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1
Introduction

The creation of mechanisms is a craft practiced by humans since the very first moment they set foot
on earth. Whether it is to perform a task previously deemed impossible, or just to make life easier,
creating a mechanism often offers a solution. Old mechanisms get replaced or improved and new
ones are designed in the world on a continuous basis. To this day the optimization and design of new
mechanisms is a big topic in the academic world. The need for newer, better or different machines
seems like a never­ending quest.

In the high­tech industry mechanisms with high repeatability and precision are required to create
evermore intricate parts. A certain class of mechanisms seems tomeet those criteria, namely compliant
mechanisms. These mechanisms are created out of one piece of continuous material, which is why
they do not exhibit wear and tear and have no play in their joints (Howell et al., 2013). An added
benefit is that there is no assembly needed to create these mechanisms. For these reasons, compliant
mechanisms have great potential in the high­tech industry.

1.1. Optimizing compliant mechanisms
The design and optimization of compliant mechanisms is challenging due to the close relation between
mechanism motion and stiffness within its structure. A popular design method for compliant mecha­
nisms is structural optimization. There are three categories of structural optimization (Fig. 1.1):

• Sizing optimization: Here, the structure is already known, but some parameters of the structure
are optimized. An example is a truss structure of which all locations and connection points of
the rods are known, but the thicknesses of the beams are not. An optimization algorithm is then
employed to find the optimal thicknesses for the beams in the structure.

• Shape optimization: In shape optimization, the topology, i.e. the distributions of holes in a
structure, is known. Then, the optimization process finds the optimal size and locations for those

Figure 1.1: Three categories of structural optimization of a truss structure. a) Sizing optimization, b) shape optimization and
c) topology optimization. The initial problems are shown on the left and the optimal solutions are shown on the right (Bendsøe
et al., 2004).
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Figure 1.2: A beam that is fixed to the left with a tip load 𝐹 on the right. As the beam deforms, the stiffness of the beam changes,
due to geometric non­linear effects. This change of stiffness is not taken into account when linear analysis is used.

holes, without altering the topology.

• Topology optimization: In this method, nothing is known about the structure, except for the
boundary conditions and the design space. Topology optimization is an iterative method, in which
an optimizer looks for the best material distribution in a certain design space according to the given
objective function and constraints. This means that the optimizer can add holes and solid material
as it sees fit. Some other constraints or material models may be needed for a proper problem
formulation, but it can be safely said that it is the most free form of structural optimization of the
three.

The design freedom that topology optimization offers is what makes it, in the author’s opinion, the most
suited method for designing compliant mechanisms.

In order for topology optimization to create designs, a domain is discretized into elements. The
densities of those elements are the design variables, for which the optimizer picks a value in each
iteration. These design updates are based on the result of a structural and sensitivity analysis of the
previous design. The elements in the design domain are thus filled with different densities, which
together form a design.

Using topology optimization for compliant mechanism design comeswith a few challenges. The type
of structural analysis that should be used in topology optimization depends on the deflections that a
design exhibits. Compliant mechanisms often show geometric non­linear behaviour, which is not caught
well in linear analysis, a concept better explained in Fig. 1.2. The importance of taking geometric non­
linearity into account when optimizing compliant mechanisms was well­described by, among others,
Pedersen et al. (2001). Implementing non­linear analysis in topology optimization, however, comes
with computational effort and stability problems.

Numerical instabilities
Non­linear analysis is done with an incremental iterative scheme. These schemes are prone to diverge
when limit or bifurcation points appear. Linear analysis does not suffer from these instabilities, as
linear analysis is not an iterative process. The high stiffness differences between the elements in
topology optimization make the low stiffness areas prone to invert. This behaviour makes using non­
linear analysis in topology optimization extra unstable.

Inversion of elements occurs when the local strains get so large that the element boundaries cross
each other, changing the topology of the elements (Fig. 1.3). As Dijk et al. (2014) note, the Green­
Lagrange strainmeasure, often used in non­linear topology optimization, is not physically meaningful for
inverted elements. As an effect, no useful sensitivity information can be retrieved from these elements.
The solution to the structural analysis is not realistic if elements are inverted, which creates a pass­
through error in the optimization process.

To overcome this obstacle, three main approaches have been used: relaxing convergence criteria
(Buhl et al., 2000; Pedersen et al., 2001), implementing different constitutive models (Wang et al., 2014;
Wallin et al., 2018; Bluhm et al., 2021; Lahuerta et al., 2013) and changing the structure of the finite
element analysis (Yoon et al., 2005; Dijk et al., 2014). Each of these methods has shown to be effective
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under certain circumstances, some more successful than others. However, a general method against
element inversion in most situations is yet to be found. It is still the case that element inversion is a
problem in large deflection simulations.

(a) (b)

Figure 1.3: The non­linear analysis of the C­shape beam problem as described by Yoon et al. (2005). In a) a geometrical non­
linear structure with a unit Young’s modulus and a Poisson’s ratio of 0.3, under two loads is shown. The void has a stiffness of
10−9. b) shows the deformation field including inverted elements.

Computational effort
In topology optimization a large part of the computational effort lays in solving the linear systems of
equations that occur in the structural analysis. Lazarov (2014) claims it accounts for up to 99% of
the computational effort in the topology optimization process for linear analysis. Non­linear analysis
needs to solve a linear system of equations in each iteration necessary to find a solution, making it
computationally more expansive than linear analysis, in which only one linear system of equations
needs to be solved. This makes reducing the computational effort used in structural analysis a priority.

There are many techniques to reduce the computational cost of structural analysis in topology op­
timization. Adaptive quadtree remeshing is a method that refines the element size in areas where
strains are high and do the opposite in places that have low strain fluctuations in order to decrease the
total amount of degrees of freedom (Maute et al., 1995). Model order reduction is a way to filter out
redundant information in the finite element model (Gogu, 2015). In model order reduction, a dynamic
model is built in which the solution vector is reduced in size until it has a minimal amount of variables,
but still models the same input­output relationship as the original problem (Koutsovasilis et al., 2010).
Reanalysis is a method that makes use of the fact that the stiffness matrix for a design is similar to
the stiffness matrix of the design of a preceding iteration. This means that the displacement field of a
previous iteration can be slightly modified to estimate the displacement field in the current iteration. By
doing so, Amir (2015) managed to cut computational effort approximately in half. These techniques
are quite common and the papers cited are far from the only ones using the techniques, proving their
validity.

Although these methods all reduce the computational effort, there still is room for improvement.
Overcoming the problems caused by inverted elements induces extra computational effort, making
non­linear analysis extra unattractive. Linear analysis on the other hand, when used in topology op­
timization, does not create that perform as analyzed during the optimization process. Linear analysis
thus creates inaccurate designs. A method that does not suffer from the stability and computational
effort issues seen in non­linear analysis and is at the same time more accurate than linear analysis is
desired.
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1.2. Research objective
An interesting challenge is to create amethod that extends the accuracy of the predicted range ofmotion
(finite) of compliant mechanisms compared to linear analysis, with a relatively low computational effort
compared to full geometric non­linear analysis. This thesis aims to find such a method.

The main body of this thesis is a paper that investigates a new form of structural analysis and uses
it within topology optimization. After the paper, a chapter is devoted to lightly developed response func­
tion ideas, which could be used in combination with this form of structural analysis. A supplementary
discussion and conclusion are added after that, followed by the appendices.



2
Paper

The paper on the next page is the main body of this thesis. The paper is self­contained with the
exception of the Appendices, which can be found at the end of this thesis.
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Abstract

Density-based topology optimization, when used
to design structures that show geometrical non-
linear behaviour, currently faces computational
effort and stability issues. These issues are
caused by the iterative method used in geomet-
ric non-linear structural analysis. On top of tak-
ing much computational effort to complete, this
method encounters instabilities when analyzing
low-density elements usually present in the de-
sign domain.

This study aims to bypass those issues by
proposing approximate analysis in the topology
optimization routine, which is an analysis based
on an approximation of the geometrical non-
linear load-deflection curve of a structure, con-
structed with equilibrium points close to its un-
deformed configuration.

To study the performance and the influence
of the parameters that govern approximate anal-
ysis, three numerical examples are considered.
These indicate that using approximate analysis
in topology optimization leads to designs that
perform over a finite range of motion, similar to
when a non-linear analysis is used. The compu-
tational effort needed for approximate analysis
is closer to the effort needed for linear analysis
than non-linear analysis. A limitation of approx-
imate analysis is that its results are only similar
to non-linear analysis as long as the deflections
stay in the mildly non-linear domain.

When concerning the topology optimization
of compliant mechanisms that exhibit mildly ge-

ometric non-linear behaviour, we conclude that
using approximate analysis is a stable and com-
putationally efficient alternative to non-linear
analysis.

1 Introduction

Mechanisms are mechanical devices designed to
transfer a movement or force into an action de-
sired by the user. Traditionally, mechanisms are
built with rigid links, discrete joints and gears,
some of which slide over each other to move.
However, this sliding causes wear and tear and
is only possible because there is a bit of play be-
tween the joints. This abrasion and play cause
machines to be less precise and induces mainte-
nance (Beek, 2015).

Compliant mechanisms (CMs) have the same
purpose as traditional mechanisms but are
monolithic. The movement of these devices is
obtained by deforming the material of which
they are made. Because the mechanism is built
out of one piece, there is no play in its joints,
there is no need to assemble different parts of
the mechanism, and it does not exhibit abrasion.
Because of these benefits, using CMs instead of
traditional ones is very interesting for machines
making repetitive or precise motions (Howell et
al., 2013).

Due to the close relation between structure,
stiffness and mechanism motion, manual design
of CMs is challenging. A review by Gallego et al.
(2010) shows various ways of designing CMs. A
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popular design method is topology optimization
due to its versatility and ability to generate novel
concepts (Bendsøe et al., 2004). This method
has a wide design freedom and has low require-
ments for an initial design, which makes it the
choice for the present work. Topology optimiza-
tion (TO) is a computational method that opti-
mizes material layout in a discretized domain. It
is an iterative process, as can be seen in Fig. 1.
Each iteration, a structural analysis is performed
on the current design to determine its deflection
field. From this field, the performance of the
design will be derived. Next, the sensitivity of
the performance to design changes will be cal-
culated. Finally, a new design will be proposed
and a new iteration will start until a convergence
criterion is met.

Which kind of structural analysis should be
used during TO depends on the deformation of
the design. Geometric non-linearity, which oc-
curs when the stiffness of a structure changes
as the structure deforms is illustrated in Fig. 2.
Here stiffness k[u] is a function of the deflection
u. As long as the deflection increases monotoni-
cally with load f, the system is considered to be
in the mildly non-linear domain. However, at de-
flection u1, maximum load fmax has been reached
and the stiffness of the structure becomes neg-
ative. This will be called the highly non-linear
domain. If the range of motion of a structure is
sufficiently small, its deflection can be approxi-
mated with linear analysis. However, using lin-
ear analysis for large deflections will result in a
wrong prediction of its deflection. In CMs made
of elastomers, also material non-linearity can
become relevant as local strains become large.
However, this paper assumes minor strains and
a linear isotropic material model.

Figure 1: Flowchart of the topology optimiza-
tion process.

Figure 2: Right: A geometrically non-linear sys-
tem. Left: Its schematic load-deflection curve,
with in red the linear analysis of this system.

1.1 Challenges in topology opti-
mization for compliant mech-
anisms

Taking geometric non-linearity into account dur-
ing structural analysis comes with two main
challenges. Firstly, for a given load case, a non-
linear analysis is an iterative process in which an
equilibrium state is sought between the external
and internal forces, usually this process is done
with the Newton-Raphson process (Borst et al.,
2012). This process is computationally expen-
sive and suffers from stability issues for larger
deformations as the process can diverge. How-
ever, not taking geometric non-linearity into ac-
count can lead to designs that perform worse
than predicted during the optimization process,
as shown by, among others, Buhl et al. (2000).

In density-based topology optimization, to
which this paper is limited, designs with a clear
boundary between solid and void are preferred,
as this is beneficial for production purposes. All
elements should thus be either solid or void. Be-
cause it is impossible to do a structural analysis
of elements with zero stiffness, generally a very
low stiffness is assigned to these elements. This
makes it possible to perform a structural analy-
sis with a mesh including these elements without
changing the solid structure’s behaviour signifi-
cantly. On the other hand, these so-called void
elements are prone to invert, making it either
impossible to find an equilibrium state for the
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structure or adding extra computational effort
to the analysis. These void elements thus in-
duce extra numerical instability to geometrically
non-linear analysis.

There have been many attempts to reduce
computational effort in non-linear analysis and
make the process more stable within topol-
ogy optimization. The most notable meth-
ods to reduce computational effort are reduced-
order modeling (Gogu, 2015), adaptive mesh-
ing (Maute et al., 1995) and reanalysis (Amir,
2015). For stability, the most critical methods
rely on changing the constitutive relationship in
the analysis ((Pedersen et al., 2001), (Lahuerta
et al., 2013), (Bluhm et al., 2021)), ignore the
inverted elements ((Buhl et al., 2000), (Saxena
et al., 2001)), interpolate between a linear and a
non-linear solution (Wang et al., 2014) or change
the mathematical set up which describes the
analysis (Yoon et al., 2005; Dijk et al., 2014).
All these methods overcome element inversion
for certain circumstances. However, a general
approach that works in all cases has not yet been
established.

There is a need for a topology optimization
scheme, that does not suffer from the stability
issues and computational effort seen when non-
linear analysis is used. On top of that, this
scheme should, in contrast to a scheme using
linear analysis, still creates accurate designs, i.e.
that perform as analyzed during the optimiza-
tion process. This would make topology opti-
mization a more feasible and accessible method
for applications with moderate displacements,
such as CMs.

1.2 Research approach

The present work proposes an approximation of
the geometric non-linear load curve in topol-
ogy optimization. A linear analysis can be
seen as a first-order approximation of the load-
deflection curve around the undeformed configu-
ration. A non-linear analysis is a more accurate
approximation of the load-deflection curve, but
only in the points where an equilibrium position
has been found. A higher-order approximation

might capture the trend of the geometric non-
linear load-deflection curve well enough that it is
more useful in topology optimization compared
to a first-order approximation (Fig. 3).

This work proposes such an approximation
as an extrapolation built with a few equilib-
rium points close to the undeformed configu-
ration. This approximation will be continuous
in the magnitude of the load. A visual inter-
pretation of this idea is given in Fig. 3, which
shows the mildly non-linear domain of the curve
in Fig. 2. Because these points will be chosen
close to the undeformed state, only a few it-
erations are needed to calculate them, and the
chance of instability is low. Using an approx-
imation of the load-deflection curve, from now
on called approximated analysis, may therefore
be less computationally expensive and more sta-
ble than non-linear analysis, whilst still able to
produce accurate designs.

There are some advantages and disadvan-
tages of using such an approximation. For ex-
ample, by not doing a complete geometric non-
linear analysis of a particular load case, ele-
ment inversion and high computational effort
are potentially avoided. Extrapolations tend to
give a worse prediction of non-linear behaviour
the further the points of interest are from the
point around which the extrapolation was built.
Therefore, this method is not expected to ap-
ply to highly non-linear behaviour (Fig. 2). As
the curve becomes more non-linear an increas-
ing order of approximation is needed to describe
it. Still, for mildly geometric non-linear be-
haviour, the approximation is expected to be
close enough to the equilibrium path, such that
when used in topology optimization, accurate
designs are created.

The ultimate goal of this research is to estab-
lish to what degree this method complies with
two criteria:
First, it should create sufficiently accurate de-
signs, i.e. designs that perform close to the re-
sult obtained with a full geometrical non-linear
analysis.
Second, it should consume substantially less
computational effort than current optimization
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Figure 3: Load-displacement relations as pre-
dicted by different kinds of structural analysis.

schemes that use full non-linear analysis, i.e. the
computational effort should be closer to that of
a scheme using linear analysis than that of one
that uses non-linear analysis.

This method will be tested and built with
the following scope and boundary conditions in
mind:

• The approximated analysis is compared to
linear and non-linear analysis.

• The CMs this method produces are as-
sumed to remain in mildly geometric non-
linearity.

• For simplicity and characterization of the
method, this paper studies 2D cases only.

• The material is assumed to behave linear
isotropic.

• All applied forces will be independent from
the design variables and deflection field,
and boundary conditions will be constant.

• The structural analysis will be done with
square quadrilateral elements with bilinear
shape functions.

• The non-linear analysis will be limited to
the Newton-Raphson method.

The following research questions will be an-
swered to test how well the proposed method
works in topology optimization:

1. How well does the approximated deflection
curve correspond to the correct deflection
curve?

2. What is the influence of the parameters
that govern the approximated analysis?

3. Is the gain in computational effort with
these approximations significant when
compared to full non-linear analysis?

4. What are the implications of this method
on the optimization routine regarding its
mathematical formulation?

5. What is the range of applicability, in terms
of design objectives and load cases that can
be used with approximate analysis?

This work seeks answers to these questions in
the following way: the next chapter contains the
mathematical background of this method, its im-
plementation in topology optimization and the
implications on the sensitivity analysis. Next,
three numerical examples will be introduced and
investigated to study the performance and draw-
backs of this method, compared to using linear
and non-linear analysis. Finally, this thesis will
conclude with an interpretation of the results
and a discussion on the research questions.

2 Methods

In this section, first, non-linear and linear anal-
ysis are summarized. Approximated analysis is
introduced next by deriving it from non-linear
analysis, after which it is verified on a beam in
bending. For simplicity and its implementation
in TO, all structural analysis is performed with
the finite element method (FEM). The beam in
bending is analyzed with non-linear analysis, lin-
ear analysis and approximated analysis, of which
the results are compared. After this proof of
concept is delivered, topology optimization ap-
plications are considered.

2.1 Structural analysis

Any domain can be discretized into elements
that are connected by nodes at the corners of the
elements (Fig. 4). Each node has two degrees of
freedom (DOF), in the x and y direction, respec-
tively, on which an external force could be ap-
plied, all these nodal deflections and forces are

9



Figure 4: A discretization of a rectangular de-
sign domain. The red dots are the nodes and the
squares the elements, each with a design variable
xk, stored together in x. Note that the axis sys-
tem has nothing to do with the design variables.
x is merely an axis direction.

represented in vectors u and f ext. All element
density design variables are defined by x.

The objective of doing structural analysis is
to find the correct deflections u for a certain ex-
ternal force vector f ext. All elements have a cer-
tain stiffness, which is dependent on the design
x and for any nonzero deflection field u, the el-
ements exert internal forces f int on the DOFs.
To obtain the correct deflections u the structure
should be in equilibrium, i.e. the internal forces
cancel out the external forces:

f ext = f int[u,x]. (1)

If the structure is not in equilibrium, there
are residual forces on the DOFs, defined as r:

r = f ext − f int[u,x]. (2)

To find an equilibrium position (r = 0), an
incremental iterative method is used, which fol-
lows the Newton-Raphson method for each in-
crement. Each iteration a small step ∆u is
added to the total deflections u, until conver-
gence is met. This is done by building a first
order Taylor approximation of Eq. (2) as a func-
tion of u. For this approximation the derivative
of the residual to the deflection field is needed:

Kt[u,x] = − ∂r

∂u
. (3)

Finding a solution to Kt is usually by as-
sembling a tangent stiffness matrix Kt, instead
of actual derivation of the residual. The process

of assembling such a stiffness matrix will not be
covered here but can be found in any book on ge-
ometric non-linear FEM, like Borst et al. (2012).
This matrix Kt is used to calculate increment
∆u in the following way:

Kt[u,x]∆u = r[u,x]. (4)

In practice the process is stopped if the resid-
ual is sufficiently small. To improve stability and
convergence, it is common to subdivide the total
load that needs to be analyzed into smaller load
steps(Borst et al., 2012). One might also be in-
terested in load points before the total load, so
sub-diving into smaller load steps is the way to
go. A load step increases the load factor from
one equilibrium position to another. In this the-
sis, the load factor is given by a scalar λ. If a
force f ext is applied to the structure it can be rep-
resented by a multiplication between the maxi-
mum load f̄ ext in the structural analysis and λ:

f ext = λf̄ ext. (5)

The process of finding the equilibrium po-
sition for different values of λ is visualized in
Fig. 5, which shows the deflections of two arbi-
trary DOFs as a function of λ. For brevity, his
form of structural analysis will be referred to as
non-linear analysis.

After a certain point in the load curve of v
in Fig. 5 a peak load has been reached. When
this happens, the tangent stiffness matrix be-
comes indefinite, as the stiffness between DOF
v and the other DOFs becomes zero. Important
to note is that once this happens, the Newton-
Raphson process overshoots the peak load as
shown for v, after which the solution starts os-
cillating. There are other schemes than the
Newton-Raphson scheme to overcome this prob-
lem, but those will not be covered in this work.
The interested reader is referred to a book on the
non-linear finite element method, like for exam-
ple Borst et al. (2012).

Linear analysis is a more simplified version of
non-linear analysis and can be derived from it.
Eq. (4) is linearized in the undeformed config-
uration to accomplish this. In the undeformed
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Figure 5: Visualization of the Newton-Raphson
process for two arbitrary DOFs. The red and
orange lines visualize the increment ∆u each it-
eration, until equilibrium is found.

configuration u = 0 and f int = 0, and since only
one step will be taken ∆u = u. Kt is no longer
dependent on the deformation and becomes a
linear spring stiffness K. Finding u requires only
one solution to a linear system of equations:

K[x]u = f ext. (6)

2.2 Approximation of the load-
deflection curve

This research approximates deflection curves of
structural analysis using a Taylor expansion.
Taylor (1715) stated that any analytical function
could be represented by a linear combination of
all its derivatives:

u[λ] = u[λa] +
∞∑
i=0

1

i!

diu[λa]

dλi
(λ− λa)i. (7)

Eq. (7) considers the Taylor expansion of a
vector valued function u[λ], which is continuous
in scalar λ. In this function i is the order of
derivative and λa is a point in λ around which
the Taylor expansion is built. If this infinite sum

Figure 6: A grid of points for one of the indices of
function u, used to derive finite difference deriva-
tives.

is truncated at a particular order of derivative,
the remaining equation is called a Taylor approx-
imation:

ũ[λ] = u[λa] +

p∑
i=1

(λ− λa)i

i!

diu[λa]

dλi
. (8)

Here ũ is the approximation of u built
around u[λa] and p is the maximum order of
derivative used in this approximation.

For the derivatives needed in this approx-
imation, finite difference equations on equilib-
rium points points (u1,u2, . . .un) on the load-
deflection curve are used. These points will be
called foundation points (FP), as the approxi-
mation ũ completely depends on those points.
The foundation points are obtained by using a
Newton-Raphson scheme.

Figure 7: The concept of the scale factor visually
explained. For a load case with a maximum load
factor λmax and three foundation points, λn is
the load factor of the furthest foundation point.
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The following systematic method is used
for the finite difference equations (Chari et al.,
2000). Consider Fig. 6, which shows n founda-
tion points, each ∆λ apart, for one of the DOFs
in u[λ]. With n foundation points, up till or-
der n − 1 derivative can be calculated. This
derivative of order i, can be written as a linear
combination of the foundation points, in which
O(∆λi) is the truncation error:

diu[λa]

dλi
=

1

(∆λ)i

n∑
j=1

αiju[λj] +O(∆λn). (9)

In Eq. (9) there are n unknown variables
(αi1, αi2, . . . αin). For each foundation point j,
one can write the function value of all other
points as a Taylor expansion around point λj

using Eq. (8). These n equations can now be
substituted into Eq. (9), which yields a system
of equations from with all unknown α’s can be
solved (Chari et al., 2000).

Now the approximation of the deflection-load
curve used in this thesis to perform approximate
analysis can be defined. In this work, the Taylor
approximation is built around the undeformed
state of a structure (λa = 0), up to the order
n− 1. Then Eq. (8) becomes:

ũ[λ] =
n−1∑
i=1

1

i!

diu

dλi
λi. (10)

The finite difference equations from Eq. (9)
are a linear combination of the foundation
points, which when substituted in Eq. (10)
transforms into a sum of a sum:

ũ[λ] =
n−1∑
i=1

λi

i!(∆λ)i

n∑
j=1

αijuj. (11)

The location of the foundation points are
close to the undeformed configuration and are
determined by the scale factor (SF). This scale
factor is the ratio between the maximum load
applied to a structure and the load of the fur-
thest foundation point λn (Fig. 7), which can be
written as a function of ∆λ:

SF =
λmax

(n− 1)∆λ
. (12)

Rearranging Eq. (12), such that it is an ex-
pression for ∆λ as a function of SF and substi-
tution in Eq. (11) yields:

ũ[λ] =
n−1∑
i=1

1

i!

(
λ

λmax

)i
((n− 1)SF)i

n∑
j=1

αijuj.

(13)
To obtain the displacement field at the

foundation points, a modified Newton-Raphson
scheme is used. This scheme uses approximate
analysis on the available foundation points for
each load increment to make a first guess of
the next uj. To clarify this process a small
piece of pseudo-code is provided, which performs
approximate analysis for a structural analysis
problem. In this pseudo-code, it is assumed that
there are two functions: NewtonRaphson and
TaylorApprox. The input for NewtonRaphson
is a load factor λ and ustart, which is the deflec-
tion field at which the Newton-Raphson process
starts. The output of NewtonRapshon is u and
f ext for the given λ. TaylorApprox takes in the
distance ∆λ and a number of vectors, for which
it returns a Taylor approximation up to one or-
der lower than the number of vectors given.

Algorithm 1
A pseudo algorithm for the implementation of
approximate analysis in this paper.

ustart ⇐ 0
u1 ⇐ 0
f ext
1 ⇐ 0

∆λ⇐ λmax ÷ (SF(n− 1))
for j ∈ [2...n] do

λj ⇐ (j − 1)×∆λ
uj, f ext

j ⇐ NewtonRaphson(λj,ustart)
ũ[λ]⇐ TaylorApprox(∆λ, [u1...uj])
ustart ⇐ ũ[j ×∆λ]

end for
f̃ ext[λ]⇐ TaylorApprox(∆λ, [f ext

1 ...f ext
n ])

return f ext[λ], ũ[λ]
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2.3 Analytical parameter investi-
gation

If Eq. (13) is studied more closely it can be con-
cluded that deflection field ũ is a function of n,
the foundation points, and the scale factor, con-
tinuous in load factor λ:

ũ = ũ[u1,u2, . . .un, n, SF, λ]. (14)

The accuracy ũ is determined by the error
propagation of two errors: A mathematical error
and a numerical error. The mathematical error
contains the truncation error in determining the
derivatives with finite difference equations and
the error of the Taylor approximation at value λ
on the load curve. As the accuracy of ũ will be
compared to non-linear analysis, this error is not
covered here. However, an estimate of the math-
ematical error can be calculated with help of the
Eq. (9) and Taylor’s inequality as described in
for example Stewart (2012). To see whether the
numerical error affects ũ significantly, it is inves-
tigated further.

To keep things orderly, first Eq. (13) is
rewritten:

ũ[λ] =
n∑
j=1

qjuj (15)

with

qj[λ] =
n−1∑
i=1

1

i!

(
λ

λmax

)i
((n− 1)SF)i αij. (16)

To investigate the numerical error of ũ, the
problem is simplified to a 1 DOF example ũ de-
pendent on foundation points uj:

ũ[λ] =
n∑
j=1

qjuj. (17)

If ũ is the sum of quantities, then the errors
of those quantities add in quadrature to the error
of ũ (Beek, 2015). That is, if there is a numerical
error εj,num associated with uj, the total error εtot

of ũ in Eq. (17) becomes:

εtot[λ] =

√√√√ n∑
j=1

(qjεj,num)2. (18)

Now if εj,num = εnum for all foundation points,
Eq. (18) can be written as

εtot[λ] = Mεεnum, (19)

with Mε being the magnification factor of the
numerical error:

Mε[n, SF] =

√√√√ n∑
j=1

q2
j . (20)

It can already be concluded that the error
will be the largest at λ = λmax. To see whether
this error is significant in comparison with the
truncation error, it is calculated for the C-shape
example in the next section.

3 Verification

The analysis approach described in the previ-
ous section has been implemented in MATLAB,
as well as linear and non-linear analysis. Since
the non-linear FEM code was self-written, there
was need to validate whether it performed cor-
rectly. A few analytical tests were done, as well
as a comparison with a case solved with Comsol.
Those results can be found in Appendix C, which
concludes that the code is working adequately.

To test whether approximated analysis can
capture part of the geometric behaviour in struc-
tural analysis, a minimum working example
shown in Appendix B is simulated using linear,
non-linear and approximated analysis. This was
a two DOF problem that showed that using ap-
proximate analysis might be a viable form of
structural analysis.

Next, approximate analysis is tested on two
simple finite element load cases. First, a sim-
ple beam in bending is analyzed to clarify the
relation between the accuracy of approximate
analysis and the load factor used in the prob-
lem. Next, the C-shape problem as proposed by
Yoon et al. (2005) is solved using approximate
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and non-linear analysis, to show the effect of ap-
proximate analysis on element inversion. In ad-
dition, the impact of the number of foundation
points and scale factor on the accuracy of ap-
proximate analysis and the amount of iterations
needed is investigated. For both tests, a Young’s
modulus of 1 kPa is used for solid material and
a Poisson ratio of ν = 1/3.

To measure computational effort the amount
of linear solves #S is compared. To measure the
accuracy of the different kinds of analysis, the
error of the deflection in the x and y direction is
compared to non-linear analysis in the following
way, where ux is the deflection of the node in the
x direction according to the analysis used and
ux,NL the deflection of the same DOF according
to non-linear analysis:

εx[%] =

(
ux

ux,NL

− 1

)
· 100%. (21)

The load case and dimensions for the simple
beam in bending can be seen in Fig. 8. It is
important to note that this example does not try
to mimic a real-world beam in bending. On top
of that, due to shear locking, non-linear analysis
will find an incorrect solution. The idea behind
this example is to show how close approximate
analysis is to the solution found by non-linear
analysis.

The results of this test can be seen in Fig. 8.
This figure shows that, in comparison with lin-
ear analysis, the deflections according to approx-
imate analysis are a lot closer to the deflections
calculated with full non-linear analysis, as long
as the deformation stays within the mildly non-
linear domain. This is seen even more clearly in
Fig. 9, which shows the relation between error
in the deflection versus the load factor. After a
load factor of λ = 2 has been reached, the error
of approximate analysis increases rapidly.

Element inversion is unlikely to happen while
calculating the foundation points, as the loads
at the foundation points is low compared to
the maximum load in the load case. But the
deformation of void elements according to ap-
proximate analysis is still important to investi-
gate. Elements that are highly deformed result

in bad sensitivities, which causes designs with
unwanted features or causes divergence of the
optimization. To investigate the deformation of
void elements the C-shape problem as proposed
by Yoon et al. (2005) is solved using approxi-
mate analysis. The problem consists of a solid
C and a void inner section. The ratio in Young’s
modulus for void and solid elements is 10−9

Figure 8: The bending of a horizontal beam ac-
cording to linear, non-linear and approximate
analysis with an applied load of fin = 1 N, which
corresponds to λ = 1. On the bottom three
beams the load factor λ = 1, On the top three
beams the load factor λ = 2. The green dot
is the node on which the error analysis is done.
The approximate analysis is done with SF = 50
and n = 6 foundation points.

Figure 9: The error of the deflection on the green
node in Fig. 8 for linear and approximate anal-
ysis, compared tot non-linear analysis.
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(a) C-shape load case, in white the void ele-
ments, in black the solid elements.

(b) Non-linear analysis. (c) Approximated analysis.

Figure 10: Comparing the solution to the C-shape problem (Yoon et al., 2005) for approximated
analysis and non-linear analysis. Approximate analysis is done with SF = 50 and 4 foundation
points.

Table 1: Error εx and εy in approximate analysis
for 4, 5 and 6 foundation points and different
load factors compared to linear and non-linear
analysis.

λ = 0.5 λ = 1 λ = 1.5

Analysis εx εy εx εy εx εy

Linear 60.9 9.37 70.2 26.7 72.4 48.3

n = 4 4.71 1.18 18.0 11.7 33.0 43.4

n = 5 1.64 0.41 20.3 4.37 85.6 13.3

n = 6 0.54 0.01 5.28 6.26 12.7 48.8

#N #S #N #S #N #S

Linear 1 1 1 1 1 1

n = 4 3 7 3 8 3 9

n = 5 4 7 4 8 4 10

n = 6 5 8 5 9 5 10

NL 2 17 3 26 9 100

NL: non-linear analysis, Linear: linear analysis,
#N: amount of load steps, #S: linear solves.

The load case and deformations can be seen
in Fig. 10, for which the results are tabulated in
Table 1. Just like the beam in bending, the qual-
ity of approximate analysis gets worse if the load
factor in Fig. 10 increases. For λ = 1 the defor-
mation of most elements in the C-shape problem
stays within realistic values, whilst the solid part
has a smaller error in the deflection than linear
analysis. This is however only true for the mildly
non-linear domain.

There is a trend in increasing accuracy with
the number of foundation points n as shown in
Table 1. This comes at the cost of an increased
amount of linear solves. To make the compar-
ison in linear solves fair to non-linear analysis,
the lowest amount of load steps #N was used,
such that the Newton-Raphson scheme did not
diverge. For all load levels in this example, the
amount of linear solves is significantly lower than
for non-linear analysis.

The accuracy of approximate analysis as a
function of the scale factor seems to converge
to some value, as can be seen in Fig. 11. Scale
factors below SF = 2 need significantly more
linear solves than higher scale factors (the high-
est #S = 61, which was cut off the graph for
readability). As the error converges the number
of linear solves does as well for a minimum of
#S = 6.
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Figure 11: Scale factor sweep for the C-shape
problem posed in Fig. 10a with 4 foundation
points.

Concerning the numerical error of approx-
imate analysis, Eq. (19) can be investigated,
which shows that the numerical error is mag-
nified by factor Mε. A plot showing the relation
between the magnification factor and scale fac-
tor can be seen in Fig. 12. This line grows expo-
nentially, with the exponent being the maximum
order of derivative used in constructing ũ. For
the SF used in Fig. 10c (SF = 50 and n = 4),
the magnification factor Mε = 2.44 · 106.

The value εnum can be calculated with use
of the tolerance setting TOL = 1 · 10−12 of
the Newton-Raphson scheme used to obtain
the foundation points uj, which converged if
‖r‖/‖f ext‖ ≤ TOL. Now if the error on ‖uj‖
is assumed to be the same order of magnitude
and that the numerical error on every DOF has
the same value, εnum can be calculated in the
following way:

εnum

√
#DOFs = TOL. (22)

In the case of the C-shape problem with
#DOFs = 121 this error becomes εnum = 1.1 ·
10−11. Substituting εnum back into Eq. (19)
delivers the absolute numerical error per DOF
εtot =2.68× 10−5 m. This error is insignificant
in comparison with the mathematical error val-
ues seen in this example. However, it must be
noted that for a SF = 1 · 103, the magnification
factor is 2 · 1010, which yields a total error of
εtot =0.22 m. From that point on the numeri-
cal error becomes significant with respect to the

Figure 12: Magnification factor Mε as a function
of scale factor for the C-shape problem posed in
Fig. 10a with different amounts of foundation
points.

deflection of the tip, which might explain the un-
stable behaviour of the errors above SF = 1 ·103

in Fig. 11.
The amount of foundation points influences

the numerical error in the way that the exponen-
tial growth of magnification factor Mε is to the
power n − 1. This means that numerical noise
will occur for a lower scale factor than shown
in Fig. 11 if the amount of foundation points is
increased.

It must be noted that the estimation of εnum

is quite conservative, as the influence of the tan-
gent stiffness matrix on εnum is not accounted for
and the assumption that the error is the same for
all DOFs is not true. The error in the deflection
of solid elements is probably lower as the accu-
racy of these DOFs influences the norm of the
residual more than the accuracy of void deforma-
tions. Judging by the noise in Fig. 11, the error
starts being significant at SF = 1 ·104, where the
numerical error is 5% of the y−deflection. This
transfers to an absolute error of εtot =0.15 m.
Using Eq. (19) for this scale factor and total er-
ror, the value of εnum =7.45× 10−15 m, which
might be a better estimate.
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4 Topology optimization

formulation

This section covers the general formulation used
for all optimization routines in this paper.

4.1 General optimization setting

In density-based topology optimization the
premise that the design domain is discretized
into elements that all have a density between
fully solid (ρ̄) and void (ρ), which is dependent
on their design variable xk:

ρk = xkρ̄. (23)

The relation between density and stiffness of
the element Ek (Young’s modulus) is defined us-
ing SIMP interpolation (Bendsøe, 1989). Sub-
stituting Eq. (23) for density, the stiffness of the
element can be written as a function of the de-
sign variables. Here Ē is the Young’s modulus
of a solid element and p is the penalty factor:

E[xk] = xpkĒ. (24)

For linear analysis this penalty factor will be
p = 3 for all cases. For non-linear and approx-
imate analysis of force-based structural prob-
lems, this factor will start at p = 1 and in-
crease every iteration until a value of p = 3,
such that no convergence issues of the Newton-
Raphon scheme happen in the beginning of the
optimization routine. The amount with which p
increases is different per numerical example.

The tangential stiffness matrix and internal
force vector are assembled out of the individ-
ual elemental stiffness matrices Kt,e and elemen-
tal internal force vector f int

e (Borst et al., 2012).
Because the elemental tangential stiffness ma-
trix and internal force vectors are linear in the
Young’s modulus, they can be written as multi-
plication of the SIMP function and K̄t,e or f̄ int

e ,
the value both attain for a unit Young’s modu-
lus:

Kt,e[u, xk] = E[xk]K̄t,e[u], (25)

f int
e [u, xk] = E[xk]f̄

int
e [u]. (26)

Because the densities are continuous, a
gradient-based optimizer can be used. In this re-
search MMA (Svanberg, 1987) is used.This opti-
mizer strives to minimize an objective f0, while
conforming to all constraints gl by optimizing
the density field in the given domain:

min
x

f0[x,u],

subject to gl[x,u] ≤ 0,
with l = 1, . . . ,m,
0 < xmin ≤ xk ≤ 1

 . (27)

In order to avoid checker boarding the den-
sity filtering method proposed in Andreassen et
al. (2010) was used. The filter radius rf will for
all numerical examples be expressed in terms of
the side length of the elements. For some exam-
ples, additionally, Heaviside projection is used.
This is done with a slightly altered version of
the projection scheme proposed in Wang et al.
(2011). This scheme projects all density values
above threshold η to one and all values below to
zero. In order to keep the optimization problem
continuous a smooth Heaviside function is built
around η of which the steepness is defined by β.
xmin is added to make sure all values stay above
the minimum density value:

xk = xmin+(1−xmin)·tanh(βη) + tanh (β (xk − η))

tanh(βη) + tanh(β(1− η))
.

(28)
In all examples involving Heaviside projec-

tion, an initial value of β = 1 is used, after which
it is multiplied with 1.05 each iteration until a
maximum value βmax is reached.

4.2 Sensitivity analysis

All sensitivity analyses in this thesis are per-
formed using the adjoint method (Arora et al.,
1979), which makes use of Lagrange multipliers.
The general adjoint method for linear and non-
linear analysis will not be covered here, but can
be found in Appendix A. Instead, focus here is
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on the adjoint method for a approximate analy-
sis.

Say, response function f0 depends on the ap-
proximate analysis of the load-deflection curve,
ũ, which is built with n foundation points.

ũ = ũ[u1,u2, ...un, λ],

f0 = f0[ũ,x].
(29)

Here u1, ...un are the foundation points and
λ is the load factor. To obtain the sensitivities
for response function f0, a Lagrangian is built,
with n governing equations (rj = 0) at the foun-
dation points uj. This is done by introducing a
Lagrange multiplier µj for each governing equa-
tion rj = 0:

fL = f0 +
n∑
j=1

µT
j rj[uj,x]. (30)

Because of Eq. (29), the chain rule can be
used to obtain the sensitivity of fL to one of the
design variables xk via the foundation points:

dfL[ũ,xk]

dxk
=
∂f0

∂xk
+

n∑
j=1

∂f0

∂ũ

dũ

duj

duj
dxk

+
n∑
j=1

µT
j

(
∂rj
∂uj

duj
dxk

+
∂rj
∂xk

)
.

(31)

Combining the terms behind the summations
and expanding rj yields:

dfL
dxk

=
∂f0

∂xk
+

n∑
j=1

(
∂f0

∂ũ

dũ

duj

duj
dxk

+ µT
j

(
∂rj
∂uj

duj
dxk

+
∂rj
∂xk

))
.

(32)

Substituting Eq. (3) into Eq. (32) and col-
lecting terms with state derivatives gives:

dfL
dxk

=
∂f0

∂xk
+

n∑
j=1

((
∂f0

∂ũ

dũ

duj
− µT

j Kt,j

)
duj
dxk

+ µT
j

∂rj
∂xk

)
.

(33)

Now to find sensitivities of any response
function dependent on approximate analysis, we
need to solve one adjoint equation for each µT

j :

∂f0

∂ũ

dũ

duj
− µT

j Kt,j = 0,

dfL
dxk

=
∂f0

∂xk
+

n∑
j=1

µT
j

∂rj
∂xk

.

(34)

First the derivative of ũ with respect to uj
needs to be calculated. This is done by deriving
Eq. (15):

dũ

duj
= qjI, (35)

with (repeated for clarity)

qj[λ] =
n−1∑
i=1

1

i!

(
λ

λmax

)i
((n− 1)SF)i αij. (36)

The partial derivative of the residual
(Eq. (2)) yields:

∂rj[x,uj]

∂xk
= −

∂f int
j [x,uj]

∂xk
. (37)

After substitution of Eq. (35) and Eq. (37)
into Eq. (34) two compact equations remain to
represent the sensitivity of any f0[x, ũ]:

df0[x, ũ]

dxk
=
∂f0

∂xk
−

n∑
j=1

µT
j

∂f int
j

∂xk
(38)

with

Kt,jµj = qj

(
∂f0

∂ũ

)T

. (39)

All the sensitivities needed for specific re-
sponse quantities in the numerical examples can
be found in Appendix A and will be skipped
in the main text. If there are multiple re-
sponse functions in an optimization routine, the
Cholesky factorization of Kt,j can be reused for
the different sensitivities, making the calculation
of the sensitivities quite inexpensive.
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4.2.1 Finite difference sensitivity analy-
sis

To check the analytical sensitivities, a compar-
ison finite difference sensitivities has been per-
formed. The implementation can be found in
Section A.8.

It is already explained in Section 2.3 that the
numerical error obtained in calculating the foun-
dation points is magnified by a quantity. This
means that an analytical sensitivity that is de-
pendent on ũ will also contain this amplified er-
ror.

When the numerical error value of the C-
shape problem is considered(Section 3), the error
of an arbitrary objective function can be esti-
mated, in the case of this example end compli-
ance, which is defined as:

f0 = f extTu. (40)

For the approximate analysis in Fig. 10c,
f0 = 6.62 J. Because εtot is in the order of
∼ 2 · 10−5 and f ext contains only 2 non-zero en-
tries (one of 3 N and one of 2 N) for the free
DOFs, the error associated with f0 will be in
the order of ∼ 10−4. This is not a problem for
the response function, as it is not significant in
comparison to the value of f0. For the analytical
sensitivities in this paper, which depend linearly
on the response function, this was never a prob-
lem as well.

However, for finite difference sensitivity anal-
ysis it might be a problem. For finite differ-
ence analysis of response function f0, a small
perturbation in xk is applied to the design, af-
ter which approximate analysis is done to obtain

Figure 13: The value of the sensitivity for one
element as a function of the scale factor.

perturbed response function value fper. Now to
obtain sensitivities for a response function, fper

is subtracted from f0 after which it is divided
by xk. Since fper and f0 are very close to each
other, their difference in value might be smaller
than the numerical error εglobal, causing instabil-
ities.

This effect is better shown in Fig. 13. In
this figure the sensitivities of response function
f0 = f extTũ are calculated with finite difference
for different scale factors SF. While the deflec-
tion of the structure and value of the response
functions stay similar throughout the parameter
sweep, the value of the finite difference sensi-
tivities start oscillating for higher scale factors
(Fig. 13). This is probably caused by the scal-
ing of the numerical noise described above. For
smaller steps in ∆xk, the oscillations became
more dramatic.

As can be seen in Eq. (19) the error is propor-
tional to qj, which scales with SF to the power
of the highest order of derivative used in the ap-
proximate analysis. Therefore, to check the sen-
sitivities for response functions based on approx-
imate analysis, only low scale factors were used
(SF < 20). On top of that it must be noted that
analytical sensitivities for approximated analysis
do not suffer from this difficulty.

4.3 Quantification of the mea-
surements

To measure the accuracy of approximate anal-
ysis for the numerical examples a few measures
are used. In the cantilever beam and inverter
example, the error of the deflection of a certain
node is measured using Eq. (21). For those ex-
amples the normalized residual is also used as a
measure for accuracy. The normalized objective
value is used as a measure for performance of the
designs. The residual is normalized with the ap-
plied force and the objective value is normalized
with the performance of the non-linearly-based
design f0,NLD, where f0,NL is the performance of
a design according to non-linear analysis:
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rn =
‖r‖
fin

, (41)

fn =
f0,NL

f0,NLD

. (42)

To quantify the amount of computational ef-
fort, the avarage amount of linear solves per iter-
ation #Sa is compared between different kinds of
analysis, these also include linear solves needed
for the sensitivity analysis. Additionally the ac-
curacy in objective function calculation for the
approximation-based designs is calculating by
comparing them to the objective function value
according to non-linear analysis:

εf [%] =

(
f0

f0,NL

− 1

)
· 100%. (43)

5 Numerical examples

In this section three main numerical examples
will be given. Firstly, the end-compliance mini-
mization of a cantilever beam will be considered.
Next an inverter design problem will be solved
and lastly a flexure with constant stiffness will
be designed. The last two examples consider
compliant mechanisms, which is what this pa-
per focuses on. The cantilever beam example is
here as compliance minimization is a accessible
objective within topology optimization.

5.1 Cantilever beam

Optimizing a cantilever beam is a common
benchmark problem in topology optimization.
The results are well known in literature for
topology optimization routines using linear as
well as non-linear analysis, which makes this de-
sign objective a good candidate to assess the per-
formance of approximate analysis. This work
considers a similar case as Buhl et al. (2000).

5.1.1 Objective formulation

The objective in this example is minimization
of the end-compliance, with a constraint on the
volume V (x) used in the design domain. As can

Figure 14: The load case used to optimize can-
tilever beams.

Table 2: Parameter for the optimization routine
described in Section 5.1.1.

E: 3.5 GPa # elements x: 80 rf : 2
ν: 0.4 # elements y: 20 β: -

be seen in Fig. 14, the left side of the domain
is fixed, while at the middle of the right edge a
force fin = 800 N is applied. The parameters that
govern this optimization problem can be found
in Table 2. To the penalty factor (Eq. (24)) for
non-linear and approximate analysis is increased
with 0.05 each iteration until it reaches p = 3.
The mathematical formulation for this problem
is:

min
x

f0 = f ext
T
u,

subject to V (x) ≤ V ∗

}
. (44)

To quantify the performance and accuracy
of approximate analysis for this design objec-
tive, a scale factor and foundation point sweep
are performed. The approximation-based de-
signs, i.e. designs created in a topology op-
timization routine using approximate analysis,
are then compared to linearly and non-linearly
based designs with the measures described in
Section 4.3. The error in deflection in the y di-
rection εy is measured on the node on which fin
is applied (Eq. (21)).

5.1.2 Results

A few things can be said about the designs
produced by different kinds of analysis seen in
Fig. 16. First of all, using linear analysis re-
sults in symmetric designs in the horizontal axis,
while using non-linear analysis, the designs are

20



(a) n = 2, SF = 150 (b) n = 3, SF = 10

(c) n = 3, SF = 150 (d) n = 3, SF = 25

(e) n = 4, SF = 150 (f) n = 3, SF = 65

(g) n = 5, SF = 150 (h) n = 3, SF = 150

(i) n = 6, SF = 150 (j) n = 3, SF = 400

(k) n = 6, SF = 10 (l) n = 3, SF = 105

Figure 15: Cantilever designs for the foundation
point and scale factor sweep. For n = 3, a scale
factor SF = 103 and SF = 104 lead to the same
topology as Fig. 15l

asymmetric. The approximation-based design is
not symmetric in the horizontal axis, just like
the non-linear one, indicating that geometric
non-linearity is taken into account by the op-
timizer. For the impact of the amount of foun-
dation points and the scale factor, the different
designs can be seen in Fig. 15. For most combi-
nations of n and SF the same local minimum is
found, with only (n = 2, SF = 150) and (n = 3,
SF = 65) being different, of which the last one
is the same local minimum as the non-linearly
based design.

Concerning the performance, one can take a
look at Table 3, which shows the performance of
all the designs. There is no clear trend in perfor-
mance nor accuracy visible when the amount of
foundation points of scale factor are varied. The

Table 3: Results for the optimization of can-
tilever beams for a scale factor and foundation
point sweep, compared to the non-linearly based
design.

n SF fn εf εy rn #Sa

2 150 1.03 0.793 0.386 10.2 4

4 150 1.01 0.029 0.013 0.16 7.87

5 150 1.01 0.752 0.819 0.38 9

6 150 1.82 1191 1173 17e3 11.5

6 10 1.01 4e-4 0.001 5e-3 13

3 10 1.01 0.527 0.599 0.36 7

3 25 1.01 0.573 0.654 0.38 7

3 65 1.00 0.585 0.671 0.59 7

3 150 1.01 0.601 0.687 0.40 6.88

3 400 1.01 0.589 0.677 0.40 5

3 1000 1.01 0.6 0.686 0.40 5

LIN 1.00 0.737 0.479 10.1 1

NL 1.00 1.00 0 5.52e-13 5.956

NL: non-linearly based design, LIN: linearly based
design.

designs perform slightly worse, objective value
wise, than linearly and non-linearly based de-
signs. The residual of the approximation-based
designs is nearly two orders of magnitude lower
than residual for the linearly based design. The
amount of linear solves clearly increases with n
and decrease with SF. In comparison to non-
linear analysis, there is no gain in computational
effort for this load case when using approximate
analysis.

There are two outliers in the results. The
first one being the design in Fig. 15i, for which
the optimizer seized to converge. This probably
has to do with the numerical error as described
in Section 3, which tells us that high scale factors
in combination with many foundation points re-
sults in highly magnified numerical errors. To
overcome this problem with n = 6, the scale
factor was lowered, leading to the other outlier
Fig. 15k, which has an extremely low error for
both the deflection and objective value and a
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(a) Linearly based design (b) Non-linearly based design (c) Approximation-based design

Figure 16: Comparing the optimization of a cantilever beam with for load-factor λ = 1. The
approximate analysis was done with n = 3 and SF = 65

(a) Non-linearly based design: λ = 1.5.

(b) Approximation-based design: λ = 1.5.

(c) Non-linearly based design: λ = 2.

Figure 17: Non-linearly based designs for differ-
ent λ values and an approximation-based design
created with n = 5 ans SF = 50.

normalized residual which was 4 orders of mag-
nitude lower than for the linearly based design.

Table 4: Results for the optimization of can-
tilever beams for different values of lambda

λ DesignR fn εf εy rn #Sa

1.5 Fig. 17a 1 0 0 4.80e-11 6.79

1.5 Fig. 16a 0.99 1.63 0.17 15.33 2

1.5 Fig. 17b 1 0.098 0.102 0.1 11

2 Fig. 17c 1 0 0 1.30e-10 149

2 Fig. 16a 1.044 2.813 0.457 20.8425 2

5.1.3 Increasing the load factor

Increasing the load factor of the design problem,
makes the structure behave more non-linearly.

To investigate how large the load can be for ap-
proximate analysis to be accurate enough to re-
sult in well performing designs, the load factor
λ was gradually increased. This worked out up
until a value of λ = 1.5.

Figure 18: The deformed configuration accord-
ing to approximate analysis at iteration 200 for
λ = 1.6 (top) and after buckling effects occur
at iteration 217 (bottom). With n = 4 ans
SF = 150

(a) λ = 0.88 (b) λ = 0.96

Figure 19: The design of Fig. 18 at 217 itera-
tions, according to non-linear analysis for differ-
ent load factors λ.

The designs and results for a load factor
λ = 1.5 can be seen in Fig. 17 and Table 4. The
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Figure 20: Error in the x and y direction of the
deflection for the node at which fin is applied as
a function of the load factor.

local minimum found with approximate analy-
sis is the same as the local minimum found with
non-linear analysis with a similar performance
and a lower error than the linearly based design.
For a load of λ = 1.6 when using approximate
analysis, after many design iterations in which
the design is the one on top in Fig. 18, a process
is started in which the beam with the red circle
in Fig. 17b is eroded. This causes the beam to
buckle, which can be seen in Fig. 19. If non-
linear analysis is used in the topology optimiza-
tion process, the buckled beam loses its load car-
rying capability and will disappear, after which
a design arises as can be seen in Fig. 17c. This
is a process well described in Buhl et al. (2000).
In approximate analysis however, this buckling
is not captured well as can be seen in the bottom
part of Fig. 18, which is confirmed by Fig. 20.
These extreme errors in void and tip deformation
causes the design variables to diverge. Using ap-
proximate analysis thus does not lead to designs
for load factors higher than λ = 1.5.

5.2 Inverter

This numerical example is the first one which
considers compliant mechanism design. It is
the main example to outline the performance of
the approximated analysis within topology opti-
mization. It is used to show the influence of the
parameters that govern the approximated analy-
sis, as well as its performance compared to using
linear and non-linear analysis.

5.2.1 Design objective

One paper that has investigated the influence of
non-linear analysis in inverter design is Pedersen
et al. (2001), whose load case is used to inves-
tigate the influence of approximate analysis on
inverter design. Their load case considers an in-
verter on the microscale. To make it possible to
3D print the designs in order to check the out-
come in a later study, the problem load case and
dimensions were scaled using the Buckingham
π theorem, as explained in for example (White,
2016), to the specifications seen in Fig. 21 and
Table 5. A more thorough explanation of this
scaling can be found in Appendix D. The input
is constrained at 0.833 mm by means of a spring,
such that ratio between the maximum input and
the inverter size is the same as in Pedersen et al.
(2001). Due to symmetry only the top half is
analyzed during structural analysis.

Table 5: Parameter for the optimization routine
described in Section 5.2 and shown in Fig. 24

E: 3.5 GPa # elements x: 200 rf : 6
ν: 1/3 # elements y: 100 β: 10
kout: 6.94 N m−1 fin: 4.63 N η: 0.3

Figure 21: The boundary conditions and load
case that all inverters are subjected to. The
thickness of the design domain is 10 mm, the
other parameters are tabulated in Table 5. This
load case corresponds to λ = 1.

The objective in this optimization routine
is the minimization of the (uout) DOF, which
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Figure 22: For this approximate analysis n = 4
and SF = 50 at iteration 58. The bottom half is
the undeformed design.

equals a maximization of (uout) in the negative
direction. To this end the deflection field u is
pre-multiplied with a vector l, which is a vec-
tor containing only one 1 at the location of the
degree of freedom of interest (uout):

f0 = lTu. (45)

5.2.2 Initial observation

Because approximate analysis is an extrapola-
tion, the optimizer seems to use that to its ad-
vantage. Not the actual objective is minimized
but the deflection field of the foundation points
is optimized to create a large value of uout, which
is unlikely to be correct. This can be seen in
Fig. 22, in which it is also shown that the approx-
imation of the voids in the deflection field have
expanded so much that they are bigger than the
design domain. These unrealistic values cause
the optimizer to create topologies with unwanted
features like clouds or beams in useless locations.
This behaviour is undesired and should be mit-
igated.

The norms of the residual could be used as
a constraint to mitigate the large deflections.
The residual is a measure for force imbalance

Figure 23: This is a design in which the norm of
rs is constrained. For this approximate analysis
n = 4 and SF = 50 at iteration 63. The bottom
half is the undeformed design.

in a structural analysis and therefore indirectly
a measure for accuracy of the displacement field.
However, the value difference in r[u,x] on a DOF
surrounded by void and one surrounded by ma-
terial is large. Therefore this constraint would
focus on shaping solid material, and most likely
not on the deformations in the voids. A slight
study to this effect can be found in Chapter 3 of
this thesis.

To make sure the deformation of void ele-
ments stay realistic as well the values in the
residual vector are normalized with respect to
the stiffness between the DOFs. This is done by
calculating the solid residual rs[u], which is the
residual for a structure with the same deflections
ũ, but considering all elements as solid. This
way, extreme deformations are penalized, such
that the deformation for both void and solid el-
ements stay within realistic bounds:

‖rs‖ ≤ rs,max. (46)

In Eq. (46), rs,max is the maximum value the
norm of the solid residual of the design in the
deformed state is allowed to attain. The con-
straint is effective at constraining excessive de-
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formations, as can be concluded by comparing
Fig. 22 with Fig. 23. Applying this constraint
leads to large intermediate density areas in the
design domain as can be seen in Fig. 23. To
obtain designs without gray areas, the filter ra-
dius was increased to 6 element lengths and a
Heaviside projection was introduced, for which
the maximum value can be found in Table 5. To
make the start of the optimization smooth, 2/3’s
are added to the penalty factor in Eq. (24) for
non-linear and approximate analysis each itera-
tion until it reaches p = 3.

5.2.3 Objective formulation

The constraint on the norm of the solid residual
allows the optimizer to converge. This means
that the objective can be formulated as follows,

min
x

f0 = lTu,

subject to V (x) ≤ V ∗,
‖rs‖ ≤ rs,max

 , (47)

in which the volume is constraint at V ∗ =
20% of the design domain. Finding a value
for rs,max is not trivial. The value should be
high enough such that not all element deforma-
tions are constrained, but low enough such that

there is a low chance of extreme deformations.
For all approximation-based inverter designs the
value rs,max = 1× 104 N turned out to work ad-
equately. It must be noted, that the r0max con-
straint was only added to optimization routines
with approximate analysis, as this constraint is
not necessary for linear and non-linear analysis.

In this numerical example, a foundation
point, as well as a scale factor sweep are per-
formed. The best performing approximation-
based design is discussed in detail. Performance
and accuracy of the designs are compared in two
ways as described in Section 4.3. The error in
objective function evaluation also happens to be
the error in deflection estimation in this case.

5.2.4 Results

Based on the deflection fields shown in
Fig. 24, in which a linearly, non-linearly and
approximation-based design are compared, a few
things can be observed. The linearly based de-
sign overestimates its true performance as ob-
served earlier by Pedersen et al. (2001). The
non-linearly based design performs best of the
three. The approximation-based design per-
forms better than the linearly based design, but
only 73 % as good as the non-linearly based de-

Figure 24: Comparison of the best performing solutions of three optimization routines with differ-
ent structural analysis. For each design the top half is analyzed the same way as in its optimization
routine, the bottom half is analyzed with non-linear analysis. The approximate analysis is done
with n = 6 and SF = 10

.
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Figure 25: The normalized residual of the de-
signs in Fig. 24 during design iterations on a
logarithmic scale.

Figure 26: The performance of the differently
optimized inverters for a range beyond the value
for which they were optimized. All designs
are analyzed using non-linear FEM. The dashed
black line is the maximum deflection of uin in
the design load case.

sign. However, it must be noted that the ap-
proximate analysis of the approximation-based
design has an error εf that is an order of mag-
nitude lower than the error of linear analysis of
the linearly based design, which makes approx-
imate analysis more accurate than linear analy-
sis. This accuracy is also reflected in the value
of the normalized residual, seen in Fig. 25. As
the design cycles go on, the normalized residual
converges to some value, which for the linearly
based design is more than a order of magnitude
larger than the approximation-based design.

Fig. 26 shows how the inverters deflect under
a displacement-based load case, while the design
objective was force-based. Just like in Peder-
sen et al. (2001), it is clearly seen that the lin-

Table 6: Normalized performance of the inverter
designs found in Fig. 24, Fig. 27 and Fig. 28.
LIN and NL are the linearly and non-linearly
based designs respectively.

n SF fn εf rn #Sa

2 10 0.46 165 145 8.52

3 10 0.52 132 23.7 12.2

4 10 0.61 87.1 8.68 15.7

5 10 0.72 38.1 10.7 19.6

6 10 0.73 20.0 12.2 18.3

7 20 0.68 104 66.1 17.2

5 20 0.66 50.7 16.4 17.5

5 40 0.66 56.7 11.6 17.8

5 80 0.65 61.1 10.6 15.6

5 150 0.63 64.1 13.9 14.9

5 250 0.27 54.3 6.42 13.0

LIN 0.50 193 128 2.00

NL 1.00 0.00 7.28× 10−5 138

NL: non-linearly based design, LIN: linearly based
design.

early based design is optimized for infinitesimal
deflection. The non-linearly and approximation-
based designs are both optimized for finite range,
which is reflected in the steepness of the input
output deflection curve in Fig. 26.

Because the norm of the solid residual is con-
strained, designs with lower deformations over-
all are preferred, as the value of the solid resid-
ual is lower. This might be the reason that
the approximation-based designs have the out-
side pivoting points on the beams connected to
uout closer to the center-line of the designs. This
location of the pivoting points also result in a
lower range of movement for uout and thus lower
deformations for all elements.

For different amounts of foundation points,
the designs can be seen in Fig. 27. Design wise,
for different amounts of foundation points, dif-
ferent local minima are found. Both the perfor-
mance and the accuracy seem to increase with
the amount of n as can be seen in Table 6. The
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(a) n = 2, SF = 10 (b) n = 3, SF = 10

(c) n = 4, SF = 10 (d) n = 5, SF = 10

(e) n = 6, SF = 10 (f) n = 7, SF = 20

Figure 27: Results for the foundation point
sweep. The blue dot is the deflection of uout ac-
cording to approximate analysis and the red dot
is the deflection according to non-linear analysis.

exception is the design made with 7 foundation
points, for which the optimization routine was
not very smooth. A design made with 8 founda-
tion points ceased to converge. The norm of the
residual also seems to decrease with the amount
of foundation points, up until n = 4, after which
it increases again.

For different scale factors, the designs can be
seen in Fig. 28. The designs all perform dif-
ferently, but there does not seem to be a trend
in performance as a function of the scale fac-
tor. The optimizer merely finds another local

(a) n = 5, SF = 10 (b) n = 5, SF = 20

(c) n = 5, SF = 40 (d) n = 5, SF = 80

(e) n = 5, SF = 150 (f) n = 5, SF = 250

Figure 28: Results for the scale factor sweep.
The blue dot is the deflection of uout according
to approximate analysis and the red dot is the
deflection according to non-linear analysis.

minimum. If 5 foundation points are used SFs
higher than 250 the optimizer did not converge,
which is probably caused by the high value of
the numerical noise magnification factor Mε as
described in Section 4.2.1.

When computational effort of approximate
analysis is concerned Table 6 also gives insight
on the amount of linear solves for different com-
binations of SFs and n. Important to note is that
all values in this table include the linear solves
needed for the sensitivity analysis as well. More
foundation points requires more linear solves to

27



obtain, as does a lower scale factor. For this
problem it can be said that the computational ef-
fort to obtain approximation-based designs is an
order of magnitude lower than for non-linearly
based designs and an order of magnitude larger
than for linearly based designs. Usually the so-
lution u of last iteration can be used as a start-
ing point in non-linear analysis. In this research
this was not done, as the inverted elements pro-
hibited faster convergence when this is done. If
a method to mitigate inverted elements is used,
this could lead to increased performance of non-
linear analysis.

Lastly, a note on the stability of this load
case. The spring connected to the output DOF
uout constrains the movement of that DOF. A
stronger spring will make the load case more sta-
ble as the value uout can attain goes down. This
is beneficial for approximate analysis, as there is
less opportunity to misuse the extrapolation and
the load case becomes less non-linear in general.
In Appendix E, an optimization routine for the
same design objective as this section has been
performed with an output spring kout that is 5
times stronger. Those results show that an op-
timizer using approximate analysis is capable of
creating designs that perform 97 % as well as
non-linearly based designs, with an error in the
deflection of uout < 1%.

5.3 Flexure

An upcoming paper by Koppen et al. (2021) pro-
poses to design flexures, i.e. compliant hinge el-
ements, by making use of end compliance for dif-
ferent load cases. The main idea is to prescribe
two displacement-based load cases, one for which
the compliance is maximized and the other for
which the compliance is constrained. This way
the stiffness is maximized for deflection in one di-
rection, while in another direction the design is
flexible. As the paper considers only linear anal-
ysis, the designs are optimized for their prop-
erties in the undeformed configuration, and are
only guaranteed to perform for small deflections.
To extend this method for flexures experiencing
larger deflections, we attempt here to optimize

a flexure to have a constant spring stiffness for
a finite deflection.

Figure 29: The load case used to optimize flex-
ures, which have a thickness 20 mm. Note that
this is a displacement-based load case where fflex

is a consequence of the applied displacement.

5.3.1 Objective formulation linear case

First, a flexure is designed with linear analysis
in the optimization process. For this the design
domain in Fig. 29 is discretized in a 100 x 100
element region. The material is chosen to be
PLA (polylactic acid), for which the parameters
can be found in Table 7. Other parameters for
this optimization routine can be found there as
well. For all kinds of analyses the penalty factor
in Eq. (24) p = 3 from the start.

Table 7: Parameters for the optimization routine
of the flexures

E: 3.5 GPa # elements x: 100 rf : 2.5
ν: 1/3 # elements y: 100 β: 50
uflex: 10 mm P : 15 η: 0.5

Since linear theory is used, only the stiffness
for infinitesimal deflections can be influenced. A
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maximum value of compliance for the flex deflec-
tion ensures a maximum force needed to realize
the deflection uflex. This is done with the follow-
ing objective formulation:

min
x

f0 = −f extT

stiff ũstiff ,

subject to f extT

flex ũflex ≤ cmax

}
, (48)

for which cmax is set to 100 J.

5.3.2 Objective formulation for approxi-
mate analysis

The spring stiffness of a flexure can be used in
combination with a deflection to calculate the
strain energy. In the non-linear setting, the
spring stiffness k[u] is dependent on the deflec-
tion and therefore, to calculate the strain en-
ergy, an integral over the deflection should be
performed:

Estrain =

∫ umax

0

k[u]udu. (49)

Now, if a flexure has a spring stiffness that
is constant in, and thus independent of u, the
integral simplifies to:

Estrain =
1

2
ku2. (50)

When a structure deflects linearly, the com-
pliance of the structure is equal to the strain
energy multiplied with a factor two. There-
fore, to optimize a flexure with a constant spring
stiffness, the curve of the compliance as a func-
tion of the deflection should be optimized to be
quadratic.

A quadratic shape of the compliance-
deflection curve is achieved by maximizing a re-
sponse function that is a measure for how well
the compliance deflection curve approximates a
quadratic curve. This measure is obtained by
means of the in-product of two unit vectors, an
idea from Maas (2021).

On load factor λ, P logarithmically dis-
tributed precision points are chosen, such that
there are more points for low values of the load

factor than for high values. At each preci-
sion point the compliance value is evaluated and
stored in vector cλ. This vector is then pre-
multiplied with a vector γ, which contains the
squared values of λ at all precision points. This
objective function is then normalized with the
norm of both vectors and will be called f1:

f1 =
γTcλ

‖cλ‖‖γ‖
, (51)

with

cλ =


fT
1 ũ1

fT
2 ũ2
...

fT
P ũP

 , γ =


λ2

1

λ2
2
...
λ2
P

. (52)

This new response function f1 is 1 when the
two vectors γ and cλ are parallel to each other
and 0 when they are orthogonal.

This measure for the shape of the compliance
curve is now combined with the original objec-
tive formulation Eq. (48) in the following way:

min
x

f0 = −f1f2,

subject to f extT

flex ũflex ≤ cmax

}
, (53)

with

f2 = f extT

stiff ũstiff . (54)

Because the objective is now a combination
of two functions, the chain rule should be used
for obtaining the sensitivities:

df0

dxk
=

df1

dxk
f2 + f1

df2

dxk
. (55)

The full derivation the sensitivity analysis of
function f1 and f2 can be found in Appendix A.
This kind of objective formulation was found to
produce structures with intermediate density el-
ements. As this is not preferred, a Heaviside
projection scheme is applied following the den-
sity filter. This ensures a design with little in-
termediate densities.
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Table 8: Results for the optimization of flexures

n SF f1: εf : #Sa

4 10 0.998 0.209 15.735

4 50 0.997 0.347 13.563

4 300 0.999 0.127 12.739

4 103 0.998 0.187 11

4 104 0.999 0.001 10.994

3 50 0.997 0.293 9.884

5 50 0.998 0.181 16.393

6 50 1.000 0.001 20.723

7 50 0.999 0.044 24.561

linearly based design 0.994 0.645 2

5.3.3 Results

To verify whether the approximation-based de-
signs have a constant stiffness, they are com-
pared to a linearly based design, optimized for
the same flexibility. To do this comparison f1

is calculated with non-linear analysis for all de-
signs. At the same time the accuracy of approx-
imate analysis was measured by comparing the
value of f1 according to approximate and non-
linear analysis, by means of Eq. (43). As a mea-
sure for computational effort the average amount
of linear solves #Sa is compared per design.

All designs can be seen in Fig. 30. Their
corresponding results are tabulated in Table 8.
The first thing to notice is how close all f1 val-
ues are to one. Apparently this response func-
tion has a domain very close to 1, which might
make it a not so ideal response function to evalu-
ate the shape of the compliance load curve. The
value for the linearly based design is the low-
est and its error the largest. It must be noted
that these numbers are hard to interpret as their
differences are very small. Therefore, a load de-
flection curve was calculated for an approxima-
tion and linearly based design. This curve can
be seen in Fig. 31, which shows a severe stiffen-
ing effect for the linearly based design, which is
absent for the approximation-based design. The
deflection corresponding to Fig. 31 can be seen

(a) LIN (b) n = 4, SF = 10

(c) n = 3, SF = 50 (d) n = 4, SF = 50

(e) n = 5, SF = 50 (f) n = 4, SF = 300

(g) n = 6, SF = 50 (h) n = 4, SF = 103

(i) n = 7, SF = 50 (j) n = 4, SF = 104

Figure 30: Flexures for a foundation point and
scale factor sweep. LIN: linearly based design.
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Figure 31: The performance of both flexure de-
signs for the optimized deflection.

in Fig. 32.
Computational effort wise, using approxi-

mate analysis is up to one order of magnitude
more expensive than linear analysis. This has
also to do with the fact that in the approximate
analysis one extra response function is added,
for which there are as many extra linear solves
as foundation points minus one and the fact that
the sensitivities for compliance are self adjoint
for linear analysis. Doing a non-linear analy-
sis however would require finding 15 equilibrium
points on the deflection load curve, and an addi-
tional 15 linear solves when concerning the sensi-
tivity analysis for all precision points. The non-
linear evaluation in Fig. 32 should give an in-
dication of the computational effort. When the
sensitivity analysis is included the amount of lin-
ear solves comes down to #S = 94. This was
deemed too much computational effort and was
therefore not used as a comparison.

For this design objective, the scale factor and
foundation point sweep resulted in many differ-
ent local minima found by the optimizer. There
is no clear trend in the quality of the designs in
the scale factor sweep, only less computational
effort is noticed for higher scale factors. More
foundation points lead to better performing de-
signs which have less of an error when evaluating
f1. However, this comes at a higher computa-
tional cost. Outliers are the design for n = 7
and the one with SF = 104, which were both
the maximum for which the optimizer was able
to converge. The designs are a bit messy, which

probably comes due to the magnified numerical
error.

Because the load cases in this design objec-
tive are displacement-based, there is less oppor-
tunity for the optimizer to misuse approximate
analysis to create unrealistically performing de-
signs. This has a few added benefits. In this case
there is no need for response function to mitigate
misuse as seen in the inverter load case. On top
of that, the optimizer is still able to converge for
very high scale factors, as the numerical noise
has less of an impact on the convergence.

Figure 32: The deflection of the design in
Fig. 30g. The red box indicates the original size
of the flexure. The non-linear analysis for this
flexure took #S = 79.

6 Discussion

This work presents a novel way of structural
analysis, used in topology optimization for com-
pliant mechanisms that exhibit geometrical non-
linear behaviour. Instead of a full non-linear
analysis, the load-deflection curve is approx-
imated by means of a Taylor approximation
around the origin. To build this Taylor approx-
imation, a few equilibrium points, close to the
origin are calculated. The response functions are
then defined in terms of the design variables and
the approximated load-deflection curve.

This section will first discuss approximate
analysis in general, based on the verification of
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the method done in Section 3 and the results of
the numerical examples obtained in Section 5,
after which future research is discussed.

6.1 Characteristics of approxi-
mate analysis

To test how this approximated load-deflection
curve performs in a topology optimization
scheme, a few benchmark problems were stud-
ied. The three numerical examples contain dif-
ferent load cases and response functions in order
to explore the behaviour of approximate analy-
sis. The research questions stated in the intro-
ductions will now be discussed.

Regarding questions 1 and 2, the accuracy
of approximate analysis depends on the non-
linearity of the load case and the number of foun-
dation points and value of the scale factor. The
simple beam in bending and C-shape problem in
Section 3 show that for larger loads, approximate
analysis becomes less accurate. But then in the
optimizations of a cantilever beam, the error in
accuracy is less than 1 % up until buckling ef-
fects occur. The buckling effects induce high er-
rors for certain DOFs, causing divergence of the
optimizer. From this, we can conclude that the
accuracy of approximate analysis depends not so
much on the severity of geometric non-linear ef-
fects in general, but more on the non-linearity of
the load deflection curve of the individual DOFs.

For all cases where an error in deflection was
measured it was noticed that the error decreased
if the number of foundation points increased.
For the scale factor, the story is a bit more nu-
anced, as the C-shape problem shows that the
error in deflection converges for higher scale fac-
tors. This means that increasing the scale factor
leads to a worse accuracy of approximate analy-
sis, but only up until the error has converged.

When compared to linear analysis, approxi-
mate analysis has the potential to be much more
accurate. This was seen in the accuracy of ap-
proximate analysis in the beam in bending and
the c-shape problem in Section 3, as well as
in the inverter example. This potential is only
available in the mildly non-linear domain. The

verification examples showed that when the load
is increased, there is a point, where the error of
approximate analysis crosses the error made by
linear analysis. The inverter example showed
that using approximate analysis in topology op-
timization leads to designs that are more accu-
rate than when linear analysis is used. The er-
ror of the output DOF was decreased up to an
order of magnitude in comparison to linear anal-
ysis. This is because geometrical non-linearities
are taken into account in approximate analysis.

Regarding question 3: the computational ef-
fort of linear, approximate and non-linear anal-
ysis are all an order of magnitude apart for
the inverter load case. For the optimization of
a cantilever beam, the amounts of solves were
similar for non-linear and approximate analy-
sis, up until buckling effects occur. At that
point, approximate analysis diverges, while the
amount of solves needed for non-linear analy-
sis increases tenfold. For the optimization of a
flexure, the number of linear solves needed in
non-linear analysis can only be guessed, but as
described in Section 5.3, would also be close to
an order of magnitude more than for approxi-
mate analysis. In absolute measures, this means
that approximate analysis is much closer to lin-
ear analysis, computational effort wise, than to
non-linear analysis. This makes it appealing for
design problems where computational capacity
is limited. If more precision is needed, approxi-
mate analysis could be used to create an initial
design, after which non-linear analysis takes over
in the optimization routine.

The scale factor and amount of foundation
points influence the number of linear solves
needed to complete the optimization scheme and
the quality of the approximation. More foun-
dation points and lower scale factors lead to
more accurate designs and higher computational
costs. The more geometric non-linear behaviour
is present in a load-deflection curve, the higher
the order of derivative should be in order to ap-
proximate the curve well, which must be taken
into account when deciding on the number of
foundation points. In the end, the choice of n
and SF comes down to a trade-off between qual-
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ity in approximation and computational effort.
Regarding question 4, the implementation

and complexity of the approximated load-
deflection curve, the following can be said: The
mathematical description of a topology opti-
mization routine with approximate analysis is
slightly more complex than one with full non-
linear analysis. However, because the approxi-
mation is based on foundation points that are
found with full non-linear analysis, all existing
mathematical solutions for non-linear analysis
can be used to integrate approximate analysis
in topology optimization. As long as response
function formulations are defined as functions of
the load-deflection curve and quantities that de-
pend on that curve, they can be translated into
the foundation points. On top of that, the ap-
proximated load-deflection curve is continuous
in the load factor, making it possible to define
new kinds of response functions containing the
load factor, like for example the derivative of ũ
to λ.

Considering question 5, there are for now
only three design objectives to compare. The
three design objectives differ in two main points:
the load cases and response functions. The first
two examples both consider a force-based load
case. Force-based load cases have more of a
tendency for the DOFs to diverge. This was
seen in both examples, where the error increases
rapidly when the load crossed a certain value.
The cantilever beam and the in inverter differ in
response function. Because in the inverter exam-
ple 1 DOF is maximized, there is more opportu-
nity for the optimization process to misuse the
error produced by approximate analysis. When
this misuse happens, a way of mitigated is nec-
essary, which in the present work was done by
constraining ‖r0‖. For the cantilever beam, the
misuse was less of a problem, as the response
function has no benefit by maximizing the error
made by approximate analysis. The cantilever
design objective only diverged if the load case
induced buckling effects in the structure, show-
casing that approximate analysis does not catch
such non-linearities well.

It must be noted that the intention was

to use approximate analysis for design objec-
tives that consider compliant mechanisms in the
mildly non-linear domain. The optimization of
the flexure is the perfect example that does jus-
tice to approximate analysis. The load cases are
displacement-based, which makes the structural
analysis of the structure a more stable process
in general, and the response functions have no
gain by misuse of the error produced by approx-
imate analysis. The flexure produced with ap-
proximate analysis is clearly designed for a fi-
nite range of motion, showing a linear relation
in the load-deflection curve. Using this kind of
design objective is perfectly suited for approxi-
mate analysis.

A final word will be devoted to numerical
stability. The inversion of elements seen in non-
linear analysis and the occasional divergence of
the incremental iterative schemes used are quite
a hurdle when implementing non-linear analysis
in topology optimization. The loads seen when
determining the foundation points, granted scale
factors are not close to 1, are so low that inver-
sion of elements and other bifurcation points are
rarely seen. This makes approximate analysis a
much more stable process.

6.2 Future research

When considering the approximation of the
structural behaviour in this work, a few things
could be interesting to investigate further.

• The current code makes use of double-
precision variables, it might be interest-
ing to use variables with a higher preci-
sion to make it possible to make approxi-
mations based on more foundation points.
Of course, the convergence criterion for the
Newton-Raphson scheme should then also
be set to a tighter tolerance. This would
come at a higher computational effort.

• The application point of the approximated
load curve could be chosen differently. For
example, the approximation could be built
halfway the full load, such that the approx-
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imation is a better representation of the
load-deflection curve.

• To avoid multiple linear solves, reanaly-
sis could be used to find the foundation
points, needed to build the approximated
curve.

• It might be interesting to determine the
number of foundation points on the flow,
by evaluating the accuracy of the load-
deflection curve continuously while build-
ing the approximation, this could be done
by means of the norm of the residual for
example.

Now from a more general perspective, a few
other things might be interesting to research:

• The Taylor approximation is now based on
finite difference equations in u, but could
also be made with finite difference equa-
tions in Kt. This way the order of approx-
imation can be one higher than the num-
ber of foundation points. Doing so would
require some extra thought on what this
would mean for the sensitivities.

• Other ways of approximating the load-
deflection curve might be interesting. Tay-
lor approximations are very general, an
approximation better suited for structural
analysis might perform better. A polyno-
mial fit or function specifically designed for
structural analysis for example.

• Newton-Raphson makes a first-order Tay-
lor expansion, using approximate analysis
by means of a modified Newton-Raphson
scheme might accelerate the process of
non-linear analysis.

7 Conclusion

In topology optimization for compliant mecha-
nisms with finite range, geometric non-linear de-
flections are important to take into account. In-
stead of doing a full non-linear analysis, this re-

search opts to approximate the non-linear load-
deflection curve, based on equilibrium points
close to the undeformed configuration. This so-
called approximate analysis is integrated into
the topology optimization process via these equi-
librium points, making it possible to use the
available mathematical formulas for non-linear
analysis.

The numerical examples indicate that when
approximate analysis is used in topology opti-
mization, designs can be created that outper-
form designs made with linear analysis. Depend-
ing on the load case and response functions, the
result can be as good as when non-linear analysis
is used. The computational effort is reduced an
order of magnitude compared to non-linear anal-
ysis, with the added benefit of numerical stabil-
ity in obtaining the equilibrium points.

The results for the optimization of an in-
verter are promising and show the added ben-
efit of approximate analysis for compliant mech-
anism design. The most interesting result is
the one for the optimization of a flexure, which
showed that it is possible to efficiently optimize
for a desired or undesired linear behaviour of the
designs.

In practice compliant mechanisms show geo-
metric non-linear behaviour and taking that into
account is an absolute design requirement. Ap-
proximate analysis has shown that it can attain
sufficient accuracy to create designs exhibiting
mildly non-linear behaviour.

This new point of view on structural analy-
sis within topology optimization opens a lot of
doors for new research. The hope of the au-
thors of this paper is that this method makes in-
cluding geometric non-linearity into a topology
optimization routine more accessible and thus
will induce interesting new topology optimiza-
tion schemes.
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3
Additional response functions

There are some extra response functions, for which there was not enough time to describe them in
detail, but which are interesting to discuss. Therefore, this chapter will show what the idea behind those
response functions is and what meaningful research has been done already. Three extra response
functions are interesting enough to note here: the second derivative with respect to the load curve, the
norm of the residual and the minimization of reaction forces in a structure.

3.1. Derivatives with respect to the load factor
As approximate analysis is a function of 𝜆, it allows for response functions to be continuous in 𝜆 as
well. This property could be used in response functions. One example is using derivatives of ũ in 𝜆 as
response functions, for example:

𝑓0 =
d2ũ
d𝜆2 𝓁, (3.1)

which is only possible because ũ[𝜆] is a continuous function of 𝜆. The sensitivity analysis for this
response can be found in Appendix A.

This kind of response function might be interesting when a linear relation between input and output
is desired. One could, for example, in the inverter design problem, minimize all derivatives except the
first one to obtain a linear relationship between the input force and output displacement. If a linear
relation between input displacement and output displacement is desired, the load case should just
simply be changed to be displacement­based.

3.2. Norm of the residual
The norm of the residual for a certain deformation of a structure is a measure for force imbalance in
that structure. This measure is also an indirect measure for how accurate the deflection field is for a
given load. It might be interesting to use this as a response function for deflection fields calculated by
linear and approximate analysis. A clearer explanation of this response function is seen in Fig. 3.1.

In this figure, 𝜆 is the load factor and 𝜆max is the maximum load factor for the current structural
analysis. The deflection fields ul and ũ are the linear and the approximate analysis of the real deflection
field (the deflection field for which the system is in equilibrium). r is the residual for a certain deflection
field u and density x, for example:

rlin = fext − fint(ulin,x),
rapp = fext − fint(ũ,x),

(3.2)

where fext and fint are the external and internal force vectors respectively. The sensitivities for this
response function can also be found in Appendix A.

These responses lead to large gray areas as can be seen in Fig. 3.2. This is probably caused by
the fact that the internal forces are highest in elements with a high stiffness. This causes the residual
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Figure 3.1: Two response functions for linear and approximate analysis, that concern the norm of the residual.

(a) Approximate analysis (𝑛 = 4, SF = 50) (b) Linear analysis

Figure 3.2: Iteration 85 of the inverter optimization process for two optimization processes, with a constraint on the norm of the
residual for a maximum of 10N. The design objective and settings are the same as in Section 5.2 of the paper, except for the
output spring, which now has a value of 𝑘𝑜𝑢𝑡 = 13.8mNm−1. These designs did not cross the constraint boundary.

to be larger in the DOFs of that element. Decreasing the stiffness in these elements leads to a lower
value of the residual. Large gray beams are thus created to obtain a high objective value while keeping
the residual low. A Heaviside projection scheme was added to try and solve the problem, but did not
give promising results. Another solution to mitigate this effect was not found.

3.3. Reaction forces
From Koppen et al. (2021) it is known that, in flexure design, a load case like in Fig. 3.3 will result in
two horizontal beams. This allows for a downward motion and high stiffness in the stiff direction. This
is sub­optimal, as the right edge of the design domain moves inward, as the flexure deflects.

One idea to mitigate this inward motion is by constraining the horizontal reaction forces on the right
edge of this flexure. The main idea is that if there are no horizontal forces on the right edge, which is
constrained in the horizontal direction, it will move straight down in an unconstrained situation.

To fulfill this idea, the reaction force at certain DOFs can be used in a response function. In this
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Figure 3.3: The load case for a horizontal moving flexure.

Figure 3.4: Deflection field of a flexure design in which the free direction is downward. The left flexure is optimized by minimizing
the horizontal reaction forces, the right one is the classic formulation. The right edge of the flexure is not vertical in the deflected
form and thus does not work adequately.

small experiment, it was opted to use the norm of the vector containing the horizontal reaction forces at
DOFs of preference, such that some reaction forces can be excluded. To obtain this response function,
first, a clear definition of reaction forces should be given, in this case for linear analysis:

Ku = f, (3.3)

which can be partitioned, in free f and prescribed p DOFs:

[ Kff Kfp
Kpf Kpp

] [ ufup ] = [
ff
fp
] , (3.4)

from which the following relations can be derived:

Kffuf = ff −Kfpup, (3.5)

and
fp = Kpfuf +Kppup. (3.6)

From these, a response function can be constructed to fulfill the requirements described above. In
this response function, A is a diagonal matrix, with ones on the DOFs that need to be included in the
analysis:

𝑓react = √fTpAfp. (3.7)
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This response function is a measure of the reaction forces in the design domain. The matrix A
allows for picking the preferred DOFs, which makes it possible to only measure the horizontal reaction
forces on the right edge of the design domain. The sensitivity analysis of this response function is quite
complex and can be found in Appendix A.

The implementation of this response function in an optimization routine happens as follows:

min
x

𝑓0 = −fext
T

stiff ũstiff,
subject to fext

T

flex ũflex ≤ cmax
𝑓react ≤ freact,max

} , (3.8)

in which freact,max was set to a low value as to minimize the reaction forces.
This did not work out but did give a nice topology as can be seen in the left figure of Fig. 3.4. This is

probably caused by the fact that the reaction forces are not equal to 0, but a very low value. If someone
were to extend this research, it is advised to minimize those reaction forces.



4
Discussion

This chapter is supplementary to the discussion in the main paper and discusses approximate analysis
from a broader perspective. First, the method will be discussed, after which some response functions
will be discussed as well.

4.1. Approximate analysis
In this thesis, an approximation is made on basis of equilibrium points on the load curve. It might
be interesting to build this approximation in a different way. The mathematics in the finite element
method deliberately skip terms with second­order information in finding the general equations for a
Newton update. If there is a way to calculate this second­order derivative in the initial configuration, a
second­order step Δu could be taken, which might accelerate the Newton process. It might also make it
possible to do an approximate analysis without obtaining equilibrium points with an incremental iterative
scheme.

Material non­linearities might also be interesting to take into account. If the material model is contin­
uous in the elemental strain, part of it could be captured in the foundation points. If that is not enough,
the non­linear material equations could be used to make an approximation of the load­deflection curve
instead of a Taylor expansion. This could be interesting for structures where there are material non­
linearities and no large deflections.

A general trend in all examples is that themathematical error that the approximate analysis produces
gets smaller for decreasing scale factors. This is not in line with the mathematical error of the finite
difference derivatives of the load curve, as that error gets larger for smaller scale factors. We can
conclude from this phenomenon that the mathematical error produced by approximate analysis is in
favor of the equilibrium path for lower scale factors.

It is peculiar for numerical errors to appear in topology optimization. In this work, these errors were
first encountered when obtaining finite difference sensitivities. This led to the belief that the analytical
sensitivities were wrong for a long time, but when the numerical error was discovered it inspired deeper
research on that subject. The errors are not a problem in optimization as there are more than enough
SFs on which responses and analytical sensitivities do not suffer from the errors. When building new
response functions based on approximate analysis, one should take note these errors exist, when
checking the sensitivities.

4.2. Response functions
Constraining ‖rs‖ has shown to be effective in mitigating the effects of unrealistically deformed ele­
ments. It must be noted that this constraint only indirectly steers the imbalance in the solid parts of a
structure to a more realistic solution and is thus more focused on the extreme deformations of void el­
ements. As this function does not allow for strains to become large, it indirectly constrains the range of
motion of the designs obtained with this method. This might explain the difference in the performance
of approximated analysis and non­linear analysis for inverter designs.

For all cases that were compared on basis of the residual, it was shown that the force imbalance
is at least an order of magnitude less when compared to linear analysis. The norm of the residual
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is only indirectly a measure for accuracy of the analysis. That is why all results were compared to a
non­linear analyzed solution as well. If there is another way to measure the accuracy of approximate or
linear analysis, without doing a non­linear analysis, one might use that as a response function to make
more accurate designs. Using the norm of ‖r‖ showed to be effective in constraining the residual
but introduced gray beams. This is probably caused by the fact that the residual is high valued in
the solid material. A combination of this and the ‖r0‖ constraint could be effective in constraining
extreme deformations, while at the same time also constraining the force imbalance in the structure.
Tests performed by the author of this paper in combining those two response functions did not give
promising results yet.

The hinges produced by the density filter in combination with Heaviside projection in the inverter
example are not realistically manufacturable. A method to improve the manufacturability of the designs
is using a robust formulation, which guarantees minimum feature size in the hinges. Using robust
formulations, however, leads to designs that underperformed in comparison to non­robustly optimized
designs. This is probably caused by the thicker hinges, which constrain the range of motion of the
designs. Therefore, the effects of approximate analysis on topology optimization are less visible. The
focus of this paper was to describe approximate analysis as thoroughly as possible and thus it was
opted to not use robust formulation.

The flexure design objective showed values for 𝑓0 that were very close to each other. The objective
for constant spring stiffness could be improved by altering the response function, such that the differ­
ence in the value of 𝑓1 and 𝑓2 are closer to each other. Multiplying 𝑓1 with a high valued scalar would
not work as this only leads to a higher value of 𝑓0. The value of response function 𝑓1 showed to be
very close to 1. Therefore, it might be interesting to subtract a substantial amount from this factor, such
that the value difference is more pronounced, for example, 𝑓3 = 𝑓1 − 0.95. This way, better performing
flexures could be produced, as the optimizer now focuses more on the shape of the compliance­load
curve.

All in all, each new method comes with its own difficulties. The difficulty that is most notable in
approximate analysis is the tendency of the optimizer to misuse the approximation to its benefit. Con­
straining the optimizer to not misuse this approximation is quite a task and using the norm of the solid
residual showed great potential. There are probably better ways of constraining this misbehavior shown
by the optimizer, however, they are yet to be discovered. In this research it was found that the combi­
nation of design objective and load case can be beneficial for approximate analysis, such that misuse
of approximate analysis is avoided. Choosing the design objectives in a similar fashion as the flexure
case in Section 2.5 yields a more stable optimization process.



5
Conclusion

In this work, a method was created to use topology optimization for the design of compliant mechanisms
with a finite range. The method consists of a new kind of structural analysis, approximate analysis, in
which an extrapolation was built on the basis of a few equilibrium points close to the undeformed
configuration of a structure.

This first research done on this type of approximate analysis within topology optimization shows
promising results. Concerning the structural analysis in topology optimization, this method combines
a higher accuracy of the designs compared to linear analysis with a lower computational burden com­
pared to non­linear analysis. For compliant mechanism design in the real world, taking geometrical
non­linearity into account is important and linear analysis does not meet the requirements. Approximate
analysis has shown that it can attain sufficient accuracy to create designs exhibiting mildly non­linear
behaviour.

Outside of compliant mechanism design, approximate analysis might also be useful. In structural
analysis, it might be used to accelerate the Newton­Raphson process, something that is done already
to a certain extent with modified Newton schemes. In the analysis of structures exhibiting material non­
linearity, approximate analysis might be used as a computationally efficient alternative to non­linear
analysis. Approximate analysis could be applied to other physical phenomena where non­linearity
plays a role as well.

Approximate analysis showed great potential for the optimization of finite­range compliant mech­
anisms. The hope of the author is that the implementation and adoption of this method by other re­
searchers may lead to new insights about this way of approximating load­deflection curves.
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A
Sensitivity analysis

This appendix contains all sensitivity analyses performed in this thesis. All sensitivities are obtained
using the adjoint method, for which a recap will be given.

A.1. Adjoint method
The adjoint method (Arora et al., 1979) is slightly different for linear, non­linear and approximate anal­
ysis, which is why they are all three stated here.

Adjoint method for linear analysis
Any response function analyzed with linear FEM can be objected to the adjoint method in the following
way:

𝑓0 = 𝑓0(u,x),
𝑓ℒ = 𝑓0 + 𝝁T(Ku− fext), (A.1)

d𝑓ℒ
d𝑥𝑘

= 𝜕𝑓0
𝜕𝑥𝑘

+ 𝜕𝑓0𝜕u
du
d𝑥𝑘

+ 𝝁T( 𝜕K𝜕𝑥𝑘
u+K

du
d𝑥𝑘

), (A.2)

d𝑓ℒ
d𝑥𝑘

= 𝜕𝑓0
𝜕𝑥𝑘

+ (𝜕𝑓0𝜕u + 𝝁
TK) du

d𝑥𝑘
+ 𝝁T 𝜕K𝜕𝑥𝑘

u. (A.3)

If linear FEM is used, this equation simplifies to the following equation, as first shown in Arora et al.
(1979), then called the ”State­space” method:

d𝑓ℒ
d𝑥𝑘

= 𝜕𝑓0
𝜕𝑥𝑘

+ 𝝁T 𝜕K𝜕𝑥𝑘
u,

𝝁 = −K−1(𝜕𝑓0𝜕u )
T.

(A.4)

All that needs to be done, is to find a solution to the adjoint vector 𝝁 and substitute it into the
d𝑓ℒ
d𝑥𝑘

to get the sensitivities, which are the same as those of the original problem
𝜕𝑓0
𝜕𝑥𝑘

.

Adjoint method for non­linear analysis
Any objective function 𝑓0 can be adjoined with a Lagrange multiplier and a constraint. In this case we
add the equilibrium equation for the FEM, as described in Eq. (2), to the objective, which looks like the
following:
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r = fext − fint(u,x),
𝑓ℒ = 𝑓0 + 𝝁Tr.

(A.5)

Here 𝑓ℒ is the Lagrangian of function 𝑓0 to which it is also equal, since r is equal to zero. This
formulation can then be differentiated with respect to the design variables, which yields Eq. (A.6):

d𝑓ℒ
d𝑥𝑘

= 𝜕𝑓0
𝜕𝑥𝑘

+ 𝜕𝑓0𝜕u
du
d𝑥𝑘

+ 𝝁T( 𝜕r𝜕u
du
d𝑥𝑘

+ 𝜕r
𝜕𝑥𝑘

),

𝜕r
𝜕u = −Kt,

d𝑓ℒ
d𝑥𝑘

= 𝜕𝑓0
𝜕𝑥𝑘

+ (𝜕𝑓0𝜕u − 𝝁
TKt)

du
d𝑥𝑘

+ 𝝁T 𝜕r𝜕𝑥𝑘
.

(A.6)

Because r is equal to zero at equilibrium, 𝝁 is free to choose. Now if 𝝁 is chosen such that (𝜕𝑓0𝜕u −
𝝁TKt) = 0, the general form of the adjoint formulation arises (Buhl et al., 2000):

d𝑓ℒ
d𝑥𝑘

= 𝜕𝑓0
𝜕𝑥𝑘

+ 𝝁T 𝜕r𝜕𝑥𝑘
,

𝝁 = K−1t (
𝜕𝑓0
𝜕u )

T.

(A.7)

Adjoint method for Taylor approximation
The full derivation for the adjoint method for the Taylor approximation is already described in the thesis.
The final equation was:

𝝁𝑖 = 𝑞𝑖K−1t,𝑖 (
𝜕𝑓0
𝜕ũ )

T,

d𝑓0
d𝑥𝑘

= 𝜕𝑓0
𝜕𝑥𝑘

−
𝑛

∑
𝑖=1
𝝁T𝑖
𝜕fint𝑖
𝜕𝑥𝑘

.

(A.8)

A.2. End­compliance
End­compliance of linear analysis
To determine the end­compliance for the linear analysis Eq. (A.4) for the linear adjoint method can be

adjusted with
𝜕𝑓0
𝜕u = 𝑓extT and 𝜕𝑓0𝜕𝑥𝑘

= 0. This gives:

d𝑓ℒ
d𝑥𝑘

= 𝝁T 𝜕K𝜕𝑥𝑘
u,

𝝁 = −K−1(𝑓ext).
(A.9)
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End­compliance of non­linear analysis
The same can be done for the end­compliance for non­linear analysis. Eq. (A.7) can be rewritten with
𝜕𝑓0
𝜕u = 𝑓extT and 𝜕𝑓0𝜕𝑥𝑘

= 0. Then:

d𝑓ℒ
d𝑥𝑘

= 𝝁T 𝜕r𝜕𝑥𝑘
,

𝝁 = K−1t (𝑓ext).

(A.10)

End­compliance of Taylor approximation
Again the same substitution can be used for the Taylor approximation end­compliance with

𝜕𝑓0
𝜕ũ = fextT

and
𝜕𝑓0
𝜕𝑥𝑘

= 0 in Eq. (A.8). This results in:

d𝑓0
d𝑥𝑘

= −
𝑛

∑
𝑖=1
𝝁T𝑖
𝜕fint𝑖
𝜕𝑥𝑘

,

𝝁𝑖 = 𝑞𝑖K−1t,𝑖 𝑓ext.

(A.11)

A.3. 1­DOF
1­DOF for linear analysis
For the 1­DOF response function, the linear sensitivity analysis can be done filling in

𝜕𝑓0
𝜕𝑥𝑘

= 0 and
𝜕𝑓0
𝜕u = 𝑙T in Eq. (A.4). This results in:

d𝑓ℒ
d𝑥𝑘

= 𝝁T 𝜕K𝜕𝑥𝑘
u,

𝝁 = −K−1𝑙.

(A.12)

1­DOF for non­linear analysis
The non­linear sensitivity analysis for the 1­DOF response function can be performed using

𝜕𝑓0
𝜕𝑥𝑘

= 0

and
𝜕𝑓0
𝜕u = 𝑙T in Eq. (A.7).

d𝑓ℒ
d𝑥𝑘

= 𝝁T 𝜕r𝜕𝑥𝑘
,

𝝁 = K−1t 𝑙.

(A.13)

1­DOF for Taylor approximation
This sensitivity analysis using the Taylor approximation for this response function can be done using

the substitutions
𝜕𝑓0
𝜕𝑥𝑘

= 0 and 𝜕𝑓0𝜕ũ = 𝑙T in Eq. (A.8):
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d𝑓0
d𝑥𝑘

= −
𝑛

∑
𝑖=1
𝝁T𝑖
𝜕fint𝑖
𝜕𝑥𝑘

,

𝝁𝑖 = 𝑞𝑖K−1t,𝑖 𝑙.

(A.14)

A.4. Residual
The norms of two residuals are used in this thesis. The procedure of obtaining the sensitivities is the
same, with only the residual itself and the tangent stiffness matrix being different. The derivation for
the normal residual will be given. For the solid residual rs is used in the derivation instead of r, and
instead of Kt,ũ, the tangent matrix of the same deflection, but all elements are solid Kst,ũ is used. Note
that the tangent stiffness matrix and residual are not different for the foundation points.

Residual for linear analysis
It might be interesting to use the residual ofulin in response function, as it is an indicator for non­linearity.
A good scalar representation for this non­linearity would be the norm of the residual:

𝑓0 = √rTr. (A.15)

To be clear, if K is the stiffness matrix of the undeformed configuration, with which a linear analysis
is done, then:

ul = K−1fext,
r = fext − fint(ulin,x).

(A.16)

For readability subscript lin in rlin is dropped and ulin is shortened to ul. ul Is now the deformed
configuration for a linear analysis. In this configuration, the system has a tangent stiffness matrix Kt
and a residual r. Now set up the adjoint equation for the norm of the residual.

𝑓0 = √rTr+ 𝝁T (Kul − fext) , (A.17)

d𝑓0
d𝑥𝑘

= 𝜕𝑓0
𝜕𝑥𝑘

+ 𝜕𝑓0
𝜕ul

dul
d𝑥𝑘

+ 𝝁T(Kdul
d𝑥𝑘

+ 𝜕K
𝜕𝑥𝑘

ul),

d𝑓0
d𝑥𝑘

= 𝜕𝑓0
𝜕𝑥𝑘

+ ( 𝜕𝑓0𝜕ul
+ 𝝁TK)dul

d𝑥𝑘
+ 𝝁T 𝜕K𝜕𝑥𝑘

ul.

(A.18)

The values in Eq. (A.18) can be substituted by:

𝜕r
𝜕𝑥𝑘

= −𝜕f
int

𝜕𝑥𝑘
, 𝜕r

𝜕ul
= −Kt. (A.19)

𝜕𝑓0
𝜕𝑥𝑘

= 1
2√rTr

𝜕(rTr)
𝜕𝑥𝑘

,

𝜕𝑓0
𝜕ul

= 1
2√rTr

𝜕(rTr)
𝜕ul

,

(A.20)

𝜕𝑓0
𝜕𝑥𝑘

= −
rT
𝜕fint
𝜕𝑥𝑘
√rTr

,

𝜕𝑓0
𝜕ul

= − Ktr
√rTr

.

(A.21)
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Now Eq. (A.21) are substituted in the adjoint formulation A.18 to obtain the sensitivities:

d𝑓0
d𝑥𝑘

= −
rT
𝜕fint
𝜕𝑥𝑘
√rTr

+ (− Ktr
√rTr

+ 𝝁TK)dul
d𝑥𝑘

− 𝝁T 𝜕K𝜕𝑥𝑘
ul,

(A.22)

𝝁 = K−1
Ktr
√rTr

,

d𝑓0
d𝑥𝑘

= −
rT
𝜕fint
𝜕𝑥𝑘
√rTr

− 𝝁T 𝜕K𝜕𝑥𝑘
ul.

(A.23)

These equations were successfully validated with finite difference sensitivities.

Residual for Taylor approximation
The following objective function:

𝑓0 = √rTr,
r = fext − fint(ũ,x).

(A.24)

is a bit different from the norm of the residual for linear analysis. Sensitivities are obtained by filling in
Eq. (A.8) (duplicated here for clarity):

𝝁𝑖 = 𝑞𝑖K−1t,𝑖
𝜕𝑓0
𝜕ũ ,

d𝑓0
d𝑥𝑘

= 𝜕𝑓0
𝜕𝑥𝑘

−
𝑛

∑
𝑖=1
𝝁T𝑖
𝜕fint𝑖
𝜕𝑥𝑘

.

(A.25)

Using the same approach as with the linear analysis results in:

𝜕r
𝜕𝑥𝑘

= −
𝜕fintũ
𝜕𝑥𝑘

, 𝜕r
𝜕ũ = −Kt,ũ,

𝜕r𝑖
𝜕𝑥𝑘

= −
𝜕fint𝑖
𝜕𝑥𝑘

, 𝜕r𝑖
𝜕ũ = −Kt,𝑖 .

(A.26)

𝜕𝑓0
𝜕𝑥𝑘

= 1
2√rTr

𝜕(rTr)
𝜕𝑥𝑘

,

𝜕𝑓0
𝜕ũ = 1

2√rTr
𝜕(rTr)
𝜕uũ

,

(A.27)

𝜕𝑓0
𝜕𝑥𝑘

= −
rT
𝜕fintũ
𝜕𝑥𝑘
√rTr

,

𝜕𝑓0
𝜕ũ = −

Kt,ũr
√rTr

.

(A.28)

This yields:
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𝝁𝑖 = −𝑞𝑖K−1t,𝑖
Kt,ũr
√rTr

,

d𝑓0
d𝑥𝑘

= −
rT
𝜕fintũ
𝜕𝑥𝑘
√rTr

−
𝑛

∑
𝑖=1
𝝁T𝑖
𝜕fint𝑖
𝜕𝑥𝑘

.

(A.29)

The equations were tested with the finite difference and were found to be correct.

A.5. Second derivative of the load curve
With approximate analysis, more information on the deflection path of a structure is known, in the sense
that the deflection is continuous in the load factor 𝜆, u[𝜆]. For example, the second derivative in the
load factor on any point on the load curve can be measured. If used, sensitivities are needed, where 𝓁
is a vector with one 1 on the DOF interest:

𝑓0 =
d2u
d𝜆2 𝓁. (A.30)

From Eq. (11) it is known that:

d2u
d𝜆2 = 𝛼1u1 + 𝛼2u2 +…𝛼𝑛un, (A.31)

d𝑓0
du𝑖

= 𝛼𝑖𝓁. (A.32)

Function (𝑓0 = 𝑓0(u1, …u𝑛)), is only dependent on the foundation points, which on their turn depen­
dent on x. So the function is only indirectly dependent on x:

d𝑓0
d𝑥𝑘

=
𝑛

∑
𝑖=1
( d𝑓0
du𝑖

du𝑖
d𝑥𝑘

+ 𝝁T𝑖
dr𝑖
d𝑥𝑘

) ,

d𝑔𝑖
d𝑥𝑘

= d𝑓0
du𝑖

du𝑖
d𝑥𝑘

+ 𝝁T𝑖
dr𝑖
d𝑥𝑘

,

d𝑔𝑖
d𝑥𝑘

= d𝑓0
du𝑖

du𝑖
d𝑥𝑘

+ 𝝁T𝑖 (
𝜕ri
𝜕ui

dui
d𝑥𝑘

+ 𝜕ri
𝜕𝑥𝑘

),

d𝑔𝑖
d𝑥𝑘

= ( d𝑓0
du𝑖

+ 𝝁T𝑖
𝜕ri
𝜕ui

) du𝑖
d𝑥𝑘

+ 𝝁T𝑖
𝜕ri
𝜕𝑥𝑘

).

(A.33)

Now filling in Eq. (A.31) finally results in:

𝝁T𝑖 = 𝛼𝑖K−1t (u𝑖)𝓁,

d𝑓0
d𝑥𝑘

=
𝑛

∑
𝑖=1
(𝝁T𝑖

𝜕fint𝑖
𝜕𝑥𝑘

) .
(A.34)
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A.6. Compliance shape
How well the shape of the compliance approximates a quadratic curve in the load factor 𝜆 can be
defined as follows:

𝑓0 =
𝑓𝑛
𝑓𝑑
= 𝜸Tc𝝀
‖c𝝀‖‖𝜸‖

, (A.35)

𝑓𝑑 = ‖𝜸‖√cT𝝀c𝝀, (A.36)

𝑓𝑛 = 𝜸Tc𝝀. (A.37)
First we define a vector with the compliances at different steps in 𝜆 and a vector with the quadratic

values of 𝜆 and norm 1:

c𝝀 =
⎡
⎢
⎢
⎣

fT1ũ1
fT2ũ2
⋮

fT𝒫ũ𝒫

⎤
⎥
⎥
⎦

, 𝜸 =
⎡
⎢
⎢
⎣

𝜆21
𝜆22
⋮
𝜆2𝒫

⎤
⎥
⎥
⎦
. (A.38)

Gamma is thus not dependent on the design variables or deflection field.

d𝑓𝑑
d𝑥𝑘

= ‖𝜸‖

2√cT𝝀c𝝀

𝜕cT𝝀c𝝀
𝜕u𝑖

dui
dxk

, (A.39)

F =
⎡
⎢
⎢
⎣

f1
f2
⋮
fpp

⎤
⎥
⎥
⎦
, q = 𝑑𝑖𝑎𝑔

⎡
⎢
⎢
⎣

q1
q2
⋮

qpp

⎤
⎥
⎥
⎦
, (A.40)

𝜕c𝝀
𝜕ui

=
⎡
⎢
⎢
⎣

f1q1
f2q2
⋮

fppqpp

⎤
⎥
⎥
⎦
, 𝜕c𝝀
𝜕ui

= qF, (A.41)

𝜕cT𝝀c𝝀
𝜕ui

= [(qF)Tc𝝀]T + cT𝝀qF, (A.42)

𝜕cT𝝀c𝝀
𝜕ui

= 2cT𝝀qF, (A.43)

d𝑓𝑑
d𝑥𝑘

= ‖𝜸‖
‖cT𝝀‖

cT𝝀qF
dui
dxk

. (A.44)

Now for the numerator, using the same methods as for the denominator:

d𝑓𝑛
d𝑥𝑘

= 𝜸TqF dui
dxk

. (A.45)

Putting everything together gives:

d𝑓0
d𝑥𝑘

=
𝑓𝑑

d𝑓𝑛
d𝑥𝑘

− 𝑓𝑛
d𝑓𝑑
d𝑥𝑘

𝑓2𝑑
, (A.46)

d𝑓0
d𝑥𝑘

= 1
‖c𝝀‖2‖𝜸‖

(‖c𝝀‖�̂�TqF− �̂�Tc𝝀
cT𝝀
‖c𝝀‖

qF) dui
dxk

, (A.47)

d𝑓0
d𝑥𝑘

=
‖c𝝀‖�̂�T − �̂�Tc𝝀

cT𝝀
‖c𝝀‖

‖c𝝀‖2‖𝜸‖
qF

dui
dxk

. (A.48)

This sensitivity was checked with a finite difference sensitivity and found to be accurate.
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A.7. Norm of reaction forces
The reaction force at certain DOFs could be used in a response function. In this thesis, the norm of the
vector containing the reaction forces at DOFs of preference was chosen. The DOFs of preference are
chosen such that some reaction forces can be excluded. To obtain this response function, first, a clear
definition of reaction forces should be given, in this case for linear analysis. The equilibrium equations
for linear analysis are:

Ku = f, (A.49)

and can be partitioned, in free 𝑓 and prescribed 𝑝 DOFs:

[ Kff Kfp
Kpf Kpp

] [ ufup ] = [
ff
fp
] , (A.50)

from which the following relations can be derived:

Kffuf = ff −Kfpup, (A.51)

and
fp = Kpfuf +Kppup. (A.52)

From these, a response function can be constructed to fulfill the requirements described above. In
this response function, A is a diagonal matrix, with ones on the DOFs that need to be included in the
analysis:

𝑓0 = √fTpAfp. (A.53)

This function is augmented with equilibrium Eq. (A.51) to

𝑓ℒ = √fTpAfp + 𝝁T(Kffuf − ff +Kfpup). (A.54)

Derivation to x𝑘 yields:

d𝑓ℒ
dx𝑘

= 𝜕𝑓0
𝜕x𝑘

+ 𝜕𝑓0
𝜕uf

duf
dx𝑘

+ 𝝁T (𝜕Kff

𝜕x𝑘
uf +Kff

duf
dx𝑘

+
𝜕Kfp

𝜕x𝑘
up) . (A.55)

This equation contains a lot of terms, which will be derived separately:

𝜕𝑓0
𝜕x𝑘

= 1

2 ⋅ √fTpAfp

𝜕fTpAfp
𝜕x𝑘

= 1
2𝑓0

𝜕fTpAfp
𝜕x𝑘

. (A.56)

which can be solved by substituting Eq. (A.52):

𝜕fTpAfp
𝜕x𝑘

= 𝜕
𝜕x𝑘

((Kpfuf +Kppup)TA(Kpfuf +Kppup)). (A.57)

Solving the derivatives:

𝜕fTpAfp
𝜕x𝑘

= (
𝜕Kpf

𝜕x𝑘
uf +

𝜕Kpp

𝜕x𝑘
up)TA(Kpfuf +Kppup)

+(Kpfuf +Kppup)TA(
𝜕Kpf

𝜕x𝑘
uf +

𝜕Kpp

𝜕x𝑘
up),

(A.58)

𝜕fTpAfp
𝜕x𝑘

= 2(Kpfuf +Kppup)TA(
𝜕Kpf

𝜕x𝑘
uf +

𝜕Kpp

𝜕x𝑘
up). (A.59)

Back substitution in Eq. (A.56) yields:

𝜕𝑓0
𝜕x𝑘

= 1
𝑓0
(Kpfuf +Kppup)TA(

𝜕Kpf

𝜕x𝑘
uf +

𝜕Kpp

𝜕x𝑘
up). (A.60)
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Now only 𝜕𝑓0/𝜕uf is unknown, but can easily be found by the fact that the start is done the same way
as in Eq. (A.56):

𝜕𝑓0
𝜕uf

= 1

2 ⋅ √fTpAfp

𝜕fTpAfp
𝜕uf

= 1
2𝑓0

𝜕fTpAfp
𝜕uf

, (A.61)

which consists of:
𝜕fTpAfp
𝜕uf

= 𝜕
𝜕uf

((Kpfuf +Kppup)TA(Kpfuf +Kppup)), (A.62)

𝜕fTpAfp
𝜕uf

= KT
pfA(Kpfuf +Kppup) + (Kpfuf +Kppup)TAKpf, (A.63)

𝜕fTpAfp
𝜕uf

= KfpAfp + fTpAKpf = 2KfpAfp. (A.64)

This result is back substituted in Eq. (A.61) and yields:
𝜕𝑓0
𝜕uf

=
KfpAfp
𝑓0

. (A.65)

Now substitution of Eq. (A.60) and Eq. (A.65) into Eq. (A.55) yields:

d𝑓ℒ
dx𝑘

= 1
𝑓0
(Kpfuf +Kppup)TA(

𝜕Kpf

𝜕x𝑘
uf +

𝜕Kpp

𝜕x𝑘
up)

+
KfpAfp
𝑓0

duf
dx𝑘

+ 𝝁T (𝜕Kff

𝜕x𝑘
uf +Kff

duf
dx𝑘

+
𝜕Kfp

𝜕x𝑘
up) ,

(A.66)

d𝑓ℒ
dx𝑘

= 1
𝑓0
fT𝑝A(

𝜕Kpf

𝜕x𝑘
uf +

𝜕Kpp

𝜕x𝑘
up) + 𝝁T (

𝜕Kff

𝜕x𝑘
uf +

𝜕Kfp

𝜕x𝑘
up)

+(
KfpAfp
𝑓0

+ 𝝁TKff)
duf
dx𝑘

,
(A.67)

d𝑓ℒ
dx𝑘

= [𝝁T
fT𝑝A
𝑓0
] 𝜕K𝜕x𝑘

[ ufup ] + (
KfpAfp
𝑓0

+ 𝝁TKff)
duf
dx𝑘

. (A.68)

All equations needed to obtain the sensitivities are now complete:

d𝑓0
dx𝑘

= [𝝁T
fT𝑝A
𝑓0
] 𝜕K𝜕x𝑘

[ ufup ] , (A.69)

with

Kff𝝁 = −
KfpAfp
𝑓0

. (A.70)

This sensitivity was successfully validated with a finite difference check.

A.8. Finite Difference check
To check analytical sensitivities, a check file was written. To the check file, a self­chosen design and
load case are supplied. This means that at any moment in a topology optimization routine, the process
can be stopped and the design and load case can be fed into the sensitivity checker. A finite­difference
analysis is done within the check file for every response function used in this thesis. The finite difference
sensitivities are calculated for one element, by perturbing the density of that element by a small Δx.
After that, an analytical analysis is done for all elements. Only the analytical sensitivity of the element
of interest is compared to check the correctness of the analytical sensitivity. For example, for end­
compliance the sensitivity check would look like the following, where the first row is the function value
and the second and third the finite difference and analytical values, respectively:
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Linear analysis Non­linear analysis Approximate analysis
End compliance 2061.493 3114.804 3096.483
Finite difference 11.04235 19.18782 19.41857
Adjoint method 11.04126 19.18619 19.41677

Table A.1: Typical results from the sensitivity analysis check. In this case, end­compliance was considered.



B
Minimal working example

This appendix considers the solutions to the minimum working example as described in the paper.

B.1. Load case

Figure B.1: The three spring model with two DOFs, located at the red dots in the horizontal direction. This model is used
to demonstrate procedures to obtain deflection values u = [v,w]T as a consequence of input force fin on the left DOF. The
stiffnesses of the springs depend on the deflections of the DOFs, represented by u, and are thus geometrically non­linear.

Consider the geometrically non­linear spring model shown in Fig. B.1. This model has three zero­
length springs, which have different stiffnesses 𝑘𝑖(u). Spring one and three are fixed on one side and
connected to spring two on the other side. The connections between the springs are called nodes 1
and 2. This means this system has two degrees of freedom (DOFs) in the horizontal direction, located
at those nodes. The internal forces these springs exert on the free dDOFs fk𝑖 can be calculated in the
following way, from which their stiffness 𝑘𝑖 can be derived:

fk𝑖 = fk𝑖[u],

k𝑖 =
dfint𝑘𝑖
d𝑙 .

(B.1)

Where 𝑙 is the length of the springs and can be written as a function of the deflection of the DOFs,
for example the length of spring two can be written as 𝑙2 = v−w. The springs can exert internal forces
on the DOFs. For example, the internal force on DOF 𝑣 is the sum of the forces produced by spring
one and two:

fintv = fk1 − fk2 , (B.2)

fintw = fk2 − fk3 . (B.3)
On each DOF an external force can be applied. In this example, only on the first DOF a force is

applied. The objective is now to find the correct deflections u for the corresponding external forces. To
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do this the Newton­Raphson method is used, which is explained in Section 2.2. The most important
equation will be copied here:

Kt[u]Δu = r[u], (B.4)

with
r[u] = fint[u] − fext. (B.5)

The Kt­matrix is constructed by differentiating Eq. (B.2) and Eq. (B.3) to DOFs 𝑢 and 𝑣, and as­
sembled into a linear system of equations, in which all variables of Eq. (B.4) are evaluated:

Kt,1 = [
𝑘1[u] + 𝑘2[u] −𝑘2[u]
−𝑘2[u] 𝑘2[u] + 𝑘3[u]] ,

fext = [fin0 ] ,

fint[u] = [f
int
𝑣 [u]
fint𝑤 [u]

] ,

Δu = [ΔvΔw] ,

(B.6)

with which a step Δu can be calculated as:

Δu = K−1t,1 r[u]. (B.7)

Now a new value for u is found and again a step Δu is made. The correct deflections are found if
the system is in equilibrium, which occurs when the external forces equal the internal forces produced
by the spring stiffnesses.

In this example the following internal force functions were used. The odd formulation for spring
one is because this is the analytical function for the problem in Appendix B.1 for a specific length and
stiffness:

𝑓int1 = ((𝑣 − 1/2) ⋅ (3.36 ⋅ 1015 ⋅ (𝑣 − 1/2)2 − 3.36 ⋅ 1016 ⋅ ((𝑣 − 1/2)2 + 100)1/2 + 3.36 ⋅ 1017))
(1 ⋅ 1011 ⋅ ((𝑣 − 1/2)2 + 100)) ,

(B.8)
𝑓int2 = 4(𝑣 − 𝑤), (B.9)

𝑓int3 = 4(−𝑤). (B.10)

Note that springs 2 and 3 are regular linear springs. To demonstrate approximate analysis the
number of foundation points and the scale factor SF were varied.

B.2. Results
As the figures on the following pages indicate, more foundation points lead to better accuracy, just like
lower scale factors. There is a significant difference with linear analysis, which indicates that using
approximate analysis is a viable option. In Fig. B.8 the approximation shows a misfit and diverges
from the equilibrium path directly after a small load, this might be because of a numerical error in
the calculation of one of the points, but it is a perfect showcase of the danger in using higher­order
approximations.
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Figure B.2: Force­deflection
relations for the minimal
working example with 2
foundation points and scale
factor 2 using various
analyses.

Figure B.3: Force­deflection
relations for the minimal
working example with 2
foundation points and scale
factor 10 using various
analyses.

Figure B.4: Force­deflection
relations for the minimal
working example with 2
foundation points and scale
factor 100 using various
analyses.
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Figure B.5: Force­deflection
relations for the minimal
working example with 3
foundation points and scale
factor 2 using various
analyses.

Figure B.6: Force­deflection
relations for the minimal
working example with 3
foundation points and scale
factor 10 using various
analyses.

Figure B.7: Force­deflection
relations for the minimal
working example with 3
foundation points and scale
factor 100 using various
analyses.
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Figure B.8: Force­deflection
relations for the minimal
working example with 5
foundation points and scale
factor 20 using various
analyses.

Figure B.9: Force­deflection
relations for the minimal
working example with 5
foundation points and scale
factor 30 using various
analyses.

Figure B.10: Force­
deflection relations for the
minimal working example
with 5 foundation points
and scale factor 100 using
various analyses.



C
Geometric non­linear FEM

Both analytical tests and comparisons with commercial finite element software were performed to as­
sess the accuracy of the self­written FEM code.

C.1. Analytical verification
The first analytical test performed on the finite element code concerns the calculation of stresses a beam
under tension. The beam has dimensions width 5m, height = 4m and thickness = 1m. The material
has a Young’s modulus of E = 1Pa and a Poisson ratio 𝜈 = 1/3 in a plane strain constitutive relation.
The bottom of the beam is fixed in the vertical direction and the left edge is fixed in the horizontal
direction. A distributed load of 𝐹 = 1N is applied to the right edge. As can be seen in Fig. C.1, due
to the tension, the beam has narrowed to a height of 3.74 m. A simple calculation of the stress is now
possible in combination with the surface area 𝐴 = height × thickness normal to the force:

𝜎𝑥𝑥 =
𝐹
𝐴 =

1N
3.74m2 = 0.26739Pa. (C.1)

The analytical solution of the horizontal stress is equal to the solution found by the finite element
code (figure C.1).

Figure C.1: The stretching of a vertical beam with the corre­
sponding stress distribution. Figure C.2: The rotation of a square with the corresponding

stress distribution

The second test was to rotate a structure such there was no residual stress within the structure and
the deformation was only a rigid body mode. To do this, a structure with dimensions width 5m, height
= 5m and thickness = 1m was considered. The load case is now a vertical displacement of the bottom
left corner, while the bottom right corner is fixed in both degrees of freedom. As can be seen in Fig. C.2,
the rotation of the square according to the finite element calculation is equal to what is to be expected
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Figure C.3: Convergence of the structure and load case in Fig. C.2

when calculated analytically, and the structure is stress­free up until the convergence tolerance. The
convergence per iteration is shown in Fig. C.3, which shows quadratic convergence for the Beam rotate
test.

C.2. Verification with Comsol
A few tests were conducted with both the self­written MATLAB script and a Comsol model with the
same parameters in order to check whether the MATLAB code is working correctly. Three cases were
checked, each with a different amount of elements. All three were force­based. The following features
were used for the three tests using three, twenty, and two­thousand elements.

• Element edge size is 1m

• E = 5 kPa

• 𝜈 = 0.3

• Linear shape functions

• Four integration points

In Fig. C.4, one can see linear and non­linear analyses of the cantilever beam produced in Comsol
(respectively a, d, g and b, e, h) and in the author’s code (c, f, i). The pink beams in the results of
the author’s code represent the linear analysis, while the purple beams correspond to the non­linear
analysis. The Comsol solves provide similar behaviour and corresponding values for displacements
fields compared to the author’s results.

The deflections of the cantilever beams were the same for both the MATLAB FEM package as
well as the Comsol model. The results can be seen in Fig. C.4. The stiffness matrices that Comsol
uses are of a different size, even though the shape functions are set to bilinear and the quads have 4
nodes each. For example, a beam with 8 nodes should have (for linear shape functions) a stiffness
matrix of 16 x 16. Comsol produces a 28 x 28 matrix, with very different values in them. Nevertheless,
the solution obtained with these different linear systems is identical with the author’s code up to the
numerical tolerance. From these results it can be concluded that the written code works and provides
the correct deflections for a given load case.
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(a) Linear analysis (b) Non­linear analysis (c) Pink: Linear analysis, Purple: Non­
linear analysis

(d) Linear analysis (e) Non­linear analysis (f) Pink: Linear analysis, Purple: Non­
linear analysis

(g) Linear analysis (h) Non­linear analysis (i) Pink: Linear analysis, Purple: Non­
linear analysis

Figure C.4: Deformed beam geometries were obtained using linear and non­linear analysis in Comsol Multiphysics in the first
two columns. Solutions created by the self­written code in the third column, for three elements (respectively a,b,c), for twenty ele­
ments (respectively d, e, f), and for two­thousand elements (respectively g, h, i). All self­calculated deflections are in accordance
with the values Comsol calculated.



D
Scaling with Buckingham Pi theorem

The Buckingham Pi method is a key theory in dimensional analysis. The method, as described in
for example White (2016), describes a way of scaling physical phenomena. In the inverter design
objective, we are interested in a design domain that is 3D printable, but conforms to the same relative
displacement relationships as the problem in Pedersen et al. (2001). This scaling is done by keeping
so­called pi groups equal across the different dimensions.

(a) The dimensions used in the design objective of Pedersen
et al. (2001).

(b) The dimensions used in the design objective of Sec­
tion 2.5.

Figure D.1: The difference in dimensions for a similar inverter design objective.

The design domain for the inverter problem is governed by 4 variables, assuming that the design
domain is square. These are the Young’s modulus E, force fin, side length 𝐿 and thickness 𝑡, which
make use of 2 base units, m and N. The pi theorem states that this problem is therefore described
by 4 − 2 = 2 pi groups (White, 2016). The design domain that is solved in this paper has a different
surface area to thickness ratio than Pedersen et al. (2001), and therefore it will not be possible to keep
these two pi groups equal for the different design domains. To still solve a similar problem a pi group
Π, containing all variables is created in the following way. A solution is to be found for 𝑎 ,𝑏,𝑐 and 𝑑, in

Π = E𝑎fin
𝑏𝐿𝑐𝑡𝑑 , (D.1)

such that Π is dimensionless. A process to do this is described in White (2016), which for this
problem yields:

Π = E𝐿𝑡
fin

. (D.2)

If the variables in Fig. D.1a are filled in in Eq. (D.2), the value that is found is Π = 378 ⋅ 103. Now
this value can be used to determine the value of fin in Fig. D.1b if all other variables are filled in for
Eq. (D.2). This yields a force of fin = 4.76N.
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There are two springs attached to the design domain. The first one is attached to the DOF on which
force fin is applied, to constrain the input displacement and the second one is attached to the DOF on
which the output displacement is measured, to mimic the work piece stiffness. The ratio between these
springs happens to be 5/4⋅10−3 according to Pedersen et al. (2001). The maximum displacement was
set to 5/300 of the design domain, which for the case in this paper would mean 5/300 ⋅ 50 = 0.83mm.
To constrain the input displacement for this length and an input force of 4.76N, a spring is needed of
5.55 kNm−1. Keeping the spring ratio constant, yields an output spring of stiffness 𝑘out = 6.94Nm−1.



E
Other solutions to the inverter problem

As described in the discussion section, the load case and design objective combination for the inverter
numerical example can result in instabilities. Approximate analysis is based on points very close to
the undeformed configuration. It is beneficial for the optimizer to create structures with high values of
orders derivatives of uout to 𝜆 near the undeformed configuration, because the approximation of uout
will be a higher value. This happens to be the objective of the design problem, causing the optimizer
to create such structures.

(a) (b)

Figure E.1: Structure created by the optimizer without the ‖r0‖ constraint, in a) the topology and in b) the deflections according
to approximate analysis (Top) and non­linear analysis (Bottom).

One way of making the design problem more stable is to increase the value of the spring connected
to uout. This spring prevents excessive deformations of uout as there is already an intrinsic spring
stiffness connected to the DOF. On top of that, the rotations of the beams of inverters will be lower,
as there is more force needed to overcome the spring force at uout. This is beneficial for approximate
analysis.

To try and compare this approach, the exact same load case, mesh and materials are used as in the
inverter section. Only the spring attached to the degree of freedom uout is increased fivefold to 𝑘out =
34.7Nm−1. First, the optimization routine was tried without the solid residual constraint. These designs
did not converge, as the optimizer still made designs that had unrealistic deformations, which lead to
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weird designs with unwanted features. This can be seen in Fig. E.1, which shows such a design at
47 iterations and the approximate deflections compared to non­linear deflections. Therefore the same
solid residual constraint was added as in the inverter section. The approximate analysis was done with
𝑛 = 5 and SF = 50.

𝑓𝑛 𝜖𝑓 𝑟𝑛 #Sa
Linearly based design 0.69 63.1 542.3 2.0
Non­linearly based design 1 0 9.00E­03 187.0
Approximation­based design 0.97 0.61 16.12 14.9

Table E.1: Performance for the designs in Fig. E.2.

Figure E.2: A comparison with the best performing solutions of three optimization routines with different structural analyses. For
each design the top half is analyzed the same way as in its optimization routine, the bottom half is analyzed with non­linear
analysis.

As can be seen in the Table E.1, which shows the results for the designs in Fig. E.2, the approximation­
based design is on par with the non­linearly­based design, performance­wise. The error in the objective
estimation of approximate analysis, when compared to the non­linear analysis of the approximation­
based design, is 0.61%, which also happens to be the error of the deflection at uout. That is a more
than 200 times more accurate approximation of uout than linear analysis does for its design.

Another note must be made about the deformation field of the void area according to approximate
analysis. This can be seen more clearly in Fig. E.3. The lack of inverted or highly deformed voids for
approximate analysis is beneficial for the design updates, as such elements create wrong sensitivities
(Dijk et al., 2014). Fig. E.4 shows even more deformed elements, which can be explained by the lack
of any response function mitigating these inverted elements.
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Figure E.3: A bigger plot of the deformations of the approximation­based design. The top half is analyzed with approximate
analysis, the bottom half is analyzed with non­linear analysis.
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Figure E.4: A bigger plot of the deformations of the non­linearly based design, analyzed with non­linear analysis.
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