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How to Select Polynomial Models with an
Accurate Derivative

Piet M. T. Broersen

Abstract—Derivatives of estimated static relations are often used the independent variable and measuring its noisy dependent
for linearization in control and in extended Kalman filtering. How-  variabley. The principle of randomization requires that the data
ever, the structure of selected models may only be an approxima- g, |4 he obtained in an arbitrary sequence wlues, so that
tion to the true relationship, which can cause problems in taking L . . .
derivatives. Polynomial models, estimated from noisy observations, tNey are not a sequential time series. Hence, reducing the noise
may give accurate descriptions of the data while at the same time by applying dynamic filtering is impossible. Another approach,
their derivatives may be poor approximations of the true deriva-  differencing the data and looking for a model for differenced
tive. The explanation of the strong degradation of the derivative of 417 is highly inefficient because it causes a deterioration of the
selected models is straightforward: estimating polynomial models _. ; . o .
of increasing order from a set of data gives not only a description S|gnal-.to-n0|se rat'o. (SNR) and it 'ntrOduc?S correlation in the
of the true underlying process, but also of the accidental realiza- €rror signal of the differences. Of course, it would be advanta-
tion of the additive noise. The higher order polynomial models will geous to collect observations of the derivative, or directly of the
crinkle around the true process; therefore, they will mostly have finjte differences, if a model for the derivative is wanted. How-
an irregular derivative. Models with a better derivative can be se- ever, this paper is limited to the practical question of selecting,

lected by using a higher penalty factor in the selection criterion. . o
) . L . from given data, a model that has an accurate derivative over the
Index Terms—Control nonlinearity, error criterion, function whole range

approximation, model selection, penalty factor, static model, ) .
stochastic modeling. The intended use of the model should determine the order

selection criterion and the search procedure for the model [2].
Mallows'’s criterionC’,, [3] is often used for selection in practice,
if the predictive or descriptive ability of the model to new data
OLYNOMIAL and straight-line regressions are historis important. The penalty factor for additional regressors has an
ically treated as separate subjects in regression [1]. important influence on the resulting models in a selection pro-
polynomial regression analysis, noisy observations of the dgdure. An asymptotical evaluation for the penalty factafjn
pendent variablg are presented as a nonlinear function of thigas been given in autoregressive modeling [4]. It turns out that
independent variable. A polynomial inz, with an additional the usual factor 2 reduces the probability of underfit almost to
constant, is used to model the unknown relationship. The mogeko, at the cost of a high probability of overfit, resulting often in
parameters have to be estimated from the data, but the highggtmany regressors being selected to appear in the final model.
order for the polynomials also has to be selected. Suppose tRatapproach to improve this behavior is to replace the penalty
an accurate derivative of that estimated polynomial is the m&gixior of 2 in theC,, formula with something larger. Optimal
goal, as it is when the model is used for variations around ggjyes for the penalty factor have been derived in autoregres-
operating control point. The question is how many terms haygy [5]. These values can also be used for selection in linear
to be included in the polynomial to obtain the best accuragyqression, yielding a penalty factor of about 3 for the selection
for the derivative. More specifically, the problem addressed §} models for the data, with a good balance between the errors
this paper is whether the maximum likelihood properties of e to underfit and overfit.
polynomial models of &nownbest order are also applicable This paper shows that the quality loss due to selection can be

to polynomials with aselectedorder. The influence of biased moderate for the model of the data, but at the same time very
estimation is also considered by taking true nonlinear relatioHﬁJCh greater for the derivative of that model. The inaccuracy
\év;thoﬁgn't?;r}lﬁcﬁ);lzgOm'al expansion or Taylor series, l'k(i}s due to overfit; the inclusion of too many terms in the selected

P ) model is shown to be the cause of this degradation. A prac-

Linearization of an approximated static polynomial relatloqkal solution is: taking a higher penalty factor for additional

ship by using the local derivative at arbitrary operating point . : 2 .
o ) ) . ) . regressors in the order selection criterion. Recommendations
inside the range of the independent variable is studied. This dif= . . .

. - . are given for that factor in order to obtain a better accuracy of
fers from the situation where the derivative gtaaticular value

of z is wanted [2]. Data are collected by adjusting the value (t) e derivative.

I. INTRODUCTION
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The N x 1 matrixy has elementg(1), ---,y(N)andtheN x 1  This is scaled with the sam# as the data. The formula for the
vectore is additive noise consisting of independent normallglerivative of hierarchical models is given by
distributed random variables with zero mean and variarfce

A data model withp parameters is given by a¥ x 1 vector: ¥, = by + 2byz + - - - pbpz? . (8)
i, = Xpi’p- 2) For z in the interval [0,1], this means that the energy in the

derivative is generally greater than the energy in the data, be-
K regressor variables;,i = 1,---,K, are available, which cause the parameters are multiplied by the order in (8). The
together define the/ x K matrix X k. In this paper, the regres- SNR, used to indicate the noise level, is defined as
sors are a constant add — 1 polynomialsz, zz_, K1 where SNR = 57 /o ©)
N values forz are taken equidistant on the interval [0,1] with e
mcrementsl/(N N 1)_' So the mean |s'treated as an ordinanpg yoq| energy itV observations of the true procesis scaled
regressor. A h|erarch|cal_m0del of orgeincludes the constant i the variance of the additive noise.
and the firsp—1 polynomials. Subset models separatefhee-
gressors into two arbitrary pariX ,|X,.]. For ease of notation,
the regressors can always be rearranged such that the leading _
subsetX,, contains the selected regressorsis the number of ~ Itis well known that a lower bound exists for the accuracy
regressors that are not in the subse; $0- = K. Thisisonlya Of unbiased estimated parameters: the Cramér-Rao bound.
simplification in notation without practical consequences. Bothsymptotically, that lower bound can be obtained by the max-
for hierarchical and for subset models, the param@eme es- imum likelihood estimator. For normally distributed variables,

I1l. THEORETICAL BACKGROUND

timated as the least squares algorithm is the maximum likelihood esti-
mator. Under rather mild conditions, the maximum likelihood
b, = (X2 X, ' X2 y. (3) estimator of a function of a stochastic variable is equal to the

function of the maximum likelihood estimate of the stochastic
The Residual Sum of Squares RSiS a monotonously de- variable itself [6]. This property is used in the accuracy of

creasing function of and is given by spectral estimators and of nonlinear transformations of a sto-
. . chastic variable [7]. It means that the derivative of an unbiased
RSS, = (¥ — Xpb,) T (y — Xpb,). (4) estimated polynomial data model is at the same time the best

o _ ~ estimator for the derivative of the data, if the order is known and
An objective measure for the distance between an estimatqd model is estimated with the maximum likelihood principle.
model (2) and the true noise-free response (1) can be de- The main condition for a strict application of this rule is that the

fined as estimate must be unbiased. This means that the model type and
R o ) order must be known in advance. In this paper, the influence of
Jo(y) = (Xpbp — )" (Xpbp —m) /0" (5) bias on the accuracy is investigated and also the influence of

i i o ) order selection for unknown nonlinear relations.
This measure is an excellent indication of the qualltyofselectedp0|ynomia|s can be considered as basic functions for

models when used to predict response values for new valuegfoothing over the whole interval, and order selection is
a in the given interval [0,1] that is used, but it is only usefuhecessary to determine the best order of the polynomial. The
in simulations becausg has to be known exactly. For use inyse of splines or other local smoothing techniques with piece-
practice, the selection criteridf, is a transformation of RSS \yise polynomial fitting is advised if the polynomial fit over

[3], defined as the whole range remains unsatisfactory for high degrees [1].
Splines give a type of local or piecewise smoothing, with indi-
vidually fitted low-order polynomials for every piece between
- L . two knots. Generally no statistics are involved in the choice of
2

wheres* is given by RSg /(N — K), which is the estimate ? number and the location of the knots and the order of the

for the residual variance, as obtained from the complete mo‘g(%)lynomial [1]. Hence, a statistical evaluation of the quality of

with aII.tKhregtrﬁssors mcIuthd. Tr:.e clr|ter|6]‘;)t|st.popular?:)e— the derivative over the whole range of the independent variable
cause it has the same mathematical expectatiof, @5 [3]. is not possible. The quality of the fit and its derivative would

¢y and J,(y) contain contributions of variance due to estimaﬁe strongly dependent on the location of the knots, and the

:;?oﬁzdacri b;?qigluzts?/;?;gtri?:ﬁ;o?f ?{fhree?rrjesssrféggse';)?Xp%‘fétistical quality would vary over the interval. This paper deals
. ' ' . " with one polynomial model for the whole interval.
actly described by (a subset of) ti€ candidate regressors. POy

Thi tati ls th ber of Taking differences of data as a basis for order selection of an
'S common expectation equals the number o regregsiors accurate derivative has been investigated. An obvious method
models including at least all regressors with nonzero true

. | _— R3find a model for the derivative is to approximate finite differ-
rameter values iy .[ 1 L . o ences, obtained from the data, with a polynomial model. These
In agreement with (5), an objective quality criterion for th

L . i i Rifferences are for equidistant valueszofjiven b
derivativey’ of y with respect tar is defined as d y

C, =RSS,/s* — N +2p, (6)

Ly —yi-1) 1
Tp(e) = @)y — )" (5, — ) /0>, @) Ayli)=="4 — As=x— (10
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The model is a polynomial approximation &fy(:) as a func- TABLE |

i i i _1V2,452 AVERAGE OF CRITERIA IN 100 SMULATION RUNS AS A FUNCTION OF THE
tion 0f325. The. vanance Oﬁy(L) IS 2N —1)% m.Stead of t.he POLYNOMIAL MODEL ORDER 7 = exp(—z), SNR = 100000\ = 30,
YalU?U thatis present iry(i). If th? total energy in the.denva' HIERARCHICAL MODELS. THE CONSTANT REGRESSOR FOR THEMEAN IS
tive is of the same order of magnitude as the energy in the data, =~ DENOTED As+1IN THE COLUMN FOR THE MODEL ORDER p

the SNR for the differences is very much worse than for the data.

Moreover, the errors ir\y(i) and inAy(i + 1) have—0.5 as 2 112Clp10 10](;((){))0 136(()),(’)1)
correlation coefficient because both contain the same noisy data 1l 9016 8094 100000
point %(¢). Hence, the weighted least squares estimator is the 1+11  159.6  141.1 8082
optimal estimator for parameters favy(¢). The best weighted 2+] 5.1 3.93 239
estimator for the parameters of differences is found theoretically 3+1 45 391 234
by using the inverse of the covariance matrix of the errors in the ‘51:} 2; 2'(9) 1322
differences. This, however, is exactly the same as using the orig- 6+1 7.1 69 2207
inal data for estimation, if the errors in the original data are un- 7+1 8.2 7.8 3902
correlated. Therefore, this approach agrees with the maximum 8+1 9.0 89 7l

likelihood estimation of the parameters for the data model and
taking the derivative afterwards. The theoretical analysis of the

polynomial model for the derivative is found as the derivative
of the best fixed-order data mod@lhis conclusion of unbiased
maximum likelihood theory [6] remains valid in simulations for
this fixed-order model with bias. Hence, the highest polynomis
order inthe best model for the derivative is one lower thanforth o3 : 1.2
data. This is quite remarkable because the true shape of the d
and of the derivative is the same in (11).

s .
In Table I, the best accuracy fok,(y') is about 60 imes kg 1 pata model and its derivative for hierarchical models of order 2 and 7
worse than the smalled},(y). Moreover,J, (') increases very for a single realizationy = exp(—x), SNR = 10000V = 30.

o

»

T
b
o

data differences has been supported by simulations. Data models of order 2 derivative of 2nd order
1.1 v 0.2 v
IV. DEGRADATION OF DERIVATIVE . * fr::e;:::g:s ] 03l | — tue relation
The degradation of the derivative of a polynomial model is il- % | - estimated _ ~o estimated
lustrated in Table | and in Fig. 1 with an example where the tru 1 X o4
o =
process is given by 30'8 ] % o5
e () % or u
n=e IZ pra (11) "o 2
i ¥ > s
Sosf 0 07
A special property of this process is that the derivative equa 3 s
—c¢*, so the energy in the data is equal to the energy in th  %® % 08
derivative. This facilitates the interpretation of the results ©
because the magnitudes of the errorg jy) andJ,(y') are di- i 08
rectly comparable, as the same varianttas been used in both 03 , P ,
definitions (5) and (7). The true process in (11) has order infinit 0 05 1 0 05 1
and it cannot be described exactly By candidate regressors, X X
so bias will be present. Fig. 1 shows that hierarchical models
order 2 (with an additional estimated constant) and also of ord:
7 remain close to the true process but that the derivative becon
wild for the higher model order. The derivative of the first-order L
model, a constant, gives a poor approximation due to underfi 1.1Data modells of order 7 06 derivative f’f 7th order
The second- and third-order models are the best approximatio + observations
for the data model and also for the derivative, as is also seen 13, | tuerelation 04 ;
Table | fromJ,(y) and.J, ('), respectively. Higher order models —o- estimated . ::;nt;t?n
with overfit give a moderate increase §f(y) in Table | and at 09r % o2
the same time a very irregular approximation for the derivative ___ ;-’. 0
as seen inJ,(y'). This shows that a good fitting combination X 08¢ o
of parameters for the data can give an irregular derivative wit £ n 02
(8). In the simulations, the accuracy of botl(y) andJ,(y) is o 8 oa
optimal for order 3 + 1, where +1 denotes the estimation of th | 'E'
mean with the regressor a constdrir fixed orders, the best § .% 06
2
3

o
FS
T
.
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strongly for each additional order. Taking higher orders in ovethe parameters are significant and they are selected by taking

fitted models gives a moderate increasggfy) but at the same a penaltyx close to zero. For less extreme values of the SNR,

time a severe degradation in the quality(y/) for the derivative. a certain balance between underfit and overfit yielded the value

The polynomials have not been made orthogonal in the example- 3 as a good compromise for autoregressive models [5]. The

of Table I, but this has no influence at all on the characteristidsscussions about applied only to data models. The prime in-

in the behavior for increasing hierarchical model orders [1]. terest here is the accuracy of the derivative. From Fig. 1 and
Of course, much better results for the derivative would hav@ble | we know that the derivative is much more sensitive to

been obtained by fitting a nonlinear exponential to the data aaderfit than the data model. Hence, the balance between overfit

taking the derivative of that estimated exponential model. Bahd underfit should be different for the data and for the deriva-

that would demand that priori knowledge is available abouttive; the optimal penalty should be higher for the derivative than

the true structure of). In contrast, the problem addressed iffior the data.

this paper is the enormous degradation in the quality if the true

order or structure has to be selected from a number of candi- VI. SIMULATION RESULTS

dates. The degradation depends on the covariance structure (g'm lati h b ied out to find dval for th

the candidate regressors. Table | shows the results that have begyhations have been carred out fo find good values for the

: 2 . : . L nalty factor, both for data models and for accurate deriva-
obtained by estimating hierarchical models of increasing fix ) ) . . : .
Ives, in a variety of examples like polynomials, cosine data, tri-

orders. Additional problems occur if models with selected or- | xponentials. and G ian bell sh The exampl
ders are studied. The conclusion to be drawn from this exam €s, exponentia’s, a aussian bell snapes. The examples

is that the accuracy of the derivative is much more sensitive f%l_?’en in Table Il are with seven different true_proceaszes
too high model orders than the accuracy of the data model. ~© "7 =~ e.xp(—z), SNR =1650000
B: n =sin(1l.5nx), SNR =250
C: n = cos(0.57x), SNR =100000
V. THE PENALTY IN SELECTION CRITERIA D: 1 = triangle with basis =[0,1],

The factor 2 inC), of (6) has been derived by giving equal top atz = 0.75, SNR = 200
weights to bias and to variance in a selection criterion [3]. Bigs 1 = exp(—z2) — 1, SNR = 13000
becomes more importantin underfitting models with too few rg=: ,, — VI, > 0,19 = 100, SNR = 3000
gressors included; variance is the problem of overfit@pde- g: n=z+z>+1° SNR = 90000

lects a compromise. Looking to the accuracy of data models andrhe value for the SNR is chosen such that the best polyno-
their derivatives,/,(y) and.J,(y') in Table |, itis clear that the mia| model order is 3 or 4, thus leaving the possibility of overfit
inaccuracy due to bias at the lowest model orders is of a cOmpgry of underfit. Example G is different from the others because
rable magnitude, but the degradation by variance at high ordrg the only example with a true polynomial model of finite

is much greater for derivatives, up to 700 times. In other wordgyger, that can be estimated without bias. Nevertheless, the per-
overfitis more dangerous for the quality of derivatives than fQf mance of G is comparable to the other examples. Therefore,

data models. A proper order selection criterion for good derivgse pias in selected models turns out to be not very important
tives must reduce the probability of selecting overfitting mode}§; ihe conclusions.

as much as possible. The overfit problem has been studied 0516 || gives results of simulations for the average accuracy

autoregressive processes [4], [5]. It can be diminished by using., ) of selectediata models for different values of the penalty

a _hlgher p_enalty for add|t|onal_ regressors [5]. A new selectloaﬁ_’ The most accurate selected models are found in practice for
criterion with a penalty factow is defined as

a =3 o0ra =4inCy(a) of (12). This agrees reasonably with
) the preference far = 3 that has been derived for autoregressive
order selection [5].

This is a generalization of (6); the usu) becomes now equal  The average accuracy of the derivativeselectedmodels,
to C,,(2). The model with the minimum of’,(a) is selected. J»(#'), is given in Table 1l for various values of the penaity
That model can also be characterized by critical values fysimulations. This clearly shows that the penalty factors 3 and
RSS,: it follows from (12) that arbitrary groups ef regressors 4 are too low for an accurate derivative. The possibility of overfit
that will be included in the selected model must give reductioti3at belongs to those lower valuesotreates a problem for all
RSS- - RSS that are greater tham ms’. SNR’s. Penalty factors 15, 50, and 100 are generally too high.
The theory for order selection in hierarchical models has be&he increase off,,(3') for those values ofv is always caused
developed for autoregressive modeling [4], [5]. It has been dpy underfit: not every important polynomial order is selected
plied to the choice of an optimal value farin regression [8]. with those penalties. The distance to underfit depends on the
Unfortunately, theoretical arguments cannot provide a singdNR; hence, optimal values for the penalty may also depend
optimal value fora for all possible situations. In an examplepn the SNR. A penalty factor between 5 and 8 will be a com-
the specific value ofx that selects the model with the smallespromise with always a reasonable accuracy. Based on these and
Jp»(y) would be the best for describing the data, but that valurimerous other simulation results, a good value for the penalty
depends on the SNR. If the noise level is extremely high, no factor « is 6 if the derivative of the selected model is important.
gressor will be significant and penalty= oo will be the best  The use of consistent criteria has been investigated thor-
to make sure that no regressor is selected. On the other hamdjhly in time series, from different points of view [9]. The
if there is no noise, all regressors with nonzero estimates foenalty log(N) is not a constant in consistent criteria, but

Cp(a) = RSS,/s* — N + ap. (12
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TABLE I
AVERAGE IN 1000 SMULATION RUNS OF THEQUALITY J,(y) OF SELECTED
HIERARCHICAL MODELS AS A FUNCTION OF THE PENALTY FACTOR o FOR
DIFFERENT TRUE PROCESSES) AS DESCRIBED IN THETEXT, N =50

True process 1

o A B C D E F G
1.8 6.36 7.07 6.51 7.77 6.10 8.05 6.27
2 6.09 6.94 6.24 7.68 5.89 7.95 5.97
3 5.15 6.43 5.29 7.43 5.03 7.67 4.98
4 4.84 6.44 5.06 7.55 4.82 7.86 4.53
5 4.90 6.59 5.1 7.68 4.83 8.21 4.59
6 5.12 6.85 5.33 8.29 5.07 8.61 4.68
7 5.37 7.13 5.73 8.99 5.52 9.16 4.90
8 5.68 7.61 6.21 9.81 5.90 9.83 5.20
10 6.86 8.98 739 1192 6.80 11.32 6.34
15 10.70 1248 11.02 1960  10.58  14.51 9.87
50| 18.95 28.18 18.74 5400 1978 20.89 21.30

100 19.03 200.58 1882 6569 5932 20.92 21.43

TABLE Il

AVERAGE IN 1000 SMULATION RUNS OF THEQUALITY OF THE DERIVATIVE,
Jp(y’), OF SELECTED HIERARCHICAL MODELS AS A FUNCTION
OF THE PENALTY FACTOR o FOR DIFFERENT TRUE PROCESSES) AS
DESCRIBED IN THETEXT, N =50

True process 1

al A B C D E F G
1.8 2503 2801 2581 3859 1970 2634 2371
2| 2147 2462 2257 3493 1621 2408 2088
3] 1003 1607 1112 2351 793 1579 1076
41 693 1240 614 1890 445 1238 610
5 517 1073 501 1537 379 1061 482
6| 464 1073 471 1411 363 985 407
71 495 1067 513 1416 433 1022 425
8 554 1116 573 1443 520 1062 442
10y 740 1247 749 1524 656 1159 584
15] 1307 1698 1337 1915 1261 1384 1212
50 2693 2973 2588 3338 2569 1867 2998
100 § 2707 5147 2601 3353 4891 1870 3040

depends on the number of observatioNs Example A of
Tables Il and Il has been studied fa¥ between 20 and

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 49, NO. 5, OCTOBER 2000

The best data model was selected in all examples of Table Il
with 3 or 4 as values fo. This is for lower values ofx than
the optimal values 6 or 7 found in Table Il for the derivative.
Therefore, the argument from likelihood theory that “the best
model for the derivative is the derivative of the best model for
the data” is not true for polynomial models with selected orders.

VII. CONCLUSION

The quality loss, due teelectionof a model order in com-
parison with the true or best model order, is moderate for the
response itself but very much greater for the derivative of the
estimated polynomial model. Too high polynomial orders give
a huge degradation of the accuracy of the derivative, but high or-
ders are easily selected. A higher penalty fastor an order se-
lection criterion gives models with better derivatives. The value
6 is a good value fory in simulations with a range of different
examples and SNR'’s, and is a compromise between overfit and
underfit especially for derivatives. If the order has to be selected,
the best model for the derivative is generally not found as the
derivative of the best model for the data.
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