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A B S T R A C T

Probabilistic forecasts are regarded as the highest achievable goal when predicting earthquakes, but limited
information on stress, strength, and governing parameters of the seismogenic sources affects their accuracy.
Ensemble data-assimilation methods, such as the Ensemble Kalman Filter (EnKF), estimate these variables
by combining physics-based models and observations. While the EnKF has demonstrated potential in perfect
model experiments using earthquake simulators governed by rate-and-state friction (RSF) laws, challenges arise
from the non-Gaussian distribution of state variables during seismic cycle transitions. This study investigates
the Adaptive Gaussian Mixture Filter (AGMF) and the Particle Flow Filter (PFF) as alternatives for improved
stress and velocity estimation in earthquake sequences compared to Gaussian-based methods like the EnKF.
We test the AGMF and the PFF’s performance using Lorenz 96 and Burridge–Knopoff 1D models which are,
respectively, standard simplified atmospheric and earthquake models. This approach, using widely recognized
and commonly used testbed models in their fields, makes the methods and findings accessible to both the
data assimilation and seismology communities, while supporting comparisons and collaboration. We test these
models in periodic, and aperiodic conditions, and analyze the impact of assuming Gaussian priors on the
estimates of the ensemble methods. The PFF demonstrated comparable performance in chaotic scenarios,
yielding lower RMSE for the estimates of the Lorenz 96 models and stronger resilience to underdispersion
for the Burridge–Knopoff 1D models. This is vital given the limited and sparse historical earthquake data,
underscoring the PFF’s potential in enhancing earthquake forecasting. These results emphasize the need for
careful data assimilation method selection in seismological modeling.
1. Introduction

Data assimilation (DA) techniques are used for forecasting geophys-
ical systems with uncertain conditions, by combining information from
physics-based simulations and observational data to estimate states or
parameters (Evensen et al., 2022; Bannister, 2017; van Leeuwen, 2010;
Evensen, 2003). DA’s utility spans from weather forecasting (Evensen,
1994; Reichle, 2008) to hydrologic models (Liu et al., 2012) and
oil production (Aanonsen et al., 2009; Evensen and Eikrem, 2018).
Geophysical systems, characterized by their sensitivity to initial con-
ditions and potential for significant error growth over time, underscore
the importance of DA’s trajectory correction (Carrassi et al., 2022).
The Adaptive Gaussian Mixture Filter (AGMF) (Stordal et al., 2011)

∗ Corresponding author.
E-mail address: h.a.diabmontero@tudelft.nl (H.A. Diab-Montero).

and Particle Flow Filter (PFF) (Hu and van Leeuwen, 2021) are non-
Gaussian ensemble DA methods, suited for chaotic systems which are
characterized by being sensitive to the initial conditions and show
aperiodic behavior. The AGMF bridges particle filter’s importance sam-
pling weights via Gaussian mixtures with the Ensemble Kalman Filter’s
update, while PFF solves a transport differential equation to iteratively
transform the prior distribution to the posterior. The effectiveness of
these methods has been tested in atmospheric physics models noticing
more accurate estimates (Stordal et al., 2011; Hu and van Leeuwen,
2021; Hu et al., 2024), especially when dealing with non-Gaussian
distributions and non-linear observation operators. Similarly, when
estimating earthquake and fault slip occurrences challenges arise from
https://doi.org/10.1016/j.cageo.2024.105836
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the non-Gaussian distribution of state variables during seismic cycle
transitions (Diab-Montero et al., 2023).

In the realm of earthquake forecasting, the rate-and-state friction
(RSF) law marks a significant advancement over traditional
slip-weakening friction models. Developed from laboratory experiments
on slip instabilities and rate weakening (Marone, 1998), the primary
advantage of the RSF law is its versatility in describing a broad spec-
trum of laboratory data (Ruina, 1983; Dieterich, 1979). This versatility
nables it to more accurately model the initiation, progression, and
ermination of seismic events, offering a comprehensive understanding
f earthquake dynamics that previous models could not adequately

capture. However, the inherent non-linearity of the RSF law leads to
tiff differential equations in numerical simulations (Erickson et al.,

2008), which pose challenges when solving these equations. This often
equires techniques such as adaptive time stepping or may lead to
he creation of non-Gaussian distributions when using an ensemble of
imulations (Diab-Montero et al., 2023), especially when parameters

are uncertain. While regularization of the RSF law improves numer-
ical stability and does not necessarily produce periodic earthquake
sequences, it can, in some cases, still result in simpler, more periodic so-
lutions that may not fully capture the complex recurrence of earthquake
events in nature (Lapusta and Rice, 2003; Erickson et al., 2008, 2011).
This limitation underscores the need for sophisticated data assimilation
methods that can handle such complexity and uncertainty, such as ac-
ounting for model error–representing unknown or unmodeled physical
rocesses and inaccuracies in the model physics–by augmenting the
tate vector with additional terms, an approach we use in our work.

Over the past decade, various data assimilation methods have been
developed to address different components of the earthquake pro-
cess, including estimation of seismic wavefield, calculation of slip
rates, and forecasting of fault slip events (Maeda et al., 2015; Oba
t al., 2020). These methods, although tested through perfect-model
xperiments (Kano et al., 2013; Hori et al., 2014), face challenges in
odeling RSF, leading to non-Gaussian distributions (van Dinther et al.,

2019; Hirahara and Nishikiori, 2019). Ensemble distributions of slow
acceleration models are primarily Gaussian, which facilitate the use
of Ensemble Kalman filters which have proven useful to correct the
state of the earthquake models and an effective manner to influence
he evolution of the system (van Dinther et al., 2019; Diab-Montero
t al., 2023). However, non-Gaussian distributions are typical in fast
cceleration models which pose challenges for the EnKF (Banerjee
t al., 2023; Diab-Montero et al., 2023). Thus, it is essential to develop

data assimilation methods that can manage non-Gaussian distributions
for estimating earthquake occurrences.

In this study, we evaluate the advantages of using the AGMF and
he PFF for non-Gaussian data assimilation of earthquake occurrences
n systems dominated by RSF. These methods have previously been

compared in simplistic atmospheric models, such as the Lorenz 96
ystem, and here we extend this analysis to investigate which findings
nd lessons from those comparisons are transferable to earthquake
ynamics. Given the differing physics of these systems, we aim to
est these methods in controlled and explainable conditions tailored to
arthquake modeling. We assess how the estimates of these filters of
he shear stress, velocity, and the state 𝜃 of the RSF law compare to
hose from the EnKF under periodic and chaotic conditions. Moreover,

we explore the use of including a model error term for estimating non-
periodic sequences in the presence of parameter bias. By understanding
he implications of these different methods and assumptions, we aim
o contribute to more accurate and efficient earthquake forecasting
ethodologies.

The outline of the paper is as follows: Section 2 explains the work-
ings of the ensemble-based data assimilation methods (EnKF, AGMF,
and PFF) and introduces the perfect-model experiments conducted on
Lorenz 96 and Burridge–Knopoff earthquake models under periodic and
chaotic conditions. Section 3 compares the estimates provided by the
hree methods for different observation coverages, and the evolution of
2 
the ensemble spread for each method across the seismic cycle. Besides,
n this section we present some results when including model error
s part of the state vector for dealing with parameter bias. Section 4

discusses the influence of prior information on the analysis update
of the PFF. The final section presents conclusions about the filter
performance for earthquake occurrence estimation under periodic and
chaotic conditions.

2. Methodology

2.1. Data assimilation

Data assimilation helps to better estimate the evolution of a system
by knowledge of its dynamics with observations thereof. The variables
of interest are represented as,

𝐳𝑇 =
(

𝐳𝑇𝝍 , 𝐳
𝑇
𝜶

)

, (1)

where 𝐳 is the state vector, and the components 𝐳𝜓 and 𝐳𝛼 signify system
states and parameters, respectively. In this study, we only include the
states (𝐳𝜓 ) in the state vector.

The estimation process entails two steps. The first, the forecast step,
that evolves the variables from a previous time 𝑡 − 1 to a future time 𝑡
sing the system’s dynamics:

𝐳𝑡 = 𝑡∶𝑡−1
(

𝐳𝑡−1
)

+ 𝒒𝑡, (2)

with 𝑡∶𝑡−1 as the forward model operator and 𝒒𝒕 as the model error.
The second, the analysis step, where we update our knowledge of

the system, is based on Bayes’ theorem:

𝑝(𝐳|𝐝) = 𝑝(𝐝|𝐳)𝑝(𝐳)
𝑝(𝐝)

, (3)

where 𝑝(𝐳), the prior, is derived from the state values obtained from
he forecast step, 𝑝(𝐝|𝐳) is the likelihood of the observations, and 𝑝(𝐝)
s the evidence.

Observations are represented by:

𝐝𝑡 = 𝑡(𝐳𝑡) + 𝝐𝑡, (4)

where 𝐝𝑡 is the observation vector, 𝑡 is the observation operator that
aps the state vector to observation space, and 𝝐𝑡 denotes measurement

rrors. The observation operator can be non-linear, but in this work we
ssumed it is linear.

The Ensemble Kalman Filter
We use in this study the stochastic Ensemble Kalman Filter (EnKF)

(Evensen, 2003), an ensemble-based data assimilation method and a
Monte Carlo approach for approximating the Bayesian update outlined
in Eq. (3). The EnKF combines the forward numerical model’s informa-
tion (prior) with its deviation from observations (likelihood) to yield
a posterior state vector estimate. We assume Gaussian distributions for
the prior, and the likelihood probability density functions (pdfs). Our
state vector ensemble is represented as:

𝐳𝑇𝑛 =
(

𝐳𝑇𝜓 , 𝐳
𝑇
𝛼

)

𝑛
, 1 ≤ 𝑛 ≤ 𝑁𝑚, (5)

where 𝑛 signifies an ensemble member, with the ensemble containing
𝑁𝑚 realizations. The prior is given by 𝐳𝑓𝑛 ∼  (𝐳𝑓𝑛 , 𝐶𝑓𝑧𝑧), with the forecast
uperscript (𝑓 ) signifying prior data from the forward numerical model.
he overline denote the ensemble average. The covariance, which
escribe the uncertainties of states, is approximated as:

𝐂𝑓𝑧𝑧 =
1

𝑁 − 1
(

𝐳𝑓 − 𝐳𝑓
) (

𝐳𝑓 − 𝐳𝑓
)𝑇

. (6)

Localization on the prior covariance matrix is applied via a Schur
product:

𝐂𝑓 ← 𝜌 ◦𝐂𝑓 , (7)
𝑧𝑧,𝑙 𝑜𝑐 𝑖,𝑗 𝑧𝑧
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where,

𝜌𝑖,𝑗 = 𝑒𝑥𝑝

{

−
(

𝑖 − 𝑗
𝑟𝑖𝑛

)2
}

, (8)

and 𝑖, 𝑗 = 1,… , 𝑁𝑐 . 𝑁𝑐 is the number of cells of the model, and 𝑟𝑖𝑛 is
the decorrelation radius which is dependent on the type of model used.
For a detailed explanation of localization, please refer to Appendix A.
Additionally, inflation is applied to the analysis covariance matrix
using:

𝐂𝑎𝑧𝑧,𝑖𝑛𝑓 𝑙 ← 𝜌𝑖𝑛𝑓 𝑙 𝐂𝑎𝑧𝑧, (9)

with 𝜌𝑖𝑛𝑓 𝑙, the inflation factor, slightly greater than one.
We adopt a perturbed-observations scheme, assuming observational

errors to be Gaussian (𝜺𝑛 ∼  (0, 𝐶𝑑 𝑑 )) and observation errors to be
uncorrelated. The perturbed observation vector is:

𝐝𝑛 = 𝐝 + 𝜺𝑛, 1 ≤ 𝑛 ≤ 𝑁𝑚, (10)

and the covariance error matrix is:

𝐂𝑑 𝑑 = 1
𝑁 − 1

𝑁
∑

𝑛=1
𝜺𝑛𝜺𝑇𝑛 . (11)

The EnKF combines the prior, observation vector, and their covari-
nces to compute the posterior distribution using:

𝐳𝑎𝑛 = 𝐳𝑓𝑛 +𝐊
[

𝐝𝑛 −𝐇𝐳𝑓𝑛
]

, 1 ≤ 𝑛 ≤ 𝑁𝑚, (12)

where K is the Kalman gain matrix and H is the observation operator
that we assume is linear. The Kalman gain is:

𝐊 = 𝐂𝑓𝑧𝑧𝐇
𝑇 (

𝐇𝐂𝑓𝑧𝑧𝐇
𝑇 + 𝐂𝑑 𝑑

)−1 , (13)

and determines how much we adjust our estimate of the system’s
state by balancing the new observations information against the prior
forecast, based on their uncertainties. A higher gain gives more weight
to the observations, while a lower gain favors the forecast. For more
details, refer to Evensen (2003), Evensen et al. (2022).

2.2. Methods with non-Gaussian prior assumptions

Adaptive Gaussian Mixture Filter
The Adaptive Gaussian Mixture Filter (AGMF) serves as a bridging

formulation between ensemble Kalman filters and particle filters anal-
ysis updates (Stordal et al., 2011; Van Leeuwen et al., 2019; Stordal
nd Lorentzen, 2014). This transition capability stems from a two-stage

update process in the analysis step.
1. Ensemble Member Update: The ensemble members and their

covariance matrix undergo an update, based on Eq. (12) but with a
ampened background covariance matrix:

𝐳𝑎𝑛 = 𝐳𝑓𝑛 + ℎ2𝐂𝑓𝑧𝑧𝐇
𝑇 (

ℎ2𝐇𝐂𝑓𝑧𝑧𝐇
𝑇 + 𝐂𝑑 𝑑

)−1 [𝐝𝑛 −𝐇𝐳𝑓𝑛
]

, 1 ≤ 𝑛 ≤ 𝑁𝑚,

(14)

where ℎ is the bandwidth parameter with ℎ ∈ [0, 1]. The update is the
same as the EnKF for ℎ = 1 and no update at ℎ = 0.

2. Importance Sampling: Ensemble members are assigned weights
ollowing a Gaussian mixture:

𝑤𝑛𝑡 = 
(

𝐝𝑛 −𝐇𝐳𝑓𝑛 , ℎ2𝐇𝐂𝑓𝑧𝑧𝐇
𝑇 + 𝐂𝑑 𝑑

)

𝑤𝑛𝑡−1. (15)

The weight normalization ensures their collective sum equals one:

̄ 𝑛𝑡 =
𝑤𝑛𝑡

∑

𝑛𝑤
𝑛
𝑡
. (16)

A bridging parameter 𝛽𝑡 is introduced to avoid weight collapse. It
adaptively minimizes weights towards uniform ones:

𝑛 𝑛 ( ) −1
𝑤𝑡 = 𝛽𝑡�̄�𝑡 + 1 − 𝛽𝑡 𝑁𝑚 , (17)

3 
by modulating both 𝛽𝑡 and ℎ, a smooth transition between behaving like
n ensemble Kalman filter, which is efficient for Gaussian assumptions,
nd a more flexible filter that can handle non-Gaussian distributions.
he optimal value for 𝛽𝑡 is defined as:

𝛽𝑡 =
𝑁𝑒𝑓 𝑓
𝑁𝑚

= 1

𝑁𝑚
∑𝑁𝑚
𝑛=1

(

�̄�𝑛𝑡
)2
. (18)

Finally, we use the resampling method used in Stordal et al. (2011)
to further avoid ensemble degeneracy when the effective sample size
𝑁𝑒𝑓 𝑓 is less than 80% of the ensemble size 𝑁𝑚.

Particle Flow Filter
The particle flow filter is a method that iteratively transforms

qually weighted samples from a prior distribution to the posterior
distribution (Hu and van Leeuwen, 2021), in contrast to the conven-
tional particle filter that assigns different weights to its samples based
on their likelihood given the observations and relies on these weights
to approximate the posterior distribution. The transformation follows
the solution of a differential equation of the type:
𝑑
𝑑 𝑠 𝐳𝑠 = 𝐟𝑠

(

𝐳𝑠
)

, (19)

where 𝐳𝑠 transitions from the prior to the posterior over an artificial
pseudo time 𝑠 ∈ [0,∞]:

𝑞0(𝐳) = 𝑝(𝐳),

∞(𝐳) = 𝑝(𝐳|𝐝),
(20)

The particle flow, 𝐟𝐬, can be determined either through the
ikelihood-factorization approach or by minimizing a distance mea-
ure between the intermediate pdf 𝑞𝑠 and 𝑞∞ (Evensen et al., 2022).
his study uses the latter method where the Kullback–Leibler (KL)
ivergence serves as the distance measure:

𝐾 𝐿 (

𝑞𝑠
)

= ∫ 𝑞𝑠 (𝐳) log
(

𝑞𝑠(𝐳)
𝑞∞(𝐳)

)

𝑑𝐳. (21)

The particle flow exists in a reproducing kernel Hilbert space
(RKHS) with a kernel 𝐊𝐤𝐞𝐫 , and it is designed to always reduce the
KL divergence over pseudo time:

𝐟𝐬 = 𝐂𝑓𝑧𝑧 ∫ 𝑞𝑠 (𝐳) {𝐊𝐤𝐞𝐫 (𝐳, ⋅) ∇𝑧 log (𝑝 (𝐳|𝐝)) + ∇𝑧 ⋅𝐊𝐤𝐞𝐫 (𝐳, ⋅)}. (22)

With a particle representation for 𝑞𝑠, the flow becomes:

𝐟𝐬 (𝐳) =
1
𝑁𝑚

𝐂𝑓𝑧𝑧
𝑁𝑚
∑

𝑛=1
{𝐊𝐤𝐞𝐫

(

𝐳𝑛𝑠 , 𝐳
)

∇𝑧𝑛𝑠 log
(

𝑝
(

𝐳𝑛𝑠 |𝐝
))

+ ∇𝑧𝑛𝑠 ⋅𝐊𝐤𝐞𝐫
(

𝐳𝑛𝑠 , 𝐳
)

}. (23)

which follows the form of a Fokker–Planck equation (Evensen et al.,
2022) with an attracting term and a repelling term respectively on the
right hand side. After discretizing the equation in pseudo time, the state
vector’s evolution is described as:

𝐳𝑠+𝛥𝑠 = 𝐳𝑠+
𝛥𝑠
𝑁𝑚

𝐂𝑓𝑧𝑧
𝑁𝑚
∑

𝑛=1
{𝐊𝐤𝐞𝐫

(

𝐳𝑛𝑠 , 𝐳𝑠
)

∇𝑧𝑛𝑠 log
(

𝑝
(

𝐳𝑛𝑠 |𝐝
))

+ ∇𝑧𝑛𝑠 ⋅𝐊𝐤𝐞𝐫
(

𝐳𝑛𝑠 , 𝐳𝑠
)

}.

(24)

The kernel 𝐊𝐤𝐞𝐫 (𝑧𝑛𝑠 , 𝑧) measures how each of the ensemble members
contribute to the local particle flow:

𝐊𝐤𝐞𝐫 (𝐳𝑛𝑠 , 𝐳) = exp
(

−1
2

(𝑧𝑛𝑠,(𝑗) − 𝑧𝑠,(𝑗))
2

𝛼 𝜎2(𝑗)

)

, (25)

where 𝑧𝑠,(𝑗) is the 𝑗th component of the 𝐳𝑠 vector, 𝛼 is the multiplication
actor determining the width of the kernel, and 𝜎(𝑗) is the standard
eviation of the 𝑗th component of the state vector. In the case of an
nfinite number of particles, the solution of the PFF is independent
f the kernel’s choice (Lu et al., 2019). In this study, a matrix-valued

Gaussian kernel is used as in Hu and van Leeuwen (2021). Unlike a
scalar kernel that applies a single distance measure uniformly across
all components of the state vector, the matrix-valued kernel allows
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for independent distance measurements in each of the states of the
particles. The attracting term can be expressed using Bayes theorem:

∇𝐳 log 𝑝(𝐳|𝐝) = ∇𝐳 log 𝑝(𝐳) + ∇𝐳 log 𝑝(𝐝|𝐳). (26)

For Gaussian distributions, gradients for the likelihood and the prior
are given by:

∇𝐳 log 𝑝(𝐝|𝐳) = 𝐇𝑇𝐂𝐝𝐝
−1 (𝐝 −𝐇𝐳) , (27)

and

∇𝐳 log 𝑝(𝐳) = −𝐂𝑓𝑧𝑧−1
(

𝐳 − �̄�𝑏
)

, (28)

where �̄�𝑏 is the prior mean.
For a more comprehensive explanation of these methods and their

theoretical foundations, readers are encouraged to refer to Evensen
t al. (2022).

2.3. Forward modeling

2.3.1. Lorenz 96 model
The Lorenz 96 model is a simplified yet effective representation of

the chaotic behavior of atmospheric dynamics (Lorenz and Emanuel,
1998) commonly used as benchmark in testing data assimilation tech-
iques. The equation that models Lorenz 96 is:
𝑑 𝑥𝑖
𝑑 𝑡 =

(

𝑥𝑖+1 − 𝑥𝑖−1
)

𝑥𝑖−1 − 𝑥𝑖 + 𝐹 (29)

with boundary conditions 𝑥−1 = 𝑥𝑁𝑐−1, 𝑥0 = 𝑥𝑁𝑐 , 𝑥𝑁𝑐+1 = 𝑥1 and
constraint 𝑁𝑐 ≥ 4. Here, 𝑥𝑖 represents a state element, for instance,
temperature, at a sector along a latitude circle divided into 𝑁𝑐 equal
sectors (van Kekem, 2018). The equation features advection, damping,
nd forcing effects. The system exhibits coherent structures and even
haotic behavior based on parameters 𝐹 and 𝑁𝑐 .

2.3.2. The 1D discrete Burridge–Knopoff model
Similar to the Lorenz 96 model, the Burridge–Knopoff (BK) model is

a simplified benchmark, but in this case of earthquake sequences. It is
characterized by a spring-block slider system (Burridge and Knopoff,
1967). In our study, the 1-D BK model comprises multiple blocks
connected by elastic springs with stiffness 𝑘𝜇 , depicted in Fig. 1.
The multiple-block structure in the 1-D BK model approximates the
patial distribution of stress along a fault. Each block interacts with its
eighbors, simulating how stress builds up, transfers, and propagates,
apturing key features of fault dynamics like stress heterogeneity and
lip. These blocks are elastically coupled (with stiffness 𝑘𝜆) to a rigid
late moving at speed 𝑣𝑝 across a frictionally rough surface, serving
s an analogue for a 1-D earthquake fault (Carlson et al., 1991). This

research adopts the 1-D BK system modeling methodology of Erickson
et al. (2011). The system of ordinary differential equations (ODEs) used
s:
̇̄𝑢𝑖 = 𝑣𝑖,

̇̄𝑣𝑖 = 𝛾2𝜇
(

�̄�𝑖−1 − 2�̄�𝑖 + �̄�𝑖+1
)

− 𝛾2𝜆𝑢𝑖 −
𝛾2𝜇
𝜉
𝜏𝑖,

̇̄
𝑖 = − (

𝑣𝑖 + 1) (�̄�𝑖 + (1 + 𝜖) log (�̄�𝑖 + 1)) .

(30)

Several modifications and simplifications were applied to achieve this
non-dimensional system of ODEs, including adopting the
non-dimensional variables from Madariaga (1998), Erickson et al.
(2011). In these equations, �̄� represents the non-dimensional slip of the
blocks, �̄� is the non-dimensional slip rate and �̄� is the non-dimensional
state of the RSF law, not to be confused with the 𝑠𝑡𝑎𝑡𝑒𝑣𝑒𝑐 𝑡𝑜𝑟 𝐳. We
also have the following parameters: 𝛾𝜇 and 𝛾𝜆 that are non-dimensional
frequencies, 𝑓 which is the scaled steady-state friction coefficient, 𝜉
that is the non-dimensional spring constant, and 𝜖 which measures
the sensitivity of the velocity relaxation. Studies have shown that
the 1-D BK models can exhibit periodic, chaotic behaviors and other
4 
Table 1
Non-dimensional rate-and-state friction parameters for the 1-D Burridge–Knopoff model
coupled with rate-and-state friction.

Parameter Symbol Periodic Chaotic

Sensitivity of the velocity relaxation 𝜖 0.3 0.5
Non-dimensional spring constant 𝜉 0.5 0.5
Non-dimensional frequency 𝛾𝜇 0.5 0.5
Non-dimensional frequency 𝛾𝜆

√

0.2
√

0.2
Scaled steady-state friction coefficient 𝑓 3.2 3.2

complex dynamical phenomena depending on the choice of these
parameters (Erickson et al., 2008, 2011). Additionally, 𝜏 is the shear
stress that is governed by the rate-and-state friction law (Ruina, 1983)
which is employed to explain the friction on the rough surface:

𝜏𝑖 = 𝑓 + �̄�𝑖 + log (𝑣𝑖 + 1) , (31)

where we see the relation of the shear stress with the rate (�̄�), and the
tate (�̄�) that fluctuate depending on interseismic (stick) and coseismic

(slip) phases. Given the choice of non-dimensional parameters, like 𝜖
and 𝜉, can produce smooth transitions from the interseismic to the
oseismic phase resembling a behavior more similar to Slow Slip Events
SSES) (Diab-Montero et al., 2023) rather than earthquakes, while a

different choice can also produce sharper transitions (Banerjee et al.,
2023; Diab-Montero et al., 2023) typical of earthquakes with fast
lip-rates. This versatility makes the Burridge–Knopoff model a good

test-bed model for our data assimilation experiments.
In the Burridge–Knopoff model coupled with rate-and-state friction,

we frequently encounter the logarithmic term 𝑙 𝑜𝑔(�̄�). As explained in
multiple works, such as Erickson et al. (2008), Noda et al. (2009), Rojas
et al. (2009), as �̄� → 0, this term becomes exponentially negative.
This behavior is also reflected in the local Jacobian (Erickson et al.,
2008), where the eigenvalues in the Jacobian become exceptionally
large. Using the modified term 𝑙 𝑜𝑔(�̄�+ 1), as we do in this work, partially
alleviates this issue.

Typically, negative eigenvalues relate to stability, as they imply
ecaying dynamics. However, the rapid decay of �̄� leads to numerical
tiffness in the system, which requires very small time steps with
tandard numerical methods to achieve stable solutions. Even with
mplicit methods, the time step size remains constrained by accuracy
equirements (Erickson et al., 2008, 2011)—if the time step is too large,

the logarithmic term becomes undefined. To address this, we employed
an embedded fourth-order explicit Runge–Kutta method with a small
step size for solving the ODEs.

2.4. Perfect model experiments

In our study, we used perfect model experiments to evaluate the
performance of the data assimilation methods. In these experiments,
we generated a synthetic true solution and synthetic observations,
nd evaluated how well the filters estimated the state variables. We

specifically used Lorenz 96 models of 20 cells and 1D Burridge–Knopoff
models of 20 blocks. For both we used ensembles of 100 members. For
the Lorenz 96, the state vector consists on the values of 𝑥 for each cell.
For the 1-D Burridge–Knopoff models the state vector is,

𝐳𝑇𝑛 =
(

�̄�𝑇 , �̄�𝑇 , log (�̄� + 1)𝑇 , Θ̄𝑇 )
𝑛 , 1 ≤ 𝑛 ≤ 𝑁𝑚, (32)

where we employ 𝑙 𝑜𝑔(�̄�+ 1) instead of �̄� to impose a positivity constrain
(see Fig. 2). .

We utilized a fourth-order Runge–Kutta (RK4) scheme with a 𝛥𝑡 =
0.01 time step to generate a reference solution, for each type of model.
or the Lorenz 96 models, we used 𝐹 = 1.2 for the periodic case and
= 8.0 for the chaotic case. For the BK model we used the frictional

arameters from Table 1.
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Fig. 1. Schematic representation of the Burridge Knopoff models coupled with the rate-and-state friction law (a) single degree of freedom slider block coupled by a spring loader
plate representing the other side of the fault. (b) spring connected chain of blocks, elastically coupled to a driver plate moving at a constant velocity Vp. The surface upon which
the blocks slip is rough and the friction force holding the slider in place is governed by a rate-state friction law.
Fig. 2. Schematic representation of the evolution of the Lorenz 96 (a, c) and 1-D Burridge–Knopoff model coupled with rate-and-state friction (b, d) use for creating the synthetic
truth of the perfect model experiments. Phase diagrams of the Lorenz 96 models under (a) periodic (𝐹 = 1.2) and (c) chaotic (𝐹 = 8.0) conditions, and the evolution of the state of
the 10th cell through time for the periodic and chaotic case respectively. Phase diagrams of the BK-RSF 1D model under (b) periodic and (d) chaotic conditions, and the evolution
of the shear stress for the 10th block through time for the periodic and chaotic case respectively.
Our examination considered synthetic observations using different
spatial observation densities with coverages of 100% and 50%. For
the Lorenz 96, we assimilate observations of the state 𝑥. For the 1-D
Burridge–Knopoff model, the observation vector is:

𝐝𝑇 =
(

�̄�𝑇 , log (�̄� + 1)𝑇 ) . (33)

We assumed Gaussian uncorrelated observation errors with diagonal
matrices 𝐶𝑑 𝑑 . We defined the uncertainties (𝜎𝜀) using typical observa-
tion uncertainties used in other works for the Lorenz 96 model (Stordal
et al., 2011), and for the 1-D Burridge–Knopoff model, (Banerjee et al.,
2023). Specifically, synthetic observational noise was modeled as 𝜎2𝜀 ∼
 (0, 𝜎2𝜀 ), where the errors are sampled from a normal distribution with
zero mean and variance 𝜎2𝜀 . For the variable 𝑥 of Lorenz 96 we use a
standard deviation of 1 for the observation error . For 𝜏 and log(�̄� + 1)
of the seismological models we used a standard deviation of 0.6. We
extract synthetic observations by perturbing the true data values using
these uncertainties and use the same synthetic observations for the per-
fect model experiments conducted with the different data assimilation
methods.

Using the periodic solutions we define the cycle duration. The
Lorenz 96’s periodic cycle covers 4 time units (equivalent to 400 steps).
Based on this, we used a default rate of 8 observations per cycle or
which is the same 0.5 time units (50 timesteps) between observations
for the synthetic experiments. For the BK-RSF 1D, its cycle spans
approximately 18 time units (or 1800 steps). We used then a default
rate of 8 observations per cycle or which is the same 2.25 time units
(225 timesteps) between observations.
5 
For the localization of the prior covariance matrices, and defining
the best hyperparameters for each filter, we followed the steps shown
in Appendix A.

3. Results

In this section, we present the outcomes from perfect model exper-
iments, focusing on comparing the three data assimilation methods:
EnKF, AGMF, and PFF. Our aim is to evaluate these methods in terms
of accuracy, using RMSE (Root Mean Square Error) values, which is
defined as

𝑅𝑀 𝑆 𝐸 𝑋(𝑡) =

√

√

√

√

√

1
𝑁𝑐

𝑁𝑐
∑

𝑗=1

(

�̄�𝑗 (𝑡) − 𝑥𝑗 ,𝑡𝑟𝑢𝑡ℎ(𝑡)
)2, (34)

where �̄�𝑗 is the ensemble mean for the 𝑗th component of the state
vector and the 𝑥𝑗 ,𝑡𝑟𝑢𝑡ℎ is the 𝑗th component of the truth. We also use
the ensemble spread (the range or variability of estimates from an
ensemble), assessed through rank histograms (Anderson, 1996; Hamill,
2001), which are commonly use graphical tools used to evaluate the
reliability, and spread of ensemble forecasts. This comparison extends
across different phases of the seismic cycle for the 1-D BK models,
emphasizing how the ensemble spread changes with each phase of the
seismic cycle.

3.1. Lorenz 96

Fig. 3 depicts the RMSE outcomes for the variable 𝑥𝑖 over time.
Notably, RMSE values for the periodic Lorenz 96 model are consistently
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Fig. 3. Comparison of RMSEs for different observation densities for the Lorenz 96 between EnKF (a, d), AGMF (b, e), PFF (c, f).
lower than for its chaotic counterpart. In the chaotic case, all three
filters yield RMSE values below the observation error when using an
observation density of 100% (i.e., full cell coverage, where observations
are available for all grid cells). In comparison, only the PFF achieves
values below the observation error with 50% coverage. In contrast, the
EnKF shows the highest RMSE at 50% coverage. The AGMF also shows
higher RMSE values than the observation error, which are slightly
lower than the EnKF’s RMSE values. These findings align with the
observations by Hu and van Leeuwen (2021) on the 40 variable-
Lorenz 96 model, which noticed similar contrasts between the Local
Ensemble Transform Kalman Filter(LETKF) and PFF. The increased non-
linearity in variable relationships during chaotic periods underscores
the necessity for a non-Gaussian, non-linear filter, especially when
full variable coverage is unavailable. Alternatively, it is possible to
introduce iterations on the AGMF and EnKF schemes (e.g., an MDA-type
update) to achieve lower RMSE values.

3.2. Burridge Knopoff 1D model

3.2.1. Analysis of errors and underdispersion
Fig. 4 shows the RMSEs of the EnKF, the AGMF, and the PFF for

the slip-rate 𝐯𝑖, which is an observed variable. The results show the
comparison of the RMSEs when observing all the blocks (left column)
and when only observing half of them (right column) for the periodic
and the chaotic case. The results show that the three methods have
estimates with errors lower than the observation error, as expected. The
EnKF shows the lowest errors when having access to the observations
of all the blocks. Interestingly, the AGMF has lower errors than the
EnKF when fewer observations are available. The case with fewer
observations presents a more challenging condition for the estimation,
which makes the importance sampling step of the AGMF useful to
capture the distributions of the variables better. The RMSE results show
the same trend for the estimates of the shear stress 𝜏.

Fig. 5 show the RMSEs of the EnKF, the AGMF and the PFF for the
state �̄� which is not observed also called a hidden state. The results
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show that for all methods the error decreases as more observation are
assimilated with time. For the periodic case the ENKF and the AGMF
have the lowest errors. However, for the chaotic case the differences
between the RMSE values for the different methods are less noticeable.

We find that the ensemble spread greatly decreases after these first
assimilation windows. This indicates a problem of underdispersion, also
called overconfidence. A possible remedy to this problem is the use of
covariance inflation. However, even when testing with high inflation
factors, the issue of underdispersion on the rank histograms persisted.
Interestingly, as we will see, the Particle Flow Filter does not experience
this sudden decrease in the ensemble spread.

The rank-histograms (Fig. 6) highlight that the filters have problems
of underdispersion. The resampling step of the AGMF can help to keep
a wider ensemble, especially in the periodic case, but this resampling
seems insufficient for reducing the underdispersion in the spread. Fur-
ther refinement of the PFF’s hyperparameters, such as bandwidth and
learning rate, could yield more accurate and precise results while pre-
serving an ensemble spread wide enough to correspond to the posterior
uncertainties.

Fig. 7 shows a comparison of the time series estimates of the slip-
rate(�̄�) for the EnKF, AGMF, and PFF ensemble members for a periodic
sequence while Fig. 8 does it for a chaotic sequence. The histograms
of the ensemble distribution of the different methods show that the
PFF maintains a broad posterior distribution in both cases. In contrast,
the AGMF and the EnKF have very narrow ensemble distributions.
Despite these narrow distributions, both methods have estimates that
are very close to the truth. However, a consequence of the very narrow
distributions is that the EnKF and AGMF ensemble will not cover the
true state in certain phases.

3.2.2. Sensitivity on model error
Recent findings, e.g. Gualandi et al. (2023), show how having a

deterministic model representing a laboratory setup of a direct shear
type of machine, a setup with a material sample between two plates
where one plate is moved horizontally while the other remains fixed,



H.A. Diab-Montero et al. Computers and Geosciences 196 (2025) 105836 
Fig. 4. Comparison of the RMSEs for the estimates of the logarithm of the velocity (log(𝑉 + 1)) of the EnKF (blue), the AGMF (red) and the PFF (green) for the 1-D Burridge
Knopoff model coupled with rate-and-state friction. The upper row shows the comparison for the periodic case (a, c), and the lower row for the chaotic case (b, d). The results
correspond to an observation density of 100% of the blocks for the left column (a, b) and 50% of the blocks in the right column (c, d).
Fig. 5. Comparison of the RMSEs for the estimates of the state �̄� of the EnKF (blue), the AGMF (red) and the PFF (green) for the 1-D Burridge Knopoff model coupled with
rate-and-state friction. The upper row shows the comparison for the periodic case (a, c), and the lower row for the chaotic case (b, d). The results correspond to an observation
density of 100% of the blocks for the left column (a, b) and 50% of the blocks in the right column (c, d).
can constrain the solutions to just a set of possible states of the
system. Gualandi et al. (2023) showed that even for a laboratory
experiment with controlled conditions, introducing stochastic terms in
the system of ordinary differential equations was the most accurate
approach for explaining the system’s behavior.

We can achieve a similar result of this stochastic term by including
model error terms in the state vector of the data assimilation. These
7 
model errors can account for missing physics or errors in the dynamical
forward model. In this context, introducing a model error can improve
the estimation of the system’s dynamics and help maintain ensemble
spread. This is especially useful for addressing underdispersion that can
occur when the regularized rate-and-state friction (RSF) formulation,
which is intended to improve numerical stability, occasionally leads
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Fig. 6. Rank histogram for the estimates of the (a) EnKF, (b) AGMF, and the (c) PFF for the periodic case.
Fig. 7. Comparison of the estimates of the slip-rate (�̄�) of block 10 for the EnKF (blue), the AGMF (red), and the PFF (green) for estimating an earthquake occurrence for a
periodic event. The true time series of the slip-rate is shown with a solid black line. We compare the ensemble distribution for the interseismic phase (c, d) during the coseismic
phase (e), and at the end of the coseismic phase (f).
to more periodic or simplified solutions in methods like the Ensemble
Kalman Filter (EnKF).

To evaluate the effect of introducing a stochastic term in the equa-
tions, we visualize the effect of using such a term in a forward sim-
ulation of the 1-D Burridge Knopoff model. We aim to verify that we
can use values of 𝜖 that produce periodic solutions and still estimate
aperiodic behavior. The advantage of maintaining 𝜖 fixed is that we
avoid further instability issues or changes in the frictional behavior of
the system. For this, we perturbed the shear stress 𝜏 as follows:

𝜏𝑖 = 𝑓 + �̄�𝑖 + log (𝑣𝑖 + 1) + 𝑞 , (35)

where 𝑞 is the stochastic term that follows a distribution 𝑞 ∼  (0, 𝐶𝑞 𝑞).
We assume that the covariance matrix 𝐶 is diagonal with 𝜎 ∈ [0, 1].
𝑞 𝑞 𝑞

8 
Fig. 9 shows the evolution of the phase diagram of block 10 of a 1-D
Burridge Knopoff with 𝜖 = 0.3 in the periodic regime when increasing
𝜎𝑞 . We can see how the phase diagrams become more and more similar
to the chaotic case shown in Fig. 1d, with an 𝜖 = 0.5.

We propose to make the model error a function of the slip-rate as
follows:

𝑞 = 𝑓 (�̄�) = 𝑞𝑒𝑟𝑟𝑜𝑟�̄�. (36)

This model error term 𝑞 can be explained as a radiation damping
term that compensates for the loss of energy caused by the seis-
mic waves after the fault’s slip, and which is commonly included in
quasi-dynamic models (Crupi and Bizzarri, 2013). The term 𝑞𝑒𝑟𝑟𝑜𝑟 is
interpreted when using radiation damping as a ratio between the elastic
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Fig. 8. Comparison of the estimates of the slip-rate (�̄�) of block 10 for the EnKF (blue), the AGMF (red), and the PFF (green) for estimating an earthquake occurrence for a chaotic
event. The true time series of the slip-rate is shown with a solid black line. We compare the ensemble distribution for the interseismic phase (c,d) during the coseismic phase (e),
and at the end of the coseismic phase (f).
medium rigidity and the S-wave velocity away from the fault plane.
Here, we expand the state vector to include the 𝑞𝑒𝑟𝑟𝑜𝑟 and treat it as an
additional parameter,

𝐳𝑇𝑛 =
(

�̄�𝑇 , �̄�𝑇 , log (�̄� + 1)𝑇 , Θ̄𝑇 , 𝒒𝒆𝒓𝒓𝒐𝒓𝑇
)

𝑛 , 1 ≤ 𝑛 ≤ 𝑁𝑚. (37)

The advantage of reformulating the assimilation this way, which is
more similar to a parameter estimation exercise, is that knowing 𝑞𝑒𝑟𝑟𝑜𝑟
also helps us to investigate which processes could be missing/wrongly
represented in the forward model, and use it to improve this model
for forecasting applications. Fig. 10a shows the slip-rate estimates of
an EnKF with periodic ensemble members that assimilate synthetic
observations obtained from a chaotic truth without including the model
error in the state vector, while Fig. 10b shows the estimates when it
is included. For the ensemble 𝜖𝑛 ∼  (0.3, 0.02) while for the chaotic
truth 𝜖 = 0.5. Fig. 10c shows the estimates of 𝑞𝑒𝑟𝑟𝑜𝑟 with time. We see
that despite the parameter bias in 𝜖, the EnKF provides good estimates
of the occurrences of the events in time when the model error is
included, the main differences between the truth and the estimates
are in the amplitudes of the signals. This can be explained as the
ensemble members with model error having a wider state space in the
phase diagrams and, therefore, being able to estimate the occurrences
of the earthquake as the truth will be in a smaller orbit covered by
the ensemble. This explains why the best estimates of the EnKF occur
when the amplitudes of the estimates of the filter are higher than the
values of the truth. In contrast, the less accurate estimates occur when
9 
the filter underestimates the events’ magnitude and the truth values are
higher than the EnKF estimates.

These results are valuable since the correction with model error can
improve the accuracy of estimating the occurrence of seismic events,
even in the presence of parameter bias. Additionally, it allows simu-
lation with a parameter that gives periodic and stable solutions with
regularized formulations and still simulates and gives good estimates
of aperiodic behavior. Studies in other applications, such as ocean
forecasting systems, have shown the potential benefits of using model
error in addressing state and parameter estimation challenges in the
presence of time-varying parameters (e.g., Brasseur et al. (2005)). In
their study, Brasseur et al. (2005) found that introducing model error
in the estimation causes the parameters to become constant, and the
model error term absorbs all variability.

4. Discussion

This study explored the application of non-Gaussian data assimila-
tion methods on the Lorenz 1996 model and the 1-D Burridge–Knopoff
model used in seismology. All methods tested yielded low RMSEs in
perfect model experiments under periodic conditions for both models—
the variation in results between the models links to their inherent
chaotic and non-linear behaviors. We also identified and further an-
alyzed the role of prior knowledge in updates and the impact of
including a model error term for better estimates in cases of parameter
bias.
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Fig. 9. Phase diagrams for different model errors: (a) 𝜎𝑞 = 0,(b) 𝜎𝑞 = 0.05, (c) 𝜎𝑞 = 0.1 and (d) 𝜎𝑞 = 0.5.
4.1. Comparison of the ensemble spread of the methods

In Fig. 7, we observe that the ensemble spread of the PFF is larger
than that of the EnKF and the AGMF. Our analysis focused on the
posterior distributions within a single assimilation step to evaluate
whether the PFF’s posterior spread is excessively large compared to the
other methods. We used the same prior distribution and observation
to evaluate this, specifically focusing on the assimilation step at time
373.5 from a perfect BK RSF 1D model experiment under periodic
conditions. Prior to this step, the PFF was used for data assimilation.
The prior distribution for the assimilation at 𝑡 = 373.5 was generated
by simulating the model forward from the last assimilation step at
𝑡 = (373). We analyzed the ensemble with a histogram and used
10,000 samples, and the corresponding observation, in a particle filter
to estimate a theoretical posterior distribution. As illustrated in Fig. 11,
the posterior distribution derived from the PFF is not excessively broad.
Instead, it is comparable to the particle filter distribution. Conversely,
the EnKF shows a narrower distribution. The AGMF’s estimate of the
posterior distribution shows similarity to that of the particle filter
and PFF at narrower values of h, but at larger h values, it exhibits a
narrower distribution that is comparable to the posterior distribution
of the EnKF. Fig. 7 exhibits that the posterior distributions of the EnKF
tend to narrow over time when estimating the BK-RSF 1D system. All
methods’ distributions include the true state, as desired.

4.2. PFF’s sensitivity to hyperparameters and prior knowledge

In this section, we compare our findings with those of Stordal
et al. (2021) who tested the Particle Flow Filter (PFF) on small chaotic
systems, including the Lorenz 96 model. Their results showed that the
EnKF outperforms the PFF for intermediate ensemble sizes and the
Particle Filter for large ensemble sizes. Our results align with their
findings for an ensemble size of 100 members, where we observed
that the EnKF and PFF have very similar RMSE values. However, the
advantage of our study lies in using the 1-D Burridge Knopoff model,
10 
which is not driven by noise, unlike the setup in Stordal et al. (2021).
Fig. 12 compares the results for the shear stress 𝜏, slip velocity �̄� and the
state �̄� for two configurations of the PFF. The results presented with a
dashed line correspond to a PFF whose attractive term (Eq. (26)) only
includes information from the likelihood, while the continuous line re-
sults include information from both the prior and the likelihood. Since
the results are almost indistinguishable, it may lead to the conclusion
that the filter becomes data-driven. This behavior indicates the need
for further investigation to optimize the filter’s performance in such
cases.compare

4.3. Limitations of the seismology model

In this study, we employed 1D seismological models, which only
simulate the seismogenic zone and neglect the surrounding medium.
The lower computational cost of 0D and 1D models is beneficial for
understanding the effects of the rate-and-state friction law on data
assimilation. However, more complex and advanced 2D and 3D models
are estimated better for the evolution of stress of the seismogenic zone
and in the surrounding medium (Li et al., 2022). The 3D models are
especially pertinent in determining shear stress distributions at faults
and the nucleation process.

We simplified our state estimation by having fixed parameters.
However, as highlighted by Banerjee et al. (2023) and Hirahara and
Nishikiori (2019), having biased friction parameters affects the ac-
curacy of the velocity and shear stress estimates. Addressing these
discrepancies is essential, possibly through combined state and param-
eter estimation or model error assessment. It is important to highlight
that parameter estimation, while beneficial, can also inflate computa-
tional demands by requiring smaller time steps to maintain stability in
the simulations and challenge model consistency.

4.4. Implications for seismology forecasting

Dynamic source inversion, primarily used for past earthquake in-
version, is now complemented by data assimilation to analyze past and
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Fig. 10. Comparison of the estimates of the slip-rate �̄� at the block 10 of an EnKF (a) without model error and (b) with model error as part of the state vector. The mean values
are in green. The truth, in blue, corresponds to the slip-rate of the chaotic model with 𝜖 = 0.5. The individual ensemble members in gray are periodic with 𝜖 = 0.3 and model
error. The synthetic observations are extracted from the chaotic synthetic truth. The results show that despite the parameter bias the EnKF estimates are in sync with the truth
when including the model error especially in the occurrences of the seismic events, but with differences in the magnitude (amplitude of the signal). (c) Time series estimation of
the 𝑞𝑒𝑟𝑟𝑜𝑟.
Fig. 11. Comparison of the posterior distributions of the EnKF, AGMF, PFF and a particle filter for the same assimilation step.
potential future earthquakes. Within the scope of our models and data,
our research suggests that ensemble data assimilation can effectively
estimate the evolution of shear stresses, velocities and state 𝜃 in systems
governed by rate-and-state friction laws, including those with chaotic
behavior, aperiodicity, and varied recurrence intervals. These results
11 
demonstrate the potential of ensemble-based approaches to provide
insights into the dynamics of frictional systems with complex tem-
poral patterns. Regularized versions of rate-and-state friction, usually
yielding periodic solutions, face criticism due to origins in small-scale
lab experiments. However, recent findings affirm the validity of these
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Fig. 12. Effect of the prior information in the gradient of the log posterior.
Fig. 13. Estimation of the correlation length. For the Lorenz 96 model: (a) periodic case and (b) chaotic case, with an estimated correlation length 𝑟𝑖𝑛 of approximately 3. For
the 1-D Burridge–Knopoff model: (c) periodic case and (d) chaotic case, with an estimated correlation length 𝑟𝑖𝑛 of approximately 5.
small-scale observations for larger setups, up to a meter (Ji et al., 2022).
Avoiding underdispersion when using periodic simulations in ensemble
data assimilation and addressing model errors as proposed in this study
is crucial for better estimates, especially in real-world scenarios.

5. Conclusions

In this study, we have conducted a detailed examination of the
performance of the Ensemble Kalman, Adaptive Gaussian Mixture,
and Particle Flow Filters applied to the Lorenz 1996 model and 1-
D Burridge–Knopoff models under periodic and chaotic regimes. The
Ensemble Kalman and Adaptive Gaussian Mixture Filters faced under-
dispersion issues, necessitating a large inflation of their prior covari-
ance matrices. Under periodic conditions, meaning periodic seismic
12 
cycles, the Ensemble Kalman Filter achieved the lowest RMSE, yet
underdispersion remained a problem for both it and the Adaptive
Gaussian Mixture Filter.

Notably, particle flow filters proved more robust against underdis-
persion, particularly with integrating regularized frictional laws that
lead to quasi-periodic behavior. Additionally, they offered more precise
estimates for unobserved variables such as the state variable �̄� in
the Burridge–Knopoff models. This advantage is valuable given the
scarcity of historical seismological data relative to the low frequency
of significant tectonic earthquakes. Nevertheless, it is important to
consider that the tuning of the bandwidth in particle flow filters can
have a substantial impact on their performance. For example, cer-
tain very wide bandwidth may affect sample separation, influencing
the kernel’s behavior. Hence, it is advisable to adjust the bandwidth
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Fig. 14. Scree plot of the singular value decomposition of the prior covariance matrices (𝐂𝑓
𝐳 𝐳) before and after localization for the Lorenz 96 (a, c) and Burridge–Knopoff model

(b, d). The solid lines correspond to the decomposition of the matrices before localization, while the dashed lines to the decomposition of the matrices after the localization. The
blue lines represent the distribution of singular values while the orange lines show the proportion of cumulative variance explained until that component.
hyperparameter thoughtfully.
Our results highlight the potential of ensemble data assimilation

techniques to reliably estimate the evolution of shear stresses, veloci-
ties, and the state variable �̄� in earthquake models governed by chaotic
dynamics and irregular recurrence intervals. Regularized versions of
rate-and-state friction laws, have been scrutinized for being derived
from small-scale laboratory experiments. However, recent evidence
supports the relevance of these laboratory observations to larger-scale
scenarios (Ji et al., 2022). Since these periodic simulations are used
to explain also large-scale experiments, it is important to consider
model errors and underdispersion within ensemble data assimilation
frameworks.

We have also highlighted the challenges the rate-and-state friction
law poses, which can cause abrupt system behavior changes due to
uncertainties in frictional parameters. These uncertainties can lead to
convergence issues, ensemble degeneracy, and complications in data
assimilation when parameters are incorporated into the state vector
of a high-dimensional system. We proposed incorporating stochastic
model error terms into data assimilation as a solution, providing the
necessary flexibility to accommodate a range of stable solutions and
enabling the estimation of aperiodic behaviors amid predominantly
periodic solutions. This approach introduces additional stochasticity
in the behavior to capture earthquake dynamics more accurately with
data assimilation.

Finally, we discussed how the selection of numerical models and
rate-and-state friction laws can predispose systems to quasi-periodic be-
haviors, potentially causing underdispersion problems that compromise
the reliability of estimations from methods that assume Gaussianity and
linearity. We demonstrated that the Particle Flow Filter can maintain
adequate variance in its estimates, which is crucial for applying labo-
ratory or field data where the accuracy of the estimates in relation to
the true state is often challenging to determine.
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Fig. 15. Sensitivity analysis of the hyperparameter bandwidth of the kernel (𝛼) for the Particle Flow Filter used on the BK-RSF 1D model. The left column shows the results for
the periodic conditions of the BK-RSF 1D, while the right column shows the results for the chaotic condition.
Appendix A. Analysis of the background covariances, localization
and inflation

In ensemble data assimilation, methods like the Ensemble Kalman
Filter rely on techniques such as localization and covariance inflation to
address the limitations of small ensemble sizes and low-rank covariance
matrices. A limited ensemble size can introduce long-distance correla-
tions and underestimate forecast errors, diminishing the assimilation’s
accuracy. Localization counters these non-physical correlations, ensur-
ing observations have a localized and consistent impact. Covariance
inflation adjusts underestimated forecast errors, ensuring the model
forecast is not underrepresented and preventing filter divergence. In
this study, we use localization via a Schur product. For the Burridge–
Knopoff model, we apply the Schur product carefully in each sector
of the covariance matrix to conserve the cross-covariance elements
between observed and unobserved variables. We used a correlation
length 𝑟𝑖𝑛 of 3 for the Lorenz 96 model and 5 for the 1-D Burridge
Knopoff model (Fig. 13).

We use singular value decomposition (SVD) to analyze the prior
covariance matrices of the Lorenz 96 and BK models, evaluating the
impact of localization on their effective rank, as shown in Fig. 14.
For the Lorenz 96 model, before localization, the effective rank is 2
for the periodic case and 18 for the chaotic. After localization, the
periodic case rises to 14, while the chaotic remains at 18. For the 1-
D Burridge–Knopoff models coupled with rate-and-state friction, the
ranks are initially 3 for the periodic and 6 for the chaotic cases. Upon
localization, these numbers increase to 8 and 15, respectively.

A.1. Inflation of covariance matrices

Our study compared the variances in state variable estimates across
different ensemble sizes (10, 20, 50, 100, 200, and 500) in the context
of the 1-D Burridge–Knopoff model with rate-and-state friction. The
consistent variances observed suggest that using a low-rank approxi-
mation does not significantly underrepresent covariances. Hence, an
inflation factor is not necessary. However, as Section 3 indicates, under-
dispersion was observed in periodic cases. To address this, we applied
an inflation factor of 1.1, which slightly alleviated the underdispersion
while maintaining simulation stability. Larger inflation factors were
found to cause instability post-assimilation steps.
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Appendix B. Selection of hyperparameters

B.1. Hyperparameter selection for the adaptive Gaussian mixture filter and
the particle flow filter

For the AGMF, we tested different bandwidths for the Gaussian
mixtures, denoted as h. We used a default value of 0.6. An analysis of
the RMSE, STD, and the rank histogram showed a lower error for lower
h values (around 0.2) in the periodic case of the Lorenz 96 and values
closer to 0.6 in the chaotic case. Such low values of h are inconsistent
with the high inflation factors needed to avoid underdispersion. For this
reason, we adhered to a value of 0.6. This approach was also applied
to the Burridge–Knopoff models.

The particle flow filter has two hyperparameters: the kernel band-
width (𝛼) and the pseudo-time step size (𝛥𝑠). We tested 5 band-
widths (0.00005, 0.0005, 0.005 and 0.5) and 5 pseudo-time steps
(0.0005,0.005, 0.05, 0.5 and 5). The selected bandwidths from Fig. 15
were 0.05 for periodic and 0.0005 for chaotic conditions of the BK RSF
1D model. For periodic conditions, a bandwidth of 0.05 yielded the
lowest RMSE without filter collapse. For chaotic conditions, a band-
width of 0.0005 ensured stable results. A pseudo-time step of 0.0005
was chosen for both conditions, minimizing RMSE while avoiding filter
collapse.

Data availability

The data produced and analyzed in this study is available via
4TU.ResearchData http://doi.org/10.4121/f0f075f2-f45c-4f8c-9d1d-b
de03baeae33.
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