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ABSTRACT
Test case generation tools that optimize code coverage have
been extensively investigated. Recently, researchers have
suggested to add other non-coverage criteria, such as mem-
ory consumption or readability, to increase the practical use-
fulness of generated tests. In this paper, we observe that
test code quality metrics, and test cohesion and coupling
in particular, are valuable candidates as additional criteria.
Indeed, tests with low cohesion and/or high coupling have
been shown to have a negative impact on future mainte-
nance activities. In an exploratory investigation we show
that most generated tests are indeed affected by poor test
code quality. For this reason, we incorporate cohesion and
coupling metrics into the main loop of search-based algo-
rithm for test case generation. Through an empirical study
we show that our approach is not only able to generate tests
that are more cohesive and less coupled, but can (i) increase
branch coverage up to 10% when enough time is given to
the search and (ii) result in statistically shorter tests.

Categories and Subject Descriptors
D.2.5 [Software Engineering: Testing and Debugging]:

Keywords
Evolutionary testing, many-objective optimization, branch
coverage, test code quality

1. INTRODUCTION
Automated test case generation tools have been widely

studied in literature in order to reduce the cost of software
testing. Generating unit tests via automated techniques
helps developers to maximize the percentage of code ele-
ments (e.g., statements) being exercised according to well-
established code coverage criteria [41]. Previous studies ac-
knowledged additional important benefits, including but not
limited to triggering undeclared exceptions and failures [21],
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or achieving debugging effectiveness comparable to manu-
ally written tests [11, 36]. However, conventional approaches
to test case generation mainly focus on code coverage as a
unique goal to achieve, without taking into account other
factors that can be relevant for testers. For example, Af-
shan et al. [2] highlighted that one such factor is the effort
needed to manually check test data input and test results
(e.g., assertions) in order to assess whether the software
behaves as intended. Therefore, they have incorporated
language models into the data generation process with the
aim of generating natural language like input strings to im-
prove human readability. Recently, Daka et al. [14] used
a post-processing technique to optimize readability by mu-
tating generated tests leveraging a domain-specific model
of unit test readability based on human judgement. Other
non coverage-based criteria exploited in literature for test
case generation include execution time [17, 37], memory con-
sumption [25], test size [19, 31, 35], and ability to reveal
faults [37].

In this paper, we focus on test code quality metrics to
consider in addition to code coverage. Poorly designed tests
are known to have a negative impact on test maintenance,
as they are more difficult to adjust when production code
changes [7, 30, 47, 33]. Automated tests first need to be
maintained when they are generated, since testers need to
manually validate each test case to check the assertions (ora-
cle cost) [2, 9]. In addition, tests also need to be maintained
and eventually updated according to the changes performed
in the production code during later development activities.
Therefore, we argue that achieving easily maintainable tests
is a desirable and important goal in test case generation.

The related literature provides a plethora of metrics to
detect poorly designed tests, such as rules for test smells
detection [22, 43, 44]. In the context of this paper, we con-
sider two simple, yet critical quality metrics for evaluating
test code maintainability, namely test cohesion and test cou-
pling. According to Meszaros [29], maintainable tests must
be as simple (cohesive) as possible, i.e., each test should not
verify too much functionality at the same time to avoid test
obfuscation. Furthermore, test overlap (or test coupling)
should be minimized so that only few tests are affected by
any future change [29], improving test readability and sim-
plifying future maintenance activities.

For measuring test cohesion and test coupling we rely on
Information Retrieval (IR) methods, similarly to previous
papers for assessing the quality of production code [26, 39,
42]. Specifically, we define two novel metrics, namely Cou-
pling Between Test Methods (CBTM) and Lack of Cohesion
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of a Test Method (LCTM) inspired by conceptual coupling
and conceptual cohesion, which are two well-known metrics
to assess code quality [42].

We choose IR methods since previous studies [26, 39, 42]
demonstrated how textual analysis often outperforms struc-
tural metrics in its ability to describe cohesion and coupling
phenomena.

To evaluate to what extent automatically generated test
cases present design problems, we conducted a large scale
preliminary study on the SF110 dataset [20] and using Evo-
suite [19] as test case generation tool. This analysis revealed
that most automatically generated tests suffer from high
coupling with other tests in the same test suite. Moreover,
up to 28% of test cases (test methods in JUnit) suffer from
low cohesion.

Given the results of this exploratory analysis, we propose
to incorporate our quality metrics LCTM and CBTM into
the main loop of Evosuite to guide the search toward more
cohesive and less coupled tests. For this, we extended the
MOSA algorithm, a novel many-objective genetic algorithm
recently proposed by Panichella et al. [35], by incorporat-
ing our quality metrics within the selection mechanism. To
evaluate our quality-based variant of MOSA, we conducted
a second empirical study on 43 randomly sampled classes
from the SF110 dataset. The results indicate that, besides
improving both LCTM and CBTM scores with respect to
the original MOSA and Evosuite’s default search strategy
(Whole Suite), our quality-based MOSA approach leads to
other valuable positive effects: (i) when giving more time
to the search, incorporating test code quality metrics may
reduce the probability of early convergence increasing the
final branch coverage; and (ii) the generated tests tend to
be shorter, suggesting the possibility to complement existing
post-search minimization strategies.

2. COMPUTING TEST CODE QUALITY
METRICS

Designing test code for maintainability is a key principle of
Test Driven Development (TDD) [10]. Specifically, writing
highly cohesive and weakly coupled test cases ensures that
each test method provides a specific responsibility, making
it easily understandable and maintainable [10]. Even if in
the context of automatic unit test generation the problem
of maintainability could be relaxed (test cases can be re-
generated when something changes in production code), it
is still important to remark that automated tests need to
be maintained once they are generated, since testers must
manually validate each test case to check the assertions [9].
Moreover, as indicated by a Rojas et al. [40], automati-
cally generated tests are not immediately used but they are
refined by testers in order to (i) modify/remove generated
test code, (ii) add new tests when automated tools leave un-
covered branches and (iii) combine generated with manual
written tests [40].

It is worth noting that in this paper we look for coupling
among test methods (representing single test cases in the JU-
nit framework) of the same JUnit class (i.e., a test suite in
JUnit). Unlike other strategies for computing coupling (e.g.,
looking for coupling between test and production code [7]),
our goal is to measure to what extent a test method has
relationships with the other test methods of the same class,
in order to evaluate the quality of the decomposition of the

methods in the JUnit class. To compute the quality of test
methods, in this paper we define two metrics exploiting tex-
tual information, able to measure the degree of cohesion and
coupling of a test method. It is worth noting that, as pointed
out in previous work (e.g., [39, 42]), textual analysis can be
successfully used for measuring source code quality. More-
over, textual analysis often outperforms structural metrics
in its ability to describe the phenomenon [26, 39, 42]. In
the following subsections, we report the process we follow to
compute these metrics.

2.1 Textual Information Extraction
and Processing

Starting from the set of test artifacts composing the soft-
ware project under analysis, during the first step we ex-
tract the textual content characterizing each test method
by selecting only the textual elements actually needed for
the textual analysis process, i.e., source code identifiers and
comments.

The textual elements are then normalized by using a typi-
cal Information Retrieval (IR) normalization process. Thus,
the terms contained in the source code are transformed by
applying the following steps [8]: (i) separating composite
identifiers using camel case splitting, which splits words based
on underscores, capital letters and numerical digits; (ii) putting
extracted words in lower case; (iii) removing special char-
acters, programming keywords and common English stop
words; and (iv) stemming words to their original roots via
Porter’s stemmer [38].

Finally, the normalized words are weighted using the term
frequency - inverse document frequency (tf-idf ) schema [8],
which reduces the relevance of too generic words that are
contained in most source components. Therefore, the result-
ing textual content is individually analyzed in order to apply
cohesion and coupling metrics. To compute them, we rely on
Latent Semantic Indexing (LSI) [16], namely an extension of
the Vector Space Model (VSM) [8], which models code com-
ponents as vectors of terms occurring in a given software
system. LSI uses Singular Value Decomposition (SVD) [13]
to cluster code components according to the relationships
among words and among code components (co-occurrences).

Then, the original vectors (code components) are pro-
jected into a reduced k space of concepts to limit the effect
of textual noise. For the choice of size of the reduced space
(k) we used the heuristic proposed by Kuhn et al. [24] that
provided good results in many software engineering applica-
tions, i.e., k = (m × n)0.2 where m denotes the vocabulary
size and n denotes the number of documents (code compo-
nents in our case). Finally, the textual similarity among
software components is measured as the cosine of the angle
between the corresponding vectors.

2.2 Computing Test Method Coupling
To measure the degree of coupling of a test method, our

conjecture is that methods having high coupling have high
textual similarity with the other methods contained in the
test suite. Following this conjecture, we compute the cou-
pling metric by applying the average of the textual similarity
between the test method under analysis and the other test
methods contained in the JUnit test class. Formally, let ta
be the test method under analysis and let T = {t1, . . . , tn}
be the set of the test methods contained in the test suite,
we compute the Coupling Between Test Methods (CBTM)
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as follows:

CBTM(ta) = mean

n∑
k=0

sim(ta, tk), ta 6= tk (1)

where n is the number of test methods in T (excluding ta) ,
and sim(ta, tk) denotes the cosine similarity between ta, the
test method under analysis, and another test method tk in
T . The resulting value of CBTM(ta) ∈ [0, 1]. The higher
the CBTM(ta), the higher the coupling between ta and the
other test methods in the JUnit test class.

2.3 Computing Test Method Cohesion
When computing test method cohesion, our conjecture is

that methods having low cohesion are characterized by low
textual similarity among the tested methods. It is important
to note that test methods generally have few lines of code,
and therefore have a limited number of terms for setting
up a similarity technique. This is the reason why we firstly
expand the test method calls with the actual source code
called by the test method, and then we start the textual-
based computation.

More formally, let t = {c1, . . . cn} be the JUnit test method
under analysis where ci is the i-th method call in t. We first
modify the test method by replacing all its method calls with
the corresponding body of the called production methods.
Note that in this operation we only replace the test method
calls with the source code of the corresponding production
method, without replacing the calls done by the production
method, i.e., we do not recursively replace all the method
calls. Formally, the modified test method is t′ = {c′1, . . . c′n}
where the generic method call ci is replaced by the cor-
responding production code body c′i. Starting from t′ we
compute the Lack of Cohesion of a Test Method (LCTM) as
the average similarity between its constituent methods c′i as
follows:

LCTM(t) = 1−mean
i6=j

sim(c′i, c
′
j) (2)

where n is the number of method calls in t, and sim(c′i, c
′
j)

denotes the cosine similarity between two modified method
calls c′i and c′j in t′. Based on the above definition, LCTM(t)
∈ [0, 1]. If a test method is cohesive, then the LCTM(t) is
close to zero.

3. INVESTIGATING THE QUALITY OF
AUTOMATICALLY GENERATED TESTS

The goal of this study is to apply the previously defined
coupling and cohesion test code metrics in order to inves-
tigate the quality of JUnit classes automatically generated
using EvoSuite [18]. Thus, we formulate the following RQ:

RQ0: To what extent do automatically generated
test cases present design problems?

Specifically, we aim at analyzing to what extent design prob-
lems affect automatically generated test cases. The purpose
is to investigate possible gains (if any) from the application
of quality metrics in the context of automatic test case gen-
eration.

3.1 Experimental Procedure
The context of this study is SF110, the open dataset1 pro-

duced by Fraser and Arcuri [20], which contains 110 open
1http://www.evosuite.org/experimental-data/sf110/

Table 1: RQp: Characteristics of the SF110 dataset
Characteristic Value
Number of Projects 110
Number of Testable Classes 23,886
Lines of Code 6,628,619
Number of Java Files 27,997

Figure 1: Distribution of LCTM and CBTM metrics
over the SF110 dataset.
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source projects from SourceForge2, for a total of 23,886
testable classes. We choose to analyze this dataset, and
therefore the behavior of the EvoSuite tool, because of the
need to have a dataset able to generalize the results of our
study. Table 1 provides a summary of the statistics of the
SF110 dataset. To address RQ0, we developed a tool im-
plementing the quality metrics described in Section 2. More
precisely, our tool mines the source code of each project in
order to extract EvoSuite’s automatically generated JUnit
classes. It is worth noting that the SF110 dataset already
contains, for each project, a set of automatically generated
test suites. Thus, we did not need to run EvoSuite, but we
rely on the test classes present in the dataset, taking them as
representative of the quality of test code produced by Evo-
Suite. Then, we analyzed all the test methods contained
in the extracted JUnit classes in order to assign to each of
them a value of cohesion and coupling. The output of the
tool consists of two distributions: the first one concerning a
coupling value for each test method, the second one having
a cohesion value for each test method. The analysis of the
results has been done by discussing the descriptive statistics
of such distributions.

Listing 1: Example of test method with low cohe-
sion.

1 pub l i c void t e s t 12 ( ) throws Throwable {
2 JSTerm jSTerm0 = new JSTerm ( ) ;
3 jSTerm0 . makeVariable ( ) ;
4 jSTerm0 . add ( ( Object ) ””) ;
5 jSTerm0 . matches ( jSTerm0 ) ;
6 a s s e r tEqua l s ( f a l s e , jSTerm0 . isGround ( ) ) ;
7 a s s e r tEqua l s ( true , jSTerm0 . i sVa r i a b l e ( ) ) ;
8 }

3.2 Analysis of the Results
2http://sourceforge.net
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Figure 1 shows the distributions of the two quality met-
rics defined in Section 2 over the the test methods in our
dataset. Moreover, the red dots represent the mean values
of such distributions. Analyzing the CBTM distribution,
we observed that, over the total of 83,408 test methods,
the median value is 0.67, i.e., half of the test methods (i.e.,
41,704) have a high value for CBTM and thus likely have
high coupling. This result highlights how most of the test
methods suffer of high coupling with the other methods of
a test suite. On average, a test method has a value of cou-
pling of 0.55. On the other hand, it is interesting to notice
how the results for the cohesion distribution are completely
different compared to the coupling one. In this case, we
found that most of the test methods are in fact cohesive.
This is not unexpected, as EvoSuite applies a minimization
process to the generated test methods, i.e. it minimizes
the number of statements of the test method by removing
the statements that do not contribute to the coverage of
the method under test [23]. However, even with this mini-
mization process in place, there are 23,188 out of the total
83,408 (i.e., 28%) test methods having a lack of cohesion
higher than 0.35. As an example, Listing 1 presents a JUnit
test method from the JSTermEvoSuiteTest class originating
from the Shop project. We can observe that the test method
checks the return value of two different methods of the pro-
duction code, i.e., isGround and isVariable. This method
has a value of LCTM of 0.83, clearly indicating the lack of
cohesion of the test case.
In Summary. From the results achieved after the analysis
of the quality metrics on the SF110 dataset, we can conclude
that even though measures have been taken to keep test
code quality under control during the process of automatic
test case generation (e.g., the minimization process), the
design of the automatically generated test cases can still be
improved in terms of coupling and cohesion.

4. PUTTING QUALITY METRICS INTO
THE LOOP

Results from our preliminary study revealed that auto-
matically generated tests can be affected by high coupling
as well as by low cohesion. Therefore, we would like to in-
vestigate whether incorporating quality metrics in the main
loop of an evolutionary unit test generation tool will guide
the search toward better tests, i.e, test with lower coupling
and higher cohesion. Given the nature of evolutionary search
algorithms used in test data generation tools, one theoret-
ically simple strategy would be to consider both cohesion,
and coupling as further objectives to consider in addition to
code coverage which is the traditional main objective, within
a multi-objective paradigm. This apparently simple strat-
egy lead to the usage of Pareto efficient algorithms, such
as NSGA-II, which by definition generate optimal trade-
offs between cohesion, coupling and code coverage. How-
ever, working with such trade-offs is not particular useful
for practitioners: imagine tests that have high cohesion and
low coupling, but that do not exercise/test any additional
code element (e.g., branch) compared to previously executed
tests. Moreover, previous work that applies multi-objective
approaches to combine code coverage (traditional objective)
with non-coverage based objectives have reported a detri-
mental effect on the final code coverage [17, 25, 32, 37]. For

example, Ferrer et al. [17] combined two conflicting goals,
i.e., the coverage (to maximize) and the oracle cost (to min-
imize), using several multi-objective algorithms, including
NSGA-II [15] and SPEA2 [48]. Results of their empiri-
cal study reported lower coverage scores for multi-objective
algorithms if compared to algorithms focused on coverage
only [17]. In our case, test code quality metrics can be con-
sidered only as secondary objectives if compared to code
coverage. Indeed, two test cases can be compared in terms
of cohesion and coupling if and only if they cover the same
code elements, such as statements or branches. Vice versa,
if two tests cover and exercise two different portions of code,
they should be incomparable in terms of test code quality
(i.e., cohesion and coupling) because preferring one test over
the other one will lead to a decrease in code coverage.

Another important aspect to deal with is the proper en-
coding schema to use. The default situation in EvoSuite
is that a chromosome (individual) is a test suite composed
of a number of test cases, where each test is a random se-
quence of statements (e.g., method calls). Thus, individuals
have a variable number of test cases with a variable number
of statements each. Suites are, then, evolved using genetic
algorithms (GAs) targeted at maximizing a code coverage
metric, e.g., branch coverage. However, in such encoding
schema GAs select, evaluate and evolve test suites while our
quality metrics (CBTM, and LCTM) are designed to detect
cohesion and coupling issues at the test case level. Evalu-
ating cohesion and coupling at the test suite level is not so
trivial: it implies aggregating CBTM and LCTM scores of
all test cases in each test suite. Using such an aggregation,
test cases with good levels of cohesion (low LCTM) but con-
tained in a test suite with an average to bad level of cohesion
(high LCTM) may be not selected. Finally, coupling (i.e.,
CBTM) may vary when tests are inserted into different test
suites: a test case may be highly coupled with test cases
within a given test suite, while the same test case may have
a low coupling if inserted in a different suite.

For the reasons reported above, we incorporate our test
code quality metrics into MOSA (Many-Objective Sorting
Algorithm) [35], a novel many-objective algorithm proposed
by Panichella et al. [35] for branch coverage3. We selected
such an algorithm because (i) it evolves test cases and not
suites, making it easier to incorporate CBTM and LCTM;
(ii) it targets branch coverage as main goal to maximize plus
a secondary non-coverage based metric, i.e., test case size to
minimize; (iii) it leads to higher or competitive branch cov-
erage compared to existing search algorithms for test case
generation [1, 35]. MOSA targets all branches in the class
under test at once, which are considered as distinct and dif-
ferent objectives to be optimized [35]. Each objective mea-
sures the closeness of a test case t to cover the corresponding
uncovered branch bi according to the normalized branch dis-
tance, and the approach level [28], i.e., the minimum number
of control dependencies between the executed traces and the
branch. In a nutshell, MOSA starts the search by generating
random tests (chromosomes) with variable length and state-
ments. Such tests are then evolved by applying a crossover
operator and a mutation operator to generate new tests,
as usual in GAs. Selection of tests for either reproduction
and survival is based on a novel many-objective sorting al-
gorithm, which extends the notion of dominance and gives

3The quality-based MOSA algorithm is publicly available in
our online appendix [34].
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higher probability of being selected to those test cases that
are closest to at least one of the uncovered branches [35]. In
the case of more tests having the same branch distance +
approach level scores, MOSA uses a secondary non-coverage
based criterion which is the test case size (number of state-
ments) such that the test case with the lowest number of
statements is preferred. Finally, the final test suite is built
using an archive that keeps track of test cases as soon as
they cover yet uncovered branches of the program under
test. The archive is updated at the end of each generation
by considering both main (branch closeness) and secondary
(test size) objectives [35].

In order to incorporate CBTM and LCTM into MOSA,
we suggest to replace the secondary objective proposed by
Panichella et al., i.e., the test case size, with a new sec-
ondary objective which takes into account both cohesion
(LCTM) and coupling (CBTM) among test cases within
a specific generation. More specifically, let us consider a
generic population (set of test cases) T = {t1, . . . , tn} gen-
erated by MOSA at the end of a given generation. For each
test ti ∈ T we can compute the corresponding lack of cohe-
sion LCTM(ti) as the average textual dissimilarity between
its constituent method calls (to minimize) as proposed in
Section 2. We can also compute the coupling CBTM(ti) for
each test ti ∈ T as the average textual similarity between
ti and all other test cases tj 6= ti, tj ∈ T in the current
population (to miminize). Once we computed LCTM and
CBTM for all tests in the current population, we use a sum-
aggregation approach to have only one final quality score for
each test ti as follows:

quality score(ti) = α× LCTM(ti) + β × CBTM(ti) (3)

where α and β are linear combination coefficients taking val-
ues within the interval [0; 1]. An optimal quality score value
for ti would be closer to zero, since it implies that ti is highly
cohesive (low lack of cohesion LCTM) and poorly coupled
(low coupling CBTM) to other tests in the same population.
Different α and β coefficients assign different weights to the
constituent metrics. However, in this paper we set α = 0.5
and β = 0.5 in order to give the same importance to LCTM
(cohesion) and CBTM (coupling).

Our quality score is incorporated into MOSA by replac-
ing the original secondary criterion (i.e., test case size). There-
fore, at the end of each generation MOSA still uses the pref-
erence criterion to increase the selection pressure by giv-
ing higher priority to those tests that are closer to cover
at least one of the uncovered branches (closeness based on
the approach level and branch distance). However, when
there are multiple test cases equally close to cover an un-
covered branch bi, among them we select the one with the
lowest quality score. Finally, we also modify the procedure
to update the archive using the algorithm reported for com-
pleteness in Algorithm 1. The archive is the data structure
used to store test cases as soon as they cover yet uncov-
ered branches. In [35] the archive is updated at the end
of each generation to keep track of new tests (covering pre-
viously uncovered branches) and again using the test case
size as secondary criterion. In our case, when updating the
archive, we re-compute the quality score but this time com-
puting the CBTM metric (coupling) with respect to all tests
stored in the archive (line 10 in Algorithm 1). Indeed, when
updating the archive new additional tests may worsen then
overall coupling among tests in the archive, which is the final

Algorithm 1: Quality-based Update Archive

Input:
A population T
An archive A
Result: The updated archive A

1 begin
2 for each branch bi do
3 tbest ←− ∅
4 best quality ←− ∞
5 if bi already covered then
6 tbest ←− test case in A covering bi
7 best quality ←−

0.5× LCTM(tj) + 0.5× CBTM(tj , A)

8 for tj ∈ T do
9 score←− objective score of tj for branch bi

10 quality ←− 0.5× LCTM(tj) + 0.5× CBTM(tj , A)
11 if score == 0 and quality ≤ best quality then
12 tbest ←− {tj}
13 best quality ←− quality

14 if tbest 6= ∅ then
15 A←− tbest

test suite. Therefore, Algorithm 1 selects among the set of
all test covering a specific branch bi the one presenting the
best internal cohesion (LCTM) and with the lowest coupling
(CBTM) with the whole archive.

5. STUDY II: EMPIRICAL EVALUATION
In this section we describe an empirical study aimed at

evaluating the effect of cohesion and coupling on the per-
formance of search algorithms for test case generation. In
particular, our second study is steered by the following re-
search questions:

RQ1: Does quality optimization produce more
cohesive and less coupled tests?

RQ2: Does quality optimization affect the achieved
branch coverage?

RQ3: Does quality optimization affect the size of
produced tests?

The usage of coupling and cohesion metrics as part of the
selection procedure in search algorithms is expected to im-
prove cohesion and coupling of the produced tests. How-
ever, with RQ1 we want to verify whether this is true and
whether such (eventual) improvements are statistically sig-
nificant. One potential drawback of combining coverage cri-
teria with non-coverage criteria is that such combination
may have detrimental effects on the final code coverage since
part of the search effort is not devoted to maximize coverage.
Hence, RQ2 is aimed at verifying whether branch coverage
increases or decreases when incorporating cohesion and cou-
pling metrics using our proposed strategy. More cohesive
and less coupled tests should imply that they do not contain
unnecessary statements, i.e., statements that cover branches
already covered by other tests in the final test suite. For
this reason, RQ3 addresses whether the usage of quality op-
timization results in shorter tests if compared to a standard
strategy targeting branch coverage only.

5.1 Experimental Procedure
For our second study we randomly selected 43 classes from

the SF110 corpus, instead of considering all 23,886 classes
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Table 2: Classes in Our Dataset
No Subject Class Branches

1 newzgrabber Newzgrabber.Base64Decoder 59
2 falselight Services 15
3 htf-bomberman client.network.ClientMsgReceiver 15
4 openhre com.browsersoft.openhre.hl7.impl.regular.ExpressionMatrixImpl 58
5 rif com.densebrain.rif.client.RIFClassLoader 3
6 sweethome3d com.eteks.sweethome3d.model.HomeEnvironment 80
7 tullibee com.ib.client.EWrapperMsgGenerator 67
8 caloriecount com.lts.application.international.MessageFormatter 52
9 caloriecount com.lts.io.ArchiveScanner 45
10 jmca com.soops.CEN4010.JMCA.JParser.JavaParser 7938
11 jmca com.soops.CEN4010.JMCA.JParser.JavaParserTokenManager 1707
12 jmca com.soops.CEN4010.JMCA.JParser.SimpleNode 67
13 freeminf freemind.controller.Controller 410
14 lhamacaw macaw.businessLayer.SupportingDocument 38
15 lhamacaw macaw.businessLayer.Variable 153
16 xbus net.sf.xbus.protocol.records.RecordTypeMessage 52
17 schemaspy net.sourceforge.schemaspy.model.ForeignKeyConstraint 72
18 squirrelSQL net.sourceforge.squirrelsql.client.session.Session 204
19 squirrelSQL net.sourceforge.squirrelsql.plugins.dbcopy.util.DBUtil 463
20 lagoon nu.staldal.lagoon.LagoonCLI 65
21 dom4j org.dom4j.io.OutputFormat 67
22 dom4j org.dom4j.io.SAXReader 101
23 openjms org.exolab.jms.config.ConnectionFactories 114
24 firebird org.firebirdsql.jdbc.FBCachedFetcher 118
25 jcvi-javacommon org.jcvi.jillion.assembly.consed.phd.PhdBuilder 27
26 jcvi-javacommon org.jcvi.jillion.core.Range 426
27 jcvi-javacommon org.jcvi.jillion.core.residue.nt.DefaultNucleotideCodec 74
28 jcvi-javacommon org.jcvi.jillion.core.util.FileIterator 67
29 jsecurity org.jsecurity.authc.UsernamePasswordToken 29
30 pdfsam org.pdfsam.guiclient.commons.models.VisualListModel 143
31 quickserver org.quickserver.net.server.TheClient 43
32 quickserver org.quickserver.util.xmlreader.AdvancedSettings 52
33 gangup state.Player 44
34 weka weka.classifiers.Evaluation 809
35 weka weka.classifiers.bayes.NaiveBayesMultinomialText 194
36 weka weka.classifiers.rules.JRip 416
37 weka weka.core.Optimization 448
38 weka weka.core.stemmers.LovinsStemmer 428
39 weka weka.experiment.ResultMatrix 441
40 weka weka.filters.unsupervised.attribute.Discretize 242
41 wheelwebtool wheel.asm.Frame 687
42 wheelwebtool wheel.components.Component 480
43 wheelwebtool wheel.json.JSONObject 294

used in our first study. This selection is due to the high
computational cost required for the comparison of different
randomized algorithms. Details of the selected classes can
be found in Table 2. The size of the selected classes varies
from 3 branches for the class RIFClassLoader up to 7,938
branches for the class JavaParser.

For each class in our sample we ran EvoSuite using (i)
MOSA enriched with our test code quality metrics; (ii) MOSA
without test code quality metrics; and (ii) the whole suite
strategy, which is the default strategy in EvoSuite. We de-
cided to consider a second baseline in order to have higher
confidence of the generalizability of our results with respect
to other well-established search algorithms for test case gen-
eration. All three algorithms were executed by targeting
branch coverage as criterion to maximize.

For each execution we collected (i) cohesion (LCTM) and
coupling (CBTM) scores, branch coverage scores, and the fi-
nal test suite length. We use a search budget of two minutes,
thus, the search terminated when two minutes are reached
or when maximum (100%) branch coverage was achieved.
To take into account the randomness of the algorithms used
in the study, we run each algorithm on each selected classes
30 times, for a total of 3 (search algorithms) ×43 (classes)
×30 (repetitions) = 3, 870 different executions. All the test
suites generated by the three experimented algorithms over
the 30 runs are available in our online appendix [34].

To address RQ1 we compare cohesion and coupling scores
for the tests produced by the three search algorithms at the
end of the search. More precisely, we combine LCTM (cohe-
sion) and CBTM (coupling) into a unique scalar value, de-
fined as Quality Metric= LCTM+CBTM , in order to have
only one scalar value to simplify the comparison. The two
metrics LCTM and CBTM are computed using the equa-
tions reported in Section 2. Lower quality metric scores indi-
cate that the obtained tests are highly cohesive (low LCTM)

and poorly coupled (low CBTM). To verify whether the dif-
ferences (if any) are statistical significant, we use the non-
parametric Wilcoxon Rank Sum test [12] with p-value = 0.05
as threshold for significance.

Besides testing the statistical significance, we measure
the effect size of the differences using the Varga-Delaney
measure (Â12) [45] following the guidelines in [4] for assess-
ing randomized algorithms. To address RQ2, we compare
branch coverage scores achieved by the three search algo-
rithms. Also for this research question we use both the
Wilcoxon test and the Varga-Delaney measure to provide
statistical support to our findings. For RQ3, we compare
the size of the resulting test suites, where the size of a test
suite is measured as the sum of the lengths (number of state-
ments) of each composing test case. Note that we analyze
the test suite size only for classes where we do not observe
a significant improvement in terms of coverage. This is be-
cause test suites achieving higher branch coverage are ex-
pected to have more test cases (and more statements) than
other suites with lower branch coverage for the same class
under test. In other words, the test size metric comes into
play for comparison if and only if two test suites under anal-
ysis achieve the same coverage score.

It is important to notice that EvoSuite already applies
post-processing steps in order to reduce the size of the fi-
nal test suites improving readability and tests conciseness.
Indeed, at the end of the search process a generated test
suite and its constituent test cases are post-processed for
mimimization. During this step, statements that do not
contribute to satisfying each individual covered branch are
removed from the tests. In the context of our study, such
post-processing steps are applied to all three search algo-
rithms under study. Therefore, any difference in test suite
size obtained upon post-process minimization can be inter-
preted as the effect of incorporating cohesion and coupling
metrics into the main loop of the search algorithm (RQ3).

5.2 Parameters Setting
We apply encoding schema and genetic operators for test

cases available in EvoSuite. Specifically, we use a dynamic
encoding schema, where each test case is a random sequence
of statements (e.g., method calls) with variable length.

Test cases are combined using the single-point crossover
which randomly exchanges statements between two selected
tests. Finally, each test is randomly modified by a muta-
tion operator, which can add, delete or change statements
with uniform probability. Therefore, the length of test cases
can vary during the search. As parameter values we use
the default parameters setting in EvoSuite since a previous
study [5] demonstrated that parameter tuning does have im-
pact on the performance of test case generation tools, which
provide comparable results with default settings widely used
in literature. For completeness, the main parameter values
are [20]:
• Population size: we used the default population size

of 50 chromosomes.

• Search budget: we restrict the search budget to two
minutes for each independent run.

• Crossover: two selected test cases are combined using
the single-point crossover with probability Pc = 0.75.

• Mutation: we use a uniform mutation function with
probability Pm = 1/k where k is the number of state-
ments in the test to mutate.
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• Selection function: tournament selection is used with
tournament size = 10, which is the default setting in
EvoSuite.

5.3 Analysis of the Results
Table 3 reports the results for RQ1. Specifically, the ta-

ble reports the average quality metric (LCTM + CBTM)
obtained over 30 independents runs as well as the results of
the Wilcoxon test and the Vargha-Delaney measure. Values
Â12 < 0.5 indicate that the quality-based MOSA leads to
higher cohesion and lower coupling than other algorithms
considered in the comparison.

In general, we can notice that tests generated by the
quality-based MOSA have better quality metric scores as
we would have expected. Indeed, for 33 out of 43 classes
the quality-based MOSA produces tests with a statistically
significant better (lower) quality metric when compared to

MOSA. The Â12 measure shows that for classes with sta-
tistical significant differences, the effect size is mostly large
(76%) or medium (18%). Surprisingly, for three classes the
quality-based MOSA obtains (statistically significant) worse
scores than MOSA alone. One of these three classes is
AdvancedSettings for which the quality-based MOSA pro-
duces slightly higher (+0.03) LCTM (lack of cohesion) and
CBTM (coupling) when compared to MOSA (see line num-
ber 32 in Table 3 — cross-compare with Table 2 to find in-
dex). However, we notice that all algorithms quickly reach
100% of branch coverage after a few generations for such a
class, which contains only 52 trivial branches (see Table 4
for coverage results). Hence, the quality-based MOSA ended
the search after few generations without giving enough time
(generations) for optimizing cohesion and coupling.

The comparison with the Whole Suite strategy also reveals
positive results for our quality-based algorithm. Indeed, for
32 classes (out of 43) the quality-based MOSA generates
tests that are statistically more cohesive and less coupled
with respect to those generated by Whole Suite, showing a
large effect size in most of cases (78%). For only four classes,
Whole Suite produces statistically better results (see lines
11, 18, 32, and 41 in Table 3).

After manual investigation, we found that this happens
only for those classes where all search algorithms perform
only a few generations, thus, giving limited search time to
optimize test quality (as for example for the class AdvancedSettings).

In order to investigate the quality metrics scores of tests
generated during the search, Figure 2 depicts the average
quality metric scores (i.e., cohesion + coupling) achieved by
the three experimented algorithms over time (5 minutes) for
the class LovinsStemmer from the weka library. As we can
see, the average quality score for our quality-based MOSA
is always lower than those achieved by MOSA and Whole
Suite.

In particular, the average quality for Whole Suite does
not vary over the time, while for MOSA either with or with-
out quality optimization, we observe a general decreasing
trend. However, for the quality-based MOSA the overall co-
hesion+coupling score always remains lower or equal to 1.30
while for MOSA it ranges between 1.55 and 1.30. We ob-
tained consistent results also for all other non-trivial classes
in our second empirical study.

For branch coverage (RQ2), the results are reported in
Table 4. Specifically, the table reports the average branch

Table 3: Quality score achieved by Quality-based
MOSA, MOSA and Whole Suite, together with p-
values resulting from the Wilcoxon test and Vargha-
Delaney Â12 effect size. We use S, M, and L to in-
dicate small, medium and large effect sizes respec-
tively. Significantly p-values are reported in bold-
face.

N.
LCTM+CBTM Quality-based MOSA Quality-based MOSA

Q-based
MOSA

Whole vs. MOSA vs. Whole Suite
MOSA Suite p-value A12 p-value A12

1 1.15 1.26 1.21 0.01 0.30 M 0.09 0.37 S
2 0.68 0.79 0.76 <0.01 0.20 L <0.01 0.27 M
3 1.28 - 1.31 <0.01 0.20 L <0.01 0.26 L
4 1.31 1.32 1.32 0.21 0.41 S 0.20 0.40 S
5 0.85 1.01 1.01 <0.01 0.19 L <0.01 L
6 1.13 1.17 1.15 <0.01 0.16 L 0.04 S
7 0.76 0.88 0.86 <0.01 0.00 L <0.01 0.01 L
8 0.94 1.12 1.12 <0.01 0.00 L <0.01 0.00 L
9 1.01 1.23 1.25 <0.01 0.08 L <0.01 0.05 L
10 1.05 1.01 1.02 <0.01 0.86 L 0.32 0.58 S
11 1.35 1.37 1.28 0.01 0.32 M <0.01 0.88 L
12 1.10 1.22 1.18 <0.01 0.05 L <0.01 0.13 L
13 0.52 0.53 0.54 0.05 0.35 S <0.01 0.25 L
14 1.28 1.30 1.30 0.55 0.45 S 0.47 0.44 -
15 1.20 1.27 1.27 <0.01 0.04 L <0.01 0.04 L
16 0.95 1.17 1.18 <0.01 0.00 L <0.01 0.00 L
17 0.90 1.12 1.12 <0.01 0.00 L <0.01 0.00 L
18 0.20 0.00 0.00 <0.01 0.70 M <0.01 0.70 M
19 0.71 0.76 0.74 <0.01 0.16 L <0.01 0.23 L
20 1.04 1.11 1.09 <0.01 0.25 L 0.03 0.34 S
21 1.12 1.22 1.21 <0.01 0.02 L <0.01 0.04 L
22 0.96 1.05 1.05 <0.01 0.02 L <0.01 0.01 L
23 1.20 1.20 1.20 0.23 0.59 S 0.92 0.49 -
24 1.28 1.30 1.28 <0.01 0.20 L 0.01 0.32 M
25 0.96 1.04 1.04 <0.01 0.22 L <0.01 0.24 L
26 1.12 1.16 1.14 <0.01 0.11 L 0.87 0.49 -
27 0.73 0.77 0.76 <0.01 0.00 L <0.01 0.00 L
28 1.22 1.31 1.30 <0.01 0.02 L <0.01 0.07 L
29 0.92 1.08 1.04 <0.01 0.00 L <0.01 0.03 L
30 1.18 1.21 1.21 <0.01 0.12 L <0.01 0.11 L
31 1.18 1.20 1.20 0.01 0.30 M 0.02 0.32 M
32 1.30 1.27 1.27 <0.01 0.84 L 0.01 0.85 L
33 1.10 1.12 1.11 0.12 0.38 S 0.37 0.43 -
34 1.14 1.18 1.21 0.02 0.32 M <0.01 0.18 L
35 1.11 1.26 1.25 <0.01 0.00 L <0.01 0.00 L
36 0.99 1.03 1.04 <0.01 0.23 L <0.01 0.21 L
37 1.30 1.33 1.35 <0.01 0.27 M <0.01 0.22 L
38 1.14 1.21 1.21 <0.01 0.10 L <0.01 0.10 L
39 1.10 0.99 1.00 <0.01 1.00 L <0.01 1.00 L
40 0.99 1.23 1.23 <0.01 0.00 L <0.01 0.00 L
41 1.27 1.31 1.25 <0.01 0.28 M 0.02 0.67 M
42 1.10 1.10 1.18 0.84 0.48 S <0.01 0.02 L
43 1.01 1.04 1.06 0.03 0.34 S <0.01 0.25 L
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Figure 2: Cohesion and coupling over time for the
class LovinsStemmer with a search budget of fivse
minutes.

coverage ([0,1]) obtained over 30 independents runs as well
as the results of the Wilcoxon test and the Vargha-Delaney
measure. Values Â12 > 0.5 indicate that the quality-based
MOSA leads to higher branch coverage than the alternative
algorithm considered in the comparison. The obtained re-
sults show that in the majority of the cases (30 out of 43
classes) there is no difference in terms of branch coverage
achieved by MOSA with and without quality optimization.
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Table 4: Branch coverage achieved by Quality-based
MOSA, MOSA and Whole Suite, together with p-
values resulting from the Wilcoxon test and Vargha-
Delaney Â12 effect size. We use S, M, and L to in-
dicate small, medium and large effect sizes respec-
tively. Significantly p-values are reported in bold-
face.

N.
Branch Coverage Quality-based MOSA Quality-based MOSA

Q-based
MOSA

Whole vs. MOSA vs. Whole Suite
MOSA Suite p-value A12 p-value A12

1 0.64 0.72 0.62 0.69 0.47 - 0.48 0.55 -
2 0.68 0.72 0.73 0.01 0.37 S <0.01 0.33 M
3 0.47 0.44 0.46 0.33 0.53 - 0.97 0.50 -
4 0.94 0.94 0.93 0.96 0.50 - 0.18 0.60 S
5 1.00 1.00 1.00 - 0.50 - - 0.50 -
6 0.94 0.94 0.94 1.00 0.50 - 1.00 0.50 -
7 0.82 0.80 0.79 0.01 0.69 M <0.01 0.73 M
8 0.84 0.82 0.83 <0.01 0.72 M 0.02 0.67 M
9 0.60 0.63 0.67 0.43 0.44 - <0.01 0.26 L
10 0.21 0.22 0.14 0.28 0.42 S <0.01 0.93 L
11 0.47 0.47 0.36 0.34 0.43 - <0.01 0.82 L
12 0.81 0.85 0.81 0.01 0.31 M 0.83 0.52 -
13 0.04 0.04 0.04 <0.01 0.73 M <0.01 0.71 M
14 1.00 1.00 1.00 - 0.50 - - 0.50 -
15 0.94 0.96 0.97 <0.01 0.20 L <0.01 0.16 L
16 0.52 0.51 0.53 0.34 0.56 - 0.25 0.43 -
17 0.81 0.81 0.79 0.33 0.48 - 0.01 0.62 S
18 0.00 0.00 0.00 - 0.50 - - 0.50 -
19 0.21 0.22 0.19 <0.01 0.29 M <0.01 0.73 M
20 0.31 0.32 0.33 0.12 0.39 S <0.01 0.14 L
21 1.00 1.00 1.00 - 0.50 - - 0.50 -
22 0.90 0.92 0.91 <0.01 0.27 M 0.09 0.37 S
23 0.89 0.87 0.33 0.34 0.57 - <0.01 1.00 L
24 0.43 0.43 0.44 1.00 0.50 - 0.17 0.45 -
25 0.96 0.91 0.97 0.49 0.54 - 0.29 0.57 -
26 0.69 0.73 0.57 <0.01 0.21 L <0.01 0.97 L
27 0.97 0.97 0.96 0.74 0.52 - <0.01 0.74 L
28 1.00 1.00 0.99 0.06 0.40 S 0.02 0.66 S
29 0.72 0.72 0.72 - 0.50 - - 0.50 -
30 0.74 0.76 0.73 0.03 0.34 S 0.10 0.63 S
31 1.00 1.00 1.00 - 0.50 - - 0.50 -
32 1.00 1.00 1.00 - 0.50 - - 0.50 -
33 0.95 0.97 0.97 0.04 0.40 S 0.21 0.43 -
34 0.31 0.31 0.30 0.46 0.44 - 0.06 0.64 S
35 0.65 0.68 0.59 0.11 0.38 S <0.01 0.77 L
36 0.21 0.22 0.23 0.24 0.41 S <0.01 0.27 M
37 0.06 0.06 0.06 0.04 0.57 - <0.01 0.85 L
38 0.66 0.66 0.62 0.33 0.57 S <0.01 0.95 L
39 0.81 0.81 0.78 0.78 0.46 - 0.09 0.67 M
40 0.29 0.29 0.30 0.43 0.56 - 0.09 0.37 S
41 0.75 0.75 0.52 0.25 0.41 S <0.01 1.00 L
42 0.64 0.54 0.53 <0.01 0.76 L <0.01 0.92 L
43 0.84 0.85 0.85 0.68 0.47 - 0.79 0.48 -

This is an important result when compared to previous at-
tempts reported in literature to combine coverage and non-
coverage based criteria in test case generation, for which neg-
ative effects are reported for the final coverage [17]. From
Table 4 we also observe that the quality-based MOSA out-
performs Whole Suite in 17 out of 43 cases, inheriting its
effectiveness from the standard MOSA algorithm [35]. Fi-
nally, no statistically significant difference is observed for
other 22 classes.

There are some cases where the Wilcoxon test reveals sta-
tistically significant differences, that deserve a more detailed
analysis. For five classes in our sample (lines 7, 8, 13, 37,
and 42 in Table 4), the usage of quality metrics has a signif-
icant positive effect on branch coverage, with an improve-
ment up to 10% for the class Component. To have a better
understanding of such effects, Figure 3 depicts the variation
of branch coverage achieved by the three algorithms (i.e.,
MOSA, quality-based MOSA and Whole Suite) over time
for the class Component. To have a broader view, we con-
sider a larger time window of five minutes as search budget.
From Figure 3, we can observe that for the first 60 seconds
MOSA is particularly effective compared to the other alter-
natives. However, after the first 90 seconds it is not able
to cover any additional branches. On the other hand, the
quality-based MOSA is less effective in the first 90 seconds.

0

10

20

30

40

50

60

70

0 20 40 60 80 100

%
	B
ra
nc
h	
Co

ve
ra
ge

%	Search	Budget

MOSA+Quality MOSA Whole	Suite

Figure 3: Branch coverage over time for the class
Component with a search budget of five minutes.

We conjecture that this is due to the overhead required for
computing cohesion and coupling for tests in each genera-
tion. However, after consuming 30% of search budget our
quality-based MOSA becomes more effective leading to a fi-
nal higher branch coverage (+10%) at the end. Hence, the
usage of cohesion and quality metrics seems to avoid the pre-
mature convergence of MOSA for this particular class: with-
out quality metrics the same algorithm is not able to cover
further branches. According to Figure 3, Whole Suite is less
effective at reaching high coverage with respect to MOSA
(either with or without cohesion and coupling) for most of
the search time, confirming the high effectiveness of cus-
tomized many-objective search in test case generation [35].
However, after 60% of the time simple MOSA and Whole
Suite reached the same coverage score and both are not able
to cover further branches for the rest of the search budget.

For branch coverage we also observe that there are eight
classes (lines 2, 12, 15, 19, 22, 26, 30, and 33 in Table 4)
for which cohesion and coupling have a negative effect on
MOSA with a coverage decrease ranging between -1% and
-4%. One such class is SimpleNode from jmca, for which
MOSA achieves 85% branch coverage against 81% for the
quality-based MOSA. One possible explanation for this re-
sults is that computing quality metrics requires further over-
head in addition to the computational complexity of genetic
operators, e.g., the computational cost required to compute
the textual similarity between tests (chromosomes) in each
population. To provide a more in depth analysis, Figure 4
depicts the branch coverage scores achieved by the three ex-
perimented algorithms over time on SimpleNode but using
a larger search budget of five minutes instead of 2 minutes
used in our original study. We can notice that at the be-
ginning of the search (up to 2 minutes) MOSA is, indeed,
faster in reaching higher coverage as also reported in line 12
of Table 4. However, when increasing the search budget to
over 2 minutes, MOSA and the quality-based MOSA are in-
distinguishable. At the end of the search (five minutes) our
quality-based MOSA is able to cover more branches leading
to an average increase of coverage of +2%. Therefore, the
usage of quality metrics can help in improving branch cover-
age by avoiding premature convergence but only when giving
more time to the search. On the other hand, when limited
search budget is given, not including quality metrics is more
effective because it will not increase the overall overhead
for each generation. Potentially, better performance may be
achieved by developing an adaptive strategy to incorporate
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Figure 4: Branch coverage over time for the class
SimpleNode with a search budget of five minutes.

Table 5: Suite sizes achieved by Quality-based
MOSA, MOSA and Whole Suite, together with p-
values resulting from the Wilcoxon test and Vargha-
Delaney Â12 effect size. We use S, M, and L to in-
dicate small, medium and large effect sizes respec-
tively. Significantly p-values are reported in bold-
face.

N.
Suite Size Quality-based MOSA Quality-based MOSA

Q-based
MOSA

Whole vs. MOSA vs. Whole Suite
MOSA Suite p-value A12 p-value A12

1 15 14 14 0.05 0.54 S 0.01 0.58 M
3 12 12 12 0.06 0.59 S 0.21 0.46 -
4 21 20 20 <0.01 0.27 M 0.02 0.33 M
5 5 5 5 0.73 0.52 - 0.73 0.52 -
6 114 141 139 <0.01 0.01 L <0.01 0.03 L
12 70 68 - L 0.22 0.51 -
14 41 44 44 <0.01 0.17 L <0.01 0.17 L
16 185 202 204 0.03 0.34 S <0.01 0.26 L
17 70 75 <0.01 0.21 L
18 3 3 3 0.50 - - 0.50 -
20 27 27 0.74 0.52 -
21 98 90 89 <0.01 0.86 L <0.01 0.97 L
22 148 160 0.01 0.31 M
23 168 176 <0.01 0.97 L
24 73 73 73 0.73 0.52 - 0.89 0.49 -
25 102 110 114 0.13 0.38 S 0.15 0.39 S
27 94 96 0.42 0.56 -
28 65 65 0.94 0.49 S
29 31 35 35 <0.01 0.03 L <0.01 0.17 L
30 165 172 <0.01 0.94 L
31 74 87 86 <0.01 1.00 L <0.01 0.04 L
32 49 53 53 <0.01 0.13 L <0.01 0.13 L
33 58 62 <0.01 0.29 M
34 214 203 127 0.77 0.52 - <0.01 0.06 L
35 108 105 0.53 - S
36 172 185 <0.01 0.04 L
38 127 128 0.38 0.57 -
39 165 186 162 0.04 0.16 L 0.12 0.56 S
40 81 75 79 <0.01 0.64 S 0.61 0.54 -
41 845 860 0.02 0.33 M
42 383 479 0.70 0.54 -
43 221 234 219 0.03 0.34 M 0.18 0.60 S

cohesion and quality into MOSA’s main loop according to
the time assigned for the search, e.g., by disabling the com-
putation of our metrics when the search budget is lower than
a specific threshold. This is part of our future agenda.

Finally, Table 5 reports the average test suite size ob-
tained over 30 independents runs (RQ3) as well as the sta-
tistical significance according to the Wilcoxon test and the
Vargha-Delaney measure. In this case, values of Â12 < 0.5
indicate that our quality-based MOSA leads to shorter test
suites (with less statements) than other algorithms. Com-
parisons in terms of test suite size are reported only for those
cases where we do not observe a significant improvement in
terms of branch coverage (RQ2). The Wilcoxon test re-
veals that our quality-based MOSA produces significantly
shorter test suites with respect to both MOSA and Whole

Suite. Indeed, in 11 classes out of 30, the test suite gen-
erated by the quality-based MOSA are statistically shorter
then those generated by MOSA, with an average size reduc-
tion raging between 1% and 19%. Vice versa, MOSA pro-
vides test suites significantly shorter than its quality-based
version in only four cases. Similar results are also obtained
from the comparison with the Whole Suite: for ten classes
the generated test suites are statically shorter when using
the quality-based MOSA. These results are quite surprising
if we consider that for all three algorithms —i.e., MOSA,
quality-based MOSA, and Whole Suite— the generated test
suites are post-processed for minimization. Indeed, despite
this minimization, the usage of cohesion and coupling seems
to provide a complementary support toward the generation
of shorter tests likely improving readability.

In Summary. The incorporation of cohesion and cou-
pling into the main loop of test case generation tools help
in improving the overall quality of generated tests, which
are statistically more cohesive and less coupled (RQ1). We
also discover that such quality metrics have positive effects
both on branch coverage and test suite size. Indeed, when
giving more time to the search test quality metrics may re-
duce the probability of early convergence increasing the final
branch coverage (RQ2). Finally, the generated tests tend to
be shorter, suggesting the possibility to complement existing
post-search minimization strategies (RQ3).

6. THREATS TO VALIDITY
This section describes the threats that can affect the va-

lidity of our empirical study.
Construct Validity. An important threat related to the

relationship between theory and observation is due to impre-
cisions/errors in the measurements we performed. For the
first study, we defined two software quality metrics based on
textual analysis. Although we are aware that these metrics
might not be the best ones for measuring test code quality,
several previous studies demonstrated, on the one hand, the
usefulness of textual analysis for measuring code quality [39,
42] and, on the other hand, the ability of textual-based tech-
niques to measure code quality with higher accuracy with
respect to structural metrics [26, 39, 42]. However, the anal-
ysis of different quality metrics, including structural ones, is
part of our future agenda. As for the evaluation of the per-
formances of the GA, we adopted widely used metrics. In-
deed, we used branch coverage and size of the resulting test
suite. In the context of test data generation, such metrics
gave a good measure of the efficiency and the effectiveness of
the test data generation techniques. Finally, for measuring
the post-process quality of the test suites, we used the same
textual metrics defined in Section 2.

Internal Validity. Considering the way the test code
quality metrics are computed, the main threat is represented
by the settings used for the IR process. During the pre-
processing, we filtered the textual corpus by using well known
standard procedures: stop word list, identifiers splitting,
stemmer and the tf-idf weighting schema [8]. As for LSI,
we used the heuristics defined by Kuhn et al. [24] for choos-
ing the number of concepts (k). Regarding the second study,
a potential threat that might affect our results is represented
by the inherent randomness of GA. To limit such threat, we
repeated each execution 30 times. Moreover, another fac-
tor could be represented by the parameters used for setting
up the GA. We are aware that different configurations might
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result in different results, however finding the best configura-
tion is an extremely difficult task. Furthermore, in practice
the gains to be made do not always pay off compared to us-
ing default configurations widely used in literature [6]. Thus,
we rely on a basic setting using default values as suggested
in literature.

Conclusion Validity. As for threats related to the re-
lationship between the treatment and the outcome, in the
analysis of the results we used appropriate statistical tests
coupled with enough repetitions of the experiments to enable
the statistical tests. In particular, we used the Wilcoxon test
for testing significance in the differences, while the Vargha-
Delaney effect size statistic for estimating the magnitude of
the observed difference. Moreover, we tried to draw conclu-
sions only when statistically significant results were avail-
able.

External Validity. Threats to the external validity re-
gard the generalization of our findings. During the first
study, we carried out a large-scale empirical study, involv-
ing 110 different software projects in order to evaluate the
quality of test cases automatically generated. Instead, our
second study involves 43 Java classes from different projects,
having different size and different number of branches (rang-
ing between 3 and 7,938). Thus, the selected classes exhibit
a reasonable degree of diversity. However, the replication
of the study on a larger number of classes is desirable and
therefore part of our research agenda.

7. RELATED WORK
Over the last years, the research community has spent a

lot of effort on the definition of search based tools aimed
at automatically generating test data by targeting branch
coverage as the primary goal to achieve [27]. However, re-
searchers have noticed that there are further goals that testers
would like to achieve in addition to code coverage, such as
memory consumption [25], etc.

Most of approaches in this research thread have consid-
ered coverage and non-coverage criteria as equally important
objectives to reach and, thus, they have used explicit multi-
objective algorithms to optimize them. For example, Ferrer
et al. [17] proposed a multi-objective search based algorithm
that tries to balance coverage and oracle cost. Specifically,
their approach target one branch at time, trying to maximize
the coverage and minimize the cost. Pinto and Vergilio [37]
also used the single target approach —i.e., targeting only
one branch at time— as well as execution time and abil-
ity of tests to reveal faults as three distinct objectives to
optimize using three-objective search algorithms. Similarly,
Oster and Saglietti [31] applied bi-objective optimization for
maximizing branch coverage and minimizing the number of
test cases. Instead, Lakhotia et al. [25] considering dynamic
memory consumption as second objective to consider in ad-
dition to branch coverage. However, all previous work that
applies multi-objective approaches to combine code cover-
age with non-coverage based objectives reported no effect or
even harmful effects on the final code coverage [17].

More recently, Afshan et al. [2] have noticed that read-
ability is a critical non-coverage criteria to take into account
since testers are required to manually check test data input
and test results (e.g., assertions) in order to assess whether
the software behaves as intended. Indeed, unreadable tests
imply a substantial increase of human effort involved in man-
ually checking the inputs produced [2]. Therefore, they pro-

pose to use natural language models to generate tests with
readable string input data that are easy to comprehend for
humans.

Daka et al. [14] proposed a post-processing technique to
optimize readability by mutating generated tests leveraging
a domain-specific model of unit test readability based on
human judgement. Other strategies to improve test read-
ability also include the usage of mutation analysis in order
to reduce the number of assertions [19].

In this paper, we observe that test code quality is a de-
sirable and important goal in test case generation, since
poorly designed tests have been proven to negatively im-
pact future maintenance activities [7, 30, 47, 46]. Specifi-
cally, we incorporate two test code quality metrics into the
loop of MOSA (Many-Objective Sorting Algorithm) [35], a
novel many-objective algorithm that targets all branches in
the code at once. As explained in Section 4, we added the
quality of test code as secondary non-coverage criterion for
selection, instead of the test case size used in the original im-
plementation. Our empirical results show that, unlike previ-
ous attempts to combine coverage and non coverage-criteria
into the search loop, code quality metrics have positive ef-
fect on code coverage reducing the probability of premature
convergence. Furthermore, the generated tests tend to be
shorter.

8. CONCLUSION
In this paper, we defined two textual-based test code met-

rics, i.e., the Coupling Between Test Methods (CBTM) and
the Lack of Cohesion of a Test Method (LCTM), able to
measure the degree of quality of a test case. In this first
study we empirically investigated the quality of test cases
automatically generated by EvoSuite on the SF110 dataset,
a set of 110 open source projects from SourceForge.

Our findings demonstrate that, even though measures have
been taken to keep test code quality under control during
the process of automatic test case generation (e.g., mini-
mization), the design of the generated test cases can still
be improved. For this reason, we incorporate the defined
test code quality metrics into MOSA, a many-objective al-
gorithm for automatic unit test generation [35]. In our ap-
proach, we put the quality indicator based on coupling and
cohesion metrics as a secondary objective to be optimized
by the search based algorithm implemented by MOSA. This
contrasts the work of Afshan et al. [3] and Daka et al. [14],
who address the problem of test code readability by applying
linguistic models as a set of post-processing steps.

In the second study, we randomly selected 43 classes from
the SF110 dataset in order to evaluate the benefits provided
by the quality-based automatic generation process. First of
all, we observed that the generated test cases are statis-
tically more cohesive and less coupled (RQ1). Moreover,
the quality-based automatic generation process actually has
a positive impact on branch coverage and test suite size
(RQ2). Finally, the size of the generated test cases tends
to decrease, suggesting that our process can nicely comple-
ment existing post-search minimization strategies (RQ3).
Our future work includes the evaluation of the impact of our
quality-based algorithm on the effectiveness of test cases, as
well as the evaluation of the effects on other maintainability
factors, (e.g., readability). Moreover, we plan to assess pos-
sible gains (if any) from the application of other test code
quality metrics in the automatic test case generation pro-
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cess.
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