
910 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 49, NO. 5, OCTOBER 2000

How to Select Polynomial Models with an
Accurate Derivative

Piet M. T. Broersen

Abstract—Derivatives of estimated static relations are often used
for linearization in control and in extended Kalman filtering. How-
ever, the structure of selected models may only be an approxima-
tion to the true relationship, which can cause problems in taking
derivatives. Polynomial models, estimated from noisy observations,
may give accurate descriptions of the data while at the same time
their derivatives may be poor approximations of the true deriva-
tive. The explanation of the strong degradation of the derivative of
selected models is straightforward: estimating polynomial models
of increasing order from a set of data gives not only a description
of the true underlying process, but also of the accidental realiza-
tion of the additive noise. The higher order polynomial models will
crinkle around the true process; therefore, they will mostly have
an irregular derivative. Models with a better derivative can be se-
lected by using a higher penalty factor in the selection criterion.

Index Terms—Control nonlinearity, error criterion, function
approximation, model selection, penalty factor, static model,
stochastic modeling.

I. INTRODUCTION

POLYNOMIAL and straight-line regressions are histor-
ically treated as separate subjects in regression [1]. In

polynomial regression analysis, noisy observations of the de-
pendent variable are presented as a nonlinear function of the
independent variable. A polynomial in , with an additional
constant, is used to model the unknown relationship. The model
parameters have to be estimated from the data, but the highest
order for the polynomials also has to be selected. Suppose that
an accurate derivative of that estimated polynomial is the main
goal, as it is when the model is used for variations around an
operating control point. The question is how many terms have
to be included in the polynomial to obtain the best accuracy
for the derivative. More specifically, the problem addressed in
this paper is whether the maximum likelihood properties of
polynomial models of aknownbest order are also applicable
to polynomials with aselectedorder. The influence of biased
estimation is also considered by taking true nonlinear relations
with an infinite polynomial expansion or Taylor series, like
exponential functions.

Linearization of an approximated static polynomial relation-
ship by using the local derivative at anarbitrary operating point
inside the range of the independent variable is studied. This dif-
fers from the situation where the derivative at aparticular value
of is wanted [2]. Data are collected by adjusting the value of
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the independent variableand measuring its noisy dependent
variable . The principle of randomization requires that the data
should be obtained in an arbitrary sequence ofvalues, so that
they are not a sequential time series. Hence, reducing the noise
by applying dynamic filtering is impossible. Another approach,
differencing the data and looking for a model for differenced
data is highly inefficient because it causes a deterioration of the
signal-to-noise ratio (SNR) and it introduces correlation in the
error signal of the differences. Of course, it would be advanta-
geous to collect observations of the derivative, or directly of the
finite differences, if a model for the derivative is wanted. How-
ever, this paper is limited to the practical question of selecting,
from given data, a model that has an accurate derivative over the
whole range.

The intended use of the model should determine the order
selection criterion and the search procedure for the model [2].
Mallows’s criterion [3] is often used for selection in practice,
if the predictive or descriptive ability of the model to new data
is important. The penalty factor for additional regressors has an
important influence on the resulting models in a selection pro-
cedure. An asymptotical evaluation for the penalty factor in
has been given in autoregressive modeling [4]. It turns out that
the usual factor 2 reduces the probability of underfit almost to
zero, at the cost of a high probability of overfit, resulting often in
too many regressors being selected to appear in the final model.
An approach to improve this behavior is to replace the penalty
factor of 2 in the formula with something larger. Optimal
values for the penalty factor have been derived in autoregres-
sion [5]. These values can also be used for selection in linear
regression, yielding a penalty factor of about 3 for the selection
of models for the data, with a good balance between the errors
due to underfit and overfit.

This paper shows that the quality loss due to selection can be
moderate for the model of the data, but at the same time very
much greater for the derivative of that model. The inaccuracy
is due to overfit; the inclusion of too many terms in the selected
model is shown to be the cause of this degradation. A prac-
tical solution is: taking a higher penalty factor for additional
regressors in the order selection criterion. Recommendations
are given for that factor in order to obtain a better accuracy of
the derivative.

II. NOTATION

Suppose that we have data consisting ofnoisy observations
, that can be described as

(1)
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The matrix has elements and the
vector is additive noise consisting of independent normally
distributed random variables with zero mean and variance.
A data model with parameters is given by an vector:

(2)

regressor variables , are available, which
together define the matrix . In this paper, the regres-
sors are a constant and polynomials , where

values for are taken equidistant on the interval [0,1] with
increments . So the mean is treated as an ordinary
regressor. A hierarchical model of orderincludes the constant
and the first polynomials. Subset models separate there-
gressors into two arbitrary parts . For ease of notation,
the regressors can always be rearranged such that the leading
subset contains the selected regressors;is the number of
regressors that are not in the subset, so . This is only a
simplification in notation without practical consequences. Both
for hierarchical and for subset models, the parametersare es-
timated as

(3)

The Residual Sum of Squares RSSis a monotonously de-
creasing function of and is given by

(4)

An objective measure for the distance between an estimated
model (2) and the true noise-free responsein (1) can be de-
fined as

(5)

This measure is an excellent indication of the quality of selected
models when used to predict response values for new values of

in the given interval [0,1] that is used, but it is only useful
in simulations because has to be known exactly. For use in
practice, the selection criterion is a transformation of RSS
[3], defined as

(6)

where is given by RSS , which is the estimate
for the residual variance, as obtained from the complete model
with all regressors included. The criterion is popular be-
cause it has the same mathematical expectation as [3].

and contain contributions of variance due to estima-
tion and of bias due to the omission of regressors. Their expec-
tations are equal, asymptotically, if the true processis ex-
actly described by (a subset of) the candidate regressors.
This common expectation equals the number of regressorsfor
models including at least all regressors with nonzero true pa-
rameter values in [2].

In agreement with (5), an objective quality criterion for the
derivative of with respect to is defined as

(7)

This is scaled with the same as the data. The formula for the
derivative of hierarchical models is given by

(8)

For in the interval [0,1], this means that the energy in the
derivative is generally greater than the energy in the data, be-
cause the parameters are multiplied by the order in (8). The
SNR, used to indicate the noise level, is defined as

(9)

The total energy in observations of the true processis scaled
with the variance of the additive noise.

III. T HEORETICAL BACKGROUND

It is well known that a lower bound exists for the accuracy
of unbiased estimated parameters: the Cramér-Rao bound.
Asymptotically, that lower bound can be obtained by the max-
imum likelihood estimator. For normally distributed variables,
the least squares algorithm is the maximum likelihood esti-
mator. Under rather mild conditions, the maximum likelihood
estimator of a function of a stochastic variable is equal to the
function of the maximum likelihood estimate of the stochastic
variable itself [6]. This property is used in the accuracy of
spectral estimators and of nonlinear transformations of a sto-
chastic variable [7]. It means that the derivative of an unbiased
estimated polynomial data model is at the same time the best
estimator for the derivative of the data, if the order is known and
the model is estimated with the maximum likelihood principle.
The main condition for a strict application of this rule is that the
estimate must be unbiased. This means that the model type and
order must be known in advance. In this paper, the influence of
bias on the accuracy is investigated and also the influence of
order selection for unknown nonlinear relations.

Polynomials can be considered as basic functions for
smoothing over the whole interval, and order selection is
necessary to determine the best order of the polynomial. The
use of splines or other local smoothing techniques with piece-
wise polynomial fitting is advised if the polynomial fit over
the whole range remains unsatisfactory for high degrees [1].
Splines give a type of local or piecewise smoothing, with indi-
vidually fitted low-order polynomials for every piece between
two knots. Generally no statistics are involved in the choice of
the number and the location of the knots and the order of the
polynomial [1]. Hence, a statistical evaluation of the quality of
the derivative over the whole range of the independent variable
is not possible. The quality of the fit and its derivative would
be strongly dependent on the location of the knots, and the
statistical quality would vary over the interval. This paper deals
with one polynomial model for the whole interval.

Taking differences of data as a basis for order selection of an
accurate derivative has been investigated. An obvious method
to find a model for the derivative is to approximate finite differ-
ences, obtained from the data, with a polynomial model. These
differences are for equidistant values ofgiven by

(10)
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The model is a polynomial approximation of as a func-
tion of . The variance of is instead of the
value that is present in . If the total energy in the deriva-
tive is of the same order of magnitude as the energy in the data,
the SNR for the differences is very much worse than for the data.
Moreover, the errors in and in have 0.5 as
correlation coefficient because both contain the same noisy data
point . Hence, the weighted least squares estimator is the
optimal estimator for parameters for . The best weighted
estimator for the parameters of differences is found theoretically
by using the inverse of the covariance matrix of the errors in the
differences. This, however, is exactly the same as using the orig-
inal data for estimation, if the errors in the original data are un-
correlated. Therefore, this approach agrees with the maximum
likelihood estimation of the parameters for the data model and
taking the derivative afterwards. The theoretical analysis of the
data differences has been supported by simulations.

IV. DEGRADATION OF DERIVATIVE

The degradation of the derivative of a polynomial model is il-
lustrated in Table I and in Fig. 1 with an example where the true
process is given by

(11)

A special property of this process is that the derivative equals
, so the energy in the data is equal to the energy in the

derivative. This facilitates the interpretation of the results,
because the magnitudes of the errors in and are di-
rectly comparable, as the same variancehas been used in both
definitions (5) and (7). The true process in (11) has order infinity
and it cannot be described exactly bycandidate regressors,
so bias will be present. Fig. 1 shows that hierarchical models of
order 2 (with an additional estimated constant) and also of order
7 remain close to the true process but that the derivative becomes
wild for the higher model order. The derivative of the first-order
model, a constant, gives a poor approximation due to underfit.
The second- and third-order models are the best approximations
for the data model and also for the derivative, as is also seen in
Table I from and , respectively. Higher order models
with overfit give a moderate increase of in Table I and at
the same time a very irregular approximation for the derivative,
as seen in . This shows that a good fitting combination
of parameters for the data can give an irregular derivative with
(8). In the simulations, the accuracy of both and is
optimal for order 3 + 1, where +1 denotes the estimation of the
mean with the regressor a constant.For fixed orders, the best
polynomial model for the derivative is found as the derivative
of the best fixed-order data model. This conclusion of unbiased
maximum likelihood theory [6] remains valid in simulations for
this fixed-order model with bias. Hence, the highest polynomial
order in the best model for the derivative is one lower than for the
data. This is quite remarkable because the true shape of the data
and of the derivative is the same in (11).

In Table I, the best accuracy for is about 60 times
worse than the smallest . Moreover, increases very

TABLE I
AVERAGE OFCRITERIA IN 100 SIMULATION RUNS AS A FUNCTION OF THE

POLYNOMIAL MODEL ORDER. � = exp(�xxx), SNR = 100000,N = 30,
HIERARCHICAL MODELS. THE CONSTANT REGRESSOR FOR THEMEAN IS

DENOTED AS+1 IN THE COLUMN FOR THE MODEL ORDERp

Fig. 1. Data model and its derivative for hierarchical models of order 2 and 7
for a single realization.y = exp(�x), SNR = 10000,N = 30.
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strongly for each additional order. Taking higher orders in over-
fitted models gives a moderate increase of but at the same
time a severe degradation in the quality for the derivative.
The polynomials have not been made orthogonal in the example
of Table I, but this has no influence at all on the characteristics
in the behavior for increasing hierarchical model orders [1].

Of course, much better results for the derivative would have
been obtained by fitting a nonlinear exponential to the data and
taking the derivative of that estimated exponential model. But
that would demand thata priori knowledge is available about
the true structure of . In contrast, the problem addressed in
this paper is the enormous degradation in the quality if the true
order or structure has to be selected from a number of candi-
dates. The degradation depends on the covariance structure of
the candidate regressors. Table I shows the results that have been
obtained by estimating hierarchical models of increasing fixed
orders. Additional problems occur if models with selected or-
ders are studied. The conclusion to be drawn from this example
is that the accuracy of the derivative is much more sensitive for
too high model orders than the accuracy of the data model.

V. THE PENALTY IN SELECTION CRITERIA

The factor 2 in of (6) has been derived by giving equal
weights to bias and to variance in a selection criterion [3]. Bias
becomes more important in underfitting models with too few re-
gressors included; variance is the problem of overfit andse-
lects a compromise. Looking to the accuracy of data models and
their derivatives, and in Table I, it is clear that the
inaccuracy due to bias at the lowest model orders is of a compa-
rable magnitude, but the degradation by variance at high orders
is much greater for derivatives, up to 700 times. In other words,
overfit is more dangerous for the quality of derivatives than for
data models. A proper order selection criterion for good deriva-
tives must reduce the probability of selecting overfitting models
as much as possible. The overfit problem has been studied for
autoregressive processes [4], [5]. It can be diminished by using
a higher penalty for additional regressors [5]. A new selection
criterion with a penalty factor is defined as

(12)

This is a generalization of (6); the usual becomes now equal
to . The model with the minimum of is selected.
That model can also be characterized by critical values for
RSS : it follows from (12) that arbitrary groups of regressors
that will be included in the selected model must give reductions
RSS- - RSS that are greater than ms .

The theory for order selection in hierarchical models has been
developed for autoregressive modeling [4], [5]. It has been ap-
plied to the choice of an optimal value forin regression [8].
Unfortunately, theoretical arguments cannot provide a single
optimal value for for all possible situations. In an example,
the specific value of that selects the model with the smallest

would be the best for describing the data, but that value
depends on the SNR. If the noise level is extremely high, no re-
gressor will be significant and penalty will be the best
to make sure that no regressor is selected. On the other hand,
if there is no noise, all regressors with nonzero estimates for

the parameters are significant and they are selected by taking
a penalty close to zero. For less extreme values of the SNR,
a certain balance between underfit and overfit yielded the value

3 as a good compromise for autoregressive models [5]. The
discussions about applied only to data models. The prime in-
terest here is the accuracy of the derivative. From Fig. 1 and
Table I we know that the derivative is much more sensitive to
overfit than the data model. Hence, the balance between overfit
and underfit should be different for the data and for the deriva-
tive; the optimal penalty should be higher for the derivative than
for the data.

VI. SIMULATION RESULTS

Simulations have been carried out to find good values for the
penalty factor , both for data models and for accurate deriva-
tives, in a variety of examples like polynomials, cosine data, tri-
angles, exponentials, and Gaussian bell shapes. The examples
given in Table II are with seven different true processes:
A: exp , SNR = 1 650 000
B: sin , SNR = 250
C: cos , SNR = 100 000
D: triangle with basis =[0,1],

top at , SNR = 200
E: exp , SNR = 13 000
F: , SNR = 3000
G: , SNR = 90 000

The value for the SNR is chosen such that the best polyno-
mial model order is 3 or 4, thus leaving the possibility of overfit
and of underfit. Example G is different from the others because
it is the only example with a true polynomial model of finite
order, that can be estimated without bias. Nevertheless, the per-
formance of G is comparable to the other examples. Therefore,
the bias in selected models turns out to be not very important
for the conclusions.

Table II gives results of simulations for the average accuracy
of selecteddata models for different values of the penalty

. The most accurate selected models are found in practice for
= 3 or = 4 in of (12). This agrees reasonably with

the preference for = 3 that has been derived for autoregressive
order selection [5].

The average accuracy of the derivative ofselectedmodels,
, is given in Table III for various values of the penalty

in simulations. This clearly shows that the penalty factors 3 and
4 are too low for an accurate derivative. The possibility of overfit
that belongs to those lower values ofcreates a problem for all
SNR’s. Penalty factors 15, 50, and 100 are generally too high.
The increase of for those values of is always caused
by underfit: not every important polynomial order is selected
with those penalties. The distance to underfit depends on the
SNR; hence, optimal values for the penalty may also depend
on the SNR. A penalty factor between 5 and 8 will be a com-
promise with always a reasonable accuracy. Based on these and
numerous other simulation results, a good value for the penalty
factor is 6 if the derivative of the selected model is important.

The use of consistent criteria has been investigated thor-
oughly in time series, from different points of view [9]. The
penalty is not a constant in consistent criteria, but
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TABLE II
AVERAGE IN 1000 SIMULATION RUNS OF THEQUALITY J (y) OF SELECTED

HIERARCHICAL MODELS AS A FUNCTION OF THEPENALTY FACTOR� FOR

DIFFERENTTRUE PROCESSES� AS DESCRIBED IN THETEXT,N = 50

TABLE III
AVERAGE IN 1000 SIMULATION RUNS OF THEQUALITY OF THE DERIVATIVE,

J (y ), OF SELECTED HIERARCHICAL MODELS AS A FUNCTION

OF THE PENALTY FACTOR � FOR DIFFERENT TRUE PROCESSES� AS

DESCRIBED IN THETEXT, N = 50

depends on the number of observations. Example A of
Tables II and III has been studied for between 20 and
1 000 000. For all , the best order for the data model was
found for and the best derivative for , for the given
SNR. So the best penalty does not depend on, and consistent
criteria provide no solution for the problem of derivatives.
These simulations showed that the balance between overfit and
underfit is important, requiring a constant value for the penalty
factor .

The best data model was selected in all examples of Table II
with 3 or 4 as values for . This is for lower values of than
the optimal values 6 or 7 found in Table III for the derivative.
Therefore, the argument from likelihood theory that “the best
model for the derivative is the derivative of the best model for
the data” is not true for polynomial models with selected orders.

VII. CONCLUSION

The quality loss, due toselectionof a model order in com-
parison with the true or best model order, is moderate for the
response itself but very much greater for the derivative of the
estimated polynomial model. Too high polynomial orders give
a huge degradation of the accuracy of the derivative, but high or-
ders are easily selected. A higher penalty factorin an order se-
lection criterion gives models with better derivatives. The value
6 is a good value for in simulations with a range of different
examples and SNR’s, and is a compromise between overfit and
underfit especially for derivatives. If the order has to be selected,
the best model for the derivative is generally not found as the
derivative of the best model for the data.
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