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Microbial production of fuels and chemicals from renewable

carbohydrate feedstocks offers sustainable and economically

attractive alternatives to their petroleum-based production.

The yeast Saccharomyces cerevisiae offers many advantages

as a platform cell factory for such applications. Already applied

on a huge scale for bioethanol production, this yeast is easy to

genetically engineer, its physiology, metabolism and genetics

have been intensively studied and its robustness enables it to

handle harsh industrial conditions. Introduction of novel

pathways and optimization of its native cellular processes by

metabolic engineering are rapidly expanding its range of cell-

factory applications. Here we review recent scientific progress

in metabolic engineering of S. cerevisiae for the production of

bioethanol, advanced biofuels, and chemicals.

Addresses
1 Department of Chemical and Biological Engineering, Chalmers

University of Technology, SE412 96 Gothenburg, Sweden
2 Science for Life Laboratory, Tomtebodavägen 23A, SE17165 Solna,
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Introduction
Global consumption of liquid transportation fuels

amounts to about 2.9 TW and these fuels are currently

mainly derived from petroleum, whereas biofuels only

account for 2.7% of the total transportation energy (Key

World Energy Statistics 2011; URL: http://www.iea.org).

The use of petroleum for transportation results in emis-

sion of more than 5 Gt CO2, and this represents a major

contribution to the total green house gas (GHG) emis-

sions. Currently by far the dominant biofuel is ethanol,

which is being produced at 75 billion liters annually, with

the majority being produced in the USA (50 billion liters)

with corn as the major feedstock. The remainder of the

production is concentrated in Brazil with sugar cane as

feedstock. The use of biofuels is much debated due to the

high costs of the corn-based process as well as the limited
Current Opinion in Biotechnology 2013, 24:398–404 
reduction in GHG emission by this process compared

with petroleum [1]. Several predictions, however, show an

increasing role of biofuels [2,3]. This is due to future

production of second generation ethanol with biomass as

feedstock. Another reason being the production of

advanced biofuels that have improved fuel properties

compared with ethanol. Such advanced biofuels will

not only be cost competitive with petroleum but will

also substantially reduce GHG emissions [1].

Future production of biofuels will take place in biorefi-

neries, which may be retrofitted corn-ethanol plants, or

new, dedicated plants for processing biomass. In biorefi-

neries different types of feedstock will be processed to

sugars that are subsequently converted into the desired

products through microbial fermentation (Figure 1). At

the heart of biorefineries is the fermentation process, in

which microbial biocatalysts ensure conversion of sugars

into the fuel or chemical to be produced. In order to

ensure flexibility in biorefineries, industry is highly inter-

ested in so-called platform cell factories. Owing to its role

in bioethanol production, the yeast Saccharomyces cerevisiae
is already the most intensively applied microbial cell

factory. In addition, robustness under process conditions,

genetic accessibility and a strong fundamental knowledge

base in physiology and systems biology [4,5,6�,7�] con-

tribute to its current popularity as a ‘general purpose’

metabolic engineering platform [6�]. Novel synthetic

biology methods, based on the unsurpassed efficiency

of homologous recombination in S. cerevisiae, contribute to

a further tremendous acceleration of genetic modification

in this yeast [7�]. Here we will review the recent advances

in metabolic engineering of S. cerevisiae for its use as a

platform cell factory for the production of ethanol from

conventional and lignocellulosic feedstocks and of

advanced biofuels and chemicals.

First generation bioethanol production: status
and perspectives
Considerable efforts have been made to minimize or

completely abolish formation of glycerol, the major by-

product during current bioethanol production. During

anaerobic growth of S. cerevisiae, glycerol serves as an

essential electron sink for reoxidizing reduced redox

cofactors (NADH) generated in biosynthesis. Glycerol

formation can be prevented or reduced by deleting one or

both genes encoding cytosolic NADH-dependent gly-

cerol-3-phosphate dehydrogenases, GPD1 and GPD2
[8]. However, a double deletion renders cells unable to

grow anaerobically. Deletion of, for example, GPD2,
www.sciencedirect.com
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Overview of a biorefinery. (a) Different types of feedstock, that is, corn, biomass and agricultural waste, are processed to generate sugars. These

sugars are subsequently converted into fuels and chemicals by a biocatalyst, for example, the yeast S. cerevisiae. (b) By metabolic engineering

different yeast strains can be generated and this allows for production of a range of different products using the same infrastructure, that is, a plug-

and-play solution. Yeast can also be engineered to express enzymes that can degrade the polymers present in the feedstock, and hereby it is possible

to reduce the overall processing costs, as enzymes used for degradation of starch, cellulose or lignocellulose are quite expensive. A process where

yeast is secreting enzymes for polymer degradation is referred to as a consolidated bioprocess.
results in an increased ethanol yield and decreased gly-

cerol formation, but severely hampers growth and ethanol

productivity [9]. Alternative approaches aim at engineer-

ing cellular redox metabolism to reduce formation of

cytosolic NADH. Nissen et al. [10] deleted the

NADPH-dependent glutamate dehydrogenase, GDH1,

while overexpressing GLN1 and GLT1 (encoding gluta-

mine synthetase and glutamate synthase), respectively.

The resulting ammonium assimilation pathway con-

sumed NADH as well as ATP and led to a reduction

in glycerol yield by 38% while the yield of ethanol was

increased by 10%. Reducing energy conservation in alco-

holic fermentation of sugars can by itself increase the

ethanol yield in S. cerevisiae, as illustrated by Basso et al.
[11]. These authors substituted the dominant extracellu-

lar invertase with a cytoplasmic version relying on proton-

symport for transport of sucrose into the cell. The

increased energy expenditure was shown to be compen-

sated by an increased flux toward ethanol. An alternative

approach to reduce both the surplus of cytosolic NADH

and produce less ATP has been done by replacing the

natural glyceraldehyde-3-phosphate dehydrogenase with

a non-phosphorylating, NADP+-dependent counterpart

(GAPN) from Bacillus cereus or Streptococcus mutans [12–
15]. All these attempts were successful in reducing the

glycerol yield and increasing the ethanol yield. Zhang
www.sciencedirect.com 
et al. [15] took this one step further and combined

expression of NADP+ dependent GAPN with introduc-

tion of novel NADH-reoxidizing pathways. They used

either a NAD+ dependent fumarate reductase or an

acetaldehyde dehydrogenase and in both cases impress-

ive ethanol yields above 95% of the theoretical maximum

were reported [15]. An earlier redox engineering study by

Guadalupe Medina et al. [16�] demonstrated that expres-

sion of an acetylating NAD+-dependent acetaldehyde

dehydrogenase from Escherichia coli enabled acetate-de-

pendent, glycerol-negative anaerobic growth of a

gpd1Dgpd2D mutant. Since the resulting strain converted

acetate into ethanol, this concept may be valuable for

conversion of acetate-containing biomass-based feed-

stocks. Jain et al. [17] expressed alternative oxido-

reductase genes for consumption of excess NADH in a

gpd1Dgpd2D background which partly restored the ability

to grow under anaerobic conditions.

A problem associated with reduced ability to produce

glycerol in S. cerevisiae is that the osmosensitivity as well

as the general robustness is reduced [18]. Maintenance of

an osmotolerant phenotype is crucial when moving

toward using high or very high gravity fermentations,

which are attractive in terms of productivity and titer,

and hence lower capital and energy requirements. Efforts
Current Opinion in Biotechnology 2013, 24:398–404
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have therefore been made to improve stress resistance

even when glycerol formation is hampered, for example,

by selected genetic manipulations followed by genome

shuffling methods to increase osmotolerance as well as

ethanol and heat tolerance [14,19,20]. By this strategy it

has been shown that it is indeed possible to decrease

glycerol formation concomitant with an increase in fer-

mentation rate and ethanol yield. Guo et al. [13] used a

more targeted approach where they combined GPD1
deletion with expression of GAPN and overexpression

of the trehalose synthesis genes TPS1 and TPS2 and

hereby obtained a robust, high-yielding strain. This could

be of interest since trehalose is also a stress protectant and

there is a correlation between accumulation of this com-

pound and thermotolerance as well as ethanol tolerance of

S. cerevisiae strains [20,21]. Furthermore, overexpression

of TPS1 in S. cerevisiae will result in enhanced thermo-

tolerance [22], which is interesting as it enables, firstly,

reduced energy requirements for the subsequent distilla-

tion process and secondly, a closer correspondence of the

optimum temperatures for enzymes used in the sacchar-

ification process and the optimum temperature for fer-

mentation in so-called SSF processes (simultaneous

saccharification and fermentation) [23].

Conversion of lignocellulosic feedstocks
Engineering of S. cerevisiae for second-generation bioetha-

nol production has long focused on conversion of D-xylose

and L-arabinose, two abundant sugars in lignocellulosic

hydrolysates. Expression of heterologous, isomerase-

based pathways, combined with overexpression of the

non-oxidative pentose-phosphate pathway and, in the

case of arabinose, a suitable transporter [24], has yielded

strains whose ethanol yields on pentoses equal those on

glucose [25,26]. A growing number of xylose isomerases

can now be functionally expressed in S. cerevisiae and

several companies are implementing pentose-fermenting

yeast strains in large-scale processes. Engineering S.
cerevisiae for fermentation of galacturonic acid, a key

compound in pectin-rich feedstocks such as sugar-beet

pulp and citrus peel, is still in its infancy. Enzymes from

fungal and bacterial galacturonate pathways have been

functionally expressed [27,28] but alcoholic fermentation

of galacturonate has not yet been reported.

Although stoichiometric challenges are solved, the high-

est reported rates of pentose fermentation by S. cerevisiae
strains are still below those of glucose fermentation

[26,29,30]. Moreover, during the batch-wise conversion

of sugar mixtures that are often used in industrial ethanol

production, pentoses are typically only converted after

glucose exhaustion [31,32]. Only under glucose limita-

tion, such as in chemostats or in fed-batch fermentations,

are these glucose and pentoses co-consumed [33]. This

suboptimal kinetics prolongs process times and augments

the sensitivity to inhibitors such as acetic acid [33]. A

specially designed evolutionary engineering protocol
Current Opinion in Biotechnology 2013, 24:398–404 
based on repeated batch cultivation was successfully

applied to accelerate utilization of mixtures of glucose,

xylose and arabinose [31]. Mechanistically, research on

pentose fermentation kinetics increasingly focuses on

pentose transport. The S. cerevisiae hexose transporters

that are capable of transporting xylose and arabinose have

low maximum pentose-uptake rates and their superior

affinity for glucose effectively blocks pentose transport

while glucose is present. An intensive search is underway

to identify and express eukaryotic pentose transporters

that combine favourable kinetics for pentoses with inert-

ness toward glucose. While promising transporters have

been identified [24,34,35], this has not yet led to break-

throughs in fermentation kinetics.

Optimization of biomass hydrolysis should ultimately

prevent inhibition of yeast performance by furfural and

hydroxymethylfurfural, which are formed by heating of

sugars at low pH. In contrast, acetic, formic, and ferulic

acids are integral parts of plant biomass. Significant im-

provement of yeast tolerance to acetic acid has been

achieved by evolutionary engineering [30]. Promising

recent developments include exploration of biodiversity

among Saccharomyces strains by comparative genomics and

reverse engineering of tolerance phenotypes [36,37] and

the reductive conversion of acetic acid into ethanol by

engineered strains [16�].

The ‘holy grail’ of current yeast bioethanol research is to

efficiently express all enzymes required for feedstock

hydrolysis, currently a decisive cost factor in lignocellu-

losic biotechnology, in S. cerevisiae. This concept of ‘con-

solidated bioprocessing’ is vigorously pursued [38,39].

High-level expression of cellobiohydrolases has been

demonstrated [40�], as well as functional expression of

heterologous genes for uptake and hydrolysis or phos-

phorolytic cleavage of cellobiose [41–43]. Moving this

promising field beyond the demonstration of slow con-

version of model cellulose compounds raises confounding

scientific challenges related to high-level cellulase

expression and protein burden in anaerobic, energetically

compromised yeast cultures [44], interaction of yeast cells

with solid substrates, and functional assembly of hydro-

lase enzyme complexes.

Advanced biofuels
There have been several studies on production of

advanced biofuels using E. coli as cell factory, for

example, for production of 1-butanol [45], fatty acyl

ethyl esters (FAEEs) [46], and alkanes [47]. There are,

however, only few studies on production or advanced

biofuels using S. cerevisiae as a cell factory.

Steen et al. [48] engineered yeast to produce 1-butanol,

but the titers were much lower than what has been

obtained with E. coli (a few mg/L compared with g/L

for E. coli). There is, however, much interest in
www.sciencedirect.com
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Figure 2
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Illustration of the concept of cell factory platforms. A strain with efficient production of farnesyl pyrophosphate (FPP) can be used for production of a

range of different sesquiterpenes and a strain with efficient production of acetyl-CoA can be used for production of both sesquiterpenes and fatty acid

derived biofuels. The compartmental issue of acetyl-CoA metabolism is also illustrated pointing to the difficulties with engineering the central carbon

metabolism of S. cerevisiae. Abbreviations: TCA, tricarboxylic acid cycle; GYC, glyoxylate cycle; AcAcCoA, acetoacetyl-CoA; MalCoA, Malonyl-CoA;

FPP, farnesyl pyrophosphate.
commercial (iso-)butanol production using S. cerevisiae as

a cell factory as demonstrated  by a range of patents and

patent applications by Butalco, Butamax Advanced Bio-

fuels (a joint venture of BP and Dupont) and Gevo [6�],
and several of these patents report productivities that far

surpass productivities reported by E. coli. Butanols have a

number of advantages as biofuels compared with

bioethanol, that is, a higher energy density, better blend-

ing into gasoline, and less hydroscopic [49].

Other interesting advanced biofuels are longer-chain

hydrocarbons and FAEEs that can be used as diesel or

jet fuels. The company LS9 is actively pursuing pro-

duction of alkanes and FAEEs, but they rely on E. coli as a

cell factory platform [46,47]. Their process is based on

secretion of the fuels to the extracellular medium, which

in comparison to the current production by re-esterifica-

tion of plant oils has decreased by-product formation,

improved overall energetic yields, and the ability to use

non-food crops as feedstock [50]. Recently Shi et al.
demonstrated production of FAEEs in yeast by expres-

sion of heterologous wax synthases [51]. The company

Amyris is developing yeast cell factories for the pro-

duction of farnesene — a non-cyclic sesquiterpene that

can be chemically converted into farnesane, which has

obtained EPA certification for blends up to 35% with

petroleum diesel. In this process the company is taking

advantage of their earlier work on developing a process for

production of the anti-malarial precursor, artemisinic acid,

which is another sesquiterpene derived from the same

precursor farnesyl pyrophosphate (FPP) [52,53�]. This is a
www.sciencedirect.com 
very good example of how a cell factory platform that

through metabolic engineering has a high flux toward

FPP, can be used for production of different types of

products (Figure 2). It is also interesting to note that many

of these advanced biofuels are derived from acetyl-CoA,

which makes it interesting to develop a platform yeast cell

factory that has efficient supply of this precursor metab-

olite [54] (see Figure 2).

Chemicals
The rapidly expanding variety of chemicals produced by

engineered S. cerevisiae, ranging from commodity chemi-

cals such as 1,2-propanediol, through ascorbic acid to fine

chemicals such as resveratrol, or valancene, have recently

been comprehensively reviewed by Hong and Nielsen

[6�]. Seen from a different perspective, the engineered

product range of S. cerevisiae encompasses compounds

that are closely linked to primary metabolism as well as

molecules whose formation from yeast central metab-

olites requires the functional expression of entire heter-

ologous and/or synthetic pathways.

Production of C4-dicarboxylic acids (such as malate and

succinate) is a prominent example of the category of

products that are closely linked to primary metabolism

and illustrates many of the current conceptual develop-

ments in yeast metabolic engineering. Production of

these acids at low pH avoids the formation of gypsum

in product recovery, which strongly benefits process

economy. A first challenge in the conversion of glucose

to non-native products is the elimination of ethanol as a
Current Opinion in Biotechnology 2013, 24:398–404
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by-product. Deletion of the three structural genes encod-

ing pyruvate decarboxylase and subsequent introduction

of a mutated MTH1 allele, enables growth of Pdc� yeast

strains at high glucose concentrations without the for-

mation of ethanol [55]. Other key factors in the successful

metabolic engineering of S. cerevisiae for production of

C4-dicarboxylic acids include redox-driven product for-

mation, engineering of carboxylation reactions and func-

tional expression of heterologous product exporters [56–
58]. For robust, high-yield production, product pathways

should ideally yield a small surplus of ATP to meet

cellular maintenance requirements. In malate and succi-

nate production, this requires replacement of the native

pyruvate carboxylase by more energy-efficient carboxyla-

tion reactions. These and selected other free-energy-

coupling reactions in S. cerevisiae have recently been

reviewed [59]. Optimization of energy coupling in path-

way design is strongly supported by integration of

thermodynamic information in genome-scale metabolic

network models [60].

Isoprenoids form a good example of a class of compounds

whose production by metabolically engineered S. cerevi-
siae requires functional expression and/or deregulation of

multi-enzyme pathways leading from central metabolism

to complex products. Initially developed for production of

the plant-derived antimalarial precursor artemisinic acid

[53�], a thoroughly optimized strain platform was used to

produce other products, such as farnesene and squalene,

from FPP as mentioned above [61]. The same concepts

have been applied to efficiently produce different plant

sesquiterpenes that can be used as perfumes and fine

fragrances [62]. Supply of precursors and specifically

cytosolic acetyl-Coenzyme A is essential for high-level

formation of isoprenoids and many other industrially

relevant products. Consequently, the native metabolism

of acetyl-CoA in S. cerevisiae is being thoroughly investi-

gated [63] and heterologous pathways, such as the Asper-
gillus nidulans phosphoketolase pathway [64], have been

expressed in S. cerevisiae to increase acetyl-CoA supply to

product pathways.

Perspectives
The ongoing implementation of engineered yeast strains

in large-scale processes for production of second gener-

ation ethanol (BP/Verenium, DSM/Poet, Dupont/

Danisco, Mascoma and others), succinic acid (DSM/

Roquette and Bio-Amber/Cargill), butanols (Butamax

and Gevo), and isoprenoid-derived chemicals (Amyris,

Firmenich and others) illustrates the firm anchoring of

yeast metabolic engineering in modern industrial bio-

technology. The coming years will show whether key

constraints in the physiology of S. cerevisiae can be

addressed by remodelling of its core cellular machinery

or whether use of non-Saccharomyces yeasts is a more

attractive means of meeting specific process requirements

for certain products. The latter approach has already been
Current Opinion in Biotechnology 2013, 24:398–404 
implemented in industry (Cargill) via the application of

an engineered acid-resistant yeast species for industrial

production of lactic acid.
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