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Power Scheduling of Fuel Cell Cars in an Islanded
Mode Microgrid With Private Driving Patterns

Farid Alavi , Nathan van de Wouw , and Bart De Schutter , Fellow, IEEE

Abstract— A microgrid in the islanded mode is considered
where a fleet of fuel cell cars is used as a distributed power
generation system. The objective of the proposed control system
is to minimize the operational cost of the system, subject to
the physical and operational constraints of the system. In order
to deal with uncertainty in the prediction of the microgrid’s
load, two model predictive control methods, a min–max (MM)
approach and disturbance feedback MM approach, are proposed.
We develop three distributed control algorithms and we show that
by using these algorithms, the driving patterns of the fuel cell
cars can be kept private. In other words, no privacy sensitive
data on the usage of the cars are collected by a central control
agent. Numerical case studies are presented to demonstrate the
excellent performance of the proposed control methods.

Index Terms— Decentralized control, distributed power gener-
ation, fuel cells, smart grids.

I. INTRODUCTION

SEVERAL methods of microelectrical power generation
have been developed in recent years. Examples of such

microgenerators are solar photovoltaic cells, microwind tur-
bines, and combined heat and power units. By connecting sev-
eral microgenerators to the low-voltage electrical connection
of an area and equipping each generator with communication
facilities, a microgrid can be constructed that is able to operate
in two different modes. In the first operational mode, a grid-
connected mode microgrid, the microgrid is connected to the
main power grid, while in the second mode, an islanded
mode microgrid, there is not any electrical connection between
the microgrid and any other power grids [1]. In this paper,
we focus on the power scheduling of an islanded mode
microgrid.

In recent years, fuel cell cars are being produced by several
companies in the world. A fuel cell car is equipped with
all the necessary devices to generate electricity from the
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chemical energy of hydrogen. As a result, a fleet of fuel cell
cars can be used as a distributed power generation system
inside a microgrid. The feasibility of such microgrids, based
on fuel cell cars, is studied in [2] and [3]. We refer the
reader to [2] for a justification about rationality of using
fuel cell cars as the source of electrical power generation in
the future. In this paper, we consider the concept of car as
power plant [4], in which a fleet of fuel cell cars is used to
generate power inside a microgrid, where the electrical power
generation by fuel cells has a higher efficiency compared
to the conventional power plants that are using fossil fuels.
We consider a microgrid in the islanded mode, where the
power generation of renewable energy sources (RES) inside
the microgrid is not curtailed for the sake of power balance.
Instead, in order to guarantee the power balance condition,
the power generation of fuel cell cars is controlled. We assume
that each car is equipped with a controller that is able to set
the power generation profile of the car’s fuel cell to a desirable
level, see [5].

Different levels of control can be used in order to maintain
the power balance within a microgrid in the islanded mode.
Traditionally, three control levels exist in power systems,
namely, primary, secondary, and tertiary controls. In primary
and secondary controls [6]–[8], the objective of the control
system is to keep the voltage and frequency of the power
system at a specific value. In tertiary control [9], set points
for the amount of power generation are determined for each
generator. In this level, the objective is to minimize the
operational cost of the system while considering the power
balance condition and the system constraints, such as the
maximum power generation of each generator. Model predic-
tive control (MPC) is commonly used in tertiary control or
power scheduling [10]–[12]. In this paper, we consider tertiary
control, or the power scheduling problem of a microgrid using
MPC method.

The presence of uncertainty in microgrids with RES neces-
sitates the use of robust control methods for the power
scheduling task. A min–max (MM) MPC approach is pro-
posed in [13], where the energy balance of the micro-
grid is satisfied via the curtailment of the RES genera-
tion. Stochastic optimization [14], [15] and scenario-based
optimization [16], [17] are among the other power scheduling
methods developed to deal with the uncertainty in the predic-
tion of the load.

In this paper, an MM method and a disturbance feed-
back (DF) MM method are developed for a microgrid with
fuel cell cars operating in islanded mode. In our conference
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TABLE I

DESCRIPTION OF THE NOTATIONS USED IN THIS PAPER

paper [18], we have shown that centralized versions of both of
the proposed methods are able to guarantee the power balance
of the microgrid. However, the DF MM method increases the
system performance compared to the MM method, by reducing
the conservatism in the operation of the system. A centralized
control system based on the MM method or the DF MM
method requires information on the driving pattern of all the
cars for its operation. Here, the driving pattern is defined as
the information about the departure time, the driving distance,
and the time of return to the microgrid for any fuel cell car.
We consider the driving pattern of a car as private information
and, as a result, design a control system that requires the share
of driving patterns violates privacy rights of car owners. In this
paper, these privacy rights are considered as a key requirement
in the design of the control system.

The main contribution of our work is that we develop
three distributed DF MM methods for power scheduling of
a microgrid with fuel cell cars that are shown to be more
efficient than existing methods from the literature. In addition,
the power scheduling problem is formulated while considering
specific features of the system, such as the driving patterns of
the cars, the refilling process of the cars, and the privacy of
the fuel cell car owners.

This paper extends our early results presented in the con-
ference paper [18] by developing the three distributed control
approaches using a refined formulation of the MM method
and the DF MM method and more extensive case studies
of the system. The performance of each distributed control
method is demonstrated via case studies with different sizes
of the microgrid. It is shown that for a large number of
vehicles in the microgrid, the performance of the distributed
control methods is close to a model predictive controller with
centralized architecture, while the computational burden in the
distributed architectures is reduced compared to the centralized
architecture.

The rest of this paper is organized as follows. The prob-
lem is formulated in Section II. MPC of the system with
a centralized architecture is introduced in Section III. The
three distributed control methods are developed in Section IV
and the results of illustrative case studies are presented
in Section V. A summary of the notations used in this paper
is presented in Table I.

II. PROBLEM FORMULATION

A. System Description

We consider a problem setting in which a fleet of fuel cell
cars is acting as the power generation source of a microgrid.
Besides the fuel cell cars, wind turbines, solar photovoltaic
cells, and diesel generators are the other sources of power
generation. It is assumed that the microgrid is operated in
the islanded mode and there is no control over the load
of the microgrid. Therefore, the power balance should be
maintained via the control of generation units. The goal of
the microgrid’s operator is, first, to allow the renewable energy
sources to generate as much power as possible based on the
weather condition and, second, to penalize the use of the diesel
generators. With these requirements, the power balance of
microgrid should be realized by a suitable power scheduling
of the fuel cell cars.

The objective of the control method proposed in this paper
is similar to a traditional tertiary control algorithm in the
sense that the objective of the control algorithm is also to
minimize the operational cost of the system while considering
system constraints. However, a fleet of fuel cell cars in an
islanded mode microgrid has some unique features that further
challenge the controller design. In particular, the fuel cell
cars are used both for power generation and transportation,
the amount of fuel is limited, and refilling the cars takes time.
These unique features necessitate a new design for the control
system. The objective of the control system is to determine a
power generation profile for each fuel cell car in such a way
that the power balance of the microgrid is satisfied. In addition,
the central control system should exclude those cars from the
power generation units of which the owners intend to use them
for transportation.

From an energy management point of view, the functioning
of primary and secondary control levels affects the power
generation of the generator, and as a result, the generated
power typically deviates from the scheduled power generation
profile. Here, we assume that such control levels exist in each
power generation unit, and as a result, the scheduled and the
actual power generation are not necessarily equal to each other.
The mismatch between the scheduled and the actual power
generation is considered as an uncertain disturbance in the
model of the system. With this abstraction of the influence
of the primary and secondary control levels, we focus on the
power scheduling problem on the tertiary level.

In the scenario considered here, the communication between
different agents of a system is considered to be ideal. There-
fore, no delay, packet loss, or cost is considered in the commu-
nication process. All the cars are connected to the microgrid
whenever they are not used for the transportation or refueling.
In addition, each car is equipped with a computer that can
operate the fuel cell of the car and exchange information with
the central control system.

B. Mixed Logical Dynamical Model of the System

One of the most significant features of the considered
microgrid is that the fuel cell cars are used for two purposes:
transportation and power generation. In addition, the fuel
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stored in each car is limited and refueling each car takes time.
In this section, with inspiration from [19] and [18], a mixed
logical dynamical model is developed for the system.

We consider the remaining fuel in each car as a system
state. Therefore, the system states can change both in the
transportation and power generation mode. The transportation
mode of each car is determined by the driving pattern of the
car owner. We assume that by studying the behavior of each
driver, it is possible to determine the driving pattern of each
driver for a finite horizon in the future from time step k to
k + Np , where Np is the prediction horizon. By defining
P = {0, 1, . . . , Np − 1} and I = {1, . . . , Nveh} with Nveh
the total number of cars in the system, we can model the
availability of a car i ∈ I for power generation at time steps
k + j , for all j ∈ P , with a sequence of binary variables
λ f,i (k + j) for i ∈ I and j ∈ P : if fuel cell car i is in the
transportation mode at time step k + j , then λ f,i (k + j) is
equal to 1 and it is 0 otherwise. In addition, we assume that
if a car is used for transportation from time step k to time
step k + j , the amount of fuel that is used for that trip is
predictable and described by h f,i (k + j). Therefore, we can
assume that if a car is in the transportation mode, the fuel level
remains the same, and at the return time step k + j , it will
be reduced with the amount h f,i (k + j). We also consider
a specific mode for refilling a car where the fuel level is
increased by R f,i at each time step. Note that as a microgrid
can span a wide geographical region, and the fuel cell cars
can be parked at different locations, we assume that hydrogen
would be available only at a few spots. This is the main reason
that we need to refill the hydrogen tank of fuel cell cars.

By considering the relation between the fuel consumption
and the net power generation of a fuel cell [20], we can derive
the following equation for the evolution of the fuel level of
car i ∈ I in the power generation mode:

x f,i (k + 1) = x f,i (k) − (
α f,i u

∗
f,i (k) + β f,i

)
Ts (1)

where α f,i and β f,i are parameters related to the fuel cell
i and Ts is the sampling time interval. The actual power
generation of fuel cell i at time step k is indicated by u∗

f,i (k).
Considering that the primary and secondary controllers may
induce actual power generation levels that deviate from the
scheduled level, we have

u∗
f,i (k) = u f,i (k) + wi (k) ∀k (2)

where u f,i (k) indicates the scheduled power generation of fuel
cell i ∈ I at time step k and wi (k) is an unknown time-varying
deviation from the scheduled value.

By gathering all the operational modes of fuel cell car
i ∈ I, the following piecewise affine model describes the
system dynamics:
x f,i (k + 1)

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x f,i (k) + R f,i refilling

x f,i (k) no generation and

transportation

x f,i (k) − (
α f,i u∗

f,i (k) + β f,i
)
Ts generation

x f,i (k) − h f,i (k) return.

(3)

The motivation behind this model is discussed in more detail
in [19]. Note that a car in the driving mode influences the
control system only by changing the remaining fuel in its
tank. As the car is not used for the power generation until it
returns to the microgrid’s area, only the amount of remaining
fuel at the arrival time is important. Therefore, the loss of
communication when the car is out of range is not a problem.

To indicate the operational mode of fuel cell car i ∈ I,
we use two binary variables s f,i and sr,i . The refilling mode
at time step k is indicated by sr,i (k) = 1; in other modes,
sr,i (k) = 0. The power generation mode corresponds to
s f,i (k) = 1 and, if s f,i (k) = 0, the fuel cell i is turned off.
It is assumed that while a fuel cell car is in the driving mode,
it can neither generate power for the microgrid nor be refilled.
These constraints can be represented by

if λ f,i (k) = 1 then sr,i (k) = 0

if λ f,i (k) = 1 then s f,i (k) = 0.

We assume that if a fuel cell is being refilled, it cannot generate
power. Other constraints in the operation of a fuel cell include
the maximum level of power generation and the maximum fuel
level. Moreover, a fuel cell can generate power only when the
fuel level of the car is above a certain minimum level. These
constraints can be represented as follows:

if sr,i (k) = 1 then s f,i (k) = 0

0 ≤ u f,i (k) ≤ ū f,i

x f,i s f,i (k) ≤ x f,i (k) ≤ x̄ f,i .

The equivalent mixed logical dynamical model [21] of the
system in (3) with the constraints as explicated above is given
by

x(k + 1) = x(k) + B1(w(k))u(k)

+ B3(k)z(k) + B4(k)

E3z(k) ≤ E1u(k) + E4x(k) + E5(k) (4)

where the vectors x , u, and z are defined in (5). Note that,
for the sake of compactness, the time step k is dropped in the
following equations. We define:

x = [x f,1 . . . x f,Nveh ]T

u = [u f,1 sr,1 s f,1 . . . u f,Nveh sr,Nveh s f,Nveh ]T

z = [z f,1 . . . z f,Nveh ]T . (5)

The continuous auxiliary variables z f,i are defined as z f,i (k) �
s f,i (k) u f,i (k), for all i ∈ I and k. With defining diag{.} as a
block diagonal matrix with the arguments as diagonal blocks,
we can define matrices B1(k), B3(k), and B4(k) as follows:

B1(k) = diag
{
b1

1(k), . . . , bNveh
1 (k)

}

B3(k) = diag
{
b1

3(k), . . . , bNveh
3 (k)

}

B4(k) = [−λ f,1(k)h f,1(k) . . . − λ f,Nveh (k)h f,Nveh (k)]T

where bi
1(k) = [0 R f,i (1 − λ f,i (k))Ts(β f,i + α f,iwi (k))] and

bi
3 = (1 − λ f,i (k))Tsα f,i , for i ∈ I.
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III. CENTRALIZED ROBUST CONTROL ARCHITECTURE

The power scheduling problem of the considered microgrid
can be solved by designing a central control system for the
whole microgrid. In this scenario, a control center gathers all
the relevant information from the devices in the microgrid,
determines a power scheduling profile for each fuel cell
car, and sends these profiles to each car. To determine the
power scheduling profiles, the operational cost of the system
over a finite horizon is minimized subject to the system
constraints. In this section, two centralized MPC approaches
are developed by considering the specific features of the
system.

A. MM Control Method

In the framework of MPC, the operational cost of the system
is minimized over a finite time window with respect to the
system constraints. The model for the system developed in
Section II-B contains an uncertain variable, w, see (2), and to
deal with this uncertainty, an MM control method is proposed
in [19]. In the MM control method, the operational cost of
the system is minimized for the worst case realization of the
uncertainty. In addition, by satisfying the system constraints
for the worst case uncertainty, the MM control method guar-
antees the satisfaction of the constraints for any realization of
the uncertainty.

We can define the following cost function for the
system [19]:

J (k) =
∑

j∈P

∑

i∈I

[
Wp,i u

2
f,i (k + j) + Ws,i |�s f,i (k + j)|

+ Ce(k + j)wi(k + j)
]

(6)

where �s f,i (k+ j) is defined as s f,i (k+ j)−s f,i(k+ j−1). The
two parameters, Wp,i and Ws,i , determine the cost of power
generation and the cost of switching the operational mode of
a fuel cell. The value of wi (k + j) indicates the deviation
from the scheduled power generation of fuel cell i ∈ I at
time step k + j . This deviation is the result of an effort for
stabilizing the microgrid. In order to encourage the fuel cell
cars to stabilize the microgrid, we assume that each fuel cell i
for i ∈ I gets a reward equal to Ce(k+ j)wi(k+ j) at time step
k + j for the willingness to deviate its actual power generation
from the scheduled one by the amount of wi (k + j). This
reward for fuel cell cars is an additional cost for the microgrid
operator.

Note that the quadratic part of the cost function (6),
i.e., Wp,i u2

f,i (k), is Wp,i u2
f,i (k), is mainly the result of the

degradation of the fuel cells due to the defined in a quadratic
way because by increasing the net power generation of a
fuel cell, some auxiliary devices such as the fuel cell cool-
ing system and the air compressor will be activated, which
result in ever-increasing operational cost. On the other hand,
the deviation wi is penalized by a linear factor because it is
related to the electricity market of the primary and secondary
control levels. As a result, each unit of electrical energy has
a predefined price at time step k, i.e., Ce(k), and the cost
function related to wi becomes linear.

By defining

w̃i (k) = [wi (k) . . . wi (k + Np − 1)]T

the operational cost of the system can be rewritten as

J (k) =
∑

i∈I

(
Ṽ T

i (k)Wq,i (k)Ṽi (k) + Wv,i (k)Ṽi (k)

+ Wd,i (k)w̃i (k)
)

(7)

where Wq,i , Wv,i , and Wd,i can be determined for all i ∈ I
based on the values of Wp,i , Ws,i , and Ce, respectively. The
vector of optimization variables, Ṽ (k), is defined as

Ṽ (k) = [
Ṽ T

1 (k) . . . Ṽ T
Nveh

(k)
]T (8)

where Ṽi (k) is the vector of optimization variables related to
fuel cell i ∈ I

Ṽi (k) = [
ũT

i (k) z̃T
i (k)

]T
. (9)

The vectors ũi and z̃i in (9) are the stacked version of the
following variables over time steps k to k + Np − 1 :

ui (k) = [u f,i (k) sr,i (k) s f,i (k)]T

zi (k) = s f,i (k)u f,i (k).

By extending the system constraints in (4) to all the time
steps in the prediction window, we can determine the matri-
ces G1,i , G2,i , and G3,i such that the following inequali-
ties describe the system constraints in the whole prediction
window:

G1,i (w̃(k))Ṽi (k) ≤ G2,i (k) + G3,i (k)xi(k) ∀i ∈ I. (10)

The power balance condition is
∑

i∈I
u f,i (k + j) = Pd(k + j) ∀ j ∈ P (11)

where Pd (k + j) is the residual load of the microgrid at time
step k+ j , i.e., the microgrid’s load minus the generated power
by the renewable energy sources.

In the MM approach, the aim is to minimize the operational
cost of the system for the worst case uncertainty, while the
system constraints are satisfied for any realization of the
uncertainty. Therefore, the following optimization problem
should be solved at each time step k :

min
{Ṽi (k)}i∈I

max
{w̃i (k)}i∈I

∑

i∈I

(
Ṽ T

i (k)Wq,i (k)Ṽi (k) + Wv,i (k)Ṽi (k)

+ Wd,i (k)w̃i (k)
)

s.t. (10), (11), for all w̃i where i ∈ I. (12)

We assume that the uncertainties are always realized within
given bounds as follows:

wi ≤ wi (k) ≤ w̄i , for all i ∈ I and k. (13)

The source of uncertainty is the errors in the prediction of
the residual load, which contain the errors in the prediction
of RES power generation and the microgrid’s load. An exten-
sive review on different methods of forecasting the load is
presented in [22] and based on this reference, a common
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forecasting method can be written in the following form of
p(t) = f (t) + v(t), where p(t) is the predicted load, f (t) is
a predetermined function, and v(t) is a white random noise
at time t . Considering that any white noise signal has a
finite variance, it is possible to determine some approximate
boundaries on the realization of the noise. Even though there
remains a small probability that the realization of the noise
is outside the determined bounds, by selecting a large enough
boundary, we can neglect the probability that the realization
of the noise is outside of the determined boundaries. Because
the uncertain variables wi (k) for all i ∈ I are proportionally
related to the error in the total load of the microgrid, we can
define a minimum and a maximum level for the realization of
each wi (k).

As a result of (13), we can define the set W such that
[w̃T

1 (k) . . . w̃T
Nveh

(k)]T ∈ W , where for all i ∈ I, all the
elements of w̃i (k) comply with the inequalities in (13).

By following the approach mentioned in [18, Lemma 1],
we can conclude that by using assumption (13), the following
inequalities guarantee that (10) is satisfied for any realization
of w̃(k) ∈ W :

G1,i (ŵ1,i (k))Ṽi (k) ≤ G2,i (k) + G3,i (k)xi (k) ∀i ∈ I
...

G1,i (ŵN,i (k))Ṽi (k) ≤ G2,i (k) + G3,i (k)xi (k) ∀i ∈ I (14)

where ŵ1,i (k), …, ŵN,i (k), with N = 2Np , are defined as

ŵ1,i (k) = [wi (k) wi (k + 1) . . . wi (k + Np − 1)]T

ŵ2,i (k) = [wi (k) wi (k + 1) . . . w̄i (k + Np − 1)]T

...

ŵN,i (k) = [w̄i (k) w̄i (k + 1) . . . w̄i (k + Np − 1)]T .

Therefore, the optimization problem (12) can be rewritten as

min
Ṽi (k),i∈I

max
p∈{1,...,N}

∑

i∈I

(
Ṽ T

i (k)Wq,i (k)Ṽi(k)

+ Wv,i (k)Ṽi (k) + Wd,i (k)ŵp,i (k)
)

s.t. (14) and (11). (15)

The problem (15) is a mixed integer quadratic program-
ming (MIQP) problem and can be solved by a standard solver
such as Gurobi [23].

B. DF MM Control Method

The MM control method of Section III-A guarantees that
the system constraints are satisfied for any realization of
the disturbance. However, the level of conservatism in the
MM method may be considerable. In [18], a DF control
method is developed that yields a better performance when
a control law is defined for the power generation of each fuel
cell car as follows:

u f,i (k + j) = v f,i (k + j) + K f,i (k + j)wi (k + j − 1)

(16)

where v f,i (k + j) and K f,i (k + j) are, respectively, the deter-
ministic part of the scheduled power generation and the

DF gain for fuel cell car i ∈ I at time step k + j . The
value of wi (k + j − 1) is unknown before time step k + j
but after that, it can be determined by subtracting the actual
power generation, u∗

f,i (k + j − 1), from the scheduled power
generation, uf,i (k + j − 1). Note that in the DF method,
the scheduled power generation, uf,i (k + j), at time step
k + j for j ≥ 1 consists of two parts: a deterministic part,
i.e., vf,i (k + j), and an unknown part, i.e., Kf,iwi (k + j − 1).

It can be shown that by defining the matrices GDF
1,i , GDF

2,i ,
and GDF

3,i in an appropriate way, the system constraints (10)
can be expressed as

GDF
1,i (ŵ1,i (k))Ṽ DF

i (k) ≤ GDF
2,i (k) + GDF

3,i (k)xi(k) ∀i ∈ I
...

GDF
1,i (ŵN,i (k))Ṽ DF

i (k) ≤ GDF
2,i (k) + GDF

3,i (k)xi(k) ∀i ∈ I
(17)

where

Ṽ DF
i (k) = [

ṽT
i (k) K̃ T

f,i (k) z̃T
i (k)

]T
.

The power balance constraint in the DF MM method can
be expressed as
⎧
⎪⎪⎨

⎪⎪⎩

∑

i∈I
u f,i (k) = Pd (k)

∑

i∈I
v f,i (k + j) = Pd (k + j), j ∈ {1, . . . , Np − 1}. (18)

The optimization problem of the model predictive controller
at time step k can be written as

min
Ṽ DF

i (k),i∈I
max

p∈{1,...,N}
∑

i∈I

((
Ṽ DF

i

)T
(k)W DF

q,i (k)Ṽ DF
i (k)

+ W DF
v,i (k)Ṽ DF

i (k)+W DF
d,i (k)ŵp,i (k)

)

s.t. (17) and (18). (19)

where W DF
q,i (k), W DF

v,i (k), and W DF
d,i (k) are defined based on the

cost function (6). Any MIQP standard solver can be used in
order to solve the optimization problem (19).

The MM and the DF MM methods are able to determine
a power schedule for the fuel cell cars such that the system
constraints are satisfied. In the DF MM approach, a feedback
law on the future disturbances prevents the expansion of the
possible state trajectories inside the predicted period, and as a
result, the level of conservatism is lower compared to the MM
method [18]. However, in order to implement these methods,
the driving patterns of all the fuel cell cars should be shared
with a central controller. To increase the privacy level of the
car owners, three distributed control methods are developed in
Section IV.

IV. DISTRIBUTED ROBUST CONTROL ARCHITECTURE

In this section, three distributed control strategies based on
dual decomposition, alternating direction method of multipli-
ers (ADMM), and proximal ADMM (PADMM) are developed
in order to support the MM and the DF MM approaches in
a distributed fashion. In the developed methods, the driving
patterns of the cars are kept private, i.e., there is no need to
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share the information about the departure or arrival time of
the cars with any other agent.

The generic distributed control strategies employed in this
section were originally developed for convex programming
problems [24]–[26]. The presence of binary variables makes
the optimization problems (15) and (19) nonconvex and,
hence, the developed algorithms might not converge at all
or converge to a nonoptimal point. The lack of convergence
in the power scheduling process will result in an imbalance
in the power generation and usage in the microgrid. However,
the use of some diesel generators as backup generation units
and some batteries to store energy can still guarantee the power
balance condition of the microgrid. To decrease the usage
of fossil fuels or batteries, we assume that the correction of
power scheduling using backup generation and storage units is
much more expensive compared to the generated power of a
fuel cell.

The developed methods are based on some iterations, i.e., an
information exchange process between a coordinator and the
cars. At the end of each iteration, the control system reaches
a specific power schedule. If the power balance is satisfied
or a maximum number of iterations is reached, the loop of
iterations is terminated by the coordinator and the fuel cell cars
execute the last power schedule; otherwise, the coordinator
starts a new iteration. The backup generation and storage units
are used when the loop of iterations is terminated while the
power balance condition is not reached.

A. Dual Decomposition Method

In the dual decomposition approach, a new optimization
problem, called the dual problem, is constructed based on the
original problem, i.e., the primal problem, e.g., (15) or (19).
In some cases, the structure of the dual problem allows us to
solve it in a distributed fashion. As will be explained below,
the dual problems of (15) and (19) can be separated between
all the cars.

In the dual decomposition method, the dual problem is
solved in a distributed fashion. Because the optimization prob-
lems are not convex, the optimum value of the dual problem
might be smaller than that of the primal problem. In other
words, there might be a duality gap [24]. The presence of a
duality gap means that the power scheduling process has not
reached to the balance condition yet; in this case, the backup
generation and storage units will be used to guarantee the
power balance condition. Note that by design, the control
algorithms tend to maintain the power balance using only the
fuel cell cars. The backup generation and storage units are used
only when the controller fails to maintain the power balance
using only fuel cell cars.

The MM problem (15) consists of N MIQP problems, where
the pth MIQP (primal) problem is formulated as

P : min
Ṽi (k),i∈I

∑

i∈I

(
Ṽ T

i (k)Wq,i (k)Ṽi (k) + Wv,i (k)Ṽi (k)

+ Wd,i (k)ŵp,i(k)
)

s.t. (11) and (14) (20)

and its dual problem can be written as

D : max
λ(k)∈R

Np
min

Ṽi (k),i∈I

∑

i∈I

(
Ṽ T

i (k)Wq,i (k)Ṽi (k)

+ Wv,i(k)Ṽi (k) + Wd,i (k)ŵp,i (k)
)

+ λT (k)(ũt(k) − P̃d (k))

s.t. (14) (21)

where ũt(k) and P̃d(k) are the stacked versions of ut and Pd

over time steps k to k + Np , that is,

ũt(k) = [ut(k) . . . ut(k + Np − 1)]T

P̃d (k) = [Pd (k) . . . Pd(k + Np − 1)]T .

The variable ut(k) represents the total power generation of
fuel cell cars at time step k: ut(k) = ∑

i∈I u f,i (k).
With a given value for λ(k), the minimization part of (21)

can be separated, i.e., distributed, between the cars. For fuel
cell car number i ∈ I, the following problem should be solved:
Ṽ ∗

i (k) = arg min
Ṽi (k)

(
Ṽ T

i (k)Wq,i (k)Ṽi (k) + Wv,i (k)Ṽi (k)

+Wd,i (k)ŵp,i(k)
) + λT (k)ũ f,i (k)

)
(22)

subject to

G1,i (ŵ1,i (k))Ṽi(k) ≤ G2,i (k) + G3,i (k)xi(k)

...

G1,i(ŵN,i (k))Ṽi(k) ≤ G2,i (k) + G3,i (k)xi(k). (23)

All the optimization variables in (22) belong to a single car and
the problem can be solved without any dependencies on other
fuel cell cars. The solution of (22) and (23), Ṽ ∗

i (k), is in fact a
function of λ(k), where λ(k + j) for j ∈ P can be interpreted
as a signal to determine the need for power generation in
different time steps. A lower value for λ(k) indicates more
need for power generation at time step k. The maximization
part of (21) is called the master problem and can be written
in the form of

max
λ(k)∈R

Np

∑

i∈I
Ṽ ∗

i (λ(k)). (24)

Note that
∑

i∈I Ṽ ∗
i (λ(k)) is a concave function of λ(k),

because it is the minimum of a collection of linear functions
in λ(k). Therefore, (24) can be solved by a gradient ascent
algorithm. We consider a coordinator to solve the master
problem (24). Note that only the variables related to the power
generation, u f,i (k + j), for i ∈ I and j ∈ P , are involved in
the master problem (24) and, hence, driving patterns of the
cars, i.e., λ f,i (k + j), for i ∈ I and j ∈ P , are not required
in solving the master problem. Therefore, no privacy-sensitive
data on usage of the cars need to be shared between the fuel
cell cars and a central coordinator.

B. ADMM Method

In the method of ADMM, the dual problem is constructed
based on an augmented Lagrangian function, Lρ [25]. By con-
sidering the definition of the cost function in (7) and the power
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balance constraint, the augmented Lagrangian function is of
the form

Lρ(ũ(k), z̃(k), λ) = J (k) + λT (ũt(k) − P̃d (k))

+ ρ

2
‖ũt(k) − P̃d (k)‖2

2 (25)

where ρ is a penalty parameter. The dual problem is then

D : max
λ∈R

Np
min

ũ(k),z̃(k)
Lρ(ũ(k), z̃(k), λ)

s.t. (14). (26)

Based on the ADMM approach, in order to solve (26), each
fuel cell requires to solve the following optimization problem:

min
ũi (k),z̃i (k)

Lρ,i (ũi (k), z̃i (k), ũr (k), λ)

s.t. (23) (27)

where Lρ,i and ũr (k) are defined as follows:
Lρ,i (k, λ) = Ji (k) + λT (ũ f,i (k) + ũr (k) − P̃d (k))

+ ρ

2
‖ũ f,i (k) + ũr (k) − P̃d (k)‖2

2

ũr (k) = [ur (k) . . . ur (k + Np − 1)]T .

In the above-mentioned definition, Ji (k) is a part of the cost
function (6) related to fuel cell i and ur (k) is the total power
generation of all the fuel cells except fuel cell i at time step
k as follows:

Ji (k) =
∑

j∈P

(
Wp,i u

2
f,i (k + j) + Ws,i |�s f,i (k + j)|

+ Ce(k + j)wi(k + j)
)

ur (k) =
∑

n∈I
u f,n(k) − u f,i (k).

If the value of ũr (k) is known for fuel cell i , (27) can be
written as an MIQP problem

min
Ṽi (k)

Ṽ T
i (k)Mq,i (k)Ṽi (k) + Mv,i (k)Ṽi (k)

s.t. (23) (28)

where Mq,i (k) and Mv,i (k) can be determined based on the
model and driving pattern of fuel cell car i .

In the ADMM method, different agents solve a minimiza-
tion problem one after another. In fact, each agent mini-
mizes the augmented Lagrangian function by assuming that
all the other agents have already made their decision. The
determined solution, or the decision of the agent, will be
shared with the next agent and the same procedure will be
repeated until the last agent. After solving the last optimization
problem, the coordinator will be informed about the decisions
of all the agents. The coordinator executes a gradient ascent
algorithm, and as a result, new values for the Lagrangian
multipliers will be determined. The coordinator propagates
these updated values among all the agents. In our problem
formulation, only the power generation profiles of fuel cells
are involved in the global constraint. Therefore, there is no
need to share all the optimization variables with other agents.
It is worth mentioning that the driving patterns of the cars can
also be kept private, as they are not directly involved in the

global constraint. The interested reader is referred to [25] for
a review of the ADMM algorithm.

C. PADMM Method

In the PADMM [26], the coordinator and all the cars are
following the same procedure as described in Section IV-B.
However, the optimization problem that is solved in the fuel
cell cars is different because a proximal term is added to the
objective function. Therefore, rather than solving (28), fuel
cell i solves the following problem during each iteration at
time step k:

min
Ṽi (k)

Ṽ T
i (k)Mq,i (k)Ṽi (k) + Mv,i (k)Ṽi (k)

+ 1

2

(
Ṽi (k) − V prev

i (k)
)T

Qi
(
Ṽi (k) − V prev

i (k)
)

s.t. (23) (29)

where V prev
i (k) indicates the vector of optimization variables

related to agent i determined at the previous iteration. At the
first iteration, we assume that V prev

i (k) = 0. The matrix Qi

is a weight factor. The purpose of adding the proximal term
to the objective function of each agent is to achieve a faster
convergence compared to the ADMM method [26], [27]. Note
that (29) is still an MIQP problem.

D. Discussion on Data Exchange

All the methods developed in this section are designed
according to a distributed architecture, therewith guaranteeing
the privacy of the cars’ driving patterns, and are able to handle
uncertainty in the power generation of the fuel cells. During
each iteration of the dual decomposition method, the coordi-
nator propagates the value of λ(k) to all the fuel cell cars
and each fuel cell car i ∈ I sends back its decision regarding
ũ f,i (k) to the coordinator. Therefore, the information that is
exchanged at each iteration consists of 2Np Nveh variables.
A communication channel between the coordinator and fuel
cell cars suffices to implement the dual decomposition method.
For the ADMM and PADMM methods, the value of ũt(k)
should be transferred from one fuel cell car to its nearest
neighbor. Therefore, the communication network topology
required by the ADMM and PADMM methods is different
from the one required by the dual decomposition method
in the sense that individual fuel cell cars should be able to
communicate with their adjacent fuel cell cars. In the ADMM
and PADMM methods, the total information exchanged at each
iteration is Np(2Nveh +1) variables, which is close to the total
information exchanged using the dual decomposition method.

Note that a typical sample time for power scheduling in such
systems is between 10 and 15 min. Therefore, the available
time for determining control inputs at each sample time is at
least 10 min. As a result, the communication process time is
negligible in this type of application.

V. ILLUSTRATIVE CASE STUDIES

In this section, the results of simulating the devel-
oped control methods in different microgrids are reported.
The total number of fuel cell cars, Nveh, in the microgrid
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Fig. 1. Residual load of the microgrid, Pd (k), with four fuel cell cars. The
solid line indicates the predicted value, while the actual residual load will be
realized inside the shaded area.

is variable among different simulation scenarios. In line
with [20], the characteristics of fuel cell i are given by α f,i =
0.05 + 0.001i +γα,i and β f,i = 0.09 + 0.0001i +γβ,i ; so note
that the characteristics are different for each fuel cell. The
parameters γα,i and γβ,i represent the difference between the
simulation model of the plant and the model that is used in the
controller. Their values are set to zero in the control model,
while in the simulation, we selected random real numbers
in the range [−0.001, 0.001] for γα,i and [−0.002, 0.002]
for γβ,i . The maximum power generation of any fuel cell,
ū f,i , is assumed to be 15 kW and the fuel tank of any car
has a capacity x̄ f,i of 5 kg for all i ∈ I. In order to preserve
some fuel for transportation purposes, we consider x f,i = 2
kg as the minimum level of fuel in each car. The time interval
between the two consecutive time steps, Ts, is 15 min.

The values of Wp,i and Ws,i in the cost function (6) are
0.5 + 0.005i and 1.5 + 0.005i , respectively. We consider a
number of cars, Nveh, that vary from 4 to 50. Following
the standard tuning rule in MPC [28], we have selected the
prediction horizon in such a way that during the prediction
horizon window, the most important dynamics of the system
can be covered. For example, Np = 6 can cover the refilling
process and power generation of a car in the future. Any
prediction horizon around this number is suitable for our
application and we used Np = 4, 6, and 8 to show that the
improvement of the performance by using DF MM approach is
not dependent on the specific selection of the control horizon.

The upper and lower bounds on the uncertainty of power
generation of each fuel cell are assumed to have equal
magnitude, but different signs, i.e., w̄i = −wi . The value
of w̄i varies from 0.5 to 2 kW for all i ∈ I in different
simulations, but we assume that in each simulation, w̄i is the
same for all i ∈ I. Fig. 1 depicts the residual load, Pd (k),
of a microgrid that contains four fuel cell cars during the 10 h
of our simulation. In the rest of our case studies, the residual
load will increase in direct proportion to the number of cars.
In order to obtain a comparison between the systems with
different sizes, we consider that the fuel cell cars do not leave
the microgrid. The refilling rate of all cars, R f,i for all i ,
is considered to be 2 kg per time step.

The value of 0.1 is selected for the penalty parameter,
ρ, in the ADMM and PADMM methods. In order to solve
the optimization problems of the PADMM method fast,
the weight factor Qi is determined to have a diagonal form

TABLE II

OPERATIONAL COST OF A MICROGRID WITH CENTRALIZED
ARCHITECTURE USING THE DF MM APPROACH

AND THE MM APPROACH

Qi = diag{Ws,i I3Nveh×3Nveh , 0Nveh×Nveh } for the MM method.
In the DF MM method, the structure of Qi remains the same,
while the size of the diagonal blocks changes with respect to
the changes in the size of ũi (k) and z̃i (k).

Table II lists the performance of the two developed cen-
tralized approaches, i.e., the MM approach and the DF MM
approach, for a microgrid containing four fuel cell cars.
The results show that for different values of the prediction
horizon, Np , and the disturbance bound, w̄i , the DF MM
approach outperforms the MM approach. These results are as
expected, because the level of conservatism in the DF approach
is less than the MM approach.

In order to compare the performance of the three distrib-
uted control approaches, the system is first simulated with
a central control system. Then, the operational cost of each
distributed control approach is compared to the centralized
solution in order to determine a measure for the loss of perfor-
mance induced by the distributed solution. For example, if the
operational cost of the system using the dual decomposition
system is determined by Jdd and the centralized MPC cost
is Jc, we define the performance loss, edd, as follows:

edd �
∣∣
∣
∣

Jdd − Jc

Jc

∣∣
∣
∣ × 100%.

A lower value for edd indicates that the performance of
the dual decomposition approach is closer to the centralized
solution. Similarly, we define two other measures for the
performance loss, eadmm and epadmm, related to the ADMM
and PADMM approaches. Fig. 2 depicts the performance loss
of each distributed control method when the number of fuel
cell cars is changing, for Np = 6, and w̄i = 1. For the
ADMM and PADMM methods, the performance loss drops
significantly when the number of fuel cell cars in the system
increases. In fact, when the number of fuel cell cars in the
system increases, the influence of a single fuel cell car on the
total power generation decreases. Therefore, the influence of
binary variables s f,i and sr,i for i ∈ I on the total power
generation decreases when the number of fuel cell cars in
the system increases. As a result, the optimization problem
becomes closer to a convex programming case, where the
solution of primal and dual problems is identical. This fact
explains the decrease of performance loss in the ADMM and
PADMM when the number of fuel cell cars in the system
increases. For a system with a small number of fuel cell cars,
compared to the other distributed methods using the DF MM
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Fig. 2. Performance loss of distributed control systems, edd , eadmm,
and epadmm, with respect to the number of fuel cell cars inside the system
for (a) MM approach and (b) DF MM approach.

approach, the performance of PADMM is the closest to the
one of the centralized solution.

In general, the reason for the performance loss in all the
distributed methods is that in some time steps, the power
balance is achieved by using the auxiliary generator/batteries.
In the distributed control architectures, two types of power
generators/storage are used. The first type is the fleet of fuel
cell cars and the second type is auxiliary generator/batteries.
In the case that the power balance is not maintained by the
fuel cell car, the auxiliary generator/battery is used to maintain
the power balance. As this auxiliary equipment is much more
expensive to operate compared to fuel cell cars, in the case
that there is a mismatch between the power generation of fuel
cell cars and the residual load of the microgrid, the power
balance is maintained by using the auxiliary equipment and,
hence, the operational cost increases. The large performance
loss of dual decomposition method is mainly the result of a
relatively high level of power imbalance after scheduling the
power generation profile of all the fuel cell cars.

In order to show the satisfactory performance of the dis-
tributed ADMM and PADMM approaches when the number
of fuel cell cars is high enough, we have simulated different
scenarios by considering different levels of the disturbance and
different values for the prediction horizon. Due to the finite
horizon of our MPC methods, there is not a known theoretical
relation between the value of the parameters Np and ωi and
the actual closed-loop system performance. Therefore, we have
simulated the system for different values of Np and ωi , and
as we can check from Tables III and IV, for different values
of Np and ωi , the performance loss of the two distributed
approaches with respect to the centralized approach remains
small.

In the two centralized control methods, i.e., the centralized
MM method and the centralized DF MM method, the driving
patterns of the cars are shared with a centralized controller.

TABLE III

PERCENTAGE OF PERFORMANCE LOSS OF ADMM AND PADMM IN A
MICROGRID WITH 50 FUEL CELL CARS AND FOR DIFFERENT

VALUES OF Np AND w̄, USING THE MM APPROACH

TABLE IV

PERCENTAGE OF PERFORMANCE LOSS OF ADMM AND PADMM IN A

MICROGRID WITH 50 FUEL CELL CARS AND FOR DIFFERENT
VALUES OF Np AND w̄, USING THE DF MM APPROACH

Fig. 3. Computation time of different control strategies with respect to the
number of fuel cell cars using (a) MM approach and (b) DF MM approach.

In the rest of the methods, i.e., all the distributed methods,
the driving patterns are kept private. Fig. 2 demonstrates a
comparison between the centralized methods, i.e., the methods
that the driving patterns have to be shared, and the distributed
methods, i.e., the methods that keep the driving patterns
private. In general, the centralized methods have the best
performance, because the controller can determine the optimal
control input. In the distributed methods, the performance
decreases. However, Fig. 2 indicates that for a system with
more than 30 fuel cell cars, the performance loss of the
ADMM and PADMM methods is negligible.

Fig. 3 shows a comparison between the optimization time of
different control strategies. From this figure, we can conclude
that the optimization problems of distributed control methods
can be solved significantly faster than those of the centralized
methods. Here, the communication process between different
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TABLE V

COMPUTATION TIME (IN SECONDS) OF DIFFERENT CONTROL STRATEGIES
FOR A MICROGRID WITH 50 FUEL CELL CARS, w̄i = 0.5, AND

FOR DIFFERENT VALUES OF Np , USING THE MM
AND THE DF MM APPROACHES

agents and between each agent and the coordinator is not taken
into account and the sole purpose of Fig. 3 is the comparison
in the computation time required to solve the optimization
problems. All the simulations are run on a Linux machine
with 16 GB of RAM and an Intel Xeon CPU with eight
cores and 3.7-GHz clock speed. The solver Gurobi is used
in all the simulations. Note that the optimization problems of
different cars are solved in parallel in the dual decomposition
approach. As a result, increasing the number of cars does not
influence the computation time of this method. We have used a
serial implementation of the ADMM and PADMM methods,
see [27]. In a serial implementation of the ADMM, agents
solve their respective optimization problems consecutively.
In other words, the optimization problems are solved serially
and the result is that increasing the number of agents in
the system increases the total computation time. However,
compared to the centralized control architecture, ADMM and
PADMM methods still require much less computation time.
In order to prevent the shortage of memory, we have set a
limit on the computation time of each optimization problem.
In our simulations, the computation times of the distributed
methods were all below this limit. However, in the case of
the centralized architecture for large number of cars, this
limit was reached and thus acted as a hard constraint for the
solver. The reason that the computation time of the centralized
control architecture in Fig. 3 does not grow exponentially after
around 10 fuel cell cars is, in fact, the limit that is set in the
solver. Table V demonstrates the computation time of different
control methods by using different prediction horizons.

VI. CONCLUSION

A fleet of fuel cell cars can be considered as a distributed
power generation system inside an islanded mode microgrid
and an appropriate power scheduling of the fuel cells can
maintain the power balance of the microgrid. We have shown
that the MM and the DF MM methods are able to schedule
the power generation of fuel cell cars by minimizing the
operational cost of the system with respect to the physical and
operational cost of the system. Both of the control methods
can deal with uncertainty in the prediction of the residual
load of the microgrid. A centralized architecture to implement
MM and DF MM methods is disadvantageous because the
privacy of the car owner, with respect to driving patterns,

cannot be respected in such a centralized setting. However,
in the proposed distributed control methods, the driving pattern
of any car is kept private and not shared with any other
agent. Another advantage of the proposed distributed methods
is their scalability and applicability in large-scale systems
by reducing the computational burden of the solution of
the optimization problems. The mentioned advantages of the
distributed control methods come with the cost of losing a
certain level of performance in the operation of the system.
However, case studies show that the performance loss is
related to the number of fuel cell cars in the system and
becomes smaller for large vehicle numbers, which would be
the case in envisioned practical scenarios. Among the three
distributed control methods, the PADMM has the least loss
of performance when the number of cars is small. When
the number of cars in the system grows, the performance of
the ADMM and the PADMM methods become closer to the
performance of a centralized control architecture.

Topics for future research include the simulation of micro-
grid while considering the network topology and the model
of the low-level controllers, the development of a distributed
control architecture for the operation of a microgrid in the
grid-connected mode, clustering the fuel cell cars in the
ADMM method, and adjusting the current control methods
to deal with more complex models of the system.
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