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Abstract 
 

Wavelet Packet based Multi-Carrier Modulation (WPMCM) offers an alternative to the well-

established OFDM as an efficient multicarrier modulation technique. It has strong advantage of 

being generic transmission scheme whose actual characteristics can be widely customized to 

fulfill several requirements and constraints of advanced communication systems.  

In the last decades wavelets have been favorably applied in signal and image processing fields 

but they just recently attracted attention of the telecommunication community. Therefore, some 

research questions remain to be addressed before novel WPMCM can be used in practice. One of 

the major concerns involves the performance of WPMCM transceivers under various 

synchronization errors. 

In this thesis we analyze the interference in WPMCM transmission caused by the carrier 

frequency offset, phase noise and time synchronization errors. Using standard wavelets the 

sensitivity of WPMCM transceivers to these errors is evaluated through simulation studies and 

their performances are compared and contrasted to OFDM. 

New wavelets are designed to alleviate the WPMCM‘s vulnerability to synchronization errors. 

Consequently, a filter design framework is built that facilitates the development of new wavelet 

bases according to the specific demands. In this regard the expressions for Inter Carrier 

Interference (ICI) and Inter Symbol Interference (ISI) in WPMCM transmission are first derived 

and stated as a convex optimization problem. Then an optimal filter that best handles these 

deleterious effects is designed and developed by means of Semi Definite Programming (SDP). 

Through computer simulations the performance advantage of the newly designed filter over 

standard wavelet filters is proven and further its performance is compared to the conventional 

OFDM. 
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1 

1. Introduction 

uring the last decades many digital communications services were deployed with 

constantly growing data rates like digital radio and television, Internet, mobile 

telephony, video conferencing, etc. This rapid progress of telecommunication market 

has created a need for new techniques that can accommodate high data rates. In conventional 

single-carrier communication systems the data is transmitted sequentially and therefore duration 

of each symbol is inversely proportional to the data rate Rs. Higher data rates result in shorter 

symbol duration. The problem however arises in dispersive channels when the duration of 

transmitted symbols becomes shorter than the delay introduced by the channel. As a result the 

received symbols are widely spread in time causing Inter Symbol Interference (ISI). The amount 

of ISI in a given channel increases for growing data rate Rs limiting the connection speed. Today, 

UMTS is one of the fastest single carrier solutions on the market that can operate in dispersive 

environments at a rate of 3.84x10
6
 chips/s. 

 

1.1 Multicarrier Modulation 

ISI can be significantly reduced by employment of Multi-Carrier Modulation (MCM) technique. 

MCM subdivides the total bandwidth in N narrow channels, which are transmitted in parallel. 

The original data stream at rate Rs is divided into N streams each having data rate of 
Rs

/N and 

therefore N times longer symbol duration, i.e. TMC = NT. The figure 1.1 illustrates the composed 

signals for single-carrier and multicarrier modulation. 

D 

We should be taught not to wait for inspiration 

to start a thing. Action always generates 

inspiration. Inspiration seldom generates action.  

— Frank Tibolt 
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Figure 1.1: Single-carrier and Multicarrier Modulation 

 

Each data symbol in single-carrier systems occupies the entire available bandwidth while an 

individual data symbol in multicarrier system only occupies a fraction of the total bandwidth. 

Therefore, narrow band interference or strong frequency band attenuation can cause single-

carrier transmission to completely fail but in MCM they only affect subcarriers located at 

particular frequencies; 

MCM can be implemented using several techniques. The first multicarrier systems realized was 

Frequency Division Multiplexing (FDM). In FDM the composite multicarrier signal is obtained 

by shifting baseband parallel data streams upwards in frequency by modulating them on different 

sinusoidal carriers. The FDM signal must consist of subcarriers that don‘t have overlapping 

spectra otherwise crosstalk would occur between different subchannels. In practical systems the 

guard bands are inserted between subcarriers in order to accommodate for local oscillators 

imperfections and/or channel effects like Doppler spread. Figure 1.2 shows the spectrum of 

composite FDM signal with guard bands. 

 

 
Figure 1.2: FDM Spectrum (8 Subcarriers with Guard Bands) 
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The growth of high data rate applications has caused spectrum to become scarce. Therefore 

systems that make use of available bandwidth more efficiently received a lot attention. One of 

the spectrally efficient multicarrier methods is Orthogonal Frequency Division Multiplexing 

(OFDM). Although the principle of OFDM existed since early sixties the first real life systems 

appeared only in the past decade. Today OFDM is the most commonly used multicarrier 

modulation technique and is widely adopted across the world. One of the first systems to use 

OFDM was European Digital Audio Broadcasting (DAB) back in 1995 and in short time other 

standards such as Digital Video Broadcasting (DVB), WiFi (IEEE 802.11a/g/j/n), WiMAX 

(IEEE 802.16), UWB Wireless PAN (IEEE 802.15.3a) and MBWA (IEEE 802.20) followed. 

The high spectral efficiency of OFDM is due to its orthogonal subcarriers which allow their 

spectrums to overlap. Adjacent subcarriers do not interfere with each other as long as they 

preserve their orthogonality. Furthermore the guard bands like those used in FDM are no longer 

necessary, figure 1.3 illustrates this with the spectrum of OFDM for 8 subcarriers. 

 

 

 
Figure 1.3: OFDM Spectrum (8 subcarriers) 

 

 

1.2 OFDM 

OFDM transmission system can be efficiently implemented using Inverse Fast Fourier 

Transform (IFFT) at the transmitter side and Fast Fourier Transformation (FFT) at the receiver 

side. The Fourier transformation allows us to describe a signal as a linear combination of 

sinusoids which form an orthogonal basis. These sinusoids in OFDM are referred as subcarriers 

and their number is determined by the length of the FFT vector.  

The orthogonality of subcarriers over an OFDM symbol period TMC is achieved by setting inter-

carrier spacing to 
1
/TMC Hz. Therefore, the frequency of the k

th
 subcarrier in so-called T-spaced 

OFDM is given by: 
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0,1, , 1k

MC

k
f k N

T
           (1.1) 

 

The corresponding k
th

 subcarrier at frequency fk can therefore be written as: 

 

 
2

( ) kj f t

k t e
            (1.2) 

 

An OFDM symbol consists of N subcarriers and after being modulated by the OFDM transmitter 

can be expressed as: 

 

 
1 2

0

( ) , 0 1
knN j
N

k

k

S n a e n N




           (1.3) 

 

In equation (1.3) 
ka represents mapped complex data symbols. 

 

If we assume ideal channel and perfect synchronization between OFDM transmitter and receiver, 

the received sequence R(n) is identical to the transmitted signal, i.e. R(n) = S(n). Under these 

conditions the demodulated data after FFT for the k
th

 subcarrier can be expressed as: 
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 
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        (1.4) 

 

Unfortunately the above scenario describes an utopian situation that does not occur often in 

reality and therefore the channel effects and oscillators‘ imperfections should be taken into 

consideration during system design. Due to delay spread of the channel, OFDM symbols could 

overlap one another and perfect reconstruction as described in (1.4) may not be possible. In order 

to decrease amount of ISI in dispersive channels we can insert guard intervals between OFDM 

symbols. Usually in OFDM the cyclic prefix is used as it makes the OFDM signal appear 

periodic and therefore avoid the discrete time property of the convolution.  

The cyclic prefix is a copy of last NCP samples of OFDM symbols which is appended to the front 

of each symbol. The effect of the dispersive channels can be efficiently mitigated if the length of 
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a cyclic prefix is set longer than the span of the channel. Figure 1.4 illustrates an OFDM symbol 

with cyclic prefix.  

 

 
Figure 1.4: OFDM Symbol with Cyclic Prefix 

 

Because cyclic prefix doesn‘t contain any useable data it decreases the spectral efficiency and 

therefore it should be kept as short as possible. At the receiver side the cyclic prefix is no longer 

needed and hence discarded before the demodulation process. 

The OFDM transmitter and receiver block diagrams are illustrated in figures 1.5 and 1.6 

respectively.  

 

 
Figure 1.5: OFDM Transmitter 

 

 

 
Figure 1.6: OFDM Receiver 
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1.3 Beyond OFDM (WPMCM) 

With each passing day newer and newer telecommunication services are being launched even 

while existing services continue to flourish. Demand for wireless services is therefore likely to 

continue so for the foreseeable future. However, with increasing popularity of the wireless 

services the demands on prime resources like battery power and radio spectrum are put to great 

test. For example, currently most spectrum has been allocated, and it is becoming increasingly 

difficult to find frequency bands that can be made available either for new services or to expand 

existing ones. Even while available frequency bands appear to be fully occupied, a FCC study 

conducted in 2002 revealed that much of the available spectrum lies fallow most of the time (20 

% or less of the spectrum is used) and that spectrum congestions are more due to the sub-optimal 

use of spectrum than to the lack of free spectrum [1].  

Thus in a wireless environment the system requirements, network capabilities, and device 

capabilities have enormous variations giving rise to significant network design challenges. The 

design of an intelligent communication system that estimates the channel and adaptively 

reconfigures to maximize resource utilization is therefore highly desirable. Current developments 

in wireless communications are therefore towards developing novel signal transmission 

techniques that allow for significant increases in wireless capacity by operating in licensed 

spectrum without harmless interference with legitimate users. This idea is introduced in the late 

90‘s by [2] and since then it has been known as cognitive radio.  

Multicarrier modulation is recognized as a good platform for cognitive radio as the subcarriers 

located in the frequency bands occupied by legitimate users can be easily cancelled. OFDM with 

desirable properties like spectral efficiency and robustness against channel fading and dispersion 

is one of the possible MCM solutions. However, OFDM employ static subcarriers offering little 

flexibility and moreover each subcarrier has large side-lobes requiring meticulous filtering and 

sufficient guard bands.  

Recently Wavelet Packet based Multi-Carrier Modulation (WPMCM) has been propounded as an 

alternative to the OFDM [3] – [6]. WPMCM employs orthogonal subcarriers and similarly to 

OFDM high spectral efficiency is achieved by the overlapping subcarriers spectra. The greatest 

motivation for pursuing WPMCM system lies in the flexibility they offer and excellent frequency 

selectivity. Because WPMCM can be efficiently implemented by an iterative method the number 

of subcarriers and their bandwidth can be easily changed. Furthermore the specifications of 

WPMCM can be tailored according to the engineering requirement by just altering the filter 

coefficients. Using frequency selective filters subcarriers with much lower side-lobes than those 

of OFDM can be obtained allowing better mitigation of interference [7]. 

The future transceivers demand great deal of flexibility and adaptability in order to operate in the 

crowded spectrum. These requirements correspond to the nature of WPMCM making it strong 

candidate for the upcoming intelligent communication systems. However, few key research 

questions remain to be addressed before WPMCM can become practically viable. One of the 

major concerns involves sensitivity and vulnerability of WPMCM transceivers to the 

synchronization errors, since it is known that those types of errors can destroy orthogonality in 
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spectral efficient multicarrier systems and cause interference. Because wavelets have just 

recently emerged as a multicarrier modulation technique there is little known about their 

sensitivity to synchronization errors and local oscillators‘ imperfections. This has motivated us to 

investigate the effect of carrier frequency offset, phase noise and time synchronization errors on 

WPMCM transmission. 

 

1.4 Objectives and Novelty of the Thesis Work 

The primary objectives of the project work are: 

 

 To analyze the interference in WPMCM and OFDM transmissions under influences of 

carrier frequency offset, phase noise and time synchronization error. 

 To establish a simulation setup in MATLAB
®
 for WPMCM and OFDM transceivers, 

incorporating introduction of relative frequency offset, phase noise and symbol 

synchronization error. 

 To evaluate the performance degradation of WPMCM transceiver in the presence of 

carrier frequency offset, phase noise and time synchronization error. 

 To build a novel framework that facilitates development of new wavelet bases according 

to the specific demands. 

 To design and develop new wavelet filter, which reduces the deleterious effects caused by 

the time synchronization errors. 

 To evaluate the performance of the designed optimal filter. 

 

The objectives of the thesis work are illustrated in the figure 1.7. 

 
Figure 1.7: Objectives of the Thesis Work 
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1.5 Outline of the Thesis 

In chapter 0 a theoretical foundation is laid for wavelet transformation. The first section of 0
nd

 

chapter discusses the basic idea of continuous wavelet transform. In order to work in finite time 

domain we switch to discrete wavelet transform. Using the underlying principle of multi 

resolution analysis the discrete wavelet transform is practically realized by the filter banks. At 

this stage the wavelet packed are introduced and their composition and decomposition is 

discussed using analysis and synthesis filter banks, respectively. After discussing all theoretical 

elements, the block diagram of WPMCM is illustrated for the transmitter and receiver. 

Furthermore, in this chapter we show some standard wavelets that can be used in WPMCM 

transceivers and give their specifications. 

The synchronization errors like: time offset, frequency offset and phase noise, are discussed in 

chapter 3. For each of these synchronization errors a model is presented and theoretical analysis 

is given for both WPMCM and OFDM. The Bit Error Rate (BER) performance under time 

offset, frequency offset and phase noise is investigated by means of simulations studies. The 

simulations are performed for WPMCM with different types of standard wavelets and compared 

to OFDM. A part of the results reported in this chapter is published in [8], [9]. 

The design of wavelets is treated in chapter 4, where the accent is on wavelet design for time 

synchronization errors. With a little modification the same principle can be applied to other 

design criteria. The necessary conditions that have to be fulfilled in order to obtain orthogonal 

wavelets are discussed at the beginning of this chapter. Fusing the time offset analysis from 

chapter 3 and the wavelet constraints together, allow us to describe the whole design process as 

an optimization problem. The Semi Definite Programming (SDP) is used to solve the problem 

and generate optimal filter coefficients. The performance of WPMCM with utilization of optimal 

filter is examined by simulations and is compared to the results from previous chapter where 

standard wavelets and OFDM were tested. 

Finally, chapter 5 gives a short summary of the work done and concludes the thesis. 

Furthermore, the recommendations for the further work on WPMCM can be found at the end of 

chapter 5. 
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2 

2. Wavelet Theory 

he wavelets theory can be viewed as an extension of Fourier analysis. The basic idea of 

both transformations is the same: representing a function by a set of other functions. It all 

started in 1800s when Joseph Fourier discovered that he could superpose cosines and 

sines to represent other functions. Since then Fourier analysis has been used extensively by 

scientists and engineers for all kind of problems and applications. However, Fourier analysis 

does not work equally well for each problem. Linear problems and stationary signals are well 

suited for Fourier analysis but representation of brief, unpredictable and non-stationary signals 

on the other hand is much more difficult. The engineers sought for a solution and found it in 

Wavelet Transform.  

The wavelets are a relatively new concept that has been introduced in the 1980s although some 

pioneering work had been done earlier. Since the 1980s wavelets have attracted considerable 

interest from the theoreticians and engineers where wavelets have promising applications. 

Because of the large interest, the wavelet theory has been well developed over the past years and 

several books on this subject have appeared as a large volume of research articles. 

Chronology of developments in the wavelets theory: 

 

 1805  Fourier analysis developed. 

 1965  Fast Fourier Transform (FFT) algorithm appeared. 

 1980s  Beginnings of wavelet theory, modest understanding why/when do wavelets work. 

T 

The reasonable man adapts himself to the world. 

The unreasonable one persists in trying to 

adapt the world to himself. 

Therefore all progress depends on the 

unreasonable man. 

— George Bernard Shaw, 1903 
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 1985 Morlet & Grossman work on continuous wavelet transform trying to get perfect 

reconstruction without redundancy. 

 1987 Mallat unified the work done individually by different researchers. 

 1987 Mallat developed multi-resolution theory, discrete wavelet transform, wavelet 

construction techniques, but there was still lack of compact support wavelets. 

 1988  Daubechies found compact, orthogonal wavelets with arbitrary number of 

vanishing moments. 

 1990s Wavelets took off, attracting both mathematicians and engineers. 

 

After the completion of basic theory for wavelet transform, diverse fields have recognized the 

potential of wavelets. In figure 2.1 few applied fields of wavelets are illustrated but this 

enumeration is far from complete. It has been also foreseen that wavelets are going to play an 

important role in many areas of future telecommunication systems [5]. 

 

 
Figure 2.1: Applied Fields that make use of Wavelets 

 

In this chapter we give an overview of fundamental wavelet theory, starting with continuous 

wavelet transform and going step by step towards discrete wavelet transforms and the use of 

filter banks in wavelet analysis. We finish this chapter by presenting the novel wavelet packet 

based multicarrier modulation scheme. 

More information about wavelets can be found in [10] – [18]. 

 

2.1 Continuous Wavelet Transform 

The Continuous Wavelet Transform (CWT) is defined as a sum of a signal multiplied by scaled 

and shifted version of wavelet basis function. Using different scaling factors the wavelet is 

stretched or compressed accordingly, while translation parameter cause delay or hastening of the 

wavelet‘s onset. The value of translation parameter affects only the location of the wavelet and 
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has no influence on wavelet duration or bandwidth. For increasing scale, wavelet becomes more 

dilated and considers the long time/low frequency behavior of the input signal while for the 

decreasing scale wavelet becomes more compressed and considers short time/high frequency 

behavior of the input signal. Therefore the scale parameter is inversely proportional to frequency, 

i.e. low scales correspond to high frequencies and high scales correspond to low frequencies.  

The CWT encodes a given time signal in terms of wavelet coefficients that are function of two 

variables. As a result of wavelet transformation we get a collection of two-dimensional time-

scale representation, similar to one illustrated in figure 2.2. The large amplitude in the figure 2.2 

corresponds to high frequency-correlation of the signal with wavelet function at certain scale and 

time instance.   

 

 

 
Figure 2.2: Translation-Scale Representation of a Signal 

 

 

The equation of CWT is given in (2.1), where an input function f(t) is decomposed into a set of 

wavelet coefficients γ(κ,χ). The complex conjugate of the wavelet is given by ψ
 *

. The parameters 

κ and χ denote scale and translation respectively, and they represent new dimensions of the 

wavelet transform. 

 

 *

,( , ) ( ) ( )f t t dt    




          (2.1) 

 

The wavelets functions used in (2.1) are generated using single mother wavelet by changing the 

scaling parameter and translating the wavelet along the time axes by amount χ:  
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 ,

1
( )

t
t 


 



 
  

 
        (2.2) 

 

An example of scaled and translated wavelet is illustrated in figure 2.3, where Mexican Hat 

wavelet is shown with three different translation and scale factors. The wavelet shown at the 

origin represents the mother wavelet, which is neither shifted nor scaled. 

 
Figure 2.3: Mexican Hat Wavelet at different translations and scales 

 

As majority of the transforms also CWT is reversible. Under suitable assumptions about f(t) and 

Ψ, the original signal can be reconstructed from wavelet coefficients by applying the formulae 

for inverse wavelet transform:  

 

2

1 1
( ) ( , )

t
f t d d

c  


     

 

 
  

 
        (2.3) 

where  

 

2
ˆ ( )

c d

 



           (2.4) 

 

ˆ ( )  in equation (2.4) denotes the Fourier transform of ψ(t). 

 

2.2 Discrete Wavelets Transform 

2.2.1 Discrete Variables 

For practical problems the wavelet transform as discussed in previous paragraph is not always 

useful because obtained wavelet coefficients are highly redundant and they have to be calculated 

analytically. In this form the calculation of the wavelet transform would take a lot of time and 

computational power, depending on the input signals. Therefore the discrete wavelets are more 

suited for practical problems.  
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As the name already indicates the discrete wavelets does not use continuously scalable and 

translatable wavelets but ones that are scaled and translated in discrete steps. The equation for 

mother wavelet (2.2) can be rewritten for discrete scale and translation as: 

 

 , 0 0 0( )t t 

              (2.5) 

  

In equation (2.5) κ0 stands for fixed dilation step and χ0 is translation factor. The integers α and β 

denote scale and translation indices respectively. The most natural choice for dilation step is 2 as 

this result in octave bands, also known as dyadic scales. In this case for each subsequent value of 

scale index, wavelet is compressed in frequency domain by a factor 2 and consequently stretched 

in time domain by the same factor. The translation factor is usually set to 1 in order to get dyadic 

sampling of the time axes as well. 

 

The output of wavelet transform when discrete wavelets are utilized would be series of wavelet 

coefficients: 

 

*

,( , ) ( ) ( )f t t dt    




 
        

(2.6)

 
 

In order to reconstruct the original signal from wavelet coefficients following condition should 

be satisfied [10]. 

 

 
22 2

,,A f f B f 
 

         (2.7) 

 

Equation (2.7) indicates that the energy of the wavelet coefficients should be bounded by two 

positive bounds (A > 0) and (B < ∞) where ||f||
2
 denotes the energy of input signal f(t).  

 

The wavelets functions ψα,β(t) with ,    should form a frame bounded by A and B. If the 

bound A is not equal to the bound B the decomposition wavelet differs from the reconstruction 

wavelet and we speak of a dual frame. More favorable situation is obtained for so-called tight 

frame where two bounds are equal to each other. Furthermore if A = B = 1 the tight frame 

becomes an orthogonal basis. 

The basis function of a wavelet is called orthogonal if the wavelets generated by dilations and 

translations are orthogonal to each other, i.e.: 

 

 

 *

, ,

1
( ) ( )

0
p r

if p and r
t t dt

otherwise
 

 
 

 
 


      (2.8) 
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In the rest of this chapter we will consider in general orthonormal wavelets. The reconstruction 

of original signal for orthonormal wavelet basis function can be simply obtained by: 

 

,( ) ( , ) ( )f t t 
 

            (2.9) 

 

2.2.2 Multiresolution Analysis 

The complete representation of a signal f(t) requires an infinite number of wavelet functions 

ψα,β(t), as each following wavelet at increased scale covers only a part of the remaining spectrum. 

This can be overcome by introducing a low-pass complementary function φ(t), called scaling 

function. The extended scaling functions are generated by time shifted version of a single basis 

scaling function, i.e.: 

 

 
22

, ( ) 2 (2 )t t L




               (2.10) 

 

L
2 
in equation (2.10) implies that the integral of the square of the modulus is well defined. 

 

The Multi-Resolution Analysis (MRA) describes the construction of orthonormal wavelets using 

family of subspaces that has to satisfy certain properties.  The closed subspaces spanned by the 

scaling functions over integers    are defined by: 

 

    ,(2 ) ( )V Span t Span t

   
 

         (2.11) 

 

The low values of α represent coarse detail of a signal while higher values of α represent the 

finer detail. MRA requires the spanned spaces by scaling functions Vα to have finite energy and 

that they are ordered by inclusion as 
2

2 1 0 1 20 V V V V V L      
 
[20], i.e.: 

 

  

1

2

0

( )

V V for all

V

V L

 















 

















        (2.12) 

 

According to equation (2.12) the space that contains high resolution signal will also contain 

information about lower resolution of the signal, for example V2 contains V1 which contains V0 et 

cetera. The nested vector spaces spanned by the scaling functions are illustrated in figure 2.4. 
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Figure 2.4: Spaces Spanned by the Scaling Functions 

 

We can express scaling function φ(t) which span V0 as a weighted sum of shifted φ(2t) which 

span V1 using refinement equation: 

 

 ( ) ( ) 2 (2 ),
n

t h n t n n            (2.13) 

  

In (2.13) h(n) denotes the scaling function coefficients. This equation shows that scaling function 

can be constructed by the sum of its half-length translations.  

 

The wavelets in MRA are defined as orthogonal bases that span the differences between the 

spaces spanned by the scaling functions at various scales. Let the subspace spanned by the 

wavelet be Wj-1 then spans V1 and V2 can be written as: 

 

 

 
1 0 0

2 1 1 0 0 1

1
0

l
l

V V W

V V W V W W

V V W W for all


   


 

    

    





      (2.14) 

 

Nested vector spaces spanned by the scaling function and wavelet vector spaces are illustrated in 

figure 2.5. 

 

 

 
Figure 2.5: Spaces Spanned by the Scaling Functions and Wavelets 
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The space 
0W  spanned by a wavelet is actually a subspace of 

1V  0 1W V , and therefore 

similarly to equation (2.13) also the wavelet functions can be represented by a weighted sum of 

shifted scaling function φ(2t). 

 

 ( ) ( ) 2 (2 ),
n

t g n t n n            (2.15) 

 

In (2.15) g(n) denotes the wavelet function coefficients. Because of the orthogonality condition 

0 0 1V W W W    the scaling and wavelet coefficients are related to each other by: 

 

 ( ) ( 1) ( 1 ) ( )ng n h L n for h n of length L         (2.16) 

 

The reconstruction formulae for DWT using finite resolution of wavelet and scaling function can 

now be expressed as [19]: 

 

 
0

0

0

0

2 2
0( ) ( , )2 (2 ) ( , )2 (2 )

V W

f t t t

 

 
 

   

         
  

  



     
 

  (2.17) 

 

The parameter α0 in (2.17) sets the coarsest scale which is spanned by the scaling function. The 

rest is spanned by the wavelets which provide the higher resolution details of the signal. 

Provided that a wavelet system is orthogonal, the discrete wavelet transform (DWT) coefficients 

 ( , ) ( , )and       can now be defined as (2.18) and (2.19) respectively: 

 

 
,

2

( , ) ( ), ( )

( )2 (2 )

f t t

f t t dt

 




   

 



 
       (2.18) 

 

 
,

2

( , ) ( ), ( )

( )2 (2 )

f t t

f t t dt

 




   

 



 
       (2.19) 

 

Figure 2.6 illustrates the decomposition of the noisy Doppler function in DWT coefficients at 

different scales. In this figure we can see how time-varying frequency signal is described by 

wavelet transform as a function of scale and translation index. More common and compact figure 

of DWT performed on the same signal is shown in figure 2.7; here depicted colors contain the 

scale information. 
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Figure 2.6: Discrete Wavelet Transform of the Noisy Doppler 

 

 

 

 
Figure 2.7: Discrete Wavelet Transform of the Noisy Doppler 
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2.3 Filter Banks 

2.3.1 Multirate Systems 

The discrete wavelet transform can be efficiently represented by filtering operations. The weights 

h(n) given by scaling function coefficients in (2.13) can be represented by low-pass filter H. 

Similarly the weights of wavelet function g(n) corresponds to high-pass filter G. Therefore the 

equations (2.13) and (2.15) can be viewed as discrete time filtering with filters H and G 

respectively [20], [21]. In the rest of this thesis we will refer to filter H as scaling filter and to 

filter G as wavelet filter. 

 

Filtering a signal can be viewed as the convolution of signal with filter‘s coefficients. For a 

Finite Impulse Response (FIR) filter H of length L and an input signal x(n) the filtering operation 

is given by: 

 

 
1

0

( ) ( ) ( ) ( )
L

k

x n h n x k h n k




           (2.20) 

 

Due to orthogonality condition wavelet and scaling filter are related to each other according to 

equation (2.16). In frequency domain the spectrum of wavelet filter can be seen as the mirror 

image at frequency of ½ π of scaling filter‘s spectrum. The scaling filter is actually half band 

Low-Pass Filter (LPF) and complementary wavelet filter is half band High-Pass Filter (HPF). 

The frequency responses of both filters are illustrated in figure 2.8. 

 

 
Figure 2.8: Frequency Response of Wavelet and Scaling Filter 

 

 

Filtering of a signal with perfect half band pass filter removes exactly half of the frequency 

components from the input signal meaning that the number of samples in the filtered signal has 

now became redundant. In order to remove redundancy we can perform subsampling. For half-
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band pass filter the filtered signal should be subsampled by 2 in order to remove redundant 

information. If the signal is subsampled by a larger factor we will lose information and the 

frequency components will be mixed up. The subsampling by factor 2 can be seen as taking 

every other sample of the input signal and discarding the rest of the samples, i.e.: 

 

 ( ) (2 )y n x n           (2.21) 

 

The opposite operation to subsampling is upsampling. Upsampling increases the length of a 

signal by inserting zeros between each pair of samples. In contrast to subsampling, upsampling 

does not discard information and therefore it can always be inverted.  

The upsampling by a factor 2, doubles the number of samples in a signal by inserting one zero 

between each pair of samples. This can be mathematically illustrated by: 

 

 
2

( ) 2

0

m
x for m n

y m

Otherwise

  
  

  



        (2.22) 

 

 

2.3.2 Analysis Filter Bank 

The refinement equations given in (2.13) and (2.15) can be rewritten so that the lower scale 

representations of the wavelet and scaling functions can be expressed in those of higher scale as 

[15]: 
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     (2.23) 
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     (2.24) 

 

Using derivation carried above for wavelet and scaling function, we can express similarly DWT 

coefficients at scale α by coefficients at the higher scale α+1 as follows: 
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     (2.25) 
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     (2.26) 

 

Equations (2.25) and (2.26) imply that wavelet and scaling DWT coefficients at the certain scale 

can be calculated by taking a weighted sum of DWT coefficients from higher scales. This can be 

viewed as convolution between the DWT coefficients at scale α+1 with wavelet and scaling filter 

coefficients and subsequently subsampling each output with factor 2 to obtain new wavelet and 

scaling DWT coefficients at scale α. Therefore, we can describe equations (2.25) and (2.26) by a 

2-channel filter bank illustrated in figure 2.9.  

 

 

 
Figure 2.9: 2-Channel Analysis Filter Bank 

 

 

The 2-channel filter bank first splits the input signal in two parts and filters one part with filter H 

and other with filter G. Both filtered signals are then subsampled by 2 and resulting signals are 

forwarded to the output of the 2-channel filter bank. Each output signal will therefore contain 

half the number of samples and will span half of the frequency band compared to the input 

signal. It should be noticed that the number of samples at the input of the filter bank equals the 

number of samples at the output. 
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The complete representation of the DWT can be obtained by iteration of the 2-channel filter bank 

and taking repeatedly scaling DWT coefficients   as input. The iteration process starts with   

at the largest scale which is equal to the original signal. The number of stages in iteration process 

will determine the DWT resolution and therefore the number of channels. 

The example of a two band analysis tree with three stages is graphically shown by figure 2.10. 

The input signal f has 512 samples and contains frequencies that lie between 0 and π. The 

resulting decompositions together will still contain 512 samples and span the same frequency 

band as the original signal but these will be decomposed in different DWT coefficients. 

 

 

 
Figure 2.10: 3-Stage Analysis Tree 

 

 

The subband structure of wavelet decomposition in frequency domain can be calculated using 

Fourier transformation. For the previous example of 3-stage analysis tree the corresponding 

subband structure is illustrated in figure 2.11. 

 

 

 

 
Figure 2.11: Frequency Bands for the 3-Stage Analysis Tree 
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2.3.3 Synthesis Filter Bank 

The reconstruction formula for DWT is given in equation (2.17). If we now substitute the 

refinement equations for wavelet and scaling function, (2.15) and (2.13) respectively, into 

reconstruction equation (2.17) we get: 

 

   ( 1) / 2 1 ( 1) / 2 1( ) ( , ) ( )2 2 2 ( , ) ( )2 2 2
n n

f t h n t n g n t n   

 

                    
 

(2.27) 

 

Multiplying both sides of equation (2.27) by 1(2 ')t   and taking the integral allows us to 

describe the DWT coefficients at higher scales by those of the lower scale as [15]: 

 

 ( 1, ) ( , ) ( 2 ) ( , ) ( 2 )
m m

m h m m g m                  (2.28) 

 

The equation (2.28) implies that the DWT coefficients at certain scale level α+1 can be 

reconstructed by taking a combination of weighted wavelet and scaling DWT coefficients at 

previous scale α. This process can be described by the 2-channel synthesis filter bank, illustrated 

in figure 2.12. 

 

 
Figure 2.12: 2-Channel Synthesis Filter Bank 

 

 

The 2-channel synthesis filter bank performs exactly opposite operation compared to previously 

discussed analysis filter bank. The wavelet and scaling DWT coefficients are first upsampled by 

factor 2 and after that the wavelet function DWT coefficients are filtered with HPF Ĝ while 

scaling function DWT coefficients are filtered with LPF Ĥ. The two filtered signals are then 

added to each other to construct DWT coefficients at higher scale. The filters Ĥ and Ĝ are 

according to equation (2.28) and equations (2.25) and (2.26) time reversed version of filters H 

and G respectively. 

The decomposition of a signal in terms of coefficients is called discrete wavelet transform. In 

order to reconstruct the original signal from coefficients we can apply inverse wavelet transform, 

abbreviated IDWT. The IDWT can be efficiently implemented by iterating the 2-channel 

synthesis filter bank in the same manner like we have done in the previous paragraph for the 2-

channel analysis filter bank. The example of 3-stages synthesis tree is illustrates in figure 2.13. 
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Figure 2.13: Synthesis Tree 

 

If our primal assumption of orthogonality (2.16) is valid the reconstructed signal is simply 

delayed version of the input signal (x(n) = y(n)). The filter banks that satisfy this property are 

called perfect reconstruction filter banks. 

 

2.3.4 Wavelet Packets 

The resolution of discrete wavelet transform, as described so far, depends on the frequency 

bands. Because we are iterating the 2-channel filter bank only for the low pass output (scaling 

function branch), at the end of decomposition the high frequencies will have wide bandwidths 

while low frequencies will have narrow bandwidths, see illustration 2.11.  

The wavelet packet transform on the contrary performs the iteration of the 2-channel filter bank 

on both sides: low pass (scaling function branch) and high pass (wavelet function branch). 

Because the high frequencies are decomposed in the same manner as low frequencies the wavelet 

packet transform has evenly spaced frequency resolution. Figure 2.14 shows the frequency bands 

for 3-stage wavelet packet tree. 

 

 
Figure 2.14: Frequency Bands for 3-Stage Wavelet Packets Tree  
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The filter bank structure for wavelet packet transform expands to a full binary tree. In order to 

make clear distinction between different sets of coefficients we will label each wavelet packet ξ 

by the level l which corresponds to the depth of the node in the tree and by the current position p 

of the node at a given level. 

Wavelet packet decomposition recursively splits each parent node in two orthogonal subspaces 
p

lW  located at the next level: 

 
2 2 1

1 1

p p p

l l lW W W 

            (2.29) 

 

The subspaces given in equation (2.29) are those spanned by the basis functions of wavelet 

packets: 

 

  / 22 (2 )p l p l

l lW span t    

 

Wavelet packet coefficients δ at a certain level are calculated by convolving the wavelet and 

scaling filter with wavelet packets coefficients from previous level. This action is performed 

repeatedly for all wavelet packets until the full binary tree is obtain with desired depth. The 

equation (2.30) shows the recursive equation for wavelet packets generation. The wavelet 

packets coefficients 
2

1 ( )p

l   are generated using the scaling filter and coefficients 
2 1

1 ( )p

l 

  are 

created using the wavelet filter. 
 

2
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1
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m
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l l

m

h m m

g m m

   

   







 

 




       (2.30) 

 

In the regular DWT decomposition for each additional level we need only to perform single 

iteration of 2-channel filter bank while in wavelet packet transform the number of iterations is 

exponentionally proportional to the number of levels. Therefore, the wavelet packet transform 

has higher computational complexity when compared to regular DWT. By utilization of fast 

filter bank algorithm wavelet packet transform requires O(Nlog(N)) operation, similar to FFT 

while DWT  needs only O(N) calculation [15]. 

 

Figure 2.15 illustrates the full binary tree for the 3-stages wavelet packet analysis. 
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Figure 2.15: 3-Stages Wavelet Packet Analysis Tree 

 

 

 

 

 

The reconstruction of wavelet packets is also performed in an iterative method. For each pair of 

wavelet packets coefficients at level l of the tree we can calculate wavelet packets coefficients at 

the previous level l-1 by: 

 

 
2 2 1

1 1( ) ( ) ( 2 ) ( ) ( 2 )p p p

l l l

m m

m h m m g m     

          (2.31) 

 

Figure 2.16 illustrates the 3-stages wavelet packets synthesis tree. 
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Figure 2.16: 3-Stages Wavelet Packets Synthesis Tree 

 

2.4 Most Popular Wavelets  

 

Today we can find quite a few wavelets in the textbooks that are recognized by most authors. 

Each wavelet has some distinguishing characteristics that make it more suitable for one 

application than other. Therefore during design of a system the careful consideration of different 

wavelet properties should be made with respect to the system requirements. 

The selection of wavelets is generally made on following wavelet properties: 

 

 Compact Support 

 Orthogonality 

 Symmetry 

 K-Regularity/Vanishing Moments 

 etc. 

 

Compact support is defined by the length of the filter. In order to decrease computational 

complexity we prefer shorter filters however, filter length is closely related to other wavelet 
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properties like orthogonality or regularity. This means by setting other wavelet properties we 

automatically define minimum filter length.  

Orthogonality ensures perfect reconstruction making it one of the most vital wavelet properties. 

For communication purposes we absolutely require orthogonal wavelets but for other 

applications orthogonality is occasionally too restrictive. 

Symmetrical wavelets have as feature that transform of the mirror of an image is the same to the 

mirror of the wavelet transform. None of the orthogonal wavelets except Haar wavelet is 

symmetric. Although, requiring symmetric wavelets involuntarily means that wavelets are not 

orthogonal there are some applications that prefer symmetric wavelets above orthogonal ones. 

For instance image compression techniques like JPEG2000 uses biorthogonal symmetric 

wavelets. Because by compression of an image we discard one part of the wavelet coefficients 

containing high detail, the perfect reconstruction has become impossible anyhow. The fulfillment 

of symmetry property in JPEG2000 on the other hand results in more natural, smooth images. 

K-regularity is also an important measure for wavelets because it helps reduce the number of 

non-zero coefficients in the high-pass sub-bands and it is one of the easiest ways to determine if 

a scaling function is fractal. Usually the more a wavelet has zero wavelet moments the smoother 

the scaling function is. However this is not a tight condition. The smoothness is actually defined 

by the continuous differentiability of the scaling function. There are two ways in which 

smoothness can be defined: local by the Hölder measure and global by the Sobolev measure. As 

different applications prefer one measure of smoothness above another we will here mention 

only the K-regularity. 

In table 2-1 we list some of the most popular wavelets today and give their most important 

properties [22]. 

 

 
Table 2-1: Standard Wavelet Specifications 

Name Compact 

Support 

Orthogonality Symmetry K-Regularity Figure 

Haar 2   1 2.17 

Daubechies L    far from L/2 2.18 

Symlets L    near to L/2 2.19 

Discrete 

Meyer 

102   1 2.20 

Coiflet L    near to L/6 2.21 

Bi-orthogonal (L1,L2)   ≈(L1/2, L2/2) 2.22 

 

 

The scaling and wavelet function for each of the listed wavelets in table 2-1 are illustrated in the 

figures 2.17 – 2.22. At the right side of these figures the corresponding frequency responses are 

shown for low pass and high pass filters. 
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Figure 2.17: Haar Wavelet, Left: Scaling Function, Middle: Wavelet Function, Right Frequency Response of the LPF and 

HPF 

 

 
Figure 2.18: Daubechies Wavelet with 20 Coefficients, Left: Scaling Function, Middle: Wavelet Function, Right 

Frequency Response of the LPF and HPF 

 

 
Figure 2.19: Symlets Wavelet with 20 Coefficients, Left: Scaling Function, Middle: Wavelet Function, Right Frequency 

Response of the LPF and HPF 
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Figure 2.20: Discrete Meyer Wavelet with 102 Coefficients, Left: Scaling Function, Middle: Wavelet Function, Right 

Frequency Response of the LPF and HPF 

 

 
Figure 2.21: Coiflet Wavelet with 24 Coefficients, Left: Scaling Function, Middle: Wavelet Function, Right Frequency 

Response of the LPF and HPF 

 

 
Figure 2.22: Biorthogonal Wavelet with (12, 4) Coefficients, Left: Scaling Function, Middle: Wavelet Function, Right 

Frequency Response of the LPF and HPF 
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2.5 Wavelet Packet based Multi Carrier Modulation 

Wavelet Packet based Multi Carrier Modulation (WPMCM) is a multiplexing method that makes 

use of orthogonal wavelet packets waveforms to combine a collection of parallel signals into 

single composite signal. Fundamentally OFDM and WPMCM have many similarities as both use 

orthogonal waveforms as subcarriers and they achieve high spectral efficiency by allowing 

subcarriers‘ spectra to overlap one another. The adjacent subcarriers do not interfere with each 

other as long as the orthogonality between subcarriers is preserved. 

The difference between OFDM and WPMCM is the shape of the subcarriers and in way they are 

created. OFDM makes use of Fourier bases which are static sines/cosines while WPMCM uses 

wavelets which offer much more flexibility. By utilization of different wavelets in WPMCM we 

can get different subcarriers which lead to different transmission system characteristics. 

Therefore, it is possible in WPMCM by selection of wavelets to change the bandwidth 

efficiency, frequency concentration of subcarriers, sensitivity to synchronization errors, PAPR, 

etc. [23] – [27].  

WPMCM employs Inverse Discrete Wavelet Packet Transform (IDWPT) at the transmitter side 

and Discrete Wavelet Packet Transform (DWPT) at the receiver side, analogous to the IDFT and 

DFT used by OFDM transceivers. The IDWPT is implemented by wavelet packet synthesis tree 

which combines different parallel streams into a single signal. This composite signal is 

afterwards decomposed at the receiver using wavelet packets analysis tree or so called DWPT. 

The structure where synthesis tree is placed prior the analysis tree is called transmultiplexer. 

Figure 2.23 illustrates a 4-channel transmultiplexer. 

 

 
Figure 2.23: Wavelet Packets Transmultiplexer 

 

The number of levels in synthesis and analysis trees determines the amount of subcarriers in the 

WPMCM system by: 

 

 2lN             (2.32) 
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In equation (2.32) N determines the number of subcarriers and l represents the number of levels 

in the filter bank. 

 

The wavelet packet synthesis and analysis tree are constructed by iteration of corresponding 2-

channel filter bank, as explained in § 2.3. Therefore, the subcarriers of WPMCM are completely 

determined by the scaling and wavelet filter. The calculation of wavelet packet waveforms is 

performed in a recursive manner using filters coefficients h(n) and g(n) as: 
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
       (2.33) 

 

The subscripts l in equation (2.33) determines the level in the tree structure and superscript p can 

be seen as subcarrier index at a given tree depth (level l). 

 

The filters in WPMCM cannot be arbitrary chosen and not all scaling and wavelet filters will fit 

the requirements for a communication system. First of all, we will only consider FIR filters 

because they allow wavelet packet transformation to be implemented by described fast recursive 

algorithm. Furthermore, we require perfect reconstruction and hence the orthogonal subcarriers. 

These can only be generated by filters that fulfill the orthogonality constraint. The WPMCM 

subcarriers are mutually orthogonal if they satisfy the following condition: 

 

 ( ), ( ) ( ) ( ) ( )p i p i

l l l l

k

t t t t p i             (2.34) 

  

The transmitted signal for WPMCM is composed of successively modulated WPMCM symbols 

that are built from a sum of modulated subcarriers. The WPMCM transmitted signal in the 

discrete time domain can be expressed as: 

 

 2
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, log( )
0

( ) ( )
N

k

u k N
u k

S n a n uN




          (2.35) 

 

In equation (2.35) k denotes the subcarrier index and u denotes the WPMCM symbol index. The 

constellation symbol modulating k
th

 subcarrier in u
th

 WPMCM symbol is represented by ,u ka . 

If we assume that the WPMCM transmitter and receiver are perfectly synchronized and that the 

channel is ideal, the detected data at the receiver can be given by: 
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    (2.36) 

 

In equation (2.36) we have used the fact that different symbols are not interfering with each other 

and that subcarriers with index other than k are not contributing, according to the orthogonality 

equation (2.34). 

One important property of wavelet based transformation is that the waveforms used in general 

are longer than the transform duration of one symbol. This cause WPMCM symbols to overlap in 

time domain. Thanks to the orthogonality of used waveforms this overlap of the symbols does 

not automatically lead to Inter Symbol Interference (ISI). 

The multicarrier symbols of OFDM are not overlapping each other as IDFT and DFT transform 

are carried out for each group of subcarriers independently. On the other hand, the use of longer 

waveforms in WPMCM allows better frequency localization of subcarriers while in OFDM the 

rectangular shape of DFT window generates large side lobes. The spectra of WPMCM and 

OFDM for 8 subcarriers are illustrated side by side in figure 2.24. 

 

 
Figure 2.24: Spectrum of 8 Orthogonal Subcarriers, Left: WPMCM (Daubechies Length 20), Right: OFDM 

 

The other non-palatable consequence of time overlap is the inability to use guard interval in 

WPMCM systems. Although adding a guard interval severely decreases spectral efficiency, it is 

effective and low complexity method to cope with dispersive channels and time offset. In 

contrast to OFDM, in WPMCM we will not add cyclic prefix block as it would only lead to 

decrease of spectral efficiency without giving any benefits. 
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The WPMCM transmitter and receiver block diagrams are illustrated in figures 2.25 and 2.26 

respectively. 

 
Figure 2.25: WPMCM Transmitter 

 

 

 
Figure 2.26: WPMCM Receiver 

 

2.6 Conclusion 

In this chapter we have discussed the basic theory of the wavelet transform and we have 

explained how discrete wavelet transform can be calculated with utilization of filter banks. Due 

to efficient implementation and the freedom they provide, wavelets have emerged in many 

different fields. Recently, wavelets have been also proposed as a candidate for multicarrier 

modulation. In this chapter we have presented WPMCM transceiver, which is one of the possible 

wavelet based implementation of orthogonal multicarrier system. 

It is known that multicarrier systems like OFDM are very sensitive to carrier frequency offset, 

phase noise and time synchronization error. The WPMCM is relatively young multicarrier 

solution and therefore it is little known about its sensitivity to above mentioned synchronization 

errors.
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3 

3. Synchronization Errors 

ulticarrier modulation techniques have gained popularity in the last decades due to 

higher bandwidth requirements, increased use of wireless systems in the time-

dispersive environments (e.g. home, office, etc.) and lower costs of digital signal 

processing parts.  

The principle of multicarrier modulation is to subdivide the total bandwidth into several parallel 

narrow subbands, giving multicarrier systems some important advantages when compared to 

single carrier communication systems. A few important benefits are: 

 

 Increased symbol duration, hence better performance in dispersive channels. 

 Use of several narrow subbands, therefore narrow band interference or strong frequency 

band attenuation only affects particular subcarriers and not the whole system. 

 

The rapidly increasing number of new applications and lack of free spectrum restrict engineers to 

only consider bandwidth efficient multicarrier techniques. In order to achieve high bandwidth 

efficiency the subcarriers have to be closely spaced to each other, overlapping over each other. In 

this group of multicarrier systems belong OFDM and WPMCM, discussed in § 1.2 and § 2.5 

respectively. OFDM and WPMCM have orthogonal subcarriers so that even the subcarriers 

overlap they do not interfere one another. However, the radio front-end induced impairments as 

frequency offset and/or phase noise can cause the subcarriers to lose their mutual orthogonality 

and to begin interfering one with another. The rise of interference level due to loss of 

M 

You may be disappointed if you fail, but you are 

doomed if you don't try. 

— Beverly Sills, 1929 
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orthogonality among subcarriers is only experienced in multicarrier transmission. Therefore, the 

multicarrier systems with overlapping subcarriers are much more sensitive to the frequency 

offset and phase noise when compared to single carrier systems. This disadvantage of 

multicarrier systems sets high demands on the quality of the analog radio part, like oscillator 

stability. In case of OFDM the effects of frequency offset and phase noise are well documented 

in the literature [28] – [34] and number of synchronization techniques are reported to estimate 

and reduce the frequency offset and phase noise effects [35] – [39], [46], [47]. 

Besides the synchronization errors in form of frequency and phase misalignment, the multicarrier 

transceiver can also suffer from time synchronization error. Time synchronization error occurs 

when the start of the multicarrier symbol is incorrectly detected, selecting part of the adjacent 

symbol while discarding some samples at begin or at end of the useful symbol. Due to time 

synchronization errors the Inter Symbol Interference (ISI) arises as well as the Inter Carrier 

Interference (ICI). The use of guard intervals, like cyclic prefix in OFDM, can significantly 

improve the system performance in case of timing errors. However, the use of guard interval is 

not feasible solution for WPMCM systems because of time-overlapping nature of wavelet packet 

transform (see § 2.5). 

Similarly to the frequency offset and phase noise effects on the performance of the system, also 

for timing errors the documentation is far more comprehensive for OFDM than for WPMCM. 

The sensitivity of the OFDM to the time synchronization error is reported in [42] – [44] and there 

are various techniques for OFDM symbol synchronization available in the literature [45] – [49]. 

 

In this chapter we will address different types of synchronization errors for the WPMCM 

transceiver, and compare the performance of WPMCM under these errors to OFDM. Each 

synchronization error will be treated separately. First we will treat the frequency offset between 

transmitter and receiver, after which follows the discussion of phase noise. We will finalize this 

chapter with discussion of time synchronization errors. 

 

3.1 Frequency Offset in Multicarrier Modulation 

The orthogonality between the subcarriers is maintained at the receiver only if the transmitter 

and receiver have the same reference frequency. Any offset in the frequency will result in loss of 

orthogonality and hence in generation of interference. The interference is the most severe 

consequence of frequency offset but not the only one. Besides the interference term, frequency 

offsets initiates attenuation and phase rotation of each subcarrier. Generally frequency offset can 

be caused by misalignment between receiver and transmitter local oscillator frequencies or due to 

Doppler shift. 

 

The Doppler frequency shift fd is proportional to the subcarrier frequency f(n) and the relative 

speed between the transmitter and the receiver vr. The Doppler shift is expressed as: 
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d

v f n
f n

c
           (3.1) 

 

In (3.1) c denotes the speed of light and it is approximately equal to 3×10
8
 
m
/s. The frequency of 

each subcarrier can be calculated by taking the sum of main carrier frequency fc and baseband 

subcarrier frequency fsc, i.e.: 

 

 ( ) ( )c scf n f f n           (3.2) 

 

Using equation (3.1) and (3.2) we can express the relative frequency offset due to Doppler shift 

as the ratio between the actual frequency offset and inter-carrier spacing as: 
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The frequency offset can be modeled at the receiver by multiplying received time-domain signal 

by a complex exponential whose frequency component is equal to frequency offset value. If we 

assume that transmitted signal is given by S(n), the received signal R(n) can now be written as: 
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In (3.4) fε denotes the relative frequency offset due to local oscillator mismatch or due to Doppler 

shift or due to combination of both. N stand for the total number of subcarriers, 0 is initial phase 

and w denotes additive white Gaussian noise (AWGN). Without loss of generality, we assume 

for the moment that w(n) = 0 and 0 0  . 

 

3.1.1 Frequency Offset in OFDM 

In OFDM the frequency offset prevents the perfect alignment of FFT bins with the peaks of the 

sinc pulses i.e. subcarriers. The FFT output corresponding to the k
th

 subcarrier can be written in 

this case as: 
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Using the geometric series properties the equation (3.5) can also be expressed as [34], [36]: 
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We can split equation (3.6) into two distinct parts: 

 
1 11 ( ' )

' '

0; '

sin( ) sin( ( ' ))1
ˆ

( ' )
sin sin

N NNj f j k k f
N N

k k k

k k k

f k k f
a a e a e

f k k fN
N

N N

  
 

 

 

 

         
   

 

 
 

    
   
   

   (3.7) 

 

The first component of equation (3.7) stands for useful demodulated signal, which has been 

attenuated and phase shifted due to frequency offset. The second part of (3.7) contains the ICI 

term, in which contribute all other subcarriers. 

 

3.1.2 Frequency Offset in WPMCM 

The presence of the frequency offset in WPMCM transceiver cause the frequency misalignment 

between the waveforms of the transmitter and the receiver. The detected data at the WPMCM 

receiver in case of the frequency offset can be written for the k
th

 subcarrier and u
th

 symbol as: 
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(3.8) 

 

In order to shorten the derivation we are going to use different notation, first we define: 
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Using equation (3.9) and (3.8) we can now express the output of the WPMCM receiver for the k
th

 

subcarrier and u
th

 WPMCM symbol as: 

 

 
1

', ' , ' , '

', ' ', ' ' ' , ' ', ' , , '

; ' 0; '

ˆ
N

u u u u u u

u k u k k k u k k k u k k k

u u u u k k k

a a a a


  

             (3.10) 



Synchronization Errors  Chapter 3 

 

38 |IRCTR 

In equation (3.10) the first term stands for attenuated and rotated useful signal. The second term 

gives the ISI due to symbols transmitted on the same subchannel and the third term denotes ICI 

measured over the whole frame. 

 

3.1.3 Numerical Results for Frequency Offset 

The performance of WPMCM with frequency offset has been investigated by means of computer 

simulations and compared to the well-known OFDM. The WPMCM transceiver is simulated 

with different standard wavelets that are available today, an enumeration of tested wavelets and 

their properties is shown in Table 2-1. To simplify the analysis, the channel is taken to be 

additive white Gaussian noise (AWGN) and no other distortions except frequency offset is 

introduced. QPSK is the modulation of choice and frame size is set to 100 multicarrier symbols, 

each consisting of 128 subcarriers. Furthermore, the simulated system has no error estimation or 

correction capabilities nor are guard intervals or guard bands used. Any deviation from these 

specifications will be explicitly stated. 

An overview of simulation set-up is given in table 3-1. 

 

 
Table 3-1: Simulation Setup Frequency Offset 

 WPMCM OFDM 

Number of Subcarriers 128 128 

Number of Multicarrier 

Symbols per Frame 

100 100 

Modulation QPSK QPSK 

Channel AWGN AWGN 

Oversampling Factor 1 1 

Guard Band - - 

Guard Interval - - 

Frequency Offset fε= 5-10% fε= 5-10% 

Phase Noise - - 

Time Offset - - 

 

 

Figure 3.1 illustrates the bit error rate (BER) of OFDM and WPMCM transceivers with relative 

frequency offset of 5% with regard to 
1
/T spacing. 

BER curves of different wavelets and OFDM show similar performance but due to frequency 

offset they all lie far from theoretical curve. The biorthogonal wavelet is the exception with a 

very poor performance compared to the other systems. This is due to the fact that the 

biorthogonal wavelet does not fulfill orthogonality condition (refer eq. 2.34) and therefore even 

without frequency offset it suffers from ICI and ISI.  
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Figure 3.1: BER for WPMCM with Different Wavelets and OFDM under Relative Frequency Offset of 5% 

 

 

In figure 3.2 the BER is shown for different values of relative frequency offset varying from 0 to 

40%. During this simulation we kept SNR constant at 16 dB.   

Again we can see that the performances of majority of the wavelets are very similar to that of 

OFDM. The biorthogonal wavelet has obviously a poor performance, while Haar wavelet 

slightly outperforms other wavelets and OFDM. The figure 3.2 implies that WPMCM and 

OFDM are both very sensitive to the frequency offset, since small variations of frequency offset 

degrade the system performance significantly. 

 

 
Figure 3.2: BER vs. Relative Frequency Offset for WPMCM and OFDM in AWGN Channel (SNR = 16 dB) 
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The figure 3.3 is obtained during simulation where we investigate the influence of the amount of 

subcarriers in combination with frequency offset on the BER. All WPMCM transceivers are now 

simulated with the same wavelet but with different number of subcarriers. We arbitrarily chose 

the Daubechies wavelet with 20 coefficients. Furthermore the relative frequency offset is set to 

10% and again we use AWGN channel. 

The degradation of WPMCM‘s BER in the presence of frequency offset is dependent on the 

number of subcarriers. This is straightforward when the absolute frequency offset is fixed [28], 

as for the more subcarriers in a given bandwidth the subcarrier spacing decreases and hence the 

relative frequency offset increases. However, in the figure 3.3 the relative frequency offset with 

respect to inter-carrier spacing is kept constant and there are still noticeable differences in the 

number of subcarriers used. The WPMCM with more subcarriers are slightly more susceptible to 

the frequency offset. This sensitivity decreases with increasing the number of subcarriers. From 

figure 3.3 we can also see that the performances of WPMCM with 64 and 128 subcarriers are 

almost identical for a given relative frequency offset. 

 

 
Figure 3.3: BER for WPMCM with Different Number of Subcarriers and Relative Frequency Offset of 10% 

 

Frequency offset in WPMCM does not only lead to ICI inside one symbol but across the whole 

frame. Therefore, it is important to see the effect of the frame size in combination with the 

frequency offset. These results are illustrated in figure 3.4. 

Figure 3.4 shows that the amount of multicarrier symbols in a frame does not affect the 

performance of WPMCM in the presence of frequency offset. The extraordinarily bad 

performance of WPMCM transceiver that uses frame size of just 5 multicarrier symbols is 

caused by the relatively long filter. We make use of periodic extension in order to deal with 

excessive length caused by the convolution. The problem occurs when the filter is longer than 

the frame. Accordingly the filtered data does not fit anymore in the available space and a part of 

the samples has to be discarded.  
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Figure 3.4: BER for WPMCM with Different Number of Multicarrier Symbols/Frame 

 and Relative Frequency Offset of 10% 

 

The influence of the filter‘s length in combination with the frequency offset on the BER is 

illustrated in figure 3.5. This simulation is performed for AWGN channel and the relative 

frequency offset of 10%. For a second time, we arbitrary choose the Daubechies wavelet but now 

we alter the number of filter‘s coefficients and fix the number of subcarriers to 128. In case of 

Daubechies wavelet the amount of wavelet zero moments is indisputably related to the length of 

the filter, and hence for each doubling of filters‘ coefficients we also double the number of 

wavelet zero moments.  

The BER curves shown in figure 3.5 are all superimposed one over another, suggesting that the 

filter‘s length and number of wavelets‘ zero moments have no noticeable influence on the system 

performance in the case of frequency offset. 

 
Figure 3.5: BER for WPMCM using Daubechies Wavelets of Different Lengths and Relative Frequency Offset of 10% 
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The effect of frequency misalignment between transmitter and receiver on the constellation 

points is depicted in the figure 3.6, for the relative frequency offset of 5%. In order to highlight 

the effect of frequency offset we assumed for the moment an ideal channel without any noise.  

The main consequence of the frequency offset is the scattering of the constellation points around 

reference positions due to interference. Other consequences are the anti-clockwise rotation of all 

constellation points and almost negligible attenuation.  

 
Figure 3.6: Constellation Points in the Presence of Relative Frequency Offset of 5% 

 

The last set of figures in this section shows the dispersion of the subcarriers energy due to a 

frequency offset. For clarity we limited the number of subcarriers to 16 and the frame size to 30 

multicarrier symbols. The channel is assumed to be ideal so that all exposed disturbance of the 

subcarriers is the consequence of the frequency offset. Figure 3.7 is obtained by transmission of 

just one non-zero pilot subcarrier while all other subcarriers in the frame are set to zero.  

In an ideal situation, without any frequency offset, the only subcarrier with non-zero value will 

be the pilot subcarrier regardless of which system we use: WPMCM or OFDM. However, the 

frequency offset result in loss of orthogonality and subcarriers begin to interfere one with 

another. In OFDM interference due to frequency offset is limited to inside the multicarrier 

symbol where ICI occurs. The other OFDM symbols in this case are not affected. The WPMCM, 

on the other hand, has overlapping symbols and an offset in frequency results in both ICI and ISI. 

In figure 3.7 we therefore observe that the energy of the pilot subcarrier located in the 5
th

 

subcarrier and 5
th

 symbol is spread almost across the whole frame. This is in agreement with the 

theoretical derivation carried in § 3.1.1 and § 3.1.2. 
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Figure 3.7: Received Subcarriers Spectral Energy in a Frame in Presence of the Frequency Offset;  

Up: WPMCM with Daubechies wavelet, Down: OFDM 

 

 

3.2 Phase Noise in Multicarrier Modulation 

The ideal local oscillator would have a single carrier with constant amplitude and frequency.  

However, the outputs of practical local oscillators are degraded due to factors such as thermal 

noise, causing the oscillator‘s central frequency to fluctuate a bit. This uncertainty in the actual 

frequency or the phase of the signal is referred to as phase noise.  

Multicarrier transmission is very vulnerable to phase noise since phase noise can cause the loss 

of orthogonality between subcarriers. The influence of the phase noise on multicarrier 

transmission can be divided into two parts:  

 

 

 Common Phase Error (CPE): Attenuates and rotates all constellation symbols by the 

same angle. 

 Interference: Contribution of all other subcarriers. 
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Phase noise can be represented as a parasitic phase modulation of the oscillator‘s signal. In the 

literature there are different models used for the phase noise. Majority of these models are 

described in terms of power spectral density (PSD). In ideal case the PSD of the local oscillator 

would be a single pulse (delta function) at the central frequency. Due to imperfections of the 

oscillator (fluctuations), the PSD of the practical oscillator is distributed over a wider frequency 

band with highest concentration around oscillator‘s central frequency. The single side band PSD 

of free running oscillator can be estimated by the Lorentzian function [50], like one illustrated in 

figure 3.8. 

 

 

 
Figure 3.8: Single Side Band PSD of the Oscillator Process 

 

 

In this thesis we model the phase noise as a zero mean white Gaussian process w with finite 

variance ζw
2
 [29]. The autocorrelation function of the phase noise is given by: 

 

 
2( ) ( )

w wR m m            (3.11) 

 

Using (3.11) we can express the power spectral density of phase noise as: 
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In order to get the desired phase noise bandwidth we perform low pass filtering with filter F . 

The PSD from (3.12) now becomes: 

  

 
2

( ) ( ) ( )
wbS f S f F f           (3.13) 
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By changing the corner frequency      of the filter used we can adjust the phase noise bandwidth. 

Low value of corner frequency results in narrow bandwidth while higher value spread the phase 

noise.  

In the last stage of the model we add phase noise floor to the signal. Similarly to the main phase 

noise contribution, the phase noise floor is also modeled as a zero mean Gaussian process with 

finite variance ζwn
2
, which is relatively low compared to ζw

2
. The phase noise floor is not 

correlated so that it spans the whole available bandwidth and has flat PSD. 

The total phase noise can now be expressed as a sum of bandwidth limited main noise 

contribution b and phase noise floor wn  as: 

 

 ( ) ( ) ( )b wnn n n             (3.14) 

 

Using the phase noise model given in (3.11–3.14) we can write the received signal R(n) that has 

been affected by phase noise and AWGN channel as: 

 

 ( )( ) ( ) ( )j nR n S n e w n          (3.15) 

 

Without loss of generality, we assume for the moment that w(n) = 0. 

3.2.1 Phase Noise in OFDM 

When an OFDM transceiver experience some phase noise, we can express the demodulated 

signal at the receiver‘s output as: 
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(3.16) 

 

We can simplify the analysis for phase noise by splitting the demultiplexed signal in useful part 

and disturbance part. In order to do this we will assume that phase noise is sufficiently small so 

that it can be approximated by [29]: 

 

 ( ) 1 ( )j ne j n            (3.17) 

 

Using approximation (3.17) we can express the demodulated OFDM signal (3.16) for the k
th

 

carrier as: 

cf 
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(3.18) 

 

The first component of (3.18) stands for correctly demodulated symbol and second term  

stands for disturbance which is added to the each subcarrier. Two distinct scenarios are possible 

with the phase noise: 

 

1. If k’ = k: Common Phase Error (CPE) 

The disturbance term from equation (3.18) can now be written as: 
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(3.19) 

 

The error, given in equation (3.19), causes the constellation points to be rotated by an 

angle Φ. This angle is common for all subcarriers so that all constellation points will be 

rotated by the same angle. Here, the rotation angle Φ is defined by the average phase 

noise given as: 
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The common phase error (CPE) is only dependent on low frequencies of the phase noise 

spectrum up to the frequency of the inter-carrier spacing.  

 

2. If k’ ≠ k: Inter Carrier Interference (ICI) 

The disturbance term from equation (3.18) can now be written as: 
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(3.21) 

 

The error in equation (3.21) consists of contribution from all other subcarriers in an 

OFDM symbol, and it is known as ICI. The magnitude of ICI as a result of phase noise is 

dependent only at the phase noise components that have high frequencies. In general, the 

phase noise that causes ICI contains frequencies which are larger than inter-carrier 

spacing frequency. 

I
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3.2.2 Phase Noise in WPMCM 

The detected data at the WPMCM receiver in presence of the phase noise can be written for the 

k
th

 subcarrier and u
th

 symbol as: 
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(3.22) 

 

Using same assumption like we have done for phase noise analysis in OFDM (3.17), we can 

approximate the equation (3.22) by: 
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(3.23) 

 

The first component of (3.23) stands for correctly demodulated symbol and second term  

stands for disturbance which is added to the each subcarrier. Similarly to the OFDM, we can also 

in WPMCM indicate two distinct situations in presence of phase noise, i.e.: 

 

1. If k’ = k and f’ = f: Common Phase Error (CPE) 

The disturbance term from equation (3.23) can now be written as: 
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(3.24) 

 

The equation (3.24) describes the rotation of constellation points by an angle Φ, which is 

common for all subcarriers. Rotation angle Φ is dependent on the average value of phase 

noise sequence and it is given in equation (3.20). 

 

 

I
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2. If k’ ≠ k or/and f’ ≠ f: Inter Carrier Interference and Inter Symbol Interference (ICI/ISI) 

The disturbance term from equation (3.23) can now be written as: 
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(3.25) 

 

The equation (3.25) stands for the interference, caused by the phase noise. In contrary to 

the OFDM in an AWGN channel, the phase noise in WPMCM raises the ICI and ISI 

levels. This is due to overlapping nature of the wavelet transform. 

 

Different frequency components of the phase noise have different impacts on the CPE and 

ICI/ISI terms. If the phase noise bandwidth is very concentrated near the central frequency the 

CPE term will dominate, but when the phase noise bandwidth is somewhat more spread the 

ICI/ISI term will soon take over. Using already defined model for phase noise (3.11 – 3.14), we 

can control the phase noise bandwidth by the corner frequency of the filter.  

 

3.2.3 Numerical Results for Phase Noise 

The performance degradation associated with phase noise has been evaluated by the computer 

simulations using almost identical set-up as for the frequency offset. More details on the set-up 

can be found in the § 3.1.3.  

An overview of simulation parameters is given in table 3-2. 

 

 
Table 3-2: Simulation Setup Phase Noise 

 WPMCM OFDM 

Number of Subcarriers 128 128 

Number of Multicarrier 

Symbols per Frame 

100 100 

Modulation QPSK QPSK 

Channel AWGN AWGN 

Oversampling Factor 1 1 

Guard Band - - 

Guard Interval - - 

Frequency Offset - - 

Phase Noise σw2= -10 dBc, σwn2= -20 dBc,  

0.1cf    

σw2= -10 dBc, σwn2= -20 dBc,  

0.1cf    

Time Offset - - 
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The different effects of the phase noise on the WPMCM and OFDM are best illustrated by the 

constellation points‘ diagram and the PSD of the phase noise. 

At the left side of the figure 3.9 we can see the PSD of the phase noise which has relatively low 

corner frequency. The dominant effect of such phase noise is the common phase error, which 

results in the rotation of all constellation points. 

The PSD of the phase noise with relatively high corner frequency is illustrated in the figure 3.10. 

Now the rotation behavior is not more visible but the interference between subcarriers is much 

more pronounced.  

 

 
Figure 3.9: Phase Noise (Narrow Band); Left: PSD, Right: WPMCM and OFDM Constellation Points 

 

 

 
Figure 3.10: Phase Noise (Wide Band); Left: PSD, Right: WPMCM and OFDM Constellation Points 

 

Both effects of the phase noise are important and depending on the system one or the other can 

be the limiting factor for the system performance. In the literature there are many adequate 

correction approaches available for the CPE [40] – [41] but the estimation and correction of the 

interference is much harder to realize. Therefore, we will limit the following part of this 

paragraph to the performance analysis of the WPMCM and OFDM in the presence of phase 

noise that causes interference.  In order to achieve this, we set the phase noise bandwidth to 10% 

of the total available bandwidth and the variance to -10 dBc (decibel relative to the carrier). The 

PSD of the phase noise will look similar to one illustrated at the left side of the figure 3.10. 
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Figure 3.11 shows the bit error rate (BER) of WPMCM and OFDM in presence of phase noise. 

The illustrated behaviors of BER curves are similar to each other with the exception of 

biorthogonal wavelet. The poor performance of biorthogonal wavelet, as already mentioned, is 

due to unfulfilled perfect reconstruction constraint. 

 
Figure 3.11: BER for WPMCM with Different Wavelets and OFDM under Phase Noise with Relative Bandwidth of 10% 

and variance of -10 dBc 

 

Figure 3.12 illustrates the effect of the phase noise variance on the BER. This figure is obtained 

using an AWGN channel with 16 dB SNR while phase noise variance is varied from -10 to 20 

dBc with step-size of 5 dBc. 

It is natural that the phase noise variance and the performance degradation are closely related. 

The sensitivity of WPMCM and OFDM to the variance of the phase noise is confirmed by figure 

3.12. 

 
Figure 3.12: BER vs. Phase Noise Variance for WPMCM and OFDM in AWGN Channel (SNR = 16 dB) 
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Figure 3.13 shows the performance of the WPMCM with phase noise when the number of 

subcarriers and symbols in the frame is altered. 

The simulation results haven‘t shown any essential connection between performance degradation 

and the number of subcarriers nor the number of symbols per frame. The results would be 

different if we set the corner-frequency to a smaller value, because the inter-carrier spacing 

depends on the number of subcarriers, for low number of subcarriers dominant CPE term will 

dominate while for high number of subcarriers the interference will be the major term [29], [51].  

 

 
Figure 3.13: BER for WPMCM with Phase Noise;  

Left: Different Number of Subcarriers, Right: Different Number of Symbols/Frame 

 

Figure 3.14 illustrates the influence of filter‘s length and number of zero wavelet moments in 

combination with the phase noise on the BER.  

Similar to the frequency offset there are no noticeable influences of the filter‘s length and 

number of wavelets‘ zero moments on the system performance when operating under a phase 

noise. 

 
Figure 3.14: BER for WPMCM using Daubechies Wavelets of Different Lengths under Influence of Phase Noise 
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For the completeness of the analysis we show in figure 3.15 the effect of the phase noise on the 

constellation points, but now for all discussed wavelets and OFDM. The clearly visible scattering 

of the constellation points around the reference positions is caused by the phase noise, as the 

channel is assumed to be ideal and no other disturbances were introduced. 

 

 

 
Figure 3.15: Constellation Points in the Presence of Phase Noise 

 

 

 

The spreading of subcarrier energy due to phase noise is illustrated in figure 3.16 for the similar 

simulation set-up as used in Figure 3.7. 

Phase noise result in loss of orthogonality and subcarriers begin to interfere with each other. In 

OFDM interference due to phase noise is limited to the multicarrier symbol where ICI occurs. 

The other OFDM symbols in this case are not affected. The WPMCM, on the other hand, has 

overlapping symbols and phase noise, besides ICI, also results in ISI. In figure 3.16 we therefore 

observe that energy of the pilot subcarrier located at the 5
th

 subcarrier and 5
th

 symbol is spread 

almost across the whole frame. This is in agreement with the theoretical derivation carried out in 

§ 3.2.1 and § 3.2.2.    
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Figure 3.16: Received Subcarriers Spectral Energy in a Frame in presence of Phase Noise;  

Up: WPMCM with Daubechies wavelet, Down: OFDM 

 

 

3.3 Time Offset in Multicarrier Modulation 

One of the major concerns of a multicarrier system is their vulnerability to timing 

synchronization errors, which occur when multi-carrier symbols are not perfectly aligned at the 

receiver. Because of the time offset samples outside a WPMCM or OFDM symbol get 

erroneously selected, while useful samples at the beginning or at the end of that particular 

symbol get discarded.  

The time synchronization error is modeled by shifting the received data samples by a time offset 

value tε to the left or right, depending on the sign of the tε. If we assume that transmitted signal is 

given by S(n), the received signal R(n) in presence of time synchronization error can be 

expressed as: 

 

 ( ( )) ( ) ( )R n t k S n w n           (3.26) 

 

Without loss of generality, we assume for the moment that w(n) = 0. 
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Time offset degrades the performances of multicarrier transceivers for the greatest part by 

introducing inter-symbol interference (ISI) and inter-carrier interference (ICI). WPMCM and 

OFDM share many similarities as both are orthogonal multicarrier systems but in case of timing 

error there is a major difference that causes different behaviors for each transmission scheme.  

The actual length of the WPMCM symbols is defined by the wavelet used and in general it is 

significantly longer than the OFDM symbol. This excessive length of WPMCM symbols does 

not cause frame size to grow by allowing symbols to overlap one another. In case of time offset 

this overlap of the symbols in WPMCM causes each symbol to interfere with several other 

symbols while in OFDM each symbol can only interfere with one adjacent symbol. 

The second important difference between the two transmission schemas is the use of the guard 

interval between the symbols. OFDM uses cyclic prefix that significantly improves its 

performance when time errors occur, assuming that time offset is not exceeding the size of cyclic 

prefix and that the direction of time shift is towards the cyclic prefix. The WPMCM, on the other 

hand, cannot benefit from such guard interval since the WPMCM symbols overlap one another.  

 

3.3.1 Time Offset in OFDM 

Cyclic prefix is effective and low complexity method to cope with dispersive channels and time 

synchronization errors in OFDM transceivers. OFDM is often accommodated with cyclic prefix 

but rarely with cyclic postfix. This means that we have two distinct situations that can occur 

under time synchronization errors, depending on the direction of the time offset. 

 

 Time synchronization error away from own cyclic prefix (to the right). 

 Time synchronization error towards own cyclic prefix (to the left). 

 

Time Offset Away From the Cyclic Prefix 

Figure 3.17 illustrates 3 OFDM symbols (u-1, u, u+1) where FFT window is misaligned to the 

right, i.e. away from the cyclic prefix. Each OFDM symbol consists of N data samples and an 

extension of NCP samples representing cyclic prefix. The FFT window in illustrated situation will 

contain N-tε data samples ((tε+1), (tε+2), … N) of the considered u
th

 OFDM symbol, missing first 

tε samples. Instead tε samples (1, 2, … tε) of the next (u+1)
th

 OFDM symbol will be erroneously 

selected. 

 

Samples m

OFDM Symbol
(u-1)

… …OFDM Symbol
(u+1)

CP
(u-1)

Ideal FFT Window

CP
(u)

CP 
(u+1)

FFT Window with timing offset

1   …    NCP

1      …    N

OFDM Symbol
(u)

Timing Error tε samples

 
Figure 3.17: Timing Offset Away from Cyclic Prefix (to the right) 
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An OFDM system that is affected by timing error and where samples of neighboring symbol are 

wrongly selected experience severe degradation of the performance. The demodulated OFDM 

signal after FFT can be written as: 
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      (3.27) 

 

The first component of equation (3.27) represents useful signal which is attenuated and phase 

shifted by a term proportional to subcarrier index k’. The second component of (3.27) gives ICI 

and the third component stands for ISI with next symbol. 

 

Time Offset Towards the Cyclic Prefix 

The other situation occurs when we have time offset towards the symbols own cyclic prefix, i.e. 

to the left. Figure 3.18 illustrates such a scenario. In this case FFT window consists of first N-tε 

samples (1, 2, … (N- tε)) of the considered u
th

 OFDM symbol and the last tε samples of the own 

cyclic prefix. We assume for the convenience that tε < NCP. 

Timing Error tε samples

OFDM Symbol
(u-1)

… …OFDM Symbol
(u+1)

CP
(u-1)

Ideal FFT Window

OFDM Symbol
(u)

CP
(u)

CP 
(u+1)

FFT Window with timing offset

1   …    NCP

1             …   N
Samples m

 
Figure 3.18: Timing Offset Towards Cyclic Prefix (to the left) 

 

The demodulated OFDM signal affected by time offset in the direction of symbol‘s own cyclic 

prefix is given in equation (3.28), for case when tε < NCP. 
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Thanks to the cyclic prefix the orthogonality is preserved and ISI and ICI terms have 

disappeared. The timing error towards the cyclic prefix results therefore in pure phase shift.  

The common consequence of time-offset in OFDM, regardless of offset direction, is the 

introduction of phase shift. The phase shift in equations (3.27) and (3.28) is linearly proportional 
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to the subcarrier index and the value of time offset. The rotation angle Φt(k) due to timing error is 

given by: 

 

 
2

( )t

kt
k

N


           (3.29) 

 

The subcarriers with higher frequencies experience greater phase shifts. In case of coherent 

QPSK modulation even the small timing offset such as tε = 1 results in a phase rotation of 

constellation symbols in order of 0 < Φt(k) < 2π. The subcarrier with the highest frequency will 

therefore experience a phase shift of almost 360 degrees. If this phase shift is not corrected the 

majority of the detected data would be corrupted even without ICI or ISI. 

The phase rotation due to timing error can be usually revised by pilot-symbol-aided channel 

estimation techniques or by use of differential constellation mapping [9], [42], [44]. In this thesis 

we employ differential quadrature phase shift keying (DQPSK) in order to overcome this 

problem. In the DQPSK scheme the data is modulated on the basis of phase difference between 

two consecutive constellation symbols, thereby ensuring that adjacent subcarriers experience a 

phase shift which is independent of the carrier position. The phase rotation of constellation point 

k is determined by applying a phase shift of ∆Φ to the previous constellation symbol k-1. The 

difference in phase shift ∆Φ is determined by the unmodulated data value assigned to subcarrier 

k, in case of DQPSK phase shift can be written as: 
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The phase difference between two consecutive DQPSK constellation symbols under timing 

errors becomes: 

  

 

2

, 1

b

t
j

N

k k e




 
  
 

           (3.31) 

 

Using DQPSK modulation in presence of timing error therefore results in a phase shift that is 

depending on the value of the time offset but not anymore on the value of subcarrier index k. The 

rotation angle Φt(k) due to timing error becomes: 
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Figure 3.19 illustrates the rotations of constellation points for received OFDM signal using 

QPSK and DQPSK modulation. We have assumed here an ideal channel and a time offset of  

tε = 1 samples towards the cyclic prefix. 
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Figure 3.19: OFDM Received Constellation Points with Timing Error of tε=1 and an Ideal Channel; 

Left: QPSK, Right: DQPSK π/4 

 

DQPSK modulation is a simple solution to overcome the problem of phase shift under time 

synchronization errors. However, DQPSK modulation requires about 2 to 3 dB higher SNR when 

compared to coherent QPSK to obtain the same BER performance in AWGN channel. 

 

3.3.2 Time Offset in WPMCM 

The WPMCM transceivers are not employing guard intervals and therefore the direction of time 

offset is inconsequential. The demodulated signal under influence of time offset tε can be written 

as: 
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(3.33) 

 

In order to shorten the derivation we are going to use different notation, first we define: 

 

 2 2

, ' '

, ' log( ) log( )
( ) ( ) ( ' )u u k k

k k N N
n

t n uN u N n t            (3.34) 

 

The equation (3.34) represents the autocorrelation and the cross-correlation of the WPMCM 

waveforms, depending on subcarrier index k. When k = k’ the two subcarrier waveforms are 

time-reversed images of each other and equation (3.34) gives the autocorrelation sequence of the 

waveform k. In the other cases when k ≠ k’ the two waveforms correspond to different 

subcarriers and equation (3.34) stands for the cross-correlation between waveforms k and k’.  

Using equation (3.33) and (3.34) we can now express the output of the WPMCM receiver for the 

k
th

 subcarrier and u
th

 WPMCM symbol as: 
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In equation (3.35) the first term stands for attenuated useful signal. The second term gives the ISI 

due to symbols transmitted on the same subchannel and the third term denotes ICI measured over 

the whole frame. 

The received constellation points of WPMCM under time synchronization errors don‘t 

experience linear phase rotation, opposed to OFDM where rotation of constellation points is 

proportional to subcarrier index. The WPMCM signal in presence of timing error will however 

be attenuated and it will suffer from ISI and ICI.  

 

3.3.3 Numerical Results for Time Offset 

The performances of WPMCM and OFDM in presence of timing synchronization errors are 

investigated by means of simulations. The time offset is modeled as a discrete uniform 

distribution between -2 and 2 samples, i.e.  2, 1,0,1,2t    . 

The designed parameters deviate to some extent from these used for frequency offset and phase 

noise. First of all, DQPSK modulation scheme is used instead of QPSK modulation in order to 

prevent OFDM constellation points to experience to large phase shifts. Secondly, in OFDM we 

use cyclic prefix of 16 samples that is placed in front of OFDM symbols, in WPMCM we don‘t 

use any guard interval. Due to utilization of cyclic prefix the spectral efficiency of OFDM is 

decreased by 12.5% while spectral efficiency of WPMCM has remained unchanged. Finally, we 

employ the oversampling in order to magnify the difference in performance between various 

systems and wavelets. 

An overview of simulation parameters is given in table 3-3. 

 
Table 3-3: Simulation Setup Time Synchronization Error 

 WPMCM OFDM 

Number of Subcarriers 128 128 

Number of Multicarrier 

Symbols per Frame 

100 100 

Modulation DQPSK DQPSK 

Channel AWGN AWGN 

Oversampling Factor 15 15 

Guard Band - - 

Guard Interval - CP (length: 16) 

Frequency Offset - - 

Phase Noise - - 

Time Offset tε= 2 tε= 2 

Figure 3.20 illustrates the bit error rates (BER) of OFDM and WPMCM transceivers over 

AWGN channel for uniformly distributed timing offset of tε = 2 samples. 
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The OFDM system performs much better under time synchronization errors when compared to 

the WPMCM, partly due to exploit of cyclic prefix and cancellation of phase rotation by DQPSK 

modulation scheme. The WPMCM cannot profit from these revisions and therefore show poor 

performance in presence of timing error. Once again biorthogonal wavelet has highest BER due 

to unfulfilled perfect reconstruction condition. 

 

 

 
Figure 3.20: BER for WPMCM with Different Wavelets and OFDM under Time Synchronization Errors (tε=2) 

 

 

 

In figure 3.21 the BER is shown for different values of time offset varying from -15 to 12 

samples. The time offset in this simulation is modeled as one-sided uniform distribution in order 

to highlight the importance of cyclic prefix for OFDM. The value of time offset is given by 

 0, ,t t    for timing error to the right and by  , ,0t t     for the timing error to the left. 

During this simulation we kept SNR constant at 10 dB.   

The direction of time offset is inconsequential for WPMCM systems as can be seen at figure 

3.21. The BER curves of WPMCM are almost perfect mirror images with respect to the origin. 

This does not hold for OFDM, since we can see clearly that the negative timing offset (towards 

the own cyclic prefix) result in much lower BER when compared to the positive timing offsets 

(away from the own cyclic prefix). Due to use of cyclic prefix the misalignment of FFT window 

between the boundaries of extended symbols does not cause interference. However when time 

offset exceeds the length of cyclic prefix the ICI and ISI terms reappear.  
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Figure 3.21: BER vs. Time Offset for WPMCM and OFDM in AWGN Channel (SNR = 10 dB) 

 

 

Figure 3.22 shows the performance of the WPMCM in presence of time synchronization error 

when the number of subcarriers and symbols in the frame is altered. 

The left side of figure 3.22 reveals that under timing error the performance of WPMCM is 

depending on the number of subcarriers. For increasing number of WPMCM subcarriers the 

BER significantly decreases. We recall from the first chapter that the symbol duration of 

multicarrier system is proportional to the number of subcarrier used. Therefore, larger number of 

subcarriers means longer symbol duration and hence smaller relative time offset with respect to 

multicarrier symbol length. 

The simulation results performed for different number of WPMCM symbols haven‘t shown any 

essential connection between BER performance and the number of symbols, when we assume 

that the number of symbols in a frame is exceeding the filter‘s length.  

 

 
Figure 3.22: BER for WPMCM with Timing Error;  

Left: Different Number of Subcarriers, Right: Different Number of Symbols 
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Figure 3.23 illustrates the influence of filter‘s length and number of zero wavelet moments in 

combination with timing error on the BER.  

Daubechies filter with 6 coefficients and 3 wavelet zero moments has slightly higher BER when 

compared to longer filters from the same family. However, when length of the filters is further 

increased the BER curves become closely spaced and therefore we can conclude that there is no 

significant relation between the BER and filter‘s length in presence of timing errors. 

 

 
Figure 3.23: BER for WPMCM using Daubechies Wavelets of Different Lengths under Influence of Timing Error 

 

The effect of time synchronization error on the constellation points is depicted in the figure 3.24. 

In order to highlight the effect of time synchronization error we assumed for the moment an ideal 

channel without any noise.  

The main consequence of the time offset is the scattering of the constellation points around 

reference positions due to interference. OFDM has more concentrated constellation points than 

any tested WPMCM system, which indicates that the signal to interference ratio (SIR) of OFDM 

is higher than SIR of WPMCM under timing errors.  

 

Figure 3.25 illustrates the spreading of subcarrier energy due to time synchronization error for 

the similar simulation set-up as used in Figure 3.7. 

The timing error in OFDM results in ISI between successive symbols and ICI. If the cyclic prefix 

is used the ICI and ISI terms are cancelled for time offset towards the symbols own cyclic prefix, 

i.e. time offset to the left. This can be also seen at figure 3.25 where energy of the pilot symbol is 

spread into the subsequent symbol (ISI) but not into the previous symbol. Furthermore, energy of 

pilot subcarrier is also spread across the other subcarriers located in the same symbol (ICI).  

In case of WPMCM the energy of single pilot is spread across a number of symbols, where 

subcarriers close to the pilot subcarrier contain the greatest part of interfering energy, regardless 

of the symbol index.  



Synchronization Errors  Chapter 3 

 

62 |IRCTR 

 
Figure 3.24: Constellation Points in the Presence of Timing Error 

 
Figure 3.25: Received Subcarriers Spectral Energy in a Frame in presence of Timing Error;  

Up: WPMCM with Daubechies wavelet, Down: OFDM 
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3.4 Conclusion 

In this chapter we have studied the effects of frequency offset, phase noise and time 

synchronization error on WPMCM and OFDM transceivers. The frequency offset and phase 

noise lead to the loss of orthogonality and subcarriers begin to interfere with each other. In 

OFDM interference is limited to ICI but in WPMCM the frequency offset and phase noise cause 

ICI as well as ISI. The effect of time synchronization error was also discussed. Akin to OFDM, 

we have found that timing error in WPMCM contain two components: ICI and ISI. There are 

however significant differences between both schemes in presence of timing error. Firstly, the 

ISI in OFDM arises only between successive symbols while in WPMCM a number of symbols 

interfere one with another. Secondly, the timing error in OFDM results in rotation of 

constellation symbols that is proportional to subcarrier frequency but in WPMCM the rotation 

behavior is absent. 

The effects of frequency offset, phase noise and time synchronization errors were also examined 

by the simulations studies. Several well-known wavelets such as Daubechies, Symlets, discrete 

Meyer, Coiflet and biorthogonal wavelet were applied and studied. The sensitivity of WPMCM 

and OFDM are quite similar in presence of frequency offset and phase noise. However, time 

synchronization error is found to be a major drawback of WPMCM transceiver. The simulations 

have shown that OFDM has much lower BER under timing errors when compared to WPMCM. 

This is partially caused due to use of cyclic prefix in OFDM and utilization of differential 

modulation scheme. The wavelets used during these simulations are standard wavelets that were 

developed for other applications such as image processing or compression, and hence not 

possibly suitable for telecommunication purposes. Therefore, in the next chapter we will present 

the design process which we have established to design new wavelets that minimize timing-error 

interference.  
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4 

4. Optimal Wavelet Design 

he WPMCM transceivers are exceptionally sensitive and vulnerable to the time 

synchronization errors, which cause inter symbol and inter carrier interference. The 

conventional communication systems, like OFDM, exploit cyclic prefix or guard 

intervals to greatly mitigate the effect of the timing error. In the previous chapters we have seen 

that the WPMCM‘s subcarriers overlap in both: time and frequency domain. Therefore use of 

simple guard interval in WPMCM cannot prevent ICI and ISI from occurring when symbols are 

not correctly aligned at the receiver. Fortunately, WPMCM provides other benefits such as 

freedom to choose the shape and properties of the waveforms. It is well known that the attributes 

of a multicarrier modulation system greatly depends on the set of waveforms it uses. In 

WPMCM transceivers these waveforms are determined by the underlying filter coefficients used. 

By adapting the filter coefficients we can conceive the WPMCM transceiver that best suits an 

engineering requirement [52] – [54]. In this chapter the wavelet design for telecommunications 

application is proposed using modern optimization-based techniques. This method is used to 

design a new filter, which minimize the energy of the timing error interference. 

 

The design of a wavelet system is bounded by multiple constraints. Besides the design objectives 

there are other constraints on wavelet bases that should be considered in order to guarantee that 

the designed wavelet is valid. The most important constraints are listed below ordered by their 

significance: 

 

T 

It is an experience like no other experience I can 

describe, the best thing that can happen to a 

scientist, realising that something that‘s 

happened in his or her mind exactly corresponds 

to something that happens in nature. It‘s 

startling every time it occurs. One is surprised 

that a construct of one‘s own mind can actually 

be realised in the honest to goodness world out 

there. A great shock and a great joy. 

— Leo Kadanoff 
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 Wavelet Existence and Compact Support 

 Orthonormality 

 K-Regularity 

 

At initial stage we have a number of degrees of freedom that can be used to design a wavelet 

system. Fulfillment of each constraint consumes one or more degrees of freedom leaving less 

space for other criteria. Therefore the constraints should be carefully selected and deliberated 

according to the design specifications. 

 

The remainder of this chapter is organized as follows. Section 4.1 describes the criteria for the 

two-channel filter bank. Time offset in WPMCM is discussed in § 4.2 where the objective 

function is derived. In § 4.3 the optimization problem is formulated and in § 4.4 the numerical 

results of optimal filter under the timing error are shown. Finally brief conclusion of this chapter 

is given in § 4.5. 

 

4.1 Filter Criteria for Two-Channel Filter Bank 

Multiresolution analysis of wavelet theory allows construction of compactly supported 

orthonormal waveletes by succesively iterating discrete two-band paraunitary filter banks. Time 

and frequency limited wavelet and scaling function can hence be represented by discrete half-

band low and high-pass filters with filter coefficients h(n) and g(n) respectively.  

The number of channels in WPMCM is determined by the number of iterations to be performed 

of the two-channel filter bank. Regardless of the desired number of channels the WPMCM bases 

can be derived from only ‗one‘ fundamental filter. This is due to strict relationship that has to be 

fulfilled between the impulse responses of wavelet and scaling filter in a two channel filter bank. 

The wavelet filter is obtained by shifting the spectrum of scaling filter by π, which is equivalent 

to multiplication of h(n) by (-1)
n
 in time domain. Furthermore, in order to guarantee the 

orthogonality between filters the coefficients are reversed. In frequency domain the responses of 

the two filters appear as the mirror images of each other with respect to the mirror-frequency of 

½ π. Equations (4.1) and (4.2) show the relationship between the wavelet and scaling filters. 

 

( ) ( 1) ( 1 )ng n h L n             (4.1) 

  
1( ) ( 1) ( 1 )nh n g L n            (4.2) 

 

In equations (4.1) and (4.2) L denotes the length of the filters. 

 

The transfer function of synthesis filtering followed by analysis filtering will besides the useful 

signal also contain an aliasing term. In order to cancel undesired aliasing, the filters in synthesis 
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filter bank have to be chosen according to filters present in analysis filter bank. In Fourier 

domain we can express the relationship between the filters in two filter banks as: 

 

1 0( ) ( )H G             (4.3) 

 

1 0( ) ( )G H              (4.4) 

 

In equations (4.3) and (4.4) 0G  and 0H  belong to analysis filter bank while 1G  and 1H  belong to 

synthesis filter bank. 

 

Because of the relationships between the scaling- and wavelet filter as well as between the 

analysis and synthesis filter banks, the design of only one fundamental filter is required. In the 

following part of this chapter we will therefore discuss the design of scaling filter. Once the 

scaling filter coefficients are obtained we can calculate the wavelet filter coefficients using 

formula (4.1) and synthesis filters using equations (4.3) and (4.4). 

 

4.1.1 Wavelet Existence and Compact Support 

The coefficients outside the defined region are set to zero so that the filter banks used to derive 

wavelets are of the finite length. Other basic requirement for discrete wavelet system is 

fulfilment of the wavelet existence condition: 

 

 
1

0

( ) 2
L

n

h n




           (4.5) 

 

Equation (4.5) represents the normalization of the scaling filter which implies that not just any 

set of coefficients will support a solution. In order for coefficients h(n) to be valid scaling filter 

they have to satisfy wavelet existence condition. The foundations of this property are given in the 

Appendix A.  

The equality (4.5) imposes one linear constraint on the filter coefficients h(n). 

 

4.1.2 Orthonormality or Paraunitary Condition 

The paraunitary condition is essential for many reasons. Firstly, it is a prerequisite for generating 

orthonormal wavelets. Secondly, it automatically ensures perfect reconstruction of the 

decomposed signal i.e., the original signal can be reconstructed without amplitude or phase or 

aliasing distortion. A rational transfer function A(z) is said to be paraunitary when it obeys the 

relation Ã(z)A(z) = 1. Here Ã(z) is the paraconjugate of A(z) and is given by Ã(z) = A
*
(z

-1
), where 

the superscript * denotes the conjugation of the coefficients. In order to satisfy the paraunitary 

constraint the scaling filter coefficients need to be self-orthogonal at even shift, that is: 
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In equation (4.6) δ denotes the Kronecker delta function. The origin of this property is given in 

the Appendix B. 

The orthogonality condition imposes in total 
L
/2 non-linear constraints on the filter coefficients 

h(n). Together, properties (4.5) and (4.6) are necessary and sufficient conditions for the wavelets 

to be realized leaving 
L
/2-1 degrees of freedom for other design criteria. However, other 

conditions might be essential to guarantee the generation of regular and well shaped wavelets. 

Quite often the designed wavelets can be irregular or even fractal shaped. In order to ensure 

smoothness or regularity of the wavelets the additional condition of K-regularity will be defined.  

 

4.1.3 K-Regularity/Vanishing Moments 

The K-regularity property was briefly introduced in § 2.4. This property gives a rough measure 

of the wavelet‘s smoothness. The regularity condition requires that the wavelet is locally smooth 

and concentrated in both, the time and frequency domains. It is normally quantified by the 

number of times a wavelet is continuously differentiable. The simplest regularity condition is the 

―flatness‖ constraint which is stated on the low pass filter. A LPF is said to satisfy K
th

 order 

flatness if its transfer function H(z) contains K zeroes located at the Nyquist frequency  

(z = -1 or ω = π). For some Q(z) with no poles or zeros at (z = -1) this can be written as [10]: 
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Parameter K in equation (4.7) is called the regularity order. In equations (4.7) and (4.8) the 

functions H(z) and Q(z) stand for the z-transforms of scaling and q-filter, respectively. 

 

The number of zeros of the transfer function is related to the fact that the differentiability of a 

function is tied to how fast its Fourier transform magnitude drops off as frequency goes to 

infinity. Because H(z) is a low-pass and by letting it have high order zero at Nyquist frequency, 

the Fourier transform of the scaling function should drop off rapidly and therefore scaling 
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function should be smooth. The Fourier transforms of the scaling function and filter are given by 

equations (4.9) and (4.10) respectively. 

 

 
1

1
( ) (0)

22
k

k

H







   
     

   
        (4.9) 

 

 ( ) ( ) j n

n

H h n e            (4.10) 

 

The k
th

 derivative of H(ω) evaluated at Nyquist frequency can be written as: 

 

  ( ) (2 ) ( 1) ( )k k k n

n

H j n h n          (4.11) 

 

Therefore in time domain we can impose regularity condition (4.7) by: 
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Each wavelet has at least regularity order of 1 due to fulfillment of wavelet existence condition. 

By setting K > 1 we can impose extra regularity but because of previous constraints the 

regularity order for a filter of length L is limited by: 

 

 1
2

L
K            (4.13) 

 

K-Regularity condition requires additional K-1 constraints on filter coefficients h[n]. An extreme 

case exist where all remaining degrees of freedom are used to design maximally regular filters 

for a given filter length. Such filters are designed by [10]. 

 

4.2 Designing Best Bases to Tackle Time Synchronizations Errors 

The degrees of freedom that remain after satisfying wavelet existence (4.5), orthonormality (4.6) 

and K-regularity (4.12) constraints can be used to design a scaling filter, which has minimal 

timing error interference. 

The information carried by the waveforms that overlap one another can only be correctly 

decoded if the used waveforms have large distances in relation to each other, i.e. the cross-

correlation between the waveforms is as small as possible. In WPMCM this is achieved through 

the orthogonality, where generated waveforms form an orthogonal set. Therefore, in disturbance 

free environment the cross-correlations of WPMCM waveforms equals zero and perfect 
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reconstruction is possible despite the time and frequency overlap. The timing error on the other 

hand leads to the loss of the orthogonality between the waveforms and consequently they begin 

to interfere one with another. The inter symbol and inter carrier interference can be expressed for 

a timing error tε as: 

 

 2 2

, ' '

, ' log( ) log( )
'

( ) ( ) ( ' )u u k k

k k N N
k k n

t n uN u N n t  


          (4.14) 

 

For tε = 0 and k ≠ k‘ the value of equation (4.14) will equal 0 due to orthogonality property of the 

waveforms (2.34). However, in presence of timing error the orthogonality property does not hold 

anymore and each waveform will be affected by the joint contribution of other waveforms. In  

§ 3.3.2 an exhaustive treatment of the subject can be found. 

The objective function for minimizing the interference energy in presence of timing error can 

now be written as: 
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The waveforms in WPMCM are created by the tree structured filter bank where the end terminals 

of the tree correspond to the final waveforms used. Using Parseval‘s theorem of energy 

conservation (Appendix C) it can be easily confirmed that the total energy at each level is equal, 

regardless of the tree‘s depth. Therefore, minimizing the interfering energy at the origin of the 

tree will automatically lead to the decrease of total interfering energy at the higher tree levels. 

This property allows us to consider only elementary two-channel filter bank in our design 

process. The two-channel filter bank consists from the scaling and wavelet filters, which are 

unambiguously related to the WPMCM‘s waveforms through equation (2.33).  Therefore, we 

should be able to minimize deleterious effects of time synchronization errors in WPMCM by 

minimizing the following objective function: 
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      (4.16) 

 

4.3 Problem Formulation 

The design problem of minimizing the interference energy due to timing error can now be 

defined as an optimization problem with objective function (4.16) and constraints (4.5), (4.6) and 

(4.12), i.e. 
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   (4.18) 

The objective function (4.17) as majority of the constraints in (4.18) is non-linear. Therefore, the 

optimization problem as given above can only be solved by general purpose solvers. The main 

disadvantage of such solvers is that they are susceptible to being trapped by the local minima. In 

order to overcome this difficulty, some authors have suggested multiple starting point techniques 

or branch-and-bound method [55]. Nevertheless, general purpose algorithms cannot guarantee 

that the found result is a global minimum and furthermore when number of constraints increases 

these algorithms often fail to provide a valid solution. 

The optimization problems with convex objective function and constraints can be solved much 

more efficiently by the semidefinite programming. In the next part of this paragraph we will 

briefly discuss semidefinite programming and we will attempt to express our problem in the 

convex form. 

 

4.3.1 SemiDefinite Programing  

SemiDefinite Programming (SDP) is a subfield of convex optimization, which can efficiently 

exploit interior point methods to find an optimal solution [56], [57]. The main advantages of 

convex optimization methods are that they always achieve global minimum without being 

trapped in the local minima, and that they can determine explicitly the feasibility of a given set of 

constraints. SDP algorithms can be used to solve linear, quadratic and semidefinite problems, 

which all are part of convex optimization problems. 

The optimization problems in SDP can be described as minimization of an objective linear 

function over the intersection of the semidefinite cone with an affine space. This cone is shaped 

by constraints that form a set of positive symmetric semidefinite matrices, called Linear Matrix 

Inequality (LMI) constraint [58]. LMI gives boundaries of feasible region in which SDP solver 

tries to find an optimal solution for the objective function or prove infeasibility. This region is 

generally non-smooth and non-linear but it has to be convex in order to be solvable by SDP [59] 

– [62].  

Some set C is said to be convex if the line segment between any two arbitrary selected points in 

C lies also in C. In case of points X1 and X2 we can show convexity by: 

 

1 2 1 2(1 ) , 0 1X X C for X X C and           (4.19) 
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The example of convex and non-convex set is illustrated by figure 4.1. For each two points in 

pentagon the line segment lies in the defined set and therefore blue figure (left) is convex. The 

red figure (right) is obviously not convex since two points X1 and X2 are within the set but the 

line which connects them is partially not contained in the set.  

 

 
Figure 4.1: Convexity; Left: Convex Set, Right: Non-Convex Set 

 

The minimization of timing error interference is unfortunately not a convex optimization 

problem. Therefore, in order to use SDP solvers the original non-convex problem has to be 

revised first [63].  

 

4.3.2 Conversion of Non-Convex Problem 

The optimization problem, stated in (4.17) and (4.18), can be converted into a convex form by 

rewriting the objective and constraints as convex functions of the scaling filter‘s autocorrelation 

[64] – [66]. The autocorrelation sequence rh(n) of scaling filter h(m) is given by:  
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4.3.2.1 Wavelet Existence and Compact Support  

The constraint that ensures wavelet existence and compact support has been given earlier by 

equation (4.5). The same constraint can be expressed in terms of autocorrelation sequence rh(n) 

by imposing following condition: 
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Because autocorrelation is a symmetric function we only need to consider positive indices n. 

Using the properties of symmetry and orthonormality condition at instance n = 0, we can rewrite 

equation (4.21) as: 
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4.3.2.2 Orthonormality or Paraunitary Condition 

The double shift orthogonality condition (4.6) can also be easily expressed in terms of rh(n), 

making use of symmetry property we can express the orthogonality constraint as: 
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In contradiction to original orthogonality constraint (4.6) which was not convex, the new 

constraint (4.23) is composed from a set of linear equalities and is therefore convex.  

 

4.3.2.3 K-Regularity/Vanishing Moments 

The K-Regularity constraint (4.12) requires from transfer function H(z) to have K zeros at 

Nyquist frequency (ω = π). In terms of autocorrelation function this is equivalent to having twice 

as much zeros at frequency ω = π, since the corresponding frequency response is given by: 
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Making again use of symmetry property we can omit n < 0 indices and therefore we only need to 

impose K-1 regularity constraints on rh(n): 
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4.3.2.4 Spectral Factorization 

The reformulated optimization problem consists of the objective function and the constraints that 

are functions of sequence rh(n) and therefore the solution to such problem is given in the form of 

optimal autocorrelation. In order to obtain optimal filter we need to find those filter coefficients 

that correspond to the optimal autocorrelation. There are infinitely many time domain sequences 

which share the same autocorrelation but using spectral factorization algorithms we are able to 
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extract the unique minimum-phase time domain coefficients. The spectral factorization of an 

autocorrelation sequence rh(n) can be performed as long as the log-function of Fourier transform 

Rh(ω) remains in , see Appendix D for more detail about Kolmogorov spectral factorization 

algorithm. Therefore, spectral factorization requires an additional constraint: 
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Constraint (4.26) contains an infinite number of linear inequalities and needs therefore to be 

sampled before it can be applied to an optimization program. This can be achieved by replacing 

continuous variable ω by a discrete variable ωi = 
iπ

/d, which is defined on a finite set i = [0,…,d]. 

The value for d should be set sufficiently large, typically 15n. The constraint (4.26) can hence be 

approximated by: 
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4.3.2.5 Objective Function 

The original objective is a non-convex function of the filters coefficients h(n) and needs to be 

translated into autocorrelation domain to fit the new perspective. The autocorrelation function of 

scaling filter is given by equation (4.20) and correspondingly the autocorrelation of wavelet filter 

can be expressed as: 
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The sum of squares of a cross-correlation between two functions equals the inner product of the 

autocorrelation sequences of these two functions, see Appendix E for the prove. This property 

together with orthogonality limitation (4.23) is used to rewrite (4.16) in terms of rh(n). The 

equation (4.30) shows the new objective where only the right side of autocorrelation and cross-

correlation is taken into account. 
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      (4.30) 

 

The original non-convex problem given by (4.17) and (4.18) can be transformed into a convex 

optimization problem by using identities (4.22), (4.23), (4.25) and (4.30), i.e., 
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   (4.32) 

 

4.4 Numerical Results 

The optimal filter in accordance with (4.31) and (4.32) can be found using semi definite 

programming (SDP). Today there exist several generic SDP solvers under which SeDuMi [67]. 

SeDuMi is an additional Matlab
®
 package that can be used for linear, quadratic and semidefinite 

programming. Normally it requires a problem to be described in a primal standard form but with 

Yalmip toolbox [68] the optimization problems can be directly expressed in a higher level 

language. 

We have developed a filter optimization program that incorporates most of the available 

optimization routines for Matlab
®
 and which relies on Yalmip to translate the problem into the 

standard form. 

In the filter design discussed here we have selected SeDuMi optimization algorithm and we have 

set the length of the optimal filter to 20 coefficients. However, it is obviously possible to design 
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longer or shorter filters. Another parameter that can be chosen, besides the length of a filter, is 

the regularity. Regularity has to be equal or larger than 1 ensuring that wavelet existence 

constraint is satisfied, while it may not exceed 
L
/2 in order to remain in feasible region. If the 

selected value for regularity is close to the upper limit, less degrees of freedom will be left for the 

optimization of the objective function. On the other hand imposing small regularity can result in 

highly irregular wavelets. Here we have chosen for regularity-order 5, which is a compromise 

between optimization space and wavelet regularity. 

The GUI of the wavelet filter design program is illustrated in figure 4.2 

 
Figure 4.2: Wavelet Packet Filter Design Program 

 

Table 4-1 shows optimal wavelet at the side of ‗standard‘ wavelets, which have been also 

discussed in previous chapters. It is clear that the value of the objective function for optimal 

wavelet is considerably reduced in comparison with ‗standard‘ wavelets. 

 
Table 4-1: Wavelet Specification 

 

Name 

 

Length 

 

K-Regularity  
2

2

0

(2 1)

N

h

n

r n


  

Haar 2 1 - 

Daubechies 20 10 0.41955 

Symlets 20 10 0.41955 

Discrete Meyer 102 1 0.45722 

Coiflet 24 4 0.41343 

Optimal 20 5 0.36814 

 

The impulse response of the designed optimal filter is illustrated in figure 4.3 and numerical 

values of filter coefficients are given in table 4-2. Although the optimal filter is designed in 

autocorrelation domain, shown minimum-phase time domain coefficients satisfy all original 

constraints (4.5), (4.6) and (4.12) 
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Figure 4.3: Impulse Response of the Optimal LPF with 20 coefficients 

 
Table 4-2: Optimal Filter Coefficients 

0.119881851613898 0.498287367999060 0.660946808777660 0.203191803677134 

-0.0291516906888238 0.159448121842196 -0.144908809151642 -0.301681615791117 
0.206305798368833 0.205999004857997 0.165410385138750- -0.0566148032177797 

0.0712828626076334 -0.00958254794419582 -0.00839405084469072 0.00912479119304040 

-0.00498653232060994 -0.000694408819538431 0.00154092796305564 -0.000370932610232259 

 

The wavelet and scaling function corresponding to the optimal filter are illustrated in figure 4.4. 

It is quite clear that the scaling function and the wavelet function of optimal filter are not as 

smooth as scaling and wavelet function of Daubechies filters with the same number of 

coefficients, (refer Figure 2.18). This is because Daubechies filter has twice as high regularity-

order when compared to the optimal filter. In optimal filter remaining degrees of freedom, which 

haven‘t been used for K-regularity constraint, are exploited for minimization of the objective 

function. 

 
Figure 4.4: Optimal Filter; Left: Scaling Function, Right: Wavelet Function 

The frequency response of the optimal filter is illustrated in figure 4.5. 
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The optimization process has compromised the frequency selectivity of the designed filter to 

some extent. However, more frequency selective filters can be designed by increasing the filter‘s 

length in the optimization program. 

 

 
Figure 4.5: Frequency Response in dB of the Optimal Filter 

 

The performance of optimal wavelet in presence of timing synchronization errors is examined by 

means of computer simulations. For the purpose of comparison we have also included ‗standard‘ 

wavelets and OFDM in the analysis. The time offset is modeled as a discrete uniform distribution 

between -2 and 2 samples, i.e. tε ϵ [-2, -1, 0, 1, 2]. Furthermore, an oversampling with factor 15 

is applied in order to magnify the difference between different systems and different wavelets. 

An overview of important simulation parameters is given in table 4-3. 

 
Table 4-3: Simulation Setup Time Synchronization Error 

 WPMCM OFDM 

Number of Subcarriers 128 128 

Number of Multicarrier 

Symbols per Frame 

100 100 

Modulation DQPSK DQPSK 

Channel AWGN AWGN 

Oversampling Factor 15 15 

Guard Band - - 

Guard Interval - - 

Frequency Offset - - 

Phase Noise - - 

Time Offset tε= 2 tε= 2 

- 
d
o
es n

o
t ap

p
ly
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Figure 4.6 shows the Bit Error Rate (BER) performances of WPMCM system with different kind 

of wavelets and OFDM, under assumption of AWGN channel and time discrepancy between 

transmitter and receiver.  

Figure 4.6 reveals that the designed optimal wavelet has better BER performance in presence of 

timing error when compared to performances of ‗standard‘ wavelets. However, OFDM remains 

superior to WPMCM based systems if symbols at the receiver are not correctly synchronized. 

This is due to fact that under time synchronization errors the ISI in OFDM arises only between 

two adjacent symbols while in the case of WPMCM several symbols are interfering with each 

other.  

Table 4-4 shows the reduction of required SNR of designed optimal wavelet over ‗standard‘ 

wavelets in presence of timing errors.  The shown improvement is evaluated at BER of 10
-4

. 

 

 
Figure 4.6: BER Performance of Different Wavelets and OFDM under Time Synchronization Errors 

 

 

 

 
Table 4-4: Performance Improvement of Designed Optimal Wavelet over Standard Wavelets in Presence of Timing 

Errors (measured at BER of 10-4) 

Wavelet 
Name 

Haar Daubechies Symlets Discrete 
Meyer 

Coiflet 

Improvement 5.03 dB 2.17 dB 3.25 dB 3.25 dB 2.98 dB 
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BER and Mean Square Error (MSE) calculated for different values of time offset are shown in 

figures 4.7 and 4.8, respectively. Because the direction of timing error is inconsequential for 

WPMCM based system the time offset is modeled as uniform distribution between -tε and tε 

samples with tε going from 1 to 5 samples. 

From figures 4.7 and 4.8 it is evident that our optimal wavelet is less sensitive to the time 

synchronization errors when compared to other simulated wavelets.  

 

 
Figure 4.7: BER vs. Time Offset for WPMCM in AWGN channel (SNR = 20dB) 

 

 

 
Figure 4.8: MSE vs. Time Offset for WPMCM in AWGN channel (SNR = 20dB) 
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In figure 4.9 and 4.10 the spreading of subcarriers energy due to time synchronization error is 

illustrated. For the clarity we limited the number of subcarriers to 16 and frame size to 30 

multicarrier symbols. From total 480 subcarriers which can be found in each frame, we are 

setting one pilot subcarrier to non-zero value while remaining 479 subcarriers are set to zero. The 

channel is assumed to be ideal in order to emphasize the effect of timing error.  

As expected, it can be seen from the figures that the amplitudes of interfering subcarriers is 

highly reduced by employing optimal filter. Furthermore it can be noticed that for the Haar 

wavelet the ISI is only limited to the neighboring symbols, comparable to the OFDM case. In 

contrast to other orthogonal wavelets, waveforms generated by the Haar wavelet are not 

overlapping one another in time domain. Despite no-time-overlapping waveforms the 

performance of Haar wavelets is not superior to other orthogonal wavelets due to increased ICI. 

 
Figure 4.9: Received Spectral Energy in a Frame in presence of Timing Error; 

Haar, Daubechies and Symlet Wavelet 
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Figure 4.10: Received Spectral Energy in a Frame in presence of Timing Error; 

Discrete Meyer, Coiflet and Optimal Wavelet 

 

In table 4-5 the values of interference variance and maximal interference amplitude ratio in 

relation to signal amplitude is given. These values are obtained for constant time offset and one 

pilot subcarrier. 

 
Table 4-5: Interference Variance and Max. Interference Amplitude Ratio  

Wavelet Name Haar Daubechies Symlets Discrete 
Meyer 

Coiflet Optimal 
Wavelet 

Interference Variance 

(10
-5

) 

5.1088 3.0751 3.0721 3.1651 3.0639 2.8775 

Max. Interference to 

Signal Amplitude 

14.14 % 8.36 % 7.97 % 6.66 % 8.25 % 4.51 % 
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4.5 Conclusion 

WPMCM can offer more flexibility and adaptability to the system designers but the major 

drawbacks of WPMCM remain in its high sensitivity to timing discrepancies when compared to 

the competing OFDM technique. 

In this chapter we have presented the design of dedicated wavelets which are less sensitive to the 

timing errors. The design process is described as an optimization problem with an objective to 

minimize timing error interference energy. In order to obtain the global minimum, the original 

non-convex constraints and objective function are translated into the autocorrelation domain. 

Using the new formulation the design problem is expressed as a convex optimization problem 

and efficiently solved by the semi definite programming technique. The imposed constraints 

ensure that the designed wavelets are orthonormal and that they satisfy the wavelet existence 

condition. Furthermore, designers can make tradeoff between the number of vanishing moments 

and optimization space.  

The simulation results of multicarrier transmission system revealed that the designed wavelet has 

a significantly better performance under time synchronization errors when compared to standard 

wavelets, such as discrete Meyer, Daubechies, etc. However, by the optimization process the 

frequency selectivity of wavelet is compromised and therefore a deliberated tradeoff between 

frequency selectivity and timing sensitivity should be made.  

It is worth mentioning that the wavelet design method described here can also be used for other 

design criteria by merely altering the objective function. 
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5 

5. Conclusions and Further Research 

n this thesis work we have addressed the sensitivity of novel Wavelet Packed based Multi-

Carrier (WPMCM) transmission system to the carrier frequency offset, phase noise and time 

synchronization errors. Furthermore, we have proposed a filter design framework that 

facilitates the development of new optimized wavelet bases according to the preferred design 

criteria. 

 

5.1 Key Research Conclusions 

The core conclusions of this effort can be summarized in the following points: 

 

 Spectral efficient multicarrier transceivers as WPMCM and OFDM are vulnerable to 

carrier frequency offset which causes subcarriers to lose their mutual orthogonality and 

begin to interfere one with another. In OFDM performance degradation due to frequency 

offset is limited to the interference among the subcarriers within one OFDM symbol 

(ICI), while in WPMCM subcarriers from multiple symbols interfere with each other 

(causing ICI + ISI). This dissimilarity in the interference behavior is due to the manner in 

which the subcarriers in wavelet and Fourier based systems are created. The signals 

generated by OFDM overlap only in frequency domain while WPMCM generated signals 

overlap in both frequency and time domain. 

I 

Any piece of knowledge I acquire today has a 

value at this moment exactly proportional to my 

skills to deal with it. Tomorrow, when I know 

more, I recall that piece of knowledge and use it 

better . 

 — Mark Von Doren, 1894-1972 
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 Secondly, the impact of phase noise on the performance of WPMCM and OFDM was 

analyzed. We found that two different scenarios can occur in presence of phase noise, 

depending on the phase noise bandwidth. If the phase noise bandwidth is small compared 

to inter-carrier spacing the dominant effect will be a constant rotation of constellation 

symbols. On the other hand, when phase noise bandwidth is greater than the inter-carrier 

spacing the rotational behavior is less pronounced but instead the interference dominates.   

Quite similar to the frequency offset, the interference due to the phase noise corrupts the 

OFDM signal only with ICI while WPMCM signals are corrupted with ICI and ISI. 

 

 Thirdly, we studied the problem of the time offset. Under time synchronization errors 

OFDM can take advantage of cyclic prefix to greatly reduce the generation of 

interference as opposed to WPMCM which cannot benefit from such constructions due to 

time overlap of the symbols. Nevertheless, cyclic prefix in OFDM fails to prevent 

interference from occurring if offset value is larger than the size of the prefix or when 

offset is in the opposite direction with regard to symbol‘s own prefix. When parts of the 

neighboring symbols get erroneously selected at the OFDM or WPMCM receiver 

windows, the demodulated signal will be distorted by ISI and ICI. In OFDM, ISI arises 

only due to neighboring multicarrier symbols, while in WPMCM more than two 

multicarrier symbols contribute to the ISI generation. 

 

 To confirm our theoretical findings, we built a simulation set-up where performance of 

WPMCM was examined in the presence of carrier frequency offset, phase noise and time 

synchronization error. Several well-known wavelets such as Daubechies, Symlets, 

discrete Meyer, Coiflets and biorthogonal wavelet were applied and studied. For the 

purpose of comparison, we have also included OFDM in our numerical analysis.  

Simulations studies have shown that the performance degradation of WPMCM and 

OFDM are quite similar in the presence of carrier frequency offset and phase noise. 

However, time synchronization error is found to be a major drawback of WPMCM 

transceivers. Therefore, we focused our attention on the time synchronization error and 

attempted to find a solution for the large performance gap between WPMCM and OFDM 

transceivers under timing errors.  

 

 The attributes of a WPMCM transceiver greatly depends on the underlying wavelet it 

uses. ‗Standard‘ wavelets which are developed for other applications are not suitable for 

multicarrier modulation. As means to overcome the problem of WPMCM‘s sensitivity to 

time offset, we designed a new wavelet filter which reduces the timing error interference. 

 

 The design of a wavelet filter is subject to the multiple constraints. Besides the objective 

to minimize the timing error interference, there are also general constraints on wavelet 

bases that should be fulfilled in order to guarantee the validity of designed wavelets. The 
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all-embracing solution for the design problem was found by means of semi definite 

programming (SDP). 

We expressed our filter design criteria as a convex optimization problem and 

subsequently we used SDP algorithm to obtain optimal solution, i.e. filter with minimized 

timing error interference. 

 

 Simulations of WPMCM transceiver proved that the newly designed optimum filter has a 

better performance under time synchronization errors when compared to ‗standard‘ 

wavelets such as Daubechies, Symlets, discrete Meyer, Coiflets, etc. 

 

In short the results of this thesis work confirmed WPMCM to be a very flexible communication 

system whose actual characteristics can be tailored according to the engineering requirements. 

We used the unique features offered by wavelets to tailor and customize new filters, to make 

WPMCM transmission less sensitive to time synchronization errors. The wavelet filter design 

template developed in this work can also be used for other design goals by merely altering the 

objective function. This approach hopefully will pave the way for the development of other 

wavelet filters which can for instance decrease frequency offset and phase noise sensitivity, 

reduce Peak-to-Average Power Ration (PAPR), increase spectral efficiency, etc. 

An added advantage of using wavelet theory for Multicarrier modulation is in the possibility of 

improving transmission security. Because newly designed wavelets are unique in nature, the 

transmitted signal can only be decoded by the WPMCM receiver which is acquainted with filter 

coefficients used by the WPMCM transmitter. 

 

5.2 Recommendations for Further Research 

 

Although the theory of wavelet transform has been well-evolved and documented over the past 

years, the use of wavelets in the communication systems is still in the early stage of the 

development. Therefore, there remain several important issues and concepts that are worth 

investigating. 

The first suggestion concerns time offset correction. In this thesis the vulnerability of WPMCM 

to time synchronization errors was addressed and optimal wavelet filter design, which reduces 

WPMCM‘s timing error sensitivity, was proposed and implemented. Nevertheless, the fact 

remains that we cannot use guard intervals and that only moderate timing errors are acceptable. 

For this reason, a robust frame synchronization algorithm is needed to detect and correct large 

time offsets. 

A second interesting topic would be to implement a dynamic spectrum allocation in WPMCM, 

which can help increase the system capacity by allocating spectrum resources according to the 

actual demand. It‘s the author‘s belief that wavelet based systems are very suitable for dynamic 

spectrum allocation due to great flexibility they offer in the assignment of subcarriers and 

subcarriers‘ bandwidths.  
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Thirdly, in the last years OFDM–MIMO (Multiple-Input Multiple-Output) combination has been 

successfully used to enhance the throughput and range of wireless networks by neither requiring 

more bandwidth nor more power. The motivation to use MIMO in OFDM is because of 

relatively reduced multi-channel equalization when compared to single carrier systems. 

Fundamentally, OFDM and WPMCM share many similarities as both are orthogonal multi-

carrier techniques and therefore I think that there is a similar potential in WPMCM-MIMO 

combination which should be further investigated.  

Finally, for more representative results it is necessary to evaluate WPMCM systems in different 

real channel environments, taking into consideration fading, multipath, etc. 

 

5.3 My Perspective 

 

The wireless revolution has already begun and the insatiable appetite for more speed and 

broadband application will continue so for the foreseeable future. At the same time the most part 

of usable spectrum is already sliced into tiny pieces and allocated to various applications, ranging 

from mobile phones, TV and radio to wireless light switches and garage door openers. This 

conflict of limited spectrum resources and increasing demand for wireless services is most 

important design challenge which telecommunication engineers are facing today. Therefore, 

many efforts are made to optimize use of the spectrum by developing an intelligent 

communication system that can estimate the channel and adaptively reconfigure resources. Such 

system configuration however imposes various constraints on the modulation technique used, 

which cannot be completely satisfied with techniques used at this moment. 

I believe that WPMCM is uniquely qualified to address this challenge with its distinctive features 

as: 

 

 Freedom in preference of multicarrier attributes. 

 Flexibility in the assignment of subcarriers. 

 Flexibility in the assignment of subcarriers‘ bandwidths. 

 Low side lobes. 

 Bandwidth efficiency. 

 

These advantages together with simple implementation make WPMCM a perfect candidate for 

the future generation wireless communication systems. 
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Integrating the scaling function from –M to M with respect to t gives: 
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Since equation (A.2) is valid the theorem of the Lebesgue can be applied to the sum on the right 

hand side of equation (A.1). Let M go to infinity in (A.1): 
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From equation (A.3) follows the normalization theorem. 
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The shifted scaling functions form an orthonormal basis of V0 if: 
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Using refinement equation (2.13) and condition (B.1) we get: 
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     (B.2) 

 

From equation (B.2) follows the orthonormality theorem. 
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The sum of squares of the time series elements x is given by: 
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Energy is preserved at any level 1 ≤ l ≤ J of the transform as given by (C.2), where ζ denotes 

WPT coefficients. 
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Proof 

 

Let us first define equivalent sequence filter υ, built from the combination of filters h(m), g(m) 

and downsampling as: 
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where 
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The discrete Fourier transform (DFT) of x is given by: 
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Similarly follows the DFT of the filter υ: 
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where 
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         (C.5b) 

 

Parseval‘s theorem states that the sum of squares of a sequence with length N is equal to the sum 

of the moduli squared of its DFT divided by N. Now the WPT coefficients are given by the 

convolution of time domain filter sequence with elements x, which in frequency domain can be 

expressed as: 
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    (C.6) 

 

The wavelet and scaling filter are chosen in such way that their frequency responses are mirror 

images of each other with respect to frequency of ½ π. Therefore, we get for the normalized 

wavelets: 
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The equation (C.6) can hence be written as: 
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The Kolmogorov spectral factorization method is based on construction of the minimum phase 

spectral factor SFmp(z) from the autocorrelation function. The power series expansion of SFmp(z) 

is given by: 
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We can decompose log SFmp to real and imaginary part: 
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The μ(ω) and ε(ω) are Hilbert transform pairs, for z = e
jω

 we have: 
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     (D.3) 

 

In (4.26) R(ω) denotes the Fourier transform of autocorrelation sequence. We can find the 

coefficients dn by: 
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The sum of squares of cross-correlation magnitude is related to the autocorrelation sequences of 

low pass filter H and high pass filter G according to the following equation: 
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Proof 

 
2

2

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) (2 )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

hg

n n p

n m p

L

m p n

m p n m p

h

m p

h

p n m p

h g

n

h g

r n h p n g p

h p n g p h m n g m

g p g m h p n h m n

g p g m h m h m p

r m p g p g m

r n g p g n p

r n r n

r n r n

 

 

 
  

 

  

  

 

 

 



 

  



 

 



 



     (E.2)  


