
Aligning AI with
Human Norms
Multi-Objective Deep Reinforce-
ment Learning with Active Prefer-
ence Elicitation

Markus Peschl

Thesis Report
MSc Applied Mathematics

Aligning AI with
Human Norms

Multi-Objective Deep Reinforcement Learning
with Active Preference Elicitation

by

Markus Peschl
to obtain the degree of Master of Science Applied Mathematics

at the Delft University of Technology,
to be defended publicly on October 8, 2021.

Student number: 5144124
Project duration: January 1, 2021 – October 8, 2021
Thesis committee: Dr. L. C. Siebert, TU Delft (supervisor)

Dr. A. Zgonnikov, TU Delft (supervisor)
Dr. F. Oliehoek, TU Delft
Dr. D. Kurowicka. TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface

Artificial intelligence is a fascinating field of research, with tremendous amounts of funding and increas-
ingly bigger research communities coming together, determined to build systems that not only match,
but rather extend and exceed the capabilities of the human brain. Soon, we can expect machine learning
systems to automate factories, the transportation of goods, power grids, drug discovery and many more
areas of fundamental importance for the well-being of people in modern society. This, however, could
come at the cost of delegating many crucial decisions to autonomous agents, which operate on a level of
granularity that is impossible for us to truly understand. Nonetheless, the potential economic benefits
of deploying such highly performing agents in the world are remarkable, which is why we can expect
issues related to interpretability and safety to be largely neglected in practice.

For these reasons, I personally deem the field of value alignment especially important and have
chosen to pursue this path in my thesis. Having conducted all of my research throughout an ongoing
pandemic, I have come to realize the importance of global risk mitigation. Even though I am optimistic
about the future development of artificial intelligence, I am certain that its accompanying risks are
already shaping our world in previously unforeseen ways, which will yield dramatic negative outcomes
if being left ignored. As a consequence, I have devoted my research to studying how we can align
autonomous agents with a variety of human norms. Normative behavior is interesting, because it can
be easily observed in data sets of human decision-making, but it is vastly difficult to formally specify
to an agent. The adherence to norms, however, can alleviate a wide range of central safety concerns for
agents acting in the real world. In this thesis, I aim to draw attention to the power of normative agents
from a multi-objective point of view, which I believe to be a promising avenue of research for building
agents that act safely as well as allow for value open design.

Finally, I would like to deeply thank my daily supervisors, Dr. Luciano Cavalcante Siebert and Dr.
Arkady Zgonnikov for leading me to this topic and providing me with critical feedback. Aside from
their constant support, they have made my research incredibly enjoyable with weekly discussions that I
could always look forward to. Furthermore, I would like to express my gratitude to Dr. Frans Oliehoek,
who has guided me through this project, as well as to Dr. Tina Nane and Dr. Dorota Kurowicka for
helping me set up the thesis committee.

Markus Peschl
Vienna, September 2021

i

Abstract

The field of deep reinforcement learning has seen major successes recently, achieving superhuman per-
formance in discrete games such as Go and the Atari domain, as well as astounding results in continuous
robot locomotion tasks. However, the correct specification of human intentions in a reward function
is highly challenging, which is why state-of-the-art methods lack interpretability and may lead to un-
foreseen societal impacts when deployed in the real world. To tackle this, we propose multi-objective
reinforced active learning (MORAL), a novel framework based on inverse reinforcement learning for
combining a diverse set of human norms into a single Pareto optimal policy. We show that through
the combination of active preference learning and multi-objective decision-making, one can interactively
train an agent to trade off a variety of learned norms as well as primary reward functions, thus mitigat-
ing negative side effects. Furthermore, we introduce two toy environments called Burning Warehouse
and Delivery, which allow for studying the scalability of our approach in both size of the state space
and reward complexity. We find that through mixing expert demonstrations and preferences, we can
achieve superior efficiency compared to employing a single type of expert feedback and, finally, suggest
that unlike previous literature, MORAL is able to learn a deep reward model consisting of multiple
expert utility functions.

ii

Contents

I Thesis 2

1 Introduction 3
1.1 Value Alignment . 4
1.2 Research Questions . 5
1.3 Contributions . 5
1.4 Thesis Outline . 6

2 Background 7
2.1 Reinforcement Learning . 7

2.1.1 Markov Decision Processes . 7
2.1.2 Value Functions & Bellman Equations . 9
2.1.3 Monte Carlo Estimation & Exploration . 10
2.1.4 Value Approximation . 11

2.2 Extended Decision Making Frameworks . 12
2.2.1 Maximum Entropy Reinforcement Learning. 13
2.2.2 Constrained Problems . 13
2.2.3 Multi-Objective Solution Sets . 13

2.3 Generalization . 15
2.3.1 Feedforward Networks . 15
2.3.2 Loss Functions . 17
2.3.3 Optimization & Model Selection . 18
2.3.4 Convolutional Neural Networks . 19
2.3.5 Generative Adversarial Networks . 20

2.4 Policy Gradient Methods . 20
2.4.1 REINFORCE . 20
2.4.2 Proximal Policy Optimization . 21

3 Learning Implicit Norms 23
3.1 Aligning RL Agents . 23

3.1.1 Differences between Extended Frameworks . 23
3.1.2 Challenges when Learning Constraints . 24
3.1.3 Alignment as a Multi-Objective Problem . 27

3.2 Methods . 28
3.2.1 Adversarial Inverse Reinforcement Learning . 28
3.2.2 Multi-Objective Optimization . 29
3.2.3 Experimental Setup. 30

3.3 Results . 32
3.4 Conclusion . 34

4 Active Preference Learning 35
4.1 Methods . 35

4.1.1 Bayesian Preference Learning . 35
4.1.2 Markov Chain Monte Carlo . 37
4.1.3 Multi-Objective Reinforced Active Learning . 38

4.2 Experiments. 40
4.2.1 Query Efficiency . 41
4.2.2 Deep Reinforcement Learning from Human Preferences 42

4.3 Conclusion . 44

iii

Contents iv

5 Controlling Diverse Norms 45
5.1 Methods . 45

5.1.1 Reward Normalization . 46
5.1.2 Pareto Optimality . 46
5.1.3 Experimental Setup. 49
5.1.4 Preference Elicitation. 50

5.2 Experiments. 50
5.2.1 Expert Aggregation. 51
5.2.2 Diversity . 53
5.2.3 Learning Multiple Norms from Pairwise Preferences 55
5.2.4 Ablation . 56

5.3 Conclusion . 57

6 Discussion 59
6.1 Key Findings . 59
6.2 Related Work . 60
6.3 Discussion . 62

II Scientific Papers 64

III Appendix 76

A Demonstrations 77
A.1 Burning Warehouse . 77

A.1.1 Demonstration Policy. 77
A.2 Delivery . 79

A.2.1 Demonstration Policy. 79
A.2.2 AIRL Details . 80

B Implementation Details 81
B.1 Neural Network Architectures . 81

B.1.1 Proximal Policy Optimization . 81
B.1.2 Convolutional Reward Network . 81
B.1.3 Deep Reinforcement Learning from Human Preferences 82

B.2 Burning Warehouse Hyperparameters . 83
B.2.1 AIRL . 83
B.2.2 AIRL Reward Shaping . 83
B.2.3 Active Learning . 83
B.2.4 DRLHP . 84

B.3 Delivery Hyperparameters . 84
B.3.1 AIRL . 84
B.3.2 Active Learning . 85
B.3.3 DRLHP . 85

C Additional Visualizations 86
C.1 MCMC Posterior . 86
C.2 Random Queries . 88

Bibliography 90

Abbreviations

AIRL Adversarial Inverse Reinforcement Learning

AI Artificial Intelligence

CCS Convex Coverage Set

CIRL Cooperative Inverse Reinforcement Learning

CMDP Constrained Markov Decision Process

CNN Convolutional Neural Network

DL Deep Learning

DRLHP Deep Reinforcement Learning from Human Preferences

ECDF Empirical Cumulative Distribution Function

GAN Generative Adversarial Network

IRD Inverse Reward Design

IRL Inverse Reinforcement Learning

KL Kullback-Leibler

MCMC Markov Chain Monte Carlo

MDP Markov Decision Process

MLE Maximum Likelihood Estimate

MLP Multilayer Perceptron

MO-MPO Multi-Objective Maximum A Posteriori Policy Optimization

MOMDP Multi-Objective Markov Decision Process

MORAL Multi-Objective Reinforced Active Learning

MORL Multi-Objective Reinforcement Learning

POMDP Partially Observable Markov Decision Process

PPO Proximal Policy Optimization

ReLU Rectified Linear Unit

RL Reinforcement Learning

SGD Stochastic Gradient Descent

1

I
Thesis

2

1
Introduction

Over the past decade, significant increases in computing power as well as improved methodologies for
training deep reinforcement learning (RL) agents have led to numerous pioneering applications, includ-
ing playing combinatorially large games such as Go at superhuman level [79, 80], attaining high scores
in Atari games from purely visual input [58], automatically designing application-specific integrated
circuits [57] and improving the energy efficiency of data center cooling [55]. Despite these achievements,
however, deep RL systems have remained highly constrained in the types of environments they can be
successfully deployed in. Aside from a heavy reliance on enormous amounts of trial and error experience
and sufficient observability of the environment, this constraint is largely attributed to the need for a well
specified reward function. While all of these criteria can be easily satisfied in simulated environments,
they are mostly violated in real-world settings, which is the underlying reason as to why the training
of deep RL agents in the real world is incredibly challenging [27].

The problem of formally specifying a set of goals that an agent ought to achieve is not only con-
strained to RL, but in fact a more fundamental challenge of artificial intelligence (AI) research [72]. On
the one hand, this is due to difficulties in generalizing from a successfully trained test scenario to a wider
class of similar problems that require achieving the same goal under slightly different circumstances.
For instance, a self-driving car might be able to properly turn left at intersections on sunny days, but
might fail to perform the exact same turn on a rainy day. On the other hand, correctly specifying a goal
in the real world turns out to be cumbersome due to a dependence on human values, which constitute
an undoubtedly more fuzzy set of preferences over different states of the world. This is problematic
since, arguably, good exhibited generalization performance on a set of human defined goals does not
supervene on the alignment of an agent’s actions with respect to human values. As a consequence, an
inherent value alignment problem comes into play which, in the extreme case, could pose an existen-
tial threat to humanity that needs to be accounted for when considering to build capable AI agents
[73]. Besides merely being a hypothetical threat, its urgency as well as types of possible solutions that
might control it are unfortunately still highly contested at this point in time. Nonetheless, the need for
studying machine behavior and the impact of autonomous systems on society is pressing and quickly
becoming a more widespread topic across various areas of AI [67].

In this thesis, we aim to tackle such potential negative societal impacts by studying how to interac-
tively control for a diverse set of social norms in deep RL agents. This focus is motivated by the fact that
RL agents typically operate at a high level of granularity, thus being responsible for low level actions,
which render the possibility for exact reward specification and human oversight impossible [92]. In light
of such design deficiency, it is then only through accounting for the unspoken normative conduct which
governs human behavior that one can achieve the completion to human-aligned goal specifications [38].
Therefore, our primary research goal concerns how to learn such normative policies by the means of
combining different human forms of feedback data. To do so, we explore how to overcome the reward
specification problem when no prior assumptions about the environment can be made by learning a
deep reward model through the combination of demonstrations and pairwise preferences. As a result,
we provide a multi-objective framework for incorporating normative behavior into narrow RL agents as
well as controlling for a diversity of norms simultaneously.

3

1.1. Value Alignment 4

1.1. Value Alignment
With the field of AI undergoing rapid advances, long term concerns about the safety of superintelligent
agents are arising [16], as well as numerous ethical challenges which are already present in today’s
systems [24]. Both have led to active fields of research, with the latter including problems of unfair or
biased decision-making whereas the former is spurring a broader research agenda focused on AI safety.
Despite differing in their respective time horizons, a large portion of each area fundamentally reduces
to the problem of value alignment [38]. Consider large language models trained to accurately complete
sentences on a diverse corpus of text, which have been shown to resort to discriminatory vocabulary
[12]. Similarly, a delivery robot which might be willing to destroy any object in its way to achieve higher
rewards by fulfilling its tasks more quickly. In both of these cases, the AI system exhibits emergent
malicious behavior which was originally not explicitly encoded in its goal specifications, but rather arose
merely from overoptimization of a narrowly defined task.

RL agents have been shown to be especially prone to goal misalignment, leading to a multitude of
safety problems [6]. This raises the need for technical research that can deal with incomplete reward
specifications. However, depending on the reach and capacity of an agent, finding robust ways of
specifying goals does not, by itself, solve the value alignment problem. That is, because value alignment
is a two-fold problem: While correctly translating human goals into artificially intelligent systems is a
prerequisite for achieving beneficial outcomes, it does not address which values we should finally encode.
This normative aspect of value alignment is heavily entangled with the type of technical solutions one
aims to build. Building traditional RL agents that maximize expected cumulative rewards draws close
connections to act utilitarianism, thus potentially limiting the ability to encode other moral frameworks
such as deontological constraints into its behavior [32]. Nonetheless, the flexibility of the RL framework
yields the promise of being theoretically able to incorporate a wide array of normative ethical theories.
From this point of view, building adaptive agents that offer compatibility with respect to different,
possibly conflicting values can alleviate the normative aspect of value alignment to a great extent. For
these reasons, we propose a technical solution that aims to tackle both the goal specification problem
as well as allow for value-open design by combining value learning and multi-objective decision-making.
We will now briefly describe each of the approaches and outline how they can be combined.

Value Learning. Even though we typically can not formally specify what constitutes a social
norm in a reward function, we can hope to learn it from a diverse dataset of demonstrations. In this
thesis, we mainly focus on inverse reinforcement learning (IRL) [61], although many related approaches
exist (cf. section 6.2). IRL learns a reward function which best explains demonstrated behavior, by
modelling the demonstrator as an agent maximizing its own expected utility. One obvious drawback of
traditional IRL is that we cannot expect to vastly generalize, or even outperform the demonstrations.
Fundamentally, IRL is an ill-posed problem which allows many solutions, including trivial or degenerate
reward functions [101]. Nonetheless, we can hope to use IRL on a diverse dataset of demonstrations
to at least arrive at a prior that exhibits normative behavior. While humans might not be able to
explicitly demonstrate certain values or goals, their adherence to norms is generally satisfied in daily
behavior. Therefore, we use IRL to infer normative reward functions from demonstration data, which
can then be combined with other sources of rewards at runtime. Furthermore, we combine several
learned normative reward functions from different demonstrators, allowing for generalization beyond
some narrowly observed behavior.

Multi-Objective Decision Making. Simultaneously training an agent with respect to different
types of norms can be cast into various frameworks of RL, including meta-learning, multi-objective
decision-making, constrained optimization, multi-task learning and multi-agent systems. Although
each of the frameworks has its respective strengths and weaknesses, it is not clear a priori whether one
is more suitable for the goal of value alignment than the other. However, when considering human
reasoning capabilities, it becomes apparent that in order to make ethical decisions one is confronted
with a decision that requires finding trade-offs (whether explicitly or implicitly) between one’s own
goals and a broader normative component [15]. Multi-objective learning most directly tackles this
desideratum by considering game-theoretic notions of optimality and as such yields a promising value-
alignment framework [88]. Henceforth, we study the value alignment problem in a multi-objective
setting. Assuming fixed, well-defined intentions, we can train agents using multi-objective reinforcement
learning (MORL) to find solutions that do well on each measure. To find a desired trade off, MORL
algorithms then often optimize for a set of solutions, of which a user can choose by providing some

1.2. Research Questions 5

form of personal preference [69]. Unfortunately, depending on the scenario, optimizing for a whole set
of solutions might not be feasible or simply unnecessary. Besides that, when the respective objective
functions represent normative behavior, one might have strong prior beliefs about what should be
prioritized. This calls for an interactive approach to MORL, in which an agent can learn about human
preferences in an online manner. We propose an algorithm based on active preference learning [74]
which queries a user for learning a distribution over multi-objective scalarization weights. By providing
pairwise preferences, the agent thus maintains a distribution over reward functions, which is maintained
through Bayesian updating.

Besides human feedback efficiency, our approach has several convenient properties. Firstly, it allows
for value-open design by learning multiple reward functions from different demonstrators. Despite this,
the two-step procedure of first learning what is generally valuable and only afterwards training how to
balance valuable behaviors can build a layer of protection against malicious preferences. This is because,
when all (or at least most) demonstrated behavior intersects on certain principles, then steering the
agent to break these very same principles from preferences becomes increasingly hard. Secondly, one can
incorporate incentives which are easily encoded in a reward function next to the normative principles
derived from demonstrations. From an applied AI perspective, this is important because one does not
want to strip an agent from its powerful optimization capabilities. For example, intelligent solutions
such as move 37 in the second game of AlphaGo versus Lee Sedol [4] are unlikely to arise from IRL
alone, unless they are prominently present in the demonstration data set. However, if we do indeed
care about winning “the game”, this can be incorporated through a multi-objective reward function
and the agent will optimize for it when instructed to do so. In this context, the normative component
can be seen as a prior, or regularizer that penalizes the system whenever it deviates too far from the
demonstrations.

1.2. Research Questions
To address the shortcomings of technical multi-objective value alignment implementations, we aim to
answer the following research questions:

1. How can we query and interact with experts to elicit normative behavior in sequential decision-
making problems?

2. How can we encode learned normative behavior into RL agents?

3. How can we combine different (and possibly conflicting) aspects of normative behavior in sequen-
tial decision-making problems?

The first research question is mainly theoretically motivated. To answer it, we study constrained
and multi-objective RL, the two relevant RL frameworks that extend the traditional notion of a scalar
reward function for single agents. We’ll illustrate their respective strengths and weaknesses with the
help of theorems and practical counterexamples that show in which setting one can expect to obtain
a desirable solution. In contrast, the second and third research questions will be mainly answered
using empirical methods. To do so, we’ll design two different environments that illustrate the limits
of current value learning methods, as well as propose a new algorithm for dealing with the current
shortcomings. Finally, while the first two research questions have been studied extensively in previous
literature, we found that the third research question has been largely neglected as of right now and can
not be tackled using state-of-the-art methods. For this reason, we consider our answers to the first two
research questions to be incremental research that directly builds on previous methods, whereas the
goal of studying the third research question is not only to propose a technical solution, but also to draw
more general attention to the problem of aggregating sequential preference data.

1.3. Contributions
Our main contribution lies in the combination of value learning with multi-objective RL for deep learning
agents. Naturally, this entails different degrees of novelty, including scalability as well as tractability.
First of all, we study the problem of learning values from experts and encoding them into RL agents
without making any assumptions about the underlying environment. In contrast to previous methods,
this enables us to theoretically scale to significantly more complex environments. Hence, in chapter 3 we

1.4. Thesis Outline 6

show that by combining adversarial inverse reinforcement learning with multi-objective optimization,
we can steer an agent towards normative behavior without the need for manual feature engineering. By
doing so, we tackle research questions 1 and 2.

While this extends previous methods, we show that an interactive multi-objective algorithm based
on active learning can drastically reduce the introduced additional computational burden as well as
offer a solution to the value aggregation problem for multiple experts. For this reason, in chapter 4 we
propose a framework called MORAL (Multi-Objective Reinforced Active Learning), which uses deep
inverse RL for learning multiple reward functions that can be subsequently used for interactively tuning
agents with only few preferences. Furthermore, in chapter 5 we illustrate how MORAL can be used to
learn from conflicting demonstrations and prove that, given expert agreement on a subset of trajectories,
MORAL will always optimize for Pareto optimal solutions regardless of the preference data provided
in the active learning step.

In combination, MORAL answers research questions 2 and 3, which we empirically validate by
conducting experiments in two environments, Burning Warehouse and Delivery with different degrees of
complexity. In both environments, we show that MORAL can successfully combine reward information
from multiple sources to generalize beyond expert demonstrations and exhibit normative behavior while
optimizing for a primary goal. Furthermore, we demonstrate that MORAL outperforms preference
based deep RL, which further suggests that state-of-the-art value learning methods lack support for
multi-objective decision-making. Finally, we perform ablation studies and show that MORAL is robust
with respect to preference noise, while exhibiting significantly better performance compared to training
without active learning.

1.4. Thesis Outline
The thesis (part I) is divided into a background chapter (chapter 2) which introduces the necessary
mathematical concepts and basic algorithms of deep RL, three research chapters (chapters 3-5) describ-
ing the methodology and obtained results, as well as a concluding discussion (chapter 6). Furthermore,
we have deferred a detailed analysis of related work to section 6.2. Besides this, part II features a
scientific paper corresponding to the results of chapter 3. Finally, hyperparameters, detailed plots, im-
plementation details and extended results are available in the appendix (part III), to which we include
references at the appropriate positions during the main chapters.

2
Background

This chapter aims to formulate the underlying mathematical framework of RL, including algorithms for
approximating optimal solutions starting in section 2.1. As a follow-up, we discuss maximum entropy,
multi-objective and constrained RL in section 2.2 and define their respective notions of optimality. In
section 2.3 we outline the fundamentals of deep learning and gradient-based optimization. Finally,
section 2.4 introduces policy gradient methods, a class of state-of-the-art deep RL algorithms including
proximal policy optimization, which will be the major training algorithm used throughout our research.

2.1. Reinforcement Learning
Reinforcement learning (RL) is the study of teaching an agent to learn arbitrarily complex behaviors
by exploiting regularities in large amounts of feedback data. It has recently become one of the most
promising approaches for the development of artificial intelligence (AI). Inspired by neuroscience and
human psychology, RL aims to teach machines how to act in a certain environment by providing reward
signals that are designed to convey what the agent ought to do and what it must not. While machine
learning (ML) is primarily concerned with pattern recognition, i.e. tasks including classification, clus-
tering and regression, RL is designed to solve pattern exploration and exploitation. As such, the RL
framework theoretically allows machines to plan and execute any possible sequence of actions over the
course of multiple time steps into the future. It should come to no surprise that, for this reason, the
appeal of RL among artificial intelligence researchers is correspondingly high.

However, any such powerful framework comes with numerous difficulties that have to be overcome in
order to make it applicable to real world tasks. Arguably, in the context of normative decision-making,
the most prominent problem for RL research is the credit assignment problem, which describes the
difficulty of ascribing relevance to past actions for delayed reward signals. For example, when training
an agent to play the game of Go, the only objective reward signal available is whether or not a game has
been won. However, it would be highly inefficient to assume that all actions during a won game were
actually responsible for the winning outcome. In fact, some actions might have significantly decreased
the agent’s probability of winning despite the end result being positive. Another example naturally
arises from any stochastic environment, where repeated actions in the same state might not lead to the
same outcome. It is then the task of the RL agent to find a policy, a mapping from states of the world
to a probability distribution over possible actions, that in expectation yields the desired outcome after
a certain amount of (possibly infinite) environment interactions.

2.1.1. Markov Decision Processes
To mathematically model an agent’s interactions with its environment, RL makes use ofMarkov decision
processes [11]. Formally, Markov decision processes can be captured by the following:

Definition 2.1.1. A Markov Decision Process (MDP) consists of a tuple 〈S,A, p, r, µ0〉, where

• S is the set of possible states,

• A is the set of valid actions,

7

2.1. Reinforcement Learning 8

• p : S × A → ∆S is a transition function, with p(·|s, a) denoting the probability distribution over
next states in S when executing action a in state s,

• r : S × A × S is a reward function, taking a state s, action a and next state s′ and returning a
reward r(s, a, s′),

• µ0 ∈ ∆S is a distribution over starting states.

Note that by definition of p, the Markov assumptions are automatically satisfied, i.e. the stochasticity
of the environment is completely determined given only a current state-action pair (s, a). If such
assumption does not hold, one needs to resort to more general notions of MDPs, such as the partially
observable MDP (POMDP) [48]. This, however, is beyond the scope of this chapter and we will therefore
assume that the Markov condition holds unless stated otherwise.

Within an MDP we typically assume a single agent executing actions in a sequential manner, see
figure 2.1. After starting in an initial state S0, at each time step t the agent executes an action At.
To decide which action to take at time t, the agent inspects the current state St and acts according to
a policy π : S → ∆A, which returns a probability distribution over actions. In turn, the environment
returns a reward Rt and next state St+1. In the case of a finite horizon MDP this is repeated until
a final state ST is reached, and is repeated indefinitely otherwise. This sequence of random variables
(S0, A0, S1, A1, . . .) forms a stochastic process with realizations τ = (s0, a0, s1, a1, . . .) which we will
call trajectories. Due to the Markov property, the probability of a T -step trajectory τ given a followed
policy π is simply given by

p(τ |π) := µ0(s0)

T−1∏
t=0

p(st+1|st, at)π(at|st), (2.1)

where π(at|st) denotes the probability of taking action at in state st.

While trajectories tell us how an agent behaves, they do not necessarily reveal how well an agent
is acting in its environment. To quantify an agent’s performance, we therefore need to define some
measure of success. Typically, this notion of success is derived from the given reward function and
takes the form of expected cumulative reward along generated trajectories. Formally, the finite-horizon
reinforcement learning problem can be defined in terms of finding a policy π : S → ∆A, which for a
discount factor 0 < γ ≤ 1 maximizes the expected return

max
π

J(π) = Eπ

[
T−1∑
t=0

γtr(St+1, At, St)

]
, (2.2)

Figure 2.1: Left : A discrete Markov decision process with four states, two actions and stochastic transitions (orange).
The agent starts in state S and can decide to retrieve a valuable object when executing a = 1. When repeating a = 1,
the agent has a chance of going back to the starting state which would allow it to retrieve more valuables. However, this
behavior puts the agent at risk of getting trapped in a burning room, leading to negative reward. Executing a = 0 after
retrieving a valuable object allows the agent to escape and transition to a terminal state E. Right : The interaction loop
between an agent and its environment.

2.1. Reinforcement Learning 9

where the expectation of a random variable X over π is understood as the average realized value of X
over generated trajectories τ , namely

Eπ[X] :=

∫
τ

p(τ |π)X(τ). (2.3)

Intuitively, the discount factor γ determines how myopic our agent is. For example, small values of γ
influence the agent in taking decisions that maximize short term rewards. On the other hand, when γ
is close to 1, we are optimizing for a less myopic agent which has only minor preferences for immediate
rewards over long term returns. Since in practice we are mostly concerned about long term performance,
the discount factor usually is set to values close to 1.

2.1.2. Value Functions & Bellman Equations
One important tool for finding optimal policies in RL algorithms is the value function. While the
optimization objective in (2.2) is a global optimality criterion over the whole MDP, a value function
gives us more fine-grained insight into the performance of a policy. Namely, for any given state s we
define the value function Vπ(s) : S → R of a policy π to be the expected cumulative reward when
starting in state s:

Vπ(s) := Eπ [Gt | St = s] , (2.4)

where Gt := Rt+1 + γRt+2 + · · · + γT−t−1RT denotes the return obtained after time t.1 In order to
quantify the quality of actions, we will additionally define an action-value function:

Qπ(s, a) := Eπ [Gt | St = s,At = a] . (2.5)

The difference between the two is that a value function only tells us about the desirability of certain
states, whereas the action-value function indicates the desirability of an action in such state. As
such, finding an action-value function Qπ∗ for an optimal policy π∗ = arg maxπ J(π) is equivalent to
solving the original optimization problem (2.2), since we can always obtain an optimal policy π(a|s) :=
arg maxaQπ∗(s, a) from an optimal action-value function.

It can be shown that the value function is the unique solution to a system of linear equations, which
are better known as the Bellman equations [82]. Assume that |S| < ∞ and |A| < ∞. Then, for any
policy π and state s ∈ S we can write

Vπ(s) = Eπ[Gt | St = s]

= Eπ[Rt+1 + γGt+1 | St = s]

=
∑
a∈A

π(a|s)
∑
s′∈S

p(s′|s, a)
[
r(s, a, s′) + γEπ[Gt | St+1 = s′]

]
=
∑
a∈A

π(a|s)
∑
s′∈S

p(s′|s, a)
[
r(s, a, s′) + γVπ(s′)

]
.

(2.6)

Similarly to (2.6) we can derive Bellman equations for the value and action-value functions of the
optimal policy. Let π∗ be an optimal policy and Vπ∗ , Qπ∗ be its respective value functions. It then
holds that

Vπ∗(s) = max
a

Qπ∗(s, a)

= max
a

Eπ∗ [Rt+1 + γGt+1 | St = s,At = a]

= max
a

Eπ∗ [Rt+1 + γVπ∗(St+1) | St = s,At = a],

(2.7)

and analogously for the action-value function we have

Qπ∗(s, a) = Eπ∗ [Rt+1 + γmax
a′

Qπ∗(St+1, a
′) | St = s,At = a]. (2.8)

1To reduce the notational burden, we will from now on not distinguish between Gt as a random variable and its realizations
by both denoting them with the same symbol unless stated otherwise.

2.1. Reinforcement Learning 10

0 100 200 300 400 500
Episode

1000

800

600

400

200

0

Re
tu

rn

= 0.01
= 0.001
= 0.0005
= 2

Figure 2.2: Left : Training performance of On-Policy Monte Carlo in the stochastic grid world navigation task for differ-
ent exploration hyperparameters. The lines and shaded areas show mean and standard deviation respectively for each
configuration averaged over 5 random seeds. Right : The stochastic gridworld environment. The agent starts in the top
left state (S) and is trained to walk along the gray wall to the goal state G. The arrows indicate example greedy actions
of the policy learned by Monte Carlo control.

Equations (2.7) and (2.8) are often used within RL algorithms to approximate an optimal policy
and are often referred to as value-based methods. One of the most prominent value-based algorithms is
Q-learning, which starts with a randomly initialized value function Q and iteratively applies equation
(2.8) to find an optimal value function.

2.1.3. Monte Carlo Estimation & Exploration
A straight forward way to approximate value functions when environment dynamics are not known is
Monte Carlo simulation. The main idea behind these methods is that, given enough time, an agent can
abundantly sample experience by acting in its environment and then determine unbiased means from
the distribution of observed returns Gt for any state-action pair (s, a). An obvious drawback of this
approach is the need to complete a whole episode before any learning can be made, which might result
in slow learning for long horizon tasks.

The most prevalent problem, however, is that once the dynamics are unknown, we need some
mechanism for efficiently guiding our search over promising state-action pairs. Any agent without
knowledge about the environment dynamics will first have to sufficiently explore in order to find states
that yield high rewards. Exploration is a fundamental difficulty for most RL algorithms, and it is
frequently referred to as the exploration-exploitation trade-off [82]. This trade-off describes the problem
of finding a right balance between exploiting an agent’s knowledge about the world versus gathering
new information about the world. While exploring can reveal previously unseen and possibly superior
states of the world, exploitation of already known strategies likely lead to higher rewards in the short
term.

Monte Carlo RL algorithms usually tackle this dilemma by maintaining a policy with sufficient
entropy. When dealing with discrete actions, this can be ensured by explicitly setting π(a|s) > ε for
some ε > 0. In this case, the parameter ε determines the level of exploration and is usually set to follow
a decreasing schedule over the time of learning. This way, the agent will explore avidly at the start of
training, but increasingly focuses on only executing actions that have shown to lead to high returns.

We illustrate Monte Carlo estimation and exploration with the aid of a simple control scheme, see
algorithm 1. The algorithm follows the scheme of generalized policy iteration [82], which translates to
learning an action-value function Q(s, a) of the current policy and then making the policy greedy with
respect to this function. In practice, it is however not necessary to precisely estimate the action-value
function for current policies. For that reason, we can update π each time we have an updated estimate
of Qπ. Estimates for Qπ are obtained by generating trajectories with π and saving the observed returns
Gt for each state-action pair (s, a). Taking the average over these returns gives a (biased) approximation
for Qπ(s, a). Finally, policy improvement is done by making the policy more greedy with respect to
the newly obtained action-value function. However, to keep adequate levels of entropy, we only make π

2.1. Reinforcement Learning 11

Algorithm 1: On-Policy Monte Carlo Control
Result: Estimated optimal policy π∗(a|s), action-value function Qπ∗(s, a)
Input: Decay parameter β > 0, initial exploration ε0 > 0
Initialize: J(s, a) as empty list, Q(s, a) ∈ R and π such that π(a|s) = 1

|A| , for all s ∈ S, a ∈ A
for i = 0, 1, . . . do

ε = ε0 · exp(−βi)
Generate trajectory τ = (s0, a0, r1, s1, a1, r1, . . . , sT−1, aT−1, rT) with π
G = 0
for t = T − 1, . . . , 0 do

Estimate go-to return G = γG+ rt+1

Append G to J(st, at)
Q(st, at) = 1

|J(st,at)|
∑
x∈J(st,at)

x

agreedy = arg maxaQ(st, a)
for a ∈ A do

if a = agreedy then
π(a|st) = 1− ε+ ε

|A|
else

π(a|st) = ε
|A|

end
end

end
end

greedy with respect to Q under the constraint that π(a|s) > ε for a dynamically changing ε > 0.

We test the performance of this algorithm in a stochastic grid world environment, see figure 2.2.
The agent starts in the top left corner of a 6 × 10 grid and has to navigate past a wall to a goal
state located on the other side. There are four available actions, one for moving in each direction
respectively. Furthermore, the agent receives a negative reward of −1 at each non-terminal state and
has a 25% chance of moving in a random direction each time it executes an action. When the agent
reaches the goal state, it receives a reward of 0 and the episode ends. To illustrate the trade-off between
exploration and exploitation, we train the Monte Carlo agent for different values of the exploration
decay hyperparameter β. Figure 2.2 shows that for β = 0.01 the algorithm converges to an optimal
solution after less than 200 episodes of training. Decreasing β leads to more exploration and thus
leading to overall slower convergence. On the other hand, when exploration is decayed prematurely, the
agent sometimes fails to discover the optimal policy, despite exhibiting faster learning progress at the
start.

2.1.4. Value Approximation
During the previous sections, we have assumed that it was feasible to have a tabular representation of
the state-action space. However, this assumption trivially fails in problems with continuous or very large
discrete spaces. For example, consider the problem of playing the board game of Go. Despite its simple
rule set, a standard 19 × 19 board allows for approximately 2.1 · 10170 legal states [85], which renders
storing a tabular array of Vπ(s) for all s ∈ S physically impossible. Furthermore, learning a separate
value for each state might be highly inefficient, since nearby states can share a majority of information
about their respective values. One solution to this problems lies in approximating policies and their
value functions by a parametrized statistical model fθ. To do so, we introduce a learnable parameter
θ ∈ Rd and, in the case of value learning, aim to find θ such that our estimation Vθ(s) approximately
matches the desired true value V (s). Typically, state-of-the-art methods use artificial neural networks
and tune θ accordingly by stochastic gradient descent. For now, we defer the discussion of the exact
representation to section 2.3 and focus merely on correctly learning Vθ.

We will now describe a simple Monte Carlo scheme for estimating Vπ for a fixed policy π in the case
of function approximation. In the tabular case, we were able to directly update V (s) for each s ∈ S by
sampling unbiased estimates of the returns Gt under π. While we can still obtain the same unbiased

2.2. Extended Decision Making Frameworks 12

estimates in the approximate case, we will first have to define an objective function for updating θ. At
first, it might seem apparent that we would like to minimize

min
θ
|Vθ(s)− Vπ(s)| (2.9)

for each state s separately. However, such local update criterion will not work in this case, since changing
θ can potentially change the values of Vθ(s′) for all other states s′. Thus, it is necessary to define a
global criterion which measures the performance of θ with respect to all states. To do so, let µ(s) ∈ ∆S
be a distribution over states in the MDP. Furthermore, we define a mean squared value loss [82] as

LV (θ) :=
1

2

∫
s∈S

(Vπ(s)− Vθ(s))2dµ(s). (2.10)

The distribution µ serves as a weighting function that determines which states need to have more
accurate estimates. This makes sense, since in large MDPs we will likely only need to visit a very small
fraction of the state space, on which we would like to focus on when finding θ. Typically, µ is chosen
to match the distribution of states visited by the policy (cf. section 2.4).

Having defined a criterion which θ needs to minimize, we can now apply gradient based optimization
for finding an update rule accordingly. Let∇θf(θ) denote the gradient of a function f with respect to the
vector-valued input θ. Then, under the assumption that we can exchange integral with differentiation,
we have

∇θLV (θ) = −
∫
s∈S

(Vπ(s)− Vθ(s))∇θVθ(s)dµ(s), (2.11)

where the integral is taken component wise. When µ(s) is the distribution of states visited by π, sam-
pling the random variables (Vπ(St)− Vθ(St))∇θVθ(St) provides a way for estimating (2.11) iteratively.
Since the gradient ∇θLV (θ) is the direction in which the function most rapidly increases, taking a
step into the negative direction will then lead to the error decreasing. This method is also known as
stochastic gradient descent, which we will further discuss in section 2.3.

Combining stochastic gradient descent with the Monte Carlo value estimation from section 2.1.3
leads us to a straight forward update rule for finding the value of a fixed policy when using function
approximation. Namely, we replace Vπ(St) in our gradient samples of (2.11) with the unbiased estimate
Gt and update θ by setting

θk+1 := θk + α(Gt − Vθk(st))∇θVθk(st). (2.12)

Under certain conditions about the learning rate α and the regularity of (2.11), it can be shown that
the above procedure does indeed converge to a locally optimal value function [13]. While this gives
us a practical algorithm for value estimation, the problem of finding an optimal policy with function
approximators persists. In theory, one could extend (2.12) to approximating Qπ(s, a) and proceed with
generalized policy iteration by maintaining an ε-greedy policy with respect to Q. However, estimating
Q this way turns out to be too noisy for most real-world applications. In section 2.4 we will introduce a
different class of approximate policy learning algorithms, called policy gradient methods, which are the
current state of the art way of utilizing Monte Carlo return estimates for inferring optimal behavior.

2.2. Extended Decision Making Frameworks
Markov decision processes offer a tractable optimization goal for the development of intelligent agents,
yet remain sufficiently complex for modelling a wide range of real-world sequential decision-making
problems. On the other hand, it should be clear that the assumption of a single reward function being
able to determine all intelligent behavior is merely a hypothesis [81, 82] with meager evidence. Besides
that, even if it was theoretically feasible to achieve such goal if one could define the correct reward
function, this would not imply that an agent would actually be able to learn this in practice. On the
one hand, approximate methods are prone to getting stuck in local optima [44] and, in the worst case,
might diverge completely when the variance of observed returns is too high [89]. For these reasons, a
variety of extensions of MDPs exist to extend the notion of rewards. We will start this section by defining
the framework of maximum entropy reinforcement learning and show how this relates to a constrained
optimization problem. As a follow-up, we will focus on extending the reward to a vector-valued function.

2.2. Extended Decision Making Frameworks 13

2.2.1. Maximum Entropy Reinforcement Learning
Maximum entropy reinforcement learning alters the reward maximization problem (2.2) by adding a
penalty for policies with low intrinsic randomness. Formally, we define the entropy of a random variable
X as

H(X) := E [− logP (X)] . (2.13)

Using this definition, the maximum entropy RL goal reduces to

max
π

Eπ

[
T∑
t=0

γt
(
r(St, At) + βH(π(·|St))

)]
, (2.14)

where β > 0 is a trade-off hyperparameter. This goal forces the policy to maximize the expected
cumulative rewards while remaining as stochastic as possible. Adding such entropy term to the reward
function has been proven successful in state-of-the-art RL algorithms [37, 59] as well as learning from
demonstrations [101], on which we will elaborate further in chapter 3. Besides that, we note that finding
a solution to maximum entropy RL is straight forward when using Monte Carlo estimation. In the case
of temporal difference bootstrapping, one can furthermore derive Bellman equations that include the
entropy penalty, which allows for adapting existing RL algorithms to the new goal.

2.2.2. Constrained Problems
Another disadvantage of traditional reward maximization is the lack of performance guarantees. How-
ever, in safety critical environments we often expect the agent to meet certain criteria first before we
care about its obtained rewards. For example, we might want to prevent that our path planning agent
from section 2.1.3 bumps into the gray wall too often. Adding a negative penalty to the reward function
would naturally achieve this, but it comes with the disadvantage that the primary objective of getting
to the goal is then competing with the safety constraint. This way, our agent could allow itself to bump
into the wall more often in case this leads to getting to the goal state more quickly.

Fortunately, such behavior can be effectively circumvented by splitting the space of policies Π into
a set of feasible and infeasible policies. To do so, we define constrained Markov decision processes
(CMDP) [5]. Formally, we call a tuple 〈S,A, p, r, µ0, c,d〉 a CMDP, which is obtained by extending an
MDP 〈S,A, p, r, µ0〉 with a (multivariate) constraint function c = (c1, . . . , ck) : S × A → Rk as well as
a constraint hyperparameter d ∈ Rk. The CMDP goal is to solve

max
π

J(π) (2.15)

s.t. Jc(π) ≤ d, (2.16)

where Jc(π) = Eπ[
∑T
t=0 γ

tc(St, At)] denotes the vector of cumulative expected constraint costs. Note
that since the constraint function c follows the same structure of the original reward r, the constrained
optimization problem above captures a multitude of problems beyond applications in safety. For in-
stance, setting c(s, a) = π(a|s) log π(a|s) will result in a constrained version of the maximum entropy
reinforcement learning goal (2.14) which can be shown to share the same optimal solutions for correct
choices of β and d [54]. However, finding a solution to the constrained MDP problem requires more
sophisticated methods than those of standard RL. This is because evaluating the constraint satisfaction
(2.16) involves the estimation of a value function which in itself is an expensive operation. Since finding
solutions to CMDPs is beyond the scope of this chapter, we will from now on assume that there are
efficient methods for solving CMDPs without further elaboration.

2.2.3. Multi-Objective Solution Sets
The way constraints are represented in CMDPs leads to an implicit ordering in the prioritization
of objectives. Namely, constraints need to be satisfied regardless of how much this deteriorates the
performance of the agent with respect to the primary reward. On the other hand, the magnitude
of constraint costs becomes irrelevant as soon as it meets the specified threshold. Arguably, CMDPs
are therefore most useful when the constraints as well as the expected inequality threshold are known
a priori. The framework of multi-objective reinforcement learning [69] provides methods for finding
trade-offs between competing objectives when this is not the case.

2.2. Extended Decision Making Frameworks 14

Multi-objective Markov decision processes (MOMDP) consist of a tuple 〈S,A, p, r, µ0,Ω, fΩ〉 that
extends the MDP with a vector-valued reward function r(s, a) ∈ Rm, where Ω is a set of preferences
and fω(r) are preference functions. Preference functions take the multi-objective reward and output
a scalar that reflects a given preference ω ∈ Ω over the objectives. In general, the goal of a multi-
objective reinforcement learning problem is problem dependent and cannot be as clearly defined as in
the constrained case. We refer to Roijers et al. [69] for a general taxonomy of multi-objective RL
problems and only elaborate on the decision support scenario, which is the relevant paradigm in the
context of normative decision making.

When training an agent for the purpose of decision support, the MOMDP goal consists of finding
a set of plausible policies from which a user can then choose by providing their personal preferences.
Figure 2.3 illustrates this in the case of two-dimensional rewards. In the first step, a multi-objective RL
(MORL) algorithm identifies a set of promising policies corresponding to a diverse set of preferences,
whereas in the second step a final policy is selected from this set at execution time. The criteria for
which desirable policies are selected in the first again depends on the algorithm. Nonetheless, a widely
accepted solution concept when dealing with multiple competing objectives is Pareto efficiency.

Pareto efficient solutions correspond to the policies for which we can assure that no other policy
exists that strictly improves upon all objectives. Together, the set of Pareto efficient solutions is called
a Pareto front, or Pareto boundary, and is defined as

F := {π|π ∈ Π ∧ @π′ 6= π : Jr(π
′) ≥ Jr(π)}, (2.17)

where Jr(π) = Eπ[
∑T
t=0 γ

tr(St, At)]. In general, we can assume very little about the shape of F and
in fact it might not necessarily be convex [97]. As such, optimizing for a complete Pareto boundary is
a highly demanding task and not yet feasible in complex MOMDPs. For this reason, numerous state-
of-the-art methods make the assumption of linear preference functions fω(r(s,a)) = ωT r(s, a). From
now on, we will follow this assumption and will only consider linear combinations of the vector-valued
rewards unless noted otherwise.

Linear preference functions allow for optimizing a tractable subset of the Pareto front, which we will
call the convex coverage set (CCS). The CCS consists of all Pareto efficient solution that are optimal
for some linear preference:

F∗ := {π ∈ F | ∃ω ∈ Ω : ωTJr(π) ≥ ωTJr(π
′), ∀π′ ∈ F}. (2.18)

As the name suggests, the CCS is convex by definition, by which we mean that it is closed under
policies maximizing convex combinations of preference vectors. To see why, consider π1, . . . , πn ∈ F∗
with corresponding preferences ω1, . . . ,ωn. Then, form an affine combination ωλ =

∑n
i=1 λiωi ∈ Ω

with
∑n
i=1 λi = 1. Because of linearity, we can bound ωTλJr(π) ≤ maxi ω

T
i Jr(πi). By maximizing this

expression over π we conclude that the optimal policy πλ = arg maxπ ω
T
λJr(π) with respect to ωλ must

be in the set {π1, . . . , πn} ⊂ F∗. An appealing property of the CCS is that it can be approximated
by directly solving regular MDPs for the scalarized reward function ωT r. Furthermore, we can expect

MORL Selection

MOMDP

Figure 2.3: A conceptual multi-objective reinforcement learning algorithm for two reward functions. The goal of a multi-
objective decision support agent is to be able to learn set of desirable policies (green). At deployment time, a user specifies
their preferences which lead to the selection of a correspondingly optimal policy (orange).

2.3. Generalization 15

similar ω to yield optimal policies that are close to each other in the space of returns. This allows us
to exploit similarity between different policies to learn from each other for reducing sample complexity
in multi-objective RL.

2.3. Generalization
One of the fundamental components of human intelligence is the ability to generalize. Generalization
denotes the capability of making accurate predictions on a set of previously unseen data points after
being trained on relatively few examples from the same distribution. For example, consider teaching a
child to tell apples and pears apart. While there might exist infinitely many feasible variations of apples
and pears, it is sufficient to show the child a small and finite amount of samples before it will have
learned an internal representation for each of the respective fruits, thus equipping it with remarkable
generalization capabilities in the domain of fruit classification.

Unfortunately, generalization as such is a highly anthropocentric concept, which makes it a major
challenge for the design of artificially intelligent agents. What might seem similar to humans is not
guaranteed to appear close to a machine, because of the underlying differences in computation and
information processing mechanisms. However, one can seek inspiration from the mammalian brain
when aspiring to build electric circuits that ought to achieve similar, if not superior generalization
powers than those of humans.

Deep learning (DL) aims to do exactly that and has become an inevitable tool for building general-
izable AI systems over the past decade. Through the use of artificial neural networks, which constitute
a highly simplified mathematical model of neural computation, DL leverages big data for solving high
dimensional tasks including image classification, natural language processing, time series forecasting
and synthetic data generation. The field inherits its name from the type of used network architectures,
which consist of several layers of neurons stacked above each other, resulting in a computation graph
of significant depth that can contain anything between hundreds to billions of learnable parameters.
However, any complex model is only as powerful as its optimization algorithms allow it to be. By
design, deep neural networks are differentiable models, which allows them to be trained with gradient
based optimization. Given a loss function, which is a function of the network parameters that we want
to optimize, we can therefore (approximately) calculate how the parameters have to be changed in order
to decrease the loss. As it turns out, this is sufficient for obtaining models with remarkable capabilities,
even though the reasons for this still remain to be fully understood.

2.3.1. Feedforward Networks
Feedforward networks form the underlying prototype of architectures for deep learning. In their most
basic form, they take an input vector x ∈ Rn and apply a sequence of functions fk : Rdk−1 → Rdk to
arrive at an output vector ŷ ∈ Rm [35]. The functions fk are themselves composed of a linear transfor-
mation followed by a nonlinear function, also called activation function. To ensure differentiability of
the model, the activation function is ensured to be differentiable (almost everywhere), which results in
the feedforward network being a composition of differentiable functions. The motivation for such choice
is that, while remaining differentiable as well as computationally efficient, we can hope to approximate
arbitrary (continuous) functions when composing sufficiently many functions fk. In fact, the universal
approximation theorem [46] guarantees that this holds for feedforward networks with as little as one
intermediate layer of computation. However, research has shown that relying on such theoretical state-
ments alone does not facilitate the learning of complex functions [7, 87]. For that reason, state-of-the-art
methods typically employ several stacked layers, resulting in a deep multilayer architecture.

The multilayer perceptron (MLP) is a feedforward network consisting of multiple layers of compu-
tation, called perceptrons. Formally, a perceptron consists of a linear transformation W ∈ Rn×m, a
bias vector b ∈ Rm and an activation function g : R→ R which, when combined, take an input vector
x ∈ Rn and compute

ŷ = f(x;W,b) := g(WTx + b), (2.19)

where g is applied element wise. The multilayer perceptron then consists of multiple stacked layers
{W1,b1, . . .Wk,bk} of the form (2.19), where each intermediate step is saved in what is called a
hidden layer. Figure 2.4 shows an example multilayer perceptron consisting of three hidden layers.
Assuming that we are using a fixed activation function across all layers, its output can be decomposed

2.3. Generalization 16

x1

x2

x3

x4

xn

Input
layer

Hidden
layer 1

Hidden
layer 2

Hidden
layer 3

ŷ1

ŷ2

ŷ3

ŷ4

ŷm

Output
layer

...
...

Figure 2.4: A multilayer perceptron which takes an input vector x ∈ Rn and returns a vector-valued output ŷ ∈ Rm after
passing x through three hidden layers h1 = f1(x), h2 = f2(h1), h3 = f3(h2).

in a hierarchical manner as

ŷ = W4
Th3 + b4

h3 = g(W3
Th2 + b3)

h2 = g(W2
Th1 + b2)

h1 = g(W1
Tx + b1).

(2.20)

Note that in the formula above, we did not apply the activation function g to the final layer. This is
an arbitrary choice and depends on the type of problem that the multilayer perceptron aims to tackle.
For example, when trying to perform a classification task it is common to normalize the output ŷ, such
that its values add up to one. This way, each element can be interpreted as a probability, or confidence
score, that the input belongs to a certain class. We will elaborate on this further in section 2.3.2.

From now on, we will refer to the set {W1,b1, . . .Wk,bk} as network parameters, or weights, and
will denote them as a single parameter θ ∈ Rd corresponding to a neural network fθ, where d is the
total number of parameters. The activation function is not included in θ since it is assumed to be fixed
and is not learned. Furthermore, unlike the type of output we desire from the neural network, the
choice of activation function is less problem dependent. State-of-the-art methods frequently employ the
rectified linear unit (ReLU) activation function g(x) = max(0, x) which has been shown to outperform
various other choices of activation functions [60]. An appealing property of ReLU is that it is fast to
compute, has an easy to compute derivative (almost everywhere) while enforcing sparsity by setting
negative inputs to zero. On the other hand, this comes at the disadvantage of vanishing gradients when
many inputs are smaller than zero, which can slow down gradient-based optimization (cf. section 2.3.3).
A straightforward fix for this problem, however, consists of simply altering the slope of the function by
setting g(x) = max(0, x) + αmin(0, x) where α > 0 controls the angle of negative slope.

To illustrate the importance of activation functions, consider figure 2.5. First, we generate a two-
dimensional point cloud by independently sampling two Gaussian random variables X1, X2 ∼ N (0, 1).
We then split the dataset into two classes by drawing concentric circles around the origin until both
classes contain roughly the same amount of points. Secondly, we construct an MLP with the same
architecture as described above (2.20). Finally, without going into detail about the training process, we
find MLP parameters θ such that the output most closely matches the ground truth class for each point
in the dataset. We do this twice, once for an MLP with the ReLU activation function and once with
the identity function. As can be seen, the MLP with the nonlinear ReLU activation function captures
the structure in the data significantly better. This is not surprising, since the MLP with the identity
activation function is merely a concatenation of affine functions, thus collapsing to an overall affine
funcion itself. As a result, this linear MLP is restricted to a constant gradient which prevents it from
separating the circular shaped classes.

2.3. Generalization 17

3 2 1 0 1 2 3

2

1

0

1

2

Dataset

3 2 1 0 1 2 3

2

1

0

1

2

MLP with g = relu

3 2 1 0 1 2 3

2

1

0

1

2

MLP with g = identity

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

0

2

4

6

8

10

relu(x) = max(0, x)

Figure 2.5: The importance of activation functions. The ReLU function introduces a slight nonlinearity into the MLP,
which allows for classifying an isotropic Gaussian point cloud into two linearly inseparable classes.

2.3.2. Loss Functions
As discussed previously, the type of desired neural network output ŷ depends on the task at hand.
The purpose of loss functions is to formally define this task and simultaneously provide a performance
measure which can be compared across different architectures. Although it is hard to provide a complete
taxonomy of loss functions due to the wide array of tasks that neural networks are theoretically capable
of tackling, the generic task usually consists of modelling the probability distribution pdata of the
available dataset [35]. In terms of mathematical statistics, we can frame this as maximum likelihood
estimation. Formally, we call a parameter θ∗ a maximum likelihood estimate (MLE) of the probability
distribution of some data X = {x1, . . . ,xm} if and only if

θ∗ := arg max
θ

m∏
i=1

pθ(x
i), (2.21)

where pθ(x) is the model’s estimated likelihood of observing x from pdata. Note that in this definition
we made a major assumption that the data X is independent and identically distributed (i.i.d.). While
this might not hold in practice, the i.i.d assumption is necessary to make learning probabilistic models
tractable. In some sense, the MLE is our best estimate of pdata since it directly finds θ such that the
observed data was as likely as possible to be observed.

The definition of the MLE is mathematically convenient. Nonetheless, we can derive a slightly
more numerically stable and more commonly used target which turns out to be equivalent to the MLE.
First, we note that since the natural logarithm is a monotonically increasing function, we can apply the
logarithm to expression 2.21 without changing the maximizing argument

θ∗ = arg max
θ

m∑
i=1

log pθ(x
i). (2.22)

This is useful for large datasets, because it avoids rounding errors that could occur when calculating
the product of possibly small probability values. Furthermore, we call p̂data the empirical cumulative
distribution function (ECDF) of X, which puts an equal probability mass of 1

m to each of the points in
X [98]. After multiplying by m, we reframe the expression 2.22 in terms of the ECDF by writing

θ∗ = arg max
θ

Ep̂data [log pθ(x)]. (2.23)

This equation has an alternative interpretation to the MLE, which is that we want to minimize the
dissimilarity between the two distributions p̂data and pθ. In fact, this interpretation can be proven
formally, by defining the Kullback Leibler (KL) divergence [53] of two distributions p and q as

DKL(p||q) :=

∫
p(x) log

p(x)

q(x)
dx. (2.24)

If we plug in the two distributions p̂data and pθ into the KL divergence and rewrite the integral as an
expectation over p̂data, we obtain

DKL(p̂data||pθ) = Ep̂data [log p̂data(x)− log pθ(x)]. (2.25)

2.3. Generalization 18

Finally, since log p̂data does not depend on θ, minimizing this KL divergence over θ coincides with the
MLE optimization objective (2.23).

Minimization of the KL divergence can be naturally cast into many practical machine learning
problems. The corresponding loss function L(θ) is then obtained by reformulating the negative argument
in (2.23) as a function of θ, which is commonly referred to as the cross entropy loss function. For
example, consider the task of learning a binary classifier fθ which, given some input x outputs the
probability of corresponding to the class y = 1 as opposed to y = 0. In this case, we are aiming to find
a conditional distribution pθ(y|x), where log p̂data(y|x) is equal to 1 if and only if y is the true label for
x. Due to the special structure of p̂data the cross entropy reduces to a simplified form

L(θ) = −
m∑
i=1

yi log fθ(x
i) + (1− yi) log(1− fθ(xi)), (2.26)

where yi ∈ {0, 1} is the observed label for xi.

2.3.3. Optimization & Model Selection
Having defined a loss function L and a network architecture with parameter θ, it remains to be dis-
cussed how to train neural networks in practice. That is, we would like to tune θ such that L(θ) becomes
minimal. Generally, we rely on gradient-based optimization with stochastic gradient descent (SGD) by
moving θ into the opposite direction of ∇θL(θ). The calculation of the gradient is, unfortunately, infea-
sible for two reasons. Firstly, deep neural networks compose multiple layers of computation including
nonlinear activation functions. This makes an exact derivation of the gradient challenging, which is why
we typically rely on automatic differentiation [9]. Automatic differentiation allows to calculate gradi-
ents numerically without having to derive it in an exact symbolic form. Secondly, the gradient ∇θL(θ)
is too expensive to compute due to it depending on the complete dataset, which is why we instead
sample batches of data for approximation. Depending on the batch size, this unfortunately introduces
considerable amounts of noise into the calculation of ∇θL(θ) that can slow down convergence.

From a theoretical point of view, such noise is not problematic as long as its variance is bounded
over time - convergence to a stationary point is guaranteed for appropriate learning rate schedules
[13]. Nonetheless, there is a need for taking this discrepancy between theory and practice into account.
For that reason, several alternative gradient methods have been introduced, including RMSProp [84],
Adam [49] and AdaGrad [26]. Mostly backed by empirical evidence, these adaptive learning algorithms
keep track of past gradient statistics, such as means and standard deviations and have been shown to
exceed the convergence speed of regular SGD for most machine learning problems. In the case of Adam,
we keep a running exponential average of calculated gradients ∇θ and their squared values ∇2

θ (to be
understood as a point wise product) in variables vi and ri respectively. The rate of decay is given by
hyperparameters ρv and ρr respectively. Finally, we ensure that vi and ri are unbiased estimates of the
gradient statistics and update θ accordingly:

vi = ρvvi−1 + (1− ρv)∇θ

v̂i =
vi

1− ρiv
ri = ρrri−1 + (1− ρr)∇2

θ

r̂i =
ri

1− ρir

θ′ ← θ − α v̂i√
r̂i + ε

.

(2.27)

The Adam optimizer proves to be a powerful tool for finding (locally) optimal solutions of neural
networks. Nonetheless, this does not necessarily guarantee generalization performance due to the loss
function landscape depending on the training data. Thus, one needs to consider different mechanisms
for model selection which incorporate the out of distribution performance that cannot be inferred from
the training data. Traditionally, this is achieved by comparing models by their loss on a separate test
set. Measuring performance on the test set is in some sense the most effective way for estimating
generalization capabilities.

2.3. Generalization 19

When a model performs exceptionally well on the training data, but fails to generalize to test data
from the same distribution, we call our model overfitting. Overfitting can happen when the model’s
parameters are overly specialized to just solve the task on the training dataset. In the extreme case, deep
neural networks can have enough parameters to completely interpolate the training data by achieving
an accuracy of 100%. In statistical learning theory, such phenomenon would be considered harmful
due to an inherent trade-off between a model’s bias and its variance [30]. However, recent research
has shed light on a more nuanced understanding of overfitting by showing that once enough learnable
parameters are present in the model, generalization performance can be recovered [10]. To illustrate
this phenomenon, we can train a multilayer perceptron of varying sizes on the MNIST-1D dataset
[36], which is a synthetic dataset of distorted line strokes resembling handwritten digits. Figure 2.6
shows the obtained accuracies (in terms of negative log-likelihood, cf. (2.22)) on the training and test
set respectively for each configuration. Additionally, the interpolation threshold is annotated, which
lies at the (minimum) amount of parameters needed to perfectly recall the training set. When below
this threshold, increasing the number of parameters allows the model to achieve a lower error on the
training set, at the cost of test performance. However, this cost vanishes once the number of parameters
is increased gradually beyond the interpolation threshold.

Unfortunately, increasing the number of parameters comes with the drawback of additional com-
putational burden. Furthermore, it is often desirable to manually control for the capacity of neural
networks by inducing prior information. This prior, also known as regularization can come in various
forms and is often incorporated directly into the loss function. The most prominent example is L2 reg-
ularization and is obtained by adding a multiple of the norm ||θ||22 to the loss function [35]. Interpreted
in a Bayesian setting, L2 regularization penalizes a model for learning parameters θ with overly high
variance by placing a low variance prior on the parameter space. Finally, regularization is widely appli-
cable for reinforcement learning problems and normative decision-making. For example, regularization
allows us to control for stochasticity of a policy (cf. maximum entropy RL (2.14)) as well as making
use of prior information from human behavior, which we will elaborate on further in chapter 3.

2.3.4. Convolutional Neural Networks
Incorporating inductive biases, which are prior assumptions made about the space of learnable functions
can strongly boost a model’s performance. This is because, depending on the type of data, one can
exploit regularities and invariances of the input space to drastically reduce the problem dimensionality
[18]. Convolutional neural networks (CNNs) do so for the domain of image recognition by sharing
parameters in a way that makes the input-output relation shift-invariant [35]. Instead of learning dense
weight matrices, CNNs transform input images I ∈ Rn×m into a new image S ∈ Rn−k+1×m−k+1 through
the cross-correlation operator

S(x, y) =
∑
i

∑
j

I(i+ x, j + y)K(i, j), (2.28)

where K ∈ Rk×k is called a filter. The filters K form the learnable parameters of a CNN as well as the
basis for shift invariance. Filters function as object recognition modules, which produce high activation

0 5000 10000 15000 20000
Number of parameters

0.0

0.5

1.0

1.5

2.0

Ne
ga

tiv
e

Lo
g-

Lik
el

ih
oo

d

MLP train
MLP test

Interpolation threshold

Figure 2.6: Double descent curve on MNIST-1D for a multilayer perceptron of varying size. When beyond the inter-
polation threshold (black), the test accuracy starts to decrease again (orange) while the training performance follows a
monotonically decreasing function of the number of parameters (blue).

2.4. Policy Gradient Methods 20

maps when the corresponding input image exhibits similar patterns at any location. Furthermore, the
cross-correlation operator can be reformulated as sparse matrix multiplications and as a consequence,
CNNs form a subclass of MLPs.

Typically, a convolutional layer consists of a set of filters {K1, . . . ,Kn} that results in an image
output with multiple channels. To process images with many channels, we can furthermore generalize
the cross-correlation operator, by learning three-dimensional filters and performing the computation
(2.28) analogously over all channels. While the study of deep CNNs is beyond the scope of this chapter,
we note the strength of their inductive bias by reporting test accuracies in table 2.1. We train two
MLP architectures with two hidden layers of sizes 256 and 5000 respectively as well as two CNN
architectures that contain three convolutional layers with 32 and 256 filters respectively, followed by
a linear output layer for outputting a class between 0 and 9. The results clearly indicate that CNNs
outperform MLPs, both in the number of parameters as well as in the overall test accuracy, with the
smaller CNN architecture needing up to four magnitudes less parameters while achieving an almost
25% higher accuracy.

Architecture MLP-256 MLP-5000 CNN-32 CNN-256
Test Accuracy 65.4 70.8 94.2 96.2
Parameters 78858 5.2e7 5210 408074

Table 2.1: Performance comparison of CNNs and MLPs on MNIST-1D. MLPs are unable to match the performance of
CNNs even when largely exceeding the number of learnable parameters.

2.3.5. Generative Adversarial Networks
So far, we have only considered networks that model a conditional distribution of observable variables.
However, we are often interested in generating completely new samples of a training data distribution
without providing any explicit observable input. Inspired by methods from game theory, generative
adversarial networks (GAN) tackle the problem of generating synthetic samples for high dimensional
probability distributions by letting the generating networkG compete against an adversarial counterpart
D [34]. To do so, network parameters θG and θD are trained jointly to minimize the GAN loss function

arg min
G

max
D

Ex∼pdata [logD(x)] + Ez∼pz [log(1−D(G(z))], (2.29)

where pz is a latent distribution from which the generator G generates new samples. The first term of
the loss function trains a discriminator to maximize its confidence when drawing real samples from the
data distribution pdata, while the second term ensures that the discriminator correctly distinguishes the
generated samples G(z) from real ones. Furthermore, minimization over G encourages the generator
network to fool the discriminator by producing samples that are more similar to x ∼ pdata. As it turns
out, this game theoretic training scheme can be generalized to distinguishing human demonstrations
from synthetic behavior in the context of reinforcement learning, making it especially useful when
modelling human behavior with deep neural networks. We will omit the details for now and return to
a specific application in chapter 3.

2.4. Policy Gradient Methods
In the previous sections we have outlined how we can achieve generalization through optimizing deep
neural networks with gradient-based optimization. As it turns out, a similar concept can be directly
applied to the problem of learning optimal policies in MDPs. Policy gradient methods form a class of
reinforcement learning algorithms which learn a parametrized policy πθ by sampling the gradient of its
value function. In this section, we will illustrate the theoretical framework of policy gradient methods
in 2.4.1 as well as discuss proximal policy optimization in 2.4.2, a state-of-the-art deep reinforcement
learning algorithm for solving high dimensional problems.

2.4.1. REINFORCE
When aiming to obtain gradient estimates of the cumulative expected rewards J(πθ), one faces the
problem of backpropagating through the distribution of states encountered by πθ. When no assumptions
are made about the transition dynamics of the MDP, such a derivative becomes intractable to compute.

2.4. Policy Gradient Methods 21

Fortunately, the policy gradient theorem derives an expression of ∇J(πθ) that only depends on the
gradients of the policy πθ with respect to its actions.

Theorem 2.4.1 (Policy Gradient Theorem [83]). For any MDP, the gradient of the performance metric
J(πθ) is given by

∇J(πθ) ∝
∑
s∈S

µ(s)
∑
a∈A
∇πθ(a|s)Qπθ (s, a), (2.30)

where µ(s) is the discounted state visitation distribution under πθ.

µ(s) :=

∞∑
t=0

γtP(St = s|S0, πθ) (2.31)

The reinforce trick rewrites ∇πθ(a|s) = πθ(a|s)∇ log πθ(a|s), allowing us to express the gradient in
terms of obtained returns Gt:

∇J(πθ) ∝ Eπ [Qπθ (St, At)∇ log πθ(At|St)]
= Eπ [Gt∇ log πθ(At|St)] .

(2.32)

Furthermore, we can replace Gt by an advantage function Aπ(St, At) = Qπ(St, At)− Vπ(St) to reduce
the variance of gradient estimates without altering the expression [76]. In total, the REINFORCE
algorithm turns (2.32) into a gradient-based update rule for θ, where Gt is estimated in a Monte Carlo
fashion as discussed in section 2.1.3. When employing advantage functions, we furthermore learn Vπθ
separately by performing gradient descent on the squared loss (2.11) using the methods introduced in
section 2.1.4.

2.4.2. Proximal Policy Optimization
REINFORCE provides an intuitive algorithm for directly approximating locally optimal policies using
stochastic gradient descent. Nonetheless, when dealing with complex state spaces and long horizon
tasks, the variance of the advantage estimates Aπ can lead to unstable training. The reason for this
is that when performing noisy updates, one is at risk of undoing a large part of learning progress by
updating θ into the wrong direction. To tackle this, proximal policy optimization (PPO) is an easy to
implement state-of-the-art method that limits how far one allows the policy to update at each step [77].
Formally, the update rule of PPO is given by

θk+1 = arg max
θ

Eπθk [L(θk, θ)], (2.33)

where the performance criterion L(θk, θ) is given by

L(θk, θ) = min

(
πθ(at|st)
πθk(at|st)

Aπθk (st, at), clip
(
πθ(at|st)
πθk(at|st)

, 1− ε, 1 + ε

)
Aπθk (st, at)

)
(2.34)

Algorithm 2: Proximal Policy Optimization
Result: Trained policy πθ∗(a|s) and corresponding value function Vφ∗(s)
Initialize: Policy πθ0 , value function Vφ0

for k = 0, 1, . . . do
Sample trajectories D = {τi}mi=1 from p(τ |πθk) through interaction with the environment.
Estimate returns Ĝt, advantage values Âπθk (st, at) from D using Vφk as a baseline.
Update θ by stochastic gradient ascent (e.g. Adam) on the objective L(θk, θ):

θk+1 =

arg maxθ
∑
τ∈D

∑
t min

(
πθ(at|st)
πθk (at|st) Âπθk (st, at), clip

(
πθ(at|st)
πθk (at|st) , 1− ε, 1 + ε

)
Âπθk (st, at)

)
Update φ using stochastic gradient descent on the mean squared loss:

φk+1 = arg minφ
∑
τ∈D

∑
t(Vφ(st)− Ĝt)2

end

2.4. Policy Gradient Methods 22

and clip(x, a, b) denotes a clipping mechanism that bounds the value x to the interval [a, b]. Algorithm
2 shows a pseudocode implementation of PPO using this objective.

The term (πθ(at|st)/πθk(at|st))Âπθk (st, at) measures how a new policy πθ performs relative to the
current policy πθk . Intuitively, this is because the estimated advantages Âπθk are sampled from πθk in
an on-policy fashion. That way, for each Âπθk the corresponding action πθk(at|st) that partially led
to it can be readily compared with the probability that another policy πθ would have taken the same
action. This is directly comparable to the original derivation of the policy gradient (2.32). Furthermore,
taking the minimum over the likelihood term and its clipped version aims to avoid updating the policy
too much at once. For example, when Âπθk is positive, optimizing the policy gradient objective yields
an increase in the probability πθ(at|st). However, by clipping the ratio we ensure that the maximum
amount of increase in advantage is (1 + ε)Âπθk when πθ(at|st) becomes too large.

3
Learning Implicit Norms

A key component of human behavior not typically present in current AI systems is the ability to adhere
to a multitude of social norms. Ideally, however, any aligned system should have some capability of
estimating the normativity of its actions in order to avoid causing ethically irresponsible outcomes. In
this chapter we aim to tackle this problem in the context of deep RL agents by combining methods of
learning from demonstrations and multi-objective decision-making. We will start by providing a formal
discussion on the issue of incorporating demonstrated normative behavior alongside a primary goal
by briefly reviewing state-of-the-art methods and comparing the constrained and multi-objective RL
frameworks in section 3.1. We note, however, that sections 3.1.1 and 3.1.2 merely serve as a motivation
to our later contributions from a theoretical point of view and can be skipped if desired. Subsequently,
in section 3.2 we will describe how adversarial inverse reinforcement learning can be used for learning
a normative prior from a single expert and combined with a primary goal. Finally, in section 3.3 we
illustrate our approach in a small grid world domain and discuss the key advantages and disadvantages
of the used method.

3.1. Aligning RL Agents
As discussed in section 2.2, RL agents rely heavily on the correct specification of a reward function,
which may or may not be feasible depending on the type of problem one is trying to solve. Furthermore,
one has to make a trade-off between rewards that facilitate quick learning and rewards that encode the
goal narrowly enough. A sparse reward signal which only fires once its corresponding task has been
achieved might correctly encode the desired goal, but when rewards become too sparse the amount of
needed exploration grows exponentially, deeming any traditional RL agent to fail at the problem. State-
of-the-art solutions to tackle extreme reward sparsity thus typically require task-specific human feedback
in order to make policy learning feasible [29]. This is mostly a practical problem, since theoretically one
can shape the reward function, which means applying a transformation to speed up training without
changing the set of optimal policies [62].

Unfortunately, while a solution to the exploration problem of deep RL would certainly provide
significant progress towards the goal of alignment by enabling the specification of more sparse reward
signals, the fundamental reward specification problem would persist. Additionally, deep RL agents
are prone to exploiting the reward function in unintended ways, leading to unanticipated behavior
and negative side effects [6]. It therefore seems inevitable to explore different MDP-based frameworks
that extend the notion of a single all determining reward function to make the specification of desired
behavior more tractable. To that end, multi-objective and constrained optimization problems provide
two conceptually similar, yet theoretically different perspectives on reward augmentation.

3.1.1. Differences between Extended Frameworks
Multi-objective and constrained reinforcement learning both share the idea of extending reward func-
tions with additional desiderata. However, it is not clear a-priori which solutions can or can not be
obtained from either of the two approaches. To formally analyze this discrepancy, we will outline a

23

3.1. Aligning RL Agents 24

simple proof that shows when one can obtain solutions for CMDPs by solving a linear MOMDP. For
the ease of illustration, we will restrict ourselves to the two-dimensional case.

We will now consider a fixed MDPM = 〈S,A, p, r, µ0〉 that we extend by a single constraint function
c ≥ 0 and a hyperparameter d ∈ R. Let this CMDP be called MC . At the same time, consider the
MOMDPMMO obtained by extendingM by a second reward function r2 = −c. We would now like to
investigate, when an optimal solution π∗ inMC can also be obtained inMMO given a specific linear
preference ω. Let Π∗C(d) denote the set of optimal policies forMC (depending on the hyperparameter
d). Formally, we would like to find out, for which values of d it is the case that Π∗C(d) has a non-empty
intersection with policies on the convex coverage set F∗ ofMMO? The reason we are interested in this
question is because assuming global optimization, by our definition a linear MOMDP algorithm will
only search for policies that lie on the CCS. This means that if for given d the optimal CMDP solution
does not lie on the CCS then we will not be able to recover it when approximating the CCS for the
MOMDP problem. We will start by proving a simple Lemma.

Lemma 3.1.1. For each constraint parameter d, if there exists an optimal policy then there exists an
optimal policy that lies on the Pareto boundary of the corresponding MOMDP : Π∗C(d)

⋂
F 6= ∅.

Proof: Let d ∈ R and π∗ ∈ Π∗C(d) be arbitrary. If π∗ lies on the Pareto boundary, we are done.
Otherwise, assume π∗ does not lie in F . By definition, there must exist a policy π′, such that Jr1(π′) ≥
Jr1(π∗) and Jr2(π′) ≥ Jr2(π∗) with strict inequality holding for at least one of the two inequalities.
In case the first inequality strictly improves, it must be that Jr2(π′) ≤ −d, otherwise π′ would be
another feasible policy that improves upon π∗ in the CMDP. However, this would contradict Jr2(π′) ≥
Jr2(π∗) > −d. Therefore, we can assume that it must be the second inequality that strictly improves,
i.e. Jr2(π′) > Jr2(π∗) > −d. This implies that π′ is also feasible in the CMDP and must yield the same
return, namely Jr1(π′) = Jr1(π∗), which shows that π′ ∈ Π∗C(d). Since π′ was an arbitrary policy that
strictly improves upon a policy in Π∗C(d), we can thus repeat the same argument for π′ until we obtain
a policy πF ∈ Π∗C(d)∩F that can no longer be further improved upon (assuming bounded rewards). �

Lemma 3.1.1 guarantees that we can always find an optimal solution of the CMDP that also lies on
the Pareto boundary of the corresponding MOMDP. Intuitively, this makes sense: From all the feasible
optimal solutions of the CMDP we take the optimal solution with the least constraint violations. While
this lemma shows us that optimal CMDP solutions are somewhat efficient with respect to the MOMDP,
it does not state anything about the CCS. However, what immediately follows from the lemma is that
the optimal CMDP solution can be recovered in the MOMDP setting if the Pareto boundary is equal
to the CCS.

Theorem 3.1.2. If F = F∗ then for each constraint parameter that allows feasible policies, there exists
a preference that recovers the optimal CMDP solution, that is: ∀d ∈ R s.t. Π∗C(d) 6= ∅ ∃ω ∈ Ω, π∗ ∈
Π∗C(d) : π∗ = argmaxπ ω

TJr(π).

Proof: The proof follows from the fact that F = F∗ combined with lemma 3.1.1 implies that there
exists π∗ ∈ F∗∩Π∗C(d). By definition of F∗ the existence of ω ∈ Ω with π∗ = argmaxπ ω

TJr(π) follows
immediately. �

This theorem shows us that in some cases, the CMDP solution will automatically be optimized for
in CCS approximation algorithms with linear preferences. In this sense, we could consider the CMDP
problem to be a subset of the MOMDP problem, where hyperparameter tuning of d is equivalent to
adapting to a different preference vector ω. Unfortunately, however, the converse of the theorem does
not hold, which means that in the non-convex case the CMDP solution will not lie on the CCS and
thus cannot be recovered by optimizing for a certain linear preference between constraint and rewards.
To illustrate this, we refer to figure 3.1.

3.1.2. Challenges when Learning Constraints
The discussion in the previous section showed that depending on the shape of the Pareto front, one
may find CMDP solutions with linear multi-objective algorithms. A main drawback of this is that, in
practice, we cannot expect to know the shape of the Pareto front beforehand, which poses the question
what framework is suitable for the broader goal of teaching an RL agent to align with a specified set of
norms. As opposed to theorem 3.1.2, when the Pareto front does exhibit overly concave parts a linear
multi-objective approach would not suffice to recover any behavior that can be encoded in a CMDP.

3.1. Aligning RL Agents 25

CCS
Pareto Frontier

A

B

C

D

E

Non-optimal

Figure 3.1: When the CCS is not equal to the Pareto boundary, the CMDP solution will generally not be recoverable
through linear preferences. In this example π∗ is an optimal CMDP solution which does not lie on the Pareto boundary F .
However, as lemma 3.1.1 suggests, we can find an optimal π̃∗ that does lie in F , which yields higher r2 (lower constraint
cost) but the same original reward r1. Since in this case the CCS consists of A-E but does not include π̃∗, the scalarized
reward ωT r does not get maximized by π̃∗, but by a point on the CCS (in this case C).

On the other hand, in a CMDP there is an inherent ordering over objectives. Namely, the constraints
necessarily have to be jointly satisfied before optimization of the reward function can be carried through.

Even though normative behavior might seem more easily represented in the form of constraints,
this implicit ordering over objectives becomes highly problematic when we aim to learn the constraint
function instead of formally specifying it. To see why, assume that we want an agent to optimize for
some goal specified by a reward function r while adhering to a set of norms given by a constraint
function cH = (c1, . . . , ck) of some human H. In case cH can be formally specified, then we can hope to
find a corresponding constraint parameter dH ∈ Rk such that an optimal solution π∗H from optimizing
the CMDP

max
π

J(π) (3.1)

s.t. JcH (π) ≤ dH (3.2)

leads to normative behavior. When this is not the case, we have to resort to learning a function
ĉH : S × A → Rk first. Consequently, a new constraint parameter d̂H ∈ Rk would have to be found,
such that an optimal policy π∗ in the CMDP 〈S,A, p, r, µ0, ĉH , d̂H〉 closely matches the policy π∗H .
Now, assume we have learned an unbiased, but noisy estimate ĉH(s, a) = (c1(s, a)+ε1, . . . , ck(s, a)+εk)
where the εi ∼ N (0, σ2) are i.i.d. normal random variables modelling incurred measurement errors
from interacting with H. Then, rewriting the constraint (3.2) with respect to the learned function, we
obtain a new constraint

JĉH (π) = Eπ

[∞∑
t=0

γtĉH(st, at)

]

= Eπ

[∞∑
t=0

γtcH(st, at)

]
+

∞∑
t=0

γtN (0, σ2I)

= JcH (π) +

∞∑
t=0

N
(
0, (γtσ)2I

)
≤ d̂H ,

(3.3)

where I ∈ Rk×k is the identity matrix. Now, applying Levy’s continuity theorem [93] and the fact that
γ < 1 we obtain that the left hand side of the inequality converges in distribution

JcH (π) +

∞∑
t=0

N
(
0, (γtσ)2

) d→ N
(
JcH (π),

σ2

1− γ
I

)
. (3.4)

3.1. Aligning RL Agents 26

Although unbiased, this return is noisy proportional to the errors σ2 made when learning the constraint
function ĉH . If our goal now is to find a hyperparameter d̂H such that the desired policy π∗H is attained,
we will have to deal with this noise while optimizing for a constrained solution.

We illustrate the problem of only having access to noisy samples of the true constraint function
cH in an example two-dimensional CMDP. Figure 3.2 provides a complete description of the CMDP
including its payoffs. The agent starts in state S and can execute one of two actions, leading it into the
respective states S1 and S2. Each of these terminal states returns a two-dimensional array, representing
the reward function r and the constraint function cH . Clearly, state S2 yields the highest reward, but
comes at a constraint cost of 1, whereas S1 incurs no constraints.

Figure 3.2: Left : Example CMDP with two terminal states and their respective payoffs [r(s), c(s)]. S2 provides the highest
rewards at the cost of being more unsafe, whereas S1 yields no constraint costs. Right : The threshold d̂H needs to be
tuned such that desired behavior is incurred from an optimal policy. An optimal CMDP solution will always choose the
point below d̂H that lies furthest to the right.

Now assume that we do not observe cH , but instead only have a noisy estimate and let π1 and
π2 denote the policies taking actions a1 and a2 respectively. Furthermore, assume that dH = 0.5,
meaning that H deems S2 to be infeasible. Under this constraint regime, we immediately see that the
optimal solution π∗H to (3.2) is equal to π1. We would now like to investigate what our chances are of
choosing d̂H , such that π∗ coincides with π∗H = π1. Following the derivation in (3.4), we obtain that
JĉH (π)

d
= N

(
JcH (π), σ2

)
in the undiscounted regime (γ = 1) due to the finite time horizon of T = 1.

Plugging in π1 and π2 gives us that taking action a1 yields an observed constraint cost of Z = N (0, σ2)

and a2 returns a cost of Y = N (1, σ2). We can now obtain a random variable X(d̂H) that determines
the choice of the optimal policy π∗:

X(d̂H) :=

π2 if Y ≤ d̂H
π1 if Y ≥ d̂H ∧ Z ≤ d̂H
∅ else

(3.5)

To see why this holds, consider figure 3.2. If Y ≤ d̂H then the observed constraint cost of visiting S2

were low enough to make S2 a feasible state, hence optimal due to its maximal reward. Otherwise, S2

appears infeasible which leaves S1 as the other optimal feasible option. However, we can only choose S1

in case its constraint Z ≤ d̂H is satisfied and otherwise there is no feasible policy. From this definition,
we can explicitly calculate the probability that π∗ = π∗H , by

P
(
X(d̂H) = π1

)
= P

(
Y ≥ d̂H ∧ Z ≤ d̂H

)
= P

(
Y ≥ d̂H

)
P
(
Z ≤ d̂H

)
= P

(
N (0, 1) ≥ d̂H − 1

σ

)
P

(
N (0, 1) ≤ d̂H

σ

)

=

(
1− φ

(
d̂H − 1

σ

))
φ

(
d̂H
σ

)
,

(3.6)

3.1. Aligning RL Agents 27

where we made use of independence between Y and Z and φ(x) := 1√
2π

∫ x
−∞ exp −t

2

2 dt denotes the

cumulative distribution function of the standard normal distribution. As a function of d̂H , we can
plot the right hand side of (3.6) for various values of σ, see figure 3.3. We see that regardless of σ the
probability peaks around d̂H = 0.5 with the peak value being monotonically decreasing in σ. Intuitively,
this makes sense: If we aim to find π1 then choosing d̂H too high will force us to optimize for π2 instead.
On the other hand, d̂H cannot be chosen too low since otherwise the probability of observing any feasible
policy tends to zero. Hence, due to the assumed homoscedasticity of the measurement errors εi, the
optimal choice reduces to the intermediate value of 0.5.

Unfortunately, since we do not have access to cH nor dH in the unknown constraints scenario, this
example shows that the chances of choosing d̂H such that the desired behavior is optimized for are slim.
Due to the nature of constrained optimization, the constraint parameter d̂H has to be specified a-priori
which, if only having fuzzily defined constraints as in the example above, can lead to precluding desired
policies from the optimization all together.

3.1.3. Alignment as a Multi-Objective Problem
In the derivation above we assumed that ĉH was learned from some type of human interaction, while
d̂H was assumed to be a hyperparameter. A different, possibly more efficient choice would be to jointly
learn ĉH and d̂H , such that solving the corresponding CMDP yields the desired policy π∗H . To our
knowledge, this problem has not yet directly been tackled for general constraint functions. Instead,
previous constraint learning research has mostly focused on constraints of a predetermined geometric
[65] or binary [22] form. However, we expect this to be due to the problems outlined above.

When dealing with multiple soft and possibly conflicting criteria, the framework of multi-objective
optimization provides a better alternative. Not only does multi-objective optimization have many
potential benefits when aiming to build human-aligned AI [88], but it also fits well into the unknown
human preferences scenario [69]. Thus, we frame the problem of teaching a deep RL agent normative
behavior into the MOMDP framework. In the following we will consider two different scenarios:

1. Steering a traditional deep RL agent towards normative behavior : In this case, we assume that
there exists an MDP 〈S,A, p, rP , µ0〉 with primary goal rP , which can be solved by typical methods
of (deep) RL. While rP is assumed to properly encode the desired goal, the agent is not guaranteed
to behave ethically. For this reason, we assume that there exists a normative reward rN , such
that maximizing Eπ[

∑
t rN (st, at)] leads to normative behavior. Note that this assumption is

needed to make the RL problem feasible, and coincides with the fundamental reward hypothesis
of RL [82]. Furthermore, since rN depends on a set of human values that are not easily expressed
formally, we learn rN from human inputs. Finally, we form a MOMDP 〈S,A, p, r, µ0,Ω, fΩ〉 with
r = [rP , rN] and study how the combination of normativity and primary goals through multi-
objective optimization. This scenario will be mostly covered in chapters 3 and 4.

2. Controlling for norm diversity in deep RL agents: This scenario extends the previous scenario

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

dH

0.0

0.2

0.4

0.6

0.8

1.0

P(
*

=
* H
)

= 0.25
= 0.5
= 1.0
= 1.5
= 2.0

Figure 3.3: Probability of optimizing for the true optimal policy π∗H in the learned constraints scenario as a function of
constraint hyperparameter d̂H .

3.2. Methods 28

by assuming that rN in itself cannot be easily learned due to an inherent diversity and value
disagreement between different humans. As such, we extend the normative reward function to a
vector of rewards rN = [r1

N , . . . , r
k
N]. Analogously, we form a MOMDP with r = rN to trade off

different norms at runtime. We will study this scenario more explicitly in chapter 5.

3.2. Methods
Having settled on an appropriate framework for the study of incorporating normative behavior into
RL agents, we have yet to address the way in which rewards are learned and subsequently optimized
for. In this section, we will discuss methods needed to tackle the first scenario with a single learned
normative reward rN . Firstly, we will discuss the method of adversarial inverse reinforcement learning
(AIRL) for learning reward functions from human demonstrations in section 3.2.1. Secondly, section
3.2.2 will introduce a small scale benchmark environment for studying how desired trade-offs between
demonstrated norms and primary goals can be achieved. Finally, we will describe implementation details
and the experimental setup in section 3.2.3.

3.2.1. Adversarial Inverse Reinforcement Learning
Learning from human inputs has become a popular area of research in the field of RL due to the limits
of manual reward function design [23, 86, 91]. The most straight forward way of translating what a
human intends is arguably through demonstrating the desired behavior. Imitation learning avoids the
reward specification problem by learning a policy that approximately matches the state distribution
of demonstrated trajectories [45, 68]. However, as the name suggests, these methods are limited in
generalization capabilities. Firstly, human input can be expensive and sometimes simply infeasible due
to the desired task not being attainable by most humans. Secondly, when transferring to a related task
that requires the same solution, but was not present in the demonstration dataset, an imitation learner
might fail to solve the new task because it only learned an imitation policy for a smaller set of tasks.

To circumvent these drawbacks, inverse reinforcement learning (IRL) instead aims to learn a reward
function alongside an (optional) imitation policy [1, 61]. As such, the fundamental challenge of IRL is
that without any assumptions about the structure of learned rewards it is an ill posed problem. Any
set of demonstrations allows a multitude of reward functions under which the demonstrated behavior
becomes optimal, including the trivial example r = 0. To overcome such challenges, various IRL
frameworks have been developed, with maximum entropy IRL [101] having become the state-of-the-art
formulation. Maximum entropy IRL builds on the framework of maximum entropy RL (cf. section 2.2.1)
and imposes an ordering on the desirability of learned reward functions by preferring rewards that yield
optimal policies with higher entropy. Enforcing stochasticity alongside the imitation objective through
the learned reward helps in achieving improved generalization performance while remaining tractable
for sample-based optimization procedures.

Formally, maximum entropy IRL learns a reward function rθ by placing a probabilistic model over
observed trajectories:

pθ(τ) ∝ µ0(s0)

T∏
t=0

p(st+1|st, at) exp(rθ(st, at)) = pθ(τ). (3.7)

We can now learn θ through maximum likelihood estimation (cf. section 2.3.2)

arg max
θ

Eτ∼DE [log pθ(τ)] = arg max
θ

Eτ∼DE

[
T∑
t=0

rθ(st, at)

]
− logZθ, (3.8)

where Zθ =
∫
pθ(τ)dτ is the partition function and DE = {τi}Ni=1 is a data set of expert demonstrations.

An optimal solution θ∗ then yields the reward function rθ∗ under which a maximum entropy RL agent
most closely resembles the expert demonstrations DE .

Being an integral over possible trajectories, it becomes intractable to calculate Zθ directly once
the state space is sufficiently large. However, adversarial inverse reinforcement learning (AIRL) [31]
proposes the use of generative adversarial networks (cf section 2.3.5) to efficiently solve the optimization
problem (3.8) through gradient-based optimization instead. To do so, we jointly train a discriminator
of the form

3.2. Methods 29

Algorithm 3: AIRL
Input: Expert trajectory data set DE = {τi}Ni=1.
Initialize: Reward network fθ, policy πφ.
repeat

Sample trajectories D from p(τ |πφ) through interaction with the environment.
Update θ via stochastic gradient descent on the loss

-E(s,a,s′)∼DE [logDθ(s, a, s
′)]− E(s,a,s′)∼D[log(1−Dθ(s, a, s

′))].
Update φ using PPO to maximize

Eπφ
[∑T−1

t=0 logDθ(st, at, st+1) + log(1−Dθ(st, at, st+1))
]
.

until convergence of θ, φ;
Result: Estimated expert policy πφ∗(a|s), expert reward function fθ∗(s, a, s′).

Dθ(s, a, s
′) :=

exp(fθ(s, a, s
′))

exp(fθ(s, a, s′)) + πφ(a|s)
(3.9)

and a policy πφ. Dθ outputs its confidence that the transition (s, a, s′) came from an expert rather than
from the policy πφ and is trained through the loss function

L(θ) :=

T−1∑
t=0

−EDE [logDθ(st, at, st+1)]− Eπφ [log(1−Dθ(st, at, st+1))], (3.10)

which resembles the binary cross entropy loss (see 2.26). One can show that by taking the gradient of
L(θ) we are indeed optimizing the maximum entropy IRL objective [31]. To ensure convergence, the
policy πφ is trained to maximize the maximum entropy RL objective

arg min
π

DKL(p(τ |π)||pθ(τ)) = arg max
π

E

[
T−1∑
t=0

rθ(st, at, st+1)− log π(at|st)

]
, (3.11)

where rθ(s, a, s′) := logDθ(s, a, s
′) + log(1−Dθ(s, a, s

′)).

An appealing property of the specific choice of discriminator form (3.9) is that by design the reward
function rθ coincides with fθ, which itself resembles an advantage function. Furthermore, we can easily
transfer fθ to new tasks as well as make it only depend on the state if needed. As we will show in section
3.3, this provides us with an effective way for learning an underlying parametric reward function from
relatively few expert demonstrations of normative behavior. See algorithm 3 for a concise description
of the procedure.

3.2.2. Multi-Objective Optimization
Due to its generality and little assumptions about the structure of the state space, AIRL can in theory
recover a wide variety of demonstrated behaviors. Nonetheless, a major drawback of learning a reward
function is that, a-priori, we do not know the scale of the learned reward. When rewards are manually
engineered, it is often possible to evaluate an agent based on the numeric value of the obtained return
alone. Learned reward functions, however, are only defined in terms of their relative values and are
therefore impossible to interpret. In case of a single reward function r, this does not pose any additional
problems. Namely, any reward maximizing agent will simply optimize for the policy π∗ that yields the
maximum expected cumulative rewards. However, having a vector of rewards r is not completely
agnostic to such changes anymore. Scaling the individual components of r by different constants will
inevitably shift the respective priorities. On the other hand, the Pareto front is reward scale agnostic,
which is why multi-objective optimization is crucial for combining learned reward signals.

To illustrate this, consider an example grid world environment in figure 3.4. A firefighter agent is
trained to navigate to the fire extinguisher in the room when a fire breaks out. Although the agent
might not always find itself at the same position at the point of a fire outbreak, the extinguisher has a
predetermined position in the bottom right corner of the room. This goal can be easily formalized in a
reward function and we do so, by providing the agent a reward of +0.1 for each time step it stands on

3.2. Methods 30

the corresponding fire extinguisher tile. However, we additionally expect the agent to exhibit normative
behavior, which we assume to be not easily expressed in a formal reward function. To model a situation
in which normativity is crucial, we also assume that there are “lost workers” placed at random positions
on the 6 × 6 grid that need to be picked up in order to escape. Finally, the set of possible actions is
A = {up, right, down, left, interact up, interact right, interact down, interact left, no-op} such that at
each time step the agent is allowed to move in one of the four directions or pick up a lost worker next
to it.

Let rP denote the primary reward associated to the fire extinguishing goal and rN denote a reward
of +1 for each person saved. Since we assumed rN to be inaccessible, we learn a parametrized reward
fθ that resembles rN from demonstrations. The resulting MOMDP is now given by the reward function

r(s, a, s′) :=

(
rP (s, a, s′)
fθ(s, a, s

′)

)
. (3.12)

To efficiently find trade off solutions, we then aim to optimize for the convex coverage set by restricting
the set of scalarization functions fλ(r(s, a, s′)) = λrP (s, a, s′) + (1−λ)fθ(s, a, s

′) to be linear (cf section
2.2.3). This new reward function has an intuitive interpretation in terms of the demonstration data set:
Since constant scaling of the scalarized reward function does not change optimal policies, we see that
under maximum entropy RL, the optimization of fλ(r) can be interpreted as a regularized objective

max
π

Eπ

[
T−1∑
t=0

rP (st, at, st+1)

]
− βDKL(p(τ |π)||pθ(τ)), (3.13)

where β = 1−λ
λ is a regularization hyperparameter.

In this chapter, we analyze whether or not it is possible to optimize for normative policies with the
setup outlined above. This means, that we will be treating λ as a hyperparameter of the optimization
procedure. Although simple, performing a hyperparameter search over λ might not be tractable in
complex problems. For this reason, we will additionally propose an interactive multi-objective optimizer
in chapter 4 for finding appropriate trade-offs when hyperparameter tuning is not possible. Besides that,
we employ a two step procedure, where we reoptimize for the multi-objective reward after completing
the reward learning from AIRL, see algorithm 4. However, we note that it is possible to combine the
IRL step with the multi-objective optimization into a single training loop to obtain a more sample
efficient algorithm, as described in [66].

3.2.3. Experimental Setup
We evaluate our simple multi-objective IRL optimizer in the burning warehouse grid world from figure
3.4. Furthermore, we adapt the originally proposed AIRL network architecture [31] by learning two
networks hθ, gθ such that fθ(s, s′) := gθ(s)+γhθ(s

′)−hθ(s), where θ denotes the union over all learnable
reward parameters. While in AIRL such choice is necessary for recovering state-only reward functions,
we do not opt for a state-only reward and simply adopt it due to it more closely matching the original
implementation.

Figure 3.4: The burning warehouse environment. An agent has to navigate to its primary goal of using the fire extinguisher.
However, some workers are lost and need to be rescued in time, which corresponds to normative behavior not incorporated
in the primary goal.

3.2. Methods 31

Algorithm 4: AIRL Reward Shaping
Input: Expert trajectory data set DE = {τi}Ni=1, primary reward function rP .
Initialize: Reward network fθ by running AIRL (algorithm 3) on DE , list of trade off
parameters [λ1, . . . , λn].
for λ in [λ1, . . . , λn] do

Train a policy πi using the reward r(s, a, s′) = λrP (s, a, s′) + (1− λ)fθ(s, a, s
′) with PPO.

end
Result: Estimated CCS [π1, . . . , πn].

Figure 3.5 illustrates the used network architecture for the discriminator network. In this example,
we employ a leaky ReLU multilayer perceptron with three hidden layers of sizes 256, 512 and 256
respectively taking a state transition (s, s′) as flattened feature vectors. States in the environment are
given by a binary array I ∈ {0, 1}C×W×H with C channels encoding each separate entity as well as grid
width W and height H (for details, we refer to the appendix B). For the PPO policy πφ we employ
a convolutional architecture with ReLU activations, using two shared convolutional layers with kernel
size k = 2 and 64 as well as 256 channels respectively, followed by two separate convolutional and linear
heads for the actor and critic outputs operating on 32 channels. For the detailed PPO architecture, see
appendix B.1.1. To avoid learning biased reward representations through AIRL [51], we also set the
environment to fixed length episodes terminating after T = 75 time steps. This allows for enough time
to save every worker in the warehouse while leaving time for the primary goal, if played optimally.

Figure 3.5: MLP Discriminator Architecture. A forward pass calculates activations of the networks gθ and hθ respectively
and combines them into the reward prediction fθ.

We train the AIRL reward network simultaneously with the PPO agent by using the same experience
buffer of forward trajectories. While it is common to provide the AIRL update step with a larger
experience buffer including past (off-policy) experience [86], we found an increased batch size for PPO
to work well enough in order to ensure a rich dataset of forward experience for the reward network.1
Regarding demonstrations, we only consider synthetically generated data. This choice is motivated by
the fact that in our simple discrete environments, we expect human demonstrations to only marginally
differ from demonstrations obtained through RL. Besides this, employing synthetic demonstrations
allows us to more extensively test our approach with respect to larger demonstration dataset sizes and
different environment configurations at later stages. To train the demonstrating agent, we employ the
same architecture for the PPO network as is used in the AIRL training phase. First, the PPO agent is
1We opt for this option since sample efficiency is not of our primary concern and keep the amount of forward trajectories
fixed for all experiments.

3.3. Results 32

trained until convergence using manually engineered reward functions, which is then used to generate
a demonstration dataset used in AIRL. We only keep the demonstration dataset, abandon the trained
agent and reinitialize another PPO agent from scratch for the AIRL training phase. Furthermore, to
model the inherent stochasticity of human demonstrations, we add an entropy regularizer as described
in 2.2.1 to the PPO loss.

Although the underlying assumption of our experiments is that formal reward functions for respec-
tive normative behaviors are not easily encodable, our environments always allow for a good proxy
reward function to be found that encodes the desired behavior. This enables us to more easily com-
pare learned reward functions with their ground truth counterparts and, more importantly, to generate
demonstration datasets at scale more efficiently. However, we acknowledge the possible divergence of
human and synthetically generated demonstrations, which has been shown to impact training perfor-
mance in continuous locomotion tasks [64]. We defer the discussion of this discrepancy for now and
refer the reader to chapter 6.

3.3. Results
We start off by testing the performance of AIRL in our grid world environment for different demonstra-
tion dataset sizes. To do so, we train a PPO agent on the reward function r(s, a) = 1 if action a leads
to saving a person present in state s and r(s, a) = 0 otherwise. After successful training, the policy
manages to save all workers on average, but (by design) neglects the primary goal. See figure A.1 for
the achieved returns within a single run. We proceed by generating four distinct datasets while keeping
the trained policy fixed, but vary the sizes to include 10, 50, 500 and 2000 demonstrations respectively.
We report the performance of AIRL on each of the datasets in figures 3.6 and 3.7, by separately training
for three different random seeds each.

Figure 3.6 shows the amount of people saved by the imitation policy as well as the discriminator
classification performance as a function of environment steps. As can be seen, the PPO agent suc-
cessfully manages to imitate the saving behavior from the demonstrations even in the case of only
10 demonstrations. However, this alone does not necessarily reveal the quality of the learned reward
function fθ. When inspecting the classification accuracies of the discriminator, it becomes apparent
that the reward network is heavily overfitting to the demonstration dataset. We denote the accuracy
on generated trajectories from πφ as fake accuracy as well as the accuracy on the expert dataset DE
as real accuracy. Figure 3.6 shows fake and real accuracies for the distinct training runs. We see that
when the demonstration dataset is relatively small (i.e. 10− 50 demonstrations), the reward network is
able to fully memorize states from the dataset. Thus, the discriminator is able to immediately detect
any newly generated state-action pairs, leading to a very high fake accuracy despite πφ behaving very
similar to the expert policy πE . Note that this effect is further amplified by the random initialization of
the environment, which automatically informs the discriminator about the plausibility of a pair (s, a)
coming from πE . However, we can see that increasing the demonstration dataset size mitigates this
effect, with 500 demonstrations sufficing for a fake accuracy convergence to the equilibrium point of 0.5.
A different behavior can be inferred from the real accuracy, which drops accordingly as the imitation
policy πφ becomes increasingly proficient. Nonetheless, a small amount of overfitting persists, which
allows the discriminator to classify samples from DE with a higher accuracy than 0.5 even with large
dataset sizes. Again, this is likely caused due to the random initialization of the environment and has
also been documented in relevant literature [68] in the case of adversarial imitation learning. While
regularization or state compression are known to mitigate overfitting for AIRL [86], we omit these
techniques due to the simplicity of the environment and satisfactory imitation performance.

In aggregation, the real and fake accuracies inform us about the discriminator loss (3.10) acquired
during training, which we show in figure 3.7. After an initial drop in the discriminator loss, we can
see that once the imitation policy πφ has learned an optimal policy, the loss stabilizes and exhibits
convergent behavior in the limit. Unsurprisingly, due to the high fake accuracy of the discriminator in
the low demonstration regime, the overall achieved loss remains significantly lower the fewer demonstra-
tions are available. As a consequence, we observe very different behavior in the returns achieved by πφ.
Firstly, the fewer demonstrations we supply AIRL with, the higher the absolute values of the learned
reward function. This again confirms the overfitting hypothesis. Secondly, we see a large increase in
the variance of learned rewards when repeatedly running AIRL over different random seeds for small

3.3. Results 33

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Environment Steps 1e6

2

3

4

5

6
Pe

op
le

 S
av

ed

10 Demos
50 Demos
500 Demos
2000 Demos

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Environment Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Fa
ke

 A
cc

ur
ac

y

10 Demos
50 Demos
500 Demos
2000 Demos

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Environment Steps 1e6

0.5

0.6

0.7

0.8

0.9

1.0

Re
al

 A
cc

ur
ac

y

10 Demos
50 Demos
500 Demos
2000 Demos

Figure 3.6: Comparison of demonstration dataset size on AIRL training performance. Left : Imitation performance of
πφ. All policies converge to a near optimal solution (6 people saved) regardless of demonstration dataset size. Middle:
Discriminator accuracy on newly generated state-action pairs (’Fake Accuracy’). Right : Discriminator accuracy on state-
action pairs sampled from the expert dataset (’Real Accuracy’).

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Environment Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Di
sc

rim
in

at
or

 L
os

s

10 Demos
50 Demos
500 Demos
2000 Demos

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Environment Steps 1e6

2500

2000

1500

1000

500

0

PP
O

Re
tu

rn
s

10 Demos
50 Demos
500 Demos
2000 Demos

Figure 3.7: The impact of demonstration dataset size on the learned AIRL reward function. Left : Discriminator loss as a
function of environment steps. AIRL converges in all cases, but indicates overfitting when there is insufficient expert data.
Right : Obtained returns by the imitation policy πφ on the reward function r(s, a, s′) = logDθ(s, a, s

′)+log 1−Dθ(s, a, s′).

demonstration datasets, despite the underlying demonstrations not changing across seeds. While this
does not pose a problem for the optimization of a single learned reward function, this can introduce
challenges for multi-objective optimization. Namely, most multi-objective RL algorithms are sensitive
to the scale of the individual reward components. However, normalizing the learned reward functions
by appropriate constants can alleviate this issue significantly. We will test an appropriate choice of
normalization in chapter 5 and, for now, proceed with the default scale learned through AIRL.

Once a reward function has been learned, we can proceed with multi-objective optimization by
combining the predefined primary goal with the normative component. Figure 3.8 illustrates the found
convex coverage set after training for different configurations of λ. Compared to AIRL, we train each
agent for twice the amount of environment steps, slightly raise the learning rate of PPO (since our
reward function is not updating over time), but keep the other PPO hyperparameters fixed (for a
detailed description of hyperparameters used, see the appendix B.2). It can be seen that reoptimizing
for a linear combination of normative and predefined reward, we can achieve various trade-offs by
choosing appropriate policies on the CCS. Furthermore, when choosing λ ≈ 0.2, the agent is able to
reliably save all people in the warehouse while allotting the rest of its time to optimizing for the primary
goal. However, we note that the desired outcome is sensitive to the choice of λ, with a slightly lower
choice of λ ≤ 0.15 already resulting in a significantly lower time spent on the primary goal and a higher
choice of λ ≥ 0.25 not resulting in saving every worker anymore. Considering the results from figure 3.7,
this is problematic: Even a slight change in the demonstration dataset can yield significantly different
reward scales after AIRL, thus yielding the search for λ of a previous run useless. Furthermore, we note
that manually tuning λ and training a policy for each choice separately is very sample inefficient. For
this reason, finding a desired trade off quickly becomes computationally infeasible as the complexity of

3.4. Conclusion 34

0.10 0.15 0.20 0.25 0.30 0.35
0

1

2

3

4

5

6
Pe

op
le

 sa
ve

d
Demonstration Average

0.10 0.15 0.20 0.25 0.30 0.35
Lambda

0

25

50

75

Go
al

 ti
m

e

0 10 20 30 40 50 60
Goal time

1

2

3

4

5

6

Pe
op

le
 sa

ve
d

CCS

0.10

0.15

0.20

0.25

0.30

Figure 3.8: Left : Obtained trade off solutions between primary goal and normative behavior for different choices of λ.
The respective average performances of the demonstration dataset used for AIRL is indicated through the two dashed
lines. Error bars indicate a 2σ confidence interval over 100 distinct episodes. Right : The recovered convex coverage set
in terms of goal time (x-axis) and people saved(y-axis). Colors indicate the choice of λ that led to each policy.

the environment and number of reward components grow. In the next chapter, we will introduce an
active learning procedure for guiding the agent during optimization towards interesting solutions on the
CCS, thus alleviating these scalability issues.

3.4. Conclusion
Overall, our results show us that it is indeed possible to steer a narrow RL agent towards normative
behavior without the need for feature engineering. This closely overlaps with our results in [66], where
we propose a single loop algorithm for AIRL reward shaping. Furthermore, we showed empirically that
given sufficient data about the environment, the expert’s behavior can be orthogonal to the primary goal
without constraining the final agent to optimize for it. A key advantage of this is that one only leverages
the demonstration data for learning which states of the world are considered normative, but does not
require experts to know how to solve the primary goal in any form. This way, RL can still be used as
a powerful optimization tool for tasks that cannot be performed by experts, but is merely constrained
(regularized) into a normative direction by expert demonstrations. This approach is conceptually similar
to policy orchestration [63] and ethical reward shaping [95], but readily allows the use of deep function
approximation of the state space. Unlike [63] however, we do not orchestrate the IRL policy with
the primary reward policy, but instead combine both sources of rewards into a single policy directly
through multi-objective optimization. This has the advantage of putting less constraints on the space
of policies that the agent is allowed to learn and thus can potentially achieve better solutions. On the
other hand, our approach does not offer any direct interpretability due to distilling expert knowledge
into the formally given primary goal using this single neural network policy.

4
Active Preference Learning

The fundamental challenge of multi-objective optimization is finding a policy (or a set thereof) that
is able to capture a wide range of behavior suitable for different preferences. In the last chapter,
we have shown empirically that constraining the set of scalarization functions to linear preferences
and optimizing for a finite set of policies on the CCS can be sufficient for guiding an agent towards
demonstrated normative behavior. However, we note that even though approximating the CCS was
necessary to find a normative solution, we did not necessarily need all the found policies. In the
burning warehouse environment from figure 3.4, for example, we would arguably be only interested in
solutions that manage to save most of the workers, if not all. Secondly, if our goal is to incorporate
normative behavior from a more diverse set of experts, deciding which subset of norms should be taken
into account at test time will depend on the societal context of the agent. It is therefore crucial to
develop an interactive algorithm that can adapt to various preferences. Furthermore, the specification of
preferences can not be done explicitly, because the scalarization function can not be directly interpreted:
Since some reward components are learned through deep IRL, the reward function does not carry any
human understandable semantic value besides its relative values over different state-action pairs.

For these reasons, we propose an interactive multi-objective algorithm based on active learning,
which aims to find the desired trade off from additional preference data. By employing a probabilistic
model of pairwise preferences, we keep track of a distribution over linear scalarization functions that
most accurately match the given feedback data. Using this distribution, we query an expert based on
its expected value of information. Furthermore, we update the posterior distribution over scalarization
vectors in a Bayesian fashion with the help of Markov Chain Monte Carlo (MCMC) methods. In
this chapter, we will develop the MORAL (Multi-Objective Reinforced Active Learning) framework
for combining active preference learning with the multi-objective optimization algorithm described in
the previous chapter. In section 4.1, we will start by outlining the mathematical details behind the
preference model and how optimal queries are selected at runtime (section 4.1.1), as well as the choice of
MCMC algorithm (section 4.1.2). This is followed by section 4.1.3, where we will derive the full MORAL
algorithm. Finally, in section 4.2 we show that MORAL is capable of efficiently finding desired trade off
solutions by comparing the quality of solutions to that of preference based RL and providing ablation
studies regarding noise robustness, numbers of queries and reward scaling.

4.1. Methods
4.1.1. Bayesian Preference Learning
In order to capture the uncertainty of expert utilities, our goal is to maintain a probability distribution
over reward functions, where a higher probability mass translates into more likely being aligned with the
expert’s preferences. We will focus only on the case of pairwise preferences, since they have been shown
to yield especially promising results in the context of purely preference based RL [23]. Furthermore,
they allow for a simple but effective way of Bayesian updating [74], which our approach is heavily
building on. Unfortunately, probability distributions over the space of reward functions are intractable
to maintain when the reward functions are complex nonlinear functions of the feature expectations
encountered in a trajectory. For example, when the reward function itself consists of a neural network

35

4.1. Methods 36

that has to be learned from preferences, a mechanism for sampling from the posterior over neural
network parameters would be needed. Although, for example, this can be achieved through the means
of variational methods, the main challenge of underestimating uncertainty in approximate Bayesian
inference has yet to be tackled [14]. Deep RL from human preferences [23] avoids this by estimating the
uncertainty of the reward network with an ensemble of reward predictors. Given two trajectories, the
ensemble can then be used to quantify the degree of disagreement, which is in turn used to determine
which pair is expected to be most informative for querying purposes.

We, on the other hand, assume that a vector-valued reward function r is available which already
encodes most behavior of interest. Thus, we only learn a probability distribution over scalarization
functions fw(r) = wT r through maintaining a probability distribution p(w) over preference vectors w.
Due to the linearity in w, this allows for deriving a Bayesian updating scheme, analogous to the methods
developed in [74]. Namely, we employ a Bradley-Terry model [17] for ranking pairwise preferences

p(i � j|w) :=
exp(wT r(τi))

exp(wT r(τj)) + exp(wT r(τi))
, (4.1)

where r(τ) =
∑

(s,a,s′)∈τ r(s, a, s′) denotes the vector-valued return of the trajectory τ and (i � j)
denotes preferring a trajectory τi over another trajectory τj . Intuitively, the model rates trajectories
exponentially higher in proportion to their achieved scalarized rewards (given a scalarization weight
w). Note that this probabilistic formulation inherently models some noise in an expert’s preferences,
which is especially useful when dealing with a fuzzily defined reward function r. To enable learning
about w, we would like to derive the posterior probability p(w|i � j). Applying Bayes rule on the
Bradley-Terry model tells us that the posterior probability is proportional to a prior distribution p(w)
times the likelihood

p(w|i � j) ∝ p(w) · p(i � j|w). (4.2)

Assuming that queries (i � j) are observed sequentially, we therefore need to only keep track of a prior
distribution at each time step and multiply it with the likelihood of the newest query. To be precise,
given a set of queries {q1, . . . qn}, our posterior amounts to

p(w|q1, . . . , qn) ∝ p(w)

n∏
t=1

p(qt|w). (4.3)

What remains is the specification of a prior p(w). In practice, this can be an arbitrary distribution
in Rdim(w) that resembles the expert’s prior beliefs about which of the reward components need to
be prioritized. For simplicity, however, we choose a uniform prior over the unit ball ||w|| ≤ 1 and
additionally constrain all components of w to be non-negative. We opt for this constraint, since the
components of r are all assumed to be generally desirable. If this is not the case, one can simply drop
the constraint and proceed analogously. Formally, this translates into the following prior

p(w) :=

2dim(w)
(

πd/2

Γ(d2 +1)

)−1

if ||w||2 ≤ 1 and w ≥ 0

0 else.
(4.4)

Having defined the likelihood and the prior, we now have a mechanism for evaluating the posterior dis-
tribution up to a normalization constant. Using Markov Chain Monte Carlo (MCMC), this is sufficient
for approximating the full posterior with a discrete set of samples. We will outline the type of MCMC
algorithm used in section 4.1.2 and for now assume that we can freely calculate expected values over
the posterior.

Besides obtaining a principled way for updating our belief about w through queries, having access
to the posterior p(w|q1, . . . , qn) allows for choosing queries qi optimally. We follow the derivation of
[74] and define a query to be optimal if the pair of trajectories it contains satisfies

max
(τi,τj)

min
(
Ew[1− p(i � j|w)],Ew[1− p(j � i|w)]

)
. (4.5)

This means that an optimal pair to be queried for should aim for maximally removing volume from
the posterior distribution, see figure 4.1. To ensure that volume is removed regardless of the given

4.1. Methods 37

Figure 4.1: Volume removed from a single query by taking the expectation over w.

preference, a minimum over the two volumes corresponding to the two possible preference outcomes is
taken. Overall, the more concentrated the mass of p(i � j|w) and p(j � i|w) is, the more volume we can
expect to remove after a query. One technical difficulty arising in solving 4.5 is that when the dynamics of
the MDP are unknown, searching through all possible pairs (τi, τj) becomes computationally intractable.
For this reason, we choose to only approximately solve the maximization through a discrete search over
pairs of trajectories that are generated during forward RL experience. We defer this discussion to
section 4.1.3 where we will describe the full algorithm and instead first focus on how we approximate
the expected values Ew[X].

4.1.2. Markov Chain Monte Carlo
In order to obtain samples from p(w|q1, . . . qn) we employ the Metropolis-Hastings algorithm [21], which
is a common method for estimating distributions via MCMC. Metropolis-Hastings constructs a Markov
chain {w(1), . . . ,w(M)}, where wn = w gets updated to wn+1 with the use of a proposal density q(w, ·).
Let π(w) denote a probability distribution of w we wish to sample from, which is easy to evaluate up
to a constant We first sample a new weight w′ from q(w, ·). Then the acceptance probability

α(w,w′) := min

(
1,
π(w′)q(w,w′)

π(w)q(w,w′)

)
(4.6)

is calculated and used to define

wn+1 :=

{
w′ with probability α(w,w′)

w with probability 1− α(w,w′)
. (4.7)

Depending on the shape of the posterior, choosing an appropriate proposal density becomes is crucial
for fast convergence. We have found a simple random walk proposal of the multivariate standard normal
form

w′ ∼ N (w, σ2I) (4.8)

to work sufficiently well enough in our use cases, but note that for higher dimensions a different choice
might be more suitable. Having constructed the Markov Chain, we can then approximate the true
posterior with a mean over the sampled point masses

p(w) ≈ 1

M

M∑
k=1

δ(w(k)), (4.9)

where δ(·) denotes the Dirac measure. Furthermore, we employ a warm up phase and initialize w(1)

with the posterior mode. This avoids poor initialization and the risk of a Markov chain getting stuck
in areas with low probability mass. To compute the posterior mode, we follow the suggestion in [74]
and replace the likelihood p(w|i � j) with a similar function that is also log-concave but has a mode of
zero always. First, we rewrite the likelihood by defining

∆ij := r(τi)− r(τi) (4.10)

4.1. Methods 38

to be the return difference of two trajectories τi and τj . Using this definition, we can divide the
numerator and denominator of (4.1) by exp(−wT r(τj)) to obtain

p(i � j|w) =
exp(wT∆ij)

1 + exp(wT∆ij)
. (4.11)

Wee see that the function above is of the form exp(x)/(1+exp(x)), which we will replace with a similar
function min(1, exp(x)) by setting

p̂(i � j|w) := min(1, exp(wT∆ij)). (4.12)

Taking the log of the expression above, we see that its mode evaluates to w = 0. This way, initializing
w(1) := 0 ensures that the Markov chain starts in an area with high probability mass. We will see in
sections 4.2 and 5.2 that this simpler choice is sufficient for accurately recovering expert utilities from
pairwise preferences. Finally, we can evaluate the volume removal expression (4.5) by taking a sample
average over the Markov chain

Ew[1− p(i � j|w)] ≈ 1

M

M∑
k=1

(1− p(i � j|wk)). (4.13)

4.1.3. Multi-Objective Reinforced Active Learning
We are now ready to formulate the MORAL framework for learning and trading off normative behaviors
from a diverse set of experts. Figure 4.2 illustrates the full method in the case of a single learned reward
function. MORAL consists of a two-step procedure including reward learning and multi-objective
optimization through active learning. Step one takes a dataset of normative behavior DE and learns
a reward function fθ through the use of AIRL (as described in section 3.2.1). In step two, reward
functions from multiple sources are combined (e.g. a primary reward that describes the original goal of
an agent) and traded off linearly with an actively learned scalarization vector w. Formally, we supply
a PPO agent with the reward function

r(s, a, s′) := Ew[wT r(s, a, s′)], (4.14)

Figure 4.2: The two-step MORAL algorithm first learns a normative prior from expert demonstrations in the form of a
reward function fθ. This reward function is then combined with other sources of reward and a desired trade off is actively
learned in the form of a distribution p(w).

4.1. Methods 39

where the expectation is taken over the posterior distribution (4.3). If no queries have been obtained
yet, then this expectation simply reduces to the mean of the prior distribution p(w). We keep this
reward function constant for a fixed number of time steps and perform several policy improvement
steps at a time using PPO. After these time steps, a query is chosen according to (4.5) such that a
maximum amount of volume is removed from the current distribution. However, we do not explicitly
maximize the expected removed volume, but instead opt for a simpler heuristic search over generated
trajectories. Namely, before each policy improvement step, we sample pairs of trajectories (τi, τj) from
a forward RL experience buffer and keep the pair with the highest expected information content. The
motivation for this choice is two-fold: Firstly, maximizing expression (4.5) explicitly is intractable for
large MDPs with unknown dynamics. Secondly, due to the sample inefficiency of PPO, large numbers
of trajectories are generated for training the policy itself. Thus, we can expect a discrete search for the
best query over generated trajectories to yield a sufficient amount of information. After each query, we
update the posterior by running MCMC on the aggregate of all previously obtained queries and pass
the updated reward function to the PPO agent.

Algorithm 5 provides pseudocode for the MORAL framework. Note that there are multiple hyper-
parameters which we have omitted for the ease of exposition. Besides the hyperparameters of PPO
and AIRL, we specify a query frequency at which experts are queried. In our implementation, this
automatically induces the size of the set of trajectory pairs over which a discrete search is made. How-
ever, it would be possible to not only sample one, but in fact up to |D|2 pairs over which the search
is performed at each PPO update step. As mentioned above, we found this to not be necessary when
the number N of intermediate policy updates is high enough. Furthermore, we regularize the PPO
agent with an additional entropy term (cf. section 2.2.1) to prevent premature convergence to the mean
reward function of the current posterior. Although the algorithm below only includes a single learned
reward, one can easily extend it to an arbitrary number of learned and primary reward functions. We
will explore this setting in chapter 5 and for now test MORAL in the burning warehouse example from
chapter 3.

Algorithm 5: MORAL (Single Expert)
Input: Expert trajectory data set DE = {τi}Ni=1, primary reward function rP and prior
distribution p(w).
Initialize: Reward network fθ by running AIRL (algorithm 3) on DE , PPO agent πφ.
for i = 0, 1, 2, . . . do

Approximate the posterior p(w|q1, . . . , qi) with MCMC samples {w(1), . . . ,w(M)}.

Obtain reward function r = 1
M

∑M
k=1 w

(k)T
(
rP
fθ

)
volume← −∞
for k = 0, 1, 2, . . . , N do

Sample trajectories D = {τk}mk=1 from p(τ |πφ) through interaction with the environment.
Update φ using PPO to maximize Eπφ

[∑T−1
t=0 r(st, at, st+1)

]
.

Sample a pair of trajectories (τi, τj) from D.
next_volume← min{ 1

M

∑M
k=1(1− p(i � j|w(k))), 1

M

∑M
k=1(1− p(j � i|w(k)))}.

if next_volume > volume then
next_query ← (τi, τj)
volume← next_volume

end
end
Query expert using next_query and save answer qi.

end
Result: Trained policy πφ, expert utility w∗ = 1

M

∑M
k=1 w

(k).

4.2. Experiments 40

4.2. Experiments
We test the MORAL algorithm in the burning warehouse environment with a given set of synthetic
preferences. Although multiple different trade-offs can be attained through multi-objective optimization
of different preference vectors (see figure 3.8), we assume that the preference giver wants to save as
many people as possible before optimizing for the primary goal. The preference giver has access to
the raw frames and can therefore count the amount of people saved as well as the time spent in the
goal. Given two trajectories τi, τj the preference giver then returns i � j if the amount of people
saved in τi exceeds that of τj and vice versa. In case both trajectories save the same amount of
people, we opt for the trajectory with a higher goal time. We train MORAL with the same set of
demonstrations as in figure 3.8 as well as the equal amount of environment steps during multi-objective
optimization. For exact hyperparameters, see table B.3. Figure 4.3 compares the CCS found from
manual multi-objective optimization with the path of solutions obtained during the active learning step
of MORAL. As can be seen, MORAL converges to a near optimal solution that corresponds to the
given preferences. Furthermore, it is able to find this solution with less than 10 queries, thus making
it relatively feedback efficient. After having obtained enough feedback, MORAL directly optimizes for
the underlying preferences of the expert, thus alleviating the need for calculating a full CCS.

0 10 20 30 40 50 60
Goal time

0

1

2

3

4

5

6

Pe
op

le
 sa

ve
d

MORAL
CCS 0.10

0.15

0.20

0.25

0.30

Figure 4.3: Achieved returns by MORAL during training compared to the CCS found by multi-objective optimization.
Each point corresponds to the observed expected return and subsequent points are drawn for every new obtained pref-
erence. MORAL first maximizes the amount of people saved and then traverses along the CCS to match the given
preferences. Colors of the CCS indicate the choice of λ that led to each policy.

While the figure above shows that interactively finding scalarization weights for multi-objective
optimization can drastically reduce the amount of needed samples, it does not explain the benefits of
querying the expert based on the maximum removed volume. Furthermore, approximating the removed
volume (4.1) with a discrete search over generated trajectories does not necessarily produce optimal
queries. For these reasons, we additionally test MORAL with random queries. This means that instead
of actively querying, two randomly generated trajectories are provided to the expert at fixed time
intervals. Overall, the query interval and amount of overall queries (n = 25) is held constant across
experiments to ensure a fair comparison. Besides varying the way queries are chosen, we also vary
the scale of the primary reward function by multiplying the primary reward function with a factor of
10. Figure 4.4 shows the achieved returns for both objectives in the case of active and random queries
averaged over three random seeds. In this simple environment, the behavior of active queries and
random queries is overall similar. Nonetheless, random queries are more sensitive to different reward
scales than active queries. This can be attributed to the log-concavity of the query likelihood (4.12),
leading to decreasing entropy in the posterior distribution. When working with inappropriately scaled
reward functions, this can yield overly large update steps in a single direction, which are exacerbated by
random queries. For example, repeatedly querying for the same pair of trajectories at early stages leads
to very small posterior probabilities in certain areas, at which point the MCMC sampler disregards the
corresponding scalarization weights completely. This is problematic, since obtained preferences during
early training might either be noisy or not completely representative of the expert’s utility function. It is
therefore crucial to maintain appropriate levels of uncertainty throughout training to avoid early collapse

4.2. Experiments 41

ra
nd

-s
ca

le
d

ac
tiv

e-
sc

al
ed

ra
nd

ac
tiv

e

0

10

20

30

40

50

60

70

Go
al

 T
im

e

0

1

2

3

4

5

6

Pe
op

le
 S

av
ed

Goal Time
People Saved

Figure 4.4: Comparison of random and active queries on the overall performance of MORAL. In the scaled environment,
the primary reward is multiplied by a factor of 10. Error bars indicate standard deviations over three distinct runs
(keeping the learned reward functions constant).

of the posterior distribution to a single scalarization weight. Although active learning does not directly
change the magnitude of posterior update, we can see that choosing queries based on volume removal
exhibits, somewhat surprisingly, better performance even when the reward scales are fundamentally
different. However, a large increase in variance between runs can be seen which can significantly impact
the amount of queries needed to achieve the desired result. This is especially problematic when learning
multiple reward functions with a-priori unknown magnitudes. In chapter 5 we will discuss a possible
normalization scheme to alleviate this issue.

4.2.1. Query Efficiency
To further examine the versatility of active learning, we study the amount of queries needed as well
as robustness to noisy inputs. A main weak point of our experiments is the synthetic nature of the
preference giver. Human experts tend to be less conclusive and can be expected to deliver significantly
more noisy feedback over the course of training the agent. Besides that, we would like our interactive
RL algorithm to be feedback efficient in order to minimize human time needed in real world scenarios.
Deep RL agents typically require billions of interaction steps with their environment to learn a given
task, while a pairwise comparison of two trajectories by an expert takes relatively less time. This
leads to long waiting times in between queries which, assuming a single expert, increases the burden
of delivering preferences. Figure 4.6 shows a comparison between achieved policies with respect to the
overall amount of queries and injected preference noise. To add noise to the preference giver, we simply
assume that with some probability p < 1 the preference is the result of choosing a trajectory at random,
whereas otherwise the intended preference is obtained as before.

As expected, an increase in queries corresponds to a more aligned reward function, with n = 25
queries reaching a nearly optimal policy. Using n = 10 queries is still sufficient for optimizing both
objectives, but achieves significantly less time in the primary goal, whereas n = 5 queries mainly

5 10 25

Queries

0

10

20

30

40

50

60

70

Go
al

 T
im

e

0

1

2

3

4

5

6

Pe
op

le
 S

av
ed

Goal Time
People Saved

0.
3

0.
2

0.
1

0.
05

Preference Noise

0

10

20

30

40

50

60

70

Go
al

 T
im

e

0

1

2

3

4

5

6

Pe
op

le
 S

av
ed

Goal Time
People Saved

Figure 4.5: Left : Comparison of the amount of queries versus the achieved objectives after training for an equal number
of environment steps. Right : The agent’s performance with respect to different levels of preference noise during active
learning. Error bars indicate standard deviations over three distinct runs.

4.2. Experiments 42

0 1 2 3 4 5 6
Steps 1e6

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Pe
op

le
 S

av
ed

Noise 0.3
Noise 0.2
Noise 0.1
Noise 0.05

0 1 2 3 4 5 6
Steps 1e6

0

5

10

15

20

25

30

35

40

Go
al

 T
im

e

Noise 0.3
Noise 0.2
Noise 0.1
Noise 0.05

Figure 4.6: Training progress comparison of MORAL for different levels of preference noise. Overall, the difference between
noise levels is subtle, with all runs converging to a comparable policy.

optimize for the normative reward component. We again note, however, that these results are sensitive
to the scale of the reward functions. Bigger magnitudes of reward functions automatically imply larger
likelihood updates, which can decrease the amount of queries needed but puts the posterior at risk of
collapsing. In the case of preference noise, we test MORAL with n = 25 queries as before and vary the
error probability p ∈ {0.3, 0.2, 0.1, 0.05}. We observe that the algorithm is relatively robust to noise,
such that even if p = 0.3 the mean performance over three different random seeds does not significantly
differ from that with no noise. However, a gradual increase in noise leads to larger variance in the
observed results which, in the worst case, would require retraining the preference model if the expert’s
feedback is overly inconsistent. In terms of training speed of a single successful run, different noise levels
do not seem to have any significant impact on the performance, see figure 4.6. Regardless of the noise,
the agent learns to behave according to the demonstrated norms from the start of the optimization.
The incorporation of the primary goal does vary to a higher degree, but yet remains comparable across
all configurations. Overall these results indicate that, even if the expert provides ambiguous feedback
about its underlying utility, the performance of actively learned scalarization weights does not suffer
greatly for moderate levels of feedback uncertainty.

4.2.2. Deep Reinforcement Learning from Human Preferences
MORAL is capable of combining rewards from multiple sources, such as manually engineered reward
functions and maximum entropy IRL rewards from demonstrations. However, any multi-objective
optimization algorithm needs to select a final policy at runtime for the agent to act upon. Typically,
multi-objective RL algorithms learn a diverse set of policies (cf. section 2.2.3) from which a final policy
can be selected. MORAL on the other hand relies on an interactive algorithm for learning and selecting
the final policy simultaneously, which comes at the cost of needing an expert in the loop providing
pairwise preferences. As such, MORAL is conceptually similar to deep reinforcement learning from
human preferences (DRLHP) [23], which also trains a reward model from pairwise preferences, but
leaves out any manually engineered or demonstrated behaviors. For this reason, it seems relevant to
compare MORAL to the performance of DRLHP and study their respective strengths and weaknesses.

Formally, DRLHP trains a reward model from scratch by using a Bradley-Terry model operating on
the raw observations and actions of a trajectory

pθ(i � j|θ) :=
exp

∑
rθ(s

i
t, a

i
t)

exp
∑
rθ(sit, a

i
t) + exp

∑
rθ(s

j
t , a

j
t)
, (4.15)

where rθ is a neural network operating on state-action pairs. Since the posterior p(θ|i � j) is intractable
to compute analytically for large networks, [23] simply uses gradient-based optimization for updating
the probabilistic model (4.15) with a cross-entropy loss on human labels. To ensure sample efficiency of
queries, an ensemble of reward networks is used by choosing queries with the highest variance among
ensemble predictions of preferences. However, the paper notes that in certain situations this can hurt
performance, which is why we omit training an ensemble. We then query the expert at fixed time

4.2. Experiments 43

People Saved Goal Time # Preferences Steps (IRL)
MORAL 5.76(±0.13) 40.08(±2.9) 25 3e6 (3e6)
DRLHP 5.62(±0.17) 12.32(±3.0) 1000 12e6 (-)

Table 4.1: Comparison of MORAL and DRLHP with regard to the normative objective (people saved) and the primary
objective (goal time). Results were averaged over three random seeds, with the standard deviation denoted in brackets.
In the case of MORAL, the number of preliminary IRL steps are indicated additionally to the environment steps of the
multi-objective optimization phase.

intervals and provide it with the same preference function as MORAL, i.e. trajectories with more
people saved are preferred and, if equal, those with a higher goal time. Table 4.1 compares trained
policies of MORAL and DRLHP, as well as the amount of preferences and training steps used. We
train DRLHP for two times the amount of total training steps as MORAL and employ a similar reward
network architecture as used in AIRL (for details, see the appendix B.1.3). Like MORAL, DRLHP learns
to optimize both objectives with the normative component strictly preferred (as encoded in the received
preferences). However, DRLHP lacks behind MORAL in terms of goal time, thus underperforming on
this multi-objective problem. This is likely due to the fact that learning a single reward model for
both objectives through the reward network rθ is cumbersome, leading to catastrophic forgetting of the
primary objective when updating for the normative reward component. Furthermore, DRLHP is given
1000 preferences instead of 25, yet remains suboptimal after 12 · 106 environment steps.

To compare the relative training speed, we plot both objectives separately in figure 4.7. We can see
that DRLHP first learns to optimize for the primary goal and only after many preferences incorporates
normative behavior into its policy. Furthermore, after 2 · 106 steps DRLHP falls behind the goal time
of MORAL while still not being able to save more than 2 people on average. From this point of view
MORAL clearly outperforms DRLHP both in training speed and overall performance. However, we note
that in this setup MORAL has clear practical advantages over DRLHP, which is why the comparison
below should be interpreted with care. Firstly, MORAL is a supervised algorithm, in the sense that
it has access to the normative rewards (through IRL) as well as the primary goal through a manually
engineered reward function. DRLHP has to learn all objectives of interest in a single network, which
is why it takes both longer and more preferences to learn a useful policy. Secondly, MORAL uses
additional types of feedback in the form of demonstrations, while DRLHP does not. Although this
partially explains the discrepancy in training speed of the two methods, it does not necessarily justify
the poor performance of DRLHP after training until convergence. Overall, the comparison to DRLHP
shows that when aiming to combine rewards from multiple sources, MORAL offers a strong alternative
that exhibits more fine-grained control over desired behaviors. This should be unsurprising, since
MORAL is a multi-objective algorithm, whereas DRLHP is not. Nonetheless, MORAL introduces some

0 1 2 3 4 5 6
Steps 1e6

1

2

3

4

5

6

Pe
op

le
 S

av
ed

DRLHP
MORAL

0 1 2 3 4 5 6
Steps 1e6

0

10

20

30

40

50

60

Go
al

 T
im

e

DRLHP
MORAL

Figure 4.7: Training progress comparison of MORAL and DRLHP averaged over three random seeds. MORAL has direct
access to different parts of the reward functions, allowing it to exceed the training speed of DRLHP by a large margin.

4.3. Conclusion 44

disadvantages that are not present in DRLHP. Firstly, scaling AIRL to larger domains such as Atari is
still challenging [86] and thus MORAL cannot be automatically expected to reach the same performance
on a wide variety of games from demonstrations alone. When the norms are temporally complex, we
can therefore expect DRLHP to outperform MORAL given enough preferences. We consider this to
be a more general weak point of AIRL, which would need further research on new IRL methods to be
alleviated. Secondly, MORAL assumes that there is an inherent multi-objective decomposition of the
problem, whereas in the real world demonstrating normative behavior might not be disentangleable.
We conjecture that learning from demonstrations is still possible in this case, with the development
of more sophisticated hierarchical RL methods seeming especially promising. We will discuss possible
extensions to the MORAL framework in chapter 6.

4.3. Conclusion
In this chapter, we have introduced the MORAL framework for learning how to combine multiple learned
reward functions according to expert preferences. By maintaining a distribution over scalarization
weights through a model of pairwise preferences, we proposed an algorithm for efficiently querying
experts using forward RL experience in order to maximize the amount of volume removed after each
query. Using MORAL, we have shown that in the Burning Warehouse environment our agent is able to
recover a combination of primary and normative reward which achieves the desired behavior of saving
all lost workers while maximizing its time spent in its primary goal. Furthermore, ablation studies show
that MORAL is relatively robust with respect to noisy preferences and scaling of individual reward
functions. Finally, we showed that unlike DRLHP, MORAL is able to find the desired Pareto optimal
solution using as few as 25 preferences, thus suggesting that previous value learning literature is lacking
in terms of finding optimal policies in a multi-objective setting.

5
Controlling Diverse Norms

Learning and incorporating normative priors into deep RL agents is an important first step towards
building responsible AI that acts according to what humans typically refer to as common sense. While
such capability is a necessary condition for building aligned agents, it is definitely not a sufficient one.
Namely, the normative aspect of the value alignment problem persists [32]. By definition, norms entail
a societal context in which certain actions will be sanctioned or promoted. For this reason, we arguably
want to build agents that can reliably learn and understand behaviors from multiple different experts.
Assuming a sufficiently large (and diverse) dataset of normative behavior, we can then aim to learn a
representation of an underlying consensus about which actions are generally less favorable and leave
the possibility to fine tune the agent to more specific values for later.

Although this does not answer which values one ought to encode into AI systems, it at least offers
technical insights into the problem of value open design. In this chapter, we aim to apply MORAL to
environments with an implicit and explicit normative component and study the reliability as well as
diversity of the respective policies. To do so, we assume that an agent is supplied with demonstrations
coming from different experts that implicitly agree on one environment objective, but disagree otherwise.
Through the combination of multiple learned reward functions, we then arrive at a normative reward
prior that encodes both implicit and explicit knowledge about certain states of the world. In section
5.1.3 we will describe the problem of learning a normative reward prior and introduce an appropriate
benchmark environment. Secondly, section 5.1 will introduce the adaptation of MORAL to multiple
expert rewards, including a formal discussion about the Pareto optimality of linear expert aggregation.
Finally, section 5.2 will provide empirical evidence for the effectiveness of MORAL compared to previous
methods, as well as ablation studies for the number of preferences needed and the robustness of MORAL
with respect to noise and misaligned preferences.

5.1. Methods
We can extend the MORAL framework from section 4.1.3 directly to the multiple experts setting by
running IRL for different experts. This way, we first gather a dataset DE = ∪ki=1DEi coming from k
different experts Ei. We assume that the dataset DE is labelled, meaning that each demonstration can
be assigned to its respective expert Ei. When this is the case, each run of AIRL can be trained to
obtain an expert policy π∗Ei as well as its corresponding maximum entropy IRL reward function fθi .
Having obtained the respective narrow reward functions, we again form a vectorized reward function

r(s, a) := wT

rP (s, a)
fθ1(s, a)

...
fθk(s, a)

 , (5.1)

where rP is an optional primary reward function that encodes additional prior knowledge about the
problem domain. Subsequently, active learning is used to determine a distribution over the aggregation
weightsw in the same way as in the single expert scenario. Figure 5.1 illustrates the MORAL framework

45

5.1. Methods 46

Figure 5.1: MORAL for multiple experts. In the IRL step, we learn multiple reward functions from different expert data
sets. Subsequently, the learned functions get combined into a single vector-valued reward and scalarized through active
learning.

for multiple experts. In the following, we will present the main theoretical advantage of using MORAL
for trading off multiple expert behaviors as well as minor modifications to ensure better scaling properties
of the algorithm.

5.1.1. Reward Normalization
MORAL learns multiple reward functions through successive runs of AIRL. However, increasing the
amount of learned reward functions also increases the risk of highly different scales between the respec-
tive objectives within the final vector-valued reward used in active learning. As noted in section 3.3,
AIRL is highly sensitive to the demonstration dataset as well as its size and will return fundamentally
different reward functions, even if the task stays constant throughout different runs. For this reason,
we propose to normalize each learned reward function, such that the marginal expected returns for
each respective objective are approximately bounded by 1. This can be achieved without any computa-
tional overhead, by making use of the imitation policies π∗Ei from AIRL. Formally, we normalize learned
rewards

fθi(s, a) :=
fθi(s, a)

|J(π∗Ei)|
, (5.2)

where J(π∗Ei) is simply estimated in a Monte Carlo fashion. However, we note that normalizing rewards
directly impacts the magnitude of posterior updates in the active learning step. This is because the
likelihood function p̂(i � j|w) depends on the per-trajectory reward difference ∆ij . Higher reward
magnitudes then tend to result in higher values of ||∆ij ||22, thus changing the overall magnitude of
p̂(i � j|w). Although we found this normalization scheme to work sufficiently well, we anticipate that
in practice the introduction of an additional hyperparameter β ∈ R+ that scales the overall reward r
by a constant could be of help for adjusting the learning rate of Bayesian preference learning.

5.1.2. Pareto Optimality
Since MORAL trains for a linear combination of rewards, we are automatically guaranteed to optimize
for a Pareto optimal solution after having converged to a final scalarization weight w∗. This is because
linear scalarization functions obtain policies on the CCS (cf. section 2.2.3) which itself is a subset of the
Pareto frontier. Because of this, MORAL can be viewed as a practical implementation of Harsanyi’s
utility aggregation theorem [42] in a sequential decision-making context. Originally, Harsanyi’s theorem

5.1. Methods 47

is stated in the context of social choice theory and argues that when aiming for Pareto optimal solutions,
linearly aggregating utilities of a population is both necessary and sufficient. In case of an MDP with
a convex Pareto front, we can directly translate Harsanyi’s aggregation theorem to the context of RL
since the CCS coincides with the Pareto boundary.1 Formally, Harsanyi’s aggregation theorem then
reduces to the following:

Theorem 5.1.1. Let {u1, . . . , uk} be a set of expert utility functions with ui : S×A → R. Furthermore,
let M = 〈S,A, p, r, µ0〉 be a MOMDP with a convex Pareto boundary and r = (u1, . . . , uk). Then, a
policy π is Pareto optimal with respect to all experts if and only if there exist weights w1, . . . , wk, such
that π maximizes

Eπ

[
T∑
t=0

k∑
i=1

wiui(st, at)

]
. (5.3)

Unfortunately, the assumptions behind Harsanyi’s theorem are rather strong. Firstly, the assumption
of a convex Pareto boundary might not be fulfilled, which means that not all Pareto optimal solutions can
always be recovered by linear aggregation. Secondly, it assumes that each expert has similar knowledge
about the dynamics of the MDP. If this is not the case, a Pareto optimal agent would need an aggregation
procedure that depends on the truthfulness of expert beliefs over time [25]. However, it is still unclear
to what degree the assumptions of Harsanyi’s theorem are violated in complex environments. We will
discuss possible implications of this in chapter 6.

Regardless of the convex Pareto boundary assumption, theorem 5.1.1 provides insights into how
MORAL connects to social choice theory. Assume that we want to build an RL agent that acts Pareto
optimally with respect to each expert. In its general form, Harsanyi’s theorem assumes that each
individual i has a welfare ordering %i on a set of probability measures over a space of social states X
[41], which is represented by an expected value of a utility function ui. While in social choice theory,
approximate knowledge of ui is often implicitly assumed, this is hard to satisfy for arbitrary MDPs due to
the same reasons for which manual reward specification is intractable in real-world problems. To tackle
this, MORAL applies IRL to first learn the utility functions ui from each expert separately. If successful,
this abstracts an individual’s preferences into a scalar reward function which can subsequently be used
for finding Pareto optimal solutions. Another difference that has to be tackled in RL, however, is that
knowledge of utility functions alone does not constitute enough information about possible aggregate
solutions. This is because of the sequential nature of MDPs, which introduces the dependency on time
and (unknown) environment dynamics. As a consequence, the space of solutions over which needs to
be optimized is not merely a set of states, but rather a set of trajectories. But arbitrarily collecting
preferences about all possible trajectories is intractable, since the probability of encountering meaningful
trajectories by chance decreases to 0 as the size of the underlying environment grows. Hence, multi-
objective RL is necessary which MORAL employs interactively with the help of active learning.

Aside from Harsanyi’s aggregation theorem, linear aggregation of learned utility functions has an-
other convenient property. Namely, if every utility function agrees on a certain set A of trajectories
being generally undesirable, then we can ensure that optimizing for any linear combination of such util-
ities will still deem A undesirable. In the case of IRL, this means that if the demonstrations from each
expert put a sufficiently low probability mass on trajectories in A, the policy resulting from MORAL
can be made arbitrarily averse to trajectories in A regardless of the obtained preferences. Formally, we
can state this in the following theorem:

Theorem 5.1.2. Let DE = ∪ki=1DEi be a demonstration dataset stemming from k individuals and
let p(τ |θi) denote the maximum entropy IRL distribution (3.7) resulting from the maximum likelihood
estimate (3.8) over observations Di. Furthermore, let w ∈ Rk be arbitrary with w ≥ 0, ||w||1 = 1 and
set

π∗ = arg max
π

Eπ

[
T∑
t=0

(
k∑
i=1

wirθi(st, at)

)
− log π(st, at)

]
. (5.4)

1Otherwise, one needs to introduce a policy mixing assumption, which allows constructing policies of the form π(a|s) :=
Zπ1(a|s) + (1− Z)π2(a|s), where Z ∼ Bern(λ), λ ∈ [0, 1] is a Bernoulli random variable that determines which policy
to play and is sampled at the start of each new episode.

5.1. Methods 48

Then, in finite MDPs we have that for all sets A over trajectories and ε > 0 there exist δ1, . . . δk > 0
such that ∀i ∈ {1, . . . , k}∀τ ∈ A : p(τ |θi) < δi implies p(A|π∗) < ε.

To prove theorem 5.1.2, we first note that π∗ is simply the maximum entropy RL policy resulting
from the reward function

∑
i wirθi and first prove the following

Lemma 5.1.3. Given w ∈ Rk with w ≥ 0, ||w||1 = 1 and π∗ being defined as in (5.4), we have that

π∗ = arg min
π

k∑
i=1

wiDKL(p(τ |π)||p(τ |θi)). (5.5)

Proof: By definition of the Kullback-Leibler divergence, we have

DKL(p(τ |π)||p(τ |θi)) = Eπ

[
T∑
t=0

log π(at|st)− rθi(st, at)

]
+ logZθi . (5.6)

Using ||w|| = 1, we can now rewrite the weighted sum of Kullback-Leibler divergences into the desired
form:

k∑
i=1

wiDKL(p(τ |π)||p(τ |θi)) =

k∑
i=1

wiEπ

[
T∑
t=0

log π(at|st)− rθi(st, at)

]
+

k∑
i=1

wi logZθi (5.7)

= Eπ

[
T∑
t=0

log π(at|st)−

(
k∑
i=1

wirθi(st, at)

)]
+

k∑
i=1

wi logZθi . (5.8)

Minimizing over π yields the desired expression, as the normalization functions Zθi as well as the weights
wi are constants as a function of the policy π. �

Lemma 5.1.3 shows us that optimizing for a linear combination of reward functions obtained through
maximum entropy IRL reduces to minimizing a weighted sum of Kullback-Leibler divergences to the
respective induced marginal expert distributions. This is useful, because one can derive an analytic
solution to the weighted Kullback-Leibler average for arbitrary probability density functions.

Lemma 5.1.4 (Weighted Kullback-Leibler average [8]). Let {p1, . . . , pk} be a finite set of probability
density functions over Rn (i.e. pi : Rn → R,

∫
Rn pi(x)dx = 1 and pi ≥ 0). Then, for any probability

density p and weights w ∈ Rk with w ≥ 0, ||w||1 = 1, the weighted Kullback-Leibler average

p∗ = arg inf
p

k∑
i=1

wiDKL(p||pi) (5.9)

is given by

p∗(x) =

∏k
i=1 pi(x)wi∫ ∏k
i=1 pi(x)widx

. (5.10)

We have omitted the proof of Lemma 5.1.4, but note that the proof follows from a simple algebraic
manipulation of the Kullback-Leibler divergence. We are now ready to prove theorem 5.1.2.

Proof of theorem 5.1.2: Let w ∈ Rk be arbitrary with w ≥ 0, ||w||1 = 1. Combining Lemma 5.1.3 and
5.1.4 we obtain

p(A|π∗) =

∫
A

∏k
i=1 p(τ |θi)wi∫ ∏k
i=1 p(τ |θi)widτ

dτ

≤
∫
A

∏k
i=1 δ

wi
i∫ ∏k

i=1 p(τ |θi)widτ
dτ =

|A|
∏k
i=1 δ

wi
i∫ ∏k

i=1 p(τ |θi)widτ
.

(5.11)

5.1. Methods 49

Now, if |A| < ∞ (which is satisfied for finite MDPs), we can make any of the δi arbitrarily small,
such that p(A|π∗) < ε for any ε > 0. �

While theorem 5.1.2 gives us the theoretical assurance of minimizing undesirable states in the final
linear aggregate policy of MORAL, it might not always be clear whether the respective maximum IRL
distributions put sufficiently low probability mass on certain areas of the trajectory space. For this
reason, it should be rather seen as an approximate justification rather than a formal criterion which
will hold for all environments. Nonetheless, we will provide further empirical evidence to show that
linear aggregation of IRL reward functions are robust with respect to their marginal safety properties
regardless of the scalarization weights wi in section 5.2.

5.1.3. Experimental Setup
In order to properly evaluate MORAL, we need to define an environment that adequately tests scalability
in environment size as well as norm diversity. Inspired by the burning warehouse environment from
chapters 3 and 4, we define the Delivery environment as follows: Delivery consists of a 16 × 16 grid
world with four different entities. The environment is initialized randomly, placing each of the entities
as well as the agent at a random position on the grid. As before, we assume the agent to have access to
9 actions, including moving along the four axes, interaction with one of its four adjacent grid cells and
a null action. The primary goal of the agent is to deliver boxes to specified goal locations (deliver) on
the grid. Besides this, there are people present on the grid that the agent can choose to assist (help) as
well as pollution that can be removed (clean). Each of these outcomes are achieved by interacting with
the respective tiles, after which the cells turn empty. Finally, we assume that there are vases placed
throughout the environment which automatically break once the agent steps on them and can not be
interacted with otherwise.

To make the environment challenging, we limit the length of each episode to T = 50 time steps,
after which the environment resets to a new grid. Furthermore, we place 12 of the deliver, help, clean
objectives respectively and 8 vases. We’ll elaborate on this choice of environment hyperparameters
in section 5.1.4. Overall, we view this environment as a multi-objective task with three norms, of
which two are explicit (help, clean), whereas not breaking the vase is implicit. The idea behind this
is that when learning norms from demonstrations, we cannot expect to receive explicit demonstrations
of norm breaking acts. On the one hand, this might be due to safety concerns of demonstrating norm
breaking behavior. On the other hand, when collecting a demonstration dataset from a large population,
providing explicit instructions to the demonstration givers might not only be infeasible, but also bias
the demonstrator’s representation of normative behavior.

Deliver

Help

Clean

Vase

Agent

Figure 5.2: Illustration of the Delivery environment. The agent’s primary goal is to deliver packages to the assigned cells.
However, the agent might encounter people in need of help as well as street pollution, which normative behavior might
favor over the primary task. Finally, vases are placed throughout the world which introduces negative side effects if being
stepped on.

5.2. Experiments 50

As previously described, we employ a neural network for function approximation in AIRL. However,
due to the increased environment size we now use a convolutional network architecture for the reward
learner fθ instead of a fully connected one. At its core, the network treats grid world states as images
and learns a sequence of 2 × 2 kernels with varying channel dimension. Namely, the network consists
of three convolutional layers with 32, 32 and 16 channels respectively, followed by a linear layer that
outputs a scalar value. Furthermore, we use the same dual channel architecture as outlined in 3.2.2,
where the state and next state are passed through two parallel convolutional layers which are combined
only afterwards. Activation functions are used throughout each layer, by applying a LeakyReLU with
slope parameter α = 0.01. For an illustration of the architecture, see B.1.2. Besides this, we do not
vary the architecture for the PPO policy that is used throughout AIRL and active learning, and we
remain with the convolutional architecture described in B.1.1.

5.1.4. Preference Elicitation
For Delivery, we slightly alter the way preferences are provided. This is due to the increased complexity
of the environment, which allows for many Pareto optimal policies that could be regarded normative.
Hence, we assume that the preference giver has a subjective distribution m ∈ [0, 1]n over the n different
reward functions which we would like to scalarize with MORAL. Note that although this implies that the
preference giver’s utility is a function of the n available reward functions, such simplifying assumption
can easily be dropped whenever needed. MORAL will always learn a scalarization weight w that
most closely matches the preferences, regardless of the ground truth utility function that is to be
approximated. Given a pair of trajectories (τ1, τ2), we then calculate two vectors ji = [oi1, . . . , o

i
n]

(i ∈ {1, 2}), where oik denotes the ground truth returns of the k-th objective in trajectory i. For
example, if trajectory τ1 delivers 3 packages, helps 1 person and cleans 3 tiles, then j1 = [3, 1, 3]. In
this example, vases have been omitted in the specification of ji because they have been assumed to
be implicit.2 Having obtained a pair of returns (j1, j2) corresponding to the trajectories (τ1, τ2), we
provide preferences according to

i∗ = arg min
i∈{1,2}

DKL(ji||m), (5.12)

where ji := ji
||ji||1+ε is the normalized vector of returns and ε > 0 is a small constant for avoiding

numerical instabilities.

Providing preferences this way gives us the ability to study the qualitative behavior of MORAL for
different configurations of m. Furthermore, we choose to place an equal amount of deliver, help and
clean objectives on the grid because it enables us to experimentally validate the deviation of MORAL to
the true underlying utilities of the preference givers. This is because it makes the objectives symmetric
in the sense that they only differ in the type of reward signal (learned/predefined) and because the
episode time limit is chosen such that a marginal PPO agent trained on only one objective can never
achieve the maximal return. As such, the optimal policy for a ground truth distribution m does indeed
correspond to a return vector j∗ with DKL(j∗||m) = 0. In other words, we ensure that given m there
always exists a Pareto optimal solution with returns that have zero Kullback-Leibler divergence to m.

5.2. Experiments
We will describe the IRL and active learning stages separately and will assume that the reward functions
learned in from AIRL are being held fixed throughout the active learning experiments unless stated
otherwise. For AIRL, we train two reward functions for the help and clean objectives from 1000
demonstrations respectively, using the hyperparameters from appendix B.3.1. Furthermore, we assume
that both demonstration givers respect the implicit vase objective. We do so by training two PPO
agents on reward functions that give a penalty of −1 for breaking the vase and give a reward of +1
for helping or cleaning otherwise. For the training performance of the demonstration policies, see the
appendix A.2. Figure 5.3 shows the four objectives achieved while running AIRL on each of the two
expert’s demonstration sets. As expected, both policies optimize for their respective objectives from the
start, while managing to minimize the amount of vases broken. Besides that, the discriminator network
converges to a real and fake accuracy at around 0.6, as shown in figure A.6. Although this might
2This is an arbitrary design choice, and providing preferences by factoring in the implicit vase objective could have been
explored just as well.

5.2. Experiments 51

0 1 2 3 4 5 6
1e6

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Deliver

Expert 1
Expert 2

0 1 2 3 4 5 6
1e6

1

2

3

4

5

6

7

Help

Expert 1
Expert 2

0 1 2 3 4 5 6
1e6

1

2

3

4

5

6
Clean

Expert 1
Expert 2

0 1 2 3 4 5 6
1e6

1.4

1.2

1.0

0.8

0.6

0.4

0.2
Vase

Expert 1
Expert 2

Figure 5.3: AIRL training performance in Delivery for two different demonstration datasets. Both experts implicitly
avoid breaking vases, whereas expert 1 has a preference for clean and expert 2 has a preference for help.

indicate slight overfitting of the reward network, we found the performance of policies at reoptimization
time to be sufficiently close to the original demonstrations, which is why we did not explore any further
regularization techniques. Finally, we note that choosing 1000 demonstrations for each expert was
motivated by both ensuring to learn sufficiently accurate reward representations as well speeding up
the overall training process.

5.2.1. Expert Aggregation
We start by testing MORAL in Delivery for the two-dimensional reward function obtained from the
AIRL runs of figure 5.3. To do so, we run active learning with 25 queries multiple times for different
choices of the preference vector m ∈ R2. By plotting the ratio of the ground truth preference m1/m2

against the achieved objectives, we can then evaluate MORAL’s ability to recover a wide variety of
expert preferences in the multi-objective stage. We show this behavior in figure 5.4. As can be seen,
MORAL correctly recovers the expert’s preferences while achieving a constantly high performance in
terms of the respective objectives. Furthermore, we see an instantiation of theorem 5.1.2, where the
amount of vases broken consistently stays close to zero regardless of the preference ratio m. This is
because the reward functions found in the AIRL step (see figure 5.3) favor trajectories that break fewer
vases on average. Besides this, figure 5.4 plots the deviation of the observed objective ratio help

clean from
the provided ratio m in terms of the Kullback-Leibler divergence. We do this to quantify to which
degree the posterior distribution over scalarization weights w matches the given preferences. However,
we note that this is only an approximate metric for the distance between the posterior over w and the
preference giver’s true scalarization weights w∗. We use this approximate metric because, since the
reward functions are learned, we do not have access to the true scalarization weights w∗ that match
the preferences m. Nonetheless, as discussed in section 5.1.4 our choice of environment and m ensures
that the discrepancy between these two metrics is always approximately equal to zero. As can be

0.16 0.2 0.25 0.33 0.5 1.0 2.0 4.0 5.0 6.0
m1
m2

0

2

4

6

8

10

12

14

16

Ob
je

ct
iv

es

Clean
Help
Vase

0.16 0.2 0.25 0.33 0.5 1.0 2.0 4.0 5.0 6.0
m1
m2

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Pr
ef

er
en

ce
 D

ev
ia

tio
n

MORAL
Mean

Figure 5.4: Left : Provided preference ratio m versus the average number of objectives achieved by MORAL after training.
The implicit vase objective is automatically optimized for, thus minimizing the amount of broken vases regardless of m.
Right : Kullback-Leibler divergences between observed objective ratios and the provided ratio m. MORAL is able to
closely recover the true preference vector for different choices of m.

5.2. Experiments 52

0 1 2 3 4 5 6 7 8 9 10
Clean

0
1
2
3
4
5
6
7
8
9

10

He
lp

MORAL
PPO

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Figure 5.5: The convex coverage set found by MORAL and PPO on manually defined reward functions. Colors indicate
average amount of vases broken. MORAL retrieves a comparable shape of solutions to PPO despite only having access
to demonstrations and preferences, while implicitly incorporating the normative vase constraint.

seen, MORAL achieves low divergence metrics across different choices of m, indicating that the desired
preferences are adequately recovered in the active learning stage. Nonetheless, the results are subject
to noise as can be seen from the relatively larger divergences for some choices of m.

The results above suggest that can MORAL closely match the given preferences, but what remains
to be tested is how MORAL compares to manually choosing scalarization weights when having access
to the true reward functions. As discussed previously, MORAL retrieves Pareto optimal solution in
the space of its (partially) learned reward functions. However, accumulating errors in learned rewards
might lead to an overall performance that does not match an agent optimizing for the true reward
functions. Again, we note that although a true reward function might not exist, in our experimental
setup we synthesize demonstrations from an RL agent trained on some true reward function. That
way, we can easily compare solutions found by MORAL with those that come from scalarizing versions
of the original reward functions. For this reason, we train a traditional RL agent using PPO on a
manually engineered reward function r(s, a) = λr1(s, a) + (1− λ)r2(s, a), where r1(s, a) corresponds to
a reward of +1 for each cleaned tile and r2(s, a) corresponds to a reward of +1 for each person helped.
For MORAL, we train agents using the same set of preferences from figure 5.4 to achieve a diverse
set of Pareto optimal policies, whereas for PPO we simply vary the hyperparameter λ ∈ [0, 1]. Figure
5.5 shows convex coverage sets for the respective algorithms. MORAL recovers a qualitatively similar
CCS to PPO, but exhibits slightly lower spanned volume. This, however, is to be expected due to
MORAL implicitly avoiding vases, whereas PPO does not. As can be seen, MORAL achieves to avoid
significantly more vases than PPO, which was only trained on the explicit norms of each expert. In
conclusion, we see that in Delivery, aggregating shaped AIRL reward functions does not lead to a major
drop in performance as compared to aggregating their sparse, manually engineered counterparts.

Finally, we further illustrate the benefits of theorem 5.1.2 in the context of a malicious preference
giver. By assumption, the theorem guarantees that any scalarization w of the vector-valued learned
reward function will lead to minimization of undesirable states. In this example, although each of
the experts optimizes for a different set of tasks, they share the common goal of avoiding states in
which vases end up broken. To empirically validate the robustness of MORAL in this case, we give
preferences in the following way: Given a pair of trajectories (τ1, τ2), prefer the trajectory that breaks
more vases. Figure 5.6 shows that despite these preferences, the policy does indeed optimize for the
opposite, which is minimizing broken vases. Aside from the theorem, this result is rather unsurprising,
but intuitively appealing. MORAL only learns which of the experts to prioritize at runtime, but does
not infer any fundamentally new reward information in its active learning stage. In this sense, the
two-step procedure of MORAL can also be thought of as a safety mechanism. As long as safety of
the marginal reward functions can be guaranteed, MORAL can subsequently interact with an arbitrary
expert without compromising the safety of the system.

5.2. Experiments 53

0 1 2 3 4 5 6
Steps 1e6

0.0

0.2

0.4

0.6

0.8

Va
se

s b
ro

ke
n

MORAL

Figure 5.6: Robustness of MORAL with respect to malicious inputs. MORAL minimizes the amount of broken vases even
in the presence of counterfactual preferences. The shaded area marks standard deviations across three distinct random
seeds.

5.2.2. Diversity
We now scale up the complexity of the active learning stage and evaluate MORAL in the full setting.
This means that we train MORAL on a three-dimensional reward function r(s, a) = (rP (s, a), fθ1(s, a),
fθ2(s, a)), where rP (s, a) is +1 when a package gets delivered and fθ1 , fθ2 are the AIRL reward functions
used in the previous section. To retrieve a representative subset of the Pareto front, we then enumerate
all possible ratios in {1, 2, 3}3 for choosingm and iterate through the active learning stage. Furthermore,
we limit the amount of preferences during active learning to 25. For a comparison of the amount of
queries needed, we refer to section 5.2.4. Figure 5.7 shows the obtained CCS for each value of m. We
choose to plot pairs of the three explicit objectives deliver, help, clean, whereas the radius of added
circles around each policy indicates the relative amount of vases broken. Thus, a bigger radius indicates
a policy broke more vases compared to the other solutions, with a radius of 0 indicating no broken vases.
Besides that, we also color each policy according to the third explicit objective that is not present in
the two-dimensional projections for each plot.

As can be seen, MORAL retrieves a diverse set of solutions that represents the different choices of
m. Besides this, we see that the amount of broken vases correlates directly with the weight put on
the delivery reward function. This is unsurprising, since the manually engineered delivery reward does
not encode any knowledge about the various vases in the environment. Nonetheless, we observe that
for appropriate choices of m, the amount of broken vases can be held relatively low while delivering an
adequate amount of packages by simply putting more weight on either of the learned reward functions.
Note, however, that this setup does not let us directly apply theorem 5.1.2, since we are not working with

2 3 4 5 6 7
Help

2

3

4

5

6

7

Cl
ea

n

3 4 5 6
Deliver

2

3

4

5

6

7

He
lp

3 4 5 6
Deliver

2

3

4

5

6

7

Cl
ea

n

3.0

3.5

4.0

4.5

5.0

5.5

6.0

3.0

3.5

4.0

4.5

5.0

5.5

6.0

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Figure 5.7: The convex coverage set found by MORAL in the case of three reward dimensions. Each plot shows a two-
dimensional projection of the attained objectives with colors indicating the third dimension. The radius of gray circles
around each policy denotes the proportion of broken vases (on average).

5.2. Experiments 54

Deliver

2
3

4
5

6
7

Help

2

3

4

5

6
7

Cl
ea

n

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 5.8: Three-dimensional CCS plot in objective space found by MORAL for different preferences. Colors indicate
the amount of vases broken on average.

only IRL functions anymore. Also, even though theorem 5.1.2 still holds for arbitrary reward functions
r as long as the corresponding maximum entropy distribution p(τ |r) fulfills the necessary assumption of
putting low probability mass on the set of unsafe states, it would be practically impossible to guarantee.
While a set of demonstrations can be directly examined a reward function can not, unless an optimal
policy with respect to it is found first. The latter is an expensive process, which again highlights as
to why designing normative reward functions is naturally intractable for real-world tasks. To better
illustrate the Pareto optimality of the found policies, we show a three-dimensional CCS plot in figure
5.8. By definition, Pareto dominance occurs when moving in a non-negative direction with respect to
all objectives. From this, we can see that the policies found by MORAL form a diverse set that does
contain a substantial amount of Pareto dominated points, further indicating the diversity of policies.

In addition to the previous plots, we also illustrate the convex coverage set in combination with
the deviation from the supplemented preference vectors during training in figure 5.9. To be precise,
for each point we additionally report its Kullback-Leibler divergence (5.12), where m is chosen as the
vector that led to the respective point. Overall, MORAL manages to converge to a distance that is close
to zero for most preference vectors, which then directly translates to the observed objective ratios. For
example, consider the point closely achieving approximately (3, 7) in the pair (help, clean). Figure 5.7
indicates that the point achieves around 5 delivered packages, yielding a return vector close to (3, 5, 7).
The corresponding unnormalized preference m = (1, 2, 3) resembles a 1 : 2 : 3 ratio, which the policy

2 3 4 5 6 7
Help

2

3

4

5

6

7

Cl
ea

n

3 4 5 6
Deliver

2

3

4

5

6

7

He
lp

3 4 5 6
Deliver

2

3

4

5

6

7

Cl
ea

n

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Figure 5.9: The convex coverage set found by MORAL in the case of three reward dimensions. Here, colors indicate the
Kullback-Leibler divergences between the attained objective vectors and the preference vector used during training.

5.2. Experiments 55

approximates reasonably well, thus leading to an overall low Kullback-Leibler divergence. Despite this,
MORAL does not always recover the true preferences just as well. Partially, this is due to queries
being sampled only heuristically, where the space of available trajectories is always a subset of the
agent’s current experience. On the one hand, increasing the number of queries can tackle this issue and
does decrease the Kullback-Leibler divergence as we will discuss in section 5.2.4. However, due to the
inherent noise of MDPs, we can expect such variance even for very large amounts of queries in certain
environments. We will discuss when this problem can occur as well as possible solutions in chapter 6.

5.2.3. Learning Multiple Norms from Pairwise Preferences
Similarly to section 4.2.2, we compare the performance of MORAL against DRLHP. To do so, we
employ the same model of pairwise preferences (4.15) and train DRLHP for the same amount of steps
as MORAL (including the IRL step) using the hyperparameters from table B.7. Unlike before, however,
we change the way preferences are given between MORAL and DRLHP. The main reason for this is
that by supplying MORAL with a three-dimensional reward function, it only implicitly learns about
the vase objective from preferences. In our example, on the other hand, DRLHP needs to be supplied
with preferences that take breaking vases into account directly if one aims to embed every objective of
the environment into the reward model of the agent. For this reason, we apply a more direct way of
supplying preferences to DRLHP. Namely, we first train MORAL and observe its achieved objectives

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Steps 1e7

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Deliver

MORAL
DRLHP
IRL Offset

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Steps 1e7

0

1

2

3

4

5

6

7
Help

MORAL
DRLHP
IRL Offset

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Steps 1e7

0

1

2

3

4

5

6

7
Clean

MORAL
DRLHP
IRL Offset

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Vase
MORAL
DRLHP
IRL Offset

Figure 5.10: Comparison of MORAL and DRLHP in Delivery for the preference ratio (1, 5, 5) averaged over three random
seeds. The shaded gray area indicates the offset of training steps needed to learn the IRL reward functions in the first
step of MORAL.

5.2. Experiments 56

5 10 15 20 25 30 35 40 45 50
Preferences

0.02

0.03

0.04

0.05

0.06

0.07

Pr
ef

er
en

ce
 D

ev
ia

tio
n

Active
Random

Figure 5.11: Comparison of actively choosing queries versus random samples of trajectory pairs for different amounts of
overall retrieved preferences.

j ∈ R4. Subsequently, we provide preferences to DRLHP such that we value τ1 � τ2, whenever the
achieved objectives in τ1 match j more closely in terms of the mean squared error

||jτ1 − j||22 ≤ ||jτ2 − j||22. (5.13)

This way, we train DRLHP more directly to match the returns of MORAL. Figure 5.10 shows the
training progress of both algorithms, whereby we offset the training curve of MORAL by the amount of
IRL steps needed to learn the respective reward functions. In this environment, we see a similar behav-
ior of DRLHP compared to MORAL as in Burning Warehouse. Firstly, MORAL exhibits overall faster
convergence than DRLHP in all the objectives of interest. However, as the dimensionality of the reward
function increases, the advantage over training speed diminishes due to the sample inefficiency of the
AIRL step in MORAL. Nevertheless, we observe that aside from training speed, MORAL outperforms
DRLHP in terms of final returns. This is, arguably, one of the main advantages of learning multiple
reward functions separately. For example, when training an agent merely from preferences, deep re-
ward models suffer from problems that resemble catastrophic forgetting: Updating using a new pair of
preferences can possibly overwrite previously obtained knowledge. While DRLHP tackles this through
using an experience buffer of past preferences, this does not avoid smoothing over certain, perhaps less
present, objectives in the environment. For example, figure 5.10 shows that although DRLHP manages
to learn the importance of help and clean, it does not manage to avoid vases.

The event of stepping on a vase is comparatively sparse, such that in order to learn about it, the
agent needs to first explore sufficiently and pick the correct query. In expectation, a random policy
will encounter such trajectories less likely, making it especially rare to occur in the experience buffer.
As a consequence, even if there are preferences available that explicitly encode not stepping on vases,
updating the deep reward model with a cross entropy loss over a batch of sampled preferences runs
at the danger of disregarding vases. Essentially, this is an exploration problem, which DRLHP suffers
greatly from. Pretraining DRLHP on a set of demonstrations, as suggested in [47] does help for hard-
exploration environments, but does not offer to incorporate demonstrations from a wider set of experts.
The intention behind MORAL is to allow for learning from a diverse set of experts, although the
final scalarization always needs to be decided on by some expert (or through a voting mechanism).
Additionally, MORAL more easily allows for the incorporation of prior knowledge, both in terms of
a prior over scalarization weights p(w) as well as in terms of additional manually engineered reward
functions. Although the latter is theoretically possible for DRLHP, similar problems arise with regard to
appropriately scalarizing the deep reward model (which operates on unknown scales) with any additional
reward functions, thus again needing similar solutions to those implemented by MORAL.

5.2.4. Ablation
In this section, we will analyze MORAL with respect to the necessity of active queries, compare the
number of queries needed as well as test robustness against noisy preference data. We test the first

5.3. Conclusion 57

two criteria jointly, by performing the active learning step for different amounts of queries as well as
repeating the procedure using random queries instead. As in section 4.2, random queries are generated
by sampling an arbitrary pair of trajectories from the experience buffer of PPO at fixed time intervals.
Also, the query frequency as well as overall environment steps are held constant across different runs.
Figure 5.11 shows the average preference deviation (5.12) for each configuration. To be precise, we
train MORAL to retrieve a CCS using the same set of preference vectors m as in section 5.2.2 and
subsequently take the mean over all Kullback-Leibler divergences of found policies to their respective
desired objective ratios. Overall, we see a decreasing trend in preference deviation for both active
and random queries as the amount of queries increases. Besides this, active learning beats random
queries for more than 10 queries by exhibiting less than half of the deviation on average. Interestingly,
however, active queries perform worse than random queries when the amount of total queries is very
low. We speculate that this is not merely due to noise, since the average is taken over a relatively
large set of runs. One reason for active learning to underperform in the small query regime could be
due to MORAL optimizing for the posterior mean over scalarization weights. While the maximum
volume removal (4.5) is optimal for minimizing the amount of queries needed, it does not guarantee
that the posterior mean corresponds to the true weights throughout training. For example, in the case
of approximating w∗ = (1, 1, 1)/

√
3, removing volume at early stages of training will indeed move the

posterior mean away from w∗ at first, until enough volume has been removed from all sides of the
marginal distributions. On the other hand, random queries will remove less volume on average, thus
exhibiting lower variance in the posterior mean for few queries.

Besides this, MORAL beats random queries not only in absolute numbers, but also seems to benefit
more strongly from a larger set of queries. We conjecture that this is due to the on-policy sampling of
queries from the experience buffer of PPO. By design, active learning will always seek a larger amount of
variance in the returns of its respective queries to retrieve the maximal amount of information from the
expert. In the large query regime, this helps to reduce volume further as long as the agent maintains
adequate levels of exploration. Random queries, on the other hand, are likely to converge to local
optima more quickly. Once the agent has found a reasonable strategy for maximizing its current reward
model, the policy entropy decreases accordingly. As a result, random queries are more likely to sample
from the same set of trajectories. Since the likelihood function (4.12) is log-concave, the entropy of
the posterior (4.3) is bound to decrease and, as such, is prone to overfit to the currently observed set
of trajectories. MORAL diminishes this effect visibly, but we note that it is not excluded from local
optimality of the scalarization posterior. In Delivery this does not pose any apparent problem, but we
expect the gap between random and active queries to decrease as the marginal reward functions of the
environment are more sparse. We will discuss the implications of sparse reward functions in chapter 6.

Finally, we evaluate the robustness of MORAL with respect to preference noise. This is crucial,
since MORAL is designed to interact with human experts, whereas our experiments only cover synthetic
simulation studies. For this reason, we follow the setup from section 4.2.1 and introduce noisy preferences
with some probability p that randomly choose between a presented pair of trajectories. Figure 5.12
shows average preference deviations across different configurations of m for n = 50 overall queries per
run. Our experiments suggest that despite the increase in preference deviation, the relative errors are
small enough to outperform random queries without any preference noise, which exhibits an error of
around 0.045 when using 50 queries. Nonetheless, there is a significant increase in error when jumping
to noise levels of 0.1. Again, we conjecture that this is due to the nature of our Bayesian learning
procedure constantly removing entropy from the posterior, thus running the risk of converging to local
optima when receiving highly contradicting evidence. One possible mitigation strategy would involve
the introduction of a hyperparameter by which the reward function is scaled, in order to decrease the
sensitivity of each Bayesian update step at the cost of needing more queries to converge. We suggest
that further research with human experts in the loop would be necessary in order to study the necessity
of such a modification to MORAL. Overall, we conclude that these experiments show that although
the performance of MORAL drops in the presence of noisy preferences, we still achieve a more accurate
reward posterior through active learning when compared to random queries without added noise.

5.3. Conclusion
Overall, in this chapter we have illustrated how MORAL can be employed for incorporating a normative
prior from different experts into a reward-driven deep RL agent. Firstly, we have shown that MORAL

5.3. Conclusion 58

0.0 0.1 0.2 0.3
Preference Noise

0.015

0.020

0.025

0.030

0.035

0.040

0.045

Pr
ef

er
en

ce
 D

ev
ia

tio
n

Active
Random (0 noise)

Figure 5.12: Robustness of MORAL with respect to preference noise. Preference deviations are averaged over different
runs with the preference vector m being varied accordingly.

is closely related to Harsanyi’s utility aggregation theorem, which draws connections to the field of
computational social choice. Furthermore, we have shown that linearly aggregating a set of maximum
entropy IRL reward functions can be interpreted as finding the policy minimizing a weighted Kullback-
Leibler average to the corresponding marginal maximum entropy IRL distributions over trajectories.
Subsequently, we have introduced the Delivery environment, in which we have shown the ability of
MORAL to efficiently recover a diverse set of Pareto optimal policies that extrapolate beyond those
contained in the demonstration dataset. Finally, aside from a comparison to DRLHP and manually
choosing scalarization weights, we have demonstrated that MORAL scales well with the number of
provided preferences as well as outperforms randomly choosing queries even in the presence of additional
preference noise.

6
Discussion

In our work, we proposed multi-objective reinforced active learning (MORAL), an algorithm for in-
corporating and combining multiple expert’s utility functions into a deep RL agent. MORAL offers a
technical approach to the value alignment problem, which allows for value open design by means of
learning reward functions from a diverse set of demonstrations. Furthermore, we argued that a major
challenge of value alignment lies in the specification of human norms and showed that MORAL can be
used for incorporating normative behavior into goal-driven agents. To do so, we designed two environ-
ments, Burning Warehouse and Delivery, which test an agent’s capability of adapting its primary goal
to account for different normative components. Overall, we empirically demonstrated that MORAL is
able to efficiently find a diverse set of Pareto optimal policies through the specification of different pref-
erences and, additionally, outperforms single-objective approaches such as deep reinforcement learning
from human preferences.

6.1. Key Findings
The key findings of our research are tightly interconnected with the proposed research questions from
section 1.2. We will start by providing an outline of the main contributions to the first research question.

1. How can we query and interact with experts to elicit normative behavior in sequential decision-
making problems?

Eliciting normative behavior from trajectories in a sequential decision-making context is not only chal-
lenging due to the exponentially growing size of possibilities in large environments. From a practical
point of view, its difficulty can also be greatly ascribed to the granularity at which decisions are made
in Markov decision processes. We explored how to utilize multiple sources of inputs including expert
demonstrations and preferences and showed that through MORAL, using preferences to tune reward
functions learned through inverse reinforcement learning is effective for a multi-objective environment.
In comparison, we tested MORAL against learning a deep reward model from preferences only and found
the latter to lack both adaptivity and optimality. Besides this, we found the separation of learning from
demonstrations and learning from queries especially useful from a safety perspective. Preferences only
weakly denote goal specifications in sequential decision-making, thus requiring large amounts of data to
ensure that the agent indeed optimizes the desired utility function. On the other hand, demonstrations
provide a relatively strong feedback signal from which numerous values can be inferred at the cost
of generalization capabilities. In combination, we showed that pretraining on diverse demonstrations
allows the agent to learn about both explicit and implicit preferences of the expert which can greatly
reduce the space of possible reward functions to a safer subset of reward functions. Preferences are
then only used for maintaining a probability distribution over generally desirable reward functions,
thus making the algorithm robust to malicious feedback signals in the second stage.

2. How can we encode learned normative behavior into RL agents?

Another challenge arising from the granularity at which RL agents operate is learning hierarchical
reward functions. Naturally, information from demonstrations as well as preferences can only either

59

6.2. Related Work 60

recover shaped or highly sparse rewards. Without any additional prior knowledge, the agent must
assume that either each subtrajectory of preferred or demonstrated trajectories yields progress towards
the overall goal (shaped) or that only after completion of the whole trajectory one has achieved high
utility (sparse). While the latter offers superior transfer learning capabilities, it can hinder the ability
to find intermediate solutions that trade off multiple rewards. For example, in Delivery, some humans
need help by the agent alongside a primary goal of delivering packages. Learning a reward function
from demonstrations that helps all humans can then either correlate positive reward with each person
that has been helped or, in the sparse case, aim to only reward the agent once all people have been
satisfied. In this case, the shaped reward function offers more flexibility with respect to trading off the
goal of helping people with delivering packages. It is therefore crucial to take the shaping of rewards into
account when aiming to incorporate human value preferences into RL agents. In chapter 3, we showed
that when dealing with approximate (and shaped) reward functions, the framework of multi-objective
RL offers a fundamental advantage over constrained RL, even when one of the rewards is more naturally
encoded in the form of a constraint.

3. How can we combine different (and possibly conflicting) aspects of normative behavior in sequen-
tial decision-making problems?

The aggregation of human value preferences is naturally tackled by the field of computational social
choice. However, in the context of RL the set of alternatives over which choices should be made is too
large a-priori to deliberate over. MORAL first learns multiple expert’s utility functions and combines
them through active learning. This allows an efficient search over the space of Pareto optimal trajectories
by means of pairwise preferences. In chapter 5 we showed how MORAL relates to Harsanyi’s utility
aggregation theorem and proved that, under the assumption of a convex Pareto boundary, solutions are
given by policies that minimize a weighted Kullback-Leibler average between maximum entropy inverse
RL distributions. Furthermore, we empirically showed that MORAL is able to combine normative
behavior from different experts and can recover a wide variety of preferences with only few queries.
Overall, this suggests that MORAL can generalize beyond expert demonstrations and build combined
policies that achieve a desired trade-off between the observed utility function.

6.2. Related Work
Inverse Reinforcement Learning. Our work builds on the framework of maximum entropy IRL
[101] for deep RL agents by approximating the objective function using generative adversarial networks
analogous to adversarial inverse reinforcement learning (AIRL) [31]. AIRL studies how to transfer a
single learned reward signal, while our work focuses on trading off different learned reward functions
in the same environment. Learning from multiple demonstrators has been mostly studied from the
perspective of multi-agent [99] or multi-task learning by imitating experts through latent variable models
[43, 56], modelling hierarchical behavior [78, 90] or learning a latent-conditioned reward function [100]
in an unsupervised manner. On the other hand, [33, 96] considers meta learning a reward function that
can quickly adapt to new tasks from supervised data. While we also assume labeled data for multiple
tasks, we are applying AIRL in a multi-objective Markov decision process. To our knowledge, this has
not yet been studied before.

Maximum entropy IRL models the demonstrations as Boltzmann rational, which can inherit funda-
mental biases from the data as well as generalize badly. To overcome bad learned rewards, cooperative
inverse reinforcement learning (CIRL) provides ways of challenging this by changing the modelling
assumption about the human intentions [39]. Similarly, inverse reward design (IRD) [40] learns a distri-
bution of reward functions through IRL that can leverage its uncertainty to help avoiding unintended
behavior not originally specified by a reward designer. We also learn a distribution over reward func-
tions, but unlike our approach IRD and CIRL provide a formal model of reward learning from a single
expert, whereas we are interested in combining reward from multiple sources. As a result, our work is
conceptually more close to multi-task inverse reward design [52], which studies how a distribution over
reward functions can be obtained under conflicting inputs. Multi-task IRD satisfies formal desiderata
for value-aligned combinations of reward functions by assuming a tabular feature space and a linear
reward as a function of feature expectations. On the other hand, our approach readily drops these
assumptions, allowing to combine multiple reward functions with deep inverse reinforcement learning,
but comes at the cost of less formal guarantees.

6.2. Related Work 61

Learning from Expert Feedback. Instead of finding reward functions from demonstrations, one can
train agents by building a model of an expert’s utility from scalar feedback [50, 91] and preferences
[94]. Preference based reinforcement learning has been shown to yield promising results in Atari and
simulated robotics by training a deep reward model from human preferences [23] and a combination of
preferences and demonstrations [47]. Similarly to [47], we combine preference and demonstration data
to learn a reward function. However, [47] uses demonstrations merely for pretraining a preference-based
reward model whereas our approach applies IRL directly for finding a multivariate reward function and
only uses preferences for maintaining uncertainty over the respective reward components. Besides that,
we are concerned about learning from multiple different experts, whereas [47] tackles the problem of
learning from a single expert. Finally, by combining multiple learned reward functions, we implicitly
interpolate between the distributions over expert trajectories. From this angle, our work could be
considered a counterpart to [19], which trains a single reward model from ranked demonstrations to
extrapolate beyond the expert behavior.

Machine Ethics. Formally tackling how ethical behavior can arise in RL agents has been evaluated
in [3] by modelling the uncertainty over human values through partial observability. Motivated by
the problem of formally specifying human values, learning based approaches have made use of inverse
reinforcement learning [63] and reward shaping from demonstrations [95]. In contrast to [63] and [95],
we make use of deep RL agents to overcome the fundamental scalability issues introduced by using
handcrafted features spaces. Although [95] argues against the use of IRL, we empirically show that
similar results can be obtained with fewer assumptions by using AIRL as an approximate minimizer
of a Kullback-Leibler divergence to the expert policy. To learn from different experts, [28] suggest a
sequential voting mechanism, but it comes at the disadvantage of needing explicit representations of
the values at stake. We do not explicitly trade off values by voting, but rather train an agent that can
adapt to different values when given corresponding preferences. This somewhat resembles the multi-
agent work by [20], where symbolic values are learned to be adapted to by aggregating judgements
of different moral agents, with our approach employing a bottom-up approach of learning the values
instead.

Multi-Objective Reinforcement Learning. Trading off multiple objectives within a single reward
function is the study of MORL [69]. Similarly to [97], we assume finding policies on the convex coverage
set of the Pareto boundary by sampling various preference vectors. However, we do not optimize for an
explicit set of policies, but maintain a single policy that is adapted to the posterior mean of an actively
learned distribution over reward functions. Besides sample efficiency, this is aimed at mitigating the
difficulty of correctly specifying preferences over reward functions with fundamentally varying scales.
Multi-objective maximum a posteriori policy optimization (MO-MPO) [2] removes scale sensitivity by
satisfying respective Kullback-Leibler thresholds for policy improvement of each respective objective.
Although effective, their approach does not allow for learning a preference vector interactively, since
the the specified Kullback-Leibler distances only indirectly affect the obtained rewards.

Interactively learning the desired trade-offs from feedback has been previously studied in the con-
text of multi-objective bandits for linear [70] as well as nonlinear [71] transformations of the marginal
reward components. Besides that, interactively learning multi-objective reward functions has been
mostly neglected in the literature. We believe that this is because the MORL literature always assumes
environments with handcrafted reward functions, in which large parts of the Pareto boundary are of
potential interest. In the case of aligning an agent to human preferences, however, we suggest human
in the loop procedures for finding aligned reward functions to be a more promising option, analogous
to the reward learning procedure of preference based RL [23].

We train agents in two consecutive steps, where first multiple rewards are learned and subsequently
combined with a multi-objective procedure. This resembles the approach by [63], where a manually de-
signed reward function and an IRL reward are being traded off with linear preference weights. However,
they do not explicitly consider a multi-objective algorithm, but rather treat preferences as a fixed hy-
perparameter that determines the final policy. From the perspective of mitigating negative side effects,
[75] propose trading off learned rewards with a formal goal by calculating a specified maximum amount
of deviation from the primary objective, but the need for prespecifying a preference parameter persists.
Finally, [25] considers how (potentially learned) utilities from two different agents should be aggregated
to achieve Pareto optimality. They show that when agents have fundamentally different beliefs about
the environment, a Pareto optimal aggregation procedure cannot be given by a linear combination of

6.3. Discussion 62

their respective utility functions. For the sake of tractabilty, we violate this assumption and assume a
fully observable environment where each agent from which utilities are derived shares common beliefs
about the problem setting.

6.3. Discussion
Our findings provide first steps towards incorporating and aggregating normative behavior from demon-
strations in deep RL agents. However, although our research builds on previous work, many avenues
of future research remain to be addressed. To outline this, we first summarize the main gaps that
MORAL fills when compared to related work in table 6.1. Firstly, our approach most directly builds on
policy orchestration for teaching AI ethical values [63] and extends it to deep RL by employing AIRL
for learning reward functions. However, instead of orchestrating marginal imitation policies, we instead
learn a new policy that optimizes linear combinations of IRL reward functions. We found this to be
crucial for achieving acceptable performance in the case of multiple experts due to accumulating errors
in the respective policies obtained from IRL. Nevertheless, we note that policy orchestration builds on
contextual bandits, which can not be as easily translated into the deep setting as IRL. Besides this,
both approaches are able to outperform experts to some degree, due to maximum entropy IRL assuming
only approximate optimality of the expert demonstrations.

Ethics shaping [95] conceptually compares to MORAL in that it steers RL agents following a primary
goal to respect additional norms from demonstrations. Similarly to policy orchestration, this does
unfortunately not scale to complex environments where feature engineering is not possible. Arguably,
ethics shaping retrieves sparse feedback signals from demonstrations which is its strongest advantage
over MORAL and allows for learning temporally complex norms. However, by manually adding a
shaping term to the reward, multiple experts as well as multi-objective decision are not taken into
account, thus eliminating the possibility of aggregating diverse utility functions.

While ethics shaping and policy orchestration can not easily be compared to MORAL due to different
assumptions about the environment, we used deep reinforcement learning from human preferences
(DRLHP) [23] as a direct comparison to MORAL. DRLHP skips the IRL stage and directly employs
a Bradley-Terry model of pairwise preferences for learning a deep reward model and has been shown
to scale remarkably well to high-dimensional environments. As such, DRLHP provides an efficient
solution to the problem of encoding human value preferences into deep RL agents without the need of
ever demonstrating any policy. MORAL, on the other hand, requires more supervision in the form of
demonstrations but enables one to easily take different preferences as well as primary reward functions
into account. As such, MORAL should not be viewed as a superior approach to DRLHP, but rather as
an algorithm that offers more flexibility at the cost of more diverse supervision.

Combining multiple forms of supervision is challenging, as different probabilistic models about an
expert’s utility function or preferences that each come with their own assumptions about expert ratio-
nality need to be trained. Arguably, the main drawback of MORAL is its reliance on AIRL for learning
multiple reward functions, which lacks sample efficiency and often converges to badly shaped reward
functions. Similarly to [33], we found the reoptimization of reward functions obtained through AIRL
to be challenging in discrete environments, which indicates overfitting of the reward network to the
generator policy. Since MORAL relies on a two-step procedure in which the learned marginal reward
functions are fixed in the multi-objective optimization stage, it is prone to inaccurate AIRL reward
functions. Alleviating this issue will require substantially more progress in IRL, but we expect future
developments in IRL will be easily integrated into our current framework.

Ethics Shaping
[95]

Policy-
Orchestration [63]

DRLHP
[23]

MORAL

Function Approximation ××× ××× X X
Multi-Objective ××× X ××× X
Multiple Experts ××× ∼ ××× X

Outperform Experts X X X X

Table 6.1: Comparison of MORAL to previous work in terms of supported capabilities.

6.3. Discussion 63

In addition to the development of new IRL algorithms, we consider future research in active learning
for multi-objective RL to be a promising avenue for training tunable agents. First of all, our research only
studied MORAL in discrete grid world environments with synthetic demonstrations and preferences.
However, recent research has shown that synthetic demonstrations can impact the performance of AIRL
[64] and we expect synthetic preferences to have a similar positive impact on the overall performance
of MORAL. Although our experiments suggest that introducing artificial noise to preference data does
not greatly impact the ability of MORAL to retrieve accurate reward distributions, human feedback
is generally more unstructured. It would therefore be valuable to study the degree to which active
learning for multi-objective RL suffers from human feedback. A related, yet different problem is that of
convergence to a local optimum of the preference model. Since the likelihood function that updates the
posterior over scalarization weights is log-concave, the entropy of the distribution over reward functions
decreases over time. As a consequence, adequate levels of exploration by the agent have to be maintained
in order to avoid local optimality, since queries are sampled from on-policy RL experience. While we
found entropy regularization to be sufficient in our densely populated grid world environments, we
expect different exploration schemes to yield significantly better performance in sparse environments.
For example, one could add an exploration policy that tries to actively synthesize queries with maximum
volume removal. This way, whenever the current policy is optimizing for a locally optimal source of
reward, the exploration policy is able to generate new queries which reveal the suboptimality of the
agent’s most recent behavior.

Finally, we consider additional research investigating unsupervised RL techniques to be relevant for
extending the MORAL framework to unlabelled demonstration datasets. Real world datasets might
contain large amounts of demonstrations coming from a wide variety of people. Depending on the
context, it is reasonable to assume that many demonstrations will contain significant overlap, which
could be detected and exploited for meta learning multiple reward functions, similarly to [100] without
the need of additional labels. On top of that, multi-task neural network architectures could additionally
increase the sample efficiency of IRL which would be especially necessary when the amount of reward
functions to be learned is high.

II
Scientific Papers

64

Training for Implicit Norms in Deep Reinforcement Learning
Agents through Adversarial Multi-Objective Reward

Optimization
Markus Peschl

Department of Intelligent Systems
Delft University of Technology

Delft, The Netherlands
m.peschl@student.tudelft.nl

ABSTRACT
We propose a deep reinforcement learning algorithm that employs
an adversarial training strategy for adhering to implicit human
norms alongside optimizing for a narrow goal objective. Previous
methods which incorporate human values into reinforcement learn-
ing algorithms either scale poorly or assume hand-crafted state
features. Our algorithm drops these assumptions and is able to au-
tomatically infer norms from human demonstrations, which allows
for integrating it into existing agents in the form of multi-objective
optimization. We benchmark our approach in a search-and-rescue
grid world and show that, conditioned on respecting human norms,
our agent maintains optimal performance with respect to the pre-
defined goal.

CCS CONCEPTS
•Computingmethodologies→ Inverse reinforcement learn-
ing; Adversarial learning.
ACM Reference Format:
Markus Peschl. 2021. Training for Implicit Norms in Deep Reinforcement
Learning Agents through Adversarial Multi-Objective Reward Optimization.
In Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society
(AIES ’21), May 19–21, 2021, Virtual Event, USA. ACM, New York, NY, USA,
2 pages. https://doi.org/10.1145/3461702.3462473

1 INTRODUCTION
Recent progress in reinforcement learning (RL) has vastly increased
the feasibility and applicability of artificially intelligent agents to
real world problems by employing deep neural networks that ap-
proximately solve high-dimensional control tasks. However, most
state of the art algorithms are inherently black-box models that
optimize for a specific manually engineered reward function. This
can lead to unforeseen societal impacts which need to be accounted
for before training and deploying the system [7].

As a consequence, there is a need for taking human values into
account when training RL systems, which has previously been
tackled by various approaches including inverse RL [4], reward

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
AIES ’21, May 19–21, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8473-5/21/05.
https://doi.org/10.1145/3461702.3462473

shaping [8], partially observable Markov decision processes [1],
safe RL [5] and multi-agent social choice [2]. However, most of
these approaches do not scale to continuous or complex discrete
environments due to assuming a tabular representation of the state
space or hand-crafted features. While Saunders et al. [5] do not
require any assumptions about the state space by employing deep
RL, their approach only considers immediate negative consequences
that can be avoided by blocking a single action.

To tackle the issue of scalability, we propose a hybrid architec-
ture that enables deep reinforcement learning agents to optimize
for a predefined goal while adhering to implicit norms learned
from human behavior. Furthermore, by employing a bottom-up
approach which builds on the adversarial inverse reinforcement
learning framework [3], our agent is able to adapt to temporally
complex constraints which can not directly be achieved through
action blocking.

2 METHODS
We cast the problem of optimizing for a predefined goal while ad-
hering to human norms into a multi-objective Markov decision
process (MOMDP) with linear preferences, which is given by a
tuple ⟨S,A,P, r,𝝀⟩, where S and A denote the sets of possible
states and actions respectively, P(𝑠 ′ |𝑠, 𝑎) denotes the state transi-
tion probability function and r(𝑠, 𝑎) ∈ R𝑑 is a vector-valued reward
function. Finally, we consider preference vectors 𝝀 ∈ R𝑑 to deter-
mine preferences among competing objectives. The RL goal then
consists of finding a policy 𝜋 : S → ΔA that maps states to a
probability distribution over actions which maximizes the expected
cumulative rewardmax𝜋 E𝜋

[∑𝑇
𝑡=0 𝛾

𝑡𝝀𝑇 r(𝑠𝑡 , 𝑎𝑡)
]
, where 0 < 𝛾 ≤ 1

is a temporal discount factor.
We assume that some components of r(𝑠, 𝑎) ∈ R𝑑 are known

in advance, these correspond to the primary goal that the agent
ought to maximize, whereas norms represent the other components.
To learn norms, we make use of human demonstrations which
we assume to be norm satisfying and infer corresponding reward
signals with adversarial inverse reinforcement learning (AIRL) [3].
AIRL trains a discriminator of the form

𝐷𝜃 (𝑠, 𝑎) =
exp 𝑓𝜃 (𝑠, 𝑎)

exp 𝑓𝜃 (𝑠, 𝑎) + 𝜋 (𝑎 |𝑠)
, (1)

which outputs the probability of the state-action pair (𝑠, 𝑎) coming
from the dataset D = {𝜏𝑖 }𝑛𝑖=1 of human demonstrations rather
than from an agent following the policy 𝜋 . Simultaneously, the
policy 𝜋 is updated to match the demonstrations inD more closely.

Student Track Abstract AIES ’21, May 19–21, 2021, Virtual Event, USA

275

Assuming that we want the agent to optimize a primary goal given
by rewards 𝑟0 (𝑠, 𝑎), we then use a modified update rule for the
generator 𝜋 for maximizing

E𝜋

[
𝑇∑
𝑡=0

𝜆(𝑓𝜃 (𝑠𝑡 , 𝑎𝑡) − log𝜋 (𝑎𝑡 |𝑠𝑡)) + (1 − 𝜆)𝑟0 (𝑠𝑡 , 𝑎𝑡)
]
. (2)

Mathematically speaking, this results in 𝜋 optimizing for 𝑟0
while regularizing by a Kullback-Leibler divergence term𝐾𝐿(𝜋 (𝜏) | |
𝑝𝜃 (𝜏)), where 𝑝𝜃 (𝜏) ∝ P(𝑠0)

∏𝑇
𝑡=0 P(𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡)𝑒𝛾

𝑡 𝑓𝜃 (𝑠𝑡 ,𝑎𝑡) is the
maximum entropy inverse RL probability distribution induced by
𝑓𝜃 [9].

3 EXPERIMENTS
We train a deep reinforcement learning agent in a (stochastic) grid
world, with state inputs being a numerical matrix representation
encoding the states of each cell. Both the policy and the discrimi-
nator employ a three-layer convolutional neural network, followed
by linear output layers respectively. Furthermore, the policy is
trained via proximal policy optimization (PPO) [6] due to its ease
of implementation.

Testing is done in the burning warehouse environment (Figure
1), where the primary goal for the agent is to spend most of its time
in a specific tile 𝐺 . In general, 𝐺 can be understood as any primary
goal of interest, such as calling a fire department, extinguishing fire
or other relevant tasks. Besides𝐺 , there are workers in the building
which move in any of the four directions at each time step. We
assume that these workers are lost and they need to be picked up
by the robot in order to successfully escape the building. The agent
can achieve this by moving onto their respective positions before
the episode ends after 𝑇 = 100 time steps.

To enable learning norm-satisfying behavior, we supply the
agent with 𝑛 = 10 human demonstrations which primarily move
towards lost workers and neglect the goal tile 𝐺 . We then train
multi-objective AIRL for different values of 𝜆, with 1𝑒6 total envi-
ronment steps each. For example, for 𝜆 = 0.1 the agent is able to
optimize for the primary goal while adhering to the demonstrated
norms (Figure 2). These preliminary results demonstrate that our
agent learns to combine the norms inferred from human demonstra-
tions (saving people) with the reward-driven behavior (spending
time in 𝐺).

4 DISCUSSION & FUTUREWORK
One important aspect of our approach is that it does not require
human demonstrations to optimize for the primary goal in any
form. This way, we can utilize the strengths of traditional RL when a
reward function is available, while ensuring that certain constraints,
which might not be easily expressed in a reward function, are met.
While in our example, the goal of saving humans could in theory be
expressed with a reward function, our experiment showed that even
when this is not the case, we can optimize for human constraints
by having access to a small set of demonstrations. Furthermore, it
directly extends the settings of Noothigattu et al. [4] andWu, Lin [8]
to deep RL, dropping the assumption of a handcrafted feature space.
Nonetheless, a variety of open questions remain to be addressed
in future work. Firstly, we assumed demonstrated norms to be
consistent with each other. However, in real world scenarios this

Figure 1: The burning warehouse toy environment.

Figure 2: People saved (blue) and goal time (orange) for dif-
ferent values of 𝜆. Error bars indicate a 2𝜎 confidence inter-
val over 100 distinct episodes.

might not be the case, which would lead to inaccurate reward
representations learned by AIRL. Secondly, the adaptation of multi-
objective RL algorithms to allow for Pareto-efficient policy search
with online reward learning will be of interest for scaling to more
complex domains. Specializing AIRL to efficiently allow for learning
multiple conflicting norms will therefore be the focus of following
work.

ACKNOWLEDGMENTS
To Luciano Cavalcante Siebert and Arkady Zgonnikov for providing
critical feedback and insightful supervision of this research.

REFERENCES
[1] David Abel, James MacGlashan, and Michael Littman. 2016. Reinforcement Learn-

ing as a Framework for Ethical Decision Making. In AAAI Workshop: AI, Ethics,
and Society.

[2] Adrien Ecoffet and Joel Lehman. 2020. Reinforcement Learning Under Moral
Uncertainty. arXiv:2006.04734

[3] Justin Fu, Katie Luo, and Sergey Levine. 2017. Learning Robust Rewards with
Adversarial Inverse Reinforcement Learning. arXiv:1710.11248

[4] Ritesh Noothigattu, Djallel Bouneffouf, Nicholas Mattei, Rachita Chandra, Piyush
Madan, Kush R Varshney, Murray Campbell, Moninder Singh, and Francesca
Rossi. 2019. Teaching AI agents ethical values using reinforcement learning and
policy orchestration. IBM Journal of Research and Development 63, 4-5 (2019).
https://doi.org/10.1147/JRD.2019.2940428

[5] William Saunders, Andreas Stuhlmüller, Girish Sastry, and Owain Evans. 2018.
Trial without error: Towards safe reinforcement learning via human intervention.
In Proceedings of the International Joint Conference AAMAS, Vol. 3. 2067–2069.
arXiv:1707.05173

[6] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal Policy Optimization Algorithms. arXiv:1707.06347

[7] Jess Whittlestone, Kai Arulkumaran, and Matthew Crosby. 2021. The Societal
Implications of Deep Reinforcement Learning. Journal of Artificial Intelligence
Research 70 (March 2021). https://doi.org/10.1613/jair.1.12360

[8] Yueh Hua Wu and Shou De Lin. 2018. A low-cost ethics shaping approach for
designing reinforcement learning agents. In 32nd AAAI Conference on Artificial
Intelligence, AAAI 2018. 1687–1694.

[9] Brian D Ziebart, Andrew Maas, J Andrew Bagnell, and Anind K Dey. 2008. Max-
imum entropy inverse reinforcement learning. In Proceedings of the National
Conference on Artificial Intelligence, Vol. 3. 1433–1438.

Student Track Abstract AIES ’21, May 19–21, 2021, Virtual Event, USA

276

MORAL: Aligning AI with Human Norms through
Multi-Objective Reinforced Active Learning

Markus Peschl
Delft University of Technology

Delft, The Netherlands
peschl@protonmail.com

Arkady Zgonnikov
Delft University of Technology

Delft, The Netherlands
A.Zgonnikov@tudelft.nl

Frans A. Oliehoek
Delft University of Technology

Delft, The Netherlands
F.A.Oliehoek@tudelft.nl

Luciano C. Siebert
Delft University of Technology

Delft, The Netherlands
L.CavalcanteSiebert@tudelft.nl

ABSTRACT
Inferring reward functions from demonstrations and pairwise pref-
erences are auspicious approaches for aligning Reinforcement Learn-
ing (RL) agents with human intentions. However, state-of-the art
methods typically focus on learning a single reward model, thus ren-
dering it difficult to trade off different reward functions from multi-
ple experts.We proposeMulti-Objective ReinforcedActive Learning
(MORAL), a novel method for combining diverse demonstrations of
normative behavior into a Pareto optimal policy. Through maintain-
ing a distribution over scalarization weights, our approach is able
to interactively steer a deep RL agent towards a variety of norms
while eliminating the need for computing multiple policies. We
empirically demonstrate the effectiveness of MORAL in two grid-
world scenarios, whichmodel a delivery and an emergency task that
require an agent to act in the presence of normative conflicts. Over-
all, we consider our research a first step towards multi-objective
RL with learned rewards, bridging the gap between current value
learning and machine ethics literature.

KEYWORDS
Active Learning; Inverse Reinforcement Learning; Multi-Objective
Decision-Making; Value Alignment

1 INTRODUCTION
The design of adequate reward functions poses a tremendous chal-
lenge for building reinforcement learning (RL) agents that ought to
act in accordance with human intentions [4, 13]. Besides compli-
cating the deployment of RL in the real world [11], this can lead to
major unforeseen societal impacts, which need to be accounted for
when building autonomous systems [6, 43]. To tackle this, the field
of value alignment has largely focused on value learning, which
aims to adopt a bottom-up approach of learning goal specifica-
tions from observational data instead of manually specifying them
[22, 29, 38]. However, such technical approaches can not solely
solve the normative value alignment problem of deciding which
values should ultimately be encoded into an agent [15]. Nonetheless,
building methods that allow for learning and trading off different
conflicting values could potentially alleviate this, thus making them
an important avenue of research for beneficial artificial intelligence
(AI) [33].

In a sequential decision-making context, jointly optimizing for
opposing criteria can be cast into multi-objective RL (MORL) [30],
which constitutes a promising framework for building human aligned
AI [40]. Using game-theoretic notions of optimality, MORL typically
aims to find a solution, or a set thereof, that can represent a wide va-
riety of preferences over the components of a vector-valued reward
function. While this can theoretically tackle the overoptimization
of narrowly defined tasks, the need for specifying multiple reward
functions persists.

Inverse RL (IRL) [16, 49] and preference-based RL [10, 44] of-
fer techniques for avoiding the reward design problem altogether
by learning a parametric reward model from demonstrations and
pairwise preferences, respectively. In this paper, we combine these
approaches in a multi-objective setting with a focus on learning
human norms. The motivation for this is twofold: Firstly, previous
research that aims to learn multiple reward functions has mostly
employed latent variable IRL models for finding multiagent [19], hi-
erarchical [39, 41] and multitask [17, 48] rewards, whereas finding
aggregated rewards from conflicting sequential data has yet to be
addressed. Secondly, a major challenge of value alignment is given
by an agent’s ability to predict a normative structure in its environ-
ment, which is implicitly embedded in human goal specifications,
but missing in manually engineered reward functions [20]. Our goal
therefore is to find a policy that acts on a common set of normative
actions while allowing for fine-tuning the agent with respect to
inherent disagreements that may arise. One straight forward ap-
proach to achieve this, would be to apply multitask IRL on labelled
demonstration data and then use MORL on the obtained vector-
valued reward function. However, this turns out to be inefficient
when dealing with deep reward models trained from noisy data.
This is because conventional MORL approaches are sensitive to the
scale of the marginal reward components. Furthermore, explicitly
expressing preferences over learned objectives is complicated due
to a lack of interpretability.

Contributions (1) We propose Multi-Objective Reinforced Ac-
tive Learning (MORAL), a method that combines active preference
learning and IRL to interactively learn a policy of normative behav-
ior from expert demonstrations. MORAL first finds a vector-valued
reward function through adversarial IRL, which is subsequently
used in an interactive MORL loop. By providing pairwise prefer-
ences over trajectories of on-policy experience, MORAL learns a

probability distribution over linear combinations of reward func-
tions under which the optimal policy most closely matches the
desired behavior. (2) We show that our approach directly approx-
imates a Pareto optimal solution in the space of expert reward
functions, without the need of enumerating through a multitude
of preference weights. (3) We demonstrate that MORAL efficiently
captures normative behavior in two gridworld scenarios, while
being able to adapt the agent’s behavior with respect to a variety
of preferences.1

2 METHOD
2.1 Preliminaries
Multi-Objective RL. We employ a multi-objective Markov deci-
sion process (MOMDP) for framing the problem of aligning an
agent with different experts. Formally, a MOMDP is given by the
tuple ⟨S,A, 𝑝, r, 𝜇0, 𝛾⟩, with state space S, the set of actions A,
a transition distribution 𝑝 (𝑠 ′ |𝑠, 𝑎), a vector-valued reward func-
tion r(𝑠, 𝑎) ∈ R𝑚 , a starting state distribution 𝜇0 and the discount
factor 𝛾 ∈ [0, 1). We consider optimal solutions to be given by
a Pareto frontier F := {𝜋 |�𝜋 ′ ≠ 𝜋 : 𝐽r (𝜋 ′) ≥ 𝐽r (𝜋)}, where
𝐽r (𝜋) = E𝜋 [

∑𝑇
𝑡=0 𝛾

𝑡 r(𝑠𝑡 , 𝑎𝑡)] is the vector-valued return of a pol-
icy 𝜋 : S → ΔA that maps states to a distribution over actions.
Furthermore, we define the convex coverage set (CCS) F ∗ := {𝜋 ∈
F | ∃w ∈ R𝑚 : w𝑇 𝐽r (𝜋) ≥ w𝑇 𝐽r (𝜋 ′), ∀𝜋 ′ ∈ F } to be the subset of
Pareto optimal solutions that can be obtained through optimizing
for linear combinations of the different reward components.
Proximal Policy Optimization (PPO). Given a weight w ∈ R𝑚 ,
we can optimize for policies on the CCS using PPO [37] on the
scalarized reward 𝑟 (𝑠, 𝑎) = w𝑇 r(𝑠, 𝑎). Using on-policy experience,
PPO maximizes the return of a parametrized policy 𝜋𝜙 by perform-
ing gradient descent on the clipped objective

LCLIP (𝜙) = E𝑡 [min(𝑟𝑡 (𝜙)𝐴𝑡 , 𝑐𝑙𝑖𝑝 (𝑟𝑡 (𝜙), 1 − 𝜖, 1 + 𝜖)𝐴𝑡)],
where E𝑡 is the expectation at time 𝑡 , 𝑟𝑡 is a ratio of the new versus
the current policy, 𝐴𝑡 is an estimated advantage at time 𝑡 and
𝑐𝑙𝑖𝑝 (𝑥, 𝑎, 𝑏) limits the value of 𝑥 to the interval [𝑎, 𝑏].
Adversarial IRL (AIRL). The maximum entropy IRL [49] goal
is to derive a reward function 𝑟𝜃 from a demonstration dataset
D = {𝜏𝑖 }𝑁𝑖=1 of expert trajectories 𝜏 = {𝑠𝑡 , 𝑎𝑡 }𝑇𝑡=0 by solving a
maximum likelihood problem max𝜙 E𝜏∼D [log 𝑝𝜃 (𝜏)], where

𝑝𝜃 (𝜏) ∝ 𝜇0 (𝑠0)
𝑇∏
𝑡=0

𝑝 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡) exp(𝑟𝜃 (𝑠𝑡 , 𝑎𝑡)) =: 𝑝𝜃 (𝜏) .

AIRL [14] approximately solves the IRL problem using generative
adversarial networks [18]. It jointly trains a policy (generator) 𝜋𝜙
alongside a neural discriminator of the form

𝐷𝜃 (𝑠, 𝑎) :=
exp(𝑓𝜃 (𝑠, 𝑎))

exp(𝑓𝜃 (𝑠, 𝑎)) + 𝜋𝜙 (𝑎 |𝑠)
.

While 𝐷𝜃 is trained using a binary cross-entropy loss to distinguish
trajectories in D from 𝜋𝜙 , the agent maximizes its returns using
the reward 𝑟 (𝑠, 𝑎) := log𝐷𝜃 (𝑠, 𝑎) + log(1 − 𝐷𝜃 (𝑠, 𝑎)).
1Source code is available at https://github.com/moral-rl/moral_rl.

Expert 1

Expert k

Provides

Provides

Step 1: IRL

AIRL

Reward
Function

Step 2: Active MORL

Posterior Mean

Update
Query

PPO

Prior

Figure 1: Multi-Objective Reinforced Active Learning.

2.2 Multi-Objective Reinforced Active Learning
To learn from multiple experts, MORAL uses a two-step proce-
dure that separates reward and policy training, as illustrated in
figure 1. Assuming a datasetD𝐸 = ∪𝑘𝑖=1D𝐸𝑖 from 𝑘 distinct experts,
MORAL first uses AIRL to obtain a vector of reward functions
r = (𝑓𝜃1 , . . . , 𝑓𝜃𝑘) and imitation policies (𝜋∗𝐸1 , . . . , 𝜋

∗
𝐸𝑘
) by solving

the maximum entropy IRL objective for each setD𝐸𝑖 . Subsequently,
we employ an interactive MORL algorithm for learning a distribu-
tion over weights 𝑝 (w) that determine a linear combination of the
different components in r. For learning from pairwise preferences,
we use a parametric Bradley-Terry model [7]

𝑝 (𝜏𝑖 ≻ 𝜏 𝑗 |w) := exp(w𝑇 r(𝜏𝑖))
exp(w𝑇 r(𝜏 𝑗)) + exp(w𝑇 r(𝜏𝑖))

, (1)

with r(𝜏) = ∑
(𝑠,𝑎,𝑠′) ∈𝜏 r(𝑠, 𝑎, 𝑠 ′) being the reward obtained from a

trajectory 𝜏 and (𝜏𝑖 ≻ 𝜏 𝑗) denoting the preference of 𝜏𝑖 over 𝜏 𝑗 . This
way, trajectories that achieve a higher (linearly) scalarized reward
are ranked exponentially better in proportion. Assuming that a
number of pairwise comparisons {𝑞1, . . . 𝑞𝑛} have been obtained,
we can then learn a posterior distribution in a Bayesian manner

𝑝 (w|𝑞1, . . . , 𝑞𝑛) ∝ 𝑝 (w)
𝑛∏
𝑡=1

𝑝 (𝑞𝑡 |w), (2)

where 𝑝 (w) is a prior, which we chose to be randomly uniform
over all weights w with | |w| | ≤ 1 and w ≥ 0.

MORAL learns its distribution over weights interactively, by
alternating between training a PPO agent on the posterior mean
reward function Ew [w𝑇 r] and updating the posterior by obtaining
a new query 𝑞𝑛+1. In order to calculate the expected value over (2)
and select pairs of trajectories to query for, we adapt the active
learning procedure by Sadigh et al. [34]. Firstly, we replace (1) with
a proxy likelihood of the form

𝑝 (𝜏𝑖 ≻ 𝜏 𝑗 |w) := min(1, exp(w𝑇Δ𝑖 𝑗)), (3)
where Δ𝑖 𝑗 := r(𝜏𝑖) − r(𝜏𝑖). Its mode always evaluates to 0, which
allows for efficiently obtaining posterior estimates through Markov
chainMonte Carlo (MCMC) [9] with a warm start to the distribution
mode. Secondly, we select queries based on the amount of volume
removed from the posterior by approximately solving

max
(𝜏𝑖 ,𝜏 𝑗)

min
(
Ew [1 − 𝑝 (𝜏𝑖 ≻ 𝜏 𝑗 |w)],Ew [1 − 𝑝 (𝜏 𝑗 ≻ 𝜏𝑖 |w)]

)
. (4)

For sufficiently complex MOMDPs, maximizing this expression
over all pairs of feasible trajectories proves to be computationally
intractable. Instead, we do a discrete search over randomly sampled
pairs of trajectories that arise during on-policy RL experience, see
algorithm 1. Before each policy improvement step, we sample pairs
(𝜏𝑖 , 𝜏 𝑗) and evaluate the corresponding minimum in expression (4).
If (𝜏𝑖 , 𝜏 𝑗) scores highest among all previous pairs obtained since
the last posterior update, then it is saved in a buffer and queued for
the next query, unless a better pair is found later on.

Overall, this active learning scheme allows MORAL to interac-
tively fine-tune an agent using only a few queries to an expert.
Nonetheless, forming queries based on on-policy experience can
only lead to locally optimal solutions. Therefore, assuming fixed
weights w, we typically solve an entropy-regularized objective

𝜋∗ = argmax
𝜋

E𝜋

[
𝑇∑
𝑡=0

w𝑇 r(𝑠𝑡 , 𝑎𝑡) − log𝜋 (𝑠𝑡 , 𝑎𝑡)
]
. (5)

This way, MORAL can be interpreted as finding an average of
Kullback-Leibler [27] (KL) divergences between the policy distri-
bution over trajectories 𝜋 (𝜏) := 𝜇0 (𝑠0)

∏𝑇−1
𝑡=0 𝑝 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡)𝜋 (𝑎𝑡 |𝑠𝑡)

and the marginal maximum entropy IRL distributions 𝑝𝜃𝑖 (𝜏).
Theorem 2.1. Given w ∈ R𝑘 with w ≥ 0,

∑
𝑤𝑖 = 1, we have that

𝜋∗ = argmin
𝜋

𝑘∑
𝑖=1

𝑤𝑖𝐷𝐾𝐿 (𝜋 (𝜏)) | |𝑝𝜃𝑖 (𝜏)). (6)

Proof: We provide a proof in the supplementary material.
Theorem 2.1 assumes that all components in r arise from max-

imum entropy IRL. However, in practical applications one might
want to encode additional prior knowledge into the agent’s be-
havior through a manually engineered primary reward function
𝑟𝑃 . Nonetheless, by applying analogous reasoning, we see that
(5) can then be interpreted as maximizing cumulative rewards
E𝜋 [

∑𝑇
𝑡=0 𝑟𝑃 (𝑠𝑡 , 𝑎𝑡)] with a KL regularizer in the form of (6). Under

this interpretation, MORAL interactively finds regularization hy-
perparameters that determine which expert’s behavior should be
prioritized at runtime.

2.3 Reward Normalization
Finding scalarization weights in the presence of reward functions
with highly different scales is a challenging task for many MORL
algorithms. MORAL, on the other hand, learns its weights from
preferences, thus making it less susceptible to reward functions
that are difficult to compare. Nevertheless, the scale of the reward
indirectly impacts the sensitivity of the posterior, since the mag-
nitude of the likelihood (3) depends on Δ𝑖 𝑗 . When these reward
differences are large, this can lead the term exp (w𝑇Δ𝑖 𝑗) to become
close to zero, which introduces a risk of removing significant parts
of the posterior support based on a single query. To tackle this, we
utilize the policies obtained from AIRL to normalize each reward
component by setting

𝑓𝜃𝑖 (𝑠, 𝑎) :=
𝑓𝜃𝑖 (𝑠, 𝑎)
|𝐽 (𝜋∗𝐸𝑖) |

, (7)

where 𝐽 (𝜋∗𝐸𝑖) = E𝜋∗𝐸𝑖 [
∑𝑇
𝑡=0 𝛾

𝑡 𝑓𝜃𝑖 (𝑠, 𝑎)] is the scalar return of 𝜋∗𝐸𝑖 .
We note that this does not introduce any computational overhead,

Algorithm 1: Multi-Objective Reinforced Active Learning
Input: Expert demonstrations D𝐸 = {𝜏𝑖 }𝑁𝑖=1, prior 𝑝 (w).
Initialize: Reward function r = (𝑓𝜃1 , . . . , 𝑓𝜃𝑘) by running
AIRL on D𝐸 , PPO agent 𝜋𝜙 .
for 𝑛 = 0, 1, 2, . . . do

Approximate 𝑝 (w|𝑞1, . . . , 𝑞𝑛) through MCMC.
Get mean reward function 𝑟 ← Ew [w𝑇 r].
𝑣𝑜𝑙𝑢𝑚𝑒 ← −∞
for 𝑘 = 0, 1, 2, . . . , 𝑁 do

Sample trajectories D = {𝜏𝑖 }𝑚𝑖=1 using 𝜋𝜙 .
Update 𝜙 using PPO to maximize
E𝜋𝜙

[∑𝑇
𝑡=0 𝛾

𝑡𝑟 (𝑠𝑡 , 𝑎𝑡)
]
.

Sample a pair of trajectories (𝜏𝑖 , 𝜏 𝑗) from D.
𝑛𝑒𝑥𝑡_𝑣𝑜𝑙𝑢𝑚𝑒 ← min(Ew [1 − 𝑝 (𝜏𝑖 ≻
𝜏 𝑗 |w)],Ew [1 − 𝑝 (𝜏 𝑗 ≻ 𝜏𝑖 |w)]) .
if 𝑛𝑒𝑥𝑡_𝑣𝑜𝑙𝑢𝑚𝑒 > 𝑣𝑜𝑙𝑢𝑚𝑒 then

𝑛𝑒𝑥𝑡_𝑞𝑢𝑒𝑟𝑦 ← (𝜏𝑖 , 𝜏 𝑗)
𝑣𝑜𝑙𝑢𝑚𝑒 ← 𝑛𝑒𝑥𝑡_𝑣𝑜𝑙𝑢𝑚𝑒

Query expert using 𝑛𝑒𝑥𝑡_𝑞𝑢𝑒𝑟𝑦 and save answer 𝑞𝑛 .

and simply estimate 𝐽 (𝜋∗𝐸𝑖) by averaging over observed returns of
the final 200 episodes in AIRL.

3 EXPERIMENTS
In the following, we will demonstrate the ability of MORAL in
simulation studies of two gridworld environments. To enable a
qualitative analysis of the method, we assume that in both environ-
ments, a ground truth reward function exists, by which demonstra-
tions and preferences are automatically provided. Furthermore, by
following the experimental setup of related research [29, 45], we
consider environments with a primary reward function 𝑟𝑃 , encod-
ing a generic task that can easily be solved through deep RL. In this
case, we can apply MORAL as before, but add 𝑟𝑃 as an additional
reward component to the AIRL reward functions for the active
learning step. To form the gridworld state, we make a binary array
𝐼 ∈ {0, 1}𝐶×𝑊 ×𝐻 of width𝑊 and height𝐻 , as well as channels that
encode grid occupancy for all 𝐶 different object types on the grid.
Finally, we employ a convolutional neural network architecture for
PPO, consisting of two base convolutional layers with kernel size 2,
and 64 as well as 256 output channels respectively. Its activations
are then fed into two separate convolutional layers with kernel size
2 and 32 output channels each, followed by a linear layer for the
critic and actor heads. For details, we refer to the supplementary
material.

3.1 Emergency
We start by illustrating howMORAL can be applied to incorporating
normative behavior from a single expert alongside a primary goal.
We define the Emergency gridworld as follows: An agent, as well as
6 people are randomly initialized onto a 6×6 grid. Furthermore, the
bottom right corner contains a fire extinguisher, which the agent
automatically uses when standing on its respective cell. At each
step, the agent can move in one of the four directions or interact
with an adjacent cell.

We define the agent’s primary goal 𝑟𝑃 to give a reward of +0.1
for each time step spent in the fire extinguisher cell. In addition,
we assume that people are lost and need to be escorted, which can
only be achieved through interacting with them before the time
limit of 𝑇 = 75. However, this additional reward is not considered
in 𝑟𝑃 . In order to learn about the normative behavior of helping
lost people escape the area, we find a reward 𝑓𝜃 by running AIRL
on 50 synthetic demonstrations coming from a PPO agent that
maximizes the amount of people saved. Subsequently, we form a
reward vector r = (𝑟𝑃 , 𝑓𝜃) and run interactive MORL using a total
of 25 queries. Since we would like to incorporate the goal of saving
all people into the primary task of extinguishing fire, we provide
preferences in the following way: Given two trajectories (𝜏𝑖 , 𝜏 𝑗),
we return 𝑖 ≻ 𝑗 if the amount of people saved in 𝜏𝑖 exceeds that of
𝜏 𝑗 . If both trajectories save the same amount of people, we opt for
the trajectory that spent more time in the extinguisher cell. Finally,
queries are spread out evenly over a total of 6𝑒6 environment steps.

Figure 2 shows the set of policies obtained during training of
MORAL and compares it with a CCS found from a manual scalariza-
tion 𝜆𝑟𝑃 + (1 − 𝜆) 𝑓𝜃 for different choices of 𝜆 ∈ [0, 1]. To illustrate
the evolution of solutions, we estimate average returns and plot
a corresponding point before each update of the weight posterior.
MORAL directly approximates a Pareto optimal point that opts
for saving all people present in the world, while maximizing the
agent’s performance with respect to the primary goal. Further-
more, MORAL first learns to only save people, which correctly
corresponds to the way preferences are provided. Thus, MORAL
demonstrates to be successful at directly finding a normative policy
while incorporating reward information from multiple sources. To
ensure consistency across multiple runs, we also plot the average
returns for different numbers of overall queries in figure 3. We see
that although 25 queries are necessary to converge to the desired
solution, MORAL learns a reasonable trade-off after 10 queries that
highly consistently saves all people at the cost of spending less time
on the primary goal.

0 10 20 30 40 50 60
Extinguished Fire

0

1

2

3

4

5

6

Pe
op

le
 S

av
ed

MORAL
CCS 0.10

0.15

0.20

0.25

0.30

Figure 2: The set of solutions found by MORAL in the
Emergency domain, compared to a manually trained CCS.
MORAL approximates a Pareto optimal solution that most
closely matches the given preferences during training.

5 10 25

Queries

0

10

20

30

40

50

60

70

Ex
tin

gu
ish

ed
 F

ire

0

1

2

3

4

5

6

Pe
op

le
 S

av
ed

Figure 3: Query efficiency of MORAL for finding the desired
trade-off averaged over three random seeds.

3.2 Delivery
While the Emergency domain illustrated the effectiveness ofMORAL
in a simplified setting, we yet have to analyze howMORAL performs
in larger environments, as well as regarding increased diversity of
norms and goals we would like an agent to learn. To better evaluate
MORAL, we therefore define the Delivery environment, a randomly
initialized 16 × 16 grid world shown in figure 4. As before, the
agent has access to the moving, interaction and null actions, but
can now encounter a variety of objects. Its primary goal consists of
delivering packages to 12 locations, which is available to the agent
via a reward 𝑟𝑃 of +1 whenever it interacts with a delivery cell.
However, there also exist a multitude of people in need of support
that the agent can choose to assist (help) and pollution that can be
removed (clean). The agent chooses to do so by interacting with
each of the respective cells, after which they turn empty. Finally, we
randomly place vases throughout the grid, which break whenever
the agent steps on their position and can not be interacted with.

Overall, we limit the episode length to 𝑇 = 50 time steps and
place 12 of the help, clean objectives as well as 8 vases on the grid.
We view this environment as a multi-objective problem including
three norms, where help and clean are active behaviors, but the
ability to avoid vases is passive i.e., an inaction. Besides forcing
the agent to make trade-offs, this choice allows us to effectively

Deliver

Help

Clean

Vase

Agent

Figure 4: The Delivery Environment consists of a primary
goal (Deliver) and three different norms (Help, Clean, Vase).

2 3 4 5 6 7
2

3

4

5

6

7

Cl
ea

n

3 4 5 6
2

3

4

5

6

7

He
lp

3 4 5 6
2

3

4

5

6

7

Cl
ea

n

2 3 4 5 6 7
Help

2

3

4

5

6

7

Cl
ea

n

3 4 5 6
Deliver

2

3

4

5

6

7
He

lp

3 4 5 6
Deliver

2

3

4

5

6

7

Cl
ea

n

3

4

5

6

3

4

5

6

3

4

5

6

0.01

0.02

0.03

0.04

0.01

0.02

0.03

0.04

0.01

0.02

0.03

0.04

Figure 5: The convex coverage set found by MORAL for three reward dimensions. We plot two-dimensional projections of the
attained explicit objectives with colors indicating the third objective (first row) and the KL divergence (8) to the preference
vector𝑚 used during training (second row).

study the quality of solutions found through MORAL, by introduc-
ing a symmetry with regard to the three explicit objectives. As a
result, we assume that preferences are automatically provided by
a subjective distribution𝑚 ∈ Δ{1,2,3} encoding desired priorities
for deliver, help and clean respectively. Given a pair of trajectories
(𝜏1, 𝜏2), we then calculate two vectors 𝑠𝑖 = (𝑜𝑖1, . . . , 𝑜𝑖𝑛), where 𝑜𝑖𝑘
denotes the obtained returns in terms of the 𝑘-th objective in tra-
jectory 𝑖 . For example, if 𝜏1 delivers 3 packages, helps 1 person and
cleans up 3 cells, then 𝑠1 = (3, 1, 3). When normalizing the observed
returns into a discrete distribution 𝑠𝑖 = 𝑠𝑖/| |𝑠𝑖 | |1, we can provide
preferences according to a KL divergence metric

𝑖∗ = argmin
𝑖∈{1,2}

𝐷𝐾𝐿 (𝑠𝑖 | |𝑚) . (8)

Aside from providing preferences in a principled way, we use this
divergence measure to evaluate the overlap between a policy and
the provided preferences throughout training.

We test MORAL using two conflicting demonstration data sets
generated by a PPO agent optimizing for (i) helping people and
(ii) cleaning tiles, while both try to avoid stepping on vases. As
before, we subsequently use MORAL as a regularizer and form r =
(𝑟𝑃 , 𝑓𝜃1 , 𝑓𝜃2), where 𝜃1 and 𝜃2 denote the trained AIRL parameters.
As opposed to the experiment in the Emergency domain, there
now exists an inherent normative conflict in the demonstrations.
Thus, instead of tuning the agent to respect a specific policy that
incorporates the normative component into the primary goal, we
aim to test whether MORAL is able to retrieve solutions that match
a variety of preferences. To achieve this, we vary the supplied
preference vector𝑚 to match all possible ratios in {1, 2, 3}3 during
the active learning stage. Furthermore, we choose to use 25 queries
overall, spread evenly throughout 8𝑒6 environment steps.

Figure 5 illustrates the found set of policies, where each point
represents a separate run of active learning on different preferences.

Since the objective space is three-dimensional, we only show two-
dimensional projections and add the third objective through color
in the first row. Besides this, the amount of broken vases are shown
by gray circles around each point, where a bigger radius indicates
policies that break more vases and a radius of 0 indicates that no
vases are broken on average. To test whether the found policies
match the given preferences, we also add a second row that indicates
the KL divergence (8) of the final policy to the preference𝑚 that
was used during training. We find that MORAL is overall able to
retrieve a diverse set of policies, which accurately represent the
different preferences. As can be seen, most of the points achieve a
near zero divergence, indicating that the agent accurately matches
the supplied ratios over objectives. As expected, we also see that
the amount of broken vases correlates with the weight put on
the primary task, since the manually engineered delivery reward
is entirely agnostic regarding the vase object. Nonetheless, for
appropriate choices of𝑚, there exist policies which successfully
avoid vases despite delivering an adequate amount of packages.

This indicates that when choosing scalarization weights cor-
rectly, minimizing a weighted sum of KL divergences to maximum
entropy IRL distributions can achieve implicit normative behaviors
without the need of an explicit feedback signal. We suggest that this
is a highly desirable property for building value-aligned systems.
Firstly, albeit in a different setup, informativeness about desirable
behavior has been previously identified as a desideratum for com-
bining reward information by Krasheninnikov et al. [26]. It allows
the active learning procedure to focus on higher-level normative
conflicts, which can have a crucial effect on performance, as we will
discuss in section 3.4. Secondly, automatically adhering to common
implicit behaviors ensures safety against adversarial preference
givers. To elaborate on this, consider figure 6. Here, we trained
MORAL on r = (𝑓𝜃1 , 𝑓𝜃2) by giving 25 preferences such that 𝜏𝑖 ≻ 𝜏 𝑗 ,
whenever 𝜏𝑖 manages to break more vases. We observe that despite

0 1 2 3 4 5 6
Steps 1e6

0.0

0.2

0.4

0.6

0.8

Va
se

s b
ro

ke
n

MORAL

Figure 6: Average amount of broken vases over three train-
ing runs.MORAL learns a safe policy, despite being provided
with adversarial preferences.

this, the amount of broken vases in fact decreases as a function of
training steps. Since both experts agree on keeping vases intact,
the aggregate reward function can not be fine-tuned to exhibit the
opposite behavior. We note, however, that such a guarantee against
adversarial preferences only holds when all marginal reward func-
tions induce safe behavior, which is not the case when adding the
primary reward 𝑟𝑃 .

3.3 Ablation
In this section, we evaluate MORAL with respect to the necessity
of active queries, as well as its robustness against noisy preferences.
To do so, we first run MORAL for the same set of preferences as in
figure 5 for different amounts of overall queries, while keeping the
total environment steps constant. After training, we average the
preference deviation (8) over all obtained policies and visualize the
results in the top row of figure 7. Furthermore, we run the same
experiment using queries that are randomly selected from on-policy
experience and plot the results accordingly. In the case of actively
generated queries, there is a clear decrease in preference deviation
as a function of total queries. Furthermore, we can see diminishing
returns, with the jump from 5 to 10 queries reducing the error by a
factor of 0.5, whereas the difference between 50 and 25 queries only
leads to a subtle increase in accuracy. Besides exhibiting a system-
atically higher deviation, random queries do not benefit from the
increase in queries as much, with 50 queries in fact scoring worse
than 25. We conjecture that this is due to the on-policy sampling
of trajectories, which strongly restricts the space of trajectories
that the agent can query for. MORAL will, by design, always seek
pairs of trajectories that naturally exhibit larger variances between
competing goals in order to generate queries with high information
content. When ensuring that the agent maintains adequate levels
of exploration throughout training, this leads to a decrease in de-
viation even in the large query regime. On the other hand, there
is an inherent risk of convergence to locally optimal scalarization
weights due to the log-concavity of the likelihood (3). As a result,
the entropy of the posterior constantly decreases.When querying at

5 10 15 20 25 30 35 40 45 50
Queries

0.02

0.03

0.04

0.05

0.06

0.07

Pr
ef

er
en

ce
 D

ev
ia

tio
n Active

Random

0.0 0.1 0.2 0.3
Preference Noise

0.015

0.020

0.025

0.030

0.035

0.040

Pr
ef

er
en

ce
 D

ev
ia

tio
n

Active
Random (0 noise)

Figure 7: (Top) Average preference deviation for different
numbers of active and random queries. (Bottom) Average
preference deviation of active learning in the presence of
noisy feedback.

random, this effect is exacerbated, because exploratory trajectories
are unlikely to get selected. However, we note that MORAL is not
immune to, but merely mitigates the risk of local optima. Although
this suffices for the type of environments we study in our paper, we
expect the optimality gap to growwith increasingly sparse domains.
To avoid this, we deem the introduction of an exploration policy
for generating queries to be a promising avenue for future work.

Aside from the amount of queries needed, figure 7 also illustrates
how MORAL behaves in the presence of contradictory feedback. In
this case, we train policies on the same set of preferences as before,
but provide random answers to each of the 50 queries with a certain
probability. Unsurprisingly, we see a sharp increase in deviation
when injecting a noise level of 0.1, above which the growth in er-
ror diminishes. Nonetheless, active queries with a random answer
probability of 0.3 still retrieve slightly more accurate representa-
tions than random queries without any noise. Such robustness with
respect to noise is important, since our experiments only cover syn-
thetic simulation studies, whereas human feedback is unlikely to be
as consistent. Even though random noise is only an approximation
of human error, we conclude from our results that seeking volume
removal in the active learning loop does not make the algorithm
more susceptible to converging to locally optimal scalarization
weights in this case.

3.4 Comparison to DRLHP
Through its two-step procedure, MORAL is able to combine multi-
ple reward functions from diverse expert behavior. However, in the

active learning stage, we require a single preference giver to deter-
mine which Pareto optimal policy should ultimately be optimized
for. Given enough pairwise comparisons, this directly approximates
a policy that best matches the preferences, as we have shown in
figure 2. As such, MORAL is most directly comparable to deep
reinforcement learning from human preferences (DRLHP) [10],
which directly trains a deep reward model from pairwise prefer-
ences. To compare the two, we train DRLHP until convergence in
Emergency and Delivery by providing a sufficient amount of pair-
wise comparisons to make up for the missing primary reward and
demonstrations that MORAL has access to.

Table 2 shows the results when providing DRLHP with 1000
preferences in the same way as MORAL for the Emergency domain.
As before, trajectories with more people saved are preferred unless
equal, in which case extinguishing fire becomes a priority. Although
this leads DRLHP to learn a policy that consistently saves most
people, it significantly lacks behind in terms of extinguished fire.
This is unsurprising, since DRLHP is not designed to handle multi-
objective problems and can not utilize the manually engineered
reward signal in any meaningful way. This is because the deep re-
ward model is nonstationary, which poses the combination with the
stationary reward 𝑟𝑃 to be challenging. As a result, DRLHP needs
to maintain a single model for all competing objectives, which can
lead to catastrophic forgetting of extinguishing fire when updating
the reward network to save more people.

A similar trend can be observed in the Delivery environment,
where we compare mean performance of DRLHP versus MORAL
on three preference configurations, each of which prefer one of the
objectives most strongly. However, since we assumed the avoidance
of vases to only implicitly be encoded in the preferences, we cannot
supply DRLHP with the same set of feedback. Instead, we train
DRLHP to prefer trajectories that have a lower mean squared error
to the vector of expected returns achieved by MORAL. Figure 8
shows training curves of both methods, where each row represents
a preference ratio of (3, 1, 1), (1, 3, 1) and (1, 1, 3) respectively. Aim-
ing to make the comparison fairer, we offset MORAL by the amount
of total training steps needed for IRL. As before, DRLHP manages
to retrieve solutions that loosely resemble the supplied preferences,
but fails to converge to Pareto optimal policies. Furthermore, we
notice that for the latter two preferences, sparse objectives such
as minimizing the amount of broken vases are not picked up by
DRLHP. We suspect this to be an exploration issue, where tra-
jectories that break fewer vases are unlikely to arise in queries.
Thus, DRLHP optimizes for the remaining objectives as they lead
to a higher increase in correctly predicting an expert’s preferences.
Overall, we therefore conclude that MORAL is more suitable than
DRLHP in multi-objective settings that require trading off conflict-
ing objectives from expert data. Nonetheless, we note that MORAL

People
Saved

Extinguished
Fire

Nr. of
Queries

Steps (IRL)

MORAL 5.76(±0.13) 40.08(±2.9) 25 3e6 (3e6)
DRLHP 5.62(±0.17) 12.32(±3.0) 1000 12e6 (-)

Table 1: Comparison of MORAL and DRLHP in Emergency.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
1e7

0

1

2

3

4

5

(3
,1

,1
)

Deliver
MORAL DRLHP IRL Offset

0.0 0.2 0.4 0.6 0.8 1.0 1.2
1e7

0

1

2

3

4

5

Help

0.0 0.2 0.4 0.6 0.8 1.0 1.2
1e7

0

1

2

3

4

5

Clean

0.0 0.2 0.4 0.6 0.8 1.0 1.2
1e7

0.00

0.25

0.50

0.75

1.00

1.25

1.50
Vase

0.0 0.2 0.4 0.6 0.8 1.0 1.2
1e7

0

1

2

3

4

5

(1
,3

,1
)

0.0 0.2 0.4 0.6 0.8 1.0 1.2
1e7

0

1

2

3

4

5

0.0 0.2 0.4 0.6 0.8 1.0 1.2
1e7

0

1

2

3

4

5

0.0 0.2 0.4 0.6 0.8 1.0 1.2
1e7

0.00

0.25

0.50

0.75

1.00

1.25

1.50

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Steps 1e7

0

1

2

3

4

5

(1
,1

,3
)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Steps 1e7

0

1

2

3

4

5

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Steps 1e7

0

1

2

3

4

5

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Steps 1e7

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Figure 8: Mean training curves of DRLHP and MORAL on
preference ratios (3, 1, 1) (top), (1, 3, 1) (middle) and (1, 1, 3)
(bottom).

has a theoretical advantage in this environment, since it allows
for incorporation of prior knowledge as well as conflicting expert
demonstrations.

4 RELATEDWORK
Machine EthicsUsing the notion of uncertainty and partial observ-
ability, RL has been suggested as a framework for ethical decision-
making [2]. We frame the problem of learning norms in a multi-
objective context, which can be interpreted as inducing partial
observability over the set of reward scalarizations one would wish
to optimize. Overall, our approach is most directly comparable to
policy orchestration [29] and ethics shaping [45]. Policy orchestra-
tion [29] also adopts a multi-objective view to incorporate ethical
values into reward-driven RL agents, by solving a bandit problem
that uses IRL to alternately play ethical and reward maximizing
actions. MORAL closely relates to policy orchestration, since it also
employs a two-step procedure that first finds normative rewards
from IRL and only afterwards aggregates different reward functions
into a single policy. However, MORAL uses deep function approxi-
mation, allowing it to drop the assumption of a tabular state space.
Similarly, ethics shaping [45] learns a reward shaping term from
demonstrations, but does not scale beyondmanually engineered fea-
tures. Finally, Ecoffet et al. [12] suggest a sequential voting scheme
for learning conflicting values, but it requires explicit knowledge
of the different values at stake.

Inverse Reinforcement Learning Similarly to related IRL re-
search, our work builds on AIRL [14] for inferring rewards from
a multimodal distribution of demonstrations. Unlike previous re-
search, which has focused on introducing latent variable models
[19, 23, 28, 39, 41, 48] in the context of multiagent, multitask and hi-
erarchical reward learning, we instead focus on the combination of
labeled demonstration data. As such, our setup is similar to Gleave
and Habryka [17] and Xu et al. [46], where a reward function is
meta learned by having explicit access to different task distribu-
tions. However, we learn from demonstrations in a multi-objective
context, which has, to our knowledge, not yet been studied before.

Besides this, IRL has been applied in the context of value-alignment
[22], where inverse reward design (IRD) [21] has been proposed

to learn a distribution of reward functions through IRL that lever-
ages uncertainty to avoid unintended behavior. Although we also
learn a distribution over reward functions, IRD focuses on finding
safe goal specifications from a single reward function, whereas we
study the extraction of value-aligned policies from a multitude of
demonstrations. As a result, our research is conceptually similar
to multitask IRD [26], which studies formal criteria for combining
reward functions from multiple sources. We, on the other hand,
drop the formal assumptions and propose a practical method for
combining reward functions learned through deep neural networks.
Learning from Expert Feedback Besides IRL, there exist a vari-
ety of approaches for training RL agents from expert data, including
scalar-valued input [25, 42], natural language [3], intervention [36]
and pairwise preferences [10, 44]. Similarly to Christiano et al. [10],
we employ a Bradley-Terry model for training a nonstationary
reward function by comparing trajectories from on-policy RL ex-
perience. However, our model of pairwise preferences operates on
a set of abstract high-level reward functions, whereas [10] learn a
single end-to-end reward model. Furthermore, our approach com-
bines demonstration and preference data, which is more similar to
Ibarz et al. [24]. Nonetheless, [24] uses demonstration data for pre-
training a preference-based reward model, which does not account
for conflicting demonstrations. MORAL, on the other hand, allows
for the inclusion of multiple experts as well as prior knowledge,
thus making it suitable for resolving normative conflicts. Finally,
by combining different expert reward functions, we have shown
that MORAL interpolates between maximum entropy IRL distribu-
tions. From this point of view, we consider our work a counterpart
to Brown et al. [8], which ranks demonstration data in order to
extrapolate beyond the behavior of a single expert.
Multi-Objective Decision-Making Typically, MORL algorithms
trade off multiple objectives by learning a policy, or a set thereof,
that can represent a range of Pareto optimal solutions [30, 47]. On
the other hand, our model learns a distribution over reward func-
tions, which interactively guides the search to produce a single
Pareto optimal policy. Aside from sample efficiency, this mitigates
the problem of varying reward scale, which has previously been

Ethics-
Shaping
[45]

Policy-
Orchestration

[29]

DRLHP
[10]

MORAL

Function ××× ××× ✓ ✓Approximation
Multi- ××× ✓ ××× ✓Objective
Multiple ××× ∼ ××× ✓Experts

Outperform ✓ ✓ ✓ ✓Experts
Table 2: Comparison of MORAL to previous work in terms
of supported capabilities.

addressed by multi-objective maximum a posteriori policy optimiza-
tion (MO-MPO) [1]. However, MO-MPO requires explicit prefer-
ences over objectives, which is not always feasible when combining
learned rewards that are inherently difficult to compare.

By using on-policy RL experience to learn scalarization weights,
MORAL can be viewed as an interactive MORL algorithm. To date,
interactive MORL has mainly been applied to bandits for linear [32]
and nonlinear [31] transformations of the reward components, but
not yet been studied in the full RL setting. We believe that this is
the case, because MORL research usually assumes environments
with manually engineered reward functions, in which big parts
of the Pareto boundary exhibit interesting solutions. In the case
trading off learned reward functions, however, we suggest that our
interactive approach poses a more adequate option.

5 DISCUSSION
In our work, we propose MORAL, a method for combining learned
reward functions from multiple experts. We have shown MORAL
to be a technical approach for aligning deep RL agents with hu-
man norms, which uses active learning to resolve value conflicts
within expert demonstrations. We consider our research a first step
towards MORL with learned rewards, which has not yet been ad-
dressed before. Previous approaches such as ethics-shaping [45] and
[29] have highlighted the strength of combining reward functions
with expert demonstrations for value-alignment, whereas DRLHP
[10] has demonstrated the scalability of deep preference-based RL,
see table 2. MORAL unifies these ideas into a single method, which
allows it to be applied in the presence of function approximation
and multiple experts. Furthermore, this theoretical advantage is
reflected in our experiments, which show that, unlike MORAL,
DRLHP fails to retrieve Pareto optimal solutions.

Nonetheless, several avenues for future research remain to be
addressed. Combining multiple forms of expert supervision is chal-
lenging, due to a risk of accumulating errors and modelling as-
sumptions for each type of input. We deem further research in
AIRL to be crucial, to prevent overfitting of the reward network.
Similarly to Gleave and Habryka [17], we found the reoptimization
of AIRL reward functions to decrease performance, indicating that
the learned rewards are entangled with the state distribution of the
generator policy. Although this will require significant progress
in deep IRL, we expect future methods to be easily integrated into
MORAL by replacing AIRL. Furthermore, one could pursue unsu-
pervised techniques to extend MORAL to unlabeled demonstration
datasets. When learning normative behavior from large scale real-
world demonstration data, it might be infeasible to learn separate
reward functions for each expert. Unsupervised learning of reward
functions that correspond to the different modes of behavior instead
could alleviate this issue.

Overall, our research aims to highlight the importance of multi-
objective sequential decision-making without explicitly provided
reward functions. Aside from value alignment [40], the ability to
detect and respond to a divergence in values has been recognized as
a central trait for building human-like AI [5]. Further, following the
principle of meaningful human control [35], MORAL can contribute
to increase an agent’s responsiveness to conflicting human norms,

while maintaining human autonomy in determining desired trade-
offs. This research contributes to the broader goal of designing and
developing safe AI systems that can align to human values and
norms.

REFERENCES
[1] Abbas Abdolmaleki, Sandy Huang, Leonard Hasenclever, Michael Neunert, Fran-

cis Song, Martina Zambelli, Murilo Martins, Nicolas Heess, Raia Hadsell, and
Martin Riedmiller. 2020. A distributional view on multi-objective policy opti-
mization. In International Conference on Machine Learning. PMLR, 11–22.

[2] David Abel, J. MacGlashan, and M. Littman. 2016. Reinforcement Learning as
a Framework for Ethical Decision Making. In AAAI Workshop: AI, Ethics, and
Society.

[3] Md Sultan Al Nahian, Spencer Frazier, Mark Riedl, and Brent Harrison. 2020.
Learning norms from stories: A prior for value aligned agents. In AIES 2020 -
Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society. Association for
Computing Machinery, Inc, 124–130. https://doi.org/10.1145/3375627.3375825
arXiv:1912.03553

[4] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and
Dan Mané. 2016. Concrete problems in AI safety. arXiv preprint arXiv:1606.06565
(2016).

[5] Grady Booch, Francesco Fabiano, Lior Horesh, Kiran Kate, Jon Lenchner, Nick
Linck, Andrea Loreggia, Keerthiram Murugesan, Nicholas Mattei, Francesca
Rossi, et al. 2020. Thinking fast and slow in AI. arXiv preprint arXiv:2010.06002
(2020).

[6] Nick Bostrom. 2014. Superintelligence: Paths, Dangers, Strategies. Oxford Univer-
sity Press.

[7] Ralph Allan Bradley and Milton E Terry. 1952. Rank analysis of incomplete block
designs: I. The method of paired comparisons. Biometrika 39, 3/4 (1952), 324–345.

[8] Daniel Brown,Wonjoon Goo, Prabhat Nagarajan, and Scott Niekum. 2019. Extrap-
olating beyond suboptimal demonstrations via inverse reinforcement learning
from observations. In International conference on machine learning. PMLR, 783–
792.

[9] Siddhartha Chib and Edward Greenberg. 1995. Understanding the metropolis-
hastings algorithm. The american statistician 49, 4 (1995), 327–335.

[10] Paul F. Christiano, Jan Leike, Tom B Brown, Miljan Martic, Shane Legg, and
Dario Amodei. 2017. Deep reinforcement learning from human preferences. In
Advances in Neural Information Processing Systems. 4300–4308.

[11] Gabriel Dulac-Arnold, Daniel Mankowitz, and Todd Hester. 2019. Challenges of
real-world reinforcement learning. arXiv preprint arXiv:1904.12901 (2019).

[12] Adrien Ecoffet and Joel Lehman. 2021. Reinforcement learning under moral
uncertainty. In International Conference on Machine Learning. PMLR, 2926–2936.

[13] Tom Everitt, Victoria Krakovna, Laurent Orseau, Marcus Hutter, and Shane Legg.
2017. Reinforcement learning with a corrupted reward channel. arXiv preprint
arXiv:1705.08417 (2017).

[14] Justin Fu, Katie Luo, and Sergey Levine. 2017. Learning robust rewards with ad-
versarial inverse reinforcement learning. arXiv preprint arXiv:1710.11248 (2017).

[15] Iason Gabriel. 2020. Artificial intelligence, values, and alignment. Minds and
machines 30, 3 (2020), 411–437.

[16] Sanket Gaurav and Brian D Ziebart. 2019. Discriminatively learning inverse opti-
mal control models for predicting human intentions. In International Conference
on Autonomous Agents and Multiagent Systems.

[17] Adam Gleave and Oliver Habryka. 2018. Multi-task maximum entropy inverse
reinforcement learning. arXiv preprint arXiv:1805.08882 (2018).

[18] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
nets. Advances in neural information processing systems 27 (2014).

[19] Nate Gruver, Jiaming Song, Mykel J Kochenderfer, and Stefano Ermon. 2020.
Multi-agent adversarial inverse reinforcement learning with latent variables.
In Proceedings of the 19th International Conference on Autonomous Agents and
MultiAgent Systems. 1855–1857.

[20] Dylan Hadfield-Menell and Gillian K Hadfield. 2019. Incomplete contracting and
AI alignment. In Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and
Society. 417–422.

[21] Dylan Hadfield-Menell, Smitha Milli, Pieter Abbeel, Stuart Russell, and Anca
Dragan. 2017. Inverse reward design. arXiv preprint arXiv:1711.02827 (2017).

[22] Dylan Hadfield-Menell, Stuart J Russell, Pieter Abbeel, and Anca Dragan. 2016.
Cooperative inverse reinforcement learning. Advances in neural information
processing systems 29 (2016), 3909–3917.

[23] Karol Hausman, Yevgen Chebotar, Stefan Schaal, Gaurav Sukhatme, and Joseph
Lim. 2017. Multi-modal imitation learning from unstructured demonstrations
using generative adversarial nets. arXiv preprint arXiv:1705.10479 (2017).

[24] Borja Ibarz, Jan Leike, Tobias Pohlen, Geoffrey Irving, Shane Legg, and Dario
Amodei. 2018. Reward learning from human preferences and demonstrations in

Atari. arXiv preprint arXiv:1811.06521 (2018).
[25] W Bradley Knox and Peter Stone. 2009. Interactively shaping agents via human

reinforcement: The TAMER framework. In Proceedings of the fifth international
conference on Knowledge capture. 9–16.

[26] Dmitrii Krasheninnikov, Rohin Shah, and Herke van Hoof. 2021. Combining
reward information frommultiple sources. arXiv preprint arXiv:2103.12142 (2021).

[27] Solomon Kullback. 1997. Information theory and statistics. Courier Corporation.
[28] Yunzhu Li, Jiaming Song, and Stefano Ermon. 2017. Infogail: Interpretable imita-

tion learning from visual demonstrations. In Proceedings of the 31st International
Conference on Neural Information Processing Systems. 3815–3825.

[29] Ritesh Noothigattu, Djallel Bouneffouf, Nicholas Mattei, Rachita Chandra, Piyush
Madan, Kush R Varshney, Murray Campbell, Moninder Singh, and Francesca
Rossi. 2019. Teaching AI agents ethical values using reinforcement learning and
policy orchestration. IBM Journal of Research and Development 63, 4/5 (2019),
2–1.

[30] Diederik M. Roijers, Peter Vamplew, Shimon Whiteson, and Richard Dazeley.
2013. A Survey of Multi-Objective Sequential Decision-Making. Journal of
Artificial Intelligence Research 48, 1 (2013), 67–113.

[31] Diederik M Roijers, Luisa M Zintgraf, Pieter Libin, and Ann Nowé. 2018. Inter-
active multi-objective reinforcement learning in multi-armed bandits for any
utility function. In ALA workshop at FAIM, Vol. 8.

[32] Diederik M Roijers, Luisa M Zintgraf, and Ann Nowé. 2017. Interactive thompson
sampling for multi-objective multi-armed bandits. In International Conference on
Algorithmic Decision Theory. Springer, 18–34.

[33] Stuart Russell, Daniel Dewey, and Max Tegmark. 2015. Research priorities for
robust and beneficial artificial intelligence. AI Magazine 36, 4 (2015), 105–114.

[34] Dorsa Sadigh, A. Dragan, S. Sastry, and S. Seshia. 2017. Active Preference-Based
Learning of Reward Functions. In Robotics: Science and Systems.

[35] Filippo Santoni de Sio and Jeroen van den Hoven. 2018. Meaningful Human
Control over Autonomous Systems: A Philosophical Account. Frontiers in Robotics
and AI 5 (2018), 15. https://doi.org/10.3389/frobt.2018.00015

[36] William Saunders, Andreas Stuhlmüller, Girish Sastry, and Owain Evans. 2018.
Trial without error: Towards safe reinforcement learning via human intervention.
In Proceedings of the International Joint Conference on Autonomous Agents and
Multiagent Systems, AAMAS, Vol. 3. 2067–2069. arXiv:1707.05173

[37] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347
(2017).

[38] Rohin Shah, Noah Gundotra, Pieter Abbeel, and Anca Dragan. 2019. On the
feasibility of learning, rather than assuming, human biases for reward inference.
In International Conference on Machine Learning. PMLR, 5670–5679.

[39] Mohit Sharma, Arjun Sharma, Nicholas Rhinehart, and Kris M Kitani. 2018.
Directed-Info GAIL: Learning Hierarchical Policies from Unsegmented Demon-
strations using Directed Information. In International Conference on Learning
Representations.

[40] Peter Vamplew, Richard Dazeley, Cameron Foale, Sally Firmin, and Jane Mum-
mery. 2018. Human-aligned artificial intelligence is a multiobjective problem.
Ethics and Information Technology 20, 1 (2018), 27–40.

[41] David Venuto, Jhelum Chakravorty, Leonard Boussioux, Junhao Wang, Gavin
McCracken, and Doina Precup. 2020. oIRL: Robust Adversarial Inverse Re-
inforcement Learning with Temporally Extended Actions. arXiv preprint
arXiv:2002.09043 (2020).

[42] Garrett Warnell, Nicholas Waytowich, Vernon Lawhern, and Peter Stone. 2018.
Deep tamer: Interactive agent shaping in high-dimensional state spaces. In Thirty-
Second AAAI Conference on Artificial Intelligence.

[43] Jess Whittlestone, Kai Arulkumaran, and Matthew Crosby. 2021. The Societal
Implications of Deep Reinforcement Learning. Journal of Artificial Intelligence
Research 70 (March 2021).

[44] Christian Wirth, Gerhard Neumann, and Johannes Fürnkranz. 2017. A Survey of
Preference-Based Reinforcement Learning Methods. Journal of Machine Learning
Research 18 (2017), 1–46.

[45] Yueh Hua Wu and Shou De Lin. 2018. A low-cost ethics shaping approach for
designing reinforcement learning agents. In 32nd AAAI Conference on Artificial
Intelligence, AAAI 2018. 1687–1694. arXiv:1712.04172

[46] Kelvin Xu, Ellis Ratner, Anca Dragan, Sergey Levine, and Chelsea Finn. 2019.
Learning a prior over intent via meta-inverse reinforcement learning. In Interna-
tional Conference on Machine Learning. PMLR, 6952–6962.

[47] Runzhe Yang, Xingyuan Sun, and Karthik Narasimhan. 2019. A Generalized
Algorithm for Multi-Objective Reinforcement Learning and Policy Adaptation.
arXiv:1908.08342 https://github.com/RunzheYang/MORL

[48] Lantao Yu, Tianhe Yu, Chelsea Finn, and Stefano Ermon. 2019. Meta-Inverse
Reinforcement Learning with Probabilistic Context Variables. Advances in Neural
Information Processing Systems 32 (2019), 11772–11783.

[49] Brian D Ziebart, Andrew Maas, J Andrew Bagnell, and Anind K Dey. 2008. Max-
imum entropy inverse reinforcement learning. In Proceedings of the National
Conference on Artificial Intelligence, Vol. 3. 1433–1438.

III
Appendix

76

A
Demonstrations

A.1. Burning Warehouse
A.1.1. Demonstration Policy
In the Burning Warehouse environment, we train a PPO agent using a reward giving +1 for each
person saved and 0 otherwise. Figure A.1 shows the training progress of the agent with respect to both
objectives. As expected, the policy converges to a solution that is agnostic to goal time, but consistently
saves all people on the grid. Subsequently, we generate demonstration datasets using the pretrained
policy on a new random seed. Figure A.2 shows the first 24 frames of a sample demonstration. As can
be seen, the agent acts nearly optimal with respect to saving people, whereas in the remaining frames
it resorts to a random walk.

0 1 2 3 4 5 6
Environment Steps 1e6

0

1

2

3

4

5

6

Re
tu

rn
s

People Saved
Goal Time

Figure A.1: Training progress of the demonstration policy in Burning Warehouse.

77

A.1. Burning Warehouse 78

Figure A.2: First 24 frames of an example demonstration in Burning Warehouse. All people are saved after which the
agent performs a random walk.

A.2. Delivery 79

A.2. Delivery
A.2.1. Demonstration Policy
To trade off utility functions of different experts, we train two PPO agents in Delivery, each correspond-
ing to a different set of norms. Namely, expert 1 is trained on a reward function of +1 for each person
helped and a reward of −1 for each broken vase, whereas expert 2 is trained on a reward of +1 for each
tile cleaned and a reward of −1 for each broken vase. Figure A.3 shows training progress of both expert
policies with respect to the four objectives in the environment. Both experts manage to converge to a
policy that consistently avoids vases while optimizing for their respective own goals. Note that although
the number of Help and Clean tiles was equal and constant throughout subsequent episodes, expert 2
nonetheless performs slightly worse due to an inherent stochasticity of training PPO. In figures A.4 and
A.5 we illustrate sample demonstrations from the respective expert datasets. For the ease of exposition,
we have omitted exploratory actions which led to deviation of the shown path (orange) by less than
one tile. In accordance with the training statistics, it can be seen that both policies take paths that
cross their respective goals most frequently and act on their intentions by saving people or cleaning up
polluted tiles.

0 1 2 3 4 5 6
1e6

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2
Deliver

Expert 1
Expert 2

0 1 2 3 4 5 6
1e6

1

2

3

4

5

6

7

8

Help
Expert 1
Expert 2

0 1 2 3 4 5 6
1e6

1

2

3

4

5

6

Clean
Expert 1
Expert 2

0 1 2 3 4 5 6
1e6

0.8

0.7

0.6

0.5

0.4

0.3
Vase

Expert 1
Expert 2

Figure A.3: Training progress of the two expert policies used for AIRL in Delivery. Expert 1 primarily optimizes for the
Help objective while avoiding vases, whereas expert 2 avoids breaking vases alongside the Clean objective.

Figure A.4: Partial sample trajectory in the demonstration dataset of expert 1. For illustration purposes, lower opacity
was chosen on objectives that have been interacted with by the agent.

A.2. Delivery 80

Figure A.5: Partial sample trajectory in the demonstration dataset of expert 2. For illustration purposes, lower opacity
was chosen on objectives that have been interacted with by the agent.

A.2.2. AIRL Details
We train AIRL on the 1000 demonstrations of the expert policies from figure A.3 respectively. Figure
A.6 shows discriminator loss, real accuracy, fake accuracy and returns respectively, whereas returns
measure the cumulative rewards (as determined by the discriminator) obtained by the generator policy.

0 1 2 3 4 5 6
1e6

0.4

0.6

0.8

1.0

1.2

Discriminator Loss
Expert 1
Expert 2

0 1 2 3 4 5 6
1e6

0.5

0.6

0.7

0.8

0.9

1.0

Real Accuracy
Expert 1
Expert 2

0 1 2 3 4 5 6
1e6

0.0

0.2

0.4

0.6

0.8

1.0

Fake Accuracy
Expert 1
Expert 2

0 1 2 3 4 5 6
1e6

150

100

50

0

50

100

150

Returns
Expert 1
Expert 2

Figure A.6: Omitted training statistics for the AIRL training stage in Delivery. In the case of both experts, the discrim-
inator loss stabilizes, but slightly outperforms the generator in terms of real and fake accuracies.

B
Implementation Details

B.1. Neural Network Architectures
In this section we will describe various network architectures used throughout our experiments. For the
ease of exposition, we omitted including the respective grid world dimensionalities of each environment,
and instead only report the amount of output channels and kernel sizes respectively. Furthermore, each
convolutional layer uses a stride of 1 and no padding, which we found sufficient due to the relatively
small sizes of the grids.

B.1.1. Proximal Policy Optimization
For the PPO agent, we always employ a convolutional actor-critic architecture with shared base layers,
as can be seen in figure B.1. The network uses two convolutional layers and forms a feature array with
256 channels, which are then passed onto the actor and the critic in parallel. At last, the actor employs
a linear layer with output dimensions equal to the number of actions (which in our case amounted
to |A| = 9) on the flattened feature representations of the final convolutional layer. Similarly, the
critic employs a final linear layer with a scalar output to predict the current value. In order to draw
action samples from the actor, a softmax is performed over its last linear layer and the resulting vector
is treated as a categorical distribution. In between layers, we employ standard ReLU activations to
facilitate nonlinearity.

Figure B.1: Actor-Critic architecture of the PPO agent consisting of convolutional (yellow) and linear (blue) layers.
Regardless of the input dimension, we use Cout output channels and kernel sizes of 2.

B.1.2. Convolutional Reward Network
We found the MLP architecture of the AIRL discriminator shown in figure 3.5 to be insufficient in larger
grid world sizes. For this reason, we employ a convolutional reward network in Delivery as shown in fig-
ure B.2. In principle, the network follows the same structure as in the Burning Warehouse experiments,

81

B.1. Neural Network Architectures 82

but replaces linear layers with convolutional ones. To do so, we employed three convolutional layers
followed by a single linear layer that acts on respective flattened feature maps for both hθ and gθ and
form our reward estimate as before. Finally, we use LeakyReLU activations with a slope of α = 0.01
on all hidden layers.

Figure B.2: Convolutional discriminator architecture for training AIRL in bigger environments with a parallel stream of
convolutional (yellow) and linear (blue) layers.

B.1.3. Deep Reinforcement Learning from Human Preferences
In deep reinforcement learning from human preferences (DRLHP) we train a PPO agent using the
architecture shown in B.1 in parallel with a deep reward model which is directly trained in a supervised
manner from pairwise preferences. The reward model takes a state-action pair at each time step and
outputs a predicted reward rθ(st, at). We therefore first one-hot encode the action at and then embed it
into a vector with the same dimensionality as the input state st. To do so, we train a linear embedding
layer with output dimensions C ·W · H, where (C,W,H) denote the amount of channels, width and
height of the state st respectively. Embedded actions then get reshaped and concatenated with st along
the channel dimension to form an array of dimension (2C,W,H) (batch dimension omitted). This array
is then fed through three convolutional layers with 128, 64 and 32 output channels respectively. Finally,
the resulting flattened feature maps are fed through a linear layer to produce the reward estimate.
As in the AIRL discriminator architecture, we employ LeakyReLU activations with a slope parameter
α = 0.01.

Figure B.3: Reward model architecture for DRLHP with convolutional (yellow) and linear (blue) layers. Actions are
embedded through a linear layer and concatenated with the current state before being fed through subsequent layers.

B.2. Burning Warehouse Hyperparameters 83

B.2. Burning Warehouse Hyperparameters
In the following, we will list all hyperparameter configurations used for the experiments of the main
sections. Aside from algorithm specific hyperparameters, we always employ a learning rate for PPO
(lr-PPO) that determines the gradient step size used in the agent’s Adam optimizer, a trust region clip
parameter (ε-clip) that determines how far the updated policy is allowed to diverge from the old, a
time discounting parameter γ, the amount of gradient steps taken on the policy loss per epoch (Epochs
PPO) and the amount of environment episodes used for each epoch in PPO (Batch Size PPO). All
policies were trained in a vectorized environment with 12 instances for Environment Steps amount of
interactions.

B.2.1. AIRL
In AIRL, we additionally use an Adam optimizer with its own learning rate for the discriminator (lr-
Discriminator). Furthermore, Batch Size Discriminator determines the amount of state-action pairs
used in a single training batch.

Hyperparameter Value
lr-Discriminator 5e-4

lr-PPO 5e-4
Batch Size Discriminator 512

Batch Size PPO 12
Environment Steps 3e6

ε-clip 0.1
γ 0.999

Epochs PPO 5

Table B.1: AIRL hyperparameters in Burning Warehouse.

B.2.2. AIRL Reward Shaping
In AIRL reward shaping, we use the same hyperparameters for PPO as in the AIRL step, but increase
the overall environment steps.

Hyperparameter Value
lr-PPO 3e-4

Batch Size PPO 12
Entropy Regularization 0.05
Environment Steps 6e6

ε-clip 0.1
γ 0.999

Epochs PPO 5

Table B.2: AIRL Reward Shaping hyperparameters at reoptimization time in Burning Warehouse.

B.2.3. Active Learning
In the active learning step of MORAL, we query at fixed time intervals with a prespecified amount
of total queries (# Queries) that get evenly distributed across the amount of available environment
steps. Besides that, no additional hyperparameters are necessary. However, we note that if the pos-
terior converges to a local optimum prematurely, one can employ a normalization parameter c > 0 to
multiply the vector valued reward function r(s, a) := c · r. For small choices of c, once can expect to
make the posterior less sensitive to updates at each step. Nonetheless, we found an inclusion of such
hyperparameter to be unnecessary in our experiments, since marginal reward functions are normalized
by their respective optimal values regardlessly, as outlined in section 5.1.1.

B.3. Delivery Hyperparameters 84

Hyperparameter Value
lr-PPO 3e-4

Queries 25
Batch Size PPO 12

Entropy Regularization 0.25
Environment Steps 6e6

ε-clip 0.1
γ 0.999

Epochs PPO 5

Table B.3: Active learning hyperparameters in Burning Warehouse.

B.2.4. DRLHP
To make DRLHP conceptually similar to MORAL, we employ queries at constant time intervals using
a fixed amount of total queries (# Queries) across the available environment steps. Besides that, we
update the deep reward model after a constant amount of environment steps (Update Reward Model
Frequency) with the Adam optimizer and a corresponding learning rate (lr-Reward Model).

Hyperparameter Value
lr-PPO 3e-4

lr-Reward Model 3e-5
Update Reward Model Frequency 50

Queries 1000
Batch Size PPO 12

Batch Size Reward Model 32
Entropy Regularization 1
Environment Steps 12e6

ε-clip 0.1
γ 0.999

Epochs PPO 5

Table B.4: Hyperparameter setup for DRLHP in Burning Warehouse. The update reward model frequency denotes the
amount of forward RL steps taken before the reward model gets updated. Furthermore, higher entropy regularization was
necessary to ensure adequate exploration for learning an accurate reward model.

B.3. Delivery Hyperparameters
In Delivery, the choice of hyperparameters is similar, besides a consistent increase in environment steps
due to a higher task complexity.

B.3.1. AIRL
To avoid overfitting and balance the discriminator and generator performances, we lower the learning
rate of the discriminator.

Hyperparameter Value
lr-Discriminator 5e-5

lr-PPO 5e-4
Batch Size Discriminator 512

Batch Size PPO 4
Environment Steps 6e6

ε-clip 0.1
γ 0.999

Epochs PPO 5

Table B.5: AIRL hyperparameters in Delivery.

B.3. Delivery Hyperparameters 85

B.3.2. Active Learning
The following table shows the typical hyperparameter setup for the active learning step of MORAL.
Note, however, that while the amount of total environment steps were held fixed throughout different
runs, the total number of queries varied, as described in the respective experiments.

Hyperparameter Value
lr-PPO 3e-4

Queries 25
Batch Size PPO 12

Entropy Regularization 0.25
Environment Steps 8e6

ε-clip 0.1
γ 0.999

Epochs PPO 5

Table B.6: Active learning hyperparameters in Delivery.

B.3.3. DRLHP
To ensure that the DRLHP has a comparative amount of available information about the experts
underlying preferences, we provide 5000 overall queries over the course of training.

Hyperparameter Value
lr-PPO 3e-4

lr-Reward Model 3e-5
Update Reward Model Frequency 50

Queries 5000
Batch Size PPO 12

Batch Size Reward Model 12
Entropy Regularization 1
Environment Steps 12e6

ε-clip 0.1
γ 0.999

Epochs PPO 5

Table B.7: Hyperparameter setup for DRLHP in Delivery. The update reward model frequency denotes the amount of
forward RL steps taken before the reward model gets updated. Furthermore, higher entropy regularization was necessary
to ensure adequate exploration for learning an accurate reward model.

C
Additional Visualizations

C.1. MCMC Posterior
In the following, we illustrate approximate posterior distributions of w ∈ R2 corresponding to the range
of preferences shown in figure 5.4. Figures C.1 to C.11 show samples from the posterior as well as
the posterior mean after 10, 20, 30, 40 and 50 obtained preferences respectively. As can be seen, the
posterior puts relatively more mass on the reward dimension with the highest priority, while maintaining
adequate amounts of uncertainty when only few queries have been answered. Furthermore, for most
preferences the posterior mean converges after around 30 queries, with additional queries only slightly
reducing the posterior entropy but not significantly changing the distribution. Finally, we note that
due to both reward functions being learned, small differences in the posterior mean over w can lead to
substantially different optimal policies, thus explaining the small magnitude of differences in posterior
distributions for similar preferences.

Figure C.1: Markov chain Monte Carlo posterior for an unnormalized preference of (1, 1).

Figure C.2: Markov chain Monte Carlo posterior for an unnormalized preference of (2, 1).

Figure C.3: Markov chain Monte Carlo posterior for an unnormalized preference of (3, 1).

86

C.1. MCMC Posterior 87

Figure C.4: Markov chain Monte Carlo posterior for an unnormalized preference of (4, 1).

Figure C.5: Markov chain Monte Carlo posterior for an unnormalized preference of (5, 1).

Figure C.6: Markov chain Monte Carlo posterior for an unnormalized preference of (6, 1).

Figure C.7: Markov chain Monte Carlo posterior for an unnormalized preference of (1, 2).

Figure C.8: Markov chain Monte Carlo posterior for an unnormalized preference of (1, 3).

Figure C.9: Markov chain Monte Carlo posterior for an unnormalized preference of (1, 4).

Figure C.10: Markov chain Monte Carlo posterior for an unnormalized preference of (1, 5).

C.2. Random Queries 88

Figure C.11: Markov chain Monte Carlo posterior for an unnormalized preference of (1, 6).

C.2. Random Queries
To better illustrate the difference between actively and randomly chosen queries, we have selected four
representative runs from 5.11 and show them in figures C.12 to C.14. Overall, figure 5.11 indicates
that, on average, the return vectors obtained through active queries achieve a lower Kullback-Leibler
divergence to their ground truth preferences. This can be seen in figures C.12, C.13 and C.14, where
randomly querying leads to return vectors that do not greatly differ from each other despite having a
high variance in provided preferences. This is due to a lack of volume removal, thus leading the agent
to mainly optimize its reward using the prior p(w), which equally values deliver, help and clean.

0 1 2 3 4 5 6
1e6

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Deliver
Active
Random

0 1 2 3 4 5 6
1e6

1.0

1.5

2.0

2.5

3.0

3.5
Help

Active
Random

0 1 2 3 4 5 6
1e6

1

2

3

4

5

6
Clean

Active
Random

0 1 2 3 4 5 6
1e6

0.6

0.5

0.4

0.3

0.2

0.1
Vase

Active
Random

Figure C.12: Training performance of active and random queries for an unnormalized preference of (1, 1, 3).

0 1 2 3 4 5 6
1e6

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Deliver
Active
Random

0 1 2 3 4 5 6
1e6

1

2

3

4

5

Help
Active
Random

0 1 2 3 4 5 6
1e6

0.5

1.0

1.5

2.0

2.5

3.0

Clean
Active
Random

0 1 2 3 4 5 6
1e6

1.0

0.8

0.6

0.4

0.2

Vase
Active
Random

Figure C.13: Training performance of active and random queries for an unnormalized preference of (1, 2, 1).

0 1 2 3 4 5 6
1e6

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Deliver

Active
Random

0 1 2 3 4 5 6
1e6

0.5

1.0

1.5

2.0

2.5

3.0

Help
Active
Random

0 1 2 3 4 5 6
1e6

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Clean
Active
Random

0 1 2 3 4 5 6
1e6

0.7

0.6

0.5

0.4

0.3

0.2

Vase
Active
Random

Figure C.14: Training performance of active and random queries for an unnormalized preference of (2, 1, 3).

C.2. Random Queries 89

However, it is worth noting that both Bayesian preference learning of a scalarization posterior, as well
as RL training with a nonstationary reward function are subject to various sources of noise. Hence,
there exist single runs in which random queries end up outperforming active queries, as can be seen in
figure C.15.

0 1 2 3 4 5 6
1e6

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Deliver
Active
Random

0 1 2 3 4 5 6
1e6

0.5

1.0

1.5

2.0

2.5

3.0

Help
Active
Random

0 1 2 3 4 5 6
1e6

0.5

1.0

1.5

2.0

2.5

3.0

Clean
Active
Random

0 1 2 3 4 5 6
1e6

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20
Vase

Active
Random

Figure C.15: Training performance of active and random queries for an unnormalized preference of (3, 2, 1). In this
example, random queries achieve a more accurate trade off between the objectives.

Bibliography

[1] Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. In
Proceedings of the twenty-first International Conference on Machine learning, page 1, 2004.

[2] Abbas Abdolmaleki, Sandy Huang, Leonard Hasenclever, Michael Neunert, Francis Song, Martina
Zambelli, Murilo Martins, Nicolas Heess, Raia Hadsell, and Martin Riedmiller. A distributional
view on multi-objective policy optimization. In International Conference on Machine Learning,
pages 11–22. PMLR, 2020.

[3] David Abel, J. MacGlashan, and M. Littman. Reinforcement learning as a framework for ethical
decision making. In AAAI Workshop: AI, Ethics, and Society, 2016.

[4] AlphaGo versus Lee Sedol. Wikipedia, the free encyclopedia, 2021. URL https://en.wikipedia.
org/wiki/AlphaGo_versus_Lee_Sedol. [Online; accessed 08-July-2021].

[5] Eitan Altman. Constrained Markov decision processes, volume 7. CRC Press, 1999.

[6] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané.
Concrete problems in ai safety. arXiv preprint arXiv:1606.06565, 2016.

[7] Lei Jimmy Ba and Rich Caruana. Do deep nets really need to be deep? In Proceedings of the
27th International Conference on Neural Information Processing Systems - Volume 2, NIPS’14,
page 2654–2662, Cambridge, MA, USA, 2014. MIT Press.

[8] Giorgio Battistelli and Luigi Chisci. Kullback–leibler average, consensus on probability densities,
and distributed state estimation with guaranteed stability. Automatica, 50(3):707–718, 2014.

[9] Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark
Siskind. Automatic differentiation in machine learning: a survey. Journal of Machine Learn-
ing Research, 18(153):1–43, 2018. URL http://jmlr.org/papers/v18/17-468.html.

[10] Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-
learning practice and the classical bias–variance trade-off. Proceedings of the National Academy
of Sciences, 116(32):15849–15854, 2019.

[11] Richard Bellman. A markovian decision process. Journal of Mathematics and Mechanics, 6(5):
679–684, 1957. ISSN 00959057, 19435274. URL http://www.jstor.org/stable/24900506.

[12] Emily M Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On the
dangers of stochastic parrots: Can language models be too big? In Proceedings of the 2021 ACM
Conference on Fairness, Accountability, and Transparency, pages 610–623, 2021.

[13] Dimitri P Bertsekas and John N Tsitsiklis. Neuro-dynamic programming: an overview. In Pro-
ceedings of 1995 34th IEEE conference on decision and control, volume 1, pages 560–564. IEEE,
1995.

[14] David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for statis-
ticians. Journal of the American statistical Association, 112(518):859–877, 2017.

[15] Grady Booch, Francesco Fabiano, Lior Horesh, Kiran Kate, Jon Lenchner, Nick Linck, Andrea
Loreggia, Keerthiram Murugesan, Nicholas Mattei, Francesca Rossi, et al. Thinking fast and slow
in AI. arXiv preprint arXiv:2010.06002, 2020.

[16] Nick Bostrom. Superintelligence: Paths, Dangers, Strategies. Oxford University Press, 2014.
ISBN 0199678111.

90

https://en.wikipedia.org/wiki/AlphaGo_versus_Lee_Sedol
https://en.wikipedia.org/wiki/AlphaGo_versus_Lee_Sedol
http://jmlr.org/papers/v18/17-468.html
http://www.jstor.org/stable/24900506

Bibliography 91

[17] Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the
method of paired comparisons. Biometrika, 39(3/4):324–345, 1952.

[18] Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478, 2021.

[19] Daniel Brown, Wonjoon Goo, Prabhat Nagarajan, and Scott Niekum. Extrapolating beyond
suboptimal demonstrations via inverse reinforcement learning from observations. In International
conference on machine learning, pages 783–792. PMLR, 2019.

[20] Rémy Chaput, Jérémy Duval, Olivier Boissier, Mathieu Guillermin, and Salima Hassas. A multi-
agent approach to combine reasoning and learning for an ethical behavior. Proceedings of the 2021
AAAI/ACM Conference on AI, Ethics, and Society, 2021.

[21] Siddhartha Chib and Edward Greenberg. Understanding the metropolis-hastings algorithm. The
american statistician, 49(4):327–335, 1995.

[22] Glen Chou, N. Ozay, and D. Berenson. Learning constraints from locally-optimal demonstrations
under cost function uncertainty. IEEE Robotics and Automation Letters, 5:3682–3690, 2020.

[23] Paul F. Christiano, Jan Leike, Tom B Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. In Advances in Neural Information Processing
Systems, volume 2017-Decem, pages 4300–4308, 2017.

[24] Mark Coeckelbergh. AI ethics. MIT Press, 2020. ISBN 978-0262538190.

[25] Andrew Critch. Toward negotiable reinforcement learning: shifting priorities in pareto optimal
sequential decision-making. arXiv preprint arXiv:1701.01302, 2017.

[26] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research, 12(61):2121–2159, 2011.

[27] Gabriel Dulac-Arnold, Daniel Mankowitz, and Todd Hester. Challenges of real-world reinforce-
ment learning. arXiv preprint arXiv:1904.12901, 2019.

[28] Adrien Ecoffet and Joel Lehman. Reinforcement learning under moral uncertainty. In Interna-
tional Conference on Machine Learning, pages 2926–2936. PMLR, 2021.

[29] Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. Go-explore: a
new approach for hard-exploration problems. arXiv preprint arXiv:1901.10995, 2019.

[30] Jerome Friedman, Trevor Hastie, Robert Tibshirani, et al. The elements of statistical learning.
Springer series in statistics New York, 2001.

[31] Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adversarial inverse rein-
forcement learning. arXiv preprint arXiv:1710.11248, 2017.

[32] Iason Gabriel. Artificial intelligence, values, and alignment. Minds and machines, 30(3):411–437,
2020.

[33] Adam Gleave and Oliver Habryka. Multi-task maximum entropy inverse reinforcement learning.
arXiv preprint arXiv:1805.08882, 2018.

[34] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

[35] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http:
//www.deeplearningbook.org.

[36] Sam Greydanus. Scaling *down* deep learning. arXiv preprint arXiv:2011.14439, 2020.

http://www.deeplearningbook.org
http://www.deeplearningbook.org

Bibliography 92

[37] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Confer-
ence on Machine Learning, pages 1861–1870. PMLR, 2018.

[38] Dylan Hadfield-Menell and Gillian K Hadfield. Incomplete contracting and AI alignment. In
Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society, pages 417–422, 2019.

[39] Dylan Hadfield-Menell, Stuart J Russell, Pieter Abbeel, and Anca Dragan. Cooperative inverse
reinforcement learning. Advances in neural information processing systems, 29:3909–3917, 2016.

[40] Dylan Hadfield-Menell, Smitha Milli, Pieter Abbeel, Stuart Russell, and Anca Dragan. Inverse
reward design. arXiv preprint arXiv:1711.02827, 2017.

[41] Peter J Hammond. Harsanyi’s utilitarian theorem: A simpler proof and some ethical connotations.
In Rational Interaction, pages 305–319. Springer, 1992.

[42] John C Harsanyi. Cardinal welfare, individualistic ethics, and interpersonal comparisons of utility.
Journal of political economy, 63(4):309–321, 1955.

[43] Karol Hausman, Yevgen Chebotar, Stefan Schaal, Gaurav Sukhatme, and Joseph Lim. Multi-
modal imitation learning from unstructured demonstrations using generative adversarial nets.
arXiv preprint arXiv:1705.10479, 2017.

[44] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
Deep reinforcement learning that matters. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

[45] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in neural
information processing systems, 29:4565–4573, 2016.

[46] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are
universal approximators. Neural networks, 2(5):359–366, 1989.

[47] Borja Ibarz, Jan Leike, Tobias Pohlen, Geoffrey Irving, Shane Legg, and Dario Amodei. Reward
learning from human preferences and demonstrations in atari. arXiv preprint arXiv:1811.06521,
2018.

[48] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and acting in
partially observable stochastic domains. Artificial Intelligence, 101(1-2):99–134, may 1998. ISSN
00043702. doi: 10.1016/s0004-3702(98)00023-x.

[49] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[50] W Bradley Knox and Peter Stone. Interactively shaping agents via human reinforcement: The
tamer framework. In Proceedings of the fifth international conference on Knowledge capture, pages
9–16, 2009.

[51] Ilya Kostrikov, Kumar Krishna Agrawal, Sergey Levine, and Jonathan Tompson. Address-
ing sample inefficiency and reward bias in inverse reinforcement learning. arXiv preprint
arXiv:1809.02925, 2018.

[52] Dmitrii Krasheninnikov, Rohin Shah, and Herke van Hoof. Combining reward information from
multiple sources. arXiv preprint arXiv:2103.12142, 2021.

[53] Solomon Kullback. Information theory and statistics. Courier Corporation, 1997.

[54] Hoang Le, Cameron Voloshin, and Yisong Yue. Batch policy learning under constraints. In
International Conference on Machine Learning, pages 3703–3712. PMLR, 2019.

[55] Yuanlong Li, Yonggang Wen, Dacheng Tao, and Kyle Guan. Transforming cooling optimization
for green data center via deep reinforcement learning. IEEE transactions on cybernetics, 50(5):
2002–2013, 2019.

Bibliography 93

[56] Yunzhu Li, Jiaming Song, and Stefano Ermon. Infogail: Interpretable imitation learning from
visual demonstrations. In Proceedings of the 31st International Conference on Neural Information
Processing Systems, pages 3815–3825, 2017.

[57] Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim Songhori, Shen
Wang, Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade Nazi, et al. A graph placement
methodology for fast chip design. Nature, 594(7862):207–212, 2021.

[58] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[59] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pages 1928–1937. PMLR, 2016.

[60] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines.
In International Conference on Machine Learning, 2010.

[61] A. Ng and Stuart J. Russell. Algorithms for inverse reinforcement learning. In International
Conference on Machine Learning, 2000.

[62] A. Ng, D. Harada, and Stuart J. Russell. Policy invariance under reward transformations: Theory
and application to reward shaping. In International Conference on Machine Learning, 1999.

[63] Ritesh Noothigattu, Djallel Bouneffouf, Nicholas Mattei, Rachita Chandra, Piyush Madan,
Kush R Varshney, Murray Campbell, Moninder Singh, and Francesca Rossi. Teaching AI agents
ethical values using reinforcement learning and policy orchestration. IBM Journal of Research
and Development, 63(4/5):2–1, 2019.

[64] Manu Orsini, Anton Raichuk, Léonard Hussenot, Damien Vincent, Robert Dadashi, Sertan Girgin,
Matthieu Geist, Olivier Bachem, Olivier Pietquin, and Marcin Andrychowicz. What matters for
adversarial imitation learning? arXiv preprint arXiv:2106.00672, 2021.

[65] Claudia Pérez-D’Arpino and J. Shah. C-learn: Learning geometric constraints from demonstra-
tions for multi-step manipulation in shared autonomy. IEEE International Conference on Robotics
and Automation (ICRA), pages 4058–4065, 2017.

[66] Markus Peschl. Training for implicit norms in deep reinforcement learning agents through adver-
sarial multi-objective reward optimization. In Proceedings of the 2021 AAAI/ACM Conference
on AI, Ethics, and Society, pages 275–276, 2021.

[67] Iyad Rahwan, Manuel Cebrian, Nick Obradovich, Josh Bongard, Jean-François Bonnefon, Cynthia
Breazeal, Jacob W Crandall, Nicholas A Christakis, Iain D Couzin, Matthew O Jackson, et al.
Machine behaviour. Nature, 568(7753):477–486, 2019.

[68] Siddharth Reddy, Anca D Dragan, and Sergey Levine. Sqil: Imitation learning via reinforcement
learning with sparse rewards. arXiv preprint arXiv:1905.11108, 2019.

[69] Diederik M Roijers, Peter Vamplew, Shimon Whiteson, and Richard Dazeley. A survey of multi-
objective sequential decision-making. Journal of Artificial Intelligence Research, 48:67–113, 2013.

[70] Diederik M Roijers, Luisa M Zintgraf, and Ann Nowé. Interactive thompson sampling for multi-
objective multi-armed bandits. In International Conference on Algorithmic Decision Theory,
pages 18–34. Springer, 2017.

[71] Diederik M Roijers, Luisa M Zintgraf, Pieter Libin, and Ann Nowé. Interactive multi-objective
reinforcement learning in multi-armed bandits for any utility function. In ALA workshop at FAIM,
volume 8, 2018.

[72] Stuart Russell and Peter Norvig. Artificial intelligence: a modern approach. Pearson, 2002. ISBN
978-0-134-61099-3.

Bibliography 94

[73] Stuart Russell, Daniel Dewey, and Max Tegmark. Research priorities for robust and beneficial
artificial intelligence. AI Magazine, 36(4):105–114, 2015.

[74] Dorsa Sadigh, A. Dragan, S. Sastry, and S. Seshia. Active preference-based learning of reward
functions. In Robotics: Science and Systems, 2017.

[75] Sandhya Saisubramanian, Ece Kamar, and Shlomo Zilberstein. A multi-objective approach to
mitigate negative side effects. In IJCAI International Joint Conference on Artificial Intelligence,
pages 354–361, 2020.

[76] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015.

[77] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[78] Mohit Sharma, Arjun Sharma, Nicholas Rhinehart, and Kris M Kitani. Directed-info gail: Learn-
ing hierarchical policies from unsegmented demonstrations using directed information. In Inter-
national Conference on Learning Representations, 2018.

[79] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mas-
tering the game of go with deep neural networks and tree search. Nature, 529(7587):484–489,
2016.

[80] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of
go without human knowledge. Nature, 550(7676):354–359, 2017.

[81] David Silver, Satinder Singh, Doina Precup, and Richard S. Sutton. Reward is enough. Artificial
Intelligence (AIJ), 299:103535, 2021.

[82] Richard S. Sutton. Reinforcement Learning: An Introduction (Adaptive Computation and Machine
Learning series). A Bradford Book, 2018. ISBN 0262039249.

[83] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gra-
dient methods for reinforcement learning with function approximation. In Advances in neural
information processing systems, pages 1057–1063, 2000.

[84] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5 - rmsprop: Divide the gradient by running
average of its recent magnitude, 2012.

[85] John Tromp and Gunnar Farnebäck. Combinatorics of go. In International Conference on Com-
puters and Games, pages 84–99. Springer, 2006.

[86] Aaron Tucker, Adam Gleave, and Stuart Russell. Inverse reinforcement learning for video games.
arXiv preprint arXiv:1810.10593, 2018.

[87] Gregor Urban, Krzysztof J Geras, Samira Ebrahimi Kahou, Ozlem Aslan, Shengjie Wang, Rich
Caruana, Abdelrahman Mohamed, Matthai Philipose, and Matt Richardson. Do deep convolu-
tional nets really need to be deep and convolutional? arXiv preprint arXiv:1603.05691, 2016.

[88] P. Vamplew, Richard Dazeley, Cameron Foale, Sally Firmin, and Jane Mummery. Human-aligned
artificial intelligence is a multiobjective problem. Ethics and Information Technology, 20:27–40,
2017.

[89] Hado Van Hasselt, Yotam Doron, Florian Strub, Matteo Hessel, Nicolas Sonnerat, and Joseph
Modayil. Deep reinforcement learning and the deadly triad. arXiv preprint arXiv:1812.02648,
2018.

Bibliography 95

[90] David Venuto, Jhelum Chakravorty, Leonard Boussioux, Junhao Wang, Gavin McCracken, and
Doina Precup. oIRL: Robust adversarial inverse reinforcement learning with temporally extended
actions. arXiv preprint arXiv:2002.09043, 2020.

[91] Garrett Warnell, Nicholas Waytowich, Vernon Lawhern, and Peter Stone. Deep tamer: Interactive
agent shaping in high-dimensional state spaces. In Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

[92] Jess Whittlestone, Kai Arulkumaran, and Matthew Crosby. The societal implications of deep
reinforcement learning. Journal of Artificial Intelligence Research, 70, March 2021.

[93] David Williams. Probability with martingales. Cambridge university press, 1991.

[94] Christian Wirth, Gerhard Neumann, and Johannes Fürnkranz. A Survey of Preference-Based
Reinforcement Learning Methods. Journal of Machine Learning Research, 18:1–46, 2017.

[95] Yueh Hua Wu and Shou De Lin. A low-cost ethics shaping approach for designing reinforcement
learning agents. In 32nd AAAI Conference on Artificial Intelligence, AAAI 2018, pages 1687–
1694, 2018. ISBN 9781577358008.

[96] Kelvin Xu, Ellis Ratner, Anca Dragan, Sergey Levine, and Chelsea Finn. Learning a prior over
intent via meta-inverse reinforcement learning. In International Conference on Machine Learning,
pages 6952–6962. PMLR, 2019.

[97] Runzhe Yang, Xingyuan Sun, and Karthik Narasimhan. A Generalized Algorithm for Multi-
Objective Reinforcement Learning and Policy Adaptation, 2019. ISSN 23318422. URL https:
//github.com/RunzheYang/MORL.

[98] G Alastair Young, Thomas A Severini, George Albert Young, RL Smith, Robert Leslie Smith,
et al. Essentials of statistical inference, volume 16. Cambridge University Press, 2005.

[99] Lantao Yu, Jiaming Song, and Stefano Ermon. Multi-agent adversarial inverse reinforcement
learning. In International Conference on Machine Learning, pages 7194–7201. PMLR, 2019.

[100] Lantao Yu, Tianhe Yu, Chelsea Finn, and Stefano Ermon. Meta-inverse reinforcement learning
with probabilistic context variables. Advances in Neural Information Processing Systems, 32:
11772–11783, 2019.

[101] Brian D Ziebart, Andrew Maas, J Andrew Bagnell, and Anind K Dey. Maximum entropy in-
verse reinforcement learning. In Proceedings of the National Conference on Artificial Intelligence,
volume 3, pages 1433–1438, 2008.

https://github.com/RunzheYang/MORL
https://github.com/RunzheYang/MORL

	I Thesis
	Introduction
	Value Alignment
	Research Questions
	Contributions
	Thesis Outline

	Background
	Reinforcement Learning
	Markov Decision Processes
	Value Functions & Bellman Equations
	Monte Carlo Estimation & Exploration
	Value Approximation

	Extended Decision Making Frameworks
	Maximum Entropy Reinforcement Learning
	Constrained Problems
	Multi-Objective Solution Sets

	Generalization
	Feedforward Networks
	Loss Functions
	Optimization & Model Selection
	Convolutional Neural Networks
	Generative Adversarial Networks

	Policy Gradient Methods
	REINFORCE
	Proximal Policy Optimization

	Learning Implicit Norms
	Aligning RL Agents
	Differences between Extended Frameworks
	Challenges when Learning Constraints
	Alignment as a Multi-Objective Problem

	Methods
	Adversarial Inverse Reinforcement Learning
	Multi-Objective Optimization
	Experimental Setup

	Results
	Conclusion

	Active Preference Learning
	Methods
	Bayesian Preference Learning
	Markov Chain Monte Carlo
	Multi-Objective Reinforced Active Learning

	Experiments
	Query Efficiency
	Deep Reinforcement Learning from Human Preferences

	Conclusion

	Controlling Diverse Norms
	Methods
	Reward Normalization
	Pareto Optimality
	Experimental Setup
	Preference Elicitation

	Experiments
	Expert Aggregation
	Diversity
	Learning Multiple Norms from Pairwise Preferences
	Ablation

	Conclusion

	Discussion
	Key Findings
	Related Work
	Discussion

	II Scientific Papers
	III Appendix
	Demonstrations
	Burning Warehouse
	Demonstration Policy

	Delivery
	Demonstration Policy
	AIRL Details

	Implementation Details
	Neural Network Architectures
	Proximal Policy Optimization
	Convolutional Reward Network
	Deep Reinforcement Learning from Human Preferences

	Burning Warehouse Hyperparameters
	AIRL
	AIRL Reward Shaping
	Active Learning
	DRLHP

	Delivery Hyperparameters
	AIRL
	Active Learning
	DRLHP

	Additional Visualizations
	MCMC Posterior
	Random Queries

	Bibliography

