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CO2-neutral hydrogen may play a

pivotal role in a decarbonized energy

system as an energy carrier and feed-

stock in hard-to-abate sectors such as

industry (e.g., iron and steel, chemicals)

and long-haul transportation (e.g., avia-

tion and shipping). Hydrogen, how-

ever, comes in many metaphorical

‘‘colors,’’ depending on its source of

production, like ‘‘gray’’ from steam

methane reforming (SMR) of natural

gas, ‘‘black’’ from coal gasification,

‘‘blue’’ from SMR or gasification with

carbon capture, or ‘‘green’’ from elec-

trolytic conversion using renewable

electricity.1 Yet, from the perspective

of the global transition to climate

neutrality, what matters is the impact

of hydrogen on aggregate CO2 emis-

sions. As all hydrogen molecules are

physically identical, irrespective of their

source of production, it is clear that

a careful definition of CO2-neutral

hydrogen—and associated monitoring,

verification, and certification—is nee-

ded to start building the global pro-

duction, transport, and market of

CO2-neutral hydrogen.

Electrolytic hydrogen has received

most attention from policy makers and

industry as a potential production route

for CO2-neutral hydrogen. This, how-

ever, creates two challenges related to

the electricity used in this process. First,

electrolytic hydrogen competes for

CO2-neutral electricity with direct elec-

trification of end-energy services such
Joule 6, 2437–2440
as space heating or personal mobility.

Although we do not focus on this issue

in this commentary, it is important to

stress that direct electrification should

be prioritized where possible, such as

in road transport or space heating.2,3

Direct electrification requires less pri-

mary energy for the same end-energy

service as it avoids conversion losses

in the electrolytic process and enables

more efficient end-use technologies

(e.g., electric heat pumps or electric ve-

hicles).3 To capture distant renewable

energy resources or in some hard-to-

abate sectors, however, electrolytic

hydrogen and its derivatives may be

essential to reach CO2 neutrality.
3 Sec-

ond, electrolytic conversion shifts CO2

emissions from the direct production

of hydrogen to the CO2 emissions asso-

ciated with the generation of the elec-

tricity required for electrolysis.2 When

the required electricity is generated

from renewable energy sources or by

nuclear power plants, these emissions

are near zero, but when it comes from

a gas- or a coal-fired power plant, elec-

trolytic conversion yields approxi-

mately two or five times more CO2

emissions than SMR.

Because the CO2 intensity of the elec-

trolytic hydrogen depends on the CO2

intensity of the electricity used, it is

clear that more regulation is needed

to ensure the CO2-neutrality of electro-

lytic hydrogen. Various governments

are proposing different definitions of

low-CO2 hydrogen. For example, under
, November 16, 2022 ª 2022 Elsevier Inc. 2437
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Figure 1. Illustration of a cap-and-trade system with a fixed cap covering the electric power sector, industry, and hydrogen production

The transportation sector is used an example of a sector not covered by this cap-and-trade system. An accelerated deployment of renewables does not

affect aggregate CO2 emissions (left). Similarly, regardless of its CO2 intensity, electrolytic hydrogen produced under a fixed cap leaves aggregate CO2

emissions unchanged if it replaces a fossil-fuel-based alternative under the fixed cap (left) but reduces CO2 emissions when it replaces a fossil-fuel

based in a sector not covered by the cap-and-trade system (right).
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the EU Taxonomy, hydrogen is a sus-

tainable investment if its life-cycle car-

bon intensity is below 3 kgCO2eq/

kgH2. In the United States, the Bipar-

tisan Infrastructure Law defines a

hydrogen production standard of

2 kgCO2eq/kgH2, while the Chinese

standard for clean hydrogen is set at

4.9 kgCO2eq/kgH2. The current draft

of the UK Low Carbon Hydrogen

Standard sets the threshold at 2.4

kgCO2eq/kgH2, using a ‘‘point of

production’’ system boundary. In this

commentary, however, we focus on

CO2-neutral (or in EU terminology,

renewable or green) hydrogen. Eu-

rope’s Hydrogen Strategy4 and REPo-

werEU plan,5 which put forward a 80

GW electrolyzer and a 20 million tonnes

of renewable hydrogen target by 2030,

stress that CO2-neutral hydrogen must

be produced by ‘‘additional renewable

electricity.’’4 More recently, the Eu-

ropean Commission specified this

additionality requirement in a draft

delegated act for renewable fuels of

non-biological origin, such as hyd-

rogen, in the transportation sector,7 as

required in the Renewable Energy
2438 Joule 6, 2437–2440, November 16, 2022
Directive.6 In short, this proposal states

that hydrogen is fully renewable only

when it is (1) produced from renewable

electricity that is generated at the same

time (hourly temporal correlation or

simultaneity), (2) by renewable assets

that have been constructed, without

subsidies, specifically for this purpose

(additionality), and (3) without conges-

tion in the electricity transmission sys-

tem between the electrolyzer and the

renewable asset (geographical congru-

ence).7 This proposal defines, for the

first time, in detail under which condi-

tions electrolytic hydrogen will be

considered renewable by the EU, and,

hence, can be considered to meet

the policy targets in the European

Hydrogen Strategy4 and REPowerEU.5

There is a consensus that these require-

ments indeed ensure the CO2 neutrality

of the hydrogen produced and that this

may lead to an accelerated deployment

of renewables in the electric power

sector, unless the speed of renewable

capacity additions is constrained by

the availability of materials and labor

or by permitting issues. However,
some authors argue that the hourly

temporal correlation unnecessarily in-

creases the cost of hydrogen by

requiring overinvestment in renewable

capacity and should thus be replaced

by a yearly additionality requirement.8

Others argue that relaxing the simulta-

neity constraint will lead to increased

emissions.9

The current debate, however, fails to

recognize that CO2 emissions of the

electric power sector in many jurisdic-

tions are capped by an emissions

trading system (ETS), such as EU ETS

in Europe, China’s national cap and

trade, RGGI in the Northeast of the

United States, or California’s cap and

trade. For the jurisdictions that employ

a fixed cap, the potential accelerated

deployment of renewable electricity

generation does not change total emis-

sions: it only changes the timing and/or

the sector from which the emissions

originate (Figure 1, left).

Similarly, when electrolytic hydrogen

replaces fossil-fuel-based alternatives

that are also covered by the fixed cap,
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like the production of gray hydrogen in

EU ETS, there is no effect on total emis-

sions (Figure 1, left). Replacing gray

hydrogen with electrolytic hydrogen

potentially reduces emissions from the

hydrogen production process and the

electric power sector, depending on

the CO2 intensity of the electricity

used and whether the principle of addi-

tionality is enforced. Cumulative emis-

sions from within the fixed ETS cap,

however, remain unchanged.

On the other hand, when hydrogen re-

places fossil-fuel based alternatives

that do not fall under the fixed cap,

e.g., replacing fossil fuels in the trans-

portation sector in Europe (Figure 1,

right), aggregate emissions do go

down. This observation holds regard-

less of the principle of additionality or

the CO2 intensity of the hydrogen

used. By using hydrogen instead of a

fossil fuel-based alternative, one places

the emissions associated with the end-

energy service at hand under the fixed

emissions cap. Emissions from within

the ETS cap remain unchanged, but

the emissions from the fossil fuel-based

counterpart not covered by the cap are

avoided, lowering aggregate emis-

sions. This type of reasoning may be

used to motivate the European Com-

mission’s decision to consider a battery

electric or fuel cell vehicle as a zero-

emission vehicle in its CO2 emission

performance standards for cars and

vans, without any requirements on the

electricity used directly or indirectly in

these vehicles.10

This is, however, not the full story in

cap-and-trade systems where the cap

is not fixed, like EU ETS11 or California’s

cap and trade.12 EU ETS, e.g., features

a supply adjustment mechanism, the

market stability reserve (MSR), which

lowers the future supply of emission al-

lowances based on the observed cumu-

lative difference between supply of

emission allowances and emissions. As

exposed in our previous work, any pol-

icy that changes the timing of emissions
may now affect the cumulative cap,

hence, emissions under EU ETS via the

supply adjustments of the MSR.13 For

announced policies affecting emissions

in the future, such as the additionality

requirement, the effect on cumulative

emissions may be counterintuitive and

more than proportional. Signaling a

policy-driven decrease in demand for

allowances by mandating additional

renewable electricity production may

depress emission allowance prices in

the future and today, which promotes

less abatement efforts early on. This in

turn reduces the downward supply ad-

justments of the MSR, increasing cumu-

lative emissions under EU ETS.13 This

effect is sometimes referred to as a

new green paradox as a policy de-

signed to reduce emissions in the future

may increase cumulative emissions un-

der EU ETS and vice versa.13 Whether

this unintended effect materializes, as

well as its direction and magnitude, re-

mains uncertain.

In summary, we argue that the discus-

sion on the definition of CO2-neutral

hydrogen should go beyond its

‘‘colors’’ or means of production, rec-

ognizing the interaction with and

impact of other policy instruments,

such as emission trading systems and

CO2 (border) taxes. We here define car-

bon neutrality as not increasing system-

level CO2 emissions. From an energy

system perspective, hydrogen should

thus be considered CO2-neutral when

produced from a carbon-neutral elec-

tricity source or under an emissions

cap. In technology- or sector-specific

policies, such as vehicle efficiency stan-

dards,10 it remains a semantic discus-

sion whether or not to include upstream

in addition to downstream emissions in

the definition of an energy carrier’s car-

bon neutrality (e.g., well-to-tank vs.

tank-to-wheel or tailpipe emissions in

the context of transport). When direct

and indirect electrification compete,

(CO2) prices and energy efficiency

should guide the choice between

hydrogen and electricity. Failing to
recognize these interactions may lead

to a cost-inefficient development of

and an unlevel playing field for CO2-

neutral hydrogen without any impact

on CO2 emissions. Glenk and Reichel-

stein, e.g., show that the economics of

electrolytic hydrogen improve consid-

erably if power can be drawn from the

grid without restrictions on its carbon

intensity.14

This commentary is not a call against

hydrogen, renewables, or decarbon-

ization targets, nor does it intend to

favor one technology or energy carrier

over another. On the contrary, it is a

call for ambitious decarbonization stra-

tegies, supported by a coherent mix of

policies promoting both cost efficiency

and effectiveness on a level playing

field. A remaining open question is

the optimal mix of policy instruments

to kick-start the CO2-neutral hydrogen

industry and market. This relates to,

e.g., the use of R&D subsidies, res-

earch partnerships, and carbon con-

tracts for differences, as well as the

choice between and calibration of

cost-based targets (e.g., $1/kgH2 by

2030 in the United States) and quan-

tity-based targets (e.g., 10 million

tonnes of renewable hydrogen pro-

duced in the EU by 2030).
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