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Quantized conductance doubling and hard gap in a
two-dimensional semiconductor–superconductor
heterostructure
M. Kjaergaard1, F. Nichele1, H.J. Suominen1, M.P. Nowak2,3,4, M. Wimmer2,3, A.R. Akhmerov2, J.A. Folk5,6,

K. Flensberg1, J. Shabani7,w, C.J. Palmstrøm7 & C.M. Marcus1

Coupling a two-dimensional (2D) semiconductor heterostructure to a superconductor opens

new research and technology opportunities, including fundamental problems in mesoscopic

superconductivity, scalable superconducting electronics, and new topological states of matter.

One route towards topological matter is by coupling a 2D electron gas with strong spin–orbit

interaction to an s-wave superconductor. Previous efforts along these lines have been

adversely affected by interface disorder and unstable gating. Here we show measurements on

a gateable InGaAs/InAs 2DEG with patterned epitaxial Al, yielding devices with atomically

pristine interfaces between semiconductor and superconductor. Using surface gates to form a

quantum point contact (QPC), we find a hard superconducting gap in the tunnelling regime.

When the QPC is in the open regime, we observe a first conductance plateau at 4e2/h,

consistent with theory. The hard-gap semiconductor–superconductor system demonstrated

here is amenable to top-down processing and provides a new avenue towards low-dissipation

electronics and topological quantum systems.
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R
ecent work on semiconductor nanowires has offered
evidence for the existence of Majorana zero modes,
a signature of topological superconductivity1–3. A

characteristic of the first studies in this area was significant
subgap tunnelling conductance (a so-called soft gap), attributed
to disorder at the semiconductor–superconductor (Sm–S)
interface4,5. In nanowires, the soft-gap problem was recently
resolved by growing Al epitaxially on InAs nanowires, yielding
greatly reduced subgap conductance6,7. Studies of Sm–S systems
based on top-down processed gateable two-dimensional electron
gases (2DEGs) coupled to superconductors have not explicitly
addressed the soft-gap issue yet8,9. However experiments on such
systems have demonstrated other theoretical predictions, such as
quantization of critical current9–11, the retro-reflection property
of Andreev scattering12, and spectroscopy of a gate-defined
quantum dot with superconducting leads13,14, which do not
require a hard proximity-induced gap in the semiconductor.

The two main results we present in this paper are both
consequences of the transparent epitaxial Sm–S interface and
overcome the soft gap problem for 2D electron gases. The first is a
doubling of the the lowest quantized conductance plateau, from
2e2/h in the normal state to 4e2/h in the superconducting state, as
predicted theoretically15. The second is a strong suppression of
conductance for voltages smaller than the superconducting gap
when the quantum point contact (QPC) is in the tunnelling
regime—that is, the detection of a hard superconducting gap in a
proximitized 2DEG. Conductance doubling arises from Andreev
reflection transferring charge 2e into the superconductor16. The
hard gap reflects the absence of electronic states below the
superconducting gap in the semiconductor. Using gate voltage to
control the QPC, we measure conductance across the transition
from weak tunnelling to the open-channel regime and find good
(but not perfect) agreement with the theory of a normal-QPC-
superconductor structure15.

Results
Properties of the 2DEG and the superconducting Al film. The
starting material is an undoped InAs/InGaAs heterostructure
with epitaxial Al as a top layer, grown by molecular beam
epitaxy17. A cross-sectional TEM showing a sharp epitaxial Sm–S
interface is shown in Fig. 1a. In the devices reported here, the
thickness of the InGaAs barrier was b¼ 10 nm, and the Al film

thickness was a¼ 10 nm. A Hall ball fabricated on the same
wafer with the Al removed (see Methods) gave density
n¼ 3� 1012 cm� 2 and mobility m¼ 104 cm2 V� 1 s� 1, yielding
a mean free path leB230 nm. In a similar wafer, weak anti-
localization analysis gave a spin–orbit length lsoB45 nm (ref. 17).
The Al film has a critical temperature Tc¼ 1.56 K, corresponding
to a gap D0¼ 235meV, enhanced from the bulk value of Al, and
consistent with other measurements on Al films of similar
thickness18. The in-plane critical field of the Al film is Bc¼ 1.65 T
(ref. 17).

Quantized conductance doubling. A scanning electron micro-
graph of Device 1 is shown in Fig. 1b. The conductance of the
QPC is tuned by negative voltages applied to the gates. The QPC
is located B150 nm in front of the region where the Al film has
not been removed. Figure 2 shows conductance traces for two
lithographically similar QPCs. In the superconducting state, both
devices show increased conductance at the plateau of the QPC
and suppressed conductance below GB0.8G0, where G0� 2e2/h,
relative to the normal state. This behaviour is the hallmark of
Andreev reflection being the dominant conduction mechanism
through the QPC15,19. Raising the temperature above the critical
temperature of the Al film, applying an out-of-plane magnetic
field, or applying a bias larger than the gap, all bring the lowest
plateau back to 2e2/h (Fig. 2). The dip structure at the transition
between conductance plateaus was also observed in a similar
experiment on nanowires20, and is presumably caused by mode
mixing due to disorder, leading to a reduction in transparency of
the already open first channel. A constant contact resistance
RcB1 kO has been subtracted in each viewgraph, a value chosen
to move the first plateau in the normal state to G0.

Hard superconducting gap. By further depleting the electron gas
in the constriction, the device is operated as a tunnel probe of the
local density of states in the InAs 2DEG. This technique has
been applied to studying subgap properties of semiconductor
nanowires coupled to superconductors1–3,6,21,22. In Fig. 3a, the
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Figure 1 | Epitaxial aluminium on InGaAs/InAs and device layout.

(a) Cross-sectional transmission electron micrograph of epitaxial Al on

InGaAs/InAs. On the wafer imaged here, the height of the InGaAs barrier is

b¼ 5 nm and Al film thickness aB5 nm. Scale bar, 5 nm. (b) False-colour

scanning electron micrograph of Device 1 (see main text for details). Scale

bar, 1mm.
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Figure 2 | Quantized conductance in the Andreev quantum point contact.

(a) Differential conductance, G, as a function of gate voltage Vg at zero bias

(black line), at source-drain bias larger than the gap (red line), and at

elevated temperature (green line). At zero bias and base temperature, the

first conductance plateau is at 4e2/h, double the value at higher

temperature or bias. (b) The differential conductance in a second,

lithographically identical device at zero bias (black line), at source-drain

bias larger than the gap (red line), and in a magnetic field applied

perpendicular to the plane of the chip (blue line).
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QPC voltage is decreased to gradually transition from the
one-channel regime, where the zero bias conductance is 4e2/h,
to the tunnelling regime, where conductance is strongly
suppressed for |Vsd|o190mV. From these measurements, the
gap in the density of states of the InAs due to the proximity to the
Al is estimated to be D�B190 meV (measured peak-to-peak). The
value of D� is similar, but not identical, to the gap in the Al film as
estimated from Tc, as discussed above.

In the case of perfect Andreev reflection from the
superconductor/semiconductor interface, the conductance of
one channel through a constriction proximal to the interface is
given by

Gns ¼ 2G0
G2

nn

2G0�Gnnð Þ2
; ð1Þ

where Gns is the conductance when the film is superconducting,
and Gnn is the conductance in the normal state15. In Fig. 3c, the
prediction in equation (1) with no free parameters (green line)
and experimental data are shown. Here, Gnn is the average
conductance for |Vsd|40.8 mV, justified by the equality of
applying a bias and raising the temperature above Tc, as shown
in Fig. 2a. Equation (1) is consistent with the data over two orders
of magnitude in Gns, indicating that the zero bias conductance up
to 4e2/h is well described by the prediction of perfect Andreev
reflection of a single QPC mode. Equation (1) represents the only

quantitative theory of the relation between subgap conductance
and normal state conductance (that is, the hard gap) of which we
are aware, and the agreement between equation (1) and the
experiment in Fig. 3c leads to the designation of a hard gap
in this superconductor–2DEG system. However, the systematic
deviation between data and prediction in Fig. 3c for
Gnso10� 2� 2e2/h could be a manifestation of a small remnant
non-zero normal scattering probability.

The shapes of the conductance curves at eVsdtD� in the
tunnelling regime (red line in Fig. 3b) are smeared relative to the
conventional Bardeen–Cooper–Schrieffer (BCS) density of states
of a superconductor. This could be due to broadening of the BCS
coherence peaks in the disordered superconducting film formed
in the 2DEG under the Al23, a weak coupling between Al and
2DEG5 or the layout of the tunnel probe relative to the
proximitized 2DEG24–26.

Temperature dependence of the density of states. The
temperature dependence of the conductance in the Andreev QPC
is different in the one-channel and in the tunnel regime (Fig. 4).
The one-channel regime (Fig. 4a,b) has a pronounced kink at
T¼Tc, presumably associated with the sudden onset of Andreev
enhanced subgap conductance. In contrast, the temperature
dependence in the tunnel regime (Fig. 4c,d) is smeared close to Tc

due to thermally excited quasiparticles.
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Figure 3 | Transition from 4e2/h conductance to hard superconducting gap. (a) Differential conductance, G, in Device 1 as a function of gate voltage Vg

and source-drain voltage bias Vsd. (b) Vertical cuts in a in the tunnelling (red line) and one-channel (blue line) regime. Supplementary Figure 1 shows data

from a lithographically similar device on a wafer with no InGaAs barrier (that is, b¼0 nm) between the top layer Al and the InAs 2DEG. (c) Differential

conductance at zero source-drain voltage, G(Vsd¼0 mV), versus averaged differential conductance at finite source-drain voltage, G(|Vsd|40.8 mV). Red

and blue circles indicate data corresponding to cuts in b. Green line is the theoretically predicted conductance in an Andreev enhanced QPC (equation (1)

with no fitting parameters).
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The temperature dependence is simulated (insets in Fig. 4) by
calculating G ¼

R
dEG Eð Þð� @f

@EÞ where f is the Fermi function
that accounts for thermal broadening. The conductance G Eð Þ is
calculated by combining scattering matrices of electrons and
holes in the normal region and Andreev reflection at the
superconductor interface (details of the simulation are given in
Methods). The scattering matrices are calculated using the
numerical package Kwant27, and the simulation are performed
using the device geometry from the micrograph in Fig. 1b.
The temperature dependence of the gap is modeled with

D� Tð Þ¼D�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� T=Tcð Þ2

q
, and the Andreev reflection amplitude

is taken from ref. 15. The simulation shows good quantitative
agreement with the data.

Magnetic field dependence of the density of states. To drive a
superconductor/semiconductor device into a topological regime,
one requirement is gmBB4D�, while the native superconductor
retains its gap. Figure 5 shows the in-plane magnetic field
dependence of D�, from which an approximate critical field
B�c � 300 mT is extracted. A rough estimate of the g-factor can be
inferred by assuming the critical B�c results from Zeeman energy
surpassing the induced superconducting gap, that is gmBB�c¼D�,
which yields gB10, similar to the g-factor in bulk InAs. In
Fig. 5d, the zero-bias conductance is shown for the two different
in-plane directions, and the slight direction dependence of B�c
could be due to an anisotropic g-factor in the InAs crystal lattice.

The induced gap in the 2DEG disappears at in-plane magnetic
fields significantly smaller than the critical field of the Al film
itself. The 2DEG has a strong spin–orbit interaction (lsoB45 nm),
which, taken together with the intimate coupling to the
superconductor, makes this material system a feasible candidate
to realize topological superconducting devices. By using
top-down fabrication techniques and the electrostatic gating
demonstrated here, effective one-dimensional systems can be
produced, in which an in-plane magnetic field can close the
induced superconducting gap to reach a topological phase.

In conclusion, we observe quantization doubling through a
QPC proximal to a superconductor/semiconductor interface,
confirming a long-standing theoretical prediction15. Operated as
a gate-tunable tunnel probe of the local density of states, the QPC
shows a hard superconducting gap induced in the 2DEG.
The magnetic field dependence of the induced gap compares
favourably with the critical field of the superconducting film,
opening possibilities to pursue topological states of matter in
one-dimensional structures fabricated from epitaxial Al/2D InAs
material.

Methods
Fabrication and measurement setup. Ohmic contacts to the InAs electron gas
are formed directly by the epitaxial Al. Mesa structures are patterned by
standard III–V chemical etching techniques. The aluminium is etched using
commercial Transene Aluminum Etch D. Subsequent to the selective Al etch,
an insulating 40 nm Al2O3 layer is deposited using atomic layer deposition and
metallic gates (5 nm Ti/50 nm Au) are evaporated onto the device. The
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measurements were performed in a dilution refrigerator with a base-mixing
chamber temperature TmcB30 mK, using four-terminal lock-in techniques and
DC measurements.

Measurement details. The data in Fig. 3 is measured in a DC setup, incrementing
the voltage in steps of size 3 mV. The data are smoothed over 10 steps and the
derivative is calculated numerically to obtain the differential conductance.
A constant contact resistance Rc¼ 800O is subtracted from the data, moving the
conductance at Vg¼ � 8.2 V for Vsd40.8 mV to 2e2/h. The four-terminal
resistance of the device is Rd¼ 400O with Vg¼ 0 V. The difference between Rc and
Rd is most likely dominated by the change of resistivity near the gated region, when
the gate is turned on, as well as the distance from the voltage probe to the QPC
region. The voltage probes are located B15mm away from the QPC and the gates
overlap the mesa over an area B1.6 mm2. The normal state conductance is
calculated as the average of G(Vsd) for Vsd in the range (±0.8 mV, ±1 mV).
The analysis is largely unaffected by changing the averaging window for values
|Vsd|40.6 mV. The cuts in Fig. 3b are taken by averaging over a 12 mV (30 mV)
window in Vg for the one-channel (tunnelling) regime. Finally, each datapoint in
Fig. 3c is calculated as the average over a 10 mV range in Vg.

Model for numerical simulations. We calculate the conductance of the
junction in two steps. First, we determine the scattering properties of the
normal region which we assume is a 1.1 mm wide channel of length L, where we
have taken dimensions from SEM in Fig. 1b. It is described by the spinless
Hamiltonian,

H ¼ ‘ 2k2

2m�
þVQPC x; yð ÞþVd x; yð Þ� m: ð2Þ

We model the QPC as two rectangular gates located at X¼ 400 nm, with the
width 2W, separated by the length 2S and located at the distance d above

the 2DEG (see Supplementary Fig. 3 for illustration of W and S). We calculate the
potential generated by the QPC electrodes, VQPC(x, y), for the gate voltage Vg as
follows28

VQPC x; yð Þ
� eVg

¼ 1
p

arctan
Wþ x�X

d

� �
þ arctan

W� xþX
d

� �� �
� g Sþ y;Wþ x�Xð Þ� g Sþ y;Wþ x�Xð Þ
� g S� y;Wþ x�Xð Þ� g S� y;W� xþXð Þ;

ð3Þ

where

g u; vð Þ ¼ 1
2p

arctan
uv
dR

� �
; ð4Þ

and R¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2 þ d2
p

. The potential landscape of the simulation is shown in
Supplementary Fig. 3.

We include disorder29 by adding a random on-site energy Vd(x, y) distributed
uniformly between �Ud/2 and Ud/2 where

Ud ¼ m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6l3

F

p3Dx2le

s
: ð5Þ

Due to limitation of the computational mesh resolution we exclude the disorder
from the vicinity of the QPC and take Uda0 only for x4700 nm.

We calculate the scattering matrix of the normal part of the junction for a
particle at the energy e as

SN eð Þ ¼ r eð Þ t eð Þ
t0 eð Þ r0 eð Þ

� �
; ð6Þ

using Kwant package27 and discretizing the Hamiltonian in equation (2) on a mesh
with the spacing Dx¼Dy¼ 3 nm. The quantities r(e) and t(e) denote reflection and
transmission submatrices for a time-reversal symmetric system. In the second step,
we combine the scattering matrices calculated for e and � e (that correspond to

3

2

1

0
0.60.40.20.0

 2

1

0.90.60.30.0
B (T) B (T)

 By By

Bx

8

6

4

2

0

0.0

0.06 

0.15

0.21

0.39

2

1

G
 (

2e
2 /

h)
G

 (
2e

2 /
h)

G
 (

10
–2

 2
e

2 /
h)

G
 (

10
–2

 2
e

2 /
h)

–1.0 1.0–0.5 0.0 0.5
Vsd (mV)

–0.5 0.0 0.5
Vsd (mV)

By (T) By (T)
a

b

c

d

0.0

0.1

0.2

0.4

0.7

Figure 5 | In-plane magnetic field of the enhanced subgap conductance and the hard superconducting gap. (a) Differential conductance, G, as a function

of source-drain bias, Vsd, at several in-plane magnetic fields applied along the point contact constriction. (b) Zero-bias conductance as a function of the in-

plane magnetic field, By. (c) Similar measurement to a but in the tunnelling regime. Supplementary Fig. 2b shows data on a lithographically similar device

fabricated on a wafer with no InGaAs barrier between the top layer Al and InAs 2DEG (that is, b¼0 nm). (d) As in b but in the tunnelling regime, for both

in-plane directions (By is along and Bx is perpendicular to the constriction).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12841 ARTICLE

NATURE COMMUNICATIONS | 7:12841 | DOI: 10.1038/ncomms12841 | www.nature.com/naturecommunications 5

http://www.nature.com/naturecommunications


electron and hole, respectively) with the matrix that accounts for the Andreev
reflection at the superconductor interface

SA ¼ rA
0 rp

rp
� 0

� �
; rp � eif1 0

0 e� if1

� �
; ð7Þ

where

rA ¼
e

D Tð Þ � sign eþD Tð Þ½ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2

D Tð Þ2
� 1

s
: ð8Þ

The latter equation describes the Andreev reflection amplitude15 including the

temperature-dependent pairing potential D Tð Þ¼D�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� T=Tcð Þ2

q
. Finally, we

calculate the conductance according to

Gns Eð Þ ¼
Z

deG eð Þ � @f E; eð Þ
@e

� �
; ð9Þ

where f stands for the Fermi function

f E; eð Þ ¼ 1
e e�Eð Þ=kBT þ 1

; ð10Þ

and where G eð Þ¼N � re eð Þk k2 þ rh eð Þk k2. N is the number of modes in the normal
lead. The quasielectron and quasihole reflection matrices are given by:

re eð Þ ¼ r eð Þþ t0 eð Þ rAr0� � eð Þ rA
1

1� r0 eð Þ rAr0� � eð Þ rA
t eð Þ; ð11Þ

rh eð Þ ¼ t0� � eð Þ rA
1

1� r0 eð Þ rAr0� � eð Þ rA
t eð Þ: ð12Þ

Additionally, the normal-state conductance is given by Gnn¼ t e¼0ð Þk k2. Results of
the simulations are shown in Supplementary Figs 3–5.

Data availability. All data presented in the main paper and supplement, as well as
code used to generate simulations are available from the authors upon request.
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