
DELFT UNIVERSITY OF TECHNOLOGY

MASTERS THESIS

Generating Labeled Datasets For Schema
Matching

Author:
Konstantinos CHRONAS

Supervisor:
Dr. Asterios KATSIFODIMOS

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

in the

Web Information Systems Group
Software Technology

Student number: 4923162
Thesis committee: Dr. A. Katsifodimos, TU Delft, chair

Dr. H. Wang, TU Delft
Dr. J. Yang, TU Delft

An electronic version of this thesis is available at
https://repository.tudelft.nl/.

March 19, 2023

http://www.tudelft.nl
http://asterios.katsifodimos.com/
http://www.wis.ewi.tudelft.nl/
https://www.tudelft.nl/en/eemcs/the-faculty/departments/software-technology/
https://repository.tudelft.nl/

iii

DELFT UNIVERSITY OF TECHNOLOGY

Abstract
Electrical Engineering, Mathematics and Computer Science

Software Technology

Master of Science

Generating Labeled Datasets For Schema Matching

by Konstantinos CHRONAS

Matching schemas is a fundamental task in data integration and semantic web ap-
plications. However, generating labeled data for schema matching tasks is challeng-
ing, requiring , requiring an efficient and effective approach. This thesis addresses
this challenge by investigating schema matching techniques and crowdsourcing so-
lutions. We developed a prototype crowdsourcing platform for schema matching
called Crowdie. The platform utilizes a novel pre-filtering algorithm to reduce the
number of possible correspondences and improve the platform’s efficiency while
minimizing the cost of crowdsourcing. Additionally, we designed a simple yet ef-
fective task interface to ensure high-quality labeled data. Our findings demonstrate
that crowdsourcing is viable for generating labeled data for schema matching tasks.
Overall, this work contributes to reducing search spaces and developing crowd-
sourcing solutions for schema matching tasks.

HTTP://WWW.TUDELFT.NL
https://www.tudelft.nl/en/ewi/
https://www.tudelft.nl/en/eemcs/the-faculty/departments/software-technology/

v

Acknowledgements
I express my deepest gratitude to my supervisor Asterios for giving me the opportu-
nity to work on this project. His guidance and expertise were invaluable in shaping
this research work.

Additionally, I would like to thank my friends for their unwavering support
throughout the project, as their encouragement kept me motivated to push through
the challenges.

Finally, I would like to extend my heartfelt appreciation to my family for their
unending love and support, which has been a constant source of strength and inspi-
ration in helping me achieve my goals.

vii

Contents

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 Problem Statement . 2

1.1.1 Efficiency in Schema Matching 2
1.1.2 Effectiveness in Schema Matching 3

1.2 Research Questions . 4
1.3 Contributions . 5
1.4 Outline . 5

2 Literature Review 7
2.1 Schema Matching Techniques . 8

2.1.1 Schema-based techniques . 8
2.2 Schema matching systems . 9

2.2.1 Benchmarks . 10
2.3 Crowdsourcing . 11

2.3.1 Crowdsourcing in Schema matching 12

3 Dimensionality Reduction 15
3.1 Pre-Filtering Technique . 16

3.1.1 Contraint-based technique . 16
3.1.2 Text Processing . 17
3.1.3 Linguistic Technique and External resource 17

3.2 Pre-filtering Technique In Action . 19
3.2.1 Datasets . 20
3.2.2 Evaluation . 20

3.3 Experiments . 22
3.3.1 Constraint-based technique experiments 24

4 Crowdie: a crowdsourcing platform for schema matching 27
4.1 System Architecture . 28

4.1.1 Pre-Filtering Module . 28
4.1.2 Task Creation Module . 29
4.1.3 Crowdie’s User Interface . 29
4.1.4 Aggregation Module . 32

4.2 Task Design . 32
4.3 Quality Control . 34
4.4 Evaluation . 35
4.5 Results . 36

viii

5 Conclusion 39
5.1 Summary . 39
5.2 Discussion Future Directions . 40

5.2.1 Search Space Reduction in Schema Matching 41
5.2.2 Crowdie . 41

A Appendix A 43
A.1 Part of the results for grid search the new york and la data 43

ix

List of Figures

1.1 Pairwise schema matching Rahm and Peukert [2019] 2

2.1 Taxonomy of schema matching techniquesRahm and Bernstein [2001] . 8
2.2 Taxonomy of schema matching techniques Shvaiko and Euzenat [2005] 9
2.3 CrowdMacther system architecture Zhang et al. [2014] 12
2.4 Question designs for schema matching Hung et al. [2013] 13

3.1 Number of missed correct correspondences for each method. 22
3.2 The New York Data threshold distribution of the two methods 24
3.3 The Los Angeles Data threshold distribution of the two methods . . . 24

4.1 Crowdie: System Architecture. 28
4.2 Crowdie: Welcome Page . 30
4.3 Crowdie: Sign In . 30
4.4 Crowdie: About Page . 31
4.5 Example microtask: Workers are asked to match columns between

two tables. 31
4.6 Tasks Page: Available Tasks and Load Microtasks 32
4.7 Tasks Page: Success and Continue . 32
4.8 Task Design of CrowdMatcher Zhang et al. [2014] 33
4.9 Example microtask: Workers are asked to match columns between

two tables. 33
4.10 Example microtask: Workers are asked to match columns between

two tables. 34

A.1 Threshold Exploration Cosine-w2v NY Data 43
A.2 Threshold Exploration Cosine-w2v LA Data 44
A.3 Threshold Exploration Jaro-Winkler NY Data 45
A.4 Threshold Exploration Jaro-Winkler LA Data 46
A.5 Threshold Exploration Levenshtein NY Data 47
A.6 Threshold Exploration Levenshtein LA Data 48

xi

List of Tables

3.1 Number of tables and the labeled combinations for each domain 20
3.2 Wikidata Threshold Exploration Results 23
3.3 Average results of the wikidatas’ table combinations 23
3.4 Average results of the New Table table combinations 23
3.5 Average results of the Los Angeles table pairs 23
3.6 Results of the table combinations that required the minimum thresh-

old for each case. 1) refers to Cosine-w2v, and 2)Cosine-w2v with the
constraint reduction technique . 25

3.7 asdasd . 25

4.1 Number of people who participated in the pilot study with their knowl-
edge background in computer science. 35

4.2 The tasks that were used in the pilot study. 35
4.3 Number of answers each worker provided for their tasks with the

number for labels of that particular task. 36
4.4 Shows the column names of the labeled microtasks from the workers

and whether they are correctly labeled 37

1

Chapter 1

Introduction

In today’s business landscape, companies and organizations are experiencing an un-
precedented surge in the amount and diversity of data they need to handle to meet
their business requirements Nargesian et al. [2019]. Additionally, the variety of data
has broadened, arising from various end-user devices and systems or different teams
within the same company that adopts a more flexible, microservices-oriented design,
resulting in other formats.

Traditionally, organizations used data warehouses as a central repository for stor-
ing data to meet their business needs. However, they can be a bottleneck in large-
scale machine learning and predictive analytics applications due to the high velocity
and volume of data, which makes the curation process cumbersome and impracti-
cal. In such cases, data lakes have emerged as the preferred option. The primary
difference between the two is that data is stored directly in the system, leaving the
curation process to the end user Koutras et al. [2021].

Nowadays, almost all complex data science tasks require data integration. The
primary aspect of data integration is dataset discovery, which involves searching
through multiple data sources to locate relevant datasets and determine how they
relate to one another. Data discovery is a critical component of an ML pipeline. It
helps ensure that the data used to train and test machine learning models is accu-
rate, relevant, and representative of real-world scenarios. In Nargesian et al. [2019],
the authors listed data discovery as one of the biggest challenges in data lake man-
agement, highlighting the need and challenge of on-demand schema matching and
mapping.

An essential part of data discovery is schema matching. When dealing with tab-
ular data, finding relevant datasets involves using schema matching methods to au-
tomatically determine whether columns or entire tables can be combined or merged.
These methods rely on information about how datasets are related to each other, and
the accuracy of the matching technique can significantly impact the effectiveness of
the data discovery process. The exponential data volume and diversity growth in-
creased the demand for schema matching.

However, this process has its challenges, and the lack of a labeled dataset is one
of the most significant obstacles to accurately matching schemas. Unfortunately, the
absence of a labeled dataset is a common problem in many real-world data inte-
gration scenarios, making it difficult to achieve the necessary accuracy in schema
matching. Thus the primary purpose of this work is to propose a pipeline for ac-
quiring labeled datasets for schema matching. Labeled datasets can improve schema
matching systems’ effectiveness.

2 Chapter 1. Introduction

1.1 Problem Statement

Schema matching aims to identify semantic correspondences between metadata struc-
tures or models (schemas, XML, ontologies) Rahm and Bernstein [2001]. Achieving
this goal can be a complex and challenging task. The schemas can be acquired from
different data sources with differences in structures, data types, and semantics. Ad-
ditionally, there can be multiple possible correspondences between elements in dif-
ferent schemas, which makes it difficult to determine the correct one. Hence this
semantic heterogeneity and ambiguity in different schemas make it difficult for au-
tomated approaches to identify the correspondence correctly. The computational
cost of these algorithms also increases complexity when dealing with large schemas
with thousands of elements or many data sources with different schemas.

Schema matching can be performed using pairwise or holistic matching Rahm
and Peukert [2019]. Holistic schema matching is a technique for matching the over-
all structure or schema of two or more data sources to determine equivalent struc-
tures and facilitate integration and interoperability. Unlike holistic schema match-
ing, which compares the overall structure of multiple schemas, pairwise schema
matching focuses on comparing two schemas at a time. The goal of pairwise schema
matching is to identify equivalent or similar elements and relationships between
elements in the two schemas. The result of pairwise schema matching is usually
an equivalence mapping containing the identified semantic correspondences. Algo-
rithms can determine approximate mappings only due to the semantic heterogeneity
of schemas. Therefore, obtaining the correct mapping requires the knowledge of hu-
man domain experts. Furthermore, the results are helpful for data integration tasks
such as merging or integrating the respective schemas. Additionally, most recent re-
search has shifted from generic schema matching to the more specific domain, such
as joinable Zhu et al. [2019] or unionable Nargesian et al. [2018] attribute search,
proving that the scope of the problem is essential in the method design.

FIGURE 1.1: Pairwise schema matching Rahm and Peukert [2019]

According to Rahm and Peukert, automated systems still struggle to achieve
good efficiency and effectiveness despite the evolution of schema matching systems.

1.1.1 Efficiency in Schema Matching

Efficiency refers to the main performance problem for matching large schemas is the
potentially vast search space. Comparing every element of the input schema with

1.1. Problem Statement 3

the source may lead to a high computational cost, especially when the two schemata
contain thousands of elements. In math terms, this could lead to On number of
pairs where O refers to the number of elements of the input schema and n to the
number of elements of the target. Therefore, improving the efficiency of schema
matching systems for large-scale matching is needed by reducing the search space
or employing parallel computation to reduce the runtime or a combination of both.

Parallel computation is used to speed up single matchers by partitioning the
search space and evaluating different partitions in parallel on different processors
Koutras et al. [2021], Amin et al. [2016], Gross et al. [2010]. Reducing the search
space has two potential approaches. The first is applying several schema matching
techniques requiring a low runtime speed and a low similarity threshold. This can
eliminate element pairs below the threshold before applying other matching tech-
niques. The second one is to partition the input schemas into subsets and restrict
similar schema elements to a subset of these partitions Aumueller et al. [2005].

Improving the efficiency of schema matching systems still holds a significant
challenge, especially in pruning distinct elements. Previous pruning techniques
have been used in Ehrig and Staab [2004] and Peukert et al. [2010]. However, since
2010 there have been no significant updates to the subject. Thus the first part of this
work will focus on creating a new low-cost matching technique to reduce the dimen-
sionality of schema matching pairs which will then be compared to previously used
matching techniques.

1.1.2 Effectiveness in Schema Matching

Schema-matching systems need help finding the correct and complete identifica-
tion of semantic correspondences. This problem becomes more difficult for larger
search spaces as the ambiguity and heterogeneity usually increase the possibility of
identifying false match candidates also increases. Researchers over the years have
been trying to improve the effectiveness by utilizing background knowledge from
domain-specific thesauri and dictionaries. Schema matching tools like Artemis Cas-
tano and De Antonellis [2001] and Cupid Madhavan et al. [2001] have used thesauri
and dictionaries to produce more effective results. Another way is to reuse the pre-
vious match results from a maintained repository to utilize background knowledge.
This method has been used by Comma Aumueller et al. [2005] and Gomma Gross
et al. [2010]. Although it holds promise, it requires a complex infrastructure with
persistent storage requirements to infer previous correspondences. Some systems
employ a semi-automatic tunic of match strategies. These approaches use learning-
based or rule-based models. However, this approach requires many labeled data to
discover the optimal parameter settings.

Schema matching has been viewed by Bernstein et al. as an AI-complete prob-
lem. Automated systems, for example, can not make a distinction between country
names and country codes ("Netherlands", "NL"), which guide to the same thing.
Schema matching has been viewed by Bernstein et al. as an AI-complete prob-
lem. For example, automated systems can not make a distinction between coun-
try names("Netherlands") and country codes ("NL"), which guide to the same thing.
Thus, post-processing and repair of the suggested correspondences by domain ex-
perts are required to improve the effectiveness. In general, schema matching tools
utilize a user interface displaying the match results back to the user, indicating the
similarities between the possible correspondences with different colors, such as red
and green. However, this approach has failed when dealing with large schemata
where the number of possible matching pairs radically increases. Attempts have

4 Chapter 1. Introduction

been made to include the verification of schema matching results as part of crowd-
sourcing in Zhang et al. [2014], Hung et al. [2013]. The possible correspondences are
formed as microtasks for the crowd workers to answer.

While crowdsourcing could be a good solution for distributing the verification
workload to multiple workers, it comes with other problems, such as preserving the
quality of the results, keeping the cost low, and making task design choices. There-
fore, the second part of this work will focus on creating a user interface for crowd-
sourcing schema matching tasks to improve the verification process and generate
labeled datasets that could be used to benchmark the schema matching systems to
make them more robust.

1.2 Research Questions

The problem statement states that the schema matching process struggles with ef-
ficiency and effectiveness (see section 1.1). Thus, acquiring labeled datasets from
multiple domains is essential for enhancing the efficiency and effectiveness of auto-
mated schema matching tools. In previous years, researchers have been manually
labeling datasets to test the performance of their systems. However, this process is
time-consuming due to the problems of schema matching. Therefore, we derived
our main research question:

How to create a system architecture for a crowdsourcing platform that gener-
ates labeled datasets for schema matching systems?

To answer this question, a system for acquiring labeled datasets has to consider
the efficiency and effectiveness of schema matching. First, we must address the
efficiency problem derived from the potentially large search space. The focus is to
reduce the search space by using a cost-efficient technique. Reducing the search
space has been done previously in Peukert et al. [2010]. However, not a lot of work
has been done since then, leading to our first sub-research question:

How to create a pre-filtering schema matching technique for search space re-
duction?

A search space reduction technique aims to reduce the number of possible match-
ings without excluding actual matchings. Researchers used a low similarity thresh-
old based on their intuition to achieve that. Thus, we need to identify the best
threshold for our technique by performing a grid search using previously labeled
data. Additionally, we need to compare the performance of our technique with other
techniques used for search space reduction by creating a benchmark test. These lead
to our second sub-research question:

What is the optimal threshold value for search space reduction techniques?

Schema matching systems previously required human verification to improve
their results’ effectiveness. Some works addressed the problem of verifying schema
matching results as a crowdsourcing problem . For our case, we will also use crowd-
sourcing as the second part of our platform to acquire labeled data. Crowdmatcher
Zhang et al. [2014] is one prominent example of using crowdsourcing in schema

1.3. Contributions 5

matching. However, the task design does not contain contextual information, which
leads to our third sub-research question:

What is considered a task, and how to design a task for schema matching?

Finally, we need to create an aggregation algorithm to eliminate wrong answers,
which leads to our final sub-research question:

How to aggregate the results from the crowd?

1.3 Contributions

This section outlines the contributions that emerged while answering our research
questions in the same order, as expressed in section 1.2.

1. A novel pre-filtering algorithm for reducing the number of possible match-
ing pairs given a threshold. This algorithm utilizes a combination of schema
matching techniques that operate on the element level, thereby improving the
efficiency of the schema matching process.

2. A value suggestion for the threshold for removing attribute pairs, which can
control the recall of the filtering process to ensure that no actual matches are
removed. This approach can refine the matching results by filtering out irrele-
vant pairs while preserving potentially valuable pairs for further evaluation.

3. A novel crowdsourcing task design for annotating similar columns for schema
matching.

4. A crowdsourcing prototype platform for schema matching tasks that can gen-
erate labeled data and verify the results of schema matching systems. This
platform allows users to annotate schema elements, generating high-quality
labeled data for evaluating schema matching systems. Additionally, the plat-
form can be used to verify the results of schema matching systems, improving
the overall effectiveness of the matching process.

1.4 Outline

The rest of the thesis is structured as follows. In chapter 2, we conduct a literature re-
view on schema matching to discover schema-matching techniques for search space
reduction. Additionally, we list a couple of schema matching systems to summa-
rize how they work. Finally, we check how crowdsourcing is utilized for schema
matching.

The chapter 3 details the design of our search space reduction technique. In ad-
dition, the chapter explains how we conducted the experiments and which methods
we used for our comparison. Finally, it also presents the results of the experiments.

The chapter 4 showcases the crowdsourcing platform. It details the design of
the platform, the task design choices, and the aggregation algorithm for the crowd
answers. Additionally, the chapter presents the experiments that we used.

We conclude this work in chapter 5 by summarizing our work, its limitations,
and showcasing future directions

7

Chapter 2

Literature Review

In this chapter, we will explore the existing research on schema matching, which is a
crucial step in data integration and interoperability. To answer our first sub-research
question, we will start by examining the various schema-matching techniques that
have been used over the years in section 2.1. We will review these techniques to iden-
tify those that could be used to address the research question at hand. Next, we will
delve into the architecture of schema systems in section 2.2. This section will provide
an overview of the different types of schema systems and their components. We will
also look at some benchmark systems for schema matching to understand the state-
of-the-art in this field. Finally, we will review the literature on crowdsourcing for
schema matching in section 2.3. This section will highlight the various approaches
for leveraging human intelligence for schema matching tasks. We will also exam-
ine the benefits and limitations of crowdsourcing for schema matching so that we
will be able to create our crowdsourcing platform for generating labeled datasets to
answer our main research question.

8 Chapter 2. Literature Review

2.1 Schema Matching Techniques

Over the years, the database community has extensively researched various schema-
matching techniques and combinations. The initial automated techniques were re-
viewed in Rahm and Bernstein [2001], where the authors presented a taxonomy
that categorizes the approaches based on using a single matching technique or a
combination of different ones. They also differentiated schema-level and instance-
level matching techniques. Schema-level techniques operate on schema information,
while instance-level techniques associate with the data content. The taxonomy is de-
tailed in figure 2.1.

FIGURE 2.1: Taxonomy of schema matching techniquesRahm and
Bernstein [2001]

Another review introduced in Shvaiko and Euzenat [2005] expanded the taxon-
omy presented in Rahm and Bernstein [2001] to incorporate into the input infor-
mation three new classes the syntactic, the semantic, and the external class. These
classes were then separated into terminological, structural, and semantic approaches
(see fig: 2.2)

In recent years schema matching surveys have somewhat agreed with the tax-
onomy presented in Shvaiko and Euzenat [2005]. Rahm and Bernstein presented
an updated survey of the developments in schema-matching techniques Bernstein
et al. [2011]. They also included techniques for user interaction and feedback in the
matching process. In Alwan et al. [2017], the authors showcased a detailed classifica-
tion of schema matching approaches designed for instance-based schema matching.

2.1.1 Schema-based techniques

This work will focus on schema-based matching techniques linked to element-level
matching. According to Bernstein et al. [2011], Element level matching seeks to
match the elements belonging to the source schema with elements of the input tar-
get schema. In many cases, it is possible to exploit the schema elements at the finest
level, such as attributes in an XML schema or attributes in a relational schema.

• Linguistic-based techniques affect the linguistic information of the database
schemas, such as the attribute names to determine the match between the input

2.2. Schema matching systems 9

FIGURE 2.2: Taxonomy of schema matching techniques Shvaiko and
Euzenat [2005]

and the source schema. The match is accomplished using stemming, tokeniza-
tion, string and substring matching, and information retrieval techniques.

• External linguistic resources are used to explore the linguistic relations be-
tween the words (for example, synonyms and hyponyms). This is achieved
using common knowledge or domain-specific thesauri, dictionaries, and mis-
match lists.

• Constraint-based techniques are algorithms that deal with the internal infor-
mation of a database, such as the data types, the range of values, the unique-
ness, and the cardinality of attributes and keys.

2.2 Schema matching systems

Schema matching has been challenging over the years, and researchers have created
different systems to automate this task Bernstein et al. [2011]. This work will focus
on systems that work with schemata of any kind (i.e., relational, XML) without the
requirement for an external ontology and use some String, language, or linguistic
techniques for matching Shvaiko and Euzenat [2005]. Some notable schema match-
ing systems are the following:

Artemis (Analysis of Requirements: Tool Environment for Multiple Information
Systems) Castano and De Antonellis [2001] is a schema-matching system that serves
affinity-based analysis and hierarchical clustering of source schema elements. The
affinity-based analysis represents the matching step: in a hybrid manner, it calculates

10 Chapter 2. Literature Review

the name, structural, and global affinity coefficients exploiting a common dictionary.
Using the global affinity coefficients, a hierarchical clustering technique categorizes
classes into groups at different levels of affinity. Each cluster creates a set of global
attributes - a global class. Logical correspondence between the attributes of a global
class and source schema attributes is determined through a mapping table.

Similarity Flooding (SF) Melnik et al. [2002] is a schema matching system that
can be used with relational, RDF, and XML schemas. The input data are transformed
into labeled graphs, and the system manipulates them using a fix-point computation
to create an alignment between the then nodes of the graph. The system uses a
string-based comparison of the vertices labels to obtain the initial correspondences
between the graph nodes, which is also refined within the fix-point computation.
The technique starts with a string-based comparison (common prefix, suffix tests)
of the vertices labels to obtain an initial alignment which is refined within the fix-
point computation. The algorithm uses propagation coefficients to spread similarity
between similar nodes and adjacent neighbors. This process runs until the similarity
measure is increased till the fix-point is reached.

Cupid Madhavan et al. [2001] is a hybrid system consisting of linguistic and
structural schema matching techniques and computes the similarity coefficients with
the help of a domain-specific dictionary. It is designed to be generic across data
models and has been applied to XML and relational examples. Cupid has three
phases. The first phase does linguistic element-level matching and categorizes ele-
ments based on names, data types, and domains. The second phase transforms the
original schema into a tree and then does a bottom-up structure matching, result-
ing in a structural similarity between pairs of elements. The third phase calculates a
weighted mean based on the linguistic and structural similarity of the pairs, and then
this weighted mean is used to decide on a mapping higher than the given threshold.

COMA++(Combination Of Matching Algorithms)Aumueller et al. [2005] is the
extended version of the previous prototype COMA Do and Rahm [2002]. COMA
is a hybrid matching system that considers many linguistic and structural matching
techniques, including various forms of reusing previously determined match results.
A fragment-based match approach also disintegrates a large match problem into
smaller problems. This system can process Relational, XML, and RDF schemas and
ontologies. Coma transforms the input schema into a rooted, directed acrylic graph.
This transformation aims at capturing contexts in which the elements occur. The
final step involves combining the similarity values given by each similarity measure
provided by the user using aggregation operators. Finally, COMA++ shows all the
possible matching pairs whose similarity value is above a given threshold, and the
user checks and validates their accuracy.

Schema matching systems also employ machine learning techniques to automate
the matching process based on previously known mappings. Notable examples are
LSD Doan et al. [2001], and corpus-based schema matching Madhavan et al. [2005].

2.2.1 Benchmarks

The first attempt at a schema matching benchmark is XBenchMatch Duchateau et al.
[2007], which introduced a preliminary system for evaluating schema matching tools.
Nevertheless, it showcased three schema-based methods focusing only on XML data.
XBenchMatch received an update Duchateau and Bellahsene [2014] with more XML
datasets, additional methods, and performance metrics, making XBenchMatch a

2.3. Crowdsourcing 11

more thorough benchmark. However, it must be completed as it excludes instance-
based methods and other data formats. XML is standard in many websites and
applications but is less popular in the database domain.

Another attempt for benchmarking schema matching systems is Valentine Koutras
et al. [2021]. Valentine is an open-source experiment suite that facilitates large-scale
automated matching experiments on tabular data. It incorporates implementations
of key schema matching methods developed from scratch or imported from open-
source repositories. Additionally, it provides a robust framework for executing and
organizing schema matching experiments, allowing researchers to evaluate and sys-
tematically compare different techniques quickly.

2.3 Crowdsourcing

As mentioned above, schema matching holds effectiveness problems for data in-
tegration. Automated tools cannot produce accurate results without facing uncer-
tainty problems. These problems arise from the schema’s inability to fully include
the represented data’s semantics. A solution to reduce the uncertainty is to lever-
age crowdsourcing platforms and ask humans to correct any mistakes made by the
automated toolsZhang et al. [2013].

Crowdsourcing has been a common practice for computer-hard tasks in many
subjects, such as sentiment analysis Borromeo and Toyama [2015], image recogni-
tionArganda-Carreras et al. [2015], and entity resolutionWang et al. [2012]. It can also
benefit data management applications, such as data cleaning Wang et al. [2012], data
integration Demartini et al. [2013], and knowledge construction Amsterdamer et al.
[2015]. Public crowdsourcing platforms such as Amazon’s Mechanical Turk(AMT)
1 and Crowdflower 2 made crowdsourcing easily accessible. These platforms have
two types of users requesters and workers. Requesters are the ones who publish
the tasks on a crowdsourcing platform, and the workers are the ones who perform
the tasks. In detail, requesters first need to design the tasks. This process is called
task design. Task design usually refers to the design of the user interface for the
task, determining the type and requirements of the task Zheng et al. [2011]. The task
types can vary between single-choice, multiple-choice, fill-in-the-blank, and collec-
tion. The requirements refer to the task settings, including the price and time re-
quired to complete the tasks Haas et al. [2015], Zhang et al. [2013]. Additionally,
the requester needs to set quality control techniques Daniel et al. [2018], which can
either be selected from the platform or created using their methods. After the tasks
are published to the platform by the requester, workers can then answer them and
submit the answers to the selected platform Li et al. [2017].

Three core crowdsourced data management techniques must be considered: qual-
ity control, cost control, and latency control. Quality control operates to obtain high-
quality answers from the crowd workers, by categorizing a worker’s quality and
aggregating their answers Daniel et al. [2018]. Cost control aims to reduce human
costs while still keeping good result quality. Latency control exploits how to reduce
the latency by modeling. There is always a trade-off between these three techniques.
Thus, research studies often focus on the balance between them Li et al. [2017].

1https://www.mturk.com/
2http://www.crowdflower.com

https://www.mturk.com/
http://www.crowdflower.com

12 Chapter 2. Literature Review

2.3.1 Crowdsourcing in Schema matching

Crowdsourcing for schema matching can potentially improve the accuracy and cov-
erage of schema matching, especially when dealing with large numbers of schemas
or with highly heterogeneous schemas that change frequently. However, one of the
main challenges of using crowdsourcing for schema matching is ensuring the anno-
tations’ quality and managing the cost of the crowdsourcing process.

Additionally, it’s also important to remember that crowdsourcing can be a cost-
effective way of obtaining labeled data and resolving ambiguities. Schema matching
algorithms usually produce many possible matches that require labeling between
two given schemata for a single worker to label all of them. Therefore, in Zhang et al.
[2013] the authors suggested two frameworks to reduce the uncertainty in schema-
matching tools using crowdsourcing. The tasks include a sequence of Correspon-
dence Correctness Queries (CCQ), which require a simple binary answer from the
crowd to determine the relevancy of the correspondence. The Single CCQ (Corre-
spondence Correctness Question) and Multiple CCQ. Both frameworks take advan-
tage of the Shannon entropy measure to reduce the uncertainty since the result pairs
are usually associated with the probability of being an actual match. Single CCQ
publishes one query with the highest entropy at a time to the crowd workers to get
a binary yes or no answer. In addition, Multiple CCQ is an extension of Single CCQ,
where the crowd workers must answer the top k most contributing queries based on
the entropy measure in parallel.

Zhang et al. incorporated their work in Zhang et al. [2013] in a hybrid machine-
crowd system called CrowdMatcherZhang et al. [2014]. This system incorporates
schema and attributes clustering techniques when the user provides multiple schemata
to create a mediated schema. It also includes automated schema matching tools and
the frameworks mentioned in Zhang et al. [2013] to minimize the cost of crowdsourc-
ing and reduce uncertainty. Figure 2.3 shows an overview of the system architecture.

FIGURE 2.3: CrowdMacther system architecture Zhang et al. [2014]

The correspondences generated by automated schema-matching tools are used
as queries for the crowd. Although, a simple task design of such a question could be:
Does table1.column1 contain the same meaning as table2.column1? The authors in
Hung et al. [2013] suggested that providing contextual information about the match-
ing problem to the questions can guide the crowd workers and increase the accuracy
of their answers. An example of the task design can be seen in figure 2.4. Addition-
ally, they used several constraints to adjust the error rate and reduce worker efforts.

Fan et al. in Fan et al. [2014] explored a machine-crowdsourcing framework for
the web table schema matching problem. They designed a graph-based approach to

2.3. Crowdsourcing 13

FIGURE 2.4: Question designs for schema matching Hung et al. [2013]

capture the columns related to the same concept. Then they proposed an expected
utility algorithm that selects the top k columns that are more beneficial for the crowd
to annotate, which reduces the cost of crowdsourcing. However, their work did not
focus on the quality of the given answers to satisfy the required accuracy for the
minimal number of workers.

15

Chapter 3

Dimensionality Reduction

This chapter presents a novel pre-filtering schema matching technique to reduce the
search space for finding correct correspondences in tabular data. To answer the
first sub-research question on creating a pre-filtering schema matching technique
for search space reduction, we detail the methods used for the pre-filtering algo-
rithm in Section 3.1. The selected methods, datasets, and evaluation metrics used
to benchmark the proposed method are presented in Section 3.2. Finally, the chap-
ter concludes in Section 3.3 by showcasing the results from the evaluation, which
demonstrate the effectiveness of the proposed approach and provides an answer to
our second sub-research question: "What is the optimal threshold value for search
space reduction techniques?".

16 Chapter 3. Dimensionality Reduction

3.1 Pre-Filtering Technique

This new schema matching technique aims to reduce the number of possible pairs
that a schema matching system uses as input to find the correct correspondences.
The design of such a technique has to take into account two considerations. First,
the schema matching methods used previously for this purpose Peukert et al. [2010],
and the category in which they belong according to the literature Bernstein et al.
[2011]. Second, the complexity of the technique. Schema matching is already a com-
putationally expensive process, and thus, the technique should avoid adding more
complexity to the process.

Techniques with low runtime speed have to be selected. Schema-based approaches
that operate on the element level are usually cheap to use. According to the taxon-
omy in Bernstein et al. [2011], these approaches belong to the linguistic, external
resources, and constraint classes. The goal of our suggested technique is to reduce
the number of pairs without losing possible correspondences between two differ-
ent schemata using a similarity measure with a low threshold. To achieve that, we
propose combining schema matching techniques for the classes mentioned above,
which are used sequentially.

First, the algorithm finds all the possible attribute pairs between two tables.
Then, it applies a constraint-based technique to filter out the combination of at-
tribute pairs having dissimilar data types. Natural Language Processing approaches
are used to process the text of the chosen attribute names. Additionally, an external
resource is utilized to discover the semantic relations between the processed text of
the attribute names. Finally, a similarity measure is employed to calculate the sim-
ilarity between the selected pairs and remove the ones that reside below the given
threshold.

3.1.1 Contraint-based technique

The first technique of our method utilizes a constraint-based approach. Constraint-
based approaches are algorithms that deal with the internal information of a database,
such as the data types, the range of values, the uniqueness, and the cardinality of at-
tributes and keys Bernstein et al. [2011]. This work will explore only the information
regarding the data types of the columns in a tabular dataset. Tabular data types can
be the following:

• Numeric data: such as integers or floating-point values

• Categorical data: data that can be divided into distinct categories or groups

• Date and Time data: data that includes a specific date and time

• Text data: unstructured data containing characters, numbers, and symbols.

This technique is simple. It checks whether the data type of the targets’ attributes
is the same as the attributes of the source. However, sometimes specific information
about the data types is absent. Instead, the data type of the attributes is text data.
Therefore, our approach tries to infer the data types of the columns from their in-
stances.

3.1. Pre-Filtering Technique 17

3.1.2 Text Processing

After applying the first technique and keeping the attribute pairs with the same
data type, we employ Nlp techniques to process the names of the selected attributes
Vijayarani et al. [2015]. The attribute naming choices can differ a lot due to the het-
erogeneity of their schema. For example, "FirstName" and "Country_Code" are two
attribute names from different tables that separate the words using various naming
schemes. The algorithm has to account for this problem by processing the text of
the attribute name to distinguish the different words inside it. When the distinction
occurs, the algorithm transforms the given text utilizing the following processes:

1. Lowercasing: Converts all text to lowercase to standardize the text data.

2. Removing Punctuation: Removes all punctuation marks from the text.

3. Removing Stop Words: Removes words that frequently appear in the text but
carry little meaning, such as "a," "an," "the," etc.

4. Tokenization: Divides the text into smaller units called tokens, such as words
or phrases.

These text transformations are crucial to convert text data into a format easily
analyzed and processed by our linguistic technique.

3.1.3 Linguistic Technique and External resource

The processed selected attribute pairs can now be used to find the possible match-
ing pairs using a linguistic technique. Linguistic techniques utilize a string similar-
ity measure to obtain a probability of matching the names between the source and
the target attribute. Our algorithm employs cosine similarity as its string similarity
measure.

Cosine similarity is a similarity measure between two non-zero vectors of an
inner product space. It is defined as the cosine of the angle between the vectors.
The cosine similarity ranges from -1 (entirely dissimilar) to 1 (identical).In our case,
cosine values are normalized to contain values between 0 and 1. In mathemati-
cal terms, given two n-dimensional vectors of attributes, A, B, the cosine similarity,
cos(θ), is represented using a dot product and magnitude as:

cos(θ) =
A · B

∥A∥2 ∥B∥2

where Ai and Bi are the ith components of vectors A, and B respectively 1.
The vectors represent the text as mathematical objects in a multi-dimensional

space. Each dimension in the space corresponds to a feature or attribute of the data
point, and the value in each dimension represents the strength or magnitude of that
feature. The process of transforming data into a vector representation is called vec-
torization Singh [2022]. Vectorization is a common practice in NLP, and there are
a couple of different methods to be considered, including one-hot encoding, bag of
words representation, term frequency-inverse document(Tfidf), and word embed-
dings.

1https://en.wikipedia.org/wiki/Cosine_similarity

https://en.wikipedia.org/wiki/Cosine_similarity

18 Chapter 3. Dimensionality Reduction

• One-hot encoding: Each unique word in a document is assigned a binary vec-
tor with all values set to zero except for the position corresponding to the word,
which is set to one.

• Bag-of-words representation: Each document is represented as a vector of
word frequencies, with each dimension corresponding to a word in the vocab-
ulary and the value representing the number of times that word appears in the
document.

• Term Frequency-Inverse Document Frequency (TF-IDF): Similar to the bag-
of-words representation, but the values are scaled by the inverse document
frequency of each word, which down-weights words that frequently appear
across many documents

These methods can be combined and fine-tuned to produce custom vector repre-
sentations tailored to the specific needs of a particular text analysis task. However,
these vector representations of the words do not convey the semantic relations be-
tween them, which is essential for comparing names between the attributes since the
length of the string is relatively small. Another representation, called word embed-
dings, captures the semantic meaning of the words so that similar words are close to
each other in the vector space. This is typically achieved through training a neural
network on a large corpus of text. The network learns to predict surrounding words
given a target word or to classify words in a particular context. A popular neural
network for generating word embeddings is Word2Vec Mikolov et al. [2013].

The effectiveness of Word2Vec comes from its ability to group vectors of simi-
lar words. Given a large enough dataset, Word2Vec can estimate a word’s meaning
based on its occurrences in the text. These estimates yield word associations with
other words in the corpus. For example, “King” and “Queen” would be similar. You
can find a close approximation of word similarities when conducting algebraic op-
erations on word embeddings. For example, the 2-dimensional embedding vector of
"king" - the 2-dimensional embedding vector of "man" + the 2-dimensional embed-
ding vector of "woman" yielded a vector that is very close to the embedding vector
of "queen."

Word2Vec contains two architectures two main architectures: Skip Gram and
Continuous Bag Of Words (CBOW). Skip-gram model predicts the context words
given a target word. Given a target word, the model takes that word as input and
predicts the surrounding words in a window around the target word. The model is
trained to maximize the probability of the surrounding words given the target word.
On the other hand, the CBOW model predicts a target word given its surrounding
context words. Given a set of context words, the model takes the average of their
word embeddings as input and predicts the target word. The model is trained to
maximize the probability of the target word given the average of the context word
embeddings.

Instead of generating our word embeddings, we employ as an external resource
a Word2Vec pre-trained model that can generate the word embeddings without the
need for training from scratch. We chose the Google News Word2Vec pre-trained
model 2. Google News Word2Vec is a pre-trained Word2Vec model trained on a large
corpus of Google News text data. It has a vocabulary size of 3 million words and
300-dimensional embeddings for each word. This model is a perfect fit for finding
the similarities between attribute names because it includes many words and their
semantic correlation.

2https://code.google.com/archive/p/word2vec/

https://code.google.com/archive/p/word2vec/

3.2. Pre-filtering Technique In Action 19

After acquiring the word embeddings of the attribute names, we compute the
cosine similarity between them. Then, a threshold has to be set by the user. Finally,
the correspondences that are above the given are kept.

3.2 Pre-filtering Technique In Action

In this work, we chose to test the performance of our pre-filtering Technique in ac-
tion. We gathered open-sourced schema matching labeled datasets derived from
current schema matching research Koutras et al. [2021], Koutras et al. [2022] to serve
as our guide for evaluating our dimensionality reduction technique.

Choosing the correct threshold is essential for improving the performance of
search space reduction techniques because it affects the number of attribute pairs
that will be used as input for schema matching systems. Hence selecting a high
threshold will remove a significant number of input pairs. However, setting a high
threshold contains the probability of removing the correct correspondences. To deal
with that, researchers and users of schema matching systems used a low similarity
threshold for search space reduction techniques based on their intuition Rahm and
Peukert [2019].

Having access to labeled datasets allows us to explore how different thresholds
can affect the performance of our reduction technique and helps us suggest the cor-
rect threshold for removing the maximum number of pairs without losing the cor-
rect ones. This threshold exploration will also enable us to answer the second sub-
research question (see section 1.2). Additionally, we check our methods’ runtime
speed and the reduction percentage of the selected against the original size of possi-
ble pairs. The performance of our method will give us insight into whether it could
be a good choice for improving the efficiency of schema matching systems for reduc-
ing the search space.

In addition, we decided to benchmark the performance of our proposed method
against other schema matching techniques to reduce the search space for schema
matching systems. We chose to use only schema-based linguistic techniques that
operate on the element level as our selection as our comparison. The choices of
linguistic techniques are the following:

1. Levenshtein distance: This method measures the minimum number of single-
character edits (insertions, deletions, or substitutions) required to transform
one string into another. The Levenshtein distance ranges from 0 to the length
of the longer string, where 0 indicates an exact match and a larger number
indicates more dissimilarity.

2. Jarro-Winkler: This method is an extension of the Jaro distance that considers
the number of matching characters at the beginning of the strings. It ranges
from 0 to 1, where 1 indicates an exact match and 0 indicates no similarity

3. Coma-Schema-Only: Coma uses a combination of different matching tech-
niques, including syntactic, semantic, and structural matching. We consider
only the techniques used on the element level mapping following the imple-
mentation of Koutras et al. [2021]

4. Cosine-TF-IDF: Cosine similarity with TF-IDF (term frequency-inverse docu-
ment frequency) is a technique for comparing the similarity between two doc-
uments. This approach measures the similarity between two documents as the

20 Chapter 3. Dimensionality Reduction

cosine of the angle between their vectors in a high-dimensional space. Each
dimension represents a unique term in the document.

This is currently the first attempt to evaluate the performance of linguistic match-
ing techniques to reduce the search space for possible correspondences.

3.2.1 Datasets

To evaluate schema matching techniques, we need data from different domains. The
sources’ diversity helps simulate a real-world scenario where data exists in different
data lakes with different schemas.

• Wikidata is a dataset generated from the valentine benchmark library for schema
matching Koutras et al. [2021]. It contains US musician data from Wikidata’s
knowledge base 3. The labels were gathered according to four schema match-
ing with a certain amount of actual column matches between the two datasets:
Unionable: requires all columns, View-Unionable: a common subset of columns,
and (Semantically)-Joinable: one common column.

• OpenData consists of tables from Canada, USA, and UK Open Data, as ex-
tracted from the authors of Nargesian et al. [2018]. The tables represent diverse
sources of information, such as timetables for bus lines, car accidents, job ap-
plications, etc. These were used as training data for SiMa Koutras et al. [2022].
We used labeled data about the New York and Los Angeles municipalities for
our benchmark test.

Each of these benchmarks comes with its own ground truth of matches that
should hold among the columns of different datasets. Ground truth was produced
automatically for datasets fabricated from the same source table and manually for
pairs of columns belonging to datasets of different domains. Table 3.1 shows the
number of tables that were used with the number of their labeled combinations.

Number Of Tables Labeled Combinations
Wikidata 8 4
NY data 11 28
LA data 11 42

TABLE 3.1: Number of tables and the labeled combinations for each
domain

3.2.2 Evaluation

The metrics used in our benchmark measure the schema matching methods’ perfor-
mance. These metrics can be categorized into the following two categories.

Firstly, we consider each method’s runtime speed and reduction percentage. The
fastest method with the highest reduction percentages is what we are looking for in
our case. The reduction percentage is acquired by using the formula below:

ReductionPercentage = (1 − SelectedPairs
TotalPairs

) ∗ 100

3https://www.wikidata.org

https://www.wikidata.org

3.2. Pre-filtering Technique In Action 21

where SelectedPairs is the number of pairs chosen by the method and TotalPais is the
maximum number of possible pairs

Secondly, we utilize classic metrics such as precision, recall, and F1-score. Preci-
sion, recall, and F1-score are metrics commonly used to evaluate the performance of
a binary classifier, which assigns a binary output (e.g., "positive" or "negative") for
each input sample. In our case, we handle the selected attribute pairs from the space
reduction method as if they belong to the positive class and the not selected attribute
pairs to the negative class.

• Precision refers to the proportion of true positive predictions out of all positive
predictions made by the classifier. In other words, it measures the accuracy of
the positive predictions. High precision means that there are few false positive
predictions.

Precision =
TruePositives

TruePositives + FalsePositives

• Recall (also known as sensitivity or true positive rate) refers to the propor-
tion of true positive predictions from all actual positive samples in the data.
In other words, it measures the ability of the classifier to identify all positive
samples. High recall means that there are few false negatives.

Recall =
TruePositives

TruePositives + FalseNegatives

• F1-score is the harmonic mean of precision and recall. It measures the overall
accuracy of the classifier, considering both precision and recall. The F1-score
provides a single scalar value that balances precision and recall and gives a
good idea of how well the method performs in terms of both.

F1 − Score = 2 ∗ Percision ∗ Recall
Percision + Recall

Precision, recall, and F1- score produce values between 0 and 1, with 1 indicating
the perfect value and 0 the worst possible value. We derived the values of TP, FP,
TN, and FN from the following equations:

1. NotSelected = TotalPairs − SelectedPairs

2. FN = MissingPairs

3. TN = NotSelected − FN

4. TP = Labels − FN

5. FP = SelectedPairs − TP

MissingPairs is the number of labeled pairs that were not selected from the method, and labels
consist of the number of the actual matching pairs.

Our evaluation aims to find the threshold for each method’s highest recall to
avoid not selecting the correct correspondences (False Negatives). Then the meth-
ods are compared with their precision and F1-score.

22 Chapter 3. Dimensionality Reduction

3.3 Experiments

In this section, we summarize the results of the experiments mentioned in 3.2 for
the selected datasets 3.2.1. First, we showcase the results of the wikidata. The goal
is to perform a grid search to find the threshold value that selects the maximum
number of possible pairs without removing the correct schema matching pairs for
each selected method. After, we compare the performance of the methods in terms
of the run-time speed, reduction percentage, and precision.

Figure 3.1 presents the number of the labeled matches that the methods missed
using their best threshold, acquired from the grid search for the table combinations
of wikidata. We can observe that Coma-Schema and Cosine-TfIdf did not capture all
the labels. Thus, we did not use them for the next experiment.

FIGURE 3.1: Number of missed correct correspondences for each
method.

Table 3.2 shows the results of the other three linguistic methods (Cosine-W2V,
Levenshtein, and Jaro-Winkler) for the 4 table combinations. At first glance, we no-
tice that our method requires more run-time speed than the other two, but it reduces
the maximum number of pairs in most of the cases than the other two methods.

At first glance, we notice that our method requires more run-time speed than the
other two, but it reduces the maximum number of pairs in most cases than the other
two methods. The average results depicted in table 3.3 prove that our Cosine-W2V
is the most precise method.

Secondly, we explored the performance of the methods using the same criteria
for New York and Los Angeles municipalities datasets. However, in this case, we did
not consider the Coma Schema-Only and Cosine-TfIdf methods since they did not
capture all the labeled matches in the previous exploration. New York Data includes
28 table combinations, and the Los Angeles Data 42. The tables 3.4 and 3.5 showcase
the average results of our experiments. The detailed results for each method can be
seen in the appendix A.

We can observe that the Levenshtein method did not capture the labeled pairs
for all the cases in New York and Los Angeles table combinations since the average
recall is 0.93 and 0.74, respectively. The average recall value below one means that
there were cases where the method assigned actual pairs in the Negative class (False
Negatives). Additionally, for the new york table combination, the Cosine-W2V has
an average runtime speed of 0.09585 ms and an average precision of 0.331768 of

3.3. Experiments 23

Method: Cosine -W2V
Tables (Target - Source) Total Pairs Selected Pairs Actual Pairs Threshold Time

Wikidata Joinable 169 26 6 0.4 0.181
Wikidata Semijoinable 196 100 8 0.2 0.192

Wikidata Unionable 400 319 19 0.1 0.404
Wikidata Viewunionable 169 22 5 0.5 0.170

Method: Jaro-Winkler
Tables (Target - Source) Total Pairs Selected Pairs Actual Pairs Threshold Time

Wikidata Joinable 169 27 6 0.6 0.118
Wikidata Semijoinable 196 175 8 0.4 0.135

Wikidata Unionable 400 389 19 0.3 0.275
Wikidata Viewunionable 169 169 5 0.6 0.115

Method: Levenshtein
Tables (Target - Source) Total Pairs Selected Pairs Actual Pairs Threshold Time

Wikidata Joinable 169 86 6 12 0.113
Wikidata Semijoinable 196 99 8 11 0.132

Wikidata Unionable 400 335 19 14 0.266
Wikidata Viewunionable 169 21 5 9 0.121

TABLE 3.2: Wikidata Threshold Exploration Results

Wikidata
Method Time Reduction % Recall Precision F1-Score

Levenshtein 0.158514 51% 1.0 0.111347 0.192982
Jaro-Winkler 0.161698 45% 1.0 0.125491 0.214176
Cosine-W2V 0.237367 60% 1.0 0.149401 0.251486

TABLE 3.3: Average results of the wikidatas’ table combinations

New York Data
Method Time Reduction % Recall Precision F1-Score

Levenshtein 0.069899 63% 0.93 0.240446 0.307500
Jaro-Winkler 0.073362 41% 1.0 0.210041 0.270083
Cosine-W2V 0.097885 66% 1.0 0.323777 0.419710

TABLE 3.4: Average results of the New Table table combinations

Los Angeles Data
Method Time Reduction % Recall Precision F1-Score

Levenshtein 0.068388 75% 0.74 0.256561 0.347213
Jaro-Winkler 0.071954 45% 1.0 0.190282 0.244723
Cosine-W2V 0.095327 64% 1.0 0.331768 0.418983

TABLE 3.5: Average results of the Los Angeles table pairs

the total attribute pairs, compared with the Jaro-Winkler method that achieved an
average runtime speed of 0.071954 ms and precision of 0.190282. The Los Angeles
table combinations experiment follows the same pattern, where the Cosine-W2V
requires more runtime speed and achieves higher precision than the Jaro-Winkler
method. The results for the Los Angeles case can be seen in table 3.5.

Figure 3.2, and figure 3.3 show the distribution of the threshold values for the

24 Chapter 3. Dimensionality Reduction

two remaining methods for the New York, and the Los Angeles table combinations,
respectively. We can observe that the minimum threshold is 0 for the Cosine-w2v
method and the Jaro-Winkler method for both table combinations. The minimum
value for each method is the value that does not remove actual pairs from their
selection for all cases for both methods.

FIGURE 3.2: The New York Data threshold distribution of the two
methods

FIGURE 3.3: The Los Angeles Data threshold distribution of the two
methods

3.3.1 Constraint-based technique experiments

Here we conduct the final experiment to see how the linguistic approaches perform
with the addition of the constraint-based technique. First, we apply the constraint
method to select the pairs that hold the same data type, and then we utilize the
linguistic method with the minimum threshold we acquired from the previous ex-
ploration.

Table 3.6 compares the results of cosine-w2v without using the constraint tech-
nique and this technique for the cases where cosine-w2w required the minimum
threshold from the previous experiments. The table shows a high increase in reduc-
tion when the constraint technique is applied.

3.3. Experiments 25

Table Combinations Reduction1 Reduction2 Precision1 Precision2
wikidata unionable 20% 36% 0.059561 0.073643
nydata(city_record_online vs
film_permits)

3% 47% 0.062857 0.117021

nydata(housing vs
film_permits)

2.5% 43% 0.025641 0.084507

nydata(agency_spending vs
film_permits)

1% 45% 0.031579 0.109091

ladata(asset_inventory vs
city_compaign)

3.6% 35% 0.041667 0.062069

ladata(city_reg_lobbyists vs
asset_inventory)

5.8% 40% 0.052133 0.082090

ladata(clients_registered_lob_firms vs
asset_invenotry)

2.9% 38% 0.019802 0.031496

ladata(payment_client_lob_firms vs
asset_inventory)

10% 40% 0.070175 0.105263

ladata(city_proj_agencies_lob_firms vs
asset_inventory)

8.3% 32% 0.045455 0.061538

TABLE 3.6: Results of the table combinations that required the mini-
mum threshold for each case. 1) refers to Cosine-w2v, and 2)Cosine-

w2v with the constraint reduction technique

Finally, table 3.7 showcases the average results for the New York and the Los
Angeles table combinations for the Cosine-w2v and the Jaro-Winkler with the mini-
mum threshold and the usage of the constraint technique. The table shows that both
linguistic methods perform similarly with the minimum threshold value.

New York Los Angeles
Cosine-w2v Jaro-Winkler Cosine-w2v Jaro-Winkler

Avg Time 4.601300 4.516401 0.711806 0.690157
Avg Reduction 41% 42% 31% 30.5%
Avg Recall 1.0 1.0 1.0 1.0
Avg Precision 0.087285 0.087547 0.065783 0.065366
Avg. F1-score 0.149865 0.150834 0.118623 0.117904

TABLE 3.7: asdasd

Our experiments have shown that our proposed technique effectively reduces
the search space of attribute matches while retaining labeled matches. This approach
is efficient and suitable for various schema matching scenarios. However, we have
also observed that Jaro-Winkler and Cosine W2V similarity perform similarly when
using the minimum threshold. Nonetheless, we found that Jaro-Winkler similarity
generally requires a lower threshold than Cosine W2V, while cosine W2V can per-
form better when a higher threshold is used. Therefore, we suggest that users choose
between these two similarity measures for this evaluation stage until further testing
is performed.

27

Chapter 4

Crowdie: a crowdsourcing
platform for schema matching

This chapter outlines the decision-making process that led to the creation of Crowdie
1, our prototype crowdsourcing tool for generating labeled data for schema-matching
tasks. We then present the system architecture of Crowdie in section 4.1, which also
incorporates the user interface design. Section 4.2 details the task design choices
made for Crowdie.In section 4.3, we discuss the quality control measures imple-
mented in Crowdie. In section 4.4, we present the experiments we used to evaluate
the platform and discuss the results in section 4.5.

1https://github.com/delftdata/msc-crowdie

https://github.com/delftdata/msc-crowdie

28 Chapter 4. Crowdie: a crowdsourcing platform for schema matching

4.1 System Architecture

As described in section 2.3, crowdsourcing is a practical approach to enhance the ef-
fectiveness of schema matching by utilizing human intuition to verify the results of
schema matching. In our work, we leverage crowdsourcing to generate labeled data
that can be utilized to evaluate and improve the effectiveness of schema matching
systems. To this end, we introduce Crowdie, a prototype crowdsourcing tool de-
signed for generating labeled data for schema-matching tasks. Crowdie is designed
for two main schema matching scenarios: joinable and unionable column search.
Joinable relationships refer to two tables that can be joined on a shared attribute or
set of attributes. In comparison, unionable relationships refer to two tables that can
be merged, with columns from one table appended to another.

Crowdie integrates automatic search space reduction techniques, as discussed in
chapter 3, to generate tasks and microtasks for human verification. The tool takes a
collection of schemata, each containing a set of attributes, as input (as shown in Fig-
ure 4.1). The administrator uploads the collection of tables to Crowdie. Given this
collection, Crowdie uses the Pre-Filtering module to generate all the reduced possible
attribute matchings. The Pre-Filtering Module first finds all possible combinations
of the given tables and then generates all possible attribute matches for each pair
using the reduced space reduction technique. Next, the Task Creation Module creates
the corresponding crowdsourcing tasks with their associated microtasks for the re-
duced pairs. These tasks are then published for the crowd workers to answer via the
Crowdie UI. Once all the tasks have been completed, and the answers have been re-
ceived from the crowd, Crowdie uses the Aggregation Module to combine the results
so that the admin can take them.

FIGURE 4.1: Crowdie: System Architecture.

4.1.1 Pre-Filtering Module

The Pre Filtering module is responsible for processing collections of tables that the
administrator provides. It starts by identifying all possible combinations of tables,
and for each combination, it finds all column pairs between them. The module then
applies a pre-filtering algorithm to reduce the number of column pairs based on a
threshold specified by the administrator. This algorithm ensures that only the most
relevant column pairs are considered for further processing.

Once the reduced column pairs are identified, the module samples rows for each
pair. If any of the columns within a pair have NaN values, the pair is removed

4.1. System Architecture 29

from consideration. After completing its tasks, the Pre Filtering module forwards its
results to the Task Creation module. The results include the reduced column pairs
and the sampled rows for each pair. The Task Creation module uses these results to
create tasks and microtasks for workers to complete.

Overall, the Pre Filtering module is critical in preparing the data for downstream
processing by identifying the most important column pairs and reducing the num-
ber of pairs.

4.1.2 Task Creation Module

In Crowdie, the Task Creation Module is responsible for creating tasks and micro-
tasks from the results of the Pre-Filtering Module. A task in Crowdie refers to the
Result Set (RS), which contains all possible column combinations between two ta-
bles, as in Zhang et al. [2014]. However, Crowdie also contains a sample of the rows
for each column in the result set. For example, if we have two tables with columns
column1.1 with rows1.1, column1.2 with rows1.2, column2.1 with rows2.1, and col-
umn2.2 with rows2.2, the RS would be:

RS = {(column1.1[rows1.1], column2.1[rows2.1]), (column1.1[rows1.1], column2.2[rows2.2]),
(column1.2[rows1.2], column2.1[rows[2.1]])(column1.2[rows1.2], column2.2[rows2.2])}

This RS is then used as the basis for creating microtasks. A microtask in Crowdie
is a specific task instance containing part of the columns presented to workers through
the user interface. Workers can focus on individual comparisons and provide more
accurate results by breaking down the task into smaller microtasks.

After the Task Creation Module generates the tasks and microtasks, it assigns
unique keys to each task and its associated microtasks before storing them in a re-
lational database. This approach ensures easy access and management of the tasks
and microtasks. Workers can efficiently complete their assigned tasks, and admin-
istrators can monitor progress and make adjustments as necessary. With unique
keys, the Task Creation Module can track which microtasks have been completed
and which are still pending. The task creation module answers the first part of our
3rd sub-research question, "What is considered a task for schema matching?".

4.1.3 Crowdie’s User Interface

The design of Crowdie’s user interface was created with simplicity and consistency
in mind. The goal was to make it easy for users to navigate the site and complete
tasks, by providing a clean and uncluttered layout. We used a consistent color
scheme, font selection, and imagery throughout the website to achieve this. The
three main pages in the Crowdie UI are the Welcome, About, and Tasks pages.

The Welcome page is the first page users see when they visit the Crowdie website
(see figure 4.2). It introduces the site’s purpose, and users must sign in as crowd
workers to participate in the labeling process. The sign-in form consists of two input
fields for the user to enter their username and select whether they have a computer
science background by choosing "Yes" or "No" 4.3. After submitting the form, the
platform assigns a unique key for the current worker, which is essential in keeping
track of the tasks they have completed. The unique key also identifies the user and
allows them to navigate to the other pages on the website.

30 Chapter 4. Crowdie: a crowdsourcing platform for schema matching

FIGURE 4.2: Crowdie: Welcome Page

FIGURE 4.3: Crowdie: Sign In

The About page on Crowdie 4.4 is where workers can find detailed information
about the platform’s mission and purpose. This page explains that Crowdie is a
platform designed to generate labeled datasets for schema matching, a crucial task
in data management. Workers can learn about the importance of this work and what
is required to ensure accurate and effective results. The page also offers a detailed
task description, outlining what workers can expect from their labeling tasks. Addi-
tionally, it provides background information about Schema Matching and joinable
and unionable relationships (see figure 4.5).

The Tasks page is where the labeling process occurs for workers on the Crowdie
platform. When workers access this page, they can see the current number of avail-
able tasks. The page briefly describes how to complete the microtasks, which in-
volve determining whether two columns are similar. To start labeling, workers must
click the "Load Microtasks" button, which loads ten microtasks for the current task
4.6. Workers can answer each microtask by selecting either "Yes" or "No" to indicate
whether they believe the columns are similar. After answering all ten microtasks,
workers can submit their answers, which are stored on the platform for later use.

4.1. System Architecture 31

FIGURE 4.4: Crowdie: About Page

FIGURE 4.5: Example microtask: Workers are asked to match
columns between two tables.

The design choices of the task is discussed in section 4.2 When the worker submits
the first batch of the microtasks, the platform allows him to continue labeling more
microtasks by pressing the "Continue" button 4.7.

The simplicity and straightforwardness of the labeling process on the Tasks page
are designed to make it easy for workers to complete their tasks accurately and ef-
ficiently. Clear instructions and easy-to-use features allow workers to focus on the
task and produce high-quality labeled datasets for schema matching.

In summary, Crowdie’s UI design prioritizes simplicity and consistency, focus-
ing on ease of use for workers completing labeling tasks. The Welcome page requires
users to sign in as crowd workers to access the platform, while the About page pro-
vides detailed information about the platform’s mission and purpose. The Tasks
page is where the labeling process occurs, with clear instructions and easy-to-use
features to ensure accuracy and efficiency.

32 Chapter 4. Crowdie: a crowdsourcing platform for schema matching

FIGURE 4.6: Tasks Page: Available Tasks and Load Microtasks

FIGURE 4.7: Tasks Page: Success and Continue

4.1.4 Aggregation Module

The aggregation module plays a crucial role in managing the workflow of crowd-
sourcing tasks. It assigns available tasks and microtasks to workers based on their
availability. The module also monitors the workers’ progress to ensure the comple-
tion of the tasks within the specified quality standards. If any task or microtask is
incomplete, the module reassigns it to another worker.

Once all of the tasks have been completed, the aggregation module collects the
responses from each worker and aggregates them to generate a final output for the
administrator. Additional information on when a task is considered completed, and
the aggregation method can be found in section 4.3

4.2 Task Design

Task design usually refers to the design of the user interface for the task, determining
the type and requirements of the task Zheng et al. [2011]. In the case of schema
matching the type of the task is binary. Typically it requires an answer on whether
two columns are a match.

Crowdsourcing has been commonly used as a means of evaluating the results
of schema matching systems Zhang et al. [2014]. However, the task design used
in previous studies was limited to asking workers whether a specific column from
one table matches a specific column from another (e.g., "Does table1.column1 match
with table2.column2?").

4.2. Task Design 33

FIGURE 4.8: Task Design of CrowdMatcher Zhang et al. [2014]

Figure 4.8, depicts the task design used in CrowdMatcher Zhang et al. [2014].
While this design is simple and easy to understand, it does not provide additional
contextual information Hung et al. [2013], such as the instances of the schemata,
which could impact the accuracy of the results obtained.

To address this limitation, alternative task designs could provide workers with
more contextual information. In addition to the names of the tables and columns
being matched, it could also provide the content of the columns. Providing more
detailed examples of how workers should approach the task can also improve the
results’ quality. Figure 4.9 shows an example of a microtask in Crowdie.

FIGURE 4.9: Example microtask: Workers are asked to match
columns between two tables.

The workers of Crowdie are initially presented with the names of the tables cur-
rently being searched. This is also one of the available tasks. To do this, workers are
asked "Do the following columns match?" and shown a table format with the column
names and contents, which are part of the above tables. Workers must submit their
answer by selecting one of two radio buttons, indicating either "Yes" or "No". For ex-
ample, in figure 4.9, the worker is asked whether the column with the name "created
date" from the table "311 Service Requests from 2010 to Present.csv" matches with a
column "established date" from the table "Civil Service List (Active).csv".

34 Chapter 4. Crowdie: a crowdsourcing platform for schema matching

The number of microtasks assigned to each task is determined by the number
of column pairs identified by the pre-filtering module. For instance, one task may
have 100 microtasks while another may only have 40, depending on the number of
column pairs. Displaying all the microtasks at once can be overwhelming for the
workers, so we have decided to display a limited number of microtasks to improve
their focus.

The administrator sets the number of microtasks displayed at any given time,
with a maximum limit of 10. Workers can concentrate on specific microtasks with-
out feeling overwhelmed or distracted. This aims aim to improve the accuracy and
efficiency of the crowdsourcing process. Figure 4.10 displays a list of microtasks,
with each group comprising a set number of 2.

FIGURE 4.10: Example microtask: Workers are asked to match
columns between two tables.

CrowdIE’s task design aims to provide more contextual information to workers
without overwhelming them with unnecessary details by keeping a simplistic task
design Finnerty et al. [2013].

4.3 Quality Control

Quality control in crowdsourcing aims to ensure that the results are accurate and
reliable Daniel et al. [2018]. In Crowdie, a task is considered complete only when at
least three different workers have provided their answers to each microtask, ensur-
ing that multiple workers have reviewed the same data to reduce the risk of errors
or biases. We suggest using the minimum number of answers required for each mi-
crotask to keep the cost low. However, the administrator can increase the number of
answers for each microtasks. Furthermore, the platform prohibits the same worker
from answering a microtask more than once to maintain fairness.

Once all the microtasks have been completed, the aggregation module uses ma-
jority voting to determine the correct label when two workers have agreed on an
answer. This approach helps to minimize errors and biases and ensure the highest
possible accuracy in the results. Finally, the administrator can then review and label
the data, providing an additional layer of quality control to ensure that the results

4.4. Evaluation 35

meet the desired standards. Overall, Crowie’s approach to quality control in crowd-
sourcing demonstrates a commitment to ensuring the results’ accuracy, reliability,
and fairness.

4.4 Evaluation

To assess the effectiveness of Crowdie, we will need to recruit individuals to par-
ticipate as workers on our prototype platform. Finding participants can be quite
time-consuming, as it involves advertising the purpose of our research to relevant
online forums and configuring incentives to motivate individuals to complete the
required tasks. Alternatively, we could integrate the user interface with a crowd-
sourcing platform like Amazon Mechanical Turk to obtain workers. However, due
to the time constraints of this project and the fact that Crowdie is still in the proto-
type stage, we have decided to conduct a pilot study by inviting individuals from
our social networks.

We successfully recruited 10 participants to assist us in our pilot study. Table
4.1 shows the number of participants with their background knowledge, and four
participants had a computer science background. The workers with an experience
in computer science are labeled as experts in this pilot study due to their knowledge
of what a schema is and their understanding of schema matching procedures.

Number of Workers Computer Science Background
4 Yes
6 No

TABLE 4.1: Number of people who participated in the pilot study
with their knowledge background in computer science.

In this study, we assigned each worker a task involving labeled data, which we
used to evaluate the effectiveness of our search space reduction technique as de-
scribed in section 3.2.1. The main goal was to assess the ability of the workers to
identify correct matches in the given data. We designed a set of tasks, represented in
Table 4.2, where each row corresponds to a unique task assigned to a single worker.
The "Pairs" column in the table indicates the number of microtasks generated by
the pre-filtering module. In contrast, the "Total" column represents the total number
of column combinations or possible microtasks without applying the pre-filtering
module.

Table1 Table2 Pairs Total
election_list.csv city_campaign_contribs.csv 63 98
election_list.csv clients_registered_lob_firms.csv 62 91

city_reg_lobbyist.csv city_proj_agencies_lob_firms.csv 51 84
city_reg_lobbyist.csv payment_client_lob_firms.csv 31 56

payment_client_lob_firms.csv asset_inventory.csv 38 64
recent_contract_awards.csv agency_spending.csv 57 96
recent_contract_awards.csv capital_projects1.csv 24 60

housing.csv capital_projects2.csv 32 40
evictions.csv capital_projects1.csv 25 60
evictions.csv capital_projects2.csv 42 48

TABLE 4.2: The tasks that were used in the pilot study.

36 Chapter 4. Crowdie: a crowdsourcing platform for schema matching

After completing their assigned task, we asked each worker to provide feedback
on the platform and share any insights they gained. We posed several open-ended
questions to the crowd workers to obtain valuable feedback on the design and label-
ing process. Specifically, we asked: "What are your thoughts on the design of the user
interface?", "Can you describe your experience with labeling the columns?", "Did you un-
derstand the goal of the task?" and "Can you provide specific examples of labeling that you
found difficult?". These questions were designed to elicit detailed and honest feed-
back and encourage participants to provide specific examples where necessary. By
asking these focused questions, we aim to gain insight into the platform’s usability
and identify areas for improvement.

4.5 Results

In this section, we present a summary of the findings from our pilot study. Table 4.3
presents the labeling outcomes, indicating the number of "yes" responses given by
each worker for their assigned task and the actual number of labels for that partic-
ular task. Furthermore, Table 4.4 shows the workers’ microtasks and whether they
were correctly labeled.

Regrettably, not all workers could correctly identify all labels, except for workers
2 and 8, who accurately identified all the labels for their respective tasks. Upon
a preliminary analysis of the results, we observed that workers with a computer
science background could identify more labels correctly than those without such a
background. Furthermore, we discovered that worker 6 labeled a task that contained
identical column names but did not belong to the label set for that particular task.
Therefore, this labeling was incorrect and should be disregarded.

Background No Task Answer Labels
worker 1 No 1 0 1
worker 2 Yes 2 1 1
worker 3 No 3 1 5
worker 4 No 4 1 5
worker 5 Yes 5 2 3
worker 6 No 6 1 2
worker 7 No 7 0 2
worker 8 Yes 8 1 1
worker 9 No 9 0 1
worker 10 Yes 10 0 1

TABLE 4.3: Number of answers each worker provided for their tasks
with the number for labels of that particular task.

Furthermore, after completing the task, all the workers provided feedback for
the open-ended questions described in section 3. A summary of their responses to
each question is provided below:

1. What are your thoughts on the design of the user interface?
All workers found the UI understandable and easy to navigate, and no notable
comments were provided.

2. Can you describe your experience with labeling the columns?
All workers agreed the labeling process was easy, clear, and not cumbersome.

4.5. Results 37

Task No Col_1 Col_2 Correct Answer
2 POLLING PLACE ZIP Client Zip Yes
3 Lobbying Firm Lobbying Firm Yes
4 Lobbying Firm Lobbying Firm Yes
5 Client Last Name Name No
5 Client Last Name Owner Yes
6 AgencyName AGENCY NAME No
8 Project Name Project Name Yes

TABLE 4.4: Shows the column names of the labeled microtasks from
the workers and whether they are correctly labeled

3. Did you understand the goal of the task?
Some workers provided interesting comments regarding the task description
being too detailed. One worker mentioned they did not understand how to
label the columns, specifically whether they should be labeled based on their
exact meaning or the content of the columns. This worker pointed out that "Do
the following match?" was ambiguous.

4. Can you provide specific labeling examples that you found difficult?

Worker 2 observed that a microtask contained the fields ’Lobbyist Last Name’
and ’Client Last Name’, which may appear to have similar meanings, but their
content was distinct. On the other hand, Worker 6 reported a task that in-
cluded URLs and expressed uncertainty about whether it referred to the same
concept as the microtask in question, which involved the fields ’Lobbying Firm
Quarterly Report’ and ’URL’. Unfortunately, we did not receive any other com-
ments.

One of the key insights we gained from the pilot study is the need to improve
our microtask design. To achieve this, we will modify our question prompt from "Do
the following columns match" to "Are these two columns similar," which should re-
duce worker confusion. Additionally, we will provide a brief task description before
workers start each new task, along with a help button that will be displayed during
task generation. These changes will make it easier for workers to understand the
task goals and perform their tasks effectively.

Moreover, our pilot study has shown that crowdsourcing is an effective method
for obtaining labeled data for schema matching, with only a limited number of incor-
rect responses received. We are confident that with more experiments, a larger pool
of workers, and design refinement, Crowdie can become a successful crowdsourcing
platform for generating high-quality labeled data for schema matching tasks.

39

Chapter 5

Conclusion

5.1 Summary

This thesis addresses the challenge of generating labeled data for schema matching.
Initially, we aimed to explore schema matching techniques that could serve as a
pre-processing step to minimize the search space for schema matching tools while
answering our first sub-research question:

How to create a pre-filtering schema matching technique for search space re- duc-
tion?
We have researched various low-cost schema matching techniques to develop
a pre-filtering algorithm that can effectively reduce the search space by elim-
inating irrelevant correspondences Bernstein et al. [2011]. Our approach in-
volves a combination of constrained and linguistic matching methods. We
have also proposed a new linguistic technique that utilizes word embeddings
from the Google News 300 pre-trained W2V model. This technique could be
applied as a preprocessing step for any schema matching scenario to stream-
line the search for potential matches and enhance the efficiency of the schema
matching process (see ??).

However, implementing the pre-filtering method necessitated setting a threshold
value, which raised our second sub-research question.

What is the optimal threshold value for search space reduction techniques?
Typically, pre-filtering techniques require a threshold value to identify and
remove unnecessary columns. However, determining the optimal threshold
value traditionally relied on the user’s intuition. In our case, we have de-
veloped a pre-filtering algorithm that has been benchmarked against simi-
lar techniques for reducing the search space in schema matching. To deter-
mine the best threshold value, we performed a grid search. We found that a
threshold value of 0 would qualify for all cases without eliminating any actual
matches (see section 3.3).

To obtain labeled data, it is often necessary to employ crowdsourcing solutions.
However, developing a crowdsourcing system requires careful consideration of var-
ious factors. This prompted our investigation into the requirements for creating such
a system, leading to our third sub-research question.

40 Chapter 5. Conclusion

What is considered a task, and how to design a task for schema matching?
Designing tasks is critical in developing any crowdsourcing application, in-
cluding schema matching. To enable users to identify similar columns be-
tween two schemata, we first defined what constituted a task and microtask
for our application, drawing on prior research on interface design for schema
matching verification and crowd interfaces Fan et al. [2014]. In our proposal,
presented in section 4.2, we put forward a novel design for schema matching
that is simple and user-friendly, in line with the principles outlined in Finnerty
et al. [2013]. We also included table and column names and part of the con-
tent of the columns to make the task more comprehensive and informative.
By incorporating these features, we believe our proposed task design will fa-
cilitate the efficient and accurate identification of matching schema columns
and improve the overall effectiveness of the schema matching process.

Ensuring the quality of the crowdsourcing pipeline is another crucial require-
ment, which led to our third sub-research question.

How to aggregate the results from the crowd?
In section 4.3, we described how we ensured the quality of the labeling pro-
cess by using the majority voting method as our aggregation function. Major-
ity voting is a well-established and reliable technique for aggregating results
from a crowd. This method could reduce the impact of individual errors or
biases and obtain a more accurate result. To further improve the reliability of
the labeling process, each microtask requires answers from different workers.

Through our investigations into the aforementioned sub-research questions, we
developed a prototype crowdsourcing platform for schema matching called Crowdie.
This platform provides a solution to the main research question of this thesis:

How to create a system architecture for a crowdsourcing platform that generates
labeled datasets for schema matching systems?
In chapter 4, we presented the system architecture of Crowdie, our prototype
crowdsourcing platform for schema matching. We believe that our architec-
ture is a promising solution for generating labeled data, as it incorporates a
pre-filtering algorithm that reduces the number of possible correspondences
and improves the platform’s efficiency while minimizing the cost of crowd-
sourcing. Furthermore, our platform utilizes a simple yet effective task design
for workers to label, ensuring high-quality labeled data. Overall, we are con-
fident that Crowdie can help address the challenge of generating labeled data
for schema matching and advance research in this field.

5.2 Discussion Future Directions

In this section, we propose several improvements that can be made in the future to
reduce the search space and enhance the crowd platform.

5.2. Discussion Future Directions 41

5.2.1 Search Space Reduction in Schema Matching

To increase confidence in our methods, we suggest collecting more data to evaluate
our methods further. Additionally, we could create our word embeddings from var-
ious schemas instead of relying solely on pre-trained word2vec models. We could
also apply linguistic techniques on instances, not just column names, to improve the
effectiveness of the pre-filtering algorithm.

5.2.2 Crowdie

Crowdie is still in the prototype state, and from the first pilot study, we observed
that some users had difficulty understanding the task description. Therefore, we
aim to improve the task description page to ensure it conveys the task’s objective
clearly so that all users can understand it without a background in computer science.
Another improvement is to change the question of the micro-tasks from "Do the
following columns match?" to "Are these two columns similar?" to prevent users
from searching for exact matches.

We suggest acquiring more people to participate in a second evaluation with la-
beled datasets to evaluate Crowdies’ performance further. We could also create a
new dataset for a specific domain to see how Crowdies’ performance compares. Ad-
ditionally, users could provide more feedback on their experience with the platform.
We recommend providing a user interface with a dashboard for the administrator,
allowing anyone to use the app and check the task processing at any time.

Overall, these improvements could enhance the performance and usability of
the schema matching and crowd platform, ultimately leading to better outcomes for
users.

43

Appendix A

Appendix A

A.1 Part of the results for grid search the new york and la
data

FIGURE A.1: Threshold Exploration Cosine-w2v NY Data

44 Appendix A. Appendix A

FIGURE A.2: Threshold Exploration Cosine-w2v LA Data

A.1. Part of the results for grid search the new york and la data 45

FIGURE A.3: Threshold Exploration Jaro-Winkler NY Data

46 Appendix A. Appendix A

FIGURE A.4: Threshold Exploration Jaro-Winkler LA Data

A.1. Part of the results for grid search the new york and la data 47

FIGURE A.5: Threshold Exploration Levenshtein NY Data

48 Appendix A. Appendix A

FIGURE A.6: Threshold Exploration Levenshtein LA Data

49

Bibliography

A. A. Alwan, A. Nordin, M. Alzeber, and A. Z. Abualkishik. A survey of schema
matching research using database schemas and instances. International Journal of
Advanced Computer Science and Applications, 8(10), 2017.

M. B. Amin, W. A. Khan, S. Hussain, D.-M. Bui, O. Banos, B. H. Kang, and S. Lee.
Evaluating large-scale biomedical ontology matching over parallel platforms. Iete
Technical Review, 33(4):415–427, 2016.

Y. Amsterdamer, S. B. Davidson, A. Kukliansky, T. Milo, S. Novgorodov, and
A. Somech. Managing general and individual knowledge in crowd mining ap-
plications. In CIDR, 2015.

I. Arganda-Carreras, S. C. Turaga, D. R. Berger, D. Cireşan, A. Giusti, L. M. Gam-
bardella, J. Schmidhuber, D. Laptev, S. Dwivedi, J. M. Buhmann, et al. Crowd-
sourcing the creation of image segmentation algorithms for connectomics. Fron-
tiers in neuroanatomy, page 142, 2015.

D. Aumueller, H.-H. Do, S. Massmann, and E. Rahm. Schema and ontology match-
ing with coma++. In Proceedings of the 2005 ACM SIGMOD international conference
on Management of data, pages 906–908, 2005.

P. A. Bernstein, S. Melnik, M. Petropoulos, and C. Quix. Industrial-strength schema
matching. ACM Sigmod Record, 33(4):38–43, 2004.

P. A. Bernstein, J. Madhavan, and E. Rahm. Generic schema matching, ten years
later. Proceedings of the VLDB Endowment, 4(11):695–701, 2011.

R. M. Borromeo and M. Toyama. Automatic vs. crowdsourced sentiment analysis. In
Proceedings of the 19th International Database Engineering & Applications Symposium,
pages 90–95, 2015.

S. Castano and V. De Antonellis. Global viewing of heterogeneous data sources.
IEEE Transactions on Knowledge and Data Engineering, 13(2):277–297, 2001.

F. Daniel, P. Kucherbaev, C. Cappiello, B. Benatallah, and M. Allahbakhsh. Quality
control in crowdsourcing: A survey of quality attributes, assessment techniques,
and assurance actions. ACM Computing Surveys (CSUR), 51(1):1–40, 2018.

G. Demartini, D. E. Difallah, and P. Cudré-Mauroux. Large-scale linked data inte-
gration using probabilistic reasoning and crowdsourcing. The VLDB Journal, 22(5):
665–687, 2013.

H.-H. Do and E. Rahm. Coma—a system for flexible combination of schema match-
ing approaches. In VLDB’02: Proceedings of the 28th International Conference on Very
Large Databases, pages 610–621. Elsevier, 2002.

50 BIBLIOGRAPHY

A. Doan, P. Domingos, and A. Y. Halevy. Reconciling schemas of disparate data
sources: A machine-learning approach. In Proceedings of the 2001 ACM SIGMOD
international conference on Management of data, pages 509–520, 2001.

F. Duchateau and Z. Bellahsene. Designing a benchmark for the assessment of
schema matching tools. Open Journal of Databases, 1(1):3–25, 2014.

F. Duchateau, Z. Bellahsene, and E. Hunt. Xbenchmatch: a benchmark for xml
schema matching tools. In The VLDB Journal, volume 1, pages 1318–1321. Springer
Verlag, 2007.

M. Ehrig and S. Staab. Qom-quick ontology mapping. In ISWC, pages 683–697.
Springer, 2004.

J. Fan, M. Lu, B. C. Ooi, W.-C. Tan, and M. Zhang. A hybrid machine-crowdsourcing
system for matching web tables. In 2014 IEEE 30th International Conference on Data
Engineering, pages 976–987. IEEE, 2014.

A. Finnerty, P. Kucherbaev, S. Tranquillini, and G. Convertino. Keep it simple: Re-
ward and task design in crowdsourcing. In Proceedings of the Biannual Conference
of the Italian Chapter of SIGCHI, pages 1–4, 2013.

A. Gross, M. Hartung, T. Kirsten, and E. Rahm. On matching large life science on-
tologies in parallel. In Data Integration in the Life Sciences: 7th International Con-
ference, DILS 2010, Gothenburg, Sweden, August 25-27, 2010. Proceedings 7, pages
35–49. Springer, 2010.

D. Haas, J. Wang, E. Wu, and M. J. Franklin. Clamshell: Speeding up crowds for
low-latency data labeling. arXiv preprint arXiv:1509.05969, 2015.

N. Q. V. Hung, N. T. Tam, Z. Miklós, and K. Aberer. On leveraging crowdsourcing
techniques for schema matching networks. In International Conference on Database
Systems for Advanced Applications, pages 139–154. Springer, 2013.

C. Koutras, K. Psarakis, G. Siachamis, A. Ionescu, M. Fragkoulis, A. Bonifati, and
A. Katsifodimos. Valentine in action: matching tabular data at scale. Proceedings
of the VLDB Endowment, 14(12):2871–2874, 2021.

C. Koutras, R. Hai, K. Psarakis, M. Fragkoulis, and A. Katsifodimos. Sima: Effec-
tive and efficient data silo federation using graph neural networks. arXiv preprint
arXiv:2206.12733, 2022.

G. Li, Y. Zheng, J. Fan, J. Wang, and R. Cheng. Crowdsourced data management:
Overview and challenges. In Proceedings of the 2017 ACM International Conference
on Management of Data, pages 1711–1716, 2017.

J. Madhavan, P. A. Bernstein, and E. Rahm. Generic schema matching with cupid.
In vldb, volume 1, pages 49–58, 2001.

J. Madhavan, P. A. Bernstein, A. Doan, and A. Halevy. Corpus-based schema match-
ing. In 21st International Conference on Data Engineering (ICDE’05), pages 57–68.
IEEE, 2005.

S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity flooding: A versatile graph
matching algorithm and its application to schema matching. In Proceedings 18th
international conference on data engineering, pages 117–128. IEEE, 2002.

BIBLIOGRAPHY 51

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed repre-
sentations of words and phrases and their compositionality. Advances in neural
information processing systems, 26, 2013.

F. Nargesian, E. Zhu, K. Q. Pu, and R. J. Miller. Table union search on open data.
Proceedings of the VLDB Endowment, 11(7):813–825, 2018.

F. Nargesian, E. Zhu, R. J. Miller, K. Q. Pu, and P. C. Arocena. Data lake management:
challenges and opportunities. Proceedings of the VLDB Endowment, 12(12):1986–
1989, 2019.

E. Peukert, H. Berthold, and E. Rahm. Rewrite techniques for performance opti-
mization of schema matching processes. In Proceedings of the 13th International
Conference on Extending Database Technology, pages 453–464, 2010.

E. Rahm and P. A. Bernstein. A survey of approaches to automatic schema matching.
the VLDB Journal, 10:334–350, 2001.

E. Rahm and E. Peukert. Large-scale schema matching., 2019.

P. Shvaiko and J. Euzenat. A survey of schema-based matching approaches. In
Journal on data semantics IV, pages 146–171. Springer, 2005.

L. Singh. Clustering text: A comparison between available text vectorization tech-
niques. In Soft Computing and Signal Processing: Proceedings of 3rd ICSCSP 2020,
Volume 2, pages 21–27. Springer, 2022.

S. Vijayarani, M. J. Ilamathi, M. Nithya, et al. Preprocessing techniques for text
mining-an overview. International Journal of Computer Science & Communication
Networks, 5(1):7–16, 2015.

J. Wang, T. Kraska, M. J. Franklin, and J. Feng. Crowder: Crowdsourcing entity
resolution. arXiv preprint arXiv:1208.1927, 2012.

C. J. Zhang, L. Chen, H. V. Jagadish, and C. C. Cao. Reducing uncertainty of schema
matching via crowdsourcing. Proceedings of the VLDB Endowment, 6(9):757–768,
2013.

C. J. Zhang, Z. Zhao, L. Chen, H. V. Jagadish, and C. C. Cao. Crowdmatcher: crowd-
assisted schema matching. In Proceedings of the 2014 ACM SIGMOD International
Conference on Management of Data, pages 721–724, 2014.

H. Zheng, D. Li, and W. Hou. Task design, motivation, and participation in crowd-
sourcing contests. International Journal of Electronic Commerce, 15(4):57–88, 2011.

E. Zhu, D. Deng, F. Nargesian, and R. J. Miller. Josie: Overlap set similarity search
for finding joinable tables in data lakes. In Proceedings of the 2019 International
Conference on Management of Data, pages 847–864, 2019.

	Abstract
	Acknowledgements
	Introduction
	Problem Statement
	Efficiency in Schema Matching
	Effectiveness in Schema Matching

	Research Questions
	Contributions
	Outline

	Literature Review
	Schema Matching Techniques
	Schema-based techniques

	Schema matching systems
	Benchmarks

	Crowdsourcing
	Crowdsourcing in Schema matching

	Dimensionality Reduction
	Pre-Filtering Technique
	Contraint-based technique
	Text Processing
	Linguistic Technique and External resource

	Pre-filtering Technique In Action
	Datasets
	Evaluation

	Experiments
	Constraint-based technique experiments

	Crowdie: a crowdsourcing platform for schema matching
	System Architecture
	Pre-Filtering Module
	Task Creation Module
	Crowdie's User Interface
	Aggregation Module

	Task Design
	Quality Control
	Evaluation
	Results

	Conclusion
	Summary
	Discussion Future Directions
	Search Space Reduction in Schema Matching
	Crowdie

	Appendix A
	Part of the results for grid search the new york and la data

