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Toward Scalable Multirobot Control: Fast Policy
Learning in Distributed MPC

Xinglong Zhang , Member, IEEE, Wei Pan , Member, IEEE, Cong Li , Xin Xu , Senior Member, IEEE,
Xiangke Wang , Senior Member, IEEE, Ronghua Zhang, and Dewen Hu , Senior Member, IEEE

Abstract—Distributed model predictive control (DMPC) is
promising in achieving optimal cooperative control in multirobot
systems (MRS). However, real-time DMPC implementation relies
on numerical optimization tools to periodically calculate local con-
trol sequences online. This process is computationally demanding
and lacks scalability for large-scale, nonlinear MRS. This arti-
cle proposes a novel distributed learning-based predictive control
framework for scalable multirobot control. Unlike conventional
DMPC methods that calculate open-loop control sequences, our
approach centers around a computationally fast and efficient dis-
tributed policy learning algorithm that generates explicit closed-
loop DMPC policies for MRS without using numerical solvers. The
policy learning is executed incrementally and forward in time in
each prediction interval through an online distributed actor–critic
implementation. The control policies are successively updated in a
receding-horizon manner, enabling fast and efficient policy learn-
ing with the closed-loop stability guarantee. The learned control
policies could be deployed online to MRS with varying robot scales,
enhancing scalability and transferability for large-scale MRS. Fur-
thermore, we extend our methodology to address the multirobot
safe learning challenge through a force field-inspired policy learn-
ing approach. We validate our approach’s effectiveness, scalability,
and efficiency through extensive experiments on cooperative tasks
of large-scale wheeled robots and multirotor drones. Our results
demonstrate the rapid learning and deployment of DMPC policies
for MRS with scales up to 10 000 units.

Index Terms—Distributed model predictive control (DMPC),
multirobot systems (MRS), policy learning, safe learning,
scalability.

I. INTRODUCTION

MULTIROBOT systems (MRS) represent a collective of
autonomous robots interconnected through communi-

cation networks [1], enabling collaborative control tasks. This
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networked structure endows MRS with the capability to pur-
sue global objectives that exceed the capabilities of individual
robots. However, achieving optimal coordination in MRS often
involves optimizing a global performance index, which poses
a significant large-scale optimal control problem [2]. Central-
ized solutions to the abovementioned problems may struggle to
adequately address the complexities arising from interactions
between multiple robots [3]. Consequently, recent decades have
witnessed considerable attention in developing distributed op-
timal control approaches for MRS [4], [5], [6], [7], [8], [9],
[10]. Among them, distributed model predictive control (MPC)
(DMPC) is a primary methodology for multirobot control under
constraints [11], [12], [13], [14], [15], formulating control prob-
lems as optimization tasks over prediction horizons to achieve
optimized performance.

In DMPC, each robot calculates the local control sequences
online by solving the optimization problem with numerical
solvers [16], [17], [18], [19], which could be computationally
intensive for nonlinear MRS. In real-world applications such
as small-size mobile robots, the computational efficiency, and
real-time performance optimization hinge on several influencing
factors: 1) Onboard computing resources are inherently limited
in scale and processing capability; 2) The nonlinear dynamics
and complex interactions among robots compound the compu-
tational load. Consequently, the real-time resolution of large-
scale DMPC problems presents significant challenges [17], [18],
deemed inapplicable for real-world large-scale yet small-sized
MRS. This motivates us to propose a computationally fast and ef-
ficient policy learning approach to generate explicit closed-loop
DMPC policies, rather than calculating the open-loop control
sequences, i.e., implicit policies, with numerical solvers. To the
best of authors’ knowledge, no previous work has developed
policy learning techniques for designing the DMPC policies.

As a class of policy learning techniques, reinforcement learn-
ing (RL) has made significant progress for robot control (cf. [20],
[21], [22], [23]). RL enables the acquisition of control policies
directly from data [20], or through model predictions [21], to
improve sample efficiency. In the context of multirobot control,
numerous approaches have been proposed leveraging multiagent
RL (MARL) paradigms [24], [25], [26]. Despite the prevalence
of deep RL frameworks, such as asynchronous advantage actor–
critic [24], challenges persist in training scalability, sample
efficiency, and the absence of closed-loop guarantees in policy
learning. These challenges highlight the crucial need for scalable
policy learning with stability guarantees. Our approach achieves
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this goal from two perspectives. First, we design a distributed on-
line actor–critic learning algorithm in which the training process
is executed incrementally to generate control policies efficiently.
Second, we introduce a policy training approach grounded in
control theory, integrating the receding horizon optimization
strategy into policy updates. This ensures closed-loop stability
and improves learning efficiency.

In addition to guaranteed stability, safety constraints, such as
collision avoidance, must be met to ensure the persistent and
reliable operation of MRS. However, ensuring control safety
in RL remains a nontrivial task, even in the model-based sce-
nario [27], [28], [29], [30]. Recent efforts in safe learning control
have focused primarily on the centralized control structure [29].
Few works have been dedicated to the safe multiagent policy
learning [31], [32], drawing inspiration from cost-shaping-based
RL [27], [28]. However, the cost-shaping design would lead to
weight divergence in the actor–critic framework [33], which
lacks online learning ability and safety guarantees. Gaining
insights from interior point optimization [34], we design a novel
safe policy learning algorithm with a force field-inspired policy
structure. This design can balance the objective and constraint-
associated forces acting on the MRS during policy learning,
ensuring safe learning with physical interpretations.

The contributions of this article are summarized as follows.
1) We propose a novel distributed learning-based predic-

tive control (DLPC) framework for large-scale MRS. In
contrast to conventional numerical DMPC, which calcu-
lates open-loop control sequences, our approach generates
closed-loop DMPC policies without relying on numerical
solvers. The optimization problem of DMPC within each
prediction interval is decomposed into several sequential
subproblems and solved by policy learning. The control
policies are composed of parameterized functions capable
of online learning and deployment to scenarios with vary-
ing robot scales, enhancing scalability and transferability
for large-scale MRS.

2) A computationally fast and efficient distributed policy
learning algorithm is developed, integrating the receding
horizon optimization strategy into policy updates. In each
prediction interval, policy learning is executed forward
in time rather than backward in time with a distributed
incremental actor–critic implementation, enabling fast on-
line policy updates. The control policies generated from
each prediction interval are successively refined in subse-
quent intervals to improve learning efficiency, fundamen-
tally different from the common independent problem-
solving paradigm of DMPC in different prediction inter-
vals. Compared with numerical DMPC, our approach sig-
nificantly reduces the computational load through fast and
efficient policy learning while maintaining closed-loop
stability.

3) We further address the challenge of safe policy learning in
MRS through a force field-inspired policy design, which
has clear physical interpretations to balance the objective
force and the constraint force acting in MRS, enabling
online policy learning and policy deployment with safety
and robustness guarantees.

4) We numerically and experimentally validate our method’s
superior sim-to-real transferability and scalability in large-
scale multirobot control. In particular, we have shown on
different computing platforms, i.e., a laptop and a Rasp-
berry PI 5 that our approach efficiently learns near-optimal
formation policies for MRS with scales up to 10 000, and
the computational load grows linearly with robot scales
in both platforms. To the best of authors’ knowledge,
no optimization-based control approach has realized dis-
tributed control on such a large scale. Moreover, the policy
trained with two robots is well deployed to robots with
scales up to 1000.

This article is a novel development of our previous conference
work [35]. In this article, we design a fast policy learning ap-
proach toward scalable multirobot control, which is beyond the
scope of our previous work [35]. Hence, the detailed techniques,
theoretical insights, and experimental validations presented here
differ substantially from that in [35].

The rest of this article is organized as follows. Section II
reviews the related work. Section III presents the dynamical
models of MRS and the formulation of the DMPC problem. The
proposed policy learning framework for DMPC is presented
in Section IV, while Section V derives the extension to safe
policy learning. Section VI demonstrates the simulated and
experimental results. Finally, Section VII concludes this article.
The main theoretical and auxiliary numerical results are given in
Appendix A, while additional theoretical results for safe policy
learning are referred to in the attached materials.

Notation: We use R and R+ to denote the sets of real numbers
and positive real numbers, respectively; Rn to denote the Eu-
clidean space of the n-dimensional real vector; Rn×m to denote
the Euclidean space of n×m real matrices. Denote N as the set
of integers and denote Nl2

l1
as the set of integers l1, l1 + 1, . . . , l2.

For a group of vectors zi ∈ Rni , i ∈ NM
1 , we use coli∈NM

1
(zi)

or (z1, . . . , zM ) to denote [z�1 , . . . , z
�
M ]�, where M ∈ N. We

use u(k) to represent a control policy formed by the control
sequenceu(k), . . . , u(k +N − 1), where k, N ∈ N. For a gen-
eral functionh(z(k)) in a variable z(k), we useh(k) to represent
h(z(k)) for simplicity. Given a function f(x) with argument x,
we define �f(x) and �2f(x) as the gradient and Hessian to
x, respectively. We use Int(Zi) to represent the interior of the
set Zi. For a matrix P ∈ Rn×n, P � 0 means that it is positive
definite. Given two general setsA and B, the pontryagin differ-
ence ofA andB is denoted asA� B = {c|c+ b ∈ A, ∀b ∈ B}.
For a vector x ∈ Rn, we denote ‖x‖2Q as x�Qx and ‖x‖ as the
Euclidean norm.

II. RELATED WORK

A. Nonlinear DMPC

Numerous DMPC approaches have been proposed for non-
linear MRS, and the most relevant ones are discussed here. In
particular, a DMPC approach under unidirectional communi-
cation topologies was designed in [14] for platoon control of
intelligent vehicles. A DMPC algorithm was proposed in [17] for
trajectory optimization of MRS. The cooperative optimization
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problem was solved by the nonconvex alternating direction
method. In [18], a Lyapunov-based DMPC approach was de-
veloped for the formation control of autonomous robots under
exogenous disturbances. In addition, a DMPC framework was
developed in [19] for autonomous vehicles with limitations in
communication bandwidth and transmission delays. It should be
noted that the abovementioned works [14], [17], [18], [19] resort
to nonlinear optimization solvers for online computation. At
each time instant, the local controller in numerical DMPC aims
to find an optimal numerical solution by optimizing the local
performance index over the entire prediction horizon. However,
this approach can be computationally intensive for large-scale
MRS, particularly when dealing with long prediction horizons
and limited onboard computing capabilities. In contrast, our
method addresses the local optimization problem incrementally,
advancing step by step within each prediction interval through
an efficient distributed policy learning approach. Moreover, the
learned local control policies can be deployed directly without
the need for online retraining or fine-tuning.

B. Explicit DMPC

Explicit MPC was initially proposed in [36] to generate
explicit control laws for linear systems. It involved offline
computation and online deployment of a collection of explicit
piecewise control laws. Although explicit MPC can reduce the
online computation time, the complexity of offline computation
grows exponentially with the system’s orders, and the control
performance demands model accuracy. The extension to explicit
DMPC was developed through system-level synthesis in [37].
Still, this work is suitable only for linear systems and relies on the
separability assumption of systems. In contrast to [36], [37], this
article learns explicit closed-loop control policies for nonlinear,
large-scale MRS.

C. Integration of RL and MPC

As RL can design control policies from data, optimizing
the high-level decision variables of MPC is straightforward to
improve control performance [38]. In [39], an RL algorithm was
used to model the maximum entropy as a penalty function in
MPC. Recent works [16], [40] incorporated the receding horizon
strategy into the RL training process and proposed actor–critic
learning algorithms to generate MPC’s policies. However, these
approaches are centralized in nature and designed for small-scale
systems.

D. Multiagent RL

Several MARL approaches have emerged for MRS using
various policy learning methods, including policy iteration [21],
[41], policy gradient [26], [42], asynchronous advantage actor–
critic [24]. Yet, these approaches cannot learn online with sta-
bility guarantees. The promising work [43] demonstrated, with
a decision-making example in discrete space, the potential of
multistep lookahead rollout in performance improvement.

MARL under safety constraints: Previous MARL ap-
proaches [31], [32] for multirobot collision avoidance utilized

potential functions for cost shaping [27], [28]. However, this
design may face weight divergence within the actor–critic frame-
work [33]. In [44], a deep RL approach was proposed to navigate
MRS safely, incorporating a hybrid control structure to improve
the robustness of policy deployment. An extension to an MARL
approach was presented in [23] with a reward design based on
reciprocal velocity obstacles. Nonetheless, the development of
MARL, with the ability to learn policies online and ensure safety,
remains unresolved. We address this challenge through a force
field-inspired safe policy design with an efficient actor–critic
implementation.

III. CONTROL PROBLEM FORMULATION

In this section, we begin by introducing the dynamical models
of MRS. Next, we present the formulation of the cooperative
DMPC based on preliminary work [45].

A. Dynamical Models of MRS

Consider the formation control of M mobile robots with
collision avoidance. The dynamical model of the ith robot is
given as

q̇i = (vi cos θi, vi sin θi, ωi, ai) (1)

where qi = (px,i, py,i, θi, vi) ∈ Rni , ni = 4, (px,i, py,i) is the
coordinate of the ith robot in Cartesian frame, θi and vi are the
yaw angle and the linear velocity; (ai, ωi) ∈ Rmi with mi = 2
are the acceleration and yaw rate. The formation error of the ith
robot in the local coordinate frame is defined as

ei = Ti

(
M∑
j=1

cij (Λ1(qj − qi) +Δhji)

+ si(Λ1(qr − qi) +Δhri) + Λ2(qr − qi)

)
(2)

where cij represents the connection status, cij = 1 for j ∈ Ni

and cij = 0 otherwise, Ni is the set of all neighbors of robot i
(including robot i itself); si represents the pinning gain, si = 1
if the robot i receives the position information of the leader,
Λ1 = diag{1, 1, 0, 0}, Λ2 = diag{0, 0, 1, 1}, qr is the reference
state received from the leader. The last term in (2) is used for
guiding the consensus of linear velocity and yaw angle of each
robot;Δhji andΔhri are coordinate correction variables, which
are determined by the formation shape and size; the coordinate
transformation matrix is

Ti =

⎡
⎣ cos θi sin θi 0
− sin θi cos θi 0

0 0 I2

⎤
⎦ ∈ Rni×ni .

Let ui = (wr − wi, ar − ai) be the control input associated
with robot i, where wr, ar are the reference acceleration and
yaw rate received from the leader, and denote eNi ∈ RnNi as
the collection of all neighboring error states (including ei), i.e.,
eNi = colj∈Niej . By discretizing (1) under (2) over a sampling
interval Δt, we write the local formation error model for the
ith robot as an input-affine form through a straightforward
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derivation process deferred in Appendix A-A. The concise form
follows:

ei(k + 1) = fi(eNi(k)) + gi(ei(k))ui(k), i ∈ NM
1 (3)

where k ∈ N is the discrete-time index, the mappings fi :
RnNi → Rni and gi : Rni → Rni×mi are smooth state transi-
tion and input mapping functions, respectively, and fi(0) = 0;
eNi ∈ Ei ⊆ RnNi and ui ∈ Ui ⊆ Rmi , the sets Ei and Ui are

Ei = {eNi ∈ RnNi |Ξj
e,i(eNi) ≤ 0, j = 1, . . . , ne,i}

Ui = {ui ∈ Rmi |Ξj
u,i(ui) ≤ 0, j = 1, . . . , nu,i} (4)

where Ξj
e,i(eNi), Ξ

j
u,i(ui) ∈ R are C1 functions, ne,i, nu,i ∈

N denote the overall numbers of inequalities associated with
Ξj
e,i(eNi), Ξ

j
u,i(ui), respectively. Note that the set Ei is a ver-

satile formulation representing a range of constraints, including
static/dynamic collision avoidance and joint inter-robot collision
avoidance, which will be discussed in Section VI.

Collecting all the local robot systems from (3), the overall
dynamical model is written as

e(k + 1) = Fc(e(k)) +Gc(e(k))u(k) (5)

and will be used later for closed-loop stability analysis,
where e = coli∈NM

1
(ei) ∈ Rn is the overall state variable,

n =
∑M

i=1 ni, u = coli∈NM
1
(ui) ∈ Rm, m =

∑M
i=1 mi, Fc =

coli∈NM
1
(fi), the diagonal blocks of Gc are gi, i ∈ NM

1 .
We introduce the following standard assumption [45] with

respect to the stabilizability of (5).
Assumption 1 (Stabilizing control): There exist local feed-

back control policies ui(eNi) for all i ∈ NM
1 , such that u =

coli∈NM
1
(ui(eNi)) is a stabilizing control policy of (5).

The satisfaction of the abovementioned stabilizability condi-
tion does not impose restrictive requirements on the communica-
tion networks. Indeed, information exchanges among neighbor-
ing robots can be bidirectional or unidirectional, provided that a
stabilizing control policy for (5) exists. Since our work focuses
on designing a fast policy learning algorithm for DMPC, we also
introduce a standard assumption on the communication network.

Assumption 2 (Communication network): The communica-
tion network is time-invariant and delay-free, meaning that the
connections between neighboring robots remain fixed and the
information is exchanged without latency.

B. DMPC for MRS

We follow a notable cooperative DMPC formulation [45] for
the optimal control of MRS. At each time step k, the following
finite-horizon cooperative optimization cost is to be minimized:

min
ui(k),∀i∈NM

1

J(e(k)) (6)

where ui(k) = ui(k), . . . , ui(k +N − 1), the global cost
J(e(k)) =

∑M
i=1 Ji(eNi(k)) with the local cost associated with

each robot i defined as

(a) (b)

Fig. 1. Motivational problem. (a) In nonlinear DMPC, the optimization prob-
lems are usually solved through nonlinear programming (NLP) solvers, which
are computationally intensive and nonscalable, especially for nonlinear MRS
with large scales. (b) Our approach generates the closed-loop DMPC policies for
MRS through distributed policy learning, and the learned policies are composed
of parameterized functions that could be online trained and deployed with robot
scales up to 10 000.

Ji(eNi(k))

=

N−1∑
j=0

ri(eNi(k + j), ui(k + j)) + ‖ei(k +N)‖2Pi
(7)

where in the stage cost ri(eNi(k), ui(k)) = ‖eNi(k)‖2Qi
+

‖ui(k)‖2Ri
, N ∈ N is the prediction horizon, Qi = Q�i ∈

RnNi×nNi , Qi � 0, Ri = R�i ∈ Rmi×mi , Ri � 0; Pi = P�i ∈
Rni×ni , Pi � 0 is the terminal penalty matrix.

At each time step k, the optimization problem (6) is usually
solved using numerical optimization tools [45], [46] and subject
to model (3), constraints ei(k + j) ∈ Ei, ui(k + j) ∈ Ui, and
the terminal state constraints ei(k +N) ∈ Ef,i, ∀ i ∈ NM

1 , j ∈
NN−1

0 , where Ef,i can be computed as a local control invariant
set of (3) (if exists) in the form Ef,i = {ei ∈ Rni |e�i Siei ≤ 1},
Si = S�i � 0.

At each time instant k, solving problem (6) generates an
optimal control sequence. Only the first control action is applied,
and (6) is solved repeatedly at the next time instant. However,
it should be noted that solving (6) using numerical solvers for
nonlinear large-scale MRS is challenging and computationally
intensive (see Fig. 1). Instead of numerically calculating the
control sequence u(k) = coli∈NM

1
(ui(k)), this article aims to

present a computationally fast and efficient distributed policy
learning approach to generate explicit closed-loop DMPC poli-
cies, facilitating scalable policy learning and deployment in
optimization-based multirobot control.

IV. FAST POLICY LEARNING FRAMEWORK FOR DMPC

This section presents the proposed distributed policy learning
framework to solve the DMPC problem (6). Then, we introduce
a distributed actor–critic algorithm to quickly implement the pol-
icy learning approach, generating closed-loop control policies
with lightweight neural networks.

Note that this section is dedicated to elucidating the policy
learning design for DMPC in an unconstrained scenario, i.e.,
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Fig. 2. Exemplary scenario of communication graph withM = 6. The arrows
represent the directions of information exchange among robots. For the first
robot, the set of its neighbors (including itself) is N1 = {1, 2, 5}, while the
set of robots that include robot 1 as one of the neighbors is N̄1 = {1, 6}. The
communications are instantaneously exchanged among neighboring robots at
each step.

Ei = RnNi and Ui = Rmi . The extension to safe policy learning
under state and control constraints is postponed to Section V.

A. Policy Learning Design for DMPC

Assume now that, at a generic time instant k, problem (6) is
to be solved. Our goal is to generate an analytic control policy
u(e(τ)) = coli∈NM

1
(ui(eNi(τ)), ∀τ ∈ [k, k +N − 1] that op-

timizes (6) with the performance index J(e(k)). Unlike the
numerical DMPC that seeks a numerical solution by mini-
mizing J(e(k)) over the whole prediction horizon, our work
decomposes the optimization problem into N cooperative sub-
problems. Using an efficient distributed policy learning ap-
proach, it solves them stepwise and forward in time. To this
end, at each time instant τ ∈ [k, k +N − 1], we define r(τ) =∑M

i=1 ri(τ), J(e(τ)) =
∑M

i=1 Ji(eNi(τ)), where Ji(eNi(τ)) =
ri(τ) + Ji(eNi(τ + 1)) and Ji(eNi(k +N)) = ‖ei(k +N)‖2Pi

.
DenotingJ∗(e(τ)) be the optimal value function associated with
the optimal control policy u∗(e(τ)), we write the Hamilton–
Jacobi–Bellman equation, for τ ∈ [k, k +N − 1], as

J∗(e(τ)) = min
ui(eNi (τ)),i∈NM

1

r(τ) + J∗ (e(τ + 1)) .

Note that with model (3), the local control policy ui(eNi(τ))
has only direct effects on the cost J∗j (eNj (τ + 1)) for all j ∈ N̄i,
where N̄i is the collection of local robots that include the ith
robot as one of their neighbors (a graphical illustration of N̄i

is provided in Fig. 2 for clarity). Hence, the optimal control
of robot i at each time τ ∈ [k, k +N − 1] could be calculated
utilizing the related one-step ahead optimal cost J∗j (eNj (τ + 1))

for all j ∈ N̄i, that is

u∗i (eNi(τ)) = argmin
ui(eNi (τ))

⎧⎨
⎩ri(τ) +

∑
j∈N̄i

J∗j
(
eNj (τ + 1)

)⎫⎬⎭ (8)

for all i ∈ NM
1 . The connection between u∗i (eNi(τ)) and

J∗j (eNj (τ + 1)), j ∈ N̄i, as depicted in (8), provides insights
for developing our distributed policy learning framework, which
will be subsequently introduced.

Distributed policy learning: In each prediction interval
[k, k +N − 1], the distributed policy learning procedure is
started with an initial control u0(e(τ)) = coli∈NM

1
(u0

i (eNi(τ)),
then each robot’s value function and control policy are updated
with iteration step t = 1, . . ..

(i) Parallel value update, for all i ∈ NM
1

J t+1
i (eNi(τ)) = ri(τ) + J t

i (eNi(τ + 1)). (9a)

(ii) Synchronous policy update, for all i ∈ NM
1

ut+1
i (eNi(τ))

= argmin
ui(τ)

⎧⎨
⎩ri(τ) +

∑
j∈N̄i

J t+1
j

(
eNj (τ + 1)

)⎫⎬⎭ . (9b)

Procedure (9) is executed stepwise and forward within each
prediction interval. Consequently, at each iteration time step of
each robot i, our approach only requires one-step ahead state
predictions of its neighbors for policy updates, which can be
calculated using (3) with the current states and actions. This
approach differs from the traditional DMPC implementation,
where solving (6) over the prediction horizon for each robot i
usually involves all future states of neighbors within the predic-
tion interval, which may not align with the actual states [47].

Terminal penalty matrix: Previous work [45] has addressed
the terminal penalty design issue to guarantee closed-loop sta-
bility, but only for linear systems. In this article, we extend
the design of Pi to guarantee the stability of nonlinear MRS.
In particular, we choose Pi as the solution to the following
Lyapunov equation:

F�i PiFi − P̄i = −βi

(
Qi +K�NiRiKNi

)
+ ΓNi ∀i ∈ NM

1

(10)

where Fi = ANi +BiKNi , ANi ∈ Rni×nNi , and Bi ∈ Rni×mi

are the model parameters of the linearized model of (3)
around the origin, i.e., ei(k + 1) = ANieNi(k) +Biui(k) +
φi(eNi(k), ui(k)), φi is the linearization error and
limeNi ,ui→0 φi(eNi , ui)/(eNi , ui)→ 0; KNi ∈ Rmi×nNi are
gain matrices such that u = coli∈NM

1
(KNieNi) is a stabilizing

control policy, P̄i := WiΥ
�
i PiΥiW

�
i lifts Pi to the space of

neighboring states belonging in RnNi , Υi ∈ {0, 1}ni×n and
Wi ∈ {0, 1}nNi×n are selective matrices such that ei = Υie,
eNi = Wie; and

∑M
i=1 W

�
i ΓNi

Wi ≤ 0.
Note that differently from [45], the tuning parameter

βi is introduced in (10) to account for the nonlinearity
φi(eNi(k), ui(k)), which plays a crucial role in deriving the
closed-loop stability result (deferred to Appendix A-B).

B. Distributed Online Actor–Critic Learning Implementation

The distributed policy learning procedure (9) is not ready for
fast policy generation, primarily due to the complexities associ-
ated with (9b). We now discuss a distributed actor–critic learn-
ing algorithm to efficiently implement (9) through lightweight
neural network approximations of the control policy and value
function. In detail, the implementation consists ofM actor–critic
network pairs, each designed with linear combinations of basis
functions for the local robot, to learn the associated control
policy and value function. Each robot’s local actor and critic
networks are trained in a fully distributed manner, and the param-
eters therein are updated incrementally within each prediction
interval, enabling fast online policy learning for large-scale
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Algorithm 1: Online Fast Policy Learning Implementation
for DMPC.

Require:
1: Initialize Wc,i and Wa,i with uniformly distributed

random matrices, i ∈ NM
1 ;

2: Set ε > 0, Err ≥ ε, t = 0, tmax;
3: for k = 1, 2, · · · do
4: Set W 0

c,i = Wc,i and W 0
a,i = Wa,i, ∀ i ∈ NM

1 ;
5: while Err ≥ ε ∨ t ≤ tmax do
6: for τ = k, . . . , k +N − 1 do
7: Compute ei(τ + 1) with ûi(eNi(τ)) using (3),

∀ i ∈ NM
1 ;

8: Derive λ̂i(τ) using eNi(τ) and λ̂i(τ + 1) using
the one-step-ahead prediction eNi(τ + 1) with
(11), ∀ i ∈ NM

1 ;
9: Calculate λd

i (τ) with (12) and ud
o,i(τ) with (15),

∀ i ∈ NM
1 ;

10: Update Wc,i with (13) and Wa,i with (16),
∀ i ∈ NM

1 ;
11: end for
12: Set W t+1

c,i = Wc,i and W t+1
a,i = Wa,i, ∀ i ∈ NM

1 ;
13: Compute

Err =
M∑
i=1

‖W t+1
c,i −W t

c,i‖+ ‖W t+1
a,i −W t

a,i‖;

14: t← t+ 1;
15: end while
16: Calculate cost J(e(k)) with (7);
17: if Condition deferred in (18) is violated then
18: Re-initialize Wc,i and Wa,i, and repeat steps 3-15;
19: end if
20: Update ei(k + 1), i ∈ NM

1 , by applying ûi(eNi(k))
to (3).

21: end for

MRS. Furthermore, the actor and critic models acquired during
each prediction interval are successively refined in subsequent
intervals, thus enhancing learning efficiency and guaranteeing
closed-loop stability.

Critic learning: In principle, the local critic network for robot
i could be designed to approximate Ji(eNi(τ)) or the so-called
costate λi(eNi(τ)) = ∂Ji(eNi(τ))/∂eNi(τ) [48]. In the latter
case, more model information is used to accelerate convergence
in online learning. Hence, the critic network is constructed to
represent the costate, i.e.,

λ̂i(eNi(τ)) = W�
c,iσc,i(eNi(τ), τ), i ∈ NM

1 (11)

for all τ ∈ [k, k +N − 1], where Wc,i ∈ Rnc,i×nNi is the
weighting matrix, σc,i ∈ Rnc,i is a vector composed of basis
functions, including polynomials, radial basis functions, sig-
moid functions, hyperbolic tangent functions, and others.

The goal of training the critic network is to mini-
mize the deviation between λ̂i(eNi(τ)) and λ∗i (eNi(τ)) :=
∂J∗i (eNi(τ))/∂eNi(τ). Since λ∗i (eNi(τ)) is unknown, we define
the desired value of λ̂i(eNi(τ)) by taking the partial derivative

of eNi(τ) on (9a), i.e.,

λd
i (τ) = 2QieNi(τ) +

∑
j∈N̄i

(
∂fj(eNj (τ))

∂eNi(τ)

)�
λ̂
[j]
i (τ + 1)

(12)

for τ ∈ [k, k +N − 1], where λ̂
[j]
i (eNi) ∈ Rnj is the associated

entries of λ̂i(eNi) corresponding to robot j.
Let εc,i(τ) = λd

i (eNi(τ))− λ̂i(eNi(τ)),∀i ∈ NM
1 be the local

approximation error. Minimizing the quadratic cost δc,i(τ) =
‖εc,i(τ)‖2 leads to the update rule of Wc,i as

Wc,i(τ + 1) = Wc,i(τ)− γc,i
∂δc,i(τ)

∂Wc,i(τ)
(13)

where γc,i ∈ R+ is the local learning rate.
Actor learning: Likewise, for each robot i, we construct the

actor network as

ûi(eNi(τ)) = W�
a,iσa,i(eNi(τ), τ) (14)

whereWa,i ∈ Rnu,i×mi is the weighting matrix, σa,i ∈ Rnu,i is
a vector composed of basis functions like in (14). In view of the
first-order optimality condition of (9b), letting uo,i = 2Riûi, we
define a desired target of uo,i as

ud
o,i(τ) := −

∑
j∈N̄i

g�i (ei(τ))λ̂
[i]
j (τ + 1) (15)

τ ∈ [k, k +N − 1]. Letting εa,i(τ)=ud
o,i(τ)− uo,i(τ), at each

time instant τ ∈ [k, k +N − 1], each robot i minimizes the
quadratic cost δa,i(τ) = ‖εa,i(τ)‖2, leading to the update rule
of Wa,i as

Wa,i(τ + 1) = Wa,i(τ)− γa,i
∂δa,i(τ)

∂Wa,i(τ)
(16)

where γa,i ∈ R+ is the local learning rate.
The learning steps of the distributed actor–critic implemen-

tation are summarized in Algorithm 1 (see also Fig. 3). After
completion of the learning process in the prediction interval
[k, k +N − 1], the first control action ui(eNi(k)) calculated
with (14) is applied to (3). Then, the above learning process is
repeated in the subsequent prediction interval [k + 1, k +N ]. In
such a manner, the control policies generated from the prediction
interval [k, k +N − 1] are successively refined in subsequent
intervals, enabling fast and efficient policy learning with the
closed-loop stability guarantee. In addition to online policy
learning, the convergent control policy in the form (14) could be
directly deployed to MRS.

Remark 1: Numerical DMPC methods can be roughly
classified into noniterative and iterative approaches, each
with different computational demands [49]. In noniterative
linear/linearized DMPC where neighbors communicate once
per time step, the computational complexity is roughly
O(
∑M

i=1 N(nNi +mi)n
2
Ni) if the local MPC is implemented

with an efficient sparse solver [50], [51]. In iterative DMPC
methods where neighbors communicate several times per step,
distributed optimization algorithms such as the alternating di-
rection method of multipliers could also be used for nego-
tiations between robots, further increasing the computational
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(a) (b)

Fig. 3. (a) Sketch diagram of the distributed actor–critic learning algorithm in the prediction interval [k, k +N − 1], for the formation control of wheeled
vehicles or multirotor drones. The definitions of λdi and ud

o,i are given in (12) and (15). (b) Learned control policy is of an explicit structure, and the one generated
with 2 robots could be online deployed to 1000 robots via weight sharing (see Section VI-A for implementing details). (a) Online policy learning. (b) Online policy
deployment.

load [49]. The main computational complexity of our approach
to policy learning is due to (13), (16), and the forward pre-
diction with (3), which is approximately O(

∑M
i=1 N(nc,i +

nu,i + nNi)nNi). When directly deploying the learned control
policy, the overall online computational complexity is reduced
to O(

∑M
i=1 nu,inNi) even for nonlinear MRS.

Remark 2: Compared with traditional numerical DMPC, our
approach has the following significant characteristics.

1) Our approach learns the closed-loop control policy rather
than calculating open-loop control sequences.

2) The policy is generated by a distributed online actor–critic
implementation, and no numerical solver is required.

3) In each prediction interval, our policy learning procedure
is executed forward in time and stepwise rather than
DMPC numerically optimizing the performance index
over the prediction horizon.
As shown later in Table III of Section VI, our approach
significantly improves computational efficiency compared
to two numerical DMPC approaches with different numer-
ical solvers [14] and [45].

4) The policy learning process is executed successively be-
tween adjacent prediction intervals to improve learning
efficiency. This means that the control policies generated
from each prediction interval are iteratively refined in sub-
sequent intervals. This approach fundamentally contrasts
the common independent problem-solving paradigm of
numerical DMPC in different prediction intervals.

5) Our control policy has an explicit structure and could be
learned offline and deployed online to MRS with different
scales [see Fig. 3(Panel (b)].

Hence, our approach facilitates scalability and rapid adapt-
ability through rapid policy learning and deployment.

C. Practical Stability Verification Condition

The learned control policy using Algorithm 1 may
approximate the optimum u∗(k) with non-negligible errors. In

this scenario, the overall cost value J(k) might not be mono-
tonically decreasing [see Fig. 4(Panel (a)] under the actor–critic
implementation, and the stability argument commonly used in
MPC is not applicable. Therefore, we introduce a novel and
practical condition to ensure closed-loop stability in our frame-
work. To this end, we recall from Assumption 1 that there exists
a baseline stabilizing control policy sequence ub = coli∈NM

1
ub
i ,

∀ k ∈ N, such that Jb(eb(k)) is a Lyapunov candidate function
satisfying

Jb(eb(k + 1))− Jb(eb(k)) < −s(eb(k), ub(k)) (17)

where s(·, ·) is a class K function, Jb(eb) =
∑M

i=1 J
b
i (e

b
Ni),

Jb(ebNi) and ebNi are the associated performance index in (7)
and the evolution of the state under ub

i , respectively. Hence, we
introduce the following condition to verify closed-loop stability:

J(e(k)) ≤ Jb(eb(k)), k ∈ N. (18)

This condition represents a practical and easily verifiable solu-
tion to address the challenge of ensuring closed-loop stability
arising from the possible nonmonotonic decrease of the overall
cost J(e(k)) during learning. In a novel insight, the key is to
draw a monotonic decreasing function Jb(eb(k)) and verify its
consistent role as an upper bound for J(e(k)) [see Fig. 4(Panel
(a)].

Remark 3: Note that verifying condition (18) requires col-
lecting the cost Ji(eNi(k)) calculated within each local robot
i ∈ NM

1 through communication networks. Alternatively, to
mitigate the communication load, one can verify Ji(eNi(k)) ≤
Jb
i (e

b
Ni(k)) + ηi, where ηi with i ∈ NM

1 satisfies
∑M

i=1 ηi ≤ 0,
for ensuring condition (18).

Remark 4: The design of Jb(eb(k)) with the baseline stabi-
lizing policy, ub(k), is not unique. Two candidate choices are
described as follows.

1) Calculate the optimal control sequence u∗(0) =
coli∈NM

1
u∗i (0) by solving (6). For each i ∈ NM

1 , set

ub
i (0) = u∗i (0) at time k = 0 and update ub

i (k) =
ub
i (k|k − 1), . . . , ub

i (k +N − 1|k − 1),KNieNi(k +
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(a) (b)

Fig. 4. (a) Example of the practical stability verification condition. The purple line represents the cost value using the distributed actor–critic learning algorithm,
which may not be monotonically decreasing but is bounded by two monotonically decreasing cost values Jb(k) under two baseline stabilizing control policies.
(b) Example of the relaxed barrier function for Boz,i(zi) = − log(b− zi)− log(b+ zi), where the black dotted line represents δi(zi, σ̄i) in (19), while the blue
line represents the recentered transformation Bcz,i(zi) = Boz,i(zi) + 2 log b centered at zc,i = 0. (a) Practical stability verification. (b) Barrier functions.

N |k) iteratively at each time k ∈ N. This choice ensures
the satisfaction of condition (18), as proven in Theorem 2
of Appendix A.

2) Design Jb(k) as a monotonically decreasing function,
with Jb(∞) = 0. This approach eliminates the need for
prior knowledge of the associated baseline control policy
ub(k). Adopting this design makes the condition (18) for
stability verification less restrictive and more practical.

We have rigorously established the convergence condition of
the policy learning algorithm and the closed-loop properties of
our approach. Please refer to Appendix A for detailed theoretical
proofs and analysis.

V. SAFE POLICY LEARNING

This section extends our approach to safe policy learning
for DMPC under state and control constraints in (4). We begin
by introducing a novel force field-inspired safe policy learning
design. This design ensures learning safety through a unique
force field-inspired policy structure, offering clear physical in-
terpretations. Subsequently, we provide a fast, distributed, safe
actor–critic implementation, ensuring safety and efficiency in
real-world applications.

Note that barrier functions are commonly used in interior
point optimization [34] to solve constrained optimization prob-
lems. First, we provide some definitions of barrier functions,
which will be used to form the force field-inspired policy struc-
ture, drawing inspiration from [34]. Please see Fig. 4 for a visual
description of the barrier functions defined as follows.

Definition 1 (Barrier functions [52]): For a set Zi = Ei or
Ui, define Boz,i(zi) = −

∑qz,i
j=1 log(−Ξj

z,i(zi)), zi ∈ Int(Zi),
and Boz,i(zi) = +∞, otherwise. A recentered transformation
of Boz,i(zi) centered at zc,i is defined as Bcz,i(zi) = Boz,i(zi)−
Boz,i(zc,i)− �Boz,i(zc,i)�zi, with Bcz,i(zc,i) = 0. A relaxed bar-
rier function of Bcz,i(zi) is defined as

Brz,i(zi) =
{Bc

z,i(zi) σ̄i ≥ κi

δi(zi, σ̄i) σ̄i < κi
(19)

where κi ∈ R+ is a relaxing factor, σ̄i = min
j∈N

qz,i
1
−

Ξj
z,i(zi), the function δi(zi, σ̄i) is strictly monotone and dif-

ferentiable on (−∞, κi), and �2δi(zi, σ̄i) ≤ �2Brz,i(zi)|σ̄i=κi
.

A. Force Field-Inspired Policy Learning Design

Barrier-based cost shaping: In line with [52], we recon-
struct the cost function with barrier functions as J̄(e(k)) =∑M

i=1 J̄i(eNi(k)), and

J̄i(eNi(k))

=

N−1∑
j=0

r̄i(eNi(k + j), ui(k + j)) + J̄i(ei(k +N)) (20)

where r̄i(eNi(τ), ui(τ)) = ri(eNi(τ), ui(τ)) +
μ(Be,i(eNi(τ)) + Bu,i(ui(τ))), Bz,i(zi(τ)) for zi = eNi , ui are
the relaxed barrier functions in Definition 1, τ ∈ [k, k +N − 1],
J̄i(ei(k +N)) = ‖ei(k +N)‖2Pi

+ μB[T]
e,i (ei(k +N)),

B[T]
e,i (ei(k +N)) is constructed with the recentered barrier

function of the terminal constraint (see again Definition 1),
the tuning parameter μ > 0 adjusts the influence of barrier
functions on J(e(k)).

Force field-inspired policy structure: It is worth noting that
optimizing J̄(e(k)) in (20) does not guarantee safe learning
within the actor–critic framework [16], [33]. As discussed in
the interior point optimization [34], minimizing J̄(e(k)) results
in an optimal solution influenced by two acting forces. One
is the constraint force associated with the barrier functions in
J̄(e(k)), while the other originates from the objective function
J(e(k)). Balancing these two acting forces within an actor–critic
structure presents a considerable challenge [33]. Consequently,
we devise a force field-inspired policy structure representing the
joint action of the objective and constraint forces, ensuring safety
during policy optimization with clear physical interpretations.

Specifically, for each robot i, our proposed control policy
comprises a nominal control policy that generates the objective
force, along with two gradient terms of barrier functions that
generate constraint forces associated with the control and state
constraints, i.e.,
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ūi(eNi) = νi(eNi) + Le,i�Be,i(eNi) + Lν,i�Bν,i(νi(eNi))
= νi(eNi) + Li · (�Be,i(eNi),�Bν,i(νi(eNi))) (21)

where νi(eNi) ∈ Rmi is a parameterized control policy to gen-
erate the objective force, the remaining gradient-based terms
are to generate the constraint forces, Li = [Le,i Lν,i], Le,i ∈
Rmi×nNi , and Lν,i ∈ Rmi×mi . The parameters of νi(eNi) and
Li are decision variables to be further optimized by minimiz-
ing (20).

Terminal penalty matrix: Since barrier functions are em-
ployed in cost reconstruction (20), the penalty matrix Pi deter-
mined from (10) is rendered inapplicable for ensuring stability
guarantees. We recall from [52], there exists a positive-definite
matrix Hz,i satisfying

Hz,i ≥ �2Brz,i(zi)|σ̄i=κi
(22)

such that ‖�Brz,i(zi)‖≤Bzi,m, for zi = eNi or ui, where
Bzi,m = maxzi∈Zi

‖2Hz,i(zi − zc,i)‖. Hence, matrix Pi is now
calculated as the solution to the following Lyapunov equation:

F�i PiFi − P̄i = − βi

(
μ(He,i +K�NiHu,iKNi)

+ Qi +K�NiRiKNi

)
+ ΓNi . (23)

∀i ∈ NM
1 . Unlike (10),He,i andHu,i are derived satisfying (22)

to account for the barrier functions in (20).

B. Distributed Safe Actor–Critic Learning Implementation

We design the distributed safe actor–critic learning algorithm
following the line in Section IV-B. In this scenario, the actor
and critic are constructed with barrier forces consistent with the
force field-inspired policy and barrier-based cost function. This
design has clear physical force field interpretations to ensure
safety and convergence during policy learning.

Barrier-based critic learning: For any robot i ∈ NM
1 , the

critic network is constructed with barrier gradients, i.e.,

ˆ̄λi(eNi(τ)) = (W̄
[1]
c,i )

�σc,i(eNi(τ), τ) + (W̄
[2]
c,i )

��Be,i(eNi(τ))
= (W̄c,i)

�hc,i(eNi(τ), τ) (24)

for all τ ∈ [k, k +N − 1], where W̄ [1]
c,i ∈ Rnc,i×nNi and W̄ [2]

c,i ∈
Rni×nNi are the weighting matrices, σc,i ∈ Rnc,i is a vector
composed of basis functions like in (14),
W̄c,i = [(W̄

[1]
c,i )

�(W̄ [2]
c,i )

�]�, hc,i(eNi(τ), τ) =
(σc,i(eNi(τ), τ),�Be,i(eNi(τ))).

In line with (12), define the desired value of ˆ̄λi(eNi(τ)) as

λ̄d
i (eNi(τ)) = 2QieNi(τ) + μ

∂Be,i(eNi(τ))
∂eNi(τ)

+
∑
j∈N̄i

(
∂fj(eNj (τ))

∂eNi(τ)

)�
ˆ̄λ
[j]
i (τ + 1) (25)

for τ ∈ [k, k +N − 1], where ˆ̄λ
[j]
i (τ) ∈ Rnj is the associated

entries of ˆ̄λi(eNi(τ)) corresponding to robot j.

Let ε̄c,i(τ) = λ̄d
i (eNi(τ))− ˆ̄λi(eNi(τ)), ∀i ∈ NM

1 . Minimiz-
ing δ̄c,i(τ) = ‖ε̄c,i(τ)‖2 leads to the update rule:

W̄
[j]
c,i (τ + 1) = W̄

[j]
c,i (τ)− γ

[j]
c,i

∂δ̄c,i(τ)

∂W̄
[j]
c,i (τ)

∀j = 1, 2 (26)

where γ
[j]
c,i ∈ R+, j = 1, 2, are the local learning rates.

Force field-inspired actor learning: Likewise, for each robot
i, we construct the actor network to generate the force field-
inspired policy, i.e.,

ˆ̄ui(eNi(τ)) = (W̄
[1]
a,i)

�σa,i(eNi(τ), τ)

+ (W̄
[2]
a,i)

��Be,i(eNi(τ))+(W̄
[3]
a,i)

��Bν,i(ν̂i(τ))
= W̄�

a,iha,i(eNi(τ), τ) (27)

where ν̂i(τ) = (W̄
[1]
a,i)

�σa,i(eNi(τ), τ), W̄
[1]
a,i ∈ Rnu,i×mi is the

weighting matrix, [(W̄ [2]
a,i)

� (W̄
[3]
a,i)

�] ∈ Rmi×(nNi+mi) is the
approximation of Li, σa,i ∈ Rnu,i is a vector composed of basis

functions like in (14), Wa,i = [(W̄
[1]
a,i)

� (W̄
[2]
a,i)

� (W̄
[3]
a,i)

�]�,
ha,i(eNi(τ), τ)=(σa,i(eNi(τ), τ),�Be,i(eNi(τ)),�Bν,i(ν̂i(τ))).
Letting ūo,i = 2Ri ˆ̄ui + μ�Bu,i(ˆ̄ui), we define a desired target
of ūo,i as

ūd
o,i(τ) := −

∑
j∈N̄i

g�i (ei(τ))
ˆ̄λ
[i]
j (τ + 1) (28)

for τ ∈ [k, k +N − 1]. Let ε̄a,i(τ) = ūd
o,i(τ)− ūo,i(τ). At

each time instant τ ∈ [k, k +N − 1], each robot i minimizes
δ̄a,i(τ) = ‖ε̄a,i(τ)‖2, leading to the update rule

W̄
[j]
a,i(τ + 1) = W̄

[j]
a,i(τ)− γ

[j]
a,i

∂δ̄a,i(τ)

∂W̄
[j]
a,i(τ)

∀j = 1, 2, 3 (29)

where γ
[j]
a,i ∈ R+, j = 1, 2, 3, are the local learning rates.

Due to space limitations, we have omitted the summarized
implementation steps of the safe policy learning algorithm and
the theoretical results. Please refer to the attached materials
(see “auxiliary-results.pdf” in the uploaded package “auxiliary-
material.zip”) for comprehensive implementation steps and de-
tails of the theoretical analysis.

VI. SIMULATION AND EXPERIMENTAL RESULTS

This section evaluates our methodology for formation control,
which involves simulated and real-world experiments on mobile
wheeled vehicles and multirotor drones. Through simulated and
real-world experiments, we aim to demonstrate the following:

1) our approach could online learn near-optimal control poli-
cies efficiently for very large-scale MRS and is more
scalable than nonlinear numerical DMPC;

2) the control policy learned using nominal kinematic models
could be directly transferred to real-world mobile wheeled
vehicles and multirotor drones;

3) our approach shows strong transferability by deploying
the learned policy to robots with different scales.

We have shown on different computing platforms, i.e., a
laptop and a Raspberry PI 5 that our approach could efficiently
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TABLE I
HYPERPARAMETERS OF DLPC

learn the DMPC policies for MRS with scales up to 10 000, and
the computational load grows linearly with robot scales in both
platforms. As far as we know, no optimization-based control
approach has realized distributed control for MRS on such a
large scale. Our learned control policies, trained with 2 robots,
could be deployed directly to MRS with scales up to 1000.
Furthermore, our learned control policies could be deployed to
real-world wheeled MRS with different scales.

A. Simulated Experiments on MRS

Simulation setup and parameters tuning: In DLPC, the pre-
diction horizon was set as N = 20. The critic in (11) and actor
in (14) were chosen as single-hidden-layer neural networks with
hyperbolic tangent activation functions. The values of other
hyperparameters are listed in Table I. In the training process,
the weighting matrices of the actor and critic networks were
set as uniformly distributed random values. The simulation tests
were performed within a MATLAB environment on a Laptop
with Intel Core i9@2.30 GHz.

Online policy training with robot scales up to 10 000:
First, we have verified our approach’s learning convergence
and closed-loop stability, which is omitted here. Please refer
to Appendix A-D for implementing details and results. We
next show that our approach could efficiently train robots for
formation control with robot scales varying from 4 to 10 000
[see Fig. 5(a)], verifying the scalability in policy training. We
adopted a sparse communication topology in all the scenarios
from 4 robots to 10 000, where each local robot only received the
information from three neighbors at most (including itself). All
the weights in the actor and critic networks were initialized with
uniformly distributed random values within the range [0, 0.1] in
the first prediction interval. They were successively updated in
the subsequent prediction intervals. As shown in Fig. 5(a), our
approach could successfully train the DMPC policies to drive the
robots to achieve the predefined formation shape from a disor-
dered initialization. Notably, the transient periods in formation
generation are only about 3 s even in the scenario with robot
scales M = 10 000. Moreover, the average computational time
for solving the overall optimization problem at each time step
grows linearly with robot scales (see Table III), which is 0.02 s
forM = 2 and 14.57 s forM = 10 000. The results demonstrate

the effectiveness and scalability of our approach in online policy
generation.

Transferability from 2 robots to 1000: We verified generaliz-
ability by transferring our offline learned policy with 2 robots
directly to multiple robots with scales up to 1000 [see Fig. 5(b)].
The training was performed for 2 robots’ formation control in a
straight-line formation scenario. The learned weighting matrix
of the actor for the first robot was Wa,1 = [w1 w2]

�, where

w1 =

[
0.65 0.4 0.3 1.58

−0.26 0.47 1.2 − 0.16

]
,

w2 =

[
−0.01 − 0.2 0.05 − 0.23

0.05 0.15 0.12 − 0.19

]

here w1 and w2 associated with to the error states of the
first robot and its connected neighbor in eN1 , respectively. The
weighting matrix was then directly used to construct control
policies for formation control with 4, 200, and 1000 robots in
both straight-line and circular formation scenarios. Note that
in policy deployment for 4, 200, and 1000 robots, the first
robot has two neighbors while others have three neighbors [see
Fig. 5(Panel (b)], unlike the 2-robot scenario where each robot
has two neighbors. Therefore, the weighting matrix used for
policy deployment was constructed as Wa,1 = [w1 w2]

� for
the first robot and Wa,i = [w1 w2 w2]

� for the other robots,
which means that the weighting matrix w2, corresponding to
the connected neighbor in the 2-robot scenario, was repeatedly
used in the 4, 200, and 1000 robot scenarios. As displayed
in Fig. 5[Panel (b)], the transferred policy stabilizes the for-
mation control system under various robot scales. The results
represent a substantial reduction in computational load by only
training a limited number of robots with a similar control
goal.

Policy training and deployment under collision avoidance
constraints: We first show that our approach could efficiently
train 16 robots to form a rectangular shape of 4 rows and
4 columns while avoiding the obstacles on the path [see
Fig. 6(Panels (a) and (b)], where the desired distances be-
tween neighboring robots in the same row and column were
1 m and 2 m, respectively. The communication graph be-
tween the local robots is shown in Fig. 6[Panel (a)]. All
the obstacles to be avoided were circular objects with a di-
ameter of 0.4 m. The centers of the four obstacles were
(0, 4), (0, 2), (30,−0), (30,−2). The constraint for collision
avoidance was of type Ei = {(px,i, py,i)|‖(px,i, py,i)− ci‖ ≥
di}, where di = 0.2, ci is the center of the obstacle. The
constructed recentered barrier functions for Ei were centered
at a circle with ‖(pxc,i, pyc,i)− ci‖ → +∞. In the collision
avoidance, we set Pi = Qi and Ef,i = Ei.

The simulation results in Fig. 6 and Table II show that the
mobile robots could achieve a predefined formation shape from
a disordered initialization. In addition, they effectively avoid
obstacles encountered along the path and restore the shape of the
formation after collision avoidance. Eventually, the formation
error of each local robot converges to the origin.
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Fig. 5. (a) Online policy learning with robot scales up to 10 000, where ri(k) = ‖eNi (k)‖2Qi
+ ‖ui(k)‖2Ri

. (b) Transferred performance of straight-line
formation of 2 robots to the circular formation of 2 robots and different formation scenarios of 4, 200, and 1000 robots. Note that, “two robots” actually pertains
to two follower robots and a leader. The leader adopted in this work is a virtual entity, which is not counted in the total number of robots.

TABLE II
NUMERICAL ERROR MEASURE FOR FORMATION CONTROL OF 16 ROBOTS

To assess the adaptability of our approach in different con-
strained environments, we directly deployed the learned policy
for formation transformation with eight robots. The simula-
tion results are illustrated in Fig. 6[Panel (c)], which verifies
our approach’s ability in the rapid formation transformation.
We also verified our approach on inter-robot collision avoid-
ance tests of 4 mobile robots, where a joint constraint was
formed for each robot i of type Ei = {(px,i, py,i)|‖(px,i, py,i)−

(px,j , py,j)‖ ≥ di, ∀ j ∈ N4
1}. The simulation results are

displayed in Fig. 6[Panel (d)], verifying our approach’s effec-
tiveness in coping with the type of joint inter-robot collision
avoidance constraints.

Comparison with cost/reward-shaping-based RL approaches:
The cost function in the cost-shaping-based RL was shaped
according to [32] with the same barrier functions used in our
approach. Also, the parameters used in cost-shaping-based RL
were fine-tuned for a fair comparison. We performed 100 repet-
itive online training tests for our approach and cost-shaping-
based RL on the formation control of 2 robots with collision
avoidance. The simulation results in Fig. 7 show that our method
outperforms the cost-shaping-based RL approach regarding con-
trol safety due to the unique force field-inspired control policy
design in (21). Note that when the velocity exceeds 1.5 m/s,
the success rate of our approach gradually decreases as the
velocity grows. This is due to the violation of condition (51)
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(a) (b)

(c) (d)

Fig. 6. (a) Communication graph of M = 16 mobile robots, where the arrows indicate the direction of information transmission, and robot 0 is the leading one.
(b) Path of robots in formation control and collision avoidance under the communication graph, where the black circular areas (0.4 m in diameter) represent the
obstacles, and the colored lines represent the robots’ paths. Meanwhile, the robots in the same column are marked with the same colored dots. (c) Transformation
of 8 robots to adapt to various environments, where the black rectangles are the obstacles. (d) Verification of inter-robot collision avoidance of 4 robots.

Fig. 7. Comparison with the cost-shaping-based RL approach for formation control with collision avoidance in 100 repetitive tests. (a) Path of the first robot
under vr = 1 m/s. (b) Comparison of the success rate under vr = 1, 1.5, 2, 2.5 m/s.

in Appendix A-C (see also Theorem 8 of Appendix B in the
attached “auxiliary-results.pdf”) during the learning process.
The underlying cause is the rapid growth of the barrier function’s
gradient as the velocity increases. Deriving a more relaxed safety
guarantee condition for fast and safe control will be a focus of
future research.

Comparison with DMPC using numerical solvers: We com-
pared our approach with DMPC on various robot scales. The
DMPC approaches in [45] and [14] were adopted for comparison
and designed to adapt to the nonlinear MRS problem. The
parameters Qi and Ri in the comparative DMPC approaches
were chosen similarly to ours. In the comparison, the prediction
horizon was chosen asN = 10 to reduce the computational load,

especially for DMPC. As Conte et al. [45] were initially devel-
oped for linear interconnected systems, it was modified with
the terminal penalty matrix in (10) to guarantee stability under
the nonlinear model constraint (3). The DMPC algorithm was
implemented with the ALADIN-α toolbox [53] and the CasADi
toolbox [54] and using the IPOPT solver, while the nonlinear
DMPC algorithm [14] was implemented in MATLAB using
the fmincon solver. In contrast to [45] and [14], our approach
is library-free and does not require nonlinear optimization
solvers.

As shown in Table III, our approach shows a significant
advantage in computational efficiency. Moreover, our approach
results in lower cumulative cost values than DMPC in the
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TABLE III
COMPARISON WITH DMPC IN TERMS OF PERFORMANCE AND ONLINE COMPUTATIONAL EFFICIENCY

no-obstacle scenario. This result is counterintuitive but reason-
able. As acknowledged within the MPC community, optimality
is only achievable in the prediction interval, while stability,
rather than optimality, can be established in a closed-loop man-
ner [47]. The abovementioned results are further validated by
the cumulative cost function values Jc =

∑Nsim

k=1 J(k) collected
with Nsim = 180 for all the prediction intervals. In a scenario
with M = 2, this value is 8.9 with DMPC, which is lower than
that achieved with our approach, which is 16.9. These findings
suggest that although DMPC results in lower cost function
values in each prediction interval, our approach achieves su-
perior closed-loop control performance. This can be attributed
to the analytic policy structure and the successive policy learning
mechanism within different prediction intervals.

Computational load in different platforms: We also tested our
approach within a Python environment on different computing
platforms (see Fig. 8), showing that our approach could be
efficiently deployed to small-scale modules such as Raspberry
Pi 5 with an Arm Cortex-A76 processor. The computational
load is only about 4 times higher than that using a powerful
Intel i9 processor. Also, in both the i9 and Arm processors,
the computational time for solving all the subproblems grows
linearly with the robot scales.

B. Policy Deployment to Multirotor Drones in Gazebo

To further verify our algorithm’s transferability and
robustness, we directly deploy the learned distributed policy
to formation control of multirotor drones in Gazebo. We show
the scalability of our approach by performing tests on different
scales of drones (in particular, M = 6, 18, 40) and demonstrate
the effectiveness by comparing it with a baseline formation
controller.

Fig. 8. Computational load during online learning within Python at different
computing platforms. The average computational time per step within an 8-core
Arm processor on a small-scale Raspberry Pi 5 module is about 4 times larger
than that with an Intel i9 processor on a Laptop. Also, the computational time
in both platforms grows linearly with robot scales.

The simulation was implemented in Python using the
XTdrone platform [55]. The platform utilizes PX4 as flight
control software and Gazebo as the simulation environment.
Our learned policy only accounts for the formation control in
the horizontal direction, while height control is based on a
baseline controller [55]. Variations in rolling and pitch angles
were treated as external disturbances to assess the robustness
of our approach. In the experiment, our deployed control policy
can realize stabilizing formation control and transformation in
the formation control scenario of 6, 18, and 40 drones. Please
see Fig. 9 for the detailed variation of state errors of drones
under M = 40, while other experimental results are given in
Appendix A-D. In the formation transformation scenario [see
Fig. 9(Scenario (a)], the state errors approach the origin to-
gether with the speed-up process of the leader and then recover
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Fig. 9. State errors and paths of the multirotor drones in Gazebo. We directly deployed the learned control policy to the formation control of multirotor drones
with M = 40. Stage : Leader in hover mode; Stage : Leader speeds up with keyboard control; Stage : Leader at a constant speed of 2 m/s.

Fig. 10. Formation control of six multirotor drones: Comparison in state errors
ex and ey with the baseline controller under leader’s speed at 0.5 m/s, 1 m/s,

1.5 m/s, 2 m/s, 2.5 m/s, 3 m/s, where E� = 1/(NsimM)
∑M

i=1
|
∑Nsim

j=1
e�|,

� = x, y, Nsim is the length of the simulation.

promptly from a short transient formation transformation. The
state errors remain close to the origin in the subsequent scenario
with a large-curvature path [Fig. 9 [Panel (b)]].

We also compare the performance of our approach with
our previously developed baseline feedback formation con-
troller [55] in a formation scenario of six multirotor drones. The
results demonstrate the superior formation performance of our
approach. Detailed numerical comparisons of the state errors
ex and ey are shown in Fig. 10. These findings highlight the

Fig. 11. Block diagram for deploying the learned control policy to the ith local
robot with neighbor-to-neighbor communication, ZOH= zero-order holder. The
gray block encloses the learned control policy. The experimental scenario pre-
sented in the picture involves the coordination of wheeled robots for formation
control and collision avoidance. In stage , the robots actively avoid collisions
with obstacles. In stage , the robots recover their formation after successfully
avoiding the collision. In stage , the formation is strategically transformed to
navigate a narrow corridor.

sim-to-real transferability of our learned control policy and the
effectiveness of our proposed approach for the formation control
of multirotor drones.

C. Real-World Experiments on Wheeled MRS

We tested our proposed algorithm on several real-world
wheeled mobile robots for formation control with collision
avoidance. The control policies were learned offline with two
robots’ kinematics and deployed to real-world robots across
different scales. Through the experiment, we want to show that
the offline learned policy: a) could be generalized to control two
real-world robots; b) could be further transferred to control more
robots. Each robot in the experiment was equipped with a laptop
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Fig. 12. Snapshots and trajectories of MRS’ formation control and collision avoidance: (a) Inter-robot collision avoidance. (b) Formation control and transformation
for two robots. (c) and (d) Formation transformation and collision avoidance for three robots in different scenarios. (e), (f), (g), and (h) Trajectory of MRS associated
with (a), (b), (c), and (d).

running the Ubuntu operating system. Considering the computa-
tional lightness of the implementation, the laptops utilized in the
experiment are interchangeable with other computing platforms,
such as the Raspberry Pi 5. The sampling interval was set to
Δt = 0.1 s. At each sampling instant, the integrated satellite
and inertial guidance positioning module onboard measured the
local state qi for each robot i. A wireless network transmitted
the measured qi and the corresponding reference qr, among the
laptops of the neighbors (see Fig. 11). In each laptop, the control
input was generated from the actor network in real-time using the
measured state information, which was regarded as the reference
to be followed by the lower -level control (see again Fig. 11).

In the experiment, we first tested the mutual collision avoid-
ance capability between two robots using the learned control
policy. Please see Fig. 12 [Panels (a) and (e)] for the snap-
shots and the trajectory of the two robots. We then directly
deployed the control policy for the realizing formation control
and collision avoidance of two- and three robots (see Fig. 12
[Panels (b), (c), (d), and (f), (g), (h)]) for the snapshots and the
associated trajectories). In the case of three robots, as shown in
Fig. 12 [Panels (d) and (h)], the three robots initially formed
a triangle formation, then avoided collision on the path, and

TABLE IV
MAXIMUM ABSOLUTE ERROR IN THE EXPERIMENTS (CORRESPONDS TO

FIG. 13)

transformed into a straight-line formation to pass the narrow
passage and into a nonequilateral triangle formation after that.
Furthermore, we quantitatively assessed the control policy’s
performance by measuring the robot error states in standard
straight-line and circular scenarios with collision avoidance.
The numerical measures of the error states are depicted in
Fig. 13 and summarized in Table IV. These results demon-
strated that wheeled mobile robots could flexibly maintain for-
mations, successfully avoid dynamic obstacles, and accurately
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Fig. 13. Experimental results: State errors of the mobile robots in the straight-
line formation and circular formation scenarios.

follow desired trajectories. The average computational time per
step for the online policy deployment of each robot is about
0.02 ms.

In general, our experimental evaluation has verified two sig-
nificant features of our approach. First, the control policies
learned from simulation exhibit strong sim-to-real transferabil-
ity. Second, the learned policies could also be directly deployed
to real-world MRS across different scales, enabling scalability
for optimization-based control of large-scale MRS.

D. Discussions and Limitations

Discussions: Our results suggest that our DLPC approach
is suitable for optimal cooperative control of large-scale MRS.
Our method centers around a computationally fast and efficient
policy learning algorithm to generate explicit DMPC policies
in a closed-loop manner. This algorithm is executed with a
distributed incremental actor–critic learning implementation,
enabling online policy learning with robot scales up to 10 000
and rapid policy deployment with scales up to 1000, offering
theoretical insights and practical value for optimization-based
multirobot control with strong scalability. Furthermore, our
approach is also extended to address the challenge of safe
policy learning under state and control constraints, employing a
force field-inspired policy structure informed by interior point
optimization techniques [34].

The comparative analysis indicates that although our policy
learning algorithm may yield suboptimal control policies within
each prediction interval, it results in superior closed-loop control
performance compared with numerical DMPC methods (see
Table III). This improvement can be attributed to our analytical
policy structure and the successive policy learning mechanism
applied across different prediction intervals. This observation is
consistent with MPC theory, which acknowledges that optimal-
ity is achievable within the prediction horizon, while stability,
rather than optimality, can be established in a closed-loop man-
ner [47].

Limitations: This article focuses on nonlinear cooperative
control problems with quadratic cost function formulations to

ensure stability guarantees. It does not address, but is not limited
to, decision-making problems with nonquadratic cost forms,
which we leave for future investigation. Although we have
demonstrated that our approach is robust to bounded distur-
bances, including modeling uncertainties [56], our approach
relies on dynamical models for policy learning. Extensions to
model-free designs will be considered in the future. The theoret-
ical and experimental results of our approach were obtained in a
static communication network, which could change when robots
occasionally leave or join the network [3]. A future direction
is to extend our approach to support plug-and-play operations
in time-varying communication networks while also ensuring
robustness against possible communication delays by resorting
to the Lyapunov–Krasovskii function [57].

VII. CONCLUSION

This article has proposed a distributed learning predictive
control framework for real-time optimal control of large-scale
MRS. Our approach generates DMPC’s closed-loop control
policies through a computationally fast and efficient distributed
policy learning approach. By implementing the policy learning
algorithm in a fully distributed manner, we enable fast online
learning of control policies for MRS, with scales up to 10 000
robots. In the knowledge-sharing aspect, control policies learned
with 2 robots exhibit performance guarantees when applied to
MRS with scales up to 1000. Furthermore, the policies learned
from the simulation work very well on mobile wheeled vehicles
across different scales in the real world. Theoretical guarantees
have been provided for the convergence and safety of policy
learning and the stability and robustness of the closed-loop sys-
tem. In summary, our work represents a significant advancement
toward achieving fast and scalable nonlinear optimal control of
large-scale MRS by a distributed policy learning approach and
paves the way for applying distributed RL to the safety-critical
control of MRS. Future directions of our approach include, but
are not limited to, model-free policy learning extension, pol-
icy learning, and deploying under time-varying communication
networks, and multiagent decision-making with more general
forms of cost functions.

APPENDIX A

A. Model Derivation of MRS

By discretizing (1) under (2), we write the discrete-time local
formation error model for the ith robot as follows:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ex,i(k + 1) = ex,i(k) +Δt(ωi(k)ey,i(k)− (di + si)vi(k)
+
∑

j∈Ni,j �=i cijvj(k) cos θji(k) + sivr(k) cos θri(k))

ey,i(k + 1) = ey,i(k) +Δt(−ωi(k)ex,i(k)
+
∑

j∈Ni,j �=i cijvj(k) sin θji(k)+sivr(k) sin θri(k))

eθ,i (k + 1) = eθ,i(k) +Δt (ωr(k)− ωi(k))
ev,i (k + 1) = ev,i(k) +Δt (ar(k)− ai(k))

(30)

where ex,i, ey,i, eθ,i, ev,i are the corresponding entries of ei,
vr, and ωr are the leader’s linear velocity and angular velocity
respectively, Δt is the adopted sampling interval, the parameter
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di =
∑

j∈Ni,j �=i cij , θji = θj − θi, θri = θr − θi. Hence, one
can straightforwardly rewrite (30) in a concise input-affine form
like (3).

Remark 5: In model (3), the local control input directly
affects the behavior of individual robots, while interactions
among neighboring robots are conveyed through their respective
states. This structural characteristic allows for the design of our
distributed policy learning algorithms with synchronous updat-
ing mechanisms, mitigating the nonstationary issue commonly
encountered in MARL [58]. Deriving such an input-affine local
model from general MRS is not overly restrictive. One approach
is to introduce an auxiliary control input with an integral action,
as demonstrated in (1) with v̇ = a.

B. Theoretical Results of Policy Learning for DMPC

In the following, we first prove the convergence and closed-
loop stability under the distributed policy learning procedure (9).
Then, practical conditions for convergence and stability under
the distributed actor–critic implementation, i.e., Algorithm 1,
are established. Finally, the closed-loop robustness of online
deployment is proven under bounded disturbances.

1) Convergence and stability guarantees under proce-
dure (9): In what follows, we show that the control policy and
the value function eventually converge to the optimal values re-
spectively, i.e.,ut(e(τ)) = coli∈NM

1
ut
i(eNi(τ))→ u∗(e(τ)) and

J t(τ) =
∑M

i=1 J
t
i (τ)→ J∗(τ) as t→ +∞.

Theorem 1 (Convergence): Let u0(k) be an initial pol-
icy and the initial value function J0(e(τ)) ≥ r(e(τ), u0(τ)) +
J0(e(τ + 1)), τ ∈ [k, k +N − 1]; then under iteration (9), it
holds that:

1) J t+1(e(τ)) ≤ J t(e(τ));
2) J t(e(τ))→ J∗(e(τ)) and ut(τ)→ u∗(τ) for all τ ∈

[k, k +N ], as t→ +∞. �
Proof: 1): First, collecting the iterative step (9a) for all i ∈

NM
1 results in the following centralized form

J t+1(e(τ)) = r(τ) + J t(e(τ + 1)). (31a)

Moreover, since ui is only related to eNi , (9b) is equivalent to

ut+1
i (eNi(τ)) = argmin

ui(eNi (τ))
{ri(τ) + J t+1 (e(τ + 1))} (31b)

and equivalent to the centralized form of policy update under
u = coli∈NM

1
(ui(eNi)), i.e.,

ut+1(e(τ)) = argmin
ui(eNi (τ)), i∈NM

1

{r(τ) + J t+1 (e(τ + 1))}.

(31c)

Then, one can apply the proof arguments in [59] to the cen-
tralized system, which proves that J t+1(e(τ)) ≤ J t(e(τ)), for
all τ ∈ [k, k +N − 1]. Moreover, according to [59], the second
point can be proven. �

To state the following theorem in a compact form, let
φ̄i(eNi) = φi(eNi ,KNieNi) and Lφ,i = sup ‖φ̄i(eNi)‖/‖eNi‖ →
0 in a small neighbor of the origin. Let Ef,i (i.e., Si) be selected
as a subset of the control invariant set of (3) under (10) in the
neighbor of the origin, and let βi and Pi be such that for all

eNi ∈ Ef,i (see [60])

‖Pi‖L2
φ,i + 2‖PiFi‖Lφ,i < (βi − 1)λmin(Q̄i) (32)

where Q̄i = Qi +K�NiRiKNi . In a collective form, define the
terminal constraint in centralized form as Ef = Ef,1 × · · · ×
Ef,M .

Theorem 2 (Closed-loop stability): Suppose the prediction
horizon N has been selected such that the optimal control
u∗i (0) ∈ UN

i at time k = 0, ∀i ∈ NM
1 satisfies ei(N) ∈ Ef,i.

Under Assumption 1, if, for any e ∈ Ef , the next local state
evolution, denoted as e+i , under control ui(eNi) is such that
e+i ∈ Ef,i, ∀i ∈ NM

1 , then the global state and control, i.e., e
and u, converge to the origin asymptotically. �

Proof: First note that, at the initial time instant 0, u∗i (0),
∀i ∈ NM

1 are optimal policies. Let at the subsequent time k =

1, uf
i (1) = u∗i (eNi(1)), . . . , u

∗
i (eNi(N − 1)), ui(eNi(N)) such

that ei(N + 1) ∈ Ef,i. Denoting Jf (e(1)) as the cost associated
with uf

i (1), ∀i ∈ NM
1 , one has

Jf (e(1))− J∗(e(0)) = −D(e(0), u∗(0)) + χ(e(N))

where D(e(0), u(0)) =
∑M

i=1(‖eNi(0)‖2Qi
+

‖u∗i (0)‖2Ri
,χ(e(N)) =

∑M
i=1 ‖eNi(N)‖2Qi

+ ‖ui(N)‖2Ri
+

‖ei(N + 1)‖2Pi
− ‖ei(N)‖2Pi

. Then, given the definition of φi,
one has

‖ei(N + 1)‖2Pi
= ‖eNi(N)‖2F�i PiFi

+ ‖φ̄i(eNi(N)‖2Pi

+ 2φ̄i(eNi(N))�PieNi(N)

≤ ‖eNi(N)‖2F�i PiFi
+ (‖Pi‖L2

φ,i

+ 2‖PiFi‖Lφ,i)‖eNi(N)‖2

≤ ‖eNi(N)‖2F�i PiFi+(βi−1)Q̄i
(33)

where the last inequality is due to (32). Hence, in view of (10),
(32), we have χ(e(N)) ≤ 0. In view of (10), one has

Jf (e(1))− J∗(e(0)) ≤ −D(e(0), u∗(0))

which by induction leads to Jf (k + 1)− Jf (k)→ 0 as k →
+∞. Hence, e and u converge to the origin asymptotically. �

2) Convergence and stability under Algorithm 1: We first
prove the convergence of Algorithm 1. To this end, we write the
local optimal costate and control policy for all τ ∈ [k, k +N −
1] and i ∈ NM

1 as

λ∗i (eNi(τ)) = (W ∗
c,i)
�hc,i(eNi(τ), τ) + κc,i(τ)

u∗i (eNi(τ)) = (W ∗
a,i)
�ha,i(eNi(τ), τ) + κa,i(τ)

where W ∗
c,i and W ∗

a,i are the optimal weights of Wc,i and
Wa,i, κc,i and κa,i are the associated reconstruction errors.
Given the universal capability of one-hidden-layer-based neural
networks, the following standard assumption on the actor and
critic network is introduced.

Assumption 3 (Weights and reconstruction errors): For all
i ∈ NM

1 , it holds that:
1) ‖W ∗

c,i‖ ≤W [m]

c,i , ‖σc,i‖ ≤ σ[m]

c,i , ‖κc,i‖ ≤ κ[m]

c,i ;
2) ‖W ∗

a,i‖ ≤W [m]

a,i , ‖σa,i‖ ≤ σ[m]

a,i , ‖κa,i‖ ≤ κ[m]

a,i .
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Assumption 4 (Model): There exist finite scalars f̄N̄i
and ḡi

such that, for any ei ∈ Ei and i ∈ NM
1 ,

‖�fN̄i
‖ ≤ f̄N̄i

and ‖gi(ei)‖ ≤ ḡi (34)

where �fN̄i
is the row collection of matrices

(∂fj(eNj (τ))/∂eNi(τ))
� for all j ∈ N̄i.

To state the following theorem in a compact form, for a
general variable, we use q and q+ to denote q(k) and q(k + 1)
respectively, unless otherwise specified. Let

Γc,i(z) = ‖z‖2 − 2‖z�z+‖‖�fN̄i
‖+ ‖z+‖2‖�fN̄i

‖2

for z = σc,i. Define W̃	,i = W ∗
	,i −W	,i, � = a, c in turns.

Theorem 3 (Convergence of Algorithm 1): Under Assump-
tions 3 and 4, if the learning rates are designed such that

Cc,i := γc,iΓc,i(σc,i) < 1 (35a)

Ca,i := 2λmax(Ri) · γa,i‖σa,i‖2 < 1 (35b)

where λmax(·) denotes the maximal eigenvalue; then the terms

ξa,i(τ) = W̃�
a,i(τ)ha,i(τ)

ξc,i(τ) = − �fN̄i
W̃�

c,i(τ)h
+
c,i(τ) + W̃�

c,i(τ)hc,i(τ)

are uniformly ultimate bounded, as the iteration step t→ +∞
(see Algorithm 1). Moreover, if κa,i, κc,i → 0,

ξa,i → 0 and ξc,i → 0

as t→ +∞. �
Proof: Define a collective Lyapunov function as

V (τ) =
M∑
i=1

Vc,i(τ) + Va,i(τ) (36)

where

Vc,i = tr
(
1/γc,i(W̃c,i)

�W̃c,i

)
Va,i = tr

(
1/γa,i(W̃a,i)

�W̃a,i

)
.

In view of the update rule (13), letting ΔVc,i(τ) = Vc,i(τ +
1)− Vc,i(τ), one writes

ΔVc,i = tr

(
2(W̃c,i)

� ∂δc,i
∂Wc,i

+ γc,i

∥∥∥∥ ∂δc,i
∂Wc,i

∥∥∥∥
2

F

)
. (37)

First note that

∂δc,i
∂Wc,i

= −2σc,iε
�
c,i + 2σ+

c,iε
�
c,i

�fN̄i
(38)

where �fN̄i
is defined previously in (34).

Moreover, in view of the definition of εc,i and of Assump-
tion 3, it follows that

εc,i = λd
i − λ∗i + λ∗i − λ̂i

= ξc,i +Δκc,i (39)

where ξc,i = −�fN̄i
W̃�

c,ih
+
c,i + W̃�

c,ihc,i, Δκc,i = κ
[m]
c,i −

�fN̄i
(κ+

c,i)
[m].

Taking (38) with (39) into (37), in view of Assumption 3, one
promptly has

ΔVc,i ≤ − 4ξ�c,i(ξc,i +Δκc,i)

+ 4γc,iΓc,i(σc,i)‖ξc,i +Δκc,i‖2

≤ − cc,i‖ξc,i‖2 + εc,i (40)

where cc,i = 4− 4γc,iΓc,i(σc,i)− βc,i, εc,i = 1/βc,i(1 +
(4βc,i − 4)γc,iΓc,i(σc,i), βc,i > 0 is a tuning constant. The last
inequality in (40) is due to Young’s inequality property.

To compute ΔVa,i, we first write

ΔVa,i = tr

(
2(W̃a,i)

� ∂δa,i
∂Wa,i

+ γa,i

∥∥∥∥ ∂δa,i
∂Wa,i

∥∥∥∥
2

F

)
. (41)

Inline with (38), one has

∂δa,i
∂Wa,i

= −2σa,iε
�
a,iR̄i (42)

where R̄i = 2Ri. Taking (42) into (41), it holds that

ΔVa,i = −ca,i‖εa,i‖2R̄i
(43)

where ca,i = 4− 4λmax(R̄i) · γa,i‖σa,i‖2.
Combining (40) and (43), leads to

ΔV =

M∑
i=1

−(cc,i‖ξc,i‖2 + ca,i‖εa,i‖2R̄i
) + εc (44)

where εc =
∑M

i=1 εc,i. Hence, in view of (35) and setting βc,i

small, for any i ∈ NM
1 , it follows that

‖ξc,i‖ ≤
√

εc
cc,i

and ‖εa,i‖ ≤
√

εc
ca,i

(45)

as the iteration step t→ +∞. Note that one has

εa,i = ud
o,i − u∗o,i + u∗o,i − uo,i

= ud
o,i − u∗o,i + R̄i(ξa,i + κa,i).

Note that

‖ud
o,i − u∗o,i‖ = ‖ −

∑
j∈N̄i

g�i (ei)(λ̃
[i]
j )+‖

≤
∑
j∈N̄i

‖gi(ei)‖
(√

εc
ca,i

+ κ[m]

c,i

)
:= Yu,i (46)

where λ̃
[i]
j = λ∗j

[i] − λ̂
[i]
j .

In view of (46), for any i ∈ NM
1 , one consequently has

‖ξa,i‖ ≤ 1

|ρ(R̄i)|
(
‖R̄iκa,i‖+ ‖ud

o,i − u∗o,i‖+
√

εc
ca,i

)

≤ 1

|ρ(R̄i)|
(
‖R̄i‖κ[m]

a,i + Yu,i +

√
εc
ca,i

)

as the iteration step t→ +∞, whereρ(R̄i) is the minimal (maxi-
mal) eigenvalue of R̄i if it is positive-definite (negative-definite).

Consequently, if κa,i, κc,i → 0, it promptly follows that

ξa,i → 0 and ξc,i → 0
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Fig. 14. (a) Communication graph of M = 2 robots. (b) and (c) Learning convergence condition of the first robot to verify Theorems 3 and 8 (see Appendix
B), respectively. The weights for the actor and critic were initialized with uniformly distributed random values in the range [0, 0.1]. (d) Stability verification for
Theorem 4. , , and are the costs associated with three different baseline stabilizing policies. Various stabilizing policies can be used for stability verification.

as t→ +∞. �
Theorem 4 (Closed-loop stability under Algorithm 1): Under

Assumptions 1–4, if condition (18) is fulfilled, then the global
state and control under Algorithm 1, i.e., e and u, converge to
the origin asymptotically. �

Proof: Note thatJb(k+1|k)− Jb(k|k)≤−s(eb(k), ub(k)).
In view of Theorem 1, it holds that eb and ub converge to the
origin asymptotically. By condition (18), one has

J(k + 1|k) ≤ Jb(k + 1|k)
≤ Jb(k|k)− s(eb(k), ub(k)). (47)

As eb(k)→ 0 and ub(k)→ 0 as k → +∞, it follows that
J(k|k)→ 0 as k → +∞. Consequently, e and u converge to
the origin asymptotically. �

3) Closed-Loop Robustness in Perturbed Scenario: Con-
sider that the overall model (5) is influenced by a norm-bounded
additive disturbance, i.e.,

eo(k + 1) = Fc(eo(k)) +Gc(eo(k))u(k) + w(k) (48)

where eo(k) is the real state and the additive disturbance w(k)
satisfies ‖w(k)‖ ≤ εw, εw > 0.

Assumption 5 (Lipschitz continuous): There exists a finite
Lipschitz constant Lp such that for any states z, y ∈ E and C1

control policies u(y), u(z) ∈ U , one has

‖Fc(y) +Gc(y)u(y)− Fc(z)−Gc(z)u(z)‖ ≤ Lp‖y − z‖.
(49)

Let e(k + j|k) be the predicted global state at time k with
model (5) under the control u(e(k)), . . . , u(e(k +N − 1)).
Then, the deviation between the real state eo(k + j) under u(eo)
and e(k + j|k) under u(e) satisfies (see [61])

‖e(k + j|k)− eo(k + j)‖ ≤ Lj
p − 1

Lp − 1
εw := ϑj (50)

where e(k|k) = eo(k).
The nominal model (5) can be used for offline policy learning.

During the offline learning stage, the terminal state constraint is
shrunken as e(k +N |k) ∈ ED to ensure the constraint satisfac-
tion, where ED(k +N) = E � DN

εw
, DN

εw
= {y ∈ Rn|‖y‖ ≤

ϑN}. In line with [62], the following robustness property is
stated when applying the offline learned policy to the MRS.

Theorem 5 (Closed-loop robustness): Under Assumptions 1–
5, the state evolution, by applying the offline learned stabilizing
control policy to (48), converges to the set D∞εw as k → +∞,
i.e., limk→+∞ eo(k)→ D∞εw .

Proof: Let the learned stabilizing control policy be uL(e).
In line with [62] and in view of the Lipschitz continuity condi-
tion (49), the deviation of the real state eo under uL(eo) and the
nominal one e under uL(e) is calculated as‖eo(1)− e(1|0)‖ =
‖w(0)‖ ≤ εw, since e(0|0) = eo(0). Then, by induction, one
has

‖eo(j)− e(j|0)‖ ≤ ‖eo(j − 1)− e(j − 1|0)‖+ εw

≤ Lj
f − 1

Lf − 1
εw.

Hence, the real state eo(k) converges toD∞εw as k → +∞ since
e(k) converges to the origin as k → +∞. �

C. Theoretical Analysis of Safe Policy Learning for DMPC

Note that, the implementation details and theoretical results of
safe policy learning are omitted due to space limitations. Please
refer to “auxiliary-results.pdf” for comprehensive descriptions.
We briefly state the main results as follows. Under certain mild
assumptions, we derive the condition of learning convergence
under the distributed actor–critic implementation. That is, if the
learning rates are designed such that

C̄c,i := γ
[1]
c,iΓc,i(σc,i) + γ

[2]
c,iΓc,i(�Be,i) < 1 (51a)

C̄a,i := λmax(R̃i) · (γ[1]
a,i‖σa,i‖2

+ γ
[2]
a,i‖�Be,i‖2 + γ

[3]
a,i‖�Bν,i‖2) < 1 (51b)

where R̃i = 2Ri + μ�2Bu,i(ˆ̄ui); then the approximation errors
associated with the actor and critic networks are uniformly
ultimate bounded.

We also provide a practical condition for closed-loop stability
verification and prove the robustness of online policy deploy-
ment under bounded disturbances.
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D. Learning Convergence and Stability Verification

We have verified the learning convergence and closed-loop
stability conditions under the unconstrained and constrained
scenarios, for formation control of two mobile robots. Note
that the derivation of the convergence and stability conditions
in the constrained scenario is deferred in Appendix B within
the attached “auxiliary-material.pdf.” The communication graph
in verification is presented in Fig. 14[Panel (a)]. The con-
trol constraints were limited in the constrained scenario as
−(5, 5) ≤ ui ≤ (5, 5), and the collision avoidance constraint
was considered. The terminal penalty matrices used in the con-
strained and unconstrained scenarios were calculated with (10)
and (23), respectively. In verification, the weights for the actor
and critic were initialized with uniformly distributed random
values in the range [0, 0.1]. The maximum iteration tmax was
10. During the learning process, the values of Cc,i and Ca,i

(C̄c,i and C̄a,i in (51)) for i = 1, 2 were smaller than 1, which
verified the convergence condition in Theorems 3 and 8 (see
“auxiliary-results.pdf”), as shown in Fig. 14[Panels (b) and (c)].
In addition, the stability condition was verified using various
stabilizing control policies, as shown in Fig. 14[Panel (d)],
which reveals that the proposed stability condition is mild and
reasonable. We also performed 20 repetitive tests to demon-
strate the successive learning capacity of our approach. The
implementing steps and results have been omitted due to space
limitations. Readers may refer to Appendix B-C (see “auxiliary-
results.pdf”).

MULTIMEDIA MATERIAL

Source codes for implementing our method are avail-
able at https://github.com/xinglongzhangnudt/policy-learning-
for-distributed-mpc. Additional qualitative results and videos
are available at https://sites.google.com/view/pl-dpc/.
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