
Faculty of Electrial Engineering, Mathematics and Computer Science
Network Architectures and Services

Impairment-Aware QoS Routing in Translucent Optical
Networks

Ebisa Olana Negeri
(1386514)

A thesis submitted in partial fulfillment of

Master of Science

Committee Members:

Supervisor: Dr. Ir. Fernando Kuipers
Mentor: Anteneh Ayalew Beshir
Others: Prof. Dr. Ir. Piet Van Mieghem, Dr. Ir. Christian Doerr, Dr. Ir. Anthony Lo

June 29, 2009
M.Sc. Thesis No: PVM 2009-055

Copyright c©2009 by Ebisa Olana Negeri.
All rights reserved. No part of the material protected by this copyright may be reproduced
or utilized in any form or by any means, electronic or mechanical, including photocopying,
recording or by any information storage and retrieval system, without the permission from
the author and Delft University of Technology.

Abstract

Wavelength-division-multiplexed (WDM) optical networks are commonly used to trans-
port huge amount of traffic in long-haul and metro/regional networks. In these networks,
the optical signals deteriorate due to the physical impairments they encounter as they
traverse multiple links. This necessitates regeneration of the signals at the intermediate
nodes so that the signals will reach the destination with an acceptable level of quality. In
translucent optical networks, the regenerators are sparsely placed in the network. Some
applications that are transported over these networks require a guaranteed end-to-end
quality of service (QoS). The QoS routing in these networks involves two tasks: guaran-
teeing the end-to-end QoS requirement, and making sure that the signal quality will be
acceptable at the destination by considering the physical impairments.

In this thesis, we present physical impairment-aware QoS routing algorithms in
translucent optical networks. We have proposed exact and heuristic algorithms that aim
at optimally satisfying the QoS requirements, and minimizing the number of regenerators
used along the selected path. The attractive feature of our algorithms is that they
incorporate both the physical impairments and the regenerator assignment into the path
computation process. As a result, the paths are computed efficiently. The experimental
results show that each of our algorithms has its own aspect of fitness where it should be
the best choice over the others.

iv Abstract

Acknowledgements

In the first place, my unparalleled praise goes to God for His providence.

I would like to record my gratitude to my advisor, Dr. Fernando A. Kuipers for
his continuous support and his invaluable advices that have enormous contribution to my
work. His deep insight into problems has exceptionally inspired and enriched my growth
as a student.

My earnest appreciation goes to my daily supervisor, Anteneh Ayalew for his unre-
served all-time assistance in various ways. In addition to providing me with the thesis
title, he has guided me, provided me with precious comments on my work, and encouraged
me in difficulties. I am highly indebted to him.

I would like to extend my courteous thanks to Professor Piet Van Mieghem. It
gives me great pleasure to do this thesis under his academic supervision.

Where would I be without my family? Words fail me to express my appreciation
for the love and encouragement they have shown me to this day.

vi Acknowledgements

Table of Contents

Abstract iii

Acknowledgements v

Acronyms ix

1 Introduction 1
1-1 WDM Optical networks . 1

1-1-1 Routing and Wavelength Assignment 2

1-1-2 Physical Layer Impairments . 4

1-1-3 QoS Routing . 5

1-2 Related Work . 6

1-3 Objectives . 8

1-4 Organization of the Thesis . 9

2 Impairment-Aware QoS Routing (IQR) 11

2-1 Network Model . 11

2-2 Notations . 13

2-3 Problem Definition . 14

2-4 General Approach . 15

2-5 Exact Algorithm . 15

2-5-1 QoS Optimization . 17

2-5-2 Regenerator-Count Minimization . 26

2-6 Heuristic Algorithms . 32

2-6-1 Tabu-Search Overview . 32

viii Table of Contents

2-6-2 The Tabu-search Based Heuristic Algorithm 33

2-6-3 QoS Optimization . 35

2-6-4 Regenerator-Count Minimization . 41

3 Simulation 45
3-1 Simulation Environment . 45

3-2 Simulation under Totally Loose Physical Constraints 46

3-3 Simulation under Totally Loose QoS Constraints 49

3-4 Simulation under Tight QoS Constraints . 55

3-5 Simulation under Medium QoS Constraints 59

3-6 Simulation under Dynamic Traffic . 63

4 Discussion and Conclusion 65
4-1 Discusions . 65

4-2 Conclusions . 67

4-3 Future Work . 68

A Network Topologies 75

A-1 The ARPANET Network . 75

A-2 A Lattice Network . 76

B Additional Results 77
B-1 Totally loose physical constraints . 77

B-2 Totally loose Qos constraints . 81

B-3 Tight Qos constraints . 88

B-4 Medium Qos constraints . 91

B-5 Tunable algorithms with different values of k 95

B-6 Dynamic traffic . 97

Acronyms

ASE Amplifier Spontaneous Emission

BER Bit Error Rate

BF Best Fit

EDFA Erbium Doped Fiber Amplifier

EIOQRA Exact Impairment-aware Optimal QoS Routing Algorithm

EIQRRM Exact Impairment-aware QoS Routing with Regenerator Minimization

FF First Fit

IOQR Impairment-aware Optimal QoS Routing

IOQRA Impairment-aware Optimal QoS Routing Algorithm

IQR Impairment-aware QoS Routing

IQRRM Impairment-aware QoS Routing with Regenerator Minimization

OEO Optical-Electronic-Optical

OXC Optical Cross-Connects

PMD Polarization Mode Dispersion

RF Random Fit

RWA Routing and Wavelength Assignment

x Acronyms

SAMCRA Self-Adaptive Multi-Constrained Routing Algorithm

TIOQRA Tunable Impairment-aware Optimal QoS Routing Algorithm

TIQRRM Tunable Impairment-aware QoS Routing with Regenerator Minimization

TS Tabu Search

WDM Wavelength-Division-Multiplexed

Chapter 1

Introduction

1-1 WDM Optical networks

WDM optical networks are widely used in long-haul and metro/regional networks.
Their architecture is evolving from traditional opaque networks towards all-optical (i.e.
transparent) networks. In transparent all-optical networks, the signal is transmitted in the
optical domain from the source to the destination node without undergoing any optical-
electronic-optical (OEO) conversions. In opaque networks, the optical signal carrying
traffic undergoes an OEO conversion at every switching or routing node. Practically, the
transmission reach of optical signals is limited (e.g. 2000-2500 km) [2]. In order to go
beyond this transparent reach of optics, signal regeneration is required at intermediate
nodes to re-amplify, re-shape and re-time the optical signal, which are collectively
known as the 3R regeneration. Even though in principle optical 3R regeneration can be
accomplished completely in the optical domain (e.g. [5, 6]), only electrical 3R regenerators
are currently economically viable [3]. Hence, signal regeneration involves OEO conversions
which disrupt the transparency of the signal.

The OEO process increases the cost of the signal transmission due to several fac-
tors such as the number of regenerators required in the network, the dependency of the
conversion process on the connection line rate and also on the modulation format [1]. With
each OEO node are associated scalability issues related to cost, space requirements, power
consumption and heat dissipation. Hence, for large size of opaque networks, network
designers and architects have to consider more electronic terminating and switching
equipments, which presents challenges in cost, heat dissipation, power consumption,
required physical space, and operation and maintenance costs. Due to the lack of practical
all-optical regenerators, these issues are addressed by the intermediate optical network
architectures, which are known as translucent networks [7]. Translucent network architec-

2 Introduction

tures have been proposed as a compromise between opaque and all-optical networks. This
approach places regenerators sparsely and strategically to maintain the acceptable level of
signal quality from the source to its destination. Hence, much of the required electronic
processing is eliminated and a signal is allowed to remain in the optical domain for much
of its path. Keeping the signals in the optical domain brings a significant cost reduction
due to removal of electronic processing equipments [8]. This removal of electronic devices
further reduces power consumption, heat dissipation and space requirements. Our study
focuses on translucent networks.

1-1-1 Routing and Wavelength Assignment

The rapid advancement and evolution of optical technologies makes it possible to move
beyond point to point WDM transmission to an all-optical backbone network that can
take full advantage of the available bandwidth. Such a network consists of a number of
optical cross-connects (OXCs) arranged in some arbitrary topology, and its main function
is to provide interconnection to a number of edge devices in WDM backbone networks.
Each OXC can switch the optical signal coming in on a wavelength of an input fiber link
to the same wavelength in an output fiber link. The OXC may also be equipped with
convertors that permit it to switch the optical signal on an incoming wavelength of an
input fiber to some other wavelength on an output link. The optical signal is transported
over a lightpath, which is an optical communication channel established over the network
of OXCs which may span a number of fiber links. If no wavelength convertors are used,
a lightpath is associated with the same wavelength on each hop. Using convertors, a
different wavelength on each hop may be used to setup a lightpath. Thus a lightpath is
an end-to-end optical connection established between two edge devices attached to the
optical backbone [10, 11].

Establishing an optical connection in WDM optical networks involves both routing
(selecting a suitable path) and wavelength assignment (allocating an available wavelength
for the connection). For a given set of connection requests, the problem of setting up
lightpaths by routing and assigning a wavelength to each connection with the goal of
maximizing the number of optical connections is referred to as Routing and Wavelength-
Assignment (RWA) problem [9]. The RWA problem is significantly more difficult than the
routing problem in electronic networks. The additional complexity arises from the fact
that routing and wavelength assignment are subject to the following two constraints:

1. Wavelength continuity constraint: if no regenerators are used, a lightpath must use
the same wavelength on all the links along its path from the source to the destination
node.

2. Distinct wavelength constraint: all lightpaths using the same link must be allocated
distinct wavelengths.

1-1 WDM Optical networks 3

The wavelength continuity constraint may be relaxed if the OXCs are equipped with
wavelength convertors [12]. A wavelength converter is a single input/output device that
converts the wavelength of an optical signal arriving at its input port to a different
wavelength as the signal departs from its output port, but otherwise leaves the optical
signal unchanged. In general, wavelength continuity constraint is imposed on each
lightpath since optical wavelength convertors remain too costly.

The effect of wavelength continuity constraint can be represented by replicating the
network into as many copies as the number of wavelengths. If wavelength i is selected for a
lightpath, the source and destination node communicate over the ith copy of the network.
Thus, finding a path for a connection may potentially involve W routing problems for a
network with W wavelengths, one for each copy of the network.

Given a set of candidate wavelengths satisfying the wavelength continuity constraint, the
wavelength selection can be performed in various ways, such as the first fit(FF), best
fit(BF), and random fit(RF). In the first fit approach, the first non-occupied wavelength
that satisfies the connection requirements is selected [16, 17]. The best fit approach tries
to look through all of the candidate wavelengths so as to find the most appropriate one
[17, 18]. In the random fit approach, a wavelength is randomly chosen among the available
wavelengths [19].

The RWA problem can be cast in numerous forms. The different variants of the
problem, however, can be classified into two broad versions: a static RWA, whereby the
traffic requirements are known in advance, and a dynamic RWA, in which a sequence of
lightpath requests arrive in some random fashion.

Static RWA

If the traffic patterns in the network are reasonably well-known in advance and any traffic
variations take place over long time scales, the most effective technique for establishing
lightpaths between client subnetworks is by formulating and solving a static RWA problem.
Therefore, static RWA is appropriate for provisioning a set of semi-permanent connections.
Since these connections are assumed to remain in place for relatively long periods of time,
it is worthwhile to attempt to optimize the way in which the network resources are assigned
to each connection.

Dynamic RWA

During real-time network operation, edge nodes submit to the network their requests
for lightpaths to be set up as needed. Thus connection requests are initiated in some
random fashion. Depending on the state of the network at the time of a request, the
available resources may or may not be sufficient to establish a lightpath between the

4 Introduction

corresponding source-destination node pair. The state evolves randomly in time as new
lightpaths are admitted and existing lightpaths are released. Thus, each time a request is
made, an algorithm must be executed in real time to determine whether it is feasible to
accommodate the request, and, if so, to perform routing and wavelength assignment. If a
request for a lightpath cannot be accepted because of lack of resources, it is blocked.

Previous studies that investigated the RWA problem are summarized in [9], and
the problem is known to be NP-Complete [9].

1-1-2 Physical Layer Impairments

Optical signals encounter many impairments that affect the signal intensity level, as
well as its temporal, spectral and polarization properties as they traverse the optical
fiber links and also propagate through the optical components [20]. These impairments
are collectively known as physical impairments. The physical impairments accumulate
noise and signal distortions along the physical path which degrade the quality of the
received signal. The signal degradation may lead to an unacceptable bit error rate (BER)
particularly for high bit rates and when the signal travels long distances. Therefore,
physical impairment-aware routing is required in optical networks.

Physical layer impairments can be categorized into linear and non-linear impair-
ments. Linear impairments are independent of the signal power and affect each of
the wavelengths (optical channels) separately. Consequently, they can be treated as
constraints associated to links. On the other hand, non-linear impairments affect not
only each optical channel individually but they also cause disturbance and interference
between them [21, 22]. Because of the disturbance and interference they introduce
between the optical channels, non-linear impairments are notably more complex than
linear impairments. Especially, non-linear impairments intensely depend on the current
allocation of wavelengths on a given fiber. Thus, they depend not only on the the physical
topology, but also on the current state of the allocated lightpaths [24]. Consequently, the
establishment of a new lightpath is influenced by the already established ones. Likewise,
a newly established lightpath may affect the transmission properties of the previously
established ones.

In this thesis, we consider only linear impairments. It is necessary to consider mul-
tiple impairments in the routing process because the individual impairments depend
on different properties of the optical network. For example, PMD (polarization mode
dispersion) and ASE (Amplifier spontaneous emission) noises, that have been identified in
an Internet Engineering Task Force (IETF) draft as the two major linear impairments that
can practically be used in constraint-based optical routing [23][27], depend on different
properties of the network. PMD results from the pulse spread in the frequency domain
due to different polarizations of the optical signal traveling at different velocities, which

1-1 WDM Optical networks 5

normally travel at the same velocity. For a regeneration segment, which is the segment
between two consecutive nodes where regenerations take place along a lightpath, the PMD
is given as [27]:

PMDReg Seg =

√ ∑
i∈Reg Seg

DPMD
2(i)l(i) (1-1)

where Reg Seg is the regeneration segment, i is the link index, DPMD(i) is the fiber
dispersion parameter at the ith optical link, and l(i) is the length/distance in km of the ith

link. The typical values of DPMD(i) range from 0.1 to 0.5 ps/
√

Km [27]. The maximum
value for PMDReg Seg is expressed as [27]:

PMDReg Seg ≤ α

B
(1-2)

where α is the maximum dispersion fraction, and B is the digital bit error rate of the
signal. A typical value for α is 0.1, thus B ≤ 1. In order to have a linear relationship, we
use PMD2

Reg Seg as a parameter. Thus,

∑
i∈Reg Seg

D2
PMD(i)l(i) ≤

(α

B

)2

(1-3)

On the other hand, more ASE noise will be accumulated as more EDFAs (erbium doped
fiber amplifiers) are traversed, because each EDFA stage adds its own component of ASE
noise. The ASE noise power of an EDFA can be expressed as [27]:

PASE
i,j = nsp(i, j)(G(λi, j)− 1)hviBo (1-4)

where nsp(i, j) is the spontaneous emission factor of the jth EDFA on the ith fiber link
along a regeneration segment, G(λ(i, j)) is the saturated gain, λk = c/vi is the assigned
wavelength, h is Planck’s constant, c is the velocity of light, and Bo is the optical bandwidth.
The ASE noise powers of different wavelengths along the same link are slightly different.
If these differences are ignored, the ASE noise power on a regenerator segment is linearly
related to the ASE noise power on individual links along that segment. The threshold
value of the ASE power is expressed as [27]:

∑
i∈Reg Seg


 ∑

j∈Link(i)

nsp(i, j)G(λ(i, j)− 1)hvBo


 ≤ PASE

max (1-5)

where PASE
max is the threshold value of acceptable ASE noise, and λ and v are constants.

1-1-3 QoS Routing

Quality of Service (QoS) is the performance level of a service offered by the network to the
user. The goal of QoS provisioning is to achieve a more deterministic network behavior,

6 Introduction

so that information can be better delivered and network resources can be better utilized.
In WDM optical networks spanning large areas, an optical signal may traverse a number
of intermediate nodes and long fiber segments. Each component along the path such as
fibers, OXCs, and EDFAs are associated with some delay, cost, and reliability factors.

Different applications/end users need different levels of services and differ in how
much they are willing to pay for the service they get. So, the network provider should
provide different kinds of qualitative guarantees such as maximum delay, maximum cost,
and minimum reliability to the users, depending on their requirements. As these services
are route dependent, the RWA algorithm should find a route which satisfies the QoS
requirements of the connection and best utilizes the network resources.

QoS can be classified into two categories: qualitative requirements and functional
requirements. Some of the qualitative requirements of optical signal are transmission
delay and and reliability of the components used along the path chosen for establishing a
connection. Reliability of a component is the probability that the component functions
correctly over a period of time [29]. An example of the functional requirements of optical
signals is survivability. In WDM networks, the failure of a network component leads to the
failure of all the paths traversing through that component. As each lightpath carries a huge
volume of traffic, it is important that these networks are fault-tolerant. Fault-tolerance
refers to the ability of the network to configure and reestablish communication upon
failure. A fault-tolerant network is referred to as a survivable network. Several papers can
be found in the literature on survivable WDM networks [29, 30, 31, 32]. The focus of this
thesis is on additive and multiplicative qualitative QoS requirements.

The problem of QoS routing in electronic networks with multiple additive link weights is
known to be NP-complete [33], and several heuristic, approximation, and exact algorithms
have been suggested in the literature. A survey of these algorithms is provided in [34]. In
translucent WDM optical networks, the presence of physical impairments complicates the
problem even more. Thus, physical impairment aware QoS routing in WDM networks is
also an NP-complete problem. In addition to satisfying the QoS requirements, a solution
path to this problem should also meet the requirement that the physical impairment
threshold is not exceeded on each regeneration segment along the path.

1-2 Related Work

Numerous RWA algorithms have been proposed in the literature for WDM optical
networks. The great majority of these algorithms assume ideal physical layer conditions
[9, 35, 36]. These algorithms are evaluated by using the blocking probability as a per-
formance metric. A blocking event, called wavelength blocking, occurs when a lightpath
cannot be setup due to shortage of a free route or a jointly free wavelength along the

1-2 Related Work 7

route.

Different approaches have been considered in the recent literature to provide the
physical impairment awareness in RWA algorithms. In one approach, the route and
the wavelength are computed in the traditional way without taking into account the
physical impairments, and finally the selected lightpath is verified considering the physical
layer impairments [37, 16, 39, 40, 18]. In this approach, other paths are recomputed
if the candidate paths do not meet the physical impairments. The work presented in
[37] comprises of a static regenerator placement and physical impairment aware RWA
algorithm for dynamic traffic. After annotating each link with a Q-factor penalty, this
algorithm computes paths between any combination of nodes under the constraint of a
minimal Q value. In [16], the LERP (lightpath establishment and regenerator placement)
algorithm is proposed as a physical impairment aware RWA and regenerator placement
algorithm. In this algorithm, k alternative paths are first computed, and then the
wavelength is assigned using the FF or RF method. Finally, the lightpath is tested with
the Q values and regenerators are placed as required.

An algorithm that modifies the Bellman-Ford algorithm is proposed in [39]. In this
algorithm, the minimum hop path is computed first with a certain cost limit. Then the
path is checked at the destination if it satisfies the physical constraints. If the path
fails the test, then another path is computed and checked until a path that satisfies the
physical constraints is found. A similar approach is used in [18] where a shortest path is
computed first among all available wavelengths and the path is verified with the physical
impairment. The algorithm suggested in [40] first selects the wavelength of the path using
the FF algorithm and then the shortest path is computed for the wavelength. Finally, the
shortest path is verified with the physical constraint.

In the other approach, the physical layer impairment values are considered in the
routing and/or wavelength assignment decisions [41, 42, 43, 45, 46, 47]. In some of the
works involving this approach, the physical layer information is used as weight of the
links in order to compute the minimum cost lightpath. The dynamic AQoS (Adaptive
Quality of Service) routing algorithm proposed in [41] assigns routes based on real-time
Q factor measurements. The algorithm computes shortest cost path or the k link
disjoint shortest cost paths considering the Q value as the link cost. The algorithm
also applies the CLC (Constrained Least Congested) approach in route selection to
use the wavelengths efficiently. Depending on the network conditions, the final deci-
sion is taken by considering either the wavelength balancing efficiency or the Q factor value.

In the algorithm proposed in [42], the wavelength is initially selected by means of
FF method without considering the physical impairments, and then a shortest path is
computed for that wavelength considering the noise variance of the physical impairments as
the link cost. Finally, if a lightpath causes a BER value to exceed a given threshold for the
new lightpath or for other already established lightpaths, then it is discarded. In [43], an

8 Introduction

algorithm that takes the physical impairments into account in both routing and wavelength
assignment processes is proposed. In this algorithm, the Q-Penalty values are used as the
link costs to compute the k shortest routes; and the wavelength that maximizes the Q
value is selected. Finally, the lightpath is verified if it satisfies another physical impairment.

In [45], k-shortest paths are computed by first removing the links that violate the
ASE constraint. Then, a path that minimizes the number of hops is selected and
afterwards the path is verified at the destination with other physical constraints. The
algorithm proposed in [46] computes the shortest path without considering the physical
impairments. In this algorithm, the physical impairments are considered in wavelength
assignment and the final verification of the path. In [47], the suggested algorithm performs
the physical constraint verification at each hop during the path computation process.
Moreover, the selected path is verified with some physical impairments at the destination.

Most of the physical impairment aware RWA related works mentioned before focus
on transparent optical networks. Even though there are few works on translucent optical
networks, they do not integrate regenerator assignment in the path computation process of
the routing algorithm. Most of them first compute a shortest path, and then check if the
lightpath satisfies the considered constraint on the physical impairment; if the check fails,
regeneration is introduced in the last regenerator node where the impairment constraint
is respected. If the path fails after trying all possible regenerations, the second shortest
path is computed and so on. Obviously, this is not an efficient approach. Further, these
related works do not address QoS routing.

1-3 Objectives

In this thesis, the problem of physical impairment aware QoS routing is studied and
solutions are provided. This thesis mainly differs from the previous works in that it
incorporates both the physical impairments and the regenerator assignment in the path
computation process. In addition, both the physical impairments and the QoS constraints
are simultaneously addressed during the path computation process.

The 3R regenerators involve OEO conversions that disrupt the transparency of the
signal. The OEO conversion process takes more time than switch- ing in the optical
domain, thereby introducing delay into the signal. Thus, it is necessary to minimize the
number of regenerators used along a path. On the other hand, the end users may re-
quire the optimal QoS. These two requirements lead to the two objectives of the thesis work.

The main objectives of the thesis are:

• To implement both exact and heuristic impairment aware QoS routing algorithms in

1-4 Organization of the Thesis 9

translucent optical networks that try to optimally satisfy the QoS requirements, and
investigate their performances.

• To implement both exact and heuristic impairment aware QoS routing algorithms in
translucent optical networks that try to minimize the number of regenerators used
along a path, and investigate their performances.

1-4 Organization of the Thesis

In chapter 2, the problem of impairment-aware QoS routing with QoS optimization and
regenerator minimization objectives are addressed. We present both exact and heuristic
algorithms that solve the problems.

In chapter 3, we present the simulation results of the algorithms developed in chapter 2.
We also compare the relative performance of the algorithms.

Finally, in chapter 4 we give a general conclusion on the work done and make
some recommendations for future work.

10 Introduction

Chapter 2

Impairment-Aware QoS Routing (IQR)

In optical networks, the physical impairments deteriorate the quality of the signal as
it traverses multiple links. Therefore, the QoS routing should be aware of the physical
impairments. In this chapter, we study the problem of impairment aware QoS routing
in translucent optical networks. The impairment-aware QoS routing problem is basically
a multi-constrained routing problem with additional constraints on the physical impair-
ments. Thus, the path selected as a solution to this problem should not only satisfy all the
QoS constraints, but it should also meet the requirement that the physical impairments
of each of the regeneration segments that make up the lightpath should not exceed their
corresponding threshold values.

Unlike the QoS metrics that are accumulated from end to end along the path, the
accumulated physical impairments are reset to zero when the signal is regenerated at
intermediate regenerator nodes along the path. After regeneration, the accumulation of the
physical impairments is resumed on the remaining links until the next regeneration takes
place. This effect of regeneration on the physical impairments complicates the routing
process compared to the routing in electronic networks. Since the multi-constrained
path problem, which is proved to be NP-complete [33], is a reduced version of the
impairment-aware QoS routing problem, the impairment-aware QoS routing problem is
also NP-complete. In this chapter, we present exact and heuristic algorithms to solve the
problem with two different objectives; namely, QoS optimization and regenerator-count
minimization.

2-1 Network Model

In this thesis, we consider translucent optical networks, that are networks with sparsely
placed OEO regenerators. A typical transmission system of a translucent optical transport

12 Impairment-Aware QoS Routing (IQR)

Figure 2-1: Some components that make up a translucent WDM optical network.

network (OTN) comprises of the components that are shown in Figure 2-1. In this
model, a node includes an all-optical switch, transponders, optional 3R regenerators, pre-
and post- amplifiers, multiplexers, and demultiplexers; whereas a link is a WDM line
system incorporating fibers and amplifiers. Electrical signals are modulated onto distinct
wavelengths by transponders at a given node. After these wavelengths are multiplexed,
they are pre-amplified before being propagated through the WDM line. In order to
subdue the fiber absorption losses, EDFAs are used at some points along the WDM line.
Eventually, the signal is post-amplified and demultiplexed into individual signals at the
receiver.

A fiber link comprises of several fiber spans, where a fiber span is the WDM line
segment between two consecutive EDFA amplifiers. Moreover, a fiber link has a single
fiber in each direction. In Figure 2-1, only one direction of a fiber link is shown. There
are add and drop ports at each node for data to locally enter and leave the network at
transmitters (Tx) and receivers (Rx), respectively. At each node, an all-optical switching
fabric, which can switch an optical signal from any input port to any other output port,
demultiplexes and switches each incoming signal.

In order to facilitate regeneration, an optional pool of regenerators can be placed
between transmitters and receivers as shown in Figure 2-1. For a lightpath, a transparent
segment including one or more links between two consecutive nodes where regeneration
takes place is referred to as a regeneration segment of the lightpath. Thus, a lightpath
comprises of one or more regeneration segments. If a lightpath does not require any
regeneration along its path, then we refer to it as a transparent lightpath. After a signal
has been regenerated, it resumes the original characteristics it had at the source node.

2-2 Notations 13

2-2 Notations

In this section, we describe the notations used in the rest of this thesis.

• N is the number of nodes in the network.

• E represents the number of fiber links in the network.

• NR is the number of regenerator nodes in the network.

• G = (N ,L) is undirected graph representing the network topology with vertex set
N (representing the network nodes), and arc set L (representing the network fiber
links).

• (u, v) denotes the fiber link between nodes u and v that are adjacent.

• mq is the number of QoS metrics associated with each fiber link.

• mp is the number of the physical impairments associated with each fiber link.

• −→q (u, v) represents the QoS metrics vector associated with the fiber link (u, v), where
qi(u, v), 1 ≤ i ≤ mq, is the ith QoS metric on the fiber link.

• −→δ (u, v) is the physical impairments vector associated with the fiber link (u, v), where
δj(u, v), 1 ≤ j ≤ mp, is the jth physical impairment on the fiber link.

• −→T denotes the QoS threshold vector, where Ti represents the threshold value of the
ith QoS metric (1 ≤ i ≤ mq).

• −→∆ represents the physical impairment threshold vector, where ∆j represents the
threshold value of the jth physical impairment (1 ≤ j ≤ mp).

• R = (s, t, {Ti}, {∆j}) denotes a lightpath request from the source node s to the
destination node t subject to the constraints.

• −→I (p), is a vector of sums, where Ii(p) represents the sum of the ith physical impair-
ment along the path p since the last regeneration (or since the source node if there
was no regeneration).

• −→I∗(p), is a sum vector, where Ii(p) denotes the sum of the ith physical impairment
along the path p since the last regenerator node (or since the source node if no
regenerator node is encountered).

• −→Q(p), denotes the sum vector of the QoS metrics along the path p, where Qi(p)
represents the sum for the ith QoS metric.

• Adj[u] represents the set of nodes that are adjacent to node u in the graph G.

14 Impairment-Aware QoS Routing (IQR)

• π[u[i]] represents the set of nodes that appear in the ith path stored at node u.

• lur(u[i]) represents the last unused (free) regenerator along the ith path stored at
node u.

• reg numb(u[i]) is the number of regenerators used in the ith path stored at node u.

• B is a set of nodes including all the regenerator nodes in the network and the desti-
nation node of the request R.

• p∗n→t;i is the shortest path from a node n to the destination node t in terms of the
QoS metric i.

• p∗∗n→j;i represents the shortest path from a node n to the nearest node j, j ∈ B, with
respect to the ith physical impairment.

• −→b (n) represents the attainable lower bounds for each QoS metric, with bi(n) =
Qi(p

∗
n→t;i).

• −→b∗ (n) denotes the attainable lower bounds on the distance to the nearest node j in B
for each physical impairment, where b∗i (n) is the accumulated sum of the ith physical
impairment on the path p∗∗n→j;i.

2-3 Problem Definition

In this section, the impairment-aware QoS routing problem is defined. The physical
optical network is modeled as an undirected graph G = (N ,L), where N is the set of
N nodes and L is the set of L links. Each fiber link (u, v) ∈ L is associated with a
set of non-negative metrics, each representing a QoS metric qi(u, v) or a linear physical
impairment δj(u, v) where i ∈ {1, 2, ..., mq} and j ∈ {1, 2, ..., mp}. In addition, all the fiber
links in the network are associated with the same wavelength λ. Each node has a given
number of regenerators which could be zero. NR ⊆ N represents the set of R nodes that
have regeneration capacity, and NR = |NR| represents the number of regenerator nodes.
A lightpath request R is represented by the tuple (s, t, {Ti}, {∆j}), where s, t ∈ N are
the source and destination nodes of R, {Ti} and {∆j} are the set of threshold values for
QoS and physical impairments, respectively. The impairment-aware QoS routing (IQR)
problem is to find a simple path and allocate resources to a given request R such that the
end-to-end QoS constraints are satisfied, and the physical impairments should not exceed
their corresponding threshold values for any regeneration segment along the path.

A path involving loops cannot be a candidate for the solution of this problem be-
cause loops may violate the capacity of a link or a node. Hence, the problem requires a
simple path solution. In the following section, we describe the general approach used in
this thesis to solve the problem.

2-4 General Approach 15

2-4 General Approach

In solving the IQR problem, we handle the QoS metrics and the physical impairments
differently. This is due to the fact that a signal regains the physical attributes it had
at the source node when it is regenerated at an intermediate node. Thus, the physical
impairments accumulated along the sub-path before the regeneration should be reset
to zero. In our approach, we avoid regeneration until the impairment level exceeds
the acceptable threshold when using the outgoing link at the current node. For the

physical impairments, the aforementioned vectors
−→
I (p) and

−→
I∗(p) are used to perform

the regeneration process effectively. Whenever a regenerator node is encountered along

a path p,
−→
I ∗(p) is reset to

−→
0 . The need for regeneration arises when the accumulated

physical impairment sum Ii(p) exceeds ∆i for at least one i ∈ {1, 2, ..., mp}. Regeneration
is possible only if there is an unused regenerator node along p since the last actual
regeneration, or since the start node s if there was no actual regeneration. Whenever
a regeneration is required and is possible, we do not need to recompute the path again
starting from the last regenerator node. Rather, we perform regeneration in an effective

way by simply copying
−→
I∗(p) to

−→
I (p). For the QoS metrics, the end-to-end sum vector is

taken because they are not influenced by the regeneration of the signal.

Besides this general approach, both the exact and the heuristic algorithms employ
their own specific approaches to solve the problem. The details of these algorithms are
described in the following sections.

2-5 Exact Algorithm

In this section, the exact algorithms proposed to solve the two variants of the IQR prob-
lem are discussed. Our exact algorithms use some concepts of the self-adaptive multi-
constrained routing algorithm (SAMCRA) suggested in [33]. SAMCRA is an exact multi-
constrained shortest path algorithm, i.e, it certainly finds a path that optimally satisfies
all the constraints, if it exists. Next, we give a brief description of SAMCRA before we
proceed to explain how it can be modified to solve the IQR problem. The four major
underlying concepts of SAMCRA are:

1. A non-linear path length: Different (sub)paths with multiple QoS metrics are com-
pared using their path lengths. For a given path p, SAMCRA defines the path length
l(p) as a non linear function of the link weights (Equation 2-1).

l(p) = max
1≤i≤mq

[
Qi(p)

Ti

]
(2-1)

2. k-shortest paths: At each intermediate node, SAMCRA stores up to k shortest paths
(where k is not restricted) from the source to that node with their corresponding
lengths.

16 Impairment-Aware QoS Routing (IQR)

Figure 2-2: A typical example showing that the dominance concept fails for impairment-
aware routing. The connection request is (1,5,7,7) and only node 3 has regeneration capacity.

3. Path dominance: A path is said to be dominated if it is higher or equal in every
metric and exactly higher in at least one metric than another path. SAMCRA drops
such dominated paths, thereby reducing the search space for possible paths.

4. Look-ahead: The look-ahead concept is an additional search space reduction mech-
anism, whereby the lower bounds related to the remaining (sub)path towards the
destination are used in order to predict whether the current (sub)path can possibly
exceed any of the QoS constraints. For each QoS metric, the lower bound is built by
computing the shortest path tree rooted at the destination node to each node in the
network.

The non-dominance technique of SAMCRA fails in impairment-aware routing due to
regeneration. The network shown in Figure 2-2 is a typical example where the dominance
concept fails. In this example, we are assuming that mq = mp = 1 and the request is
(1, 5, 7, 7). At node 2, the subpath p1 = 1 → 2 with Q1(p1) = 4 and I1(p1) = I∗1 (p1) = 6 is
dominated by the subpath p2 = 1 → 4 → 3 → 2 with Q1(p2) = 3 and I1(p2) = I∗1 (p2) = 5.
If we drop p1, a simple path solution cannot be obtained for the current request. However,
if we keep p1, it will be part of the only feasible path (1 → 2 → 3 → 4 → 5).

SAMCRA cannot be directly applied to solve the IQR problem because it does not
have the capability to handle regeneration, and the non-dominance technique also fails
due to regeneration. Therefore, we have built exact algorithms that use some concepts
of SAMCRA and also incorporate additional features to handle regeneration. In our
algorithms, we adopt the non-linear definition of path length and the k-shortest paths
concept. For the physical impairments, we define the path length of a path p as:

l∗(p) = max
1≤i≤mp

[
Ii(p)

∆i

]
(2-2)

For the QoS metrics, the look-ahead can be applied in the same way as SAMCRA.
Let p∗n→t;i be the shortest path from node n to the destination node t for QoS metric

2-5 Exact Algorithm 17

i. Thus, the attainable lower bounds for each QoS metric is represented by the vector−→
b (n) with bi(n) = Qi(p

∗
n→t;i). At each node n, SAMCRA stores the length of the sum

of the accumulated sum vector and the lower bound vector, i.e, l(
−→
Q(ps→n) +

−→
b (n)).

This “predicted” length of the path is used as the comparison metric to extract the
minimum length path from the queue of the stored paths. As a result, the paths
with the lowest “predicted” end-to-end length are given priority than the path with
the lowest length so far. Further, SAMCRA uses a parameter maxlength representing
the maximum length that a (sub)path may have. If the length of a (sub)path exceeds
maxlength, it either means that the constraints are violated or a shorter end-to-end path is
previously found. Thus, a (sub)path with length greater than maxlength can be discarded.

For the physical impairments, the look-ahead can be applied with some modifica-
tions. At each node n, we compute the look-ahead sum I∗i (ps→n) + b∗i (n) for each
i = 1, 2, ...,mp. This sum represents the sum of the ith physical impairment between the
last regenerator node and the next nearest regenerator node or the destination node. If
the sum exceeds the threshold value ∆i, then the (sub)path is discarded.

In SAMCRA, there is no need of explicit checking for occurrence of loops, because
the non-dominance test automatically avoids loops. As a result of the failure of the
non-dominance technique, we need to explicitly check for loops in impairment-aware QoS
routing.

In the following subsections, the exact algorithms for the two minimization objec-
tives, namely, QoS optimization and regenerator-count minimization, are presented.

2-5-1 QoS Optimization

In this section, we present the exact algorithm used to solve the IQR problem aiming at
minimizing the end-to-end QoS path length defined in Equation 2-1. Since we tend to
optimally satisfy the QoS constraints, we refer to this problem as the Impairment-aware
Optimal QoS Routing (IOQR) problem. Similarly, the algorithm is referred to as Exact
Impairment-aware Optimal QoS Routing Algorithm (EIOQRA). EIOQRA constantly
computes paths and stores them in a queue and then extracts the path with the minimum
measure from the queue. Then, the extracted path is extended to the neighboring nodes.
If an extended path is eligible to be stored in the queue, then it is inserted into the queue;
otherwise it is discarded. This process of insertion into and extraction from the queue
continues until either the queue is empty or a path at the destination node is extracted. If
the queue is empty, then there is no path satisfying the given QoS constraints. If a path
at the destination node is extracted, then the path is the optimal solution.

A path is stored in the queue along with its QoS predicted length, its regenerator-
count, and its length in terms of the physical impairments. The paths are extracted from

18 Impairment-Aware QoS Routing (IQR)

the queue according to the following rules:

• The path with the minimum predicted length (with respect to the QoS metrics) is
extracted, and

• If several paths have the same length, the one with the minimum regenerator count
is extracted, and

• If they have the same regenerator count, the one with the lowest length with respect
to the physical impairments is extracted.

A (sub)path P will be discarded:

• If its predicted QoS length exceeds the maximum length of the QoS metrics, or

• If at a given node, any of the physical impairments exceeds its acceptable threshold
even after regeneration (if possible), or

• If the look-ahead sum of any of the physical impairments exceeds its threshold value.

The metacode of the algorithm is described in the next subsection.

The Meta Code

In this section, we describe the meta-code of the exact algorithm aiming at QoS optimiza-
tion. In addition to the notations described in Section 2-2, the following parameters are
used in the algorithm. The parameters maxlen q and maxlen p refer to the maximum
lengths of the QoS measure and physical impairment, respectively. For the QoS metrics,
we drop a (sub)path p with length l(p) > maxlen q because it either violates the
constraints or is longer than an already found end-to-end path. Whereas, for the physical
impairment, if l∗(p) > maxlen p, we try to regenerate the signal; and if regeneration is
not possible, the (sub)path p is discarded. The number of paths that are stored at a node
n is represented by counter[n]. The parameter predicted length denotes the predicted
end-to-end length of a path in terms of the QoS metrics, whereas, look ahead p represents
the length from the last regenerator node to the nearest regenerator node/destination
node with respect to the physical impairments. The parameters regcount and lastreg
are used to temporarily store the regenerator-count and the last unused regenerator,
respectively, of the extended path. The queue where the paths are stored is denoted by Z.

In the INITIALIZE subroutine listed in Algorithm 1, the necessary parameters for
the main algorithm are initialized and the look-ahead information is computed. Lines 1
and 2 initialize counter of each node to zero. In lines 4 and 5, maxlen q and maxlen p
are initialized to 1.0.

2-5 Exact Algorithm 19

Algorithm 1 INITIALIZE(G,mp,mq, s, t)

1: for each v ∈ N do {* initialize the stored path counter of each node v to 0 * }
2: counter[v] ← 0
3: end for
4: maxlen q ← 1.0 {* initialize the maximum QoS length to 1.0 *}
5: maxlen p ← 1.0 {* initialize the maximum physical impairment length to 1.0 *}
6: for i = 1, ...,mq do
7: DIJKSTRA(G, t, i) → bi(n) { * compute the lower bound bi(n) for each node n *}
8: end for
9: for i = 1, ...,mp do

10: DIJKSTRA(G,B, i) → b∗i (n) {* compute the lower bound b∗i (n) for each node n *}
11: end for
12: queue Z ← ∅ {* initialize Z to an empty queue *}
13: counter[s] ← counter[s] + 1 { * increment the counter of the source node s *}
14: last reg ← 0 {* last reg is the last unused regenerator and is initialized to 0 *}
15: INSERT (Z, s,counter[s],NIL,l(

−→
b (s)), 0, 0, last reg, 0) {* insert s into the queue *}

The DIJKSTRA function in line 7 computes the look-ahead lower bounds
−→
b for the

QoS metrics. Here, for each individual QoS measure i, the lower bounds bi(n) from any
node n ∈ N to the destination node t is calculated. The lower bounds are found efficiently
by computing, for each QoS measure, a shortest path tree with the Dijkstra’s algorithm
from the destination to all other nodes. Then the shortest distance b∗i (n) from each node
n ∈ N to the nearest node in B is calculated for each individual physical impairment i
(line 10). This is done by computing, for each physical impairment, the shortest path tree
with the Djikstra’s algorithm from each node in B to all other nodes. In line 14 the last
unused regenerator (last reg) is set to 0. Finally, INITIALIZE inserts the source node s
into the queue Z (line 15).

The main algorithm (EIOQRA) is listed in Algorithm 2. The algorithm starts by
executing the subroutine INITIALIZE in line 1. Then EXTRACT MIN function extracts
the minimum path length in the queue according to the extraction rule described before
as long as the queue is not empty (lines 2-3). But if the queue Z is empty, then there is
no feasible path and the algorithm terminates. The extracted path u[i] represents the ith

path ps→u stored in the queue at node u. In line 4, the extracted path is marked gray. If
the node u corresponding to the extracted path u[i] equals the destination t, then u[i] is
the shortest path satisfying the constraints and the algorithm stops by returning u[i] (line
6). But, if u 6= t, the neighbors of u are scanned starting from line 8.

In lines 8-42, the ith path up to node u is extended toward its neighboring node v,
except for the previous nodes in the path u[i]. In order to prevent looping, line 8 explicitly
checks by back tracing if v is in the previous nodes of u[i]. If node v passes the looping

20 Impairment-Aware QoS Routing (IQR)

Algorithm 2 EIOQRA(G,mp,mq, s, t)

1: INITIALIZE(G, m, s, t) → −→
b ,
−→
b∗

2: while (Z 6= ∅) do {* if the queue Z is not empty, extract a path *}
3: EXTRACT-MIN(Z) → u[i] {* extract the minimum-length path *}
4: u[i] ← GREY
5: if (u = t) then {* if a path at the destination node is extracted *}
6: STOP→ return path
7: else
8: for each v ∈Adj[u] AND v /∈ {π[u[i]], s} do {* extend the path to each adjacent node which is not

in the previous nodes along the path *}
9: flag ← 0 {* flag is used to track regeneration *}

10: −→α ← −→
I∗(u[i]) +

−→
δ (u → v) {* compute −→α =

−→
I∗(the extended path) *}

11:
−→
β ← −→

I (u[i]) +
−→
δ (u → v) {* compute

−→
β =

−→
I (the extended path) *}

12: if (l(
−→
β) > maxlen p) then {* if the threshold is exceeded *}

13: if (lur(u[i]) 6= 0) then {* if there is a free regenerator *}
14:

−→
β ← −→α {* perform regeneration *}

15: flag ← 1 {* remember the regeneration by setting flag = 1 *}
16: end if
17: end if
18: if (flag = 1) then {* if regeneration has just taken place *}
19: reg count ← reg numb(u[i]) + 1 {* increment the regenerator-count *}
20: last reg ← 0 {* set the last unused regenerator to 0 *}
21: else
22: reg count ← reg numb(u[i]) {* copy the regenerator-count from u[i] *}
23: last reg ← lur(u[i]) {* copy the last unused regenerator from u[i] *}
24: end if
25: predicted length← l(

−→
Q(u[i]) +−→q (u → v) +

−→
b [v]) {* compute the QoS predicted length *}

26: look ahead p← l(
−→
I∗(u[i]) +

−→
δ (u → v) +

−→
b∗ [v]) {* compute the physical impairment length

of the path from the last regenerator to the nearest regenerator *}
27: if ((precicted length ≤ maxlen q AND look ahead p ≤ maxlen p AND (l(

−→
β) ≤ maxlen p))

then {* if the extended path is eligible to be stored *}
28: if reg(v) 6= 0 then {* if the current node is a regenerator node *}
29: last reg ← v {* set the last unused regenerator to v *}
30: −→α ← −→

0 {* reset −→α to
−→
0 *}

31: end if
32: counter[v]← counter[v]+1 {* increment the counter of node v *}
33: INSERT(Z, v,counter[v],predicted length, l(

−→
β), reg count, last reg, l(−→α)) {* insert

the extended path into the queue and save its necessary parameters *}
34:

−→
Q(v[counter[v]]) ← −→

Q(u[i]) +−→q (u → v)
35:

−→
I (v[counter[v]]) ← −→

β
36: lur(v[counter[v]]) ← last reg

37:
−→
I∗(v[counter[v]]) ← −→α

38: π[v[counter[v]]] ← u[i]
39: if (v = t AND predicted length < maxlen q) then {* update maxlen q *}
40: maxlen q ← predicted length
41: end if
42: end if
43: end for
44: end if
45: end while

2-5 Exact Algorithm 21

test, then the physical impairment weight vector (
−→
β), and the weight vector of the

physical impairment since the last regenerator (−→α) of the extended path are computed
(lines 10-11). Line 12 tests if the physical impairment weight of the extended path violates
the physical constraint. If it does violate, the availability of an unused regenerator along
the subpath u[i] is checked (line 13); and if one is found regeneration takes place at the
regenerator node. At regeneration, the weight vector of the physical impairment is set to
the weight vector of the physical impairment beginning from the last unused regenerator
(line 14). In line 15, the flag is set to 1 to remember that a regenerator has just been
used. In lines 18 to 24, the values of regenerator count (reg count) and the last unused
regenerator (last reg) of the extended path are updated depending on the value of flag.
If a regenerator has been used (flag = 1), reg count is incremented, and last reg is set
to 0. Otherwise the corresponding values are copied from u[i].

The length of the predicted end-to-end QoS weight vector is calculated in line 25.
The predicted end-to-end QoS weight vector comprises of the actual subpath weight vector
from s to v plus the lower bound vector from v to t. The look ahead p calculated in line
26 refers to the length of the predicted physical impairment vector that is composed of
the actual subpath weight vector from s to v plus the lower bound vector from v to the
nearest node n ∈ B. Line 27 checks if the new extended path qualifies to be stored. If
the path does not qualify, then it is discarded and the scanning continues in line 8 with
the next neighbor of u. Otherwise, the commands in lines 28-42 are executed. If v has
an unused regenerator, last reg and −→α are updated accordingly (lines 28 to 29). In lines
32-33, the counter of node v is incremented, and the new extended path is inserted into
the queue Z. In lines 34-38, the new extended path is stored at the current counter index
of v with all its parameters. If v is the destination node t, and if its end-to-end predicted
QoS length is less than maxlen q, then maxlen q is updated in lines 39 and 40. The paths
for which predicted length > maxlen q are dropped to reduce the search space.

Complexity of EIOQRA

In this section we present the worst-case complexity of EIOQRA. First, we compute
the complexity of the INITIALIZE subroutine as follows. It takes O(N) times to
initialize the counter. Executing the heap-optimized Dijkstra algorithm in line 6-8
takes mqO(NlogN + E). Further, in line 10, the Dijkstra’s algorithm is executed NR

times, leading to a time complexity of mpO(NR(NlogN + E)). All the other opera-
tions take O(1). Thus, the overall worst-case complexity of the initialization phase is
O((mp + mq)(NRNlogN + NRE)).

The overall complexity of the main algorithm (EIOQRA) is computed as follows.
The initialization phase in line 1 takes O((mp + mq)NRNlogN + (mp + mq)NRE). The
maximum number of paths that the queue Z can contain is kmaxN . Selecting the minimum
path length among kmaxN different path lengths from a queue that is structured with

22 Impairment-Aware QoS Routing (IQR)

Fibonacci or relaxed heap takes at most O(log(kmaxN)) [33]. Since kmax paths can be
stored at each node in the queue, the EXTRACT MIN function in line 3 at most takes
O(kmaxNlog(kmaxN)). Returning the path in line 6 takes at most O(N). Since the for loop
starting in line 8 is invoked at most kmax times from each side of each link in the graph,
it takes O(kmaxE) time at most. The test conducted in line 8 to avoid loops takes O(N).
The operations in lines 9-32 and 33-38 take O(mq + mp). The insertion into the queue
in line 33 can be done in O(1). Therefore, the overall complexity of EIOQRA becomes
O((mp + mq)NRNlogN + (mp + mq)NRE) + kmaxNlog(kmaxN) + kmaxE(N + (mq + mp))).
If we assume mq = mp = m, then complexity of EIOQRA simplifies to:

CEIOQRA = O(mNRNlogN + mNRE + kmaxNlog(kmaxN) + kmaxEN + mkmaxE) (2-3)

For any network, kmax ≤ be(N − 2)!c, where e ' 2.718 [33].

An Example Network

Figure 2-3(a) shows an example network, where only nodes 3 and 4 have regeneration

capacity. There are two QoS constraints with
−→
T = (20, 20) and two physical impairments

with
−→
∆ = (10, 10). On each link are shown four numbers, the first two on the left side

of the vertical line segments represent the QoS metrics and the other two on the right
side are metrics representing the physical impairments associated with the link. In this
example, we try to find a path that satisfies the request (1, 7, (20, 20), (10, 10)).

Initialization phase (Figure 2-3(b)): First, bi(n) and b∗i (n) will be computed using
Dijkstra’s algorithm. Two vectors are shown in rectangular boxes as shown in Fig-

ure 2-3(b), where the vector to the left and right of the vertical segments represent
−→
b and−→

b∗ , respectively. Further, maxlen q and maxlen p are both initialized to 1. With this
information, we start the actual operation of EIOQRA as depicted in Figure 2-4(a).

Step 1 (Figure 2-4(a)): We begin by scanning the neighbors of the source node.
Its neighbors are node 2 and node 3. The path to node 2 has a predicted

length l(p1
1→2) = l(

−→
Q(p1

1→2) +
−→
b (2))= max(1+5

20
, 5+7

20
)= 0.6, a regenerator count

reg numb(p1
1→2) = 0, the length of the physical impairment vector l∗(p1

1→2)=max(2
10

, 3
10

)=
0.3, and shortest impairment distance to the nearest regenerator node (or to t)
look ahead p(p1

1→2) = max(2+7
10

, 3+4
10

) = 0.9. The path to node 3 has l(p1
1→3)=0.65,

reg numb(p1
1→3) = 0, l∗(p1

1→3)=0.8, and look ahead p(p1
1→3) = 0.8. For both paths, the

predicted lengths are less than maxlen q, the length of the physical impairment vectors
and the look ahead p values are less than maxlen p. Thus, we store both of them at their
corresponding nodes.

Step 2 (Figure 2-4(b)): Since node 2 has the minimum length subpath (l(p1
1→2) = 0.6)

stored so far in the queue, it is extracted next. Its neighbors are nodes 1 and

2-5 Exact Algorithm 23

(a) (b)

Figure 2-3: (a) An example network, (b) Initialization step

(a) (b)

Figure 2-4: (a) Step 1, (b) Step 2

4. But node 1 is the previous node, so it should not be scanned. For node 4,
path p1

1→4 = 1 → 2 → 4, with l(p1
1→4)=max(1+2+3

20
, 5+1+6

20
)=0.6, reg numb(p1

1→4)=0,
l∗(p1

1→4)=0.9, and look ahead p(p1
1→4) = max(2+70

10
, 3+4+0

10
) = 0.9 is added to the queue.

Step 3 (Figure 2-5(a)): Node 4, which is the minimum length node (l(p1
1→4) = 0.6), is

extracted from the queue. All its neighbors, except node 2, which is the previous node,
are scanned. For node 3, we find a second path, p2

1→3 = 1 → 2 → 4 → 3, with predicted
length l(p2

1→3) = 0.6, reg numb(p2
1→3)=0, l∗(p2

1→3) = 1.1, and look ahead p(p2
1→3) = 0.4.

However, since l∗(p2
1→3) = 1.1 > maxlen p, a regeneration at node 4 is required.

After regeneration, the history regarding the physical impairment is reset. Thus,
reg numb(p2

1→3) = 1, and l∗(p2
1→3) = 0.4. Similarly, for nodes 6 and 7 regeneration is

required for their respective subpaths at node 4. After regeneration, the path at node 6
is p1

1→6 = 1 → 2 → 4 → 6 with l(p1
1→6) = 0.7, reg numb(p1

1→6) = 1, l∗(p1
1→6) = 0.4, and

look ahead p(p1
1→6) = 0.4; whereas the path at node 7 is p1

1→7 = 1 → 2 → 4 → 7, with
l(p1

1→7) = 0.7, reg numb(p1
1→7) = 1, l∗(p1

1→7) = 0.4, and look ahead p(p1
1→7) = 0.4. Since

node 7 is the destination node, and since l(p1
1→7 = 0.7 < maxlen q), maxlen q is lowered

to 0.7.

24 Impairment-Aware QoS Routing (IQR)

(a) (b)

Figure 2-5: (a) Step 3, (b) Step 4

(a) (b)

Figure 2-6: (a) Step 5, (b) Step 6

Step 4 (Figure 2-5(b)): Node 3, which has the minimum length subpath (l(p2
1→3) = 0.6),

is extracted. From node 3, we obtain a new subpath to node 5, p1
1→5 = 1 → 2 → 4 → 7,

with l(p1
1→5) = 0.65, reg numb(p1

1→7) = 1, l∗(p1
1→5) = 0.8, and look ahead p(p1

1→5) = 0.8.
This path is stored in the queue because it satisfies all the requirements.

Step 5 (Figure 2-6(a)): In this step, we have two subpaths in the queue,
p1

1→3 and p1
1→5, which have the same predicted length 0.65. However, since

reg numb(p1
1→3) < reg numb(p1

1→5), node 3 is extracted. The path p2
1→4 = 1 → 3 → 4

towards node 4 with predicted length l(p2
1→4) = 0.65, reg numb(p2

1→4) = 0, l∗(p2
1→4) = 1,

and look ahead p(p2
1→4) = 0.4 is stored. However, the path towards node 5 is not stored

because the predicated length l(P 2
1→5) = max(8+4+4

20
, 5+2+2

20
) = 0.8 is larger than maxlen q

= 0.7. Step 9 (Figure 2-8): Finally, the shortest path at node 7, which is the destination
node, is extracted. Hence the path p2

1→7 = 1 → 3 → 5 → 6 → 7 is returned, thereby
terminating the algorithm.

Step 6 (Figure 2-6(b)): In this step, we have two subpaths in the queue,
P 2

1→4 and P 1
1→5, which have the same predicted length 0.65. However, since

reg numb(P 2
1→4) < reg numb(P 1

1→5), node 4 is extracted. Nodes 2, 6, and 7 are

2-5 Exact Algorithm 25

(a) (b)

Figure 2-7: (a) Step 7, (b) Step 8

Figure 2-8: Step 9

scanned. The path to node 2, p2
1→2 = 1 → 3 → 4 → 2, is not stored because

look ahead p(p2
1→2) = 1.4 > maxlen p. The new path to node 6, p2

1→6 = 1 → 3 → 4 → 6,
is not stored either because its predicted length l(p2

1→6) = 0.75 > maxlen q. Further, the
new path to node 7 is discarded because l(p2

1→7) = 0.75 > maxlen q.

Step 7 (Figure 2-7(a)): In this step, the first path at node 5, p1
1→5 with l(p1

1→5) = 0.65,
has the minimum predicted length and is extracted from the queue. Here we find a

second path at node 6 with, l(p2
1→6) = 0.65, reg numb(p2

1→6) = 1, l(
−→
I (p2

1→6)) = 1.1, and
look ahead p(p2

1→6) = 0.9. However, since l∗(p2
1→6) = 1.1 > maxlen p, a regeneration at

node 3 is required. After regeneration, the history regarding the physical impairment is

reset. Thus, reg numb(p2
1→6) = 2, and

−→
I (p2

1→6) = (4, 7).

Step 8 (Figure 2-7(b)): Since node 6 has the minimum length subpath (l(P 2
1→6) = 0.65)

stored so far in the queue, it is extracted next. Its neighbor 7 is scanned, but 4 and 5 are
not because they are in the predecessor list of P 2

1→6. The second path to node 7, P 2
1→7,

with l(P 2
1→6) = 0.65, reg numb(P 2

1→7) = 2, l∗(P 2
1→7) = 0.9, and look ahead p(P 2

1→7)) = 0.9
is stored.

26 Impairment-Aware QoS Routing (IQR)

2-5-2 Regenerator-Count Minimization

In this section, we provide the exact algorithm for the IQR problem with the objective of
minimizing the regenerator-count. The impairment-aware QoS routing with regenerator
minimization (IQRRM) problem is to find a simple path and allocate resources to a given
request such that the end-to-end QoS requirements are satisfied, the physical impairments
of each regenerator segment do not exceed their corresponding threshold values, and the
number of regenerators used is minimized.

Our exact algorithm is referred to as the Exact Impairment-aware QoS Routing
with Regenerator Minimization (EIQRRM). The operation process of EIQRRM is similar
to that of EIOQRA (the QoS optimization exact algorithm). The difference of the two
algorithms lies in their path extraction rules and the criteria they use to discard a path.
Instead of the maxlen q parameter used in EIOQRA, EIQRRM uses the parameter
max reg count to reduce the search space of the possible paths. max reg count stores
the regenerator-count of the best feasible end-to-end path found so far. Thus, if the
regenerator-count of a path is greater or equal to max reg count, it is discarded.

In EIQRRM, the paths are extracted from the queue according to the following
rules:

• The path with the minimum regenerator-count is extracted, and

• If several paths have the same regenerator count, the path with the minimum pre-
dicted length (with respect to the QoS metrics) is extracted, and

• If they have the same predicted length, the one with the lowest length with respect
to the physical impairments is extracted.

And we discard a (sub)path P if:

• If its regenerator-count is greater or equal to max reg count, or

• If its predicted QoS length exceeds maxlen q, or

• If at a given node, any of the physical impairments exceeds its acceptable threshold
even after regeneration (if possible), or

• If the look-ahead sum of any of the physical impairments exceeds its threshold value.

The details of the algorithm are described in the next subsection.

2-5 Exact Algorithm 27

Algorithm 3 EIQRRM(G,mp,mq, s, t)

1: INITIALIZE(G, m, s, t) → −→
b ,
−→
b∗

2: max reg count ← NR + 1 {* initialize the maximum regenerator-count to NR + 1 *}
3: while (Z 6= ∅) do {* if the queue is not empty, extract a path *}
4: EXTRACT-MIN(Z) → u[i] {* extract the minimum-length path *}
5: u[i] ← GREY
6: if (u = t) then {* if a path at the destination node is extracted *}
7: STOP→ return path
8: else
9: for each v ∈Adj[u] AND v /∈ {π[u[i]], s} do {* extend the path to adjacent nodes *}

10: flag ← 0 {* flag is used to track regeneration *}
11: −→α ← −→

I∗(u[i]) +
−→
δ (u, v) {* compute −→α =

−→
I∗(the extended path) *}

12:
−→
β ← −→

I (u[i]) +
−→
δ (u, v) {* compute

−→
β =

−→
I (the extended path) *}

13: if (l(
−→
β) > maxlen p) then {* if the threshold is exceeded *}

14: if (lur(u[i]) 6= 0) then {* if there is a free regenerator *}
15:

−→
β ← −→α {* perform regeneration *}

16: flag ← 1 {* remember the regeneration by setting flag = 1 *}
17: end if
18: end if
19: if (flag = 1) then {* if regeneration has just taken place *}
20: reg count ← reg numb(u[i]) + 1 {* increment the regenerator-count *}
21: last reg ← 0 {* set the last unused regenerator to 0 *}
22: else
23: reg count ← reg numb(u[i]) {* copy the regenerator-count from u[i] *}
24: last reg ← lur(u[i]) {* copy the last unused regenerator from u[i] *}
25: end if
26: predicted length← l(

−→
Q(u[i]) +−→q (u, v) +

−→
b [v]) {* compute the QoS predicted length *}

27: look ahead p← l(
−→
I∗(u[i])+

−→
δ (u, v)+

−→
b∗ [v]) {* compute the physical impairment length of

the path from the last regenerator to the nearest regenerator *}
28: if ((precicted length ≤ maxlen q AND look ahead p ≤ maxlen p AND (l(

−→
β) ≤ maxlen p))

AND reg count < max reg count then {* if the extended path is eligible to be stored *}
29: if reg(v) 6= 0 then {* if the current node is a regenerator node *}
30: last reg ← v {* set the last unused regenerator to v *}
31: −→α ← −→

0 {* reset −→α to
−→
0 *}

32: end if
33: counter[v]← counter[v]+1 {* increment the counter of node v *}
34: INSERT(Z, v,counter[v],predicted length, l(

−→
β), reg count, last reg, l(−→α)) {* insert

the extended path into the queue and save its necessary parameters *}
35:

−→
Q(v[counter[v]]) ← (

−→
Q(u[i]) +−→q (u, v))

36:
−→
I (v[counter[v]]) ← −→

β
37: lur(v[counter[v]]) ← last reg

38:
−→
I∗(v[counter[v]]) ← −→α

39: π[v[counter[v]]] ← u[i]
40: if (v = B AND reg count < max reg count) then {* update max reg count *}
41: max reg count ← reg count
42: end if
43: end if
44: end for
45: end if
46: end while

28 Impairment-Aware QoS Routing (IQR)

The Meta Code

In this section, we describe the meta-code of the exact algorithm to solve the IQRRM
problem. The main algorithm (EIQRRM) is listed in Algorithm 3. Because of the simi-
larity of the problems they solve, EIQRRM and EIOQRA, which is listed in Algorithm 2
(Section 2-5-1), share a lot in common. EIQRRM differs from EIOQRA in the following
aspects. First, EIQRRM uses an additional parameter max reg count which is initialized
in line 2. We initialize max reg count to the total number of regenerators in the network
NR, and it will be updated dynamically to the regenerator-count of the best end-to-end
path found.

Secondly, the EXTRACT MIN function in line 4 of EIQRRM differs from that of
EIOQRA in that it extracts the path based on the extraction rules described in Sec-
tion 2-5-2. Thirdly, in line 28, EIQRRM adds another condition the extended path
should meet to be stored in the queue. In addition to satisfying the look-ahead con-
ditions and the physical constraint, the extended path should also have a regenerator
count smaller than max reg count. For a given (sub)path, if the regenerator-count
reg count ≥ max reg count, then it means that a feasible ene-to-end path with
regenerator-count equal to max reg count is already found. In that case, the subpath is
dropped thereby reducing the search space. In lines 40 and 41, max reg count is updated.
The remaining lines of EIQRRM are taken from EIOQRA. Moreover, the two algorithms
have the same complexity.

An Example Network

An example network is shown in Figure 2-9(a), where only nodes 3 and 4 have regeneration
capacity. In this example, we assume that mq = mp = 2 with the corresponding constraint

vectors
−→
T = (20, 20) and

−→
∆ = (10,10). The link metrics are represented by the four

numbers shown on each link. The first two on the left side of the vertical line segments
represent the QoS metrics and the other two on the right side are metrics representing the
physical impairments associated with the link. Our goal in this example is to find a path
that satisfies the request (1, 7, (20, 20), (10, 10)) with the minimum regenerator count.

Initialization phase (Figure 2-9(b)): First, Dijkstra’s algorithm is used to compute
bi(n) and b∗i (n). The two vectors are shown in rectangular boxes in Figure 2-9(b), where−→
b and

−→
b∗ are represented by the vector to the left and right of the vertical segments,

respectively. maxlen q and maxlen p are also initialized to 1. In addition, max reg count
is initialized to 3. We start the actual operation of EIQRRM with this information as
shown in Figure 2-10(a).

Step 1 (Figure 2-10(a)): The source node (node 1) is extracted from the queue,
and its neighbors (nodes 2 and 3) are scanned. The path to node 2 has a pre-

2-5 Exact Algorithm 29

(a) (b)

Figure 2-9: (a) An example network, (b) Initialization step

(a) (b)

Figure 2-10: (a) Step 1 (b) Step 2

dicted length l(p1
1→2) = l(−→q (p1

1→2) +
−→
b (2))= max(1+5

20
, 5+7

20
)= 0.6, a regenerator count

reg numb(p1
1→2) = 0, the length of the physical impairment vector l∗(p1

1→2)=max(2
10

, 3
10

)=
0.3, and shortest impairment distance to the nearest regenerator node (or to t)
look ahead p(p1

1→2) = max(2+7
10

, 3+4
10

) = 0.9. The path to node 3 has l(p1
1→3)=0.65,

reg numb(p1
1→3) = 0, l∗(p1

1→3)=0.8, and look ahead p(p1
1→3) = 0.8. Both of them are

stored in the queue because their predicted lengths are less than maxlen q, the lengths
of the physical impairment vectors and the look ahead p values are less than maxlen p.
The numbers shown in the small boxes are the regenerator count and the predicted QoS
length of the (sub)paths stored at the node.

Step 2 (Figure 2-10(b)): We have two subpaths in the queue (p1
1→2 and p1

1→3) with
equal regenerator count. But node 2 has the minimum length subpath (l(p1

1→2 = 0.6)),
and is extracted next. Its neighbors are nodes 1 and 4. But node 1 is the previous node,
so it should not be scanned. For node 4, path p1

1→4 = 1 → 2 → 4, with l(p1
1→4)=0.6,

reg numb(p1
1→4)=0, l∗(p1

1→4)=0.9, and look ahead p(p1
1→4) = 0.9 is added to the queue.

Step 3 (Figure 2-11(a)): Both of the subpaths in the queue have zero regenerator
count. Then node 4, which has the minimum QoS length subpath (l(p1

1→4) = 0.6), is
extracted from the queue. All its neighbors, except node 2, which is the previous node, are

30 Impairment-Aware QoS Routing (IQR)

(a) (b)

Figure 2-11: (a) Step 3 (b) Step 4

(a) (b)

Figure 2-12: (a) Step 5 (b) Step 6

(a) (b)

Figure 2-13: (a) Step 7 (b) Step 8

2-5 Exact Algorithm 31

scanned. For node 3, a second path, p2
1→3 = 1 → 2 → 4 → 3, with QoS predicted length

l(p2
1→3) = 0.6, reg numb(p2

1→3)=0,
−→
I (p2

1→3) = (11, 11), and look ahead p(p2
1→3) = 0.4

is found. However, since l∗(p2
1→3) = 1.1 > maxlen p, a regeneration at node 4 is

required. After regeneration, the history regarding the physical impairment is reset. Thus,

reg numb(p2
1→3) = 1, and

−→
I (p2

1→3) = (2, 4). Similarly, for nodes 6 and 7 regeneration is
required for their respective subpaths at node 4. After regeneration, the path at node
6 is p1

1→6 = 1 → 2 → 4 → 6 with l(p1
1→6) = 0.7, reg numb(p1

1→6) = 1, l∗(p1
1→6) = 0.6,

and look ahead p(p1
1→6) = 0.7; where as the path at node 7 is p1

1→7 = 1 → 2 → 4 → 7,
with l(p1

1→7) = 0.7, reg numb(p1
1→7) = 1, l∗(p1

1→7) = 0.4, and look ahead p(p1
1→7) = 0.4.

All of the paths obey the constraints and they are stored in the queue. Since
node 7 is the destination node, and since reg count(p1

1→7) < max reg count, we set
max reg count = reg count(p1

1→7) = 1.

Step 4 (Figure 2-11(b)): Node 3, which has the minimum regenerator count sub-
path (reg count(p1

1→3) = 0), is extracted. All of its neighbors except node 1, which is the
previous node, are scanned. The path to node 4 has a predicted length l(p2

1→4) = 0.65, a
regenerator count reg numb(p2

1→4) = 0, a physical impairment vector length l∗(p2
1→4)=1.0,

and look ahead p(p2
1→4) = 0.4. The path to node 5 has l(p1

1→5)=0.8, reg numb(p1
1→5) = 0,

l∗(p1
1→5)=0.9, and look ahead p(p1

1→5) = 0.8. Since both paths obey the constraints, they
are stored in the queue.

Step 5 (Figure 2-12(a)): In this step, there are two subpaths in the queue with the
minimum regenerator count (p2

1→4 and p1
1→5). Since node 4 has a subpath with the

minimum length (l(p2
1→4) = 0.65), it is extracted. Except for node 3 which is the previous

node, all its neighbors are scanned. The path to node 2 p2
1→2 = 1 → 3 → 4 → 2

is discarded because look ahead p(p1
1→5) = 1.4 > maxlen p. The new path to

node 6 (p2
1→6) has l∗(p2

1→6) = 1.6 > maxlen p, hence regeneration is required at
node 4. The path is discarded even after regeneration because its regenerator count
reg numb(p2

1→6) = 1 >= max reg count. The new path to node 7 (p2
1→7) also is not

stored because its regenerator count is equal to max reg count.

Step 6 (Figure 2-12(b)): In this step, node 5 is extracted because it has a subpath
with the minimum regenerator count (reg numb(p1

1→5) = 0). Here we find a second
subpath to node 6 with l(p2

1→6) = 0.8, reg numb(p2
1→6) = 0 and l∗(p2

1→6) = 1.2. However,
since l∗(p2

1→6) = 1.2 > maxlen p, a regeneration at node 3 is required. After regeneration,
reg numb(p2

1→6) = 1 >= max reg count, and hence is discarded.

Step 7 (Figure 2-13(a)): In this step, we have many subpaths with the minimum
regenerator count. Among them, the second path at node 3, p2

1→3 with l(p2
1→3) = 0.6,

has the minimum predicted length and is extracted from the queue. Since node 1 is
already in the the extracted path, only node 5 is scanned. Yet we do not store the second
path at node 5 p2

1→5 because its regenerator count reg numb(p2
1→5) = 1 >= max reg count.

32 Impairment-Aware QoS Routing (IQR)

Step 8 (Figure 2-13(b)): We have two subpaths, p1
1→6 and p1

1→7 in the queue with
the same regenerator count and predicted QoS length; however, we extract the path
stored at node 7 p1

1→7 because it has a smaller physical impairment length l∗(p1
1→7) = 0.4.

Since node 7 is the destination node, the extraction process terminates and the path
p1

1→7 = 1 → 2 → 4 → 7 is returned as a solution.

2-6 Heuristic Algorithms

The impairment-aware QoS routing (IQR) problem is NP-complete. The exact algorithms
presented in the previous sections have a factorial time complexity. Thus, it is desirable to
find heuristic algorithms which have better time performance than the exact algorithm. In
this section, we provide two types of heuristic algorithms to solve each of the two variants
of the IQR problem. The first type is obtained by modifying the exact algorithm in such a
way that the maximum number of paths stored at a node (kmax) is tuned/limited to some
value. Limiting kmax attains a better time performance at the possible loss of exactness.
We refer to the tunable heuristic algorithm obtained by restricting the value of kmax

for the QoS optimization objective and the regenerator-count minimization objective as
TIOQRA and TIQRRM, respectively. The time complexity of these algorithms is polyno-
mial which can be obtained from Equation 2-3 by merely replacing kmax by a constant value.

In the rest of this section, we present the second type of our heuristic algorithms
which are based on the tabu-search approach. Before we describe the algorithms, we give
a brief overview of tabu search in the following section.

2-6-1 Tabu-Search Overview

Tabu search (TS) was introduced by Glover [44] as a general iterative meta-heuristic for
solving combinatorial optimization problems. TS is an iterative meta-heuristic which
guides simpler heuristics in such a way that they explore various areas of the solution
space and prevents them from remaining in local optima. In every iterative step of the TS
method, we begin with some current solution and explore its neighboring solutions. A solu-
tion’s neighborhood, H(i, k), is the set of all solutions that can be transitioned to from the
current solution i at iteration k by applying some elementary transformation to the current
solution. A move is an operation by which one solution transitions into a neighboring
solution. The final result of the TS, called the incumbent solution, is obtained by selecting
the best solution found overall after executing the search for a desired number of iterations.

TS maintains a list called tabu list to prevent the search technique from getting
stuck in a local optimum or cycling between already seen solutions. The tabu list records
a certain number of previous moves which are then forbidden for as long as they remain

2-6 Heuristic Algorithms 33

in the list. After every iteration, the tabu list is updated by adding the current move to
the list and removing the oldest element if the list is full.

If we denote the incumbent solution by i∗ and the objective function of the prob-
lem by f(), the basic elements of TS can be summarized in six steps as follows:

1. Create an initial solution i at random. Set i∗ = i and k = 0.

2. Set k = k +1 and generate a move (depending on a strategy specific to the problem)
to a neighboring solution until a move that is not in the tabu list is obtained.

3. Let j be the solution obtained by the kth move. Set i = j.

4. If f(i) < f(i∗) then set i∗ = i.

5. Update the tabu list.

6. If a stopping condition is met then stop. Else go to 2.

Sometimes, intensification and diversification strategies are used to improve the search. In
intensification, the search is emphasized in the promising regions of the feasible domain;
whereas in diversification, an attempt is made to consider solutions in a broad area of the
search space. Generally, a key to developing a good tabu search algorithm is to define a
good initial solution, neighborhood structure, and evaluation function.

2-6-2 The Tabu-search Based Heuristic Algorithm

An interesting insight into the IQR problem is that a local improvement on a partial path
leads to improvement of the overall path. If we start with a path P from the source s
to the destination t, we can improve the overall length of the path by locally improving
the length of a partial path of P . By performing this operation repeatedly for a certain
amount of iterations, a good suboptimal solution can be found. This nature of the problem
makes the tabu-search approach an efficient method to solve it. In addition, the capability
provided by the tabu list can be used to avoid selecting the same partial path repeatedly,
thereby enabling us to improve all the possible different partial paths. Furthermore, the
diversification strategy of the tabu search method capacitates us to search for the solution
in a broader area of the search space. Moreover, the TS approach is shown to be efficient
technique to solve the related problems in [48] and [49]. The idea of iteratively improving
on a partial path is used in [49] for QoS routing in electronic networks. We have modified
this idea to fit the impairment aware QoS routing problem.

Our tabu-search based algorithm was designed to iteratively improve the length of
the path P from s to t by improving the length of a partial path F of P . This improve-
ment is achieved by replacing old partial path F with a new partial path F̄ of lower
length. The outline of the searching process of our heuristic algorithm is as follows:

34 Impairment-Aware QoS Routing (IQR)

1. We initialize P to the shortest path from s to t, ps→t computed using Dijkstra’s
Algorithm by imposing one QoS metric.

2. A pair of nodes u and v is selected on path P such that P = ps→t = ps→u+pu→v+pv→t

as shown in Figure 2-14(a). The hop count of the selected partial path pu→v should
not exceed a given small integer L, because the procedure outlined in step (3) can
rebuild a new path from u to v in a short time for a small L.

3. A new partial path F̄ from u to v is searched by the subroutine IMPROVE Q (Al-
gorithm 5) or the IMPROVE R (Algorithm 7) depending on our objective of mini-
mization. These procedures build a state-space tree which facilitates the searching
process to find a new F̄ with a smaller length. If no path F̄ with a lower length than
F is found, the procedures return an empty value.

4. Let P̄ = ps→u + F̄ + pv→t as shown in Figure 2-14(b). Set P = P̄ and jump back to
step (1) if the stop condition is not met.

5. Return the best path found after performing the iterations.

(a) Selecting a partial path.

(b) Replacing the old partial path with a better one.

Figure 2-14: Example of partial path replacement.

A path rebuilding procedure can be built by putting together steps (1) to (4). This
procedure can be embedded into a tabu-search based iteration loop in which a tabu list
is implemented by a circular queue for storing all the selected partial paths pu→v. Only

2-6 Heuristic Algorithms 35

partial paths that are not in the tabu list are eligible to be selected for path rebuilding.
The tabu-search based procedure stops when the desired number of iterations have elapsed
or when the tabu-search based path-rebuilding procedure does not improve the length of
P after some fixed consecutive iterations.

In our tabu-based heuristic algorithm, we maintain the non-linear definition of path
length described in Section 2-5. In addition, some of the parammeters listed in Section 2-2
are used. In the following sections, the detailed description of our tabu-search based
heuristic algorithms for the two objectives of minimization are presented.

2-6-3 QoS Optimization

We refer to our tabu based heuristic algorithm to solve the IOQR problem as TABU Q.
TABU Q starts by computing an initial path P which is the shortest path from the
source node s to the destination node t in terms of one QoS metric. It then tests if P is
feasible path or not. P is said to be feasible if it satisfies both the QoS and the physical
constraints. If P is feasible, then a random partial path F is chosen for improvement.
But if P is not feasible, a partial path is selected in the vicinity of the node where either
of the constraints is violated for the first time.

Once a partial path is selected, the IMPROVE Q subroutine is called to find a
better partial path F̄ that can replace F . If P is feasible, the IMPROVE Q subroutine
tries to find a partial path that minimizes the QoS length. But if P is not feasible, IM-
PROVE Q tries to find a partial path that satisfies the violated constraint. IMPROVE Q
does so by constracting a state space tree. If IMPROVE Q is successful in finding a better
partial path, then P is updated by replacing the old partial path F by the new partial
path F̄ . Then the feasiblity of P is tested and the process of selecting and replacing
a partial path continues. The iteration stops when the total number of iterations is
elapsed, or if the path P is not improved after a certain number of consecutive number of
iterations. Finally, TABU Q returns the feasible path (if any is found) with the smallest
QoS length, otherwise it returns an empty path. The feasible path with the best length is
denoted by the parammeter Best path.

To avoid the searching of paths too far away from the optimal solutions, a restart
strategy is implemented in the following way: an original path ori path replaces the
current path P for the next iteration. This is triggered if an empty path F̄ is returned
by IMPROVE Q for a number of consecutive iterations. The original path orig path saves
the path before the last improvement.

Based on the above ideas, the complete pseudo-code of TABU Q is developed in
Algorithm 4. TABU Q starts by initializing P to the shortest path from s to t computed
using Dijkstra’s algorithm by imposing the first QoS metric (line 2). Best path represents

36 Impairment-Aware QoS Routing (IQR)

Algorithm 4 TABU Q(G,mp,mq, s, t)
1: Let s denote the source node, and t denote the destination node;
2: Let P be a path from s to t, and P is determined by Dijkstra’s algorithm based on the first QoS metric;
3: if P is a feasible path then {* Best path is the feasible path with the best length so far *}
4: Best path = P ; feasible = 1;
5: else
6: Best path = ∅; l(Best path) = ∞; feasible = 0;
7: end if
8: Initialize a circular queue Z to be the tabu list;
9: Given two small integers Lmin and Lmax, L = Lmin; j = r = h = y = 0;
10: while (k < ITERATIONS) do
11: if feasible = 0 then
12: Let node x be the earliest node where path P fails either of the constraints;
13: Set flag = 0 if P violates the QoS constraint, and flag = 1 if P violates the physical impairment at node x;
14: Select a partial path F of P in the vicinity of node x, where F ⊂ P and |F | ≤ L;
15: else
16: flag = 0;
17: Select a random partial path F of P , where R ⊂ P and |F | ≤ L;
18: end if
19: Assume P = P1 + F + P2 and F is a path from node u to node v, P1 = ps→u and P2 = pv→t;
20: if (F /∈ Z) then {* if F is not in the tabu list *}
21: Z = Z ∪ F ; {* insert F into the tabu list *}
22: Let D be an 1×N array whose entry at ith index is 1 if node i has appeared in either P1 or P2; 0 otherwise;
23: F̄ = IMPROV E Q(G, s, u, v, l(F), l(P), D, flag); {* compute F̄ *}
24: if (F̄ 6= ∅) then {* if a better partial path is found *}
25: L = Lmin; orig path = P ; {* orig path is used to avoid searching too far away from the optimal

solution *}
26: Rebuild a new path P from node s to node t such that P = P1 + F̄ + P2;
27: if P is a feasible path then
28: feasible = 1;
29: if l(P) < l(Best path) then {* if a better feasible path found *}
30: Best path = P ; y = 0; {* update Best path *}
31: else
32: y + +;
33: end if
34: else
35: feasible = 0; y + +;
36: end if
37: h = 0;
38: else
39: y + +; r + +;
40: if ((r > ITERATIONS/10) and (L ≤ Lmax)) then {* if F̄ is not found for r consecutive iterations

*}
41: L + +; r = 0; {* increment the hop length of the selected partial path F *}
42: end if
43: h + +;
44: if h > ITERATIONS/5 then {* if P is not improved for h > ITERATIONS/5 consecutive

iterations *}
45: P = orig path; h = 0; {* restart the search from orig path *}
46: end if
47: end if
48: end if
49: if y > ITERATIONS/2 then {* if P is not improved for y > ITERATIONS/2 consecutive iterations

*}
50: RETURN Best path; {* stop the iteration and return the best path found so far *}
51: end if
52: end while
53: RETURN Best path;

2-6 Heuristic Algorithms 37

the path with the best QoS length among all the feasible paths that are found so far. If P
is feasible, then Best path is initialized to P in line 4. The variable feasible remembers
whether the current path P is feasible or not.

Once we have initialized P , the next task is to select a partial path F of P . We
perform the subpath selection process in two different ways depending on whether P is
feasible or not. If P is feasible, we assume that all subpaths of P are equally important;
hence, F is selected randomly (line 17). If P is feasible, the IMPROVE Q function targets
at finding a path F̄ that minimizes the length in terms of the QoS metrics. But if P is not
feasible, then F is selected in the vicinity of the node x where path P for the first time
violates either of the QoS constraints or the physical constraints (line 14). This helps us
to target our improvement on the local area of P where the constraints are violated. If the
QoS constraint is violated at node x, then IMPROVE Q targets at minimizing the length in
terms of the QoS metrics; but if the physical impairment is violated, IMPROVE Q targets
at minimizing the length in terms of the physical impairment since the last regenerator

(
−→
I∗). The variable flag (lines 13,16) is used to ‘inform’ IMPROVE Q the current target of

optimization. This differentiated treatment offered by IMPROVE Q increases the efficiency
of the algorithm.

Next, if the selected partial path F is not in the tabu list, then it is added to the
tabu list (line 21). Let u and v be the source node and the destination node of F ,
respectively. Let P1 is the partial path from s to u (ps→u), and P2 is the partial path
from v to t (pv→t). In order to avoid loops, we remember (in D) the list of nodes that
are already used in the partial paths P1 and P2, so that none of them will be used again
in computing F̄ (line 22). The partial path F is passed to the IMPROVE Q function
along with the necessary parameters as listed in line 23. When IMPROVE Q fails to find
a path with a shorter length, it returns an empty path. If IMPROVE Q returns a path
F̄ 6= ∅, a new path P will be rebuilt by replacing F with F̄ (line 26). If the new path P is
feasible and has a smaller length than Best path, then Best path is updated to P (line 30).

The number of hops L of the selected partial path F changes dynamically during
the iterations to allow flexibility; thereby attaining better performance. At line 9, the
initial value of L is set to be Lmin, and the value is increased by 1 at line 41 if IMPROVE Q
returns empty path for a certain number of consecutive iterations. The value of L is
reset back to Lmin at line 25 if a path F̄ 6= ∅ is returned by IMPROVE Q. Note that the
maximum value of L is set to a small integer, Lmax, because the function IMPROVE Q is
efficient only for small value of L. Lines 25 and 45 are used to handle the restart strategy
to avoid searching far away from the optimal solution. Furthermore, if the length of
the Best path is not improved after a fixed amount of iterations, we return the current
Best path as a solution in line 50.

The pseudo-code of the IMPROVE Q subroutine is presented in Algorithm 5. The

38 Impairment-Aware QoS Routing (IQR)

Algorithm 5 IMPROVE Q(G, s, u, v, lF , lP , D, flag)

1: Let Best len = lF ; {* Best len stores the best length obtained so far and is initialized to the

QoS length of F *}
2: Let Best slr = l∗(

−→
I∗(ps→v)); {* Best slr stores the best length of the physical impairments since

the last regenerator, and is initialized to the corresponding value at the destination node of F *}
3: F̄ = ∅, node count = 0; {* node count represents the number of nodes inserted into the tree *}
4: Let state S0 store the source node u and be the root of the state-space tree, and let tree size

be the maximum number of nodes that the state space tree can have.
5: Add S0 to an empty node heap H;
6: while (H 6= ∅ AND node count ≤ tree size) do
7: SA = EXTRACT MIN(H); {* extract the path with the minimum measure *}
8: for each node B adjacent to node A stored at state SA do
9: if (B is not on the path from S0 to SA and B is unvisited from A and D[B] = 0) then

10: create a new state node SB of A based on the information stored in state node SA of
A;

11: SB → path = SA → path + (A,B); {* extend the path to B *}
12: Let PB denote the path from S0 to SB;
13: if ((flag = 1 AND l(PB)−lF > maxlen q−lP) OR (flag = 0 AND l(PB) > Best len)

OR if the path up to node B violates the physical impairment even after regeneration(if
possible)) then {* test if the extended path is valid to be stored *}

14: discard B and continue with the next neighbor of A.
15: else
16: if B = v then {* if B is the destination node of F *}
17: if flag = 0 then {* if the current target of optimization is the QoS length *}
18: if l(PB) < Best len then
19: Best len = l(PB); {* update the best length to the length of PB *}
20: F̄ = PB; {* update F̄ to PB *}
21: end if
22: else {* if the current target of optimization is the physical impairment length *}
23: if l∗(PB) < Best slr then
24: Best slr = l∗(PB);
25: F̄ = PB;
26: end if
27: end if
28: end if
29: if B 6= v then
30: Add B to heap H;
31: end if
32: Increment node count and make the new state node SB be a child of state node SA;
33: end if
34: end if
35: end for
36: end while
37: return F̄ ;

2-6 Heuristic Algorithms 39

purpose of the subroutine is to find a better path F̄ that replaces the partial path F .
The subroutine takes the following parameters as arguments: the graph G representing
the network topology, the source node of P (s), the source node of F (u), the destination
node of F (v), the QoS length of F (lF), the Qos length of P (lP), the array D that
stores the already used nodes, and the flag that tells which constraint is violated in
P . IMPROVE Q operates by maintaining a state space tree of a fixed size and a heap
structure. After initializing the root of the state space tree to u and inserting u into the
heap, IMPROVE Q iteratively extracts a path with the minimum measure from the heap
and extends it to the neighboring nodes of the last node in the extracted path. If the
extended path is eligible to be stored, then it is stored in the heap. Then the new neighbor
node is inserted into the state space tree as a child of the last node in the extracted
path. The insertion into and extraction from the heap continues as long as the heap is
not empty and the maximum size of the state space tree is not reached. Finally, the path
from u to v with the best measure is selected. If this path improves F , then it is returned
as F̄ . Otherwise an empty path is returned.

First, the Best len, which stores the QoS length of the best path encountered so
far, is initialized to the QoS length of F , lF (line 1). The Best slr stores the length

of the physical impairment since the last regenerator (
−→
I∗) of the best partial path, and

is initialized to the corresponding value at the destination node v of F (line 2). As
mentioned before, we try to find a path F̄ attaining a smaller Best len if flag = 0, and
a smaller Best slr if flag = 1. In line 3, F̄ is initialized to an empty path. In addition,
the variable node count, that registers the number of nodes that have been added to the
state space tree, is initialized to 0. The maximum number of nodes that can be inserted
into the state space tree is limited by tree size.

We start by creating a state S0 which is the root of the state space tree. After
storing the source node u of F , S0 is added to the heap H (lines 4-5). The state-space tree
is then constructed by the while loop by adding one new node at a time. As long as the
heap H is not empty and the tree is not full, the state SA storing node A with the minimum
measure is extracted (lines 6 and 7). If flag = 0, then the IMPROVE Q function extracts
the one with the smallest QoS length; otherwise, it extracts the one having the smallest

length with respect to the physical impairment since the last regenerator node (
−→
I∗). Next,

each neighbor B of node A that is not in D and also is not involved in the subpath from u to
A is scanned (line 9). This check is performed in order to avoid loops. The neighbor node
B, along with its new extended path from node A, is stored in a new state SB (lines 10-12).

In order for SB to be inserted into the tree, the new extended path PB has to pass
the following tests (line 13). Firstly, the cumulative path P1 + PB should satisfy the
physical constraint. Secondly, since it does not make sense to store a path with a larger
length than the best length known so far, the length l(PB) should not exceed Best len
if flag = 0. If flag = 1, we should make sure that the difference between the QoS

40 Impairment-Aware QoS Routing (IQR)

lengths of PB and F (l(PB) − lF) does not exceed the difference between maxlen q
and the QoS length of P (maxlen q − lP); otherwise PB will lead to a path that will
violate the QoS constraint. If any of the conditions in line 13 are true for the new
extended path PB, then the current node B is not eligible to be added to both the
tree and the heap. But if PB passes the test in line 13, then SB is added to the tree
as a child of SA incrementing node count, and B is added to the heap if B 6= v (lines 29-32).

If B is the destination node v, then either Best len or Best slr are updated de-
pending on the value of flag, and F̄ is set to PB if PB is better than F̄ (lines 16-28). Note
that, F̄ stores the best path obtained thus far. Finally, when the heap H is empty, F̄ is
returned as a best solution in line 37.

Complexity Analysis

In this section we present the time complexity of our algorithm. First, we present the
complexity of the IMPROVE Q subroutine listed in Algorithm 5. The insertion and
extraction from the heap H can be performed in O(1), whereas, the check performed
in line 9 on node B to avoid loop takes O(N), where N is the number of nodes in the
network. In addition, the path computations in lines 11 and 12 are also O(N) at the worst.
Further, the test conditions in line 13 take O(N(mq + mp)), where mq and mp represent
the number of the QoS metrics and the physical impairments, respectively. Lines 18 and
19 are O(1) because l(PB) is already calculated in line 13. Computing the length of the
vectors in line 23 takes O(mp). Copying the path PB on F in lines 20 and 25 also takes
O(N). All the other operations are O(1). If d is the maximum degree in the network, the
for loop in line 8-35 is invoked at most d times for each extracted node. Moreover, the
while loop that starts in line 6 is invoked at most tree size times, where tree size is the
maximum number of nodes that can be inserted into the state space tree. Therefore, the
overall complexity of the IMPROVE Q function is O(tree size×d× (1+N +N(mq +mp)))
= O(tree size× d×N(mq + mp)).

The complexity of the main algorithm listed in Algorithm 4 is given as follows.
Executing the Dijkstra function in line 2 takes O(|E|logN) times, where |E| is the number
of edges in the network. The feasibility checks in lines 3 and 27 lead to O(N(mq + mp)).
The assignments in line 4 are O(N). Finding the node x in line 12 leads to O(N(mq +mp))
time. The selection of the subpath F in lines 14 and 17 are both O(Lmax), where Lmax is the
maximum possible hop length of F . Checking whether F is in the queue Z or not in line 20
takes O(size Z×Lmax) time, where size Z is the size of the queue. It takes O(Lmax) to add
F into Z in line 21. Line 22 is O(N). Executing the IMPROVE Q function in line 23 adds
O(tree size×d×N(mq +mp)). Lines 25, 26, 30 and 45 are O(N). The others are are O(1).

Therefore, the overall complexity of the algorithm is: O(1 + |E|logN + N(mq +
mp) + N + k(N(mq + mp) + N + 1 + Lmax + size Z ×Lmax + tree size× d×N(mq + mp)),

2-6 Heuristic Algorithms 41

where k is the number of iterations.
With mp = mq = m, the overall complexity is given as

CTABU Q = O(|E|logN + k(Lmax)(size Z) + kmdN(tree size)) (2-4)

Since k, Lmax, size Z, and tree size are constants, the time complexity of TABU Q is
polynomial.

2-6-4 Regenerator-Count Minimization

In this section, we present a tabu based heuristic algorithm to solve the IQRRM problem
defined in Section 2-5-2. We refer to our tabu-based heuristic algorithm as TABU R, and it
is listed in Algorithm 6. TABU R is a modification of TABU Q described in Section 2-5-2.
Like TABU Q, TABU R also starts with an initial path P that is the shortest path from
the source node s to the destination node t in terms of one QoS metric. It then selects
a partial path F of P in the same way as TABU Q depending on the feasibility of P .
After selecting a partial path F , the IMPROVE R subroutine searches for a better partial
path F̄ that replaces F . If P is feasible, the IMPROVE R subroutine tries to find a
partial path that minimizes the regenerator-count. Otherwise, IMPROVE R tries to find
a partial path that satisfies the violated constraint in the same way as the IMPROVE Q
subroutine. If IMPROVE R finds a better partial path, then P is updated by substituting
F̄ in place of F . The iteration then continues by selecting and replacing a partial path
at a time. After performing the iterations, TABU R returns the feasible path (if any is
found) with the least regenerator-count. If no feasible path is found, then it returns an
empty path. The feasible path with the best regenerator-count is represented by Best path.

The operations involved in TABU Q and TABU R are similar in various ways be-
cause of the similarity of the problems they solve. Thus, most of the codes in the
pseudo-code of TABU R are inherited from TABU Q. In this section, we explain only
the codes that are peculiar to TABU R to avoid repetition. The two algorithms differ
in the criteria they use to choose the best path, and the functions they use to compute
the partial path F̄ that replaces F . In line 4 of TABU R, Best regcount, which keeps
track of the regenerator count of the feasible path with the smallest regenerator count,
is initialized to the regenerator count of the initial path P . If a new feasible path with a
smaller regenerator count is found, Best path and Best regcount are updated to the new
path and its regenerator count, respectively (lines 29 and 30).

The subroutine IMPROVE R called in line 23 of TABU R also inherits most of its
codes from IMPROVE Q, and we explain only the codes that are special to IMPROVE R
to avoid repetition. The meta-code of IMPROVE R is given in Algorithm 7. In line 3,
the Best regcount is initialized to the number of regenerators used in the parent path
P up to the destination node v of F . The other operations in lines 1-15 are taken from
IMPROVE Q. If the new neighbor node B of A is the destination node v (line 18), F̄

42 Impairment-Aware QoS Routing (IQR)

Algorithm 6 TABU R(G,mp,mq, s, t)
1: Let s denote the source node, and t denote the destination node;
2: Let P be a path from s to t, and P is determined by Dijkstra’s algorithm based on the first QoS metric;
3: if P is a feasible path then {* Best path is the feasible path with the best regenerator-count so far *}
4: Best path = P ; Best regcount = reg numb(P); feasible = 1;
5: else
6: Best path = ∅; Best regcount = ∞; feasible = 0;
7: end if
8: Initialize a circular queue Z to be the tabu list;
9: Given two small integers Lmin and Lmax, L = Lmin; j = r = h = y = 0;;
10: while (k < ITERATIONS) do
11: if feasible = 0 then
12: Let node x be the earliest node where path P fails either of the constraints;
13: Set flag = 0 if P violates the QoS constraint, and flag = 1 if P violates the physical impairment at node x;
14: Select a partial path F of P in the vicinity of node x, where F ⊂ P and |F | ≤ L;
15: else
16: flag = 0;
17: Select a random partial path F of P , where R ⊂ P and |F | ≤ L;
18: end if
19: Assume P = P1 + F + P2; F is a path from node u to node v, P1 = ps→u, and P2 = pv→t;
20: if (F /∈ Z) then {* if F is not in the tabu list *}
21: Z = Z ∪R; {* insert F into the tabu list *}
22: Let D be an 1×N array whose entry at ith index is 1 if node i has appeared in either P1 or P2; 0 otherwise; and

let vrc be the number of regenerators used along ps→v.
23: F̄ = IMPROV E R(G, s, u, v, l(F), l(P), D, flag, vrc); {* compute F̄ *}
24: if (F̄ 6= ∅) then {* if a better partial path is found *}
25: L = Lmin; orig path = P ; {* orig path is used to avoid searching too far away from the optimal

solution *}
26: Rebuild a new path P from node s to node t such that P = P1 + F̄ + P2;
27: if P is a feasible path then
28: feasible = 1;
29: if reg numb(P) < Best regcount then {* update Best path and Best regcount *}
30: Best regcount = reg numb(P); Best path = P ; y = 0;
31: else
32: y + +;
33: end if
34: else
35: feasible = 0; y + +;
36: end if
37: h = 0;
38: else
39: y + +; r + +;
40: if ((r > ITERATIONS/10) and (L ≤ Lmax)) then {* if F̄ is not found for r consecutive iterations

*}
41: L + +; r = 0; {* increment the hop length of the selected partial path F *}
42: end if
43: h + +;
44: if h > ITERATIONS/5 then {* if P is not improved for h > ITERATIONS/5 consecutive

iterations *}
45: P = orig path; h = 0; {* restart the search from orig path *}
46: end if
47: end if
48: end if
49: if y > ITERATIONS/2 then {* if P is not improved for y > ITERATIONS/2 consecutive iterations

*}
50: RETURN Best path; {* stop the iteration and return the best path found so far *}
51: end if
52: end while
53: RETURN Best path;

2-6 Heuristic Algorithms 43

Algorithm 7 IMPROVE R(G, u, v, lF , vslr, lP , D, flag, v rc)
1: Let Best len = lF ; {* Best len stores the best length from u to v and is initialized to the QoS

length of F *}
2: Let Best slr = l∗(

−→
I∗(ps→v)); {* Best slr stores the best length of the physical impairments since the

last regenerator at node v, and is initialized to the corresponding value at the destination node of F

*}
3: Best regcount = v rc {* Best regcount stores the best regenerator count until node v, and is

initialized to the corresponding value at the destination node of F *}
4: F̄ = ∅, node count=0; {* node count represents the number of nodes inserted into the tree *}
5: Let state S0 store the node u and be the root of the state-space tree, and let tree size be the maximum

number of nodes that the state space tree can have.
6: Add S0 to an empty node heap H;
7: while (H 6= ∅ AND node count ≤ tree size) do
8: SA = EXTRACT MIN(H); {* extract the path with the minimum measure *}
9: for each node B adjacent to node A stored at state SA do

10: if (B is not on the path from S0 to SA and B is unvisited from A and D[B] = 0) then
11: create a new state node SB of A based on the information stored in state node SA of A;
12: SB → path = SA → path + (A,B); {* extend the path to B *}
13: Let PB denote the path from S0 to SB ;
14: if ((flag = 1 AND l(PB)− lF > maxlen q− lP) OR (flag = 0 AND l(PB) > Best len) OR if

the path P1 + PB violates the physical impairment even after regeneration(if possible)) then
{* test if the extended path is valid to be stored *}

15: discard B and continue with the next neighbor of A.
16: else
17: Let Brc be the number of regenerators used until node B.
18: if B = v then {* if B is the destination node of F *}
19: if flag = 0 AND feasible = 0 then {* if the current target of optimization is the QoS

length *}
20: if l(PB) < Best len then
21: Best len = l(PB); {* update the best length to the length of PB *}
22: F̄ = PB ; {* update F̄ to PB *}
23: end if
24: else {* if the current target of optimization is the physical impairment length *}
25: if flag = 1 AND feasible = 0 then
26: if l∗(PB) < Best slr then
27: Best slr = l∗(PB);
28: F̄ = PB ;
29: end if
30: end if
31: else
32: if feasible = 1 then {* if the current target of optimization is the regenerator-count

*}
33: if Brc < Best regcount then
34: Best regcount = Brc;
35: F̄ = PB ;
36: end if
37: end if
38: end if
39: end if
40: if v 6= B then
41: Add B to heap H;
42: end if
43: Increment node count and make the new state node SB be a child of state node SA;
44: end if
45: end if
46: end for
47: end while
48: return F̄ ;

44 Impairment-Aware QoS Routing (IQR)

is updated based on the conditions in lines 19-33. If the parent path P is not feasible
and violates the QoS constraint, and if the QoS length of PB is less than the best length
obtained so far, F̄ and Best len are updated to PB and its QoS length, respectively
(lines 19-23). In lines 25 to 30, PB and Best slr are updated if P violates the physical
impairment and if PB improves the length of the best physical impairment since the last
regenerator. But if the parent path P is feasible and if the number of regenerators used
until node B Brc < Best regcount, F̄ and Best regcount are updated as in lines 34-35.
Therefore, the computation of F̄ depends both on feasibility of P and which of the two
constraints are violated in P .

The complexity of TABU R is the same as that of TABU Q which is given in Equation 2-4.

Chapter 3

Simulation

In this chapter, we present and analyze the simulation results of the impairment-aware
QoS routing algorithms discussed in Chapter 2.

3-1 Simulation Environment

In our simulations, our objective is to find a path for a single connection request. A
connection request is represented by a request-id, a source, a destination, QoS constraints,
and physical constraints. Each link in a network is associated with one wavelength, two
QoS link weights, and two physical impairment link weights which are assigned random
values between 0 and 1 by a uniformly distributed random function. The regenerators are
also randomly distributed in the network.

In all the simulations, 10,000 requests are generated with randomly selected source
and destination nodes. For each request, a new network is generated, thus 10,000 different
networks are generated overall. The performance metrics used in our simulations are
the acceptance ratio, running time, path length in terms of the QoS metrics, and the
regenerator-count of the path. Acceptance ratio refers to the ratio of the number of
accepted requests to the total number of requests. Running time represents the time taken
by the algorithm to process the connection request. The regenerator-count of a path is
the number of regenerators used to set up the path.

When comparing the algorithms with respect to each of the performance metrics,
each of the algorithms should operate on the same network for each request. For each
request, a new network is generated and each of the algorithms processes the the request on
the network. After repeating this for 10,000 connection requests, the average performance

46 Simulation

metrics are taken for each algorithm. Therefore, a data point is the average of 10,000
requests. In addition to the average values, the standard deviation is also computed to
study the variability of the data. Given a set of data X of size c and mean value of µ, the
standard deviation σ is calculated as:

σ =

√√√√1

c

c∑
i=1

(Xi − µ)2 (3-1)

The same set of connection requests and networks are used for each data point. This is
achieved by feeding the same seed (for each data point) to the random functions that
generate the requests and the networks.

The simulations are performed on the random networks, the square lattice network,
and the ARPANET. A random network with N nodes is specified by a parameter ρ which
represents the probability of existence of a link between any pair of nodes in the network.
A square lattice network is a network with N nodes where the nodes are connected in a
square lattice topology of dimension n× n, where n =

√
N . The ARPANET is a realistic

optical network with 28 nodes and 45 bidirectional links. The lattice network and the
ARPANET topologies are given in Appendix A.

To understand how the algorithms behave under different situations, the algorithms
are simulated under four different scenarios. These are the scenarios of totally loose
physical constraints, totally loose QoS constraints, tight QoS constraints and medium QoS
constraints. In the next sections, we present and analyze the simulation results obtained
under these scenarios.

3-2 Simulation under Totally Loose Physical Constraints

In this simulation scenario, the physical constraints are loosened by assigning a value
that no path can possibly violate. For a network with N nodes, a path from a source
to a destination in the worst-case traverses all the nodes resulting in N − 1 links. The
maximum value of the ith physical impairment on each link is 1. Thus, we set the
physical constraints ∆1 = ∆2 = ∆′ = N − 1 so that no (sub)path will violate any of
them. As a result, only the effect of the QoS constraints are remaining in the network.
The QoS constraints are gradually varied from a very small value (tight constraint) to
large value (loose constraint), and the corresponding aforementioned performance metrics
are measured. In all the experiments the QoS constraints have the same value, i.e,
T1 = T2 = T ′.

The experiment is conducted with the QoS optimization algorithms (EIOQRA, TIOQRA,
and TABU Q) on a lattice network of size N = 49. The number of regenerators NR = 0

3-2 Simulation under Totally Loose Physical Constraints 47

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

QoS Constraint (T’)

A
cc

ep
ta

nc
e

R
at

io

EIOQRA

TIOQRA (k=1)

TABU_Q

Figure 3-1: Acceptance ratio vs QoS constraint for the lattice network with N = 49 under
totally loose physical constraints.

because no need of regeneration arises as the physical constraints are totally loose.
The maximum number of paths that can be stored at a node is fixed to k = 1 for
TIOQRA. Figure 3-1 shows the plot of the acceptance ratio of EIOQRA, TABU Q, and
TIOQRA vs the QoS constraint T ′. For all the algorithms, the acceptance ratio increases
with increasing T ′. As larger QoS constraint is used, more paths will be satisfying the
constraint, and hence, larger acceptance ratio is obtained. The QoS path length plots of
the algorithms are shown in Figure 3-4. As can be seen from the figure, the average path
length increases with increase in the Qos constraint. This is because only paths of small
QoS length are accepted for small value of T ′; but paths with larger QoS lengths are also
accepted when T ′ is larger. At each data point, the standard deviation is computed and
it is found to be in the order of the average value. Since the source and the destination
nodes of the requests are randomly generated, their lengths are also randomly distributed
up to the maximum value. This leads to large standard deviation values at each data
point.

In Figure 3-2 is shown the running time plots of the algorithms. The fluctuation
in the running time plots is exaggerated because the scale is very small. This very
small fluctuation results from the difference in the state of the processor when the
different data points are taken. The maximum running time obtained for the algo-
rithms is plotted in Figure 3-3. The same maximum value (10ms) is obtained for
each algorithm at each value of T ′. This is because the running time obtained from the

48 Simulation

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

QoS Constraint (T’)

R
un

ni
ng

 T
im

e
(m

s)

EIOQRA
TIOQRA (k=1)
TaBU_Q

Figure 3-2: Running time vs QoS constraint for the lattice network with N = 49 under
totally loose physical constraints.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
9

9.2

9.4

9.6

9.8

10

10.2

10.4

10.6

10.8

11

QoS Constraint (T’)

M
ax

im
um

 R
un

ni
ng

 T
im

e
(m

s)

EIOQRA
TIOQRA (k=1)
TABU_Q

Figure 3-3: Maximum running time vs QoS constraint for the lattice network with N = 49
under totally loose physical constraints.

3-3 Simulation under Totally Loose QoS Constraints 49

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
0

0.5

1

1.5

2

2.5

3

Qos Constraint (T’)

Q
oS

 p
at

h
le

ng
th

EIOQRA
TIOQRA (k=1)
TABU_Q

Figure 3-4: QoS path length vs QoS constraint for the lattice network with N = 49 under
totally loose physical constraints.

processor has a resolution of 10ms, and only 0ms and 10ms are obtained by the algorithms.

Figure 3-1 depicts that TABU Q obtains a lower acceptance ratio and a larger
path length compared to EIOQRA and TIOQRA. It can be observed from Figure 3-4 and
Figure 3-2 that EIOQRA and TIOQRA obtain shorter path lengths at the cost of increased
running time compared to TABU Q. The difference between the algorithms stems from
the fact that EIOQRA (TIOQRA) exhaustively explores all (most of) the possibilities
in order to obtain the shortest feasible path; whereas, TABU Q stops after performing
a fixed number of iterations. The performance of EIOQRA slightly differs from that of
TIOQRA in that EIOQRA provides a slightly better acceptance ratio and shorter path
length. As shown in Figure 3-2, EIOQRA has a slightly larger running time than TIOQRA.

The simulations conducted on ARPANET and random networks with these algo-
rithms also show similar behaviors as the lattice network. The results of these simulations
are given in Apendix B-1.

3-3 Simulation under Totally Loose QoS Constraints

In this scenario, the QoS constraints are loosened so that no path will possibly violate
them. This is done by setting T1 = T2 = T ′ = N − 1, where N is the number of nodes

50 Simulation

in the network. The performance of the algorithms is measured by gradually varying
the physical constraints for different values of the total number of regenerators in the
network (NR). In all the experiments, the physical constraints are assigned the same value
(∆1 = ∆2 = ∆′). All of our algorithms are tested on ARPANET, random networks, and
lattice networks.

The QoS optimization algorithms have been tested on a lattice network with N = 49 by
using k = 1 for the tunable heuristic algorithm (TIOQRA). Figure 3-5 shows the plot of
the acceptance ratio vs the physical constraint (∆′) when NR = 8. For each algorithm,
acceptance ratio increases with increase in ∆′. For larger ∆′, less number of paths fail to
satisfy the physical constraint, thereby resulting in higher acceptance ratio.

The QoS path length plots are depicted in Figure 3-6. As can be observed from
the figure, the path length curves increase with increase in ∆′ up to a certain point. In
this region, the physical constraint is tight. Thus, as ∆′ is increased longer paths will be
accepted because of the relief in the constraint resulting in larger average path length.
After a certain point, the path length curves start to decline slowly. In this region, the
physical constraints are not tight. Thus, increasing ∆′ gives rise to increased freedom
to optimize the QoS path length, thereby yielding slightly smaller path length. Due
to the same reason mentioned in the previous scenario, the path lengths are randomly
distributed up to the maximum value yielding standard deviation which is in the order
of the average value at each data point. The figures reveal that EIOQRA and TIOQRA
outperform TABU Q in terms of acceptance ratio and the path length. As expected,
EIOQRA achieves better results than TIOQRA in terms of these performance metrics.

The plot of the running time vs the physical constraint shown in Figure 3-7 is ob-
tained for the exact algorithm (EIOQRA). As can be observed from the figure, the
running time of EIOQRA becomes notably large in the region where the physical
constraint is medium (neither tight nor loose). When ∆′ is small, a (sub)path on average
traverses only few nodes before it violates the physical constraint. Thus, a (sub)path
requires regeneration at small intervals. But the probability of finding a regenerator
in a small interval is less, resulting in smaller probability of regeneration. With less
probability of regeneration, more paths are dropped and fewer paths are stored, thereby
reducing the running time. For large ∆′, a path can easily be found within short time.
However, when ∆′ is medium, the probability that a (sub)path traverses a regenerator
before it violates the physical constraint is higher compared to when ∆′ is small. This
results in higher probability of regeneration, thereby decreasing the number of dropped
paths. Furthermore, paths are not successfully found as easily as when ∆′ is large. This
combination leads to a scenario where more exhaustive search that stores larger number
of paths at nodes is employed, resulting in long running time especially when the path
cannot be found. A similar behavior is observed by repeating the simulation for NR = 16.
Compared to the case when NR = 8, the long running time is observed for smaller values
of ∆′. This reveals that the extent of the looseness or tightness of the physical constraint

3-3 Simulation under Totally Loose QoS Constraints 51

0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Physical Constraint (∆’)

A
cc

ep
ta

nc
e

R
at

io

EIOQRA
TIOQRA (k=1)
TABU_Q

Figure 3-5: Acceptance ratio vs physical constraint for the lattice network with N = 49 and
NR = 8 under totally loose QoS constraint.

0.5 1 1.5 2 2.5 3 3.5 4
0.5

1

1.5

2

2.5

3

Physical Constraint (∆’)

Q
oS

 p
at

h
le

ng
th

EIOQRA
TIOQRA (k=1)
TABU_Q

Figure 3-6: QoS path length vs physical constraint for the lattice network with N = 49 and
NR = 8 under totally loose QoS constraint.

52 Simulation

0.5 1 1.5 2 2.5 3 3.5 4
0

100

200

300

400

500

600

Physical Constraint (∆’)

R
un

ni
ng

 T
im

e
(m

s)

Figure 3-7: Running time vs physical constraint for EIOQRA on the lattice network with
N = 49 and NR = 8 under totally loose QoS constraint.

does not solely depend on the value of ∆′, but also on NR. Thus, when we say the physical
impairment is tight, medium, or loose, we are actually referring to a combination of ∆′

and NR.

The plot of the running time vs the physical constraint for the three algorithms is
depicted in Figure 3-8. In this figure, the running time of the exact algorithm in the
medium-constrained region is intentionally truncated to closely observe the behavior
of the algorithms in the other regions. In the tight-constrained and loose-constrained
regions, EIOQRA has slightly higher running times compared to TIOQRA. As was the
case with the previous results, TABU Q has the smallest running time. A similar behavior
is observed by repeating the simulation for NR = 16. The maximum running time plot
of EIOQRA is shown in Figure 3-9. As can be observed from the figure, large running
times are observed in the medium-constrained region. In this region, the exact algorithm
spends long time on unsuccessful searches due to the same reason discussed before. The
maximum running time observed for TIOQRA and TABU Q is 10ms at each data point.

The results of the simulations conducted on random networks also show similar be-
haviors as the lattice network, and are presented in Appendix B-2. Whereas for
ARPANET, the simulation results show similar behavior with the lattice network but
the large running time of EIOQRA in the medium-constrained region is missing. This
is because ARPANET is a network with relatively smaller number of nodes and links

3-3 Simulation under Totally Loose QoS Constraints 53

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Physical Constraint (∆’)

R
un

ni
ng

 T
im

e
(m

s)
EIOQRA
TIOQRA (k=1)
TABU_Q Truncated

Figure 3-8: Running time vs physical constraint for the lattice network with N = 49 and
NR = 8 under totally loose QoS constraint.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5
x 10

5

Physical Constraint (∆’)

M
ax

im
um

 R
un

ni
ng

 T
im

e
(m

s)

Figure 3-9: Maximum running time vs physical constraint for EIOQRA on the lattice network
with N = 49 and NR = 8 under totally loose QoS constraint.

54 Simulation

0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

Physical Constraint (∆’)

R
eg

en
er

at
or

 C
ou

nt
EIQRRM
TIQRRM (k=1)
TABU_R

Figure 3-10: Regenerator-count vs physical constraint for the random networks with N = 49
and RN = 16 under totally loose QoS constraint.

resulting in a relatively smaller search space.

Simulations are also performed with the regenerator-count minimization algorithms
(EIQRRM, TABU R, and TIQRRM) on the three network topologies. For the random
network, the simulation is conducted with NR = 16. Figure 3-10 shows the plot of the
path regenerator-count vs the physical constraint for EIQRRM, TABU R and TIQRRM.
When ∆′ is small, a (sub)path on average traverses few nodes before it violates the
physical constraint. Thus, a (sub)path requires regeneration at small intervals; otherwise
it will be dropped. Since the number/density of regenerators in the network is fixed,
only shorter paths that require none or few regenerations are accepted resulting in small
average path regenerator-count. However, when ∆′ is increased to some extent, the path
regenerator-count also increases until it reaches a maximum value before it starts to
decline. In this scenario, ∆′ is neither too small nor too large. A (sub)path now can
traverse more number of nodes before it violates ∆′. The more nodes traversed, the more
the chance to find regenerator node(s). This leads to a better chance of regeneration in
times of need. Thus, paths that demand more regenerations have better chance to be
accepted, thereby resulting in increased average path regenerator-count. However, when
∆′ gets larger and larger, the average path regenerator-count declines since most of the
paths are accepted without the need for regenerations at several nodes.

The regenerator-count of the individual connection requests is randomly distributed

3-4 Simulation under Tight QoS Constraints 55

between zero and the maximum value because the source and the destination nodes are
selected randomly. Consequently, the computed standard deviations at each data points
are in the order of the average value. It can be observed that EIQRRM attains a smaller
regenerator-count than TABU R and TIQRRM. The acceptance ratio and the running
time plots obtained for these algorithms have similar patterns with the results obtained
for the corresponding QoS optimization algorithms presented earlier. In addition, the
same simulation was repeated with RN = 8 yielding results of similar patterns.

The results obtained from simulations on ARPANET and lattice network also show
similar behaviors. These results are presented in Appendix B-2.

3-4 Simulation under Tight QoS Constraints

In this section, we present the simulation results obtained under the scenario where
the QoS constraint is tight. After fixing the QoS constraint at certain tight value, the
performances of the algorithms are measured by varying the number of regenerators in the
network for a fixed value of the physical constraint. Simulations are conducted with each
algorithm on all of the three network topologies. In all the simulations, ∆1 = ∆2 = ∆′,
and T1 = T2 = T ′.

First, we present the simulation results obtained for the QoS optimization algo-
rithms. On a random network with N = 49 and ρ = 0.1 the simulation is run by setting
∆′ = 1, T ′ = 4, and k = 1 for TIOQRA. The acceptance ratio plots of the algorithms
are given in Figure 3-11. As the total number of regenerators in the network is increased,
more paths are accepted because there will be more probability of regeneration. As can
be observed from Figure 3-12, the running time of EIOQRA and TIOQRA increase with
increase in the total number of regenerators in the network. This arises from the time
spent by the INITIALIZE subroutine to compute the physical impairment lower bound

vector
−→
b∗ . The time taken to compute

−→
b∗ is linearly related to NR because Dijkstra’s

algorithm is executed for each regenerator node in the network. The maximum running
time plots are shown in Figure 3-13. For TIOQRA and TABU Q, the maximum running
time observed is 10ms at each data point. But for EIOQRA, a maximum running time of
3s is observed for larger values of RN . Even though ∆′ is small, for large values of NR

EIOQRA spends relatively larger time on unsuccessful path searches because there will
be larger probability of regeneration that increases the search space. However, the search
space is limited also by the tight QoS constraint. Therefore, the maximum running time is
not as large as the values observed in the scenario where the QoS constraint is totally loose.

The QoS path length plots of the algorithms are depicted in Figure 3-14. As RN

is increased, the average path length also increases because longer paths can be accepted
due to the increased probability of regeneration. But, after a certain point the average

56 Simulation

2 6 10 14 18 22 26 30 34 38 42

0.4

0.5

0.6

0.7

0.8

0.9

1

Total Number of Regenerators (N
R

)

A
cc

ep
ta

nc
e

R
at

io

EIOQRA
TIOQRA (k=1)
TABU_Q

Figure 3-11: Acceptance ratio vs the total regenerator number for the random networks
with N = 49, ρ = 0.1, ∆′ = 1, and T ′ = 4

.

path length starts to decline slowly. As RN increases beyond this point, the algorithms will
entertain more freedom to optimize the QoS path length because the physical constraint
is getting more and more loose. This results in decline in the average path length. The
standard deviation at each data point is in the order of the average value due to the same
reasons discussed in the previous scenarios.

Like in the previous scenarios, the results of the simulations presented in the fig-
ures show that EIOQRA and TIOQRA achieve better acceptance ratio and path length
than TABU Q. Whereas, TABU Q yields the best running time. Additional simulations
are also performed on ARPANET, random networks of N = 100 and ρ = 0.05, and lattice
networks of N = 49 and N = 100. The results of these simulations also show similar
patterns, and some of them are presented in Appendix B-3.

The regenerator-count minimization algorithms are also tested on all the three net-
work topologies under tight QoS constraints. The results of these simulations show that
the acceptance ratio and the running time of the algorithms exhibit similar behaviors with
that of the corresponding QoS optimization algorithms. Figure 3-15 shows the plot of
the path regenerator-count obtained from a simulation conducted on random networks of
N = 100 and ρ = 0.1 with the parameters ∆′ = 1, T ′ = 3, and k = 1 for TIOQRA. As can
be observed from the figure, EIQRRM attains the best path regenerator-count, whereas
TABU R attains the worst result for each value of NR. Since ∆′ is small, increasing NR

3-4 Simulation under Tight QoS Constraints 57

2 6 10 14 18 22 26 30 34 38 42
0

0.5

1

1.5

2

2.5

3

Total Number of Regenerators (N
R

)

R
un

ni
ng

 T
im

e
(m

s)
EIOQRA
TIOQRA (k=1)
TABU_Q

Figure 3-12: Running time vs the total regenerator number for the random networks with
N = 49, ρ = 0.1, ∆′ = 1, and T ′ = 4

.

2 6 10 14 18 22 26 30 34 38 42
0

500

1000

1500

2000

2500

3000

Total Regenerator Number (N
R

)

M
ax

im
um

 R
un

ni
ng

 T
im

e
(m

s)

EIOQRA
TIOQRA (k=1)
TABU_Q

Figure 3-13: Maximum running time vs the total regenerator number for the random net-
works with N = 49, ρ = 0.1, ∆′ = 1, and T ′ = 4

.

58 Simulation

2 6 10 14 18 22 26 30 34 38 42
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Total Regenerator Number (N
R

)

Q
oS

 P
at

h
L

en
gt

h
EIOQRA
TIOQRA (k=1)
TABU_Q

Figure 3-14: Qos path length vs the total regenerator number for the random networks with
N = 49, ρ = 0.1, ∆′ = 1, and T ′ = 4

.

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Total Regenerator Number (R
N

)

Pa
th

 R
eg

en
er

at
or

 C
ou

nt

EIQRRM
TIQRRM (k=1)
TABU_R

Figure 3-15: Path regenerator-count vs the total regenerator number for the random net-
works with N = 100, ρ = 0.1, ∆ = 1, and T = 3

.

3-5 Simulation under Medium QoS Constraints 59

leads to the acceptance of paths that demand more number of regenerations. As a result,
the average path regenerator-count increases with increase in NR. By the same reasonings
mentioned in the previous scenarios, the standard deviations of the regenerator-count are
in the order of the average values.

3-5 Simulation under Medium QoS Constraints

In this scenario, the QoS constraint is set at a relatively medium value. After fixing the
physical constraints at a certain value, the performance of the algorithms are measured
by varying the total number of regenerators in the network. We set ∆1 = ∆2 = ∆′ and
T1 = T2 = T ′ in all the simulations.

A simulation was conducted with the QoS optimization algorithms on random net-
works of N = 49 and ρ = 0.1 with ∆′ = 1.5 and T ′ = 6. As shown in Figure 3-16, the
acceptance ratio of the algorithms increases with increase in NR, because less number of
requests are blocked when NR is large due to the increased probability of regeneration.
The plot of the QoS path length of the algorithms is depicted in Figure 3-17. As was true
in the previous scenarios, the path lengths are randomly distributed up to the maximum
value, thereby attaining standard deviation which is in the order of the average value. The
results show that EIOQRA attains the best acceptance ratio and path length, whereas
TIOQRA achieves better results compared to TABU Q.

As can be observed from Figure 3-18, the running time of EIOQRA suddenly in-
creases to a large value in the region where the physical constraint is medium. This
happens due to the same reason discussed in the scenario where the QoS constraint is
totally loose. The peak value of the running time, however, is not as large as the peak
value observed in the scenario where the QoS constraints are totally loose. Unlike the
case of totally loose QoS constraints where no path violates the QoS constraints, in the
case of medium Qos constraints the QoS look-ahead reduces the search space by dropping
paths, thereby reducing the running time. Figure 3-19 shows the maximum running time
plot of EIOQRA. The increase in the maximum running time can also be explained in the
same way as the corresponding case in the scenario of totally loose QoS constraints. For
TIOQRA and TABU Q, a maximum running time of 10ms is observed.

The plot of the running time of the three algorithms is shown in Figure 3-20 where
the running time of EIOQRA is truncated to observe the running time of the other
algorithms closely. It can be observed that TABU Q gives the best running time, whereas
TIOQRA yields a better running time than EIOQRA. The simulation performed on
lattice network also shows similar patterns, and is provided in Appendix B-4.

For the regenerator-count minimization algorithms, a simulation is performed on

60 Simulation

2 6 10 14 18 22 26 30 34 38
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Total Number of Regenerators (N
R

)

A
cc

ep
ta

nc
e

R
at

io

EIOQRA
TIOQRA (k=1)
TABU_Q

Figure 3-16: Acceptance ratio vs the total regenerator number for the random networks
with N = 49, ρ = 0.1, ∆′ = 1.5, and T ′ = 6

.

2 6 10 14 18 22 26 30 34 38
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Total Regenerator Number (N
R

)

Q
oS

 P
at

h
L

en
gt

h

EIOQRA
TIOQRA (k=1)
TABU_Q

Figure 3-17: QoS path length vs the total regenerator number for the random networks with
N = 49, ρ = 0.1, ∆′ = 1.5, and T ′ = 6

.

3-5 Simulation under Medium QoS Constraints 61

2 6 10 14 18 22 26 30 34 38
0

20

40

60

80

100

120

140

160

180

200

Total Regenerator Number (N
R

)

R
un

ni
ng

 T
im

e
(m

s)

Figure 3-18: Running time vs the total regenerator number for EIOQRA on the random
networks with N = 49, ρ = 0.1, ∆′ = 1.5, and T ′ = 6

.

2 6 10 14 18 22 26 30 34 38
0

2

4

6

8

10

12

14
x 10

4

Physical Constraint (∆’)

M
ax

im
um

 R
un

ni
ng

 T
im

e
(m

s)

Figure 3-19: Maximum running time vs the total regenerator number for EIOQRA on the
random networks with N = 49, ρ = 0.1, ∆′ = 1.5, and T ′ = 6

.

62 Simulation

2 6 10 14 18 22 26 30 34 38
0

1

2

3

4

5

6

7

Total Regenerator Number (N
R

)

R
un

ni
ng

 T
im

e
(m

s)
EIOQRA
TIOQRA (k=1)
TABU_Q

 Truncated

Figure 3-20: Running time vs the total regenerator number for the random networks with
N = 49, ρ = 0.1, ∆′ = 1.5, and T ′ = 6

.

random networks of N = 49 with ∆′ = 1.5 and T ′ = 6. The performance of these
algorithms in terms of the running time and the acceptance ratio show similar behaviors
with the performance of the corresponding QoS optimization algorithms. The plot of the
path regenerator-count is shown in Figure 3-21. As revealed by the plots in the figure,
EIQRRM shows the best performance, while TABU R has the least performance in terms
of the path regenerator-count. Like in the previous scenarios, the standard deviation of
the regenerator-count is in the order of the average value revealing that the values are
randomly distributed from zero to the maximum value. The simulation conducted on
lattice network also shows similar patterns. The result of this simulation is provided in
Appendix B-4.

The performances of the tunable algorithms depend on the number of paths that
can be stored at a node (k). To study the effect of k on the performance of the algorithms,
TIOQRA and TIQRRM have been simulated with three different values of k (1, 10, and
50) on random networks. The results of these simulations are shown in Appendix B-6.
With k = 50 and k = 10, better performances are observed in terms of the acceptance
ratio, the QoS path length, and the path regenerator-count than with k = 1. On the other
hand, slightly lower running time is observed for k = 1 compared to the other values of
k. It is also observed that the acceptance ratio, path length, and path regenerator-count
obtained with k = 50 and k = 10 are very close to each other. Whereas, a slightly lower
running time is achieved with k = 10. Further, the maximum running time observed for

3-6 Simulation under Dynamic Traffic 63

2 6 10 14 18 22 26 30 34 38
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Total Regenerator Number (N
R

)

P
at

h
R

eg
en

er
at

or
−c

ou
nt

EIQRRM
TIQRRM (k=1)
TABU_R

Figure 3-21: Path regenerator-count vs the total regenerator number for the random net-
works with N = 49, ρ = 0.1, ∆′ = 1.5, and T ′ = 6

.

k = 1 and k = 10 values is 10ms; whereas, 30ms is observed with k = 50. Therefore,
a k value around 10 can be a good choice to increase the performance in terms of the
acceptance ratio, the path length, and the regenerator-count without a significant loose in
the running time.

3-6 Simulation under Dynamic Traffic

In all the previous simulation scenarios, only a single connection request is considered
per network. To see the performance of the algorithms under dynamic traffic, another
set of simulations is performed in a different scenario. In this simulation scenario, a
dynamic traffic of connection requests is generated. Each connection request is referred
to as a flow. A flow is specified by a flow-id, a source, a destination, QoS constraints,
physical constraints, arrival time, and departure time. Each fiber link in a network is
associated with W wavelengths, two QoS link weights, and two physical impairment link
weights. The link weights are assigned by a random function of uniform distribution. The
regenerators are also randomly distributed in the network. For each flow, the source and
destination nodes are randomly selected; and the arrival time and the departure time are
random variables.

Whenever a flow arrives, the routing algorithm searches for a path from the source

64 Simulation

to the destination of the flow based on the requirements of the flow. If the algorithm fails
to find a path that satisfies the constraints, the flow is rejected. But if a path that satisfies
the constraints is found, the flow is accepted and the path is returned. Subsequently, the
wavelength used in the path is reserved at every link along this path. Furthermore, the
regenerators used along this path are reserved. The reserved resources cannot be used by
another forthcoming flow until they are made available upon the departure of the flow
that reserved them. Thus, both the list of unused wavelengths along each link and the list
of available regenerators are modified accordingly. As a result, the state of the network
evolves dynamically as new connections are established and the existing ones depart. The
wavelength used along a path is selected by the best fit (BF) approach.

In the simulations, 10,000 flows are injected into the same network according to
their arrival times. To compare the performance of the algorithms with respect to
the running time, the QoS path length and the path regenerator-count, each of the
algorithms should operate under the same scenario for each flow. To do so, each of the
algorithms are applied one after the other (for each flow) on the same network, and the
state of the network is updated by only one of them. On the other hand, the accep-
tance ratio of the algorithms is measured by separately applying the algorithms for the
entire set of traffic on different copies of the same network and the throughput is measured.

The simulations are performed on random network, square lattice network, and
ARPANET network with the exact and the tabu-search based heuristic algorithms. Some
of the simulation results obtained are presented in Appendix B-5. In this simulation, the
flows generated have a Poisson distribution. The inter-arrival time of the flows is at a
rate of 4 per unit time. The flow duration is also exponentially distributed with a mean
value of 4 unit times. The performance metrics are measured by varying the value of
regenerator density. The regenerator density represents the probability that a node has
a regenerator. The results of the simulation show that the exact algorithm outperforms
the tabu-search based algorithm in terms of the path length and the path regenerator
count. Yet, the tabu-search based algorithm attains a better running time than the
exact algorithm. An interesting result obtained in this scenario is that the tabu-search
based heuristic algorithm may achieve a better acceptance ratio than the exact algorithm
(Figure B-39). To guarantee the optimal path solution for a flow, the exact algorithm
consumes the “low-cost” links to set up the path. After reserving the resources for the
current flow, the network may evolve to a state where the forthcoming flows are blocked
because they can not be established with the remaining “high-cost” links. This situation
leads to the possibility that the exact algorithm yields a smaller throughput than the
tabu-search based algorithm.

Chapter 4

Discussion and Conclusion

In this thesis, we have solved the impairment-aware QoS routing (IQR) problem in translu-
cent optical networks. In solving the IQR problem, we have also addressed two objectives:
optimizing the end-to-end QoS metrics, and minimizing the number of regenerators used
along a path. Our work differs from the previous works in that we incorporate both
the physical impairments and the regenerator assignment in the path computation process.

In Chapter 2, our exact and heuristic algorithms to solve the IQR problem are pre-
sented for each of the two objectives. In chapter 3, we have analyzed the algorithms to
study their behaviors in different scenarios.

4-1 Discusions

To solve the IQR problem with the QoS optimization objective, we have presented
one exact and two heuristic algorithms. The exact algorithm (EIOQRA) inherits some
concepts of SAMCRA [33]. The k-shortest path concept with unrestricted value of k, and
a modified version of the look-ahead concept are used. One of the heuristic algorithms
(TIOQRA) is a modification of EIOQRA obtained by merely restricting the value of k.
The other heuristic algorithm (TABU Q) uses the tabu-search approach.

We have simulated the algorithms under different scenarios on three different net-
work topologies. Under the scenario where the physical constraints are extremely loose,
on all the networks EIOQRA attains the largest acceptance ratio, and TIOQRA follows
it with a small margin. Whereas, TABU Q attains the least acceptance ratio. Another
comparison metric we used is the length of the path selected in terms of the QoS metrics.
With this comparison metric, EIOQRA shows the best performance in that it yields the

66 Discussion and Conclusion

shortest path length; whereas TABU Q yields the longest path length. On the other hand,
TABU Q shows the best performance in terms of the running time, whereas EIOQRA
shows the worst time performance. EIOQRA shows the best performance in terms of
the acceptance ratio and the path length because it performs a more exhaustive search
to obtain the optimal solution which costs longer running time. However, the running
time of EIOQRA did not show any significant increase even when the QoS constraint
is ‘medium’. This is due to the fact that the look-ahead applied to the QoS metrics is
effective in reducing the search space of possible paths, thereby decreasing the running time.

Under the scenario where the QoS constraints are extremely loose, EIOQRA shows
the best performance in terms of acceptance ratio and path length; whereas TABU Q
shows the least performance in terms of these metrics. Meanwhile, TABU Q shows the
best performance in terms of the running time. The performance of TIOQRA is in between
EIOQRA and TABU Q in terms the three performance metrics. The running time of
EIOQRA shows a remarkable increase in a specific situation when the total number of
regenerators in the network is large and the physical constraint is neither loose nor tight
(medium). In this situation, EIOQRA explores a significant number of possible paths in
search of a solution when the path cannot be found, thereby increasing the running time.
But this problem is not observed in the simulations performed on the realistic network
(ARPANET).

When the QoS constraints are tight, EIOQRA shows the best performance in terms of
the acceptance ratio and the path length. On the other hand, TABU Q shows the best
running time performance and the worst performance in terms of the acceptance ratio and
the path length. The running time of EIOQRA is higher than that of TIOQRA only by a
small margin because the tight QoS constraints help EIOQRA to highly reduce the search
space of the possible paths. Likewise, TIOQRA follows EIOQRA with close margin in
terms of the acceptance ratio and the path length.

In the scenario when the QoS constraints are medium, EIOQRA yields the best
performance in terms of the acceptance ratio and the QoS path length; whereas, TABU Q
demonstrates the best running time performance. As was true with the other scenarios,
TIOQRA exhibits better performance than TABU Q in terms of the acceptance ratio and
the QoS path length; and its running time is better than that of EIOQRA. EIOQRA
spends long time on unsuccessful path search when the number of regenerators is large
and the physical constraint is medium. But the increase in the running time of EIOQRA
is less serious compared to the increase observed when the QoS is totaly loose because the
search space is reduced by the QoS constraints.

We have also presented one exact and two heuristic algorithms that solve the IQR
problem with the objective of minimizing the regenerator-count of a path. The algorithms
are EIQRRM, TIQRRM, and TABU R which are obtained by making some modifications
on EIOQRA, TIOQRA, and TABU Q, respectively. These algorithms are also tested

4-2 Conclusions 67

under different scenarios, and their performance is measured in terms of the acceptance
ratio, the running time, and the number of regenerators used along a path. In terms
of the acceptance ratio and the running time, the algorithms show similar performance
with their corresponding QoS optimization algorithms under all the scenarios we have
considered. Under all the scenarios, in terms of the path regenerator count, the exact
algorithm (EIQRRM) shows the best performance; whereas TABU R shows the least
performance.

Generally, the tabu-search based heuristic algorithms (TABU Q and TABU R) show
the best performance in terms of the running time because they stop the path search
after performing a fixed number of iterations. On the other hand, the exact algorithms
(EIOQRA and EIQRRM) achieve the best performance in terms of the acceptance ratio,
the path length, and the path regenerator-count because they perform exhaustive search
to find the optimal solution which inevitably results in a longer running time. Whereas,
the tunable heuristic algorithms (TIOQRA and TIQRRM) show intermediate performance
in terms of all the performance metrics.

4-2 Conclusions

Each one of the algorithms proposed in this thesis has its own charm that makes it prefer-
able over the others. Thus, the choice of a specific algorithm depends on the performance
metric of our interest. The exact algorithms are preferable when exactness is the priority.
However, the tabu search based algorithms are the best choice when the algorithm run-
ning time is exceptionally important. On the other hand, the tunable heuristic algorithms
are attractive when a trade-off is made between the acceptance ratio and the algorithm
running time.

68 Discussion and Conclusion

4-3 Future Work

The results of our work are encouraging and there are potentially more works that can
be done to expand/improve the algorithms. Therefore, we suggest the following possible
directions of future work.

• In our routing algorithms, we did not consider path protection upon failure of a
network element. However, in practice the failure of one network element can cause
the failure of several optical channels, thereby leading to a huge data loss. Thus, a
backup path is required for each optical channel in order to resume the connection
immediately upon failure of the primary path. Therefore, we suggest a possible
expansion work that incorporates path protection.

• When multiple optical channels simultaneously traverse the same link, they may
interfere with each other. This interference is caused by the non-linear impairments.
Thus, we suggest a future work that expands our algorithms to incorporate the effect
of non-linear impairments in a dynamic environment.

Bibliography

[1] S. Azodolmolky, M. Klinkowski, E. Marin, D. Careglio, J. Pareta, and I. Tomkos, “A
survey on Physical Layer Impairments Aware Routing and Wavelength Assignment
Algorithms in Optical Networks,” Computer Networks, vol. 53, no. 7, pp. 926-944,
May 2009.

[2] J.M. Simmons, “On Determining the Optimal Optical Reach for a Longhaul Network,”
Journal of Lightwave Technology, vol. 23, no. 3, pp. 1039-1048, March 2005.

[3] S. Al Zahr, M. Gagnaire, N. Puech, and M. Koubaa, “Physical Layer Impairments
in WDM Core Networks: a Comparison between a North-American Backbone and a
Pan-European Backbone, Proc. of the Int. Conf. on Broadband Networks, vol. 2, pp.
1258-1263, October 2005.

[4] S. Sygletos, I. Tomkos, and J. Leuthold, “Technological Challenges on the Road To-
ward Transparent Networking,” Journal of Optical Networking, vol. 7, no.4, pp. 321-
350, April 2008.

[5] A.G. Strieegler, M. Meissner, K. Cvecek, K. Sponsel, G. Leuchs, and B. Schmauss,
“NOLM-Based RZ-DPSK Signal Regeneration,” IEEE Photonics Technology Letters,
vol. 17, no. 3, pp. 639-641, March 2005.

[6] Y.K. Huang, L. Xu, I. Glesk, V. Baby, B. Li, and P.R. Prucnal, “Simultaneous All-
Optical 3R Regeneration of Multiple WDM Channels,” Proc. of 18th annual meeting
of the IEEE LEOS, pp. 135-136, October 2005.

[7] G. Shen, and R.S. Tucker, “Translucent Optical Networks the Way Forward,” IEEE
Communications Magazine, vol. 45, no. 2, pp. 48-54, February 2007.

[8] A.L. Chiu, L. Guangzhi, and H. Dah-Min, “New Problems on Wavelength Assignment
in ULH Networks,” Proc. of OFC/NFOEC, March 2006.

70 Bibliography

[9] H. Zang, J. P. Jue, and B. Mukherjee, “A Review of Routing and Wavelength Assign-
ment Approaches for Wavelength-Routed Optical WDM Networks,” Optical Networks,
vol. 1, no. 1, pp. 47-60, January 2000.

[10] I. Chlamtac, A. Ganz, and G. Karmi, “Lightpath Communications: an Approach to
High Bandwidth Optical WANs,” IEEE Transactions on Communications, vol. 40, no.
7, pp. 11711182, July 1992.

[11] C. Siva Ram Murthy, and G. Mohan, WDM Optical Networks: Concepts, Design, and
Algorithms, Prentice Hall PTR, 2002.

[12] B. Ramamurthy and B. Mukherjee, “Wavelength Conversion in WDM Networking,”
IEEE Journal Selected Areas in Communications, vol. 16, no. 7, pp. 1061-1073,
September 1998.

[13] V. Sharma and E. A. Varvarigos, “Limited Wavelength Translation in All-Optical
WDM Mesh Networks,” Proc. of INFOCOM, vol. 2, pp. 893-901, March 1999.

[14] Y. Xin, G. N. Rouskas, and H. G. Perros, On the Design of MPλS Networks, Technical
Report TR-01-07, North Carolina State University, July 2001.

[15] R. Dutta and G. N. Rouskas, “A Survey of Virtual Topology Design Algorithms for
Wavelength Routed Optical Networks,” Optical Networks, vol. 1, no. 1, pp. 73-89,
January 2000.

[16] M. Ali Ezzahdi, S. Al Zahr, M. Koubaa, N. Puech, and M. Gagnaire, “LERP: a
Quality of Transmission Dependent Heuristic for Routing and Wavelength Assignment
in Hybrid WDM Networks,” Proc. of ICCCN, pp. 125-136, October 2006.

[17] R. Cardillo, V. Curri, and M. Mellia., “Considering Transmission Impairments in
Wavelength Routed Networks,” Proc. of ONDM, pp. 421-429, February 2005.

[18] H. Yurong, J.P. Heritage, and B. Mukherjee, “Connection Provisioning with Trans-
mission Impairment Consideration in Optical WDM Networks with High-Speed Chan-
nels,” Journal of Lightwave Technology, vol. 23, no. 3, pp. 982-993, March 2005.

[19] J. He, M. Brandt-Pearce, Y. Pointurier, and S. Subramaniam, “QoT-Aware Routing
in Impairment-Constrained Optical Networks,” Proc. of IEEE GLOBECOM, pp.
2269-2274, November 2007.

[20] J. Strand, A. L. Chiu, and R. Tkach, “Issues for Routing in Optical Layer,” IEEE
Communications, vol.39, no. 2, pp. 81-96, February 2001.

[21] M. Farahmand, D. Awduche, S. Tibuleac, and D. Atlas, “Characterization and Rep-
resentation of Impairments for Routing and Path Control in All-Optical Networks,”
Proc. of NFOEC, September 2002.

Bibliography 71

[22] B. Ramamurthy, D. Datta, H. Feng, J.P. Heritage, and B. Mukherjee, “Impact of
Transmission Impairments on the Teletraffic Performance of Wavelength-Routed Op-
tical Networks,” Journal of Lightwave Technology, vol. 17, no. 10, pp. 1713-1723,
October 1999.

[23] J. Strand, and A. Chiu, “Impairments and Other Constraints on Optical Layer Rout-
ing,” RFC4054, May 2005.

[24] Y. Huang, W. Wen, J. P. Heritage, and B. Mukherjee, “Signal-Quality Consideration
for Dynamic Connection Provisioning in All-Optical Wavelength-Routed Networks,”
Proc. of SPIE (OptiComm), vol. 5285, pp. 163-173, 2003.

[25] G.P. Agrawal, Nonlinear Fiber Optics, third ed., Academic Press, 2001.

[26] A. Marsden, A. Maruta, and K. Kitayama, “Routing and Wavelength Assignment
Encompassing FWM in WDM Lightpath Networks,” Proc. of IFIP ONDM”, pp. 1-6,
March 2008.

[27] X. Yang, L. Shen, and B. Ramamurthy, “Survivable Lightpath Provisioning in WDM
Mesh Networks Under Shared Path Protection and Signal Quality Constraints,” Jour-
nal Lightwave Technology, vol. 23, no. 4, pp. 1556- 1567, 2005.

[28] R. Ramaswami, and K.N. Sivarajan, Optical Networks: A Practical Perspective, Mor-
gan Kaufmann, California, 1998.

[29] C. Vijaya Saradhi, and C. Siva Ram Murthy, “Routing Differentiated Reliable Con-
nections in WDM Optical Networks,” Optical Networks Magazine, vol. 3, no. 3, pp.
50-67, 2002.

[30] S. Ramamurthy and B. Mukherejee, “Survivable WDM Mesh Networks, Part I-
Restoration,” Proc. of IEEE INFOCOM, vol. 2, pp. 744-51, March 1999.

[31] C. Xin, Y. Ye, S. Dixit, and C. Qiao, “A Joint Lightpath Routing Approach in Sur-
vivable Optical Networks,” Proc. of SPIE Asia-Pacific Optical and Wireless Commu-
nications, vol. 4585, pp. 139-146, November 2001.

[32] K. Wu, L. Valcarenghi, and A. Fumagalli, “Restoration Schemes with Differentiated
Reliability,” Proc. of IEEE ICC., vol. 3, pp. 1968-1972, May 2003.

[33] P. Van Mieghem and F.A. Kuipers, “Concepts of Exact Quality of Service Algo-
rithms,” IEEE/ACM Transaction on Networking, vol. 12, no. 5, pp. 851-864, October
2004.

[34] F. A. Kuipers, T. Korkmaz, M. Krunz, and P. Van Mieghem, “An Overview of
Constraint-Based Path Selection Algorithms for QoS Routing,” IEEE Communica-
tion Magazine, vol. 40, pp. 5055, December 2002.

72 Bibliography

[35] L. Ling and A.K. Somani, “Dynamic Wvelength Routing using Congestion and Neigh-
bourhood Information,” IEEE/ACM Transaction on Networking, vol. 7, no. 5, pp.
779-786, October 1999.

[36] A. Mokhtar and M. Azizoglu, “Adaptive Wavelength Routing in All Optical Net-
works,” IEEE/ACM Transaction on Networking, vol. 6, no. 2, pp. 197-206, April
1998.

[37] S. Pachnicke, T. Paschenda, and P.M. Krummrich. “Physical Impairment Based Re-
generator Placement and Routing in Translucent Optical Networks,” Proc. of OFC/N-
FOEC, February 2008.

[38] M. Ali Ezzahdi, S. Al Zahr, M. Koubaa, N. Puech, and M. Gagnaire, “LERP: a
Quality of Tansmission Dependent Heuristic for Routing and Wavelength Assignment
in Hybrid WDM Networks,” Proc. of ICCCN, pp. 125-136, October 2006.

[39] A. Jukan, and G. Franzl, “Constraint-Based Path Selection Methods for on Demand
Provisioning in WDM Networks, in: Proceedings of IEEE INFOCOM, vol. 2, pp.
827-836, June 2002.

[40] H.A. Pereira, D.A.R. Chaves, C.J.A. Bastos-Filho, and J.F. Martins-Filho, “Impact
of Physical Layer Impairments in All-Optical Networks, Proc. of Microwave SB-
MO/IEEE MTT-S International IMOC, pp. 536-541, November 2007.

[41] T. Deng, and S. Subramaniam, “Adaptive QoS Routing in Dynamic Wavelength-
Routed Optical Networks,” 2nd Int. Conf. on Broadband Networks, vol. 1, pp. 184-193,
October 2005.

[42] J. He, M. Brandt-Pearce, Y. Pointurier, and S. Subramaniam, “QoT-Aware Routing in
Impairment-Constrained Optical Networks,” Proc. of IEEE GLOBECOM, pp. 2269-
2274, November 2007.

[43] G. Markidis, S. Sygletos, A. Tzanakaki, and I. Tomkos, “Impairment Aware Based
Routing and Wavelength Assignment in Transparent Long Haul Networks,” Proc. of
IFIP ONDM, vol. 4534, pp. 48-57, May 2007.

[44] F.Glover, “Tabu Search I,” ORSA Journal on Computing, vol. 1, no. 3, pp. 190-206,
1989.

[45] X. Yang, and B. Ramamurthy, “Dynamic Routing in Translucent WDM optical Net-
works the Intradomain Case, Journal of Lightwave Technology, vol. 23, no. 3, pp.
955-71, March 2005.

[46] J. He, M. Brandt-Pearce, Y. Pointurier, and S. Subramaniam, “Adaptive Wavelength
Assignment Using Wavelength Spectrum Separation for Distributed Optical Networks,
IEEE International Conference on Communication, pp. 24-28, Jun. 2007.

Bibliography 73

[47] E. Salvadori, Y. Ye, A. Zanardi, H. Woesner, M. Carcagni, G. Galimberti,
G.Martinelli, A. Tanzi, and D. La Fauci, “Signalling-Based Architectures for Impair-
mentaware Lightpath Set-up in GMPLS Networks, Proc. of IEEE GLOBECOM, pp.
2263-2268, November 2007.

[48] N. Skorin-Kapov, “Heuristic Algorithm for the Routing and Wavelength Assignment
of Scheduled Lightpath Demands in Optical Networks,” IEEE Journal on Selected
Areas of Communications, vol. 24, pp. 2-15, August 2006.

[49] W. Yang. “Optimal and Heuristic Algorithms for Quality-of-Service Routing with
Multiple Constraints,” Performance Evaluation, vol. 57, no. 3, pp. 261-278, 2004.

74 Bibliography

Appendix A

Network Topologies

A-1 The ARPANET Network

Figure A-1: The ARPANET network.

76 Network Topologies

A-2 A Lattice Network

Figure A-2: A lattice network.

Appendix B

Additional Results

B-1 Totally loose physical constraints

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

QoS Constraint (T’)

A
cc

ep
ta

nc
e

R
at

io

EIOQRA
TIOQRA(k=1)
TABU_Q

Figure B-1: Acceptance ratio vs the QoS constraint for ARPANET network.

78 Additional Results

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.5

1

1.5

2

2.5

QoS Constraint (T’)

Q
oS

 p
at

h
le

ng
th

EIOQRA
TIOQRA (k=1)
TABU_Q

Figure B-2: QoS path length vs the QoS constraint for ARPANET network.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

QoS Constraint (T’)

R
un

ni
ng

 T
im

e
(m

s)

EIOQRA
TIOQRA (k=1)
TABU_Q

Figure B-3: Running time vs the QoS constraint for ARPANET network.

B-1 Totally loose physical constraints 79

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

QoS Constraint (T’)

A
cc

ep
ta

nc
e

R
at

io

EIOQRA
TIOQRA (k=1)
TABU_Q

Figure B-4: Acceptance ratio vs the QoS constraint for random networks with N = 49.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

QoS Constraint (T’)

Q
oS

 p
at

h
le

ng
th

EIOQRA
TIOQRA (k=1)
TABU_Q

Figure B-5: QoS path length vs the QoS constraint for random networks with N = 49.

80 Additional Results

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

QoS Constraint (T’)

Ru
nn

in
g T

im
e (

m
s)

EIOQRA
TIOQRA (k=1)
TABU_Q

Figure B-6: Running time vs the QoS constraint for random networks with N = 49.

B-2 Totally loose Qos constraints 81

B-2 Totally loose Qos constraints

0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Physical Constraint (∆’)

Ac
ce

pt
an

ce
 R

at
io

EIOQRA
TIOQRA (k=1)
TABU_Q

Figure B-7: Acceptance ratio vs physical constraint for the random networks with N = 49
and NR = 16.

0.5 1 1.5 2 2.5 3 3.5 4
0.8

1

1.2

1.4

1.6

1.8

2

Physical Constraint (∆’)

Q
oS

 p
at

h
len

gt
h

EIOQRA
TIOQRA (k=1)
TABU_Q

Figure B-8: QoS path length vs physical constraint for the random networks with N = 49
and NR = 8.

82 Additional Results

0.5 1 1.5 2 2.5 3 3.5 4
0

50

100

150

200

250

300

350

400

450

Physical Constraint (∆’)

R
un

ni
ng

 T
im

e
(m

s)

Figure B-9: Running time vs physical constraint for EIOQRA on the random networks with
N = 49 and NR = 8.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Physical Constraint (∆’)

R
un

ni
ng

 T
im

e
(m

s)

EIOQRA
TIOQRA (k=1)
TABU_Q

 Truncated

Figure B-10: Running time vs physical constraint for the random networks with N = 49
and NR = 8.

B-2 Totally loose Qos constraints 83

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Physical Constraint (∆’)

A
cc

ep
ta

nc
e

R
at

io

EIOQRA
TIOQRA (k=1)
TABU_Q

Figure B-11: Acceptance ratio vs physical constraint for the ARPANET with NR = 8.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0.8

1

1.2

1.4

1.6

1.8

2

2.2

Physical Constraint (∆’)

Q
oS

 p
at

h
le

ng
th

EIOQRA
TIOQRA (k=1)
TABU_Q

Figure B-12: QoS path length vs physical constraint for the ARPANET with NR = 8.

84 Additional Results

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Physical Constraint (∆’)

R
un

ni
ng

 T
im

e
(m

s)

EIOQRA
TIOQRA (k=1)
TABU_Q

Figure B-13: Running time vs physical constraint for the ARPANET with NR = 8 under
totally loose QoS constraints.

0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

Physical Constraint (∆’)

A
cc

ep
ta

nc
e

R
at

io

EIQRRM
TIQRRM (k=1)
TABU_R

Figure B-14: Acceptance ratio vs physical constraint for the ARPANET with NR = 8 under
totally loose QoS constraints.

B-2 Totally loose Qos constraints 85

0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Physical Constraint (∆’)

P
at

h
re

ge
ne

ra
to

r−
co

un
t

EIQRRM
TIQRRM (k=1)
TABU_R

Figure B-15: Path regenerator-count vs physical constraint for the ARPANET with NR = 8
under totally loose QoS constraints.

0.5 1 1.5 2 2.5 3 3.5 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Physical Constraint (∆’)

R
un

ni
ng

 T
im

e
(m

s)

EIQRRM
TIQRRM (k=1)
TABU_R

Figure B-16: Running time vs physical constraint for the ARPANET with NR = 8 under
totally loose QoS constraints.

86 Additional Results

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Physical Constraint (∆’)

A
cc

ep
ta

nc
e

R
at

io

EIQRRM
TIQRRM (k=1)
TABU_R

Figure B-17: Acceptance ratio vs physical constraint for the lattice network with N = 49
and NR = 16 under totally loose QoS constraints.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Physical Constraint (∆’)

P
at

h
re

ge
ne

ra
to

r−
co

un
t

EIQRRM
TIQRRM (k=1)
TABU_R

Figure B-18: Path regenerator-count vs physical constraint for the lattice network with
N = 49 and NR = 16 under totally loose QoS constraints.

B-2 Totally loose Qos constraints 87

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

100

200

300

400

500

600

700

800

900

Physical Constraint (∆’)

R
un

ni
ng

 T
im

e
(m

s)

Figure B-19: Running time vs physical constraint of EIQRRM on the lattice network with
N = 49 and NR = 16 under totally loose QoS constraints.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Physical Constraint (∆’)

R
un

ni
ng

 T
im

e
(m

s)

EIQRRM
TIQRRM (k=1)
TABU_R

Truncated

Figure B-20: Running time vs physical constraint for the lattice network with N = 49 and
NR = 16 under totally loose QoS constraints.

88 Additional Results

B-3 Tight Qos constraints

0 10 20 30 40 50 60 70
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Total Number of Regenerators (N
R

)

Ac
ce

pt
an

ce
 R

at
io

EIOQRA
TIOQRA (k=1)
TABU_Q

Figure B-21: Acceptance ratio vs total regenerator number for the lattice network with
N = 100 where ∆′ = 1.5 and T = 6.

0 10 20 30 40 50 60 70
1

1.5

2

2.5

3

3.5

Total Regenerator Number (N
R

)

Qo
S

Pa
th

 L
en

gt
h

EIOQRA
TIOQRA (k=1)
TABU_Q

Figure B-22: QoS path length vs total regenerator number for the lattice network with
N = 100 where ∆′ = 1.5 and T = 6.

B-3 Tight Qos constraints 89

0 10 20 30 40 50 60 70
0

1

2

3

4

5

6

7

8

Total Number of Regenerators (N
R

)

R
un

ni
ng

 T
im

e
(m

s)
EIOQRA
TIOQRA (k=1)
TABU_Q

Figure B-23: Running time vs total regenerator number for the lattice network with N = 100
where ∆′ = 1.5 and T = 6.

0 2 4 6 8 10 12 14 16 18 20

0.4

0.5

0.6

0.7

0.8

0.9

1

Total Number of Regenerators (N
R

)

A
cc

ep
ta

nc
e

R
at

io

EIQRRM
TIQRM (k=1)
TABU_R

Figure B-24: Acceptance ratio vs total regenerator number for ARPANET where ∆′ = 1.5
and T = 4.

90 Additional Results

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Total Regenerator Number (R
N

)

Pa
th

 R
eg

en
er

at
or

 C
ou

nt

EIQRRM
TIQRRM (k=1)
TABU_R

Figure B-25: Path regenerator-count vs total regenerator number for ARPANET where
∆′ = 1.5 and T = 4.

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Total Number of Regenerators (N
R

)

R
un

ni
ng

 T
im

e
(m

s)

EIQRRM
TIQRRM (k=1)
TABU_R

Figure B-26: Running time vs total regenerator number for ARPANET where ∆′ = 1.5 and
T = 4.

B-4 Medium Qos constraints 91

B-4 Medium Qos constraints

2 6 10 14 18 22 26 30 34 38
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Total Number of Regenerators (N
R

)

Ac
ce

pt
an

ce
 R

at
io

EIOQRA
TIOQRA (k=1)
TABU_Q

Figure B-27: Acceptance ratio vs total regenerator number for lattice network of N = 49
where ∆′ = 2 and T = 10.

2 6 10 14 18 22 26 30 34 38
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Total Regenerator Number (N
R

)

Qo
S

Pa
th

 L
en

gt
h

EIOQRA
TIOQRA (k=1)
TABU_Q

Figure B-28: QoS path length vs total regenerator number for lattice network of N = 49
where ∆′ = 2 and T = 10.

92 Additional Results

2 6 10 14 18 22 26 30 34 38
0

20

40

60

80

100

120

Total Regenerator Number (N
R

)

R
un

ni
ng

 T
im

e
(m

s)

Figure B-29: Running time vs total regenerator number for EIQRRM on lattice network of
N = 49 where ∆′ = 2 and T = 10.

2 6 10 14 18 22 26 30 34 38
0

0.5

1

1.5

2

2.5

3

3.5

Total Regenerator Number (N
R

)

R
un

ni
ng

 T
im

e
(m

s)

EIOQRA
TIOQRA (k=1)
TABU_Q

 Truncated

Figure B-30: Running time vs total regenerator number for lattice network of N = 49 where
∆′ = 2 and T = 10.

B-4 Medium Qos constraints 93

2 6 10 14 18 22 26 30 34 38
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Total Number of Regenerators (N
R

)

A
cc

ep
ta

nc
e

R
at

io

EIQRRM
TIQRRM (k=1)
TABU_R

Figure B-31: Acceptance ratio vs total regenerator number for lattice network of N = 49
where ∆′ = 2 and T = 10.

2 6 10 14 18 22 26 30 34 38
0

0.2

0.4

0.6

0.8

1

Total Regenerator Number (N
R

)

P
at

h
R

eg
en

er
at

or
−c

ou
nt

EIQRRM
TIQRRM (k=1)
TABU_R

Figure B-32: Path regenerator-count vs total regenerator number for lattice network of
N = 49 where ∆′ = 2 and T = 10.

94 Additional Results

2 6 10 14 18 22 26 30 34 38
0

20

40

60

80

100

120

Total Regenerator Number (N
R

)

R
un

ni
ng

 T
im

e
(m

s)

Figure B-33: Running time vs total regenerator number for EIQRRM on lattice network of
N = 49 where ∆′ = 2 and T = 10.

2 6 10 14 18 22 26 30 34 38
0

0.5

1

1.5

2

2.5

3

3.5

Total Regenerator Number (N
R

)

R
un

ni
ng

 T
im

e
(m

s)

EIQRRM
TIQRRM (k=1)
TABU_R

 Truncated

Figure B-34: Running time vs total regenerator number for lattice network of N = 49 where
∆′ = 2 and T = 10.

B-5 Tunable algorithms with different values of k 95

B-5 Tunable algorithms with different values of k

2 6 10 14 18 22 26 30 34 38
0.7

0.75

0.8

0.85

0.9

0.95

1

Total Number of Regenerators (N
R

)

Ac
ce

pt
an

ce
 R

at
io

TIOQRA (k=50)
TIOQRA (k=10)
TIOQRA (k=1)

Figure B-35: Acceptance ratio vs total number of regenerators for a random network of
N = 49 and ρ with T ′ = 6, ∆′ = 1.5

2 6 10 14 18 22 26 30 34 38
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Total Number of Regenerators (N
R

)

Qo
S

Pa
th

 L
en

gt
h

TIOQRA (k=50)
TIOQRA (k=10)
TIOQRA (k=1)

Figure B-36: QoS path length vs total number of regenerators for a random network of
N = 49 and ρ with T ′ = 6, ∆′ = 1.5

96 Additional Results

2 6 10 14 18 22 26 30 34 38
0

0.5

1

1.5

2

2.5

Total Regenerator Number (N
R

)

R
un

ni
ng

 T
im

e
in

 m
s

TIOQRA (k=50)
TIOQRA (k=10)
TIOQRA (k=1)

Figure B-37: Running time vs total number of regenerators for a random network of N = 49
and ρ with T ′ = 6, ∆′ = 1.5

2 6 10 14 18 22 26 30 34 38
0

0.1

0.2

0.3

0.4

0.5

0.6

Total Number of Regenerators (N
R

)

P
at

h
R

eg
en

er
at

or
−c

ou
nt

TIQRRM (k=50)
TIQRRM (k=10)
TIQRRM (k=1)

Figure B-38: Path regenerator-count vs total number of regenerators for a random network
of N = 49 and ρ with T ′ = 6, ∆′ = 1.5

B-6 Dynamic traffic 97

B-6 Dynamic traffic

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Regenerator Density

Ac
ce

pt
an

ce
 R

at
io

EIQRRM
TABU_Q

Figure B-39: Acceptance ratio vs regenerator density for a lattice network of N = 49 with
W = 20, T = 8, ∆′ = 1.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Regenerator Density

Pa
th

 R
eg

en
er

at
or

−c
ou

nt

EIQRRM
TABU_R

Figure B-40: Path regenerator-count vs regenerator density for a lattice network of N = 49
with W = 20, T = 8, ∆′ = 1.5

98 Additional Results

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

1

2

3

4

5

6

7

8

Regenerator Density

R
un

ni
ng

 T
im

e
in

 m
s

EIQRRM
TABU_R

Figure B-41: Running time vs regenerator density for a lattice network of N = 49 with
W = 20, T = 8, ∆′ = 1.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.5

1

1.5

2

2.5

Regenerator Density

Q
oS

 P
at

h
L

en
gt

h

TIOQRA
TABU_Q

Figure B-42: QoS path length vs regenerator density for a lattice network of N = 49 with
W = 20, T = 8, ∆′ = 1.5

