, the relative difference in results between Reynolds numbers, plots of the flexible
propeller deformation, and visualisations of the streamlines and skin friction over the blade surface. The final
section provides a conclusion of this chapter.

7.1. Simulation Input

Numerical simulations are conducted to determine the flexible propeller performance for a range of positive
advance ratios in open-water conditions. These simulations are performed with the Wageningen C4-40 pro-
peller, with a pitch ratio of 0.8. Figure 4.5 shows the outline of this propeller. Table 4.1 lists the main propeller
properties. All simulations in this chapter are performed with a propeller diameter of 2 meters.

Equation 5.1 presents the formulation of the Reynolds number following the ITTC definition. The opera-
tional conditions of the various Reynolds numbers are determined using this definition. The revolution rate
and advance velocity are adjusted to ensure a constant Reynolds number over the range of advance ratios.
Table 5.1 lists the revolution rate and advance velocities for all Reynolds numbers for the tested range of
advance ratios.

All cases use an identical Cauchy number to have a fair comparison of deformation between varying
Reynolds numbers. The Cauchy number, as formulated in Equation 6.1, must yield equal values to ensure
equally scaled blade deformation for varying test conditions (using the same non-dimensional propeller ge-
ometry). The Cauchy number of these flexible simulations is based on the Cauchy number of the model
experiments of MARIN. The Young’s modulus is scaled accordingly to the revolution rate, while the structural
density is kept constant for all cases. Table 7.1 specifies the Young’s modulus for each Reynolds number
case.

Re[-] | 1.0%10° | 1.0%10°% | 1.0% 10" | 5.0% 107
E[Pa] | 2.0%10% | 2.0%10% | 2.0%10'° | 5.0 % 10!

Table 7.1: Young’'s modulus setting for the tested range of Reynolds numbers

7.2. Results

This section presents the test results for the flexible propellers across a range of Reynolds numbers. First,
the open-water diagram for the different Reynolds numbers is presented, followed by a discussion of the
percentage difference between thrust coefficient, torque coefficient, and open-water efficiency. Then, plots of
the propeller deformation are shown. The final section includes visualisations of the skin friction coefficient
and streamlines over the blades. The forces are converged for all instances, which Figures D.34-D.39 in
Appendix D demonstrate.

45
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7.2.1. Open Water Diagram

Figure 7.1 presents the open water characteristics for positive advance ratios for the range of Reynolds num-
bers tested. The open-water diagram displays the non-dimensional thrust coefficient, torque coefficient, and
open-water propeller efficiency, as defined in Equations 2.7, 2.8, and 2.10, respectively.

Figure 7.1 shows that the Reynolds number has a visible effect on both K+ and K. Larger Reynolds
numbers result in a higher thrust coefficient for a specific advance ratio. The variation of the torque coefficient
exhibits a trend opposite to that of the thrust coefficient. Higher Reynolds numbers result in a reduced torque
coefficient for a given advance ratio. The open-water efficiency is a combination of both and increases for
greater K1 values and smaller K¢ values. Therefore, a higher Reynolds number results in increased open-
water efficiency for the same advance ratio. These effects are similar to those of the rigid propeller results in
Figure 5.1.

The effect of the Reynolds number on the boundary layer is the same for the flexible cases as for the rigid
ones, given in Chapter 5. Because no transition model is included in the simulations, a fully turbulent flow
is solved for all Reynolds numbers. The turbulent boundary layer becomes thinner as the Reynolds number
increases. Thinner boundary layers lead to reduced boundary layer separation, enabling the propeller blades
to generate more lift while experiencing less drag.
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Figure 7.1: Open water diagram of the flexible Wageningen C4-40 propeller with a pitch ratio of 0.8 for a range of Reynolds numbers.
The thrust coefficient and open-water efficiency increase for higher Reynolds numbers, while the torque coefficient decreases as the
Reynolds number increases.

7.2.2. Percentage Difference Between Reynolds Numbers

An initial insight into the influence of Reynolds number on flexible propellers is obtained by comparing the
observed Reynolds effects in flexible simulations with those of the rigid reference case. This section quanti-
fies the magnitude of Reynolds effects by presenting the percentage differences across Reynolds numbers
for the flexible propeller. These results are then compared to the corresponding differences found in the rigid

propeller cases.

Figure 7.2 shows the percentage difference between the thrust coefficient, torque coefficient and open
water efficiency for the different Reynolds numbers. All percentage differences are relative to the results of
the Reynolds number equal to 5 10”. This Reynolds number corresponds to the expected Reynolds number
for full-scale propeller operation. Figure 7.2 presents the results for an advance ratio of 0.8, where the most
considerable difference between results is found. In line with the rigid results in Chapter 5 and the findings
of Rijpkema et al. [88], the Reynolds number effects are more pronounced at higher advance ratios. For
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lower advance ratios, a more extensive leading-edge vortex is observed, inducing flow reattachment and a
turbulent boundary layer, which results in better agreement between Reynolds number cases. The same be-
haviour holds for the flexible propeller results, causing the larger differences between Reynolds numbers for
higher advance. Appendix D presents the results of other advance ratios.

The relative difference of the torque coefficient between Re = 1 x 10° and Re = 5 % 107 equals 21.0% for
the advance ratio of 0.8. For the rigid simulation, this difference equals 14.8%. The relative difference be-
tween the Reynolds numbers for the flexible propeller at an advance ratio of 0.1 is 3.1%, whereas for the rigid
configuration, this difference is 1.1%. Across all advance ratios, the torque coefficient of the flexible propeller
decreases as the Reynolds number increases.

Figure 7.2 shows a difference in thrust coefficient of -13.0% when comparing Re = 1% 10° and Re = 5% 107.
This difference is -11.3% for the rigid simulations. The percentage difference of the flexible propeller tests for
the other advance ratios varies between -3.4% and -7.4% between Re = 1% 10° and Re = 5 x 107, which is of
similar magnitude compared to the rigid test results.

The open-water efficiency is a combination of trust and torque coefficient and will decrease for lower K
values and higher K values. For all J-values 7, increases for higher Reynolds numbers. The difference
in open water efficiency between Re = 1 x 10° and Re = 5 x 107 is -27.8% for the flexible propeller with .J
equals 0.8. For the rigid case, this difference is -22.5%. The increase in the percentage difference for the
flexible propellers is predominantly influenced by the higher relative difference of the torque coefficient for this
advance ratio. The smallest relative difference in open-water efficiency is found for J equals 0.1, excluding the
bollard pull condition for which the open water efficiency given in Equation 2.10 is always zero. The difference
in efficiency for .J equals 0.1 between Re = 1% 10° and Re = 5% 107 equals -2.9% for the flexible configuration,
and is -2.4% for the rigid case.
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Figure 7.2: The percentage difference across Reynolds numbers, relative to Re = 5 x 107 for K1, K¢ and n, for the flexible C4-40
propeller tested at an advance ratio of 0.8.

7.2.3. Flexible Propeller Deformation

This section analyses the flexible propeller deformation across the tested range of Reynolds numbers. The
bend-twist coupling of flexible blades can lead to a reduction of the pitch, resulting in a decrease in thrust [101].
However, camber deformation can counteract the effect of reduced pitch and enlarge the thrust as shown by
Lagendijk [62]. Although the percentage differences in thrust coefficient between the Reynolds number cases
of the flexible propeller are of the same order of magnitude as the rigid results, the deformed blade geometry
could lead to similar thrust coefficients for both rigid and flexible configurations. It is therefore important to
analyse the blade deformation to evaluate whether Reynolds effects influence the deformation behaviour of
flexible propellers.
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Figure 7.3 presents radial plots of the pitch and camber deformation of the tested Reynolds numbers for an
advance ratio of 0.1. Figure 7.3b reveals a minor difference in camber deformation for the range of Reynolds
numbers, as the camber deformation increases with the Reynolds number. This camber deformation should
result in a slightly induced thrust force as the Reynolds number increases. Figure 7.3a shows that the pitch ra-
tio differs as well for the various Reynolds numbers. The blades exhibit a more pronounced reduction in pitch
ratio between the mid-radius and the tip as the Reynolds number increases. Since pitch reduction reduces
blade loading, this effect can counteract the influence of camber deformation. The flexible propeller results
indicate a smaller variation in K1 across Reynolds numbers than the rigid ones (which maintain a constant
pitch ratio distribution). For the advance ratio of 0.1, the rigid cases show a thrust coefficient difference of
-4.9% between Re = 1 x 10° and Re = 5 * 107, whereas the flexible cases show a variation of -3.5%. The
results thus confirm that the pitch reduction counteracts the camber effect and the flexibility of the blades leads
to a smaller variation in K across Reynolds numbers for this advance ratio.
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Figure 7.3: Radial plots of the deformation of the flexible C4-40 propeller tested for a range of Reynolds numbers for J equals 0.1.

Figure 7.4 presents radial plots of the pitch and rake deformation of the blades for the range of Reynolds
numbers for a J-value of 0.6. Figure 7.4a shows that the pitch ratio near the tip changes for the various
Reynolds numbers. The lowest Reynolds number case has the most tip unloading, and the pitch ratio at the
tip rises with increasing Reynolds number. The flexible test with the lowest Reynolds number would generate
relatively less thrust compared to the case with the highest Reynolds number. Therefore, the difference
between Re = 1x10° and Re = 5107 would enlarge for the flexible configurations compared to the rigid cases
where the blades are geometrically equal. This reasoning aligns with the results, although the difference is
minor. The flexible cases indicate a difference of -11% between the lowest and highest Reynolds numbers,
whereas this difference is -10.8% for the rigid simulations. Figure 7.4b visualises the rake deformation of the
blades. In addition to the pitch deformation, the Reynolds number influences the rake deformation at the tip
for J equals 0.6. This rake deformation slightly increases with the increasing Reynolds number. However,
rake deformation is presumed not to affect the thrust results [62]. All Reynolds numbers reveal equal camber
deformation for an advance ratio of 0.6.
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Figure 7.4: Radial plots of the deformation of the flexible C4-40 propeller tested for a range of Reynolds numbers for J equals 0.6.
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Appendix D includes the radial plots of the pitch and camber deformation for the entire range of advance
ratios tested. For advance ratios below 0.4, the blades exhibit a more pronounced reduction in pitch ratio
between the mid-radius and the tip as the Reynolds number increases. For advance ratios above 0.4, the
pitch deformation shifts towards the tip. The lowest Reynolds number case has the most tip unloading for
these advance ratios, and the pitch ratio rises with increasing Reynolds number. Camber deformation is
affected by the Reynolds number only for advance ratios below 0.4, while no differences are found for higher
values of J. These results show that the deformation extent of flexible propellers is sensitive to the Reynolds
number, thereby indicating a sensitivity to viscous forces. The function f in the representation of the Cauchy
number derived in Equation 3.10 should include the Reynolds number, as the results prove that this number
is also essential for the correct scaling of the relative blade deformation.

7.2.4. SKkin Friction Coefficient and Streamlines

To explain the difference in open-water results between Reynolds numbers as well as rigid and flexible pro-
pellers, this section analyses the skin friction coefficient and streamlines over the propeller blade surfaces.
Equation 5.2 expresses the skin friction in a non-dimensional form.

Figures 5.3 and 5.4 illustrate the skin friction coefficient and streamlines over the flexible propeller blades’
suction and pressure side for the tested Reynolds numbers for a J-value of 0.1. A decrease in the skin fric-
tion coefficient is visible with an increase in the Reynolds number on both the pressure and suction sides.
Although this is similar to the rigid cases, the decrease in skin friction coefficient is more pronounced for the
flexible propeller blades, which explains that the relative difference in torque coefficient between Reynolds
numbers is higher for the flexible configuration. The streamlines become more circumferentially directed with
increasing Reynolds numbers for both sides. For all Reynolds numbers, the streamlines show flow separation
near the trailing edge on the blade’s suction side. The separation region near the trailing edge decreases in
size, similar to that for the rigid blades, as the radius decreases from higher to lower values on the suction side.
Figure 7.5 reveals leading-edge vortices on the suction side of the flexible blades. The radii at which these vor-
tices start to form are higher compared to the rigid cases, which can be attributed to the propeller deformation.

(a) Re = 1 % 10° (b) Re = 1 % 10° () Re = 1 %107 (d) Re = 5 % 107

Figure 7.5: Streamlines and skin friction coefficient on the suction side of the flexible C4-40 propeller blade tested at a J of 0.1. For
increasing Reynolds numbers, the skin friction coefficient decreases slightly. The streamlines are more circumferentially directed for
higher Reynolds numbers.

(@) Re = 1 % 10° (b) Re =1 % 108 () Re =1 %107 (d) Re =5 % 107

Figure 7.6: Streamlines and skin friction coefficient on the pressure side of the flexible C4-40 propeller blade tested at a J of 0.1. For
increasing Reynolds numbers, the skin friction coefficient decreases slightly. The streamlines are more circumferentially directed for
higher Reynolds numbers.
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Figures 5.5 and 5.6 illustrate the skin friction coefficient and streamlines over the propeller blades’ suction
and pressure side for a J-value of 0.8. A decrease in Cr is visible, and the streamlines become more circum-
ferentially directed with an increase in the Reynolds number on both the pressure and suction sides. For Re
= 1x10° and 1106, there is some flow separation near the trailing edge on the suction side. Specially for Re
= 1%10°, this separation region is smaller than that for the rigid cases tested with the same Reynolds numbers,
indicating that deformation lead to a better attached flow over the blade. The flexible propeller blades exhibit
a clear leading-edge vortex for each Reynolds number case on the pressure side of the blades. The size of
this vortex decreases as the radial positions at which it forms increase with the Reynolds number.

(a) Re = 1 % 10° (b) Re = 1 106 (c) Re = 1 % 107 (d) Re = 5 % 107

Figure 7.7: Streamlines and skin friction coefficient on the suction side of the flexible C4-40 propeller blade tested at a J of 0.8. For
increasing Reynolds numbers, the skin friction coefficient decreases slightly. The streamlines are more circumferentially directed for
higher Reynolds numbers.

(@) Re = 1% 10° (b) Re = 1  10° (€) Re = 1% 107 (d) Re = 5« 107

Figure 7.8: Streamlines and skin friction coefficient on the pressure side of the flexible C4-40 propeller blade tested at a J of 0.8. For
increasing Reynolds numbers, the skin friction coefficient decreases slightly. The streamlines are more circumferentially directed for
higher Reynolds numbers.

For higher Reynolds numbers, the boundary layer becomes thinner and has more energy [59], which
explains that the boundary-layer shows a more circumferentially directed flow for higher Reynolds numbers.
Although this is similar to the rigid blades, the streamlines over the flexible blades are somewhat different from
those over the rigid ones. Also, the skin friction coefficient shows a more pronounced difference between
Reynolds numbers for the flexible propeller blades. Both are associated with the deformation of the flexible
blades. The streamlines on the flexible blades tested at higher advance ratios exhibit smaller flow separation
regions than those of the rigid blades tested at the same Reynolds numbers, indicating that deformation can
lead to a better attached flow over the blade. Appendix D shows the blade figures of all tested advance ratios.

7.3. Conclusion

In this chapter, FSI simulations were carried out for flexible propellers in open-water conditions to answer the
fourth sub-question of this thesis: 'What are the Reynolds number effects on the performance of flexible ma-
rine propellers?’ The performance characteristics, deformation extent and boundary-layer flow are analysed
for a range of Reynolds numbers, from minimal model scale Reynolds number (Re = 1 % 10°) up to full-scale
(Re = 5%107) Reynolds numbers. The flow solver is implemented with the k —w SST turbulence model without
the use of a transition model.
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The results show that the deformation extent of flexible propellers is sensitive to viscous forces. Thus,
the non-dimensional number controlling the deformation extent is also a function of the Reynolds number, as
this number is observed to be essential for the correct scaling of the relative blade deformation. For high pro-
peller loadings, i.e. low advance ratios, the flexible blades exhibit slightly enhanced camber deformation as
well as more pronounced reduction in pitch ratio between the mid-radius and the tip as the Reynolds number
increases. The pitch reduction counteracts the camber deformation, and the flexibility of the blades leads to
a smaller variation in K1 across Reynolds numbers compared to the rigid results. For advance ratios above
0.4, the camber deformation is unaffected by the Reynolds number. In contrast, pitch deformation, as well as
rake deformation, is observed at the propeller tip for these advance ratios. Lower Reynolds numbers lead to
more tip unloading, and the flexibility of the blades leads to a minor increase in percentage difference in K1
across Reynolds numbers compared to the rigid cases.

The deformation of flexible propellers leads to a better attached flow over the blades and influences the
skin friction and streamlines on the blade surface. For higher propeller loadings, the skin friction coefficient
varies more strongly for the flexible propeller blades than for the rigid ones, explaining the larger relative differ-
ence found in the torque coefficient between Reynolds numbers for the flexible blades. Also, the leading-edge
vortices on the suction side of the flexible blades start to form at higher radii compared to the rigid cases. Es-
pecially for the higher advance ratios, the flow separation region near the trailing edge on the suction side is
smaller for the flexible blades due to the deformation, compared to the rigid cases.

Those effects have an impact on the open-water characteristics of the flexible C4-40 propeller. The varia-
tion of the Reynolds number shows an increase in the thrust coefficient and a decrease in the torque coefficient
with increasing Reynolds number, similar to the rigid open water results. The effect on K1 between Re = 1x10°
and Re = 5% 107 lies between -3.4 and -13.0%, depending on the operating condition. This difference between
Re =1%10°and Re = 5% 107 on K, is between 3.1 and 21.0%. The open-water efficiency is a combination
of both and increases for higher Reynolds numbers. The relative difference between Re = 1 % 10° and Re
= 5% 107 on 7, lies for the flexible C4-40 propeller between -2.9 and -27.8% depending on the advance ratio.



Influence of Material Characteristics

The scaling methods pose challenges for model testing flexible marine propellers. Reynolds number similarity
is impossible to achieve in towing tanks and cavitation tunnels. Mach scaling restricts the ability to perform
fast vessel testing in most test facilities. Testing flexible model propellers using Froude-Cauchy similarity has
the advantage of equally scaled inertial, gravitational and elastic forces, but gives challenges in finding an
appropriate material [101]. A composite lay-up must be used, effectively reducing the Young’s modulus by
the scale factor while keeping the material density and Poisson ratio identical to those of the full-scale pro-
peller material. Maljaars [70] concluded that the structural response of a composite Seiun-Maru propeller is
quasi-static. In this regime, the blade’s stiffness dominates the structural response, rather than its inertia due
to mass. This could allow the use of a broader range of material properties to achieve the same deformation,
making it easier to find a suitable material for model tests. Therefore, this chapter will answer the following
question:

‘'What is the influence of structural density on the steady and dynamic response of a flexible marine pro-
peller?’

The first section explains the various structural response regimes and discusses their influence on the
deformation behaviour of the propeller blades. Next, the input settings for the performed simulations are
provided. The third section presents the results of the simulations. The first part of this section analyses
the steady-state response, including the open-water diagram, the relative difference between the open-water
results, and the steady-state deformation of the flexible propeller blades. The second part presents the results
regarding the dynamic behaviour of the blades. The final section provides the answer to the last sub-question
and highlights the main conclusions of this chapter.

8.1. Structural Response Regime

The structural response of a propeller blade is the result of the ratio between excitation frequency, represented
by w, and natural frequency, symbolised by w,,. The natural frequency is the frequency at which a system
vibrates after an initial disturbance by an impulsive force [87] and is obtained by:

Wp =1/ — (8.1)
m

In this equation, m is the mass and k the stiffness of the structure. The corresponding natural mode is
the motion of the system at this natural frequency. There are n natural frequencies, each associated with its
own mode shape, for a system having n degrees of freedom [87]. The natural frequency of a submerged
structure is also affected by the presence of the water. The water causes an effect known as added mass,
as the fluid works as an increase in effective mass of the system caused by the fluid motion around the
object [59]. The added mass influences the wet natural frequency of the blades, symbolised by wy¢t. There
is an additional hydrodynamic force, symbolised by fy, resulting from the fluid acting on the structure. The
additional hydrodynamic force depends upon the displacements, velocities and accelerations of the propeller.

From classical vibration theory, this hydrodynamic force vector is defined as:

fu = —M,i — Cpi — Kpx (8.2)

In this equation, the matrices M, and C, are the added mass and damping matrices, respectively. The
stiffness matrix, denoted by K,,, depends upon the immersion of the propeller. This matrix is zero and does
not need to be considered further for a fully submerged propeller [12].

52
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Depending on the ratio between excitation frequency and (wet) natural frequency, three regimes can de-
scribe the structural response of a linear mass-spring-damper system with oscillatory excitation [70]:

* A quasi-static regime, when w << wy*. Stiffness dominates the structural response.
« A resonance regime, when w = wy**. Damping dominates the structural response.
+ A dynamic regime, when w >> w@¢!. Mass dominates the structural response.

The ratio of the frequency of the dominant blade mode and the excitation frequency defines the structural
response of a propeller blade. This ratio is known as the structural frequency ratio and is equal to:

w
wet
Wo

(8.3)

In general, the fundamental natural frequency of a propeller blade is the frequency of the first bending
mode. The code Aster [26] structural solver generates the dry natural frequencies of the blades. The wet
natural frequency also depends on the added mass. For metal propellers, the wet natural frequency is gener-
ally 62-64% of the dry value [12]. Fibre-reinforced plastics have a lower material density than metals. Hence,
the fluid added mass has a more pronounced effect on the wet natural frequencies of composite propellers
than on those of metal propellers. The rotational frequency is the lowest excitation frequency and is equal to
w = 27n [70].

Maljaars [70] concluded that the structural response of a composite Seiun-Maru propeller is quasi-static.
In this regime, the first bending mode and thus the blade’s stiffness dominate the structural response. The
Seiun-Maru propeller has relatively low blade frequencies due to the heavily skewed blades. Blade geometries
with less skew probably have an even lower structural frequency ratio and are, ergo, also stiffness-dominated.
Maljaars’ study used different modelling choices for the development of a BEM-FEM coupled solver for non-
uniform inflow. Although the study concluded that the structural response of flexible propellers is dominated
by stiffness, a quasi-static FEM model of the structural response of flexible propellers is not recommended,
as dynamic effects cannot be neglected. The fluid-added mass and hydrodynamic damping contributions are
not negligible. Still, a reasonable hydro-elastic response is obtained, using closed-form expressions for the
fluid-added mass and hydrodynamic damping terms in the study. Consequences of modelling errors in the
fluid added mass are relatively small, confirming that the structural response of flexible propellers is stiffness-
dominated.

8.2. Simulation Input

Numerical simulations are performed to obtain the open-water performance, steady-state deformation and dy-
namic behaviour for a range of positive advance ratios for various material densities. The influence of material
properties is investigated using Reynolds similarity, ensuring that Reynolds number effects do not influence
the results. The Young’s modulus is equal to 1.28 % 10'° for each case. The impact of the structural mass is
assessed by testing various material densities. Ideally, the structural density must follow the same scaling
relation as the fluid density. The density of fluid is generally considered comparable between freshwater and
seawater. Hence, density is assumed to be equal between the model and full-scale, resulting in a scaling
factor of 1. Accordingly, the material density should also follow this factor and remain 1. A density ratio can
express both densities as a single non-dimensional parameter and is used in place of the absolute density
values. This ratio is defined as: p5/p;. Glass-epoxy composite material has a typical density of 1700 kg/m3
[70], so for a composite marine propeller operating in water, the structure-to-fluid density ratio is about 1.7.
Table 8.1 lists the density ratios of the simulations in this chapter, which change with a factor /2. Itis assumed
that a possible model-scale propeller material can be found within this tested range.

The simulations are performed with a uniform inflow, which, by definition, implies steady loading. The FSI
simulations converge to a steady-state solution and a steady deformation of all the blades. The open-water
performance of the flexible propellers and steady deformation are analysed using these converged solutions.
The FSI simulations use a strongly coupled URANS-FEM approach. This strongly coupled approach leads
to a converged solution for each time step between fluid flow and structural displacement [75]. The next time
step uses the position and velocity of the structure as new initial conditions. Using this approach, the solution
of each time step has a physical meaning, even though it is converging to the steady-state solution. The
dynamic behaviour of the blades is analysed during the first time steps of the simulation, when the forces are
still oscillating towards a steady-state solution.
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The Code Aster [26] structural solver provides the modes and dry natural frequencies of the propeller
blades. The dry natural frequency of a system scales with /1/m, following from Equation 8.1. The modal
fluid added mass influences the wet natural frequency. Determining the added mass of complex geometries
and accounting for non-linear effects, such as fluid flow separation, is challenging, as these effects significantly
impact added mass [24, 85]. The coupled URANS-FEM FSI simulation accounts for the interaction between
fluid flow and structural velocities and acceleration, including added mass effects.

This chapter analyses two propeller geometries. The steady-state simulations use the Wageningen C4-40
propeller, with a pitch ratio of 0.8. Figure 4.5 shows the outline of this propeller. Table 4.1 lists the main
propeller properties for the C4-40 propeller. All the studied propellers in this chapter have a diameter of 0.25
meters. The C4-40 propeller has a considerable skew angle. Large skew is often used in flexible propellers
[34, 62, 80], as it results in a larger de-pitching moment when loaded [71]. However, the bend-twist coupling
and helical geometry of the blades complicate an analytical analysis of the dynamic behaviour. For blades
with very high skew, rake or made of anisotropic material, the first mode may not be simple bending, but a
combination of bending and twisting [100]. Therefore, the dynamic behaviour of a blade without skew and
rake is analysed, along with the C4-40 propeller.

ps/pr -] |12 17 24 34
pr [kg/m®] | 998 998 998 998
ps [kg/m?3] | 1200 1700 2400 3400

Table 8.1: The density ratios of each case

8.3. Results

This section presents the results of flexible propeller simulations to examine the influence of the density ratio
on the steady and dynamic behaviour of the blades. First, the steady-state results are presented, including
the open-water diagram, the relative difference between the various cases, and plots of the deformation. Only
the density ratio is adjusted, so the grid refinement and y*-values are identical for all the cases. The second
section presents the findings on the dynamic behaviour of the blades. In the time domain, the forces oscillate
towards a converged solution. The dynamic behaviour is analysed in the frequency domain using a Fast
Fourier transform.

8.3.1. Steady-State Results

The simulations assume a uniform fluid inflow to determine the open-water performance. The open-water
performance of flexible propellers depends on the amplitude of the bending deformation, which is expressed
in Equation 3.10. Each steady case is run over 1080 degrees. For all simulations, this was sufficient to
achieve a steady-state solution, where forces and deformations remain constant between time steps. The
convergence of the thrust force is demonstrated in Figures E.1-E.8 in Appendix E, which show the thrust
coefficient over the time steps for all advance ratios.

Open Water Diagram

Figure 8.1 presents the open water characteristics for the positive advance ratios for the tested range of density
ratios. The open-water diagram displays the non-dimensional thrust coefficient, torque coefficient, and open-
water propeller efficiency, as defined in Equations 2.7, 2.8, and 2.10, respectively. Figure 8.1 reveals no
difference in thrust coefficient, torque coefficient, and open-water propeller efficiency for all density ratios.
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Figure 8.1: Open water diagram of the flexible Wageningen C4-40 propeller with a pitch ratio of 0.8 for a range of structural-to-fluid

density ratios.

Percentage Difference Between Material Densities
This section quantifies the effect of material density on the steady-state results by presenting the percentage
differences between the open-water results across density ratios for the flexible propeller tests. Figure 8.2
shows the percentage difference between the thrust coefficient, torque coefficient and open water propeller
efficiency for an advance ratio of 0.5. All percentage differences are relative to the results of a density ratio
of 1.7, as this is a typical density ratio for glass-epoxy composite materials operating in water. Figure 8.2
shows that the relative difference between the different cases is minimal. For all advanced ratios, the results
are within £0.1%. Additionally, the results show no systematic variation with changes in the structural-to-fluid

density ratio.
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Figure 8.2: The percentage difference across structural-to-fluid density ratios, relative to a density ratio of 1.7 for K, K¢q and 7, for
the flexible C4-40 propeller tested at an advance ratio of 0.5.
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Flexible Propeller Deformation

This section analyses the flexible propeller deformation across the tested range of density ratios. Figure 8.3
presents radial plots of the pitch and camber deformation of the tested density ratios for an advance ratio of
0.5. Both Figure 8.3a and Figure 8.3b reveal no difference in camber and pitch deformation for the various
density ratios. All lines are on top of each other. The blade deformation is equal for the tested range of mate-
rial densities for all other advance ratios as well.
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Figure 8.3: Radial plots depicting the deformation of the flexible C4-40 propeller tested for a range of structural-to-fluid density ratios for
J equals 0.5.

The results align with what is expected from the conclusions of Maljaars [70]. For the steady deformation
of flexible marine propellers, a quasi-static structural response is observed. The material stiffness dominates
the deformation and consequently the open-water performance. The ratio of bending frequency and revolution
rate, as expressed in Equation 3.9, depends on the ratio of the bending force and hydrodynamic and propeller
inertial forces. However, these results show that within the tested range of density ratios, the structural density
does not affect the steady-state deformation. As a result, correctly scaling the propeller inertial force can
be disregarded when determining the correct steady-state deformation. The contribution of fluid damping
depends on the system’s inertia and only affects the rate at which the system approaches equilibrium [77].
For this reason, it is excluded from the non-dimensional parameter used to control the extent of steady-state
deformation. The steady deformation extent thus depends on the ratio of bending force to hydrodynamic
inertial force and is a function of the viscous force (as already concluded in Chapter 7), which leads to the
following representation of the Cauchy number:

E
m.}f(Re) (8.4)

This form can be used to control the correct relative steady state deformation extent. If a suitable material
for open-water model testing is unavailable, proper scaling of the stiffness is essential. In contrast, scaling
the material density is shown to be less critical, as the influence of the material-to-fluid density ratio on the
deformation and resulting open-water performance is negligible.

Casteady =

8.3.2. Dynamic Behaviour

For the open-water tests, with uniform inflow conditions, the simulations converge to a steady-state solution
where the deformation of all blades is equal. For in-behind ship conditions, or generally cases with non-uniform
inflow, the flexible propeller deforms to variations in fluid loading [62]. The deformation changes during rev-
olution and depend on the rotational position of the blade. The non-uniform flow conditions complicate the
hydro-elastic analyses [68]. In addition to the load variation of the wake field, the vibrational response of the
propeller also affects the overall vibrational behaviour of the blade [12]. Both factors cause changes in the
angle of attack, to which a flexible propeller will deform during a revolution. Relatively similar blade defor-
mation during a revolution can be obtained if the bending frequency is scaled with the propeller’s revolution
rate, as derived in Equation 3.9. This form depends on the propeller inertial force and thus structural density.
The structural dynamics influence the blade deformation and loading, thus affecting the propeller performance.

The effective mass of a linear mass-spring-damper system with oscillatory excitation influences the struc-
tural response in the dynamic regime [70]. The effective mass is a combination of both structural mass and
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added mass for submerged structures. For a propeller vibrating in a fluid, the added mass and damping co-
efficients define the hydrodynamic forces and moments acting on the propeller. These are important for the
evaluation of the vibration behaviours of submerged propellers [12]. Structural vibrations are an undesirable
effect for marine propellers. Vibrations can cause unsteady thrust generation and produce strong hydrody-
namic pressure fluctuations [94], which in turn lead to cavitation and underwater radiated noise. Inappropriate
material scaling can affect the material behaviour [100], leading to incorrect conclusions about the structural
vibrations of the propeller. The blade velocities and accelerations lead to nonzero hydrodynamic forces, as
defined in Equation 8.2, which contribute to the system’s equation of motion. The coupling between the struc-
tural blade vibration velocities and accelerations and fluid flow [68] affects the fluid-structure interaction.

Fast Fourier Transform

The relatively low stiffness of composites results in a hydroelastic response of composite propellers. The
blade deformations influence the propeller loading and vice versa. Hence, the hydro-elastic response can
be obtained by measuring the change in thrust and torque values [69]. The thrust forces exhibit oscillatory
behaviour as the simulation converges towards a steady-state solution. The force signal is analysed in the
frequency domain to analyse the blades’ dynamic behaviour. This study uses a Fast Fourier transform, ab-
breviated as FFT. The Fast Fourier transform is a mathematical tool that converts a signal captured in the
time domain to the frequency domain [44]. Figure 8.4 illustrates the perspectives of both domains. A signal in
the time domain can be represented as a function of time h(t) and is decomposed into a series of harmonics.
These harmonics appear in the frequency domain, which can be represented by a function of frequency H(w).
The two representations of the functions can transfer back and forth through the Fourier transform equations.
The FFT uses the force of one blade in the x-direction over time and converts this signal to the frequency
domain. The signal of an advance ratio of 0.1 is analysed, as the heavier-loaded conditions showed more
oscillations in the force signal. Figures E.2-E.7 in Appendix E present the thrust coefficient over the time steps
for the steady-state simulations, which demonstrate a larger force overshoot for the lower advance ratios. The
obtained force harmonics provide insight into the wet natural frequency of a blade and the effect of the density
ratio on the dynamic response.
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Figure 8.4: Perspectives of the time domain, which can be represented as a function of time h(t) and the frequency domain,
represented by a function of frequency H(w). The two representations of the functions can transfer back and forth through the Fourier
transform equations. From Chen [16]

Analytical Solution for Free Vibration of Submerged Plates

An analytical representation of the free vibration of submerged plates is given by Newman [83] and Brennen
[7]. The added mass formulas used in the analytical model are based on potential flow assumptions and strip
theory. In general, added-mass effects depend on the nature of the vibrational mode, specifically whether it
is bending, twisting or a combination of both. For pure bending, the analytical added mass term, m,, per unit
length is equal to:

T
me =~ prbQ (8.5)

The total effective mass moment of inertia influences the vibrational mode for pure twisting. The analytical
added mass moment of inertia, I, ,, per unit length is represented by:
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T
Iz,a = pfﬁSbZl (86)

The width b in both Equation 8.5 and 8.6 equals, for this study, the chord length of the propeller blade at
r/R=0.7.

From Equation 8.5 and 8.6, a simplified equation for the wet-to-dry frequency ratio follows. For pure
bending, this is:

Wywet o mg _ <1 + ’7Tpfb> (87)

Wary ~Vms+m, 4 pst

While for pure twisting, this is:

Wwet I, s 3 Pf b b’
— ; = (142287 8.8
Wry Ins+1pa ( + 32 ps t b2 + t2 (8.8)

In Equations 8.7 and 8.8, ¢ represents the thickness; for this analysis, the propeller thickness at r/R = 0.7.
Both the C4-40 propeller and the tested propeller without skew have the same chord ratio and thickness at this
radial position. The analytical results are consequently the same for both propeller blades. Tables 8.2a and
8.2b summarise the analytical values of the wet-to-dry frequency ratio and the added-mass-to-structural-mass
ratio for pure bending and pure torsion, respectively.

ps/ps - 12 17 24 34 ps/ps [ 12 17 24 34

Wwet /@ary |—] | 025 029 0.34 0.40 Wwet /Wary |—] | 0.39 045 051 058

Ma/ms |- %5 M 75 53 Lo/l..[-] |56 39 28 20
(a) Analytical results for pure bending (b) Analytical results for pure twisting

Table 8.2: The analytical values for the wet-to-dry frequency ratio and added-mass-to-structural-mass ratio for pure bending and
twisting. The analytical representation is given by Brennen [7] and Newman [83]

Propeller Without Skew

Figure 8.5 shows the force signal in the frequency domain for the tested range of density ratios for the pro-
peller with zero skew angle, from which the wet natural frequency of the blade follows. The peaks of the first
frequency are very close to each other. Specifically for the three lowest density ratios, the first wet natural
frequency of the blade is about equal to 126 Hz. The highest tested density ratio has a slightly higher force
frequency, which is equal to 132 Hz. Table 8.3 lists the wet and dry frequencies, the wet-to-dry frequency ratio
and the added-mass-to-structural mass ratio obtained for the blade without skew angle.

ps/0r -] 12 17 24 34
Wary [H7] 500.8 4211 3541 297.8
Wet [H2] 1264 1264 1255 1325
Wwet/wary -] | 025 030 035  0.44
me/ms -] | 147 1041 70 41

Table 8.3: The wet-to-dry frequency ratio and the added-mass-to-structural mass ratio for a range of density ratios for the skewless
propeller following from the simulation results
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Figure 8.5: The propeller thrust force for a range of density ratios converted to the frequency domain. The signal is for the flexible
propeller with zero skew angle and with a pitch ratio of 0.8.

The numerical results in Table 8.3 of the three lowest density ratios are about equal to the analytically
obtained results for pure bending listed in Table 8.2a. There is a slight difference in results for a density ratio
of 3.4. Figure 8.6 visualises these results. Figure 8.6a shows the analytical results obtained for the wet-to-dry
frequency ratio of pure bending and pure torsion, as well as the results of the wet-to-dry frequency ratio for the
propeller with zero skew angle. Figure 8.6b presents the analytical results obtained for the added-mass-to-
structural mass ratio of pure bending and pure torsion, as well as the results of the added-mass-to-structural
mass ratio for this zero skew propeller. The results of Table 8.3 demonstrate that scaling the density ratio with
a factor /2, the dry natural frequency increases with a factor v/2. Ergo, when scaling the density ratio by a
factor ), it results in both the wet-to-dry frequency ratio and the added-mass-to-structural-mass ratio scaling

by v/\.

For the skewless propeller, the first mode is pure bending, which is confirmed by the close match between
the numerical results and the analytical formulas provided by Newman [83] and Brennen [7]. The wet natural
frequency remains constant across a range of density ratios from 1.2 to 2.4, whereas the first wet natural
frequency of a density ratio of 3.4 exhibits a minor difference. Glass-epoxy composite material has a typical
density of 1700 kg/m? [70] and these results indicate that the structural density of materials used for model-
sized propellers can differ at least 30% from the assumed full-size material density to obtain the same wet
natural frequency in case the first mode is pure bending.

—-@- Analytical pure bending A —@- Analytical pure bending
14 4 —&=- Analytical pure twisting
—— Propeller without skew

0.55 | —#&= Analytical pure twisting
—— Propeller without skew
0.50 1

0.45 1

0.40 1

Wyet/Wary [—]
malms [=]

0.35 1

0.30 1

0.25 A

15 2.0 2.5 3.0 35 15 2.0 2.5 3.0 35
pslpr =1 pslpr (-1

(a) The ratio wet /wary for a range of density ratios. (b) The ratio m, /m for a range of density ratios.

Figure 8.6: The ratio wyet/wqry and mq /ms for a range of density ratios for flexible propeller blades with zero skew angle. Analytical
solutions for pure bending and twisting are compared with the numerical results of the flexible zero-skew propeller. The propeller results
align well with the pure bending case, with only a minor discrepancy at the highest density ratio.

C4-40 Propeller
The C4-40 propeller blade has a considerable skew angle. For propeller blades with very high skew (or with
high rake and anisotropic material properties), the first mode may not be simple bending, but a combination
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of bending and twisting [100, 52]. Figure 8.7 shows the force signal in the frequency domain for the tested
range of density ratios for the C4-40 propeller. The first force frequencies decrease with increasing density
ratio. At a density ratio of 1.2, the first peak occurs at 188 Hz. For a ratio of 1.7, the frequency drops to 173
Hz, and further to 145 Hz for a ratio of 2.4. At the highest tested ratio of 3.4, the first peak is at 102 Hz. Table
8.4 lists the dry and wet natural frequencies for the tested range of density ratios, as well as the wet-to-dry
frequency ratio and the added-mass-to-structural mass ratio.

ps/pf =] 1.2 1.7 24 34
Wary [HZ] 4445 3735 3143 2641
Wuwet [H2] 188.2 1732 1448 101.5
Wyet/wary [—] | 042 046 046  0.38
Ma/Ms [—] 4.6 3.7 3.4 5.8

Table 8.4: The wet-to-dry frequency ratio and the added-mass-to-structural mass ratio for a range of density ratios for the C4-40
propeller following from the simulation results

Force of blade 1 in the frequency domain
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Figure 8.7: The propeller thrust force for a range of density ratios converted to the frequency domain. The signal is for the flexible
Wageningen C4-40 propeller with a pitch ratio of 0.8.

The results in Table 8.4 are unequal to the results for pure bending or pure twisting in Table 8.2a and 8.2b,
respectively. Hence, the first mode does not correspond to a pure bending or pure torsion mode, but instead
is a combination of bending and twisting. This result is in line with what would be expected for this propeller
with considerable skew as mentioned by Young [100]. Figure 8.8 visualises the ratio wye;/wqiry and mg/m
for a range of density ratios for the flexible Wageningen C4-40 propeller with a pitch ratio of 0.8. Figure 8.8a
shows the analytical results obtained for the wet-to-dry frequency ratio of pure bending and pure torsion, as
well as the results of the wet-to-dry frequency ratio for the flexible C4-40 propeller. Both the analytical results
for pure bending and pure twisting show an increase in the wet-to-dry frequency ratio with increasing density
ratio. The results of the flexible C4-40 propeller do not show this increase but display a non-monotonic trend
with the density ratio. The same applies to Figure 8.6b, which presents the analytical results obtained for the
added-mass-to-structural mass ratio of pure bending and pure torsion, as well as the results of the added-
mass-to-structural mass ratio for this flexible C4-40 propeller. Again, a non-monotonic trend with structural
density is evident in the results of the flexible C4-40 propeller. In contrast, both results for analytical pure
bending and pure twisting show a decrease in the added mass-to-structural mass ratio as the density ratio
increases.
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(a) The ratio wqet /wary for a range of density ratios. (b) The ratio m, /m for a range of density ratios.

Figure 8.8: The ratio wyet/wqry and mq /ms for a range of density ratios for flexible C4-40 propeller blades. Analytical solutions for
pure bending and twisting are compared with the numerical results of the flexible C4-40 propeller.

The variations in density alter the balance between structural mass and hydrodynamic added mass, as
well as the wet natural frequency and dry natural frequency. The added-mass-to-structural mass ratio is lower
for the C4-40 propeller compared to the zero-skew propeller and thus pure bending results (except for the
highest tested density ratio). This result is expected from the analytical results, as the added mass has a
greater effect on bending-dominated modes compared to torsional-dominated modes. Additionally, the wet-
to-dry frequency ratio is higher for the C4-40 propeller compared to the zero-skew propeller, and thus, pure
bending results (except for the highest tested density ratio). These results indicate that the first mode of the
C4-40 propeller is a combination of both bending and twisting.

The non-monotonic trend in the wet-to-dry frequency ratio and the added-mass-to-structural-mass ratio
arises because the wet natural frequency varies in an unsystematic manner. These variations indicate that
structural density influences the added mass. Since the submerged modal frequency and mode shape deter-
mine the added mass, they are affected by the structural-to-fluid density ratio. The effect of structural density
on the results is related to the coupled bend-twist mode shape. Consequently, the wet-to-dry frequency ratio
and the added-mass-to-structural-mass ratio of coupled modes vary with the structural density. The structural
density affects the dynamic response.

Therefore, the structural density must be scaled correctly for flexible propeller model experiments to
achieve similar dynamic blade behaviour, which controls the overall performance of flexible propellers in non-
uniform inflow conditions. For these conditions, the deformation extent is a ratio of the elastic force and
hydrodynamic force, and a function of the fluid damping, viscous force and propeller inertia force, for which
the definition of the Cauchy number is:

E w

Caynsteady = Wf(R& ¢, E) (8.9)

8.4. Discussion

The Fast Fourier transform separates the force signal over time into multiple harmonics, which one would
expect to convert into discrete frequencies in the frequency domain. However, the signal in the frequency
domain is also dependent on the damping factor of a system. The more rapidly a signal decays in time, the
broader the peak in the corresponding frequency domain [47]. Figure 8.9 illustrates this concept, which is a
physical effect of the decaying force signal on the frequency.
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Figure 8.9: A more rapid decay of a signal in time leads to a broader peak in the corresponding frequency spectrum. From Keeler [47]

The Fast Fourier transform is applied over the force signal in time. The simulations are performed in a non-
cavitating flow with uniform flow conditions. Consequently, the hydro-elastic response of the blades directly
influences the propeller loading and vice versa. For this reason, the variations in thrust are used to derive the
hydro-elastic response. However, the blade displacement field is usually more suitable for dynamic analyses
than thrust values. The displacement field is not an integrated value in contrast to the thrust [69]. Further-
more, the numerical settings can significantly impact the obtained thrust values. Due to numerical limitations,
precise data on deformation over time was not available. It is therefore recommended to perform additional
research and validate the obtained results with the blade displacements.

The results are compared with other studies. For metal propeller blades, the modal fluid added mass is
approximately 2.5 times the structural mass [12]. The fluid added mass has a larger effect on the wet natural
frequencies of composite blades due to the lower material density of composites [70]. Accordingly, the effect
of added mass on the natural frequencies would decrease as the ratio of solid-to-fluid density increases. In
Table 8.4, the added mass effect indeed reduces for increasing material density, except for the case with the
highest density ratio, hence the largest tested structural density. An increase in the added mass-to-structural
mass ratio is observed for this case.

A study by Tian et al. [94] has experimentally and numerically determined the wet and dry natural frequen-
cies of a plastic model propeller. The plastic propeller has similar material properties to those investigated in
this study, and the solid-to-fluid density ratio equals 1.2. According to the study by Tian et al., the first wet
natural frequency was approximately 40% of the dry natural frequency. This value is in the same order of
magnitude as the frequency ratio in Table 8.4 found in this study.

8.5. Conclusion

In this chapter, FSI simulations were carried out for flexible propellers in open-water conditions to answer
the fourth sub-question of this thesis: 'What is the influence of structural density on the steady and dynamic
response of a flexible marine propeller?’ The open-water performance characteristics and steady-state de-
formation extent of the flexible C4-40 propeller for a range of structural-to-fluid density ratios are analysed.
Additionally, the dynamic behaviour of the flexible C4-40 propeller and a propeller with a zero skew angle
is studied. The hydro-elastic response is obtained by measuring the change in thrust and torque values as
these exhibit oscillatory behaviour as the simulation converges towards a steady-state solution. The force sig-
nal is analysed in the frequency domain to study the blades’ dynamic behaviour using a Fast Fourier transform.

The open-water performance and steady-state deformation extent are independent of the structural density.
The structural response is quasi-static, meaning that material stiffness dominates the deformation extent and
consequently the open-water performance. Incorrect scaled structural density, hence, errors in the magnitude
of the propeller inertial force have no considerable influence on the steady-state deformation extent. The
steady deformation extent thus depends on the ratio of bending force to hydrodynamic inertial force, and is a
function of the viscous force, which leads to the following representation of the Cauchy number:

E

e () (8.10)

Casteady =
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This form can be used to control the steady state deformation extent. The modal frequencies describe
the dynamic behaviour of propeller blades, which influences the deformation of flexible propellers in unsteady
conditions. The first mode of the propeller without skew is observed to be a pure bending mode. For this
zero-skew propeller, the wet natural frequency remains constant across a range of density ratios from 1.2 to
2.4. For pure bending modes, the results indicate that the structural density of materials used for model-sized
propellers can differ by up to 30% from the full-size material density to achieve the same wet natural frequency.

The first mode of the C4-40 propeller is a combination of bending and twisting modes. The added mass
has a smaller effect on coupled modes compared to bending-dominated modes. The numerical results of
the C4-40 indicate that the structural density impacts coupled bend-twist mode shapes. This result leads to
the conclusion that the structural density determines the dynamic behaviour of coupled modes and thus the
deformation extent in unsteady flow conditions, such as a propeller operating in non-uniform flow.

The overall performance of flexible propellers depends on the deformation of the blades during revolution
in non-uniform inflow conditions. For these conditions, the deformation extent can be controlled by the ratio
of the elastic force to hydrodynamic force, and is a function of the fluid damping, viscous force and ratio of
natural frequency (altered by the structural density) to revolution rate. The non-dimensional form to control
the deformation extent in unsteady conditions is:

E w
_ w 11
Caunsteady pran f(RQ (:7 n) (8 )



Discussion

The outcomes of this study have provided insights into the scaling of flexible marine propellers for model tests.
This thesis project has adopted the workflow developed by Lagendijk [62] to perform FSI simulations and
analyse the deformation behaviour of flexible propellers. This workflow is used to analyse the rigid propeller
performance of the C4-40 propeller as well. The first section of this discussion provides validation of the rigid
test results, as well as the sources of errors introduced by using numerical methods. The second section
of this discussion addresses the limitations of this study, which stem from its scope. Recommendations for
further research are presented, following from these limitations.

9.1. Validation of the Rigid Results

The results of the rigid propeller simulations in Chapter 5 are compared with the CFD reference data obtained
by MARIN [73]. The CFD results of MARIN are for the same propeller geometry, the C4-40 propeller with a
pitch ratio of 0.8. The data consists of two model-scaled Reynolds numbers tests and one full-scale Reynolds
number test. The Reynolds number is defined at r/R = 0.7, following the same definition as given in Equation
5.1. The MARIN calculations are performed using a frozen rotor approach, with a uniform velocity at the inflow,
constant level of turbulence quantities and constant pressure at the far-field boundary and outflow. No-slip
wall conditions are set for the propeller and hub surfaces. Cavitation effects are neglected. MARIN has also
utilised the standard k-w SST model developed by Menter [82].

Figure 9.1 shows the open water diagram of both the results obtained in this study and those of MARIN.
The Reynolds numbers of the results of MARIN are equal to 1.7+ 10°, 4.5+ 10° and 4.0* 107, and are compared
with the results of 1.0 % 103, 5.0 % 10° and 5.0 * 107 of this study. The results do not align with each other, which
raises the question of what causes this discrepancy.

1.0
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—— Re=5.0e+07 - 0,
MARIN Re=1.7e5
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Figure 9.1: Open water diagram of the rigid Wageningen C4-40 propeller with a pitch ratio of 0.8 for different Reynolds numbers. The
diagram presents the results of this study and the CFD results of MARIN [73].
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9.1.1. Numerical Errors
Generally, numerical errors of a CFD solution include three components [22]:

» The round-off error, due to the finite precision of computers

» The iterative error, which is due to the non-linear character of the momentum equation and transport
equations of the turbulence model, as well as the uncoupling of these equations in the solution process

» The discretisation error, being a consequence of the transformation of the continuum equations into a
system of algebraic equations

The finite precision of the computer will introduce round-off errors. These errors may affect the result sig-
nificantly if the round-off errors accumulate [64]. The ReFRESCO code executes in double-precision, thereby
assuming that the impact of round-off errors on numerical uncertainty is negligible compared to the other er-
rors [49].

The motion equations are solved iteratively. The difference between the two iterations becomes smaller as
the solution converges. The solution is supposed to have been reached once a given convergence criterion
is met. Consequently, this will introduce iterative errors [64]. This iterative error is primarily monitored by the
residuals and can be expressed using different norms, for instance, the Ly, norm [22]. This norm is defined
by:

.1)2

p

LQ(A¢) -

In this equation, A¢ stands for the local change of the flow quantity ¢ and N, is the total number of nodes
on a given grid. The L, value for the normalised residual of all transport equations below a value of 1  10~¢
ensures that the primary source of numerical uncertainty is the contribution from the discretisation error [49].
The discretisation by FEM and FVM approximates the continuous functions as discrete models, which intro-
duce discretisation errors. The impact of discretisation errors decreases with a finer grid. By gradually refining
the grid, a grid-independent result can be obtained [64].

The solutions of all simulations are checked. Appendices A, C, and D include plots of the thrust coefficient
over the time steps. The plots show that the force solution is converged for all instances. The L, residuals of
the velocity, pressure and turbulence quantities are not for all the cases below 110, indicating that iterative
errors are not negligible. However, in complex turbulence flows, it is not guaranteed that this L, convergence
criterion can be achieved [22]. The cases with stagnated iterative convergence still had L,-values below
1 % 10~*. Improved convergence in the calculations can be achieved by adjusting explicit relaxation factors
or modifying specific limiters and correction terms. Additionally, mesh quality and the transitions between cell
layers can influence the magnitude of the iterative error. Although the L, norm is above 1x10~¢, the solutions
have converged for all the cases in this report. Therefore, it can be assumed that discretisation errors mainly
influence differences in results, yet the size of the iterative error is not negligible. The rigid results in this study
are only used to compare the Reynolds number effect between rigid and flexible cases. For the purpose of
this study, these numerical errors and discrepancies between rigid results are considered reasonable to obtain
valid conclusions about the scaling approaches for model-scaled open-water tests of flexible propellers.

9.2. Model Limitations and Assumptions

This section discusses the limitations of this study, which follow from its scope. The fluid solver applies the k—w
SST turbulence model of Menter [82], without a transition model, which means that a fully turbulent boundary
layer is solved. The first part of this section discusses the impact of this assumption and the motivation for
excluding a transition model. The second part examines the isotropic material assumption, considers how
anisotropy may change the deformation response, and gives recommendations for further work on material
scaling. Next, the section addresses the assumption of a linear constitutive relation for the structural response.
It then evaluates the restriction of uniform inflow and explains why further research is needed with unsteady
inflow conditions. Finally, the assumption that centrifugal and Coriolis forces are neglected is addressed.

9.2.1. Resolving Fully Turbulent Flow Behaviour

The coupled URANS-FEM FSI simulation enables the assessment of the interaction between the deformable
propeller and fluid. The fluid solver uses a finite-volume method and is implemented with the k—w SST turbu-
lence model of Menter [82], without any transition models. Model-scale Reynolds numbers, typically around
1 % 10% or lower, often experience laminar flow over significant portions of the blades. As no transition models
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are implemented, a fully turbulent flow is solved across the tested range of Reynolds numbers. The numer-
ical simulations may underestimate the actual Reynolds-number effects, as model-scale experiments often
include flow transition. This transition could further amplify differences in deformation, thus affecting the pro-
peller performance.

Although the use of a transition model could investigate the effect of partly laminar flow, the study of
Kerkvliet et al. [49] illustrates the limitations of the use of transition models. Their study analysed the pre-
dictive capabilities of the v — Rey turbulent-transition model and found that there is a strong dependence of
the inlet turbulence quantities on the predicted performance. This high sensitivity poses a limitation to the
model’s applicability. The inlet turbulence quantities may not be realistic from a physics point of view, but
depend on the Reynolds number and the propeller loading condition. Achieving equal flow behaviour over the
blades between experiments and simulations can only be achieved if the onset of transition and possible flow
separation is known a priori. The implementation of a transition model, supported by experimental data on
the flow behaviour of flexible blades across Reynolds numbers, would be valuable for future research. Both
experimental and numerical research enable a more detailed investigation of Reynolds-number effects on
flexible propellers, providing further insight into how laminar flow affects both deformation and performance.

9.2.2. Limitation of Isotropic Material Characteristics

The structural characteristics of a composite material depend on its components, geometry, and the distri-
bution of the fibres and matrix. The ply stacking sequence and the fibres’ orientation through the material’s
thickness can result in an anisotropic material response. This study, however, is limited to isotropic material
characteristics. The anisotropic material response enables the use of a bend-twist coupling in the design of
flexible marine propellers. When the propeller is loaded with positive ship speed and positive propeller speed,
the thrust generates a bending force in the forward direction on the blades, causing rake deformation. The
coupling twists the blade, resulting in a reduction in the pitch angle. This study obtained similar deformation
behaviour for the C4-40 propeller using isotropic material properties. The first mode shape of the C4-40 pro-
peller is observed to be a combined bend-twist mode. It is generally accepted that for propellers with high
skew and or rake, the first mode is a combined bend-twist mode.

While anisotropic materials may induce increased or reduced deformation along specific directions, the de-
formation characteristics are anticipated to remain comparable to those established in this study using isotropic
material properties. An effective composite lay-up should be used for model experiments of anisotropic full-
size configurations. Using a combined Froude-Cauchy similarity approach, this lay-up should reduce Young'’s
modulus by the scale factor whilst keeping material density and Poisson ratio identical to the full-scale pro-
peller material. This study is limited to the response deformations of propellers. Recommendations for further
research include scaling failure stresses and, thus, failure modes.

9.2.3. The Use of a Linear Elastic Constitutive Model

The time-domain simulations in this study use a flow solver with a linear two-way coupling to the structural
solver, implying the use of a linear elastic constitutive model for the propeller material. The linearity of this
elastic stress-strain relation indicates that the stress and strains are linearly proportional to one another. This
assumption is valid for small material strains. Zarruk et al. [32] experimentally investigated the hydroelas-
tic response of six flexible hydrofoils, including two composite hydrofoils of carbon-fibre reinforced plastic.
This study demonstrated that deformation in hydrofoils scales linearly with the applied load in the prestall re-
gion, confirming a linear elastic response. Maljaars [69] similarly found relatively small blade deflections and
validated a coupled BEM—FEM approach under steady inflow, assuming geometrically linear elasticity. His
validation involved three small-scale flexible propellers, one made from isotropic epoxy and two with distinct
laminate lay-ups.

9.2.4. Limitation of Uniform Inflow Conditions

In this study, the simulations are conducted with uniform inflow, using an absolute-formulation steady approach.
The URANS equations are solved in the moving reference frame but written in terms of absolute reference
frame quantities. The combination of variations of hydrodynamic loading due to the non-uniform wake field
and the vibrational behaviour of a propeller influences the global vibrational characteristics of a propeller, as
described by Carlton [12]. The vibrations introduce a variation in the angle of attack, leading to variations in
the hydrodynamic reaction load. For metal propellers, variations in angle of attack are small, and the resulting
vibratory loading is assumed to vary linearly. This linearity enables the use of superposition, allowing for the
separate determination of excitation and reaction loads. In contrast, this linear assumption may not be valid for
composite propellers, where the interaction between excitation and reaction can lead to non-linear behaviour.
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Carlton’s remarks highlight the need for further research into the behaviour of composite propellers in non-
uniform flow conditions, which would necessitate geometrically non-linear finite element formulations and
unsteady CFD simulations. The absolute-formulation approach, as implemented in this study, results in steady
conditions by definition and thus can not be used to perform unsteady simulations. Unsteady simulations are
possible with a combination of boundary conditions or using a moving-grid formulation (MVG), in which the
URANS equations are then written and solved in the earth-fixed reference frame [75].

9.2.5. Neglecting Centrifugal and Coriolis Forces

A rotating propeller operating at constant angular speed experiences non-zero centrifugal and Coriolis forces.
The Coriolis force introduces a velocity-dependent term that acts as additional damping. Nevertheless, its
contribution is generally negligible compared to the hydrodynamic damping. Therefore, this force component
can be omitted in the analyses of flexible propellers [70]. The centrifugal force acts radially, pulling the blades
away from the hub. This effect depends on the structural density. The centrifugal force introduces radial
stresses within both the blades and the hub. The centrifugal forces also result in an additional stiffening effect,
referred to as centrifugal stiffening. This effect, however, is generally negligible for conventional propeller
designs and may only be necessary for very high rotational speed applications [12].

The centrifugal forces are not included in fluid-structure interaction analysis in this study. This assumption
is made because the centrifugal forces act primarily in-plane with the propeller rotation, while the hydrodynamic
loads that govern blade deformation act out of plane. Consequently, the influence of centrifugal forces on the
blade deflection is expected to be much smaller than that of the hydrodynamic bending loads.
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Conclusion

This study assesses the scaling of flexible marine propellers for model testing using time-domain fluid—structure
interaction simulations. These simulations are conducted with a coupled URANS-FEM solver, testing the Wa-
geningen C4-40 propeller geometry with a pitch ratio of 0.8. The flow solver is implemented with the k£ — w
SST turbulence model without the use of a transition model. This analysis is performed with uniform inflow
conditions and is limited to isotropic materials. The performance characteristics of flexible marine propellers
depend on their deformation extent. Accordingly, this thesis aims to answer the following research question:

Which non-dimensional parameter controls the deformation extent of
flexible marine propellers?

A set of non-dimensional relations of the physical quantities involved in the testing of flexible marine pro-
pellers is derived using the Buckingham II-theorem [10]. The non-dimensional relations should be equal on
two scales to obtain full geometrical, kinematic and dynamic similarity. Generally, it is accepted that achieving
complete dynamic similarity is impossible for rigid model propeller testing. The deformation ability of flexible
marine propellers introduces additional scaling laws. This thesis derives that the amplitude of blade deforma-
tion can be expressed as a form of the Cauchy number. This non-dimensional parameter represents the ratio
of elastic forces to hydrodynamic inertial forces. Additionally, this parameter is a function of fluid damping and
the ratio of the modal frequency to the propeller’s revolution rate.

The derived non-dimensional parameter is tested using a combined Reynolds-Cauchy similarity approach
for two geometrically similar propellers with different diameters. The relative deformation extent of both scales
is identical. The model-scaled propeller exhibits a relative difference in thrust and torque coefficient of less
than 5% compared to the full-size propeller. The open-water efficiency depends on both coefficients and is
within the same percentage difference. Additional tests demonstrate that numerical rather than physical scal-
ing effects alter the flow behaviour over the blades. In particular, the sensitivity to the y™-value using the k¥ —w
SST turbulence model of Menter [82] can lead to numerical errors larger than 5% for y-values ~ 1. In con-
clusion, the difference in performance results can be attributed to disparities in fluid flow, and the simulations
have confirmed that the ratio of elastic bending to hydrodynamic inertial forces controls the deformation extent
of flexible marine propellers.

The Reynolds number represents the ratio of inertial to viscous forces. Achieving full-size Reynolds num-
bers of the order 107 in propeller test facilities is impossible, yet boundary layer behaviour depends highly on
this parameter. Numerical simulations resolving a fully turbulent flow are executed to determine the Reynolds
number effect of both rigid and flexible propellers. The thrust coefficients increase and the torque coefficients
decrease as Reynolds numbers increase for both rigid and flexible propellers. For the flexible propeller, the
thrust coefficient between Re = 1 % 10° and Re = 5 * 107 increases between 3.4 and 13.0%, depending on
the advance ratio. The torque coefficient reduction is between 3.1 and 21.0% for the flexible propellers be-
tween Re = 1 % 10° and Re = 5 % 107 for the tested range of advance ratios. The open-water efficiency is a
combination of Kt and K(; consequently, larger Reynolds numbers lead to higher open-water efficiencies.
The deformation of flexible propellers improves flow attachment over the blades. Yet, small deformation differ-
ences are observed in pitch ratio, camber-to-chord ratio, and rake-to-diameter ratio across the tested range
of Reynolds numbers. This study indicates that the deformation extent of flexible propellers is sensitive to
viscous forces. Thus, the non-dimensional parameter controlling the deformation extent should also be a
function of the Reynolds number.

The combined Froude-Cauchy similarity approach is most suitable for performing flexible propeller model
tests, as it scales the gravitational, elastic, and inertial forces equally. This approach also enables testing at
advance velocities lower than those at full scale, which are feasible to obtain in cavitation tunnels and towing
tanks. However, this approach poses challenges in finding an appropriate material for model-size propellers.

68
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This thesis investigates the incorrect scaling of structural density and observes that the structural-to-fluid den-
sity ratio does not influence the extent of the steady-state deformation. The open water characteristics differ
by less than 0.1% across variations in the structural-to-fluid density ratio. These results are in line with ex-
pectations, as a quasi-static blade response is governed by stiffness rather than by propeller inertia. Ergo,
if a suitable material for open-water model testing is unavailable, proper scaling of the stiffness is essential.
In contrast, this study indicates that scaling the material density is less important for the steady deformation
response.

Contrary to the steady-state response, the structural-to-fluid density ratio does become important in un-
steady conditions for flexible marine propellers. A non-uniform wakefield, as occurs in the behind operation,
poses such a condition. The modal frequencies describe the dynamic behaviour of the propeller blades, and
should scale with the propeller’s revolution rate to obtain similar blade deformation in unsteady flows. This
study analyses the modal frequencies in the frequency domain using a Fast Fourier transform. This analysis
indicates that the first mode of vibration is a pure bending mode for propellers with zero skew angle. Gen-
erally, for propellers with high skew, rake, or made from anisotropic materials, the first mode is a combined
bend-twist mode. It is observed that the added mass has a smaller effect on coupled modes compared to
more bending-dominated modes, in line with analytical results. While it is observed that the structural density
of materials used for model tests can vary by up to 30% from the full-size material density to achieve the
same wet natural frequency for pure bending modes, the structural-to-fluid density impacts the wet natural
frequency of combined bend-twist modes. In conclusion, the deformation extent in unsteady conditions is a
function of the ratio of the modal frequency to the propeller revolution rate, which makes it sensitive to the
structural density.

These conclusions lead to the answer of the main research question: 'Which non-dimensional parameter
controls the deformation extent of flexible marine propellers?’. This non-dimensional parameter is derived
from non-dimensional analyses and is a form of the Cauchy number. For the steady-state conditions, the
deformation extent can be controlled by the ratio of elastic force to hydrodynamic inertial force, and depends
on the Reynolds number:

f(Re) (10.1)

E
Casteady = m

In unsteady conditions, the modal frequency should scale with the propeller’s revolution rate for relatively
similar blade deformation. The propeller’s inertial force, hence, structural density influences the modal fre-
quency. Thus, the deformation extent of flexible propellers in unsteady conditions can be controlled with the
ratio of elastic force to hydrodynamic inertial force, and depends on the Reynolds number, as well as the fluid
damping and ratio of the modal frequency to revolution rate:

Caunsteady =

w

pr2n2f(Re,§, n) (10.2)

This thesis is limited to the response deformations of flexible propellers with isotropic material properties.
The anisotropic material response enables the use of a bend-twist coupling in the design of flexible marine
propellers. This study achieves combined coupling with the use of the geometric shape of the blades rather
than of material properties, which resulted in a comparable deformation response. Nevertheless, the scaling of
failure stresses and, thus, failure modes requires further investigation. In conclusion, this study enhances the
understanding of flexible propeller scaling. It offers insights that are essential for improving flexible propeller
model test accuracy and enhancing the accuracy of full-scale flexible propeller performance predictions, with
the end goal of designing more efficient marine propulsion systems.

10.1. Recommended Model Testing Approach for Flexible Marine Pro-

pellers
While the scaling laws for model testing of rigid marine propellers are well established, the deformation ability
of flexible marine propellers introduces additional scaling laws, for which the non-dimensional numbers pre-
sented above offer a basis for accurate scaling of flexible propellers in both experimental and computational
studies. This section will provide a recommended practical approach for scaling flexible marine propellers in
experimental studies.

Geometric similarity should and can always be obtained regarding thickness-to-chord ratio, chord-to-diameter
ratio, camber-to-chord ratio, skew angle and pitch ratio. Propeller blades have a non-uniform cross-section



10.1. Recommended Model Testing Approach for Flexible Marine Propellers 70

to avoid cavitation and to maximise efficiency and control. Specifically for flexible propellers, considerable
skew angles are used as these result in a larger de-pitching moment when loaded. It is thus crucial to satisfy
geometric similarity in all three dimensions so that the model-scale propeller accurately replicates the full-size
propeller hydrodynamics.

Kinematic similarity is obtained by performing model-scale tests with the same advance ratio as the full-
size propeller. The advance ratio establishes a fixed relationship between advance velocity and revolution
rate and should always be obtained. The advance ratio, i.e. the angle of attack, determines the propeller
loading, hence the resulting force of the propeller blade. By adjusting either or both the advance velocity and
revolution rate, kinematic similarity can always be ensured.

Dynamic similarity between model- and full-scale propellers cannot be achieved in experimental facilities.
A combined Froude—Cauchy similarity approach is recommended for testing flexible propeller models. While
this method leads to reduced Reynolds numbers, which may affect the deformation, Reynolds number simi-
larity cannot be achieved in towing tanks or cavitation tunnels. Model-scale propellers often experience partly
laminar flow over their blades, rather than fully turbulent flow, as full-size propellers do. Because of this, the
differences in deformation and performance in experiments are expected to increase at Reynolds numbers
typical for model tests, although this requires further study. The use of turbulators in flexible propeller model
tests is advised to improve consistency of testing. Additional improvements may be achieved by developing
CFD-based extrapolation methods, which could bridge the gap between model-scale experiment results and
full-scale propeller performance.

In practice, it is challenging to find a material that can satisfy all structural scaling requirements using a
combined Froude-Cauchy scaling approach. For the open-water model testing of flexible propellers, proper
scaling of stiffness is essential. This study indicates that the structural density does not need to be scaled
as strictly for the steady deformation response of flexible propellers. In contrast, the structural density does
affect the dynamic behaviour of flexible model propellers and should be scaled correctly to obtain equal blade
deformation in unsteady conditions. Thus, performing model tests with incorrectly scaled structural density is
not suitable for predicting the full-scale propeller response under these conditions. It is recommended to use
model tests with incorrectly scaled structural densities solely for validating numerical solvers, rather than for
predicting full-scale dynamic performance.
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A

Rigid Propeller Results for a Range of
Reynolds Number

A.l. Percentage Difference Across Reynolds Numbers

Re [-]

Figure A.1: The percentage difference across Reynolds numbers for K, K and ), for the rigid C4-40 propeller tested at an advance
ratio of 0.1.
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Re [-]

Figure A.2: The percentage difference across Reynolds numbers for K-, Ko and 7, for the rigid C4-40 propeller tested at an advance
ratio of 0.2.

Re [-]

Figure A.3: The percentage difference across Reynolds numbers for K+, K¢ and 7, for the rigid C4-40 propeller tested at an advance
ratio of 0.3.
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Figure A.4: The percentage difference across Reynolds numbers for K'r-, Ko and 7, for the rigid C4-40 propeller tested at an advance
ratio of 0.4.

[%]
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Figure A.5: The percentage difference across Reynolds numbers for K+, K¢ and 7, for the rigid C4-40 propeller tested at an advance
ratio of 0.5.
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Figure A.6: The percentage difference across Reynolds numbers for K, K¢ and 7, for the rigid C4-40 propeller tested at an advance
ratio of 0.6.

Re [-]

Figure A.7: The percentage difference across Reynolds numbers for K'r, K and 7, for the rigid C4-40 propeller tested at an advance
ratio of 0.7.
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Re [-]

Figure A.8: The percentage difference across Reynolds numbers for K-, K¢ and 7, for the rigid C4-40 propeller tested at an advance
ratio of 0.8.

A.2. Streamlines and Skin Friction Coefficient
J-Value of 0.1

(a) Re = 1 % 10° (b) Re = 1 % 10° () Re =1 %107 (d) Re =5 % 107

Figure A.9: Streamlines and Skin Friction coefficient on the suction side of the rigid C4-40 propeller blade tested at a J of 0.1.

(a) Re = 1 % 10° (b) Re =1 % 10° () Re =1 %107 (d) Re = 5 % 107

Figure A.10: Streamlines and skin friction coefficient on the pressure side of the rigid C4-40 propeller blade tested at a . of 0.1.
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J-Value of 0.2

(a) Re = 1 % 10° (b) Re =1 % 10° () Re =1 %107 (d) Re = 5 % 107

Figure A.11: Streamlines and Skin Friction coefficient on the suction side of the rigid C4-40 propeller blade tested at a .J of 0.2.

(a) Re = 1 % 10° (b) Re = 1 % 10° () Re = 1 %107 (d) Re = 5 % 107

Figure A.12: Streamlines and skin friction coefficient on the pressure side of the rigid C4-40 propeller blade tested at a J of 0.2.

J-Value of 0.3

(a) Re = 1 % 10° (b) Re = 1 % 10° () Re = 1 %107 (d) Re = 5 % 107

Figure A.13: Streamlines and Skin Friction coefficient on the suction side of the rigid C4-40 propeller blade tested at a J of 0.3.

(a) Re = 1 % 10° (b) Re = 1 % 10° () Re =1 %107 (d) Re =5 % 107

Figure A.14: Streamlines and skin friction coefficient on the pressure side of the rigid C4-40 propeller blade tested at a J of 0.3.



A.2. Streamlines and Skin Friction Coefficient 81

J-Value of 0.4

(a) Re = 1 % 10° (b) Re =1 % 10° () Re =1 %107 (d) Re = 5 % 107

Figure A.15: Streamlines and Skin Friction coefficient on the suction side of the rigid C4-40 propeller blade tested at a J of 0.4.

(a) Re = 1 % 10° (b) Re = 1 % 10° () Re = 1 %107 (d) Re = 5 % 107

Figure A.16: Streamlines and skin friction coefficient on the pressure side of the rigid C4-40 propeller blade tested at a J of 0.4.

J-Value of 0.5

(a) Re = 1 % 10° (b) Re = 1 % 10° () Re = 1 %107 (d) Re = 5 % 107

Figure A.17: Streamlines and Skin Friction coefficient on the suction side of the rigid C4-40 propeller blade tested at a J of 0.5.

(a) Re = 1 % 10° (b) Re = 1 % 10° () Re =1 %107 (d) Re =5 % 107

Figure A.18: Streamlines and skin friction coefficient on the pressure side of the rigid C4-40 propeller blade tested at a J of 0.5.
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J-Value of 0.6

(a) Re = 1 % 10° (b) Re =1 % 10° () Re =1 %107 (d) Re = 5 % 107

Figure A.19: Streamlines and Skin Friction coefficient on the suction side of the rigid C4-40 propeller blade tested at a .J of 0.6.

(a) Re = 1 % 10° (b) Re = 1 % 10° () Re = 1 %107 (d) Re = 5 % 107

Figure A.20: Streamlines and skin friction coefficient on the pressure side of the rigid C4-40 propeller blade tested at a J of 0.6.

J-Value of 0.7

(a) Re = 1 % 10° (b) Re = 1 % 10° () Re = 1 %107 (d) Re = 5 % 107

Figure A.21: Streamlines and Skin Friction coefficient on the suction side of the rigid C4-40 propeller blade tested ata J of 0.7.

(a) Re = 1 % 10° (b) Re = 1 % 10° () Re =1 %107 (d) Re =5 % 107

Figure A.22: Streamlines and skin friction coefficient on the pressure side of the rigid C4-40 propeller blade tested at a J of 0.7.
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J-Value of 0.8

(a) Re = 1 % 10° (b) Re =1 % 10° () Re =1 %107 (d) Re =5 % 107

Figure A.23: Streamlines and Skin Friction coefficient on the suction side of the rigid C4-40 propeller blade tested at a J of 0.8.

(a) Re = 1 % 10° (b) Re = 1 % 10° () Re =1 %107 (d) Re = 5 % 107

Figure A.24: Streamlines and skin friction coefficient on the pressure side of the rigid C4-40 propeller blade tested at a J of 0.8.

A.3. Thrust Coefficient Convergence
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Figure A.25: The thrust coefficient over time for J equals 0.1, plotted for the rigid Wagningen C4-40 propeller with a pitch ratio of 0.8 for
the range of Reynolds numbers. The plot demonstrates a convergence solution in each case.
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Figure A.26: The thrust coefficient over time for J equals 0.2, plotted for the rigid Wagningen C4-40 propeller with a pitch ratio of 0.8 for
the range of Reynolds numbers. The plot demonstrates a convergence solution in each case.
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Figure A.27: The thrust coefficient over time for J equals 0.3, plotted for the rigid Wagningen C4-40 propeller with a pitch ratio of 0.8 for
the range of Reynolds numbers. The plot demonstrates a convergence solution in each case.
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Figure A.28: The thrust coefficient over time for J equals 0.4, plotted for the rigid Wagningen C4-40 propeller with a pitch ratio of 0.8 for
the range of Reynolds numbers. The plot demonstrates a convergence solution in each case.
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Figure A.29: The thrust coefficient over time for J equals 0.5, plotted for the rigid Wagningen C4-40 propeller with a pitch ratio of 0.8 for
the range of Reynolds numbers. The plot demonstrates a convergence solution in each case.
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Figure A.30: The thrust coefficient over time for J equals 0.6, plotted for the rigid Wagningen C4-40 propeller with a pitch ratio of 0.8 for
the range of Reynolds numbers. The plot demonstrates a convergence solution in each case.
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Figure A.31: The thrust coefficient over time for J equals 0.7, plotted for the rigid Wagningen C4-40 propeller with a pitch ratio of 0.8 for
the range of Reynolds numbers. The plot demonstrates a convergence solution in each case.
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Figure A.32: The thrust coefficient over time for J equals 0.8, plotted for the rigid Wagningen C4-40 propeller with a pitch ratio of 0.8 for
the range of Reynolds numbers. The plot demonstrates a convergence solution in each case.



Derivation of the Scaling Relations for
Froude Similarity, Reynolds Similarity,
and Mach Similarity

Model and scale effects can be avoided by satisfying all similarity laws. The similarity laws are defined using
non-dimensional parameters. Most model tests use Froude similarity, Reynolds similarity or Mach similar-
ity. The scaling factors for all relevant quantities are then derived from these non-dimensional numbers [51].
Complete geometric similarity is assumed in all cases, with the model length scale defined as:

1
Ly =3 Lr (B.1)

The fluid properties—such as density, viscosity, speed of sound, and saturated vapour pressure—are con-
sidered comparable between freshwater and seawater. Hence, these properties are assumed equal between
the model and full scale when deriving the scaling factors. Furthermore, the gravitational constant is equal for
both the model and the full scale. The derivation of the scaling factors for the variables given in Table 6.1 are
demonstrated in this Chapter.

Velocity scaling
To achieve Froude similarity, the velocity is calculated based on the definition of the Froude number, Fr =

Va/V9D:
FanFnF (BZ)

1
+Dp
Vap - VaM Vam _ \/gDM _ A (B3)

VaDr gDy T Va, 9Dr VDp

For Froude similarity, the velocities are scaled as:

1
Vo =1/ V&

anp )\ afp

(B.4)

The velocity scale for Reynolds similarity is obtained using the definition of the Reynolds number, Re =
pVaD/

ReM = ReF (BS)

prVay Lt prVarlr | Vo, _ Lr _ Lr (B.6)
%Y, IF Var Lm  $Lp -

The velocities for Reynolds similarity scale as:

Vo = MWas (B.7)

In the case of Mach similarity, the velocity scale is determined from the definition of the Mach number, Ma =
Va/cs:

Vou _ Var & Vaw _ & (B.9)
Cs Cs Var  Cs ’
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So, the velocities for Mach similarity scale as:

Time scaling
Time scaling can be derived from the scaling of length and velocity.

L=UT&T=L/U

1
TM:\/:TF

In the case of Reynolds similarity, time will scale as:

Thus, for Froude similarity, time will scale as:

And for the Mach similarity, time will scale as:

Frequency scaling

The unit of frequency is [ ] Therefore, for Froude similarity, frequency will scale as:

1
T
Wn = \F)\wp
For Reynolds similarity, frequency will scale as:
Wy = )\ZWF
And in the case of Mach similarity, frequency will scale as:
Wy = )\wF
Elastic modulus scaling
The Cauchy number represents the relationship between Young’s modulus and inertial force
modulus can be scaled using its definition: Ca = E/pU?.
This leads to:

C’aM = C(IF

Er Ey  Eu U}

= e =
pUZ  pU%, Er U2

So, the elastic modulus for Froude similarity scale as:

1

For Reynolds similarity, the elastic modulus will scale as:

Ey = MEp

And in the case of Mach similarity, the elastic modulus scale as:

Ey = Er

(B.10)

(B.11)

(B.12)

(B.13)

(B.14)

(B.15)

(B.16)

. The Young'’s

(B.17)

(B.18)

(B.19)

(B.20)

(B.21)
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Force scaling

Two systems are dynamically similar if there is similarity of masses and forces. The forces on a systems ele-
ment in fluid mechanics problems consist of (hydrodynamic) inertia, gravity, viscous, surface tension, elastic
compression and pressure forces. The hydrodynamic inertial force is proportional to psn?D*. The propeller
centripetal forces are proportional to mass and centripetal acceleration, hence, p,n?D*. The propeller elastic
deflection scales as wj,qql®/EI. The load wj.,q is proportional to pyn?D*, I to D and I to D*. So, the elastic
bending force is proportional to ED?. When considering the torsional deflection force, the shear modulus
replaces the Young’s modulus. Because the shear modulus and Young’s modulus have to scale equal, an
additional requirement is that the Poisson’s ratio for the model and full scale are equal. Scaling all forces is
impossible when comparing model-scale and full-scale models. However, one or more forces may not con-
tribute to the flow phenomenon under consideration. Others may have only a slight effect or be related to the
most significant force. Therefore, scale model tests simulate a particular state of fluid motion by considering
that either gravity or viscous forces predominate. Since inertial reaction is always present in the flow phe-
nomenon, it follows that inertial forces must be considered in any particular flow situation [36]. The following
forces scale as:

Fy o« pyn*D* (Hydrodynamic inertial force)
F; < psn®D*  (Structural inertial force)
F, o< gpsD* (Gravitational force)
F. x ED? (Elastic force) (B.22)
F, occ pUD  (Viscous force)
Fy oc oD (Surface tension force)
F,. < PD* (Pressure force)

Table 6.1 presents a summary of the scaling relations for Froude number, Reynolds number, and Mach
number similarity.



Flexible Marine Propellers Results using
Cauchy Number-

C.1. Flexible Propeller Deformation
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(a) Radial plot depicting the pitch deformation of both propellers, (b) Radial plot depicting the camber deformation of both propellers,
including the rigid C4-40 pitch ratio. including the rigid C4-40 pitch ratio.

Figure C.1: Radial plots depicting the deformation of both the 2-meter diameter propeller and the 0.25-meter diameter propeller,
including the rigid C4-40 pitch ratio for J equals 0.1.
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(a) Radial plot depicting the pitch deformation of both propellers, (b) Radial plot depicting the camber deformation of both propellers,
including the rigid C4-40 pitch ratio. including the rigid C4-40 pitch ratio.

Figure C.2: Radial plots depicting the deformation of both the 2-meter diameter propeller and the 0.25-meter diameter propeller,
including the rigid C4-40 pitch ratio for J equals 0.2.
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(a) Radial plot depicting the pitch deformation of both propellers,

including the rigid C4-40 pitch ratio.
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(b) Radial plot depicting the camber deformation of both propellers,

including the rigid C4-40 pitch ratio.

Figure C.3: Radial plots depicting the deformation of both the 2-meter diameter propeller and the 0.25-meter diameter propeller,
including the rigid C4-40 pitch ratio for J equals 0.3.

J-Value of 0.4

0.85
rrrrrrrr Rigid
—— D=2[m]
oo D=0.25[m]
0.75 A
o
~
0.70 1
0.65
0.60 T T T T T T T
0.3 0.4 0.5 0.6 0.7 0.8 0.9
r/R

(a) Radial plot depicting the pitch deformation of both propellers,

including the rigid C4-40 pitch ratio.

1.0

0.05 -

0.04

0.01 A

0.00

0j6
r/R

0.3 0.4 0.5 0.7 0.8 0.9 1.0

(b) Radial plot depicting the camber deformation of both propellers,
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Figure C.4: Radial plots depicting the deformation of both the 2-meter diameter propeller and the 0.25-meter diameter propeller,
including the rigid C4-40 pitch ratio for J equals 0.4.
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(a) Radial plot depicting the pitch deformation of both propellers,

including the rigid C4-40 pitch ratio.
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including the rigid C4-40 pitch ratio.

Figure C.5: Radial plots depicting the deformation of both the 2-meter diameter propeller and the 0.25-meter diameter propeller,
including the rigid C4-40 pitch ratio for J equals 0.5.
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(a) Radial plot depicting the pitch deformation of both propellers,
including the rigid C4-40 pitch ratio.
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(b) Radial plot depicting the camber deformation of both propellers,
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Figure C.6: Radial plots depicting the deformation of both the 2-meter diameter propeller and the 0.25-meter diameter propeller,
including the rigid C4-40 pitch ratio for J equals 0.6.
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(a) Radial plot depicting the pitch deformation of both propellers,
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(b) Radial plot depicting the camber deformation of both propellers,
including the rigid C4-40 pitch ratio.

Figure C.7: Radial plots depicting the deformation of both the 2-meter diameter propeller and the 0.25-meter diameter propeller,
including the rigid C4-40 pitch ratio for J equals 0.7.
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(a) Radial plot depicting the pitch deformation of both propellers,
including the rigid C4-40 pitch ratio.
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(b) Radial plot depicting the camber deformation of both propellers,
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Figure C.8: Radial plots depicting the deformation of both the 2-meter diameter propeller and the 0.25-meter diameter propeller,
including the rigid C4-40 pitch ratio for J equals 0.8.



C.2. Rigid Open Water Diagram

94

C.2. Rigid Open Water Diagram
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Figure C.9: Open water diagram of the rigid Wagningen C4-40 propeller with a pitch ratio of 0.8 for a propeller with a diameter of 2
meters and a model-scaled propeller with a diameter of 0.25 meters, Re = 1 % 106.

C.3. Percentage Difference of the Rigid Open Water Results
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Figure C.10: The percentage difference for the thrust and torque coefficient and open water efficiency comparing the model scaled

propeller to the full size propeller over the range of advance ratios.
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C.4. Thrust Coefficient Convergence
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Figure C.11: The thrust coefficient over time for J equals 0.1, plotted for the range of Reynolds numbers. The plot demonstrates a
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Figure C.12: The thrust coefficient over time for J equals 0.2, plotted for the flexible Wagningen C4-40 propeller with a pitch ratio of 0.8

for a propeller with a diameter of 2 meters and a model-scaled propeller with a diameter of 0.25 meters. The plot demonstrates a

convergence solution in each case.
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Figure C.13: The thrust coefficient over time for J equals 0.3, plotted for the flexible Wagningen C4-40 propeller with a pitch ratio of 0.8

for a propeller with a diameter of 2 meters and a model-scaled propeller with a diameter of 0.25 meters. The plot demonstrates a

convergence solution in each case.
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Figure C.14: The thrust coefficient over time for J equals 0.4, plotted for the flexible Wagningen C4-40 propeller with a pitch ratio of 0.8

for a propeller with a diameter of 2 meters and a model-scaled propeller with a diameter of 0.25 meters. The plot demonstrates a

convergence solution in each case.
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Figure C.15: The thrust coefficient over time for J equals 0.5, plotted for the flexible Wagningen C4-40 propeller with a pitch ratio of 0.8
for a propeller with a diameter of 2 meters and a model-scaled propeller with a diameter of 0.25 meters. The plot demonstrates a
convergence solution in each case.
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Figure C.16: The thrust coefficient over time for J equals 0.6, plotted for the flexible Wagningen C4-40 propeller with a pitch ratio of 0.8
for a propeller with a diameter of 2 meters and a model-scaled propeller with a diameter of 0.25 meters. The plot demonstrates a
convergence solution in each case.
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Figure C.17: The thrust coefficient over time for J equals 0.7, plotted for the flexible Wagningen C4-40 propeller with a pitch ratio of 0.8

for a propeller with a diameter of 2 meters and a model-scaled propeller with a diameter of 0.25 meters. The plot demonstrates a

convergence solution in each case.
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Figure C.18: The thrust coefficient over time for J equals 0.8, plotted for the flexible Wagningen C4-40 propeller with a pitch ratio of 0.8

for a propeller with a diameter of 2 meters and a model-scaled propeller with a diameter of 0.25 meters. The plot demonstrates a

convergence solution in each case.



Flexible Propeller Results for a Range of
Reynolds Number

D.1. Percentage Difference Across Reynolds Numbers
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Figure D.1: The percentage difference across Reynolds numbers for K1, K¢ and 7, for the flexible C4-40 propeller tested at an
advance ratio of 0.1.
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Figure D.2: The percentage difference across Reynolds numbers for K1, K and 7, for the flexible C4-40 propeller tested at an
advance ratio of 0.2.
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Figure D.3: The percentage difference across Reynolds numbers for K1, K and 7, for the flexible C4-40 propeller tested at an
advance ratio of 0.3.
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Figure D.4: The percentage difference across Reynolds numbers for K1, K and 7, for the flexible C4-40 propeller tested at an
advance ratio of 0.4.
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Figure D.5: The percentage difference across Reynolds numbers for K1, K and 7, for the flexible C4-40 propeller tested at an
advance ratio of 0.5.
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Figure D.6: The percentage difference across Reynolds numbers for K1, K and 7, for the flexible C4-40 propeller tested at an
advance ratio of 0.6.
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Figure D.7: The percentage difference across Reynolds numbers for K1, K¢ and 1, for the flexible C4-40 propeller tested at an
advance ratio of 0.7.
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Figure D.8: The percentage difference across Reynolds numbers for K1, K¢ and 1, for the flexible C4-40 propeller tested at an
advance ratio of 0.8.

D.2. Flexible Propeller Deformation
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(a) Radial plot depicting the pitch deformation over the range of Reynolds (b) Radial plot depicting the camber deformation over the range of
numbers, including the rigid C4-40 pitch ratio. Reynolds numbers, including the rigid C4-40 camber ratio.

Figure D.9: Radial plots depicting the deformation of the flexible propellers for a range of Reynolds numbers, including the rigid C4-40
pitch ratio for J equals 0.1.
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(a) Radial plot depicting the pitch deformation over the range of Reynolds (b) Radial plot depicting the camber deformation over the range of
numbers, including the rigid C4-40 pitch ratio. Reynolds numbers, including the rigid C4-40 camber ratio.

Figure D.10: Radial plots depicting the deformation of the flexible propellers for a range of Reynolds numbers, including the rigid C4-40
pitch ratio for J equals 0.2.
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(a) Radial plot depicting the pitch deformation over the range of Reynolds (b) Radial plot depicting the camber deformation over the range of
numbers, including the rigid C4-40 pitch ratio. Reynolds numbers, including the rigid C4-40 camber ratio.

Figure D.11: Radial plots depicting the deformation of the flexible propellers for a range of Reynolds numbers, including the rigid C4-40
pitch ratio for J equals 0.3.
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(a) Radial plot depicting the pitch deformation over the range of Reynolds (b) Radial plot depicting the camber deformation over the range of
numbers, including the rigid C4-40 pitch ratio. Reynolds numbers, including the rigid C4-40 camber ratio.

Figure D.12: Radial plots depicting the deformation of the flexible propellers for a range of Reynolds numbers, including the rigid C4-40
pitch ratio for J equals 0.4.
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(a) Radial plot depicting the pitch deformation over the range of Reynolds (b) Radial plot depicting the camber deformation over the range of
numbers, including the rigid C4-40 pitch ratio. Reynolds numbers, including the rigid C4-40 camber ratio.

Figure D.13: Radial plots depicting the deformation of the flexible propellers for a range of Reynolds numbers, including the rigid C4-40
pitch ratio for J equals 0.5.

J-Value of 0.6

0.80
Re = 1*10° 0.054
0.78 4 Re = 1*10°
—— Re=1*107 §
0.76 — — Re =5%107 0.04 7 e N
0.74 4
a L 0031
& 0.72 A =
0.02 -
o704+ N | | Rigid
Re = 1*10°
0.68 0.01 1 Re = 1*10°
— Re=1%107
0.66 - — Re=5*107
; ; ; ; ; ; ; 0.00 ‘ . ‘ T T ‘ T
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
r/R r/R

(a) Radial plot depicting the pitch deformation over the range of Reynolds (b) Radial plot depicting the camber deformation over the range of
numbers, including the rigid C4-40 pitch ratio. Reynolds numbers, including the rigid C4-40 camber ratio.

Figure D.14: Radial plots depicting the deformation of the flexible propellers for a range of Reynolds numbers, including the rigid C4-40
pitch ratio for J equals 0.6.
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(a) Radial plot depicting the pitch deformation over the range of Reynolds (b) Radial plot depicting the camber deformation over the range of
numbers, including the rigid C4-40 pitch ratio. Reynolds numbers, including the rigid C4-40 camber ratio.

Figure D.15: Radial plots depicting the deformation of the flexible propellers for a range of Reynolds numbers, including the rigid C4-40
pitch ratio for J equals 0.7.
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(a) Radial plot depicting the pitch deformation over the range of Reynolds (b) Radial plot depicting the camber deformation over the range of
numbers, including the rigid C4-40 pitch ratio. Reynolds numbers, including the rigid C4-40 camber ratio.

Figure D.16: Radial plots depicting the deformation of the flexible propellers for a range of Reynolds numbers, including the rigid C4-40
pitch ratio for J equals 0.8.

D.3. Streamlines and Skin Friction Coefficient
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Figure D.17: Streamlines and Skin Friction coefficient on the suction side of the flexible C4-40 propeller blade tested at a J of 0.1.
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Figure D.18: Streamlines and skin friction coefficient on the pressure side of the flexible C4-40 propeller blade tested at a .J of 0.1.
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Figure D.19: Streamlines and Skin Friction coefficient on the suction side of the flexible C4-40 propeller blade tested at a .J of 0.2.
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Figure D.20: Streamlines and skin friction coefficient on the pressure side of the flexible C4-40 propeller blade tested at a J of 0.2.
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Figure D.21: Streamlines and Skin Friction coefficient on the suction side of the flexible C4-40 propeller blade tested at a J of 0.3.
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Figure D.22: Streamlines and skin friction coefficient on the pressure side of the flexible C4-40 propeller blade tested at a J of 0.3.
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Figure D.23: Streamlines and Skin Friction coefficient on the suction side of the flexible C4-40 propeller blade tested at a .J of 0.4.
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Figure D.24: Streamlines and skin friction coefficient on the pressure side of the flexible C4-40 propeller blade tested at a J of 0.4.
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Figure D.25: Streamlines and Skin Friction coefficient on the suction side of the flexible C4-40 propeller blade tested at a J of 0.5.
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Figure D.26: Streamlines and skin friction coefficient on the pressure side of the flexible C4-40 propeller blade tested at a J of 0.5.
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Figure D.27: Streamlines and Skin Friction coefficient on the suction side of the flexible C4-40 propeller blade tested at a .J of 0.6.
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Figure D.28: Streamlines and skin friction coefficient on the pressure side of the flexible C4-40 propeller blade tested at a J of 0.6.
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Figure D.29: Streamlines and Skin Friction coefficient on the suction side of the flexible C4-40 propeller blade tested at a J of 0.7.
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Figure D.30: Streamlines and skin friction coefficient on the pressure side of the flexible C4-40 propeller blade tested at a J of 0.7.
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Figure D.31: Streamlines and Skin Friction coefficient on the suction side of the flexible C4-40 propeller blade tested at a .J of 0.8.
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Figure D.32: Streamlines and skin friction coefficient on the pressure side of the flexible C4-40 propeller blade tested at a .J of 0.8.

D.4. Thrust coefficient convergence
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Figure D.33: The thrust coefficient over time for J equals 0.1, plotted for the flexible Wagningen C4-40 propeller with a pitch ratio of 0.8
for the range of Reynolds numbers. The plot demonstrates a convergence solution in each case.
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Figure D.34: The thrust coefficient over time for J equals 0.2, plotted for the flexible Wagningen C4-40 propeller with a pitch ratio of 0.8
for the range of Reynolds numbers. The plot demonstrates a convergence solution in each case.
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Figure D.35: The thrust coefficient over time for J equals 0.3, plotted for the flexible Wagningen C4-40 propeller with a pitch ratio of 0.8
for the range of Reynolds numbers. The plot demonstrates a convergence solution in each case.
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Figure D.36: The thrust coefficient over time for J equals 0.4, plotted for the flexible Wagningen C4-40 propeller with a pitch ratio of 0.8
for the range of Reynolds numbers. The plot demonstrates a convergence solution in each case.

Re = 1E5
—— Re=1E6
0.205 1 —— Re = 1E7

—— Re = 5E7

0.200 4

|

0.195 4

Kr

0.190 4

0.185 4

0.180 4

T T T T T
0 200 400 600 800 1000
Time step

Figure D.37: The thrust coefficient over time for J equals 0.5, plotted for the flexible Wagningen C4-40 propeller with a pitch ratio of 0.8
for the range of Reynolds numbers. The plot demonstrates a convergence solution in each case.
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Figure D.38: The thrust coefficient over time for J equals 0.6, plotted for the flexible Wagningen C4-40 propeller with a pitch ratio of 0.8
for the range of Reynolds numbers. The plot demonstrates a convergence solution in each case.
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Figure D.39: The thrust coefficient over time for J equals 0.7, plotted for the flexible Wagningen C4-40 propeller with a pitch ratio of 0.8
for the range of Reynolds numbers. The plot demonstrates a convergence solution in each case.



D.4. Thrust coefficient convergence 114

]=0.8
0.040 A Re — 1E5
—— Re = 1E6
—— Re = 1E7
—— Re = 5E7
0.035 1
0.030 A
v
0.025 A
0.020 A
0 200 400 600 800 1000
Time step

Figure D.40: The thrust coefficient over time for J equals 0.8, plotted for the flexible Wagningen C4-40 propeller with a pitch ratio of 0.8
for the range of Reynolds numbers. The plot demonstrates a convergence solution in each case.
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Test Results Across a Range of
Fluid-To-Structure Density Ratios

E.1. Thrust Coefficient Convergence
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Figure E.1: The thrust coefficient over time for J equals 0.1, plotted for the flexible Wagningen C4-40 propeller with a pitch ratio of 0.8
for the range of Reynolds numbers. The plot demonstrates a convergence solution in each case.
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Figure E.2: The thrust coefficient over time for J equals 0.2, plotted for the flexible Wagningen C4-40 propeller with a pitch ratio of 0.8

for a range of density ratios. The plot demonstrates a convergence solution in each case.
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Figure E.3: The thrust coefficient over time for J equals 0.3, plotted for the flexible Wagningen C4-40 propeller with a pitch ratio of 0.8

for a range of density ratios. The plot demonstrates a convergence solution in each case.
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Figure E.4: The thrust coefficient over time for J equals 0.4, plotted for the flexible Wagningen C4-40 propeller with a pitch ratio of 0.8
for a range of density ratios. The plot demonstrates a convergence solution in each case.
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Figure E.5: The thrust coefficient over time for J equals 0.5, plotted for the flexible Wagningen C4-40 propeller with a pitch ratio of 0.8
for a range of density ratios. The plot demonstrates a convergence solution in each case.
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Figure E.6: The thrust coefficient over time for J equals 0.6, plotted for the flexible Wagningen C4-40 propeller with a pitch ratio of 0.8
for a range of density ratios. The plot demonstrates a convergence solution in each case.
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Figure E.7: The thrust coefficient over time for J equals 0.7, plotted for the flexible Wagningen C4-40 propeller with a pitch ratio of 0.8
for a range of density ratios. The plot demonstrates a convergence solution in each case.
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Figure E.8: The thrust coefficient over time for J equals 0.8, plotted for the flexible Wagningen C4-40 propeller with a pitch ratio of 0.8
for a range of density ratios. The plot demonstrates a convergence solution in each case.
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