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a b s t r a c t 

One of the essential problems in multi-criteria decision-making (MCDM) is ranking a set of alternatives 

based on a set of criteria. In this regard, there exist several MCDM methods which rank the alternatives 

in different ways. As such, it would be worthwhile to try and arrive at a consensus on this important 

subject. In this paper, a new approach is proposed based on the half-quadratic (HQ) theory. The pro- 

posed approach determines an optimal weight for each of the MCDM ranking methods, which are used 

to compute the aggregated final ranking. The weight of each ranking method is obtained via a minimizer 

function that is inspired by the HQ theory, which automatically fulfills the basic constraints of weights 

in MCDM. The proposed framework also provides a consensus index and a trust level for the aggregated 

ranking. To illustrate the proposed approach, the evaluation and comparison of ontology alignment sys- 

tems are modeled as an MCDM problem and the proposed framework is applied to the ontology align- 

ment evaluation initiative (OAEI) 2018, for which the ranking of participating systems is of the utmost 

importance. 

© 2020 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Multi-criteria decision-making (MCDM) is a branch of Opera-

ions Research that has numerous applications in a variety of ar-

as involving real decision-making problems. In a typical MCDM

roblem, K alternatives are evaluated on the basis of n criteria, and

he outcome of the evaluation is summarized in a so-called perfor-

ance matrix, within which MCDM methods are used to select the

est, sort, or rank the alternative(s). The focus of this study is on

anking, where a set of K alternatives needs to be ranked. There

xist several MCDM methods which can be used for the rank-

ng problem, including value and utility-based methods such as

HP (analytic hierarchy process) [48] , ANP (analytic network pro-

ess) [49] , BWM (best-worst method) [47] , SMART (simple multi-

ttribute rating technique) [14] , and Swing [36] , and also the out-

anking methods like ELECTRE (ELimination and Choice Expressing

Eality) and its extensions [17] , and PROMETHEE (Preference Rank-

ng Organization METHod for Enrichment of Evaluations) and its

xtensions [7] . For more information about popular MCDM meth-

ds, see [55] . 
✩ This manuscript was processed by Associate Editor Triantaphyllou. 
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One of the main controversial issues in this area is that dif-

erent MCDM methods, even when they use the same input, pro-

uce different and potentially conflicting rankings, which means

hat finding an overall aggregated ranking of alternatives is of the

ssence. Some studies ignore the existence of such a conflict [29] ,

r use a simple ranking statistic, like averages [43] , while yet other

ethods attempt to reconcile the difference and work out a com-

romise [28,42] . Ku et al. [28] estimate the weight for each MCDM

ethod based on the Spearman’s correlation coefficient. The un-

erlying idea is that if the ranking of an MCDM method devi-

tes from those of other methods, it would then be assigned a

ower weight. As such, the weight of each MCDM ranking is com-

uted using the correlation coefficient. By the same token, Ping

t al. [42] has proposed an optimization problem to determine the

eight of each individual MCDM method and then aggregate them

ccordingly. The optimization problem assumes that the final ag-

regated ranking is a weighted linear combination of the rankings

rovided by different MCDM methods, and it tries to determine the

eights accordingly. Although these methods do come up with a

nal aggregated ranking, they do not provide any further informa-

ion about the consensus or reliability of the aggregated ranking. 

In this paper, a new ensemble method is proposed based on

he half-quadratic (HQ) theory [18,19,37] . In this regard, a new

odel is proposed based on a general non-convex HQ function,
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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and the procedure involved in determining the optimal solution to

the given minimization is provided with guaranteed convergence.

Although no weights for the MCDM methods are considered ex-

plicitly, the proposed model estimates a weight for each of the

MCDM methods by using the so-called minimizer function inspired

by the HQ theory, whose estimation improves adaptively through-

out the optimization procedure. An MCDM method whose ranking

is different from those of most of the other MCDM methods be-

ing used is treated as an outlier in the proposed framework and,

as such, is assigned a lower weight. The aggregated final ranking

is also obtained by the weighted combination of rankings of the

MCDM methods being used, which means that the methods whose

rankings deviate from others will have a lower impact on the final

ranking. Although the proposed model is unconstrained, interest-

ingly, the computed weights by the minimizer function preserve

the non-negativity and unit-sum properties, that are required for

the MCDM methods. The proposed compromise method is also ob-

jective, since it does not need to elicit preferences from decision-

makers. However, the MCDM methods being used in the frame-

work could belong to either class of MCDM methods (subjective or

objective). 

For some of the HQ functions, there are parameters that have

to be tuned. To that end, we take advantage of several recent stud-

ies to tune the parameters efficiently [22,24] . Having such param-

eters helps compute a consensus index and trust level based on

the computed weights. The outcome of the proposed method is to

determine the weights of MCDM methods and compute the final

aggregated ranking of alternatives, as well as two indicators show-

ing the level of agreement and reliability of the final aggregated

ranking. 

As a real-world implementation, we study the evaluation and

comparison of ontology alignment systems by using different

MCDM methods. Such a comparison is of the essence for two ma-

jor reasons. First, there are numerous ontology alignment systems

in the existing literature [13,16,25,35,46,59] , each claiming to be

superior to the other available systems. To support that claim, the

developers of the systems involved typically look at solely one per-

formance score, on which the claim of superiority is based. If there

are multiple benchmarks, the average of these scores is computed

and regarded as the overall performance representation. However,

the main drawback of using averages is that it only allows a com-

parison on the basis of one performance score. As a result, it is not

possible to take into account different facets of a system measured

by several metrics. For instance, an important criterion for align-

ment is execution time, which also has to be included in an eval-

uation and comparison. Here, we formulate the comparison of on-

tology alignment systems as an MCDM problem, where the perfor-

mance metrics are the criteria, and the ontology alignment systems

are the alternatives. Consequently, the decision which system is su-

perior is transformed into an MCDM problem, making it possible to

compare the systems based on multiple metrics. The second reason

for using MCDM methods to assess alignment systems is the com-

petition that exists in the ontology alignment evaluation initiative

(OAEI), with several standard benchmarks in divided tracks with

an available reference (or gold standard). Within that competition,

the participating systems conduct the alignment on the given on-

tologies, and their outcome is then juxtaposed with the reference

for evaluation. In addition, there are various performance metrics

for different benchmarks, making the final ranking of the systems,

which is potentially one of the principal goals of the competition

in the first place, much more difficult. In this paper, we review

the performance metrics for five OAEI tracks, and apply the MCDM

methods along with the proposed ensemble method to determine

the final ranking of the systems. The methodology proposed in this

paper can also be used by the OAEI organizers to evaluate the par-

ticipating systems with respect to multiple performance metrics. 
In summary, this paper makes the following contributions: 

• A new approach for ensemble ranking is proposed based on

the HQ theory. 
• The proposed method can assign weights objectively to the

MCDM methods being used, since no decision-maker is in-

volved in determining the weights of the final aggregated

ranking. 
• The proposed method can also be used to compute a con-

sensus index and a trust level for the final aggregated rank-

ing. 
• As a real-world implementation, we study the ranking of on-

tology alignment systems with respect to multiple perfor-

mance metrics. Such a ranking is of the utmost importance,

particularly for the OAEI where there is a competition in-

volving several standard benchmarks. The proposed ensem-

ble method can be used in other ontology alignment bench-

marks as well as any other MCDM problem that uses multi-

ple MCDM methods. 

The remainder of this article is structured as follows. In

ection 2 , we present the proposed ensemble method, followed

y an overview of MCDM methods being used in Section 3 .

ections 4 and 5 are devoted to our real-world implementation

f the proposed method in ontology alignment, while the lessons

earned are discussed in Section 6 , and conclusions and future re-

earch directions are presented in Section 7 . The MATLAB code and

he MS Excel solver of the proposed method are freely available at

ttps://github.com/Majeed7/EnsembleRanking . 

. Ensemble ranking: A half-quadratic programming approach 

The MCDM methods may provide different rankings for the

ame problem because they use different mechanisms, making it

ard to provide sufficient support for the ranking of one MCDM

ethod compared to the others. As such, in this section, a compro-

ise method is developed to estimate the final ranking of all al-

ernatives based on the rankings of different MCDM methods. The

roposed method utilizes the HQ theory which results in estimat-

ng a weight for each of the MCDM methods. The weights obtained

y the method satisfy the non-negativity and unit-sum properties,

hich are necessary for the MCDM methods. In addition, the pro-

osed method is objective, since the weights are computed with-

ut any expert input. Another important property of the proposed

ethod is that, in contrast to averaging, it is insensitive to out-

iers, owing to the use of the robust HQ functions. For aggregating

CDM rankings, outliers are indeed the rankings that are different

rom the majority of rankings, which means that it is to be ex-

ected that they contribute less to the final aggregated ranking. In

ddition to the aggregated ranking, a consensus index and a trust

evel are calculated for the aggregated ranking. In the following,

e first explain the notations used in the study which follows by

eviewing the fundamentals of the HQ theory. 

We begin by explaining the notations used in this article. The

lternatives are referred to as A i , i = 1 , 2 , . . . , K, while the perfor-

ance metrics or criteria are denoted by P j , j = 1 , 2 , . . . , n . Thus,

here are K alternatives which are evaluated with respect to n cri-

eria (or performance metrics). Furthermore, the matrix contain-

ng all performance scores are shown as X , and X i . , X . j , X ij refer-

ing to the i th row, the j th column, and the element at the i th row

nd the j th column, respectively. By the same token, the i th ele-

ent in a vector like s is shown by s i . Also, we show the Eu-

lidean norm with ‖ e ‖ 2 = 

√ ∑ s 
i =1 e 

2 
i 
, ∀ e ∈ R 

s . The ranking of the

lternatives computed by the m 

th MCDM method is shown as R m ,

 = 1 , . . . , M, and the final aggregated ranking is shown by R ∗. In

ddition, the ranking of alternative k obtained by method m and

y the aggregated ranking are shown by R m 

k 
and R ∗

k 
, respectively. 

https://github.com/Majeed7/EnsembleRanking
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Table 1 

Different M-estimators and their corresponding minimizer function δ(.) based on the HQ multiplicative form. β is a positive constant, 

and σ or γ are the parameters of the HQ functions. 

estimators l 1 -l 2 fair log-cosh Welsch Huber 

HQ function g(s j ) 

√ 

β + 

s 2 
j 

σ 2 − 1 
| s j | 
β

− log (1 + 

| s j | 
β

) log ( cosh ( βs j )) 1 − exp (− s 2 
j 

σ 2 ) 

{ 

s 2 
j 

2 
, | s j | ≤ γ

γ | s j | − γ 2 

2 
, | s j | > γ

Minimizer Function δ( s j ) 
1 √ 

β+ s 2 
j 

1 
β(β+ | s j | ) 

β
s j 

tanh (βs j ) exp (− s 2 
j 

σ 2 ) 

{
1 , | s j | ≤ γ
γ
| s j | , | s j | > γ

2
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.1. Half-Quadratic minimization 

In this section, we review the fundamental theory of the HQ

inimization, introduce the appropriate HQ functions and look at

he minimization procedure of the HQ programming. 

The Euclidean norm is arguably the most popular loss func-

ion used in various circumstances, while least square fitting is the

ost popular regression technique that utilizes the Euclidean norm

s the loss function. Although it is simple and also yields a closed-

orm solution, it is highly sensitive to outliers and shows dimin-

shed performance in noisy environments. A viable way to solve

hat sensitivity is to use various robust estimators. In robust statis-

ics, M-estimator is a family of the robust estimators, by which the

Q functions are inspired. Although these functions are not con-

ex, their optimum can be obtained using HQ minimization with

uaranteed convergence. Table 1 tabulates the HQ functions g (.)

long with their minimizer functions δ(.) that are used in the op-

imization procedure. 

Consider the following minimization, 

in 

s 

∑ 

j 

g(s j ) , (1) 

here g (.) is one of the HQ functions tabulated in Table 1 . To solve

roblem (1) , there are two forms of the HQ programming (multi-

licative [18] and additive [19] ) that can efficiently find a local op-

imal solution. Both forms have been applied to different areas, in-

luding robust estimation [34,57] , signal processing [33,38,58] , im-

ge processing [21,23] , and machine learning [22,24] . In this pa-

er, we use the multiplicative form since its optimization proce-

ure can be interpreted meaningfully within MCDM. 

Based on the multiplicative form of the HQ programming

18,37] , problem (1) can be rewritten as 

in 

s,w 

∑ 

j 

w j s 
2 
j + ψ(w j ) , (2) 

here w j > 0 is the HQ auxiliary variable, and ψ(.) is the convex

onjugate of g (.) defined as [5] , 

 

(
w j 

)
= max 

e 
ew j − g ( e ) . (3) 

To solve minimization (2) , variables w and s must be updated

teratively until convergence is reached. Based on the HQ multi-

licative theory [18] , the update of variables is as follows: 

 

l+1 
j 

= δ(s l j ) , 

s l+1 = arg min 

s 

∑ 

j 

w 

l+1 
j 

s 2 j , (4) 

here δ(.) is the minimizer function with respect to g (.) (see

able 1 ), and l and l + 1 represent the iteration counter. 

In the next section, a new compromise method is developed

ased on the multiplicative HQ minimization, and it is shown that

he auxiliary variable w would play the role of weights in the

CDM problems. Since the value of w is reliant on the type of

Q function g (.), different HQ functions would result in differ-

nt weights and different final aggregated ranking. We particu-

arly consider the Welsch M-estimator, for two reasons. First, it has
hown a promising performance in a variety of problems and it

s known to be the most promising and outlier-robust estimator

mong the HQ functions [23] . Second, we can calculate a consen-

us index and a trust level if the Welsch estimator is used. 

.2. An HQ-based compromise method 

The proposed ensemble method can be used for any number of

CDM methods. In this regard, assume that there are M MCDM

ethods which rank K alternatives on the basis of n criteria. 

A simple yet practical solution to estimate the overall ranking

 

∗ is to minimize its Euclidean distance to each computed ranking.

he corresponding minimization is, 

in 

R ∗

1 

2 

M ∑ 

m =1 

‖ R 

m − R 

∗‖ 

2 
2 , (5) 

here M is the number of MCDM methods and R m is the rank-

ng of the m 

th MCDM method. Minimization (5) has the following

losed-form solution, 

 

∗ = 

1 

M 

M ∑ 

m =1 

R 

m , (6) 

hich is indeed the average of the rankings produced by differ-

nt methods. However, averages are not reliable estimators, since

hey are sensitive to outliers [11] , like other methods using the Eu-

lidean norm as their basic loss function. In aggregating rankings,

t means that, if one MCDM method has a distinct ranking from the

ther methods, it can significantly influence the aggregated rank-

ng. Instead, we utilize the HQ functions, which are potentially in-

ensitive to outliers [26] , as well as allowing us to compute a con-

ensus index and trust level for the final aggregated ranking. 

The proposed optimization problem to estimate R ∗ is, 

in 

R ∗

1 

2 

M ∑ 

m =1 

g(‖ R 

m − R 

∗‖ 2 ) , (7) 

here g (.) is an HQ function. Although minimization (7) is not con-

ex, it can be solved efficiently using half-quadratic programming

18,37] . Using the HQ multiplicative form as in equation (2) , mini-

ization (7) can be restated as, 

in 

R ∗,α
J(R 

∗, α) = 

M ∑ 

m =1 

αm 

‖ R 

m − R 

∗‖ 

2 
2 + ψ(αm 

) , (8) 

here α ∈ R M is the half-quadratic auxiliary variable. According to

he HQ programming, the following steps must be iterated until

onvergence for the two variables is reached, 

m 

= δ
(
‖ R 

m − R 

∗‖ 2 

)
, m = 1 , . . . , M, 

 

∗ = arg min 

R ∗

M ∑ 

m =1 

αm 

‖ R 

m − R 

∗‖ 

2 
2 . (9) 

The solution to the first step is obtained by the minimizer func-

ion tabulated in Table 1 , and the optimum for the second step is
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obtained by setting the derivative of the objective function equal

to zero, i.e., 

dJ 

dR 

∗ = 0 ⇒ 

M ∑ 

m =1 

αm 

(R 

m − R 

∗) = 0 

⇒ R 

∗
M ∑ 

m =1 

αm 

= 

M ∑ 

m =1 

αm 

R 

m 

⇒ R 

∗ = 

M ∑ 

m =1 

w m 

R 

m , where w m 

= 

αm ∑ M 

j=1 α j 

. (10)

Thus, the final aggregated ranking is computed as the weighted

sum of all the MCDM rankings, with the weights being computed

by the minimizer function. Interestingly, the weights of MCDM

rankings in (10) are non-zero and fulfill the unit-sum property,

which are the requirements for the MCDM methods. Note that the

optimization problem is unconstrained and these properties are

fulfilled, thanks to the use of the HQ functions. 

Algorithm 1 summarizes the overall procedure of the proposed

ensemble ranking of MCDM methods. 

Algorithm 1 Ensemble Ranking. 

Input: Rankings R m , m = 1 , 2 , . . . , M. 

while NotCongverged do 

αm 

= δ(‖ R m − R ∗‖ 2 ) , m = 1 , 2 , . . . , M 

w m 

= αm 

/ 
∑ 

j α j , m = 1 , 2 , . . . , M 

R ∗ = 

∑ 

m 

w m 

R m 

end while 

Output Final Ranking R ∗, α

The following lemma guarantees the convergence of this algo-

rithm. 

Lemma 2.1. The sequence { (αl , R ∗l ) , l = 1 , 2 , . . . } generated by

Algorithm 1 , where l indicates the iteration number, converges. 

Proof. The function δ(.) has the following property [37] , 

J(αl+1 , R 

∗l+1 ) ≤ J(αl , R 

∗l+1 ) , (11)

where R ∗ is assumed to be fixed. Similarly, the sequence of R ∗ is

decreasing since J is convex, e.g., 

J(αl+1 , R 

∗l+1 ) ≤ J(αl+1 , R 

∗l ) . (12)

Thus, the sequence 

{ . . . , J(αl , R 

∗l ) , J(αl+1 , R 

∗l ) , J(αl+1 , R 

∗l+1 ) , . . . } 
converges as l → ∞ since J is bounded. �

Remark 2.2. The proposed ensemble method is predicated on the

fact that proper ranking methods are used, since the final ag-

gregated ranking is naturally dependent on the ranking methods

in question. If we add or remove a ranking method, the aggre-

gated ranking is likely to change. However, in cases which include

a significant number of methods, the proposed method is much

less sensitive to adding or removing a ranking method. As such,

the proposed method can be particularly useful in voting systems

which usually contain a considerable number of votes. 

Remark 2.3. The methods for ensemble ranking are useful for the

case where there is no prior information about the suitability of

one specific ranking method. In this situation, the rankings of dif-

ferent methods are treated equally a priori, and finding an aggre-

gated ranking is desired, typically by working out a compromise
between different rankings. t  
.3. Consensus index and trust level 

The weight of each MCDM method differs with respect to the

Q function in question, since δ(.) relies on the g (.) function. Con-

equently, various HQ functions would result in different weights

nd a different final aggregated ranking. Among the HQ functions,

he Welsch estimator has shown a promising performance in a

umber of domains [22,24] . Interestingly, it is possible to obtain

 consensus index and trust level using this estimator, owing to its

se of the Gaussian distribution in the formulation. Prior to obtain-

ng the consensus index and trust level, we first need to discuss

uning the parameter σ in the Welsch estimator. As a recent study

as indicated [24] , the parameter of this estimator can be tuned

ecursively in each iteration as, 

= 

∑ M 

m =1 ‖ R 

m − R 

∗‖ 

2 
2 

2 K 

2 
. (13)

After computing σ in the optimization procedure, we now dis-

uss the consensus index and the trust level of the final ranking

btained by Algorithm 1 . 

efinition 2.4 (Consensus Index) . A consensus index C shows the

xtent to which all MCDM methods agree upon the final ranking. 

The key element in this definition is that the consensus index

hows the agreement among all the ranking methods being used,

llowing us to compute the similarity of each ranking with the fi-

al aggregated ranking, thanks to the Welsch estimator. As a result,

he consensus index C of a given final ranking R ∗ with respect to

ankings R m , m = 1 , 2 , . . . , M can be computed as, 

(R 

∗) = 

1 

KM 

K ∑ 

k =1 

M ∑ 

m =1 

q km 

, q km 

= 

N σ (R 

∗
k 
− R 

m 

k 
) 

N σ (0) 
, (14)

here N σ (. ) is the probability density function of the Gaussian

istribution with a mean of zero and a standard deviation of σ ,

nd N σ (0) is used to normalize the similarity computation, thus

 km 

, C (R ∗) ∈ [0 , 1] . If there is a complete agreement between dif-

erent rankings, then 

 km 

= 

N σ (0) 

N σ (0) 
= 1 , ∀ k, m, σ, 

hat results in a consensus index of one. As rankings deviate from

ach other, the consensus index decreases. As a result, the consen-

us index is an indicator of the agreement among different rank-

ngs. It means that, if there is one ranking method that is different

rom the rest, it can adversely affect the consensus index. At the

ame time, this distinct ranking method is treated as an outlier in

he HQ functions being used. As a result, it will have less impact

n the final ranking, while it can profoundly influence the consen-

us index. 

efinition 2.5 (Trust Level) . A trust level T for ensemble ranking is

he degree to which one can accredit the final aggregated ranking.

The trust level is an indicator of reliability of the final rank-

ng. For instance, if there is an MCDM ranking that deviates sig-

ificantly from the majority of rankings, it takes a lower weight in

lgorithm 1 , and consequently, has less of an impact on the final

anking. Since the weight of such a method is lower than that of

he other methods, it should also have less impact on the trust

evel. Taking this into account, the trust level can be computed

s, 

 (R 

∗) = 

1 

K 

K ∑ 

k =1 

M ∑ 

m =1 

w m 

q km 

, (15)

here w m 

, m = 1 , . . . , M, is computed in Algorithm 1 . Thus, the

rust level is distorted to a lesser extent by the rankings that
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Fig. 1. The implementation process of the proposed ensemble ranking to a 

decision-making problem. 
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ranking according to S and/or R . 
re different from the majority of rankings, and it is a measure-

ent of the reliability of the aggregated ranking R ∗ computed by

lgorithm 1 . It is evident from equation (15) that the trust level is

quivalent to the consensus index if the weights of MCDM meth-

ds, i.e., w m 

, m = 1 , 2 , . . . , M, are identical. 

Fig. 1 summarizes the implementation process of the proposed

nsemble ranking to a decision-making problem. 

. Three MCDM methods for illustrating the proposed approach

There exist several MCDM methods which can be used for the

anking problem (see [55] for an overview). In this study, three dif-

erent MCDM methods (TOPSIS, VIKOR, and PROMETHEE) are se-

ected to illustrate the proposed ensemble ranking method. These

ethods are used (in the next section) to rank alignment systems

ith respect to several performance metrics (criteria). We selected

hese three methods as they are among popular methods in the

CDM field (see, for instance, [12,32,44] for the applications of

OPSIS, [2,4,50] for the applications of VIKOR, and [3,20,31] for the

pplications of PROMETHEE). Secondly, compared to many other

CDM methods, they can be used in an objective way, without

aving to include the opinions of experts or users. In addition, they

ere selected because of their ability to rank alternatives, which

mplies that other MCDM methods, which are devised for other

urposes (such as sorting or selecting), are not appropriate for this

tudy, although that does not mean that the three MCDM methods

eing used in this study are the only usable methods, nor does the

roposed method rely on the number of MCDM methods. 

.1. Technique for order preference by similarity to ideal solution 

TOPSIS) 

TOPSIS is one of the popular MCDM methods for ranking al-

ernatives with respect to a set of criteria [56] . It first identifies

he positive-ideal and negative-ideal solutions and then ranks the
lternatives based on their distances to the two computed solu-

ions. The alternatives are ranked based on their closeness to the

ositive-ideal solution and their distance from the negative-ideal

olution. 

While TOPSIS has many variations and extensions [1,8,10] , in

his study, we adopt the original version proposed in [41] . The

anking process in TOPSIS includes the following steps: 

Step 1: First, the performance matrix should be normalized. The

elements of the normalized matrix ˆ X are calculated as, 

ˆ X k j = 

X k j 

‖ X . j ‖ 

, k = 1 , 2 , . . . , K, j = 1 , 2 , . . . , n. (16) 

Step 2: Find the positive-ideal solution S + = (S + 
1 
, S + 

2 
, . . . , S + n ) ,

where S + 
j 

= max k ˆ X k j for benefit criteria, e.g., profit, and S + 
j 

=
min k 

ˆ X k j for cost criteria, e.g., time. 

Step 3: Find the negative-ideal solution S − = (S −
1 
, S −

2 
, . . . , S −n ) ,

where S −
j 

= min k 
ˆ X k j for benefit criteria, and S −

j 
= max k ˆ X k j 

for cost criteria. 

Step 4: Calculate the Euclidean distance to the positive-ideal

and negative-ideal solutions for each alternative. For the k th 

alternative, the distance to the ideal solution, D 

+ 
i 
, and to the

negative-ideal solution, D 

−
i 
, is computed as 

D 

+ 
k 

= ‖ ̂

 X k. − S + ‖ , D 

−
k 

= ‖ ̂

 X k. − S −‖ . (17) 

Step 5: Calculate the ratio L k for each alternative as 

L k = 

D 

−
k 

D 

+ 
k 

+ D 

−
k 

, k = 1 , . . . , K. (18) 

Step 6: Rank the alternatives according to their ratios L k in a

descending order. 

.2. Vlsekriterijumska optimizacija i kompromisno resenje (VIKOR) 

VIKOR is another MCDM method that ranks the alternatives

ased on a set of possibly conflicting criteria. The procedure used

n VIKOR can be summarized as follows [39,40] . 

Step 1: Find the best f + and the worst f − values among the

alternatives for all criteria. For the benefit criteria, we have 

f + 
j 

= max 
i 

X i j , j = 1 , 2 , . . . , n, 

f −
j 

= min 

i 
X i j , j = 1 , 2 , . . . , n, (19) 

where the minimum and maximum are substituted if it is

the cost criteria. 

Step 2: For each alternative, compute S i and R i as 

S i = 

n ∑ 

j=1 

f + 
j 

− X i j 

f + 
j 

− f −
j 

, 

R i = max 
j 

{ f + 
j 

− X i j 

f + 
j 

− f −
j 

} 

. (20) 

Step 3: For each alternative, calculate Q i as 

Q i = ν
S i − S + 

S − − S + 
+ (1 − ν) 

R i − R 

+ 

R 

− − R 

+ , 

S + = min 

i 
S i , S − = max 

i 
S i , 

R 

+ = min 

i 
R i , R 

− = max 
i 

R i , (21) 

where ν ∈ [0, 1] is a trade-off parameter. It is the common

practice to set ν = 0 . 5 . 

Step 4: Ranking the alternatives based on their corresponding

Q i in descending order. 

Step 5: For two alternatives A i and A k , A i is given a better rank-

ing than A k if: (a) Q i − Q k > 1 / ( j − 1) ; and (b) A i has a better
i i 
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3.3. Preference ranking organization METHod for enrichment of 

evaluations (PROMETHEE) 

PROMETHEE uses pairwise comparison between different alter-

natives to establish a ranking. And while PROMETHEE I [6] con-

ducts partial pairwise comparison and computes the ranking ac-

cordingly, PROMETHEE II [54] , on the other hand, uses complete

pairwise comparison, which is required for the proposed ensemble

method and makes it also more suitable to rank the alignment sys-

tems. The ranking procedure used by PROMETHEE II is as follows. 

Step 1: For i, k = 1 , 2 , . . . , K, compute the function π ik as the

number of criteria in which A i has better performance than

A k , e.g., 

πik = 

n ∑ 

j=1 

I(X i j > X k j ) , i, k = 1 , 2 , . . . , K, (22)

where I is the Dirac function which is 1 when the condition

in the parenthesis is satisfied, and 0 when it is not. 

Step 2: Calculate the positive φ+ and negative φ− outranking

flow and the net flow φ for each alternative as, 

φ+ (A i ) = 

1 

K − 1 

K ∑ 

k =1 

πik , φ−(A i ) = 

1 

K − 1 

K ∑ 

k =1 

πki , (23)

φ(A i ) = φ+ (A i ) − φ−(A i ) . (24)

Step 3: Rank in decreasing order the alternatives based on their

net flow. 

4. Fundamentals of ontology alignment evaluation 

In this section, we first review the basic concepts of ontology

and ontology alignment, and then discuss the metrics to evaluate

the alignment systems. 

4.1. Ontology and ontology alignment 

An ontology contains the concepts of a domain, along with their

properties and relationships. The following definition explains the

ontology in a formal manner. 

Definition 4.1 (Ontology [15] ) . An ontology O is a set of the fol-

lowing 4-tuples 

O = (C, P rop, Ob jP rop, Ins ) 

where 

• C contains all classes in the ontology representing the concepts;
• Prop is the collection of data properties describing the classes

within the ontology; 
• ObjProp is the group of object properties representing the rela-

tions of classes within the ontology; 
• Ins is the set of individuals instantiated from classes, properties,

or object properties. 

All the classes, properties, and object properties are called the

entities of an ontology. The design of an ontology is subjective,

so two ontologies describing the same domain can have a distinct

structure/terminology, which means that ontology alignment is re-

quired to deal with this discrepancy. We now consider the rudi-

mentary concepts of ontology alignment. 

Definition 4.2 (Correspondence [15] ) . To match the ontologies O

and O 

′ , a correspondence is as a set of 4-tuples 

< e, e ′ , rel , d > 

where 
• e and e ′ are two entities from O and O 

′ , respectively; 
• rel denotes the relation of two entities e and e ′ , e.g., equiva-

lence, subsumption; 
• d ∈ [0, 1] is the degree of the correspondence confidence. 

efinition 4.3 (Alignment [15] ) . Given two ontologies O and O 

′ , an

lignment is a set of correspondences mapping the concepts of two

ntologies in question. 

.2. Performance metrics 

Alignment is the typical outcome of the ontology alignment

ystems, based on which different systems are evaluated and com-

ared. In addition, several standard benchmarks with a known ref-

rence alignment have to be included, so that the evaluation can

e made by the juxtaposition of the reference and the alignment

enerated by a system. The three widely-used performance metrics

or ontology alignment are precision, recall, and F-measure. Given

n alignment A and the reference A 

∗, precision is the ratio of true

ositives to the total correspondences in the generated alignment

y a system; thus, it can be written as 

 r(A, A 

∗) = 

| A ∩ A 

∗| 
| A | (25)

here Pr is the precision and |.| is the cardinality operator. 

Recall is another popular metric, which is computed as the ratio

f the true positives to the total number of correspondences in the

eference. Thus, it can be computed as 

e (A, A 

∗) = 

| A ∩ A 

∗| 
| A 

∗| (26)

here Re is recall. 

Both precision and recall represent only one aspect of the align-

ent systems; the former only considers the correctness of the

lignment, while the latter accentuates the completeness of an

lignment with respect to the reference. As a combination of both,

-measure is often used. It is the harmonic mean of the precision

nd recall and is computed as 

-measure (A, A 

∗) = 2 

P r(A, A 

∗) × Re (A, A 

∗) 
P r(A, A 

∗) + Re (A, A 

∗) 
. 

We do not include F-measure in this study since it is the av-

rage of precision and recall, which violates the independence of

riteria required for the MCDM methods. Aside from these pop-

lar performance metrics, there are two important principles for

 given alignment. The first is conservativity [52,53] , which states

hat, with regard to the alignment being generated, the system

ust not impose any new semantic relationship between the con-

epts of the ontologies involved. The second is consistency , which

tates that the discovered correspondences should not lead to un-

atisfiable classes in the merged ontology [53] . 

There is also a metric called Recall + , which indicates the por-

ion of correspondences that a system cannot readily detect. When

his performance metric has a higher value, that indicates that the

ssociated system is able to identify the most non-trivial, i.e., non-

yntactically identical, correspondences between two given ontolo-

ies. In addition, the execution time is another important indicator

f the performance of the alignment systems, that also has to be

aken into account. 

.3. Participating systems and standard benchmarks: Five OAEI tracks 

To determine some of the performance metrics, we need to

ave the underlying true alignment of the ontologies in ques-

ion, for which we use the benchmarks of five different tracks of

he OAEI whose reference alignment are also available. The tracks
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Table 2 

The selected performance metrics of five tracks of the OAEI. 

OAEI track Performance metrics/indicators 

Anatomy time, precision, recall, recall + , consistency 

Conference precision, recall, conservativity, consistency 

LargeBioMed time, precision, recall 

Disease and Phenotype time, precision, recall 

SPIMBENCH time, precision, recall 
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re anatomy, conference, largeBioMed (large biomedical track), dis-

ase and phenotype , and SPIMBENCH . By revising the history of the

racks in the OAEI competition 

1 , as well as asking the organizers

f the tracks, the appropriate performance metrics for each of the

racks listed above are obtained. Table 2 tabulates the performance

etrics for all five tracks. 

According to Table 2 , the execution time is essential to all

racks, with the exception of conference, since the size of ontolo-

ies in this track is small (i.e., < 100 entities) and the systems

re therefore able to perform the alignment swiftly. Furthermore,

recision and recall are important in all tracks. However, we did

ot include F-measure, since it is the harmonic mean of precision

nd recall. In other words, since the evaluation based on MCDM

ncludes both precision and recall, using F-measure is a redun-

ancy. In addition, the criteria must be independent of each other

n MCDM, which means that using F-measure would invalidate the

verall ranking computed by various MCDM methods. 

The evaluation is conducted on the alignment systems took part

n the OAEI 2018. The exhaustive list of the participating systems in

ne or multiple of the five tracks are AML [16] , LogMap, LogMap-

io, and LogMapLite [13] , SANOM [35] , DOME [25] , POMAP ++ [30] ,

olontology [45] , ALIN [51] , XMap [59] , ALDO2Vec [46] , FCAMapX

9] , and KEPLER [27] . Table 3 displays the systems participated

n different OAEI tracks. According to this table, 14 systems par-

icipated in the anatomy track, 12 in conference, seven in Large-

ioMed, eight in disease and phenotype, and three in SPIMBENCH.

nother point is that AML and LogMap participated in all five

racks. 

. Experiments 

In this section, the MCDM methods and the proposed aggre-

ated methodology are applied to five tracks of the OAEI, and the

ystems participating in 2018 are compared and ranked accord-

ngly. The alignments produced by various systems are available on

he OAEI website. 2 

.1. Large BioMed Track 

The aim of this track is to find alignments between the Foun-

ational Model of Anatomy (FMA), SNOMED CT, and the National

ancer Institute Thesaurus (NCI) ontologies. The ontologies are

arge and contain tens of thousands of classes. The performance

etrics used to rank the systems participated in this track are ex-

cution time, precision, and recall. 

Table 4 tabulates the ranking of seven systems that applied for

atching FMA to NCI. This is an interesting case, since the MCDM

ankings are conflicting. In particular, the rankings of VIKOR and

ROMETHEE are in line for LogMapBio and FCAMAPX and are both

ifferent com pared to the ranking of TOPSIS, while the rankings

f TOPSIS and VIKOR agree with regard to LogMapLite and XMap

nd are distinct from the ranking of PROMETHEE. When consid-

ring the weights of MCDM methods, it is interesting to see that
1 http://oaei.ontologymatching.org/ 
2 http://oaei.ontologymatching.org/2018/results/index.html 

p  

2  

a  

t  
he weight of VIKOR is relatively high and is close to one, while

he weights of the other two methods are lower and close to zero,

hich means that the proposed ensemble method favors the mid-

le ground ranking among these three MCDM methods. Since two

ethods have different rankings compared to the aggregated fi-

al ranking, the consensus index is not high at around 0.80. At

he same time, the trust level is 1.00 because the weights of two

CDM methods are nearly zero so that they cannot affect this in-

icator. This table shows that AML, LogMap, and XMap are listed

s the top three systems in this task. 

In addition, Table 5 shows the ranking of participants in match-

ng FMA and SNOMED. This table is similar to Table 4 , since VIKOR

as a higher weight compared to the other methods, with its rank-

ng situated between the other rankings. The consensus index for

he final ranking is 0.80, while the trust level is 0.98. Similarly,

able 6 shows the ranking of seven systems participated in match-

ng NCI to SNOMED. According to this table, VIKOR once more has

 higher weight, and as a result, the final consensus index is 0.80,

ith a trust level of 0.98. According to Tables 5 and 6 , AML and

ogMap are the top two systems in aligning FMA to SNOMED as

ell as NCI to SNOMED. 

.2. Disease and Phenotype Track 

The OAEI disease and phenotype track comprises matching var-

ous disease and phenotype ontologies. The OAEI 2018 consisted of

wo tasks. The first one to align the human phenotype (HP) on-

ology to the mammalian phenotype (MP), the second to align the

uman disease ontology (DOID) and the orphanet and rare diseases

ntology (ORDO). The performance metrics used for this track are

xecution time, precision, and recall. 

In the OAEI 2018, eight systems were able to align HP and MP,

hile nine systems could match DOID and ORDO. Table 7 illus-

rates the ranking of the systems participated in the OAEI 2018

isease and phenotype track for mapping HP and MP ontologies.

ccording to this table, the weights of TOPSIS and VIKOR are sig-

ificantly higher than that of PROMETHEE, because the rankings

btained by PROMETHEE deviate more from the other two meth-

ds. For instance, PROMETHEE puts AML in the fourth place, while

he other two consider it to be the best alignment system. As a re-

ult, the weight of PROMETHEE became insignificant. The consen-

us index for this ranking is 0.85 and its trust level is 0.95. Also,

his table indicates that AML, LogMapLite, and LogMap are the top

ystems in this mapping task. 

Another matching task in this track involves the alignment of

OID and ORDO ontologies. Table 8 shows the ranking of the par-

icipating systems for this task. According to this table, TOPSIS

akes the highest weight, since it is a compromise of the other two

CDM methods. In particular, the TOPSIS ranking of DOME lies be-

ween those of VIKOR and PROMETHEE. Also, TOPSIS rankings oc-

asionally agree with one of the other ranking methods: It agrees

ith VIKOR on ranking LogMap, LogMapLite, and XMap, while it is

n line with PROMETHEE with regard to POMAPP ++ . Given these

ankings, TOPSIS has a higher weight compared to other MCDM

ethods. The consensus index and trust level of this ranking are

.87 and 0.95, respectively. Accordingly, LogMap, LogMapLite, and

Map are the top systems on this task with regard to all the per-

ormance metrics. 

.3. Anatomy track 

This track consists of matching the adult mouse anatomy to a

art of NCI thesaurus describing the human anatomy. In the OAEI

018, 14 systems participated in the anatomy track. The systems

re compared based on execution time, precision, recall, consis-

ency, and recall + . Table 9 shows the ranking of the systems in the

http://oaei.ontologymatching.org/
http://oaei.ontologymatching.org/2018/results/index.html
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Table 3 

The OAEI tracks and the participating systems in each individual track for the year 2018. 

OAEI track Alignment systems 

Anatomy LogMapBio, DOME, POMAP ++ , Holontology, ALIN, AML, XMap, LogMap, ALOD2Vec, FCAMapX, KEPLER, LogMapLite, SANOM, Lily 

Conference Holontology, DOME, ALIN, AML, XMap, LogMap, ALOD2Vec, FCAMapX, KEPLER, LogMapLite, SANOM, Lily 

LargeBioMed AML, LogMap, LogMapBio, XMap, FCAMapX, LogMapLt, DOME 

Disease and Phenotype LogMap, LogMapBio, AML, LogMapLt, POMAP ++ , Lily, XMap, DOME 

SPIMBENCH AML, Lily, LogMap 

Table 4 

Ranking of systems taking part in the Large BioMed track for mapping FMA to NCI. 

Time(s) Precision Recall TOPSIS VIKOR PROM R ∗ Aggregated ranking 

AML 55 0.84 0.87 1 1 1 1 1 

LogMap 51 0.86 0.81 2 2 2 2 2 

LogMapBio 1072 0.83 0.83 7 6 6 6 6 

XMap 65 0.88 0.74 3 3 4 3 3 

FCAMapX 881 0.67 0.84 6 7 7 7 7 

LogMapLt 6 0.68 0.82 4 4 3 4 4 

DOME 12 0.8 0.67 5 5 5 5 5 

weights 0.00 1.00 0.00 

∗ Consensus Index = 0.80 
∗ Trust Level = 1.00 

Table 5 

Ranking of systems taking part in the Large BioMed track for mapping FMA to SNOMED. 

Time Precision Recall TOPSIS VIKOR PROM R ∗ Aggregated ranking 

FCAMapX 1736 0.82 0.76 6 5 5 5.00 5 

AML 94 0.88 0.69 1 1 1 1.00 1 

LogMapBio 1840 0.83 0.65 7 7 6 6.95 7 

LogMap 287 0.84 0.64 2 2 4 2.08 2 

XMap 299 0.72 0.61 3 6 7 6.02 6 

LogMapLt 9 0.85 0.21 5 4 3 3.96 4 

DOME 20 0.94 0.20 4 3 2 2.96 3 

weights 0.0056 0.9502 0.0442 

∗ Consensus Index = 0.80 
∗ Trust Level = 0.98 

Table 6 

Ranking of systems taking part in the Large BioMed track for mapping NCI to SNOMED. 

Time Precision Recall TOPSIS VIKOR PROM R ∗ Aggregated ranking 

AML 168 0.90 0.67 1 1 1 1 1 

FCAMapX 2377 0.80 0.68 6 4 5 4.07 4 

LogMapBi 2942 0.85 0.63 7 6 6 6.02 6 

LogMap 475 0.87 0.60 3 2 3 2.05 2 

LogMapLt 11 0.80 0.57 2 3 4 3.00 3 

DOME 24 0.91 0.48 4 5 2 4.90 5 

XMap 427 0.64 0.58 5 7 7 6.95 7 

weights 0.0255 0.9490 0.0255 

∗ Consistency Index = 0.80 
∗ Trust Level = 0.98 

Table 7 

Ranking of eight systems participated in the 2018 OAEI disease and phenotype track. The task involves mapping 

HP and MP. 

Time Precision Recall TOPSIS VIKOR PROM R ∗ Aggregated ranking 

LogMap 31 0.88 0.84 2 2 2 2 2 

LogMapBio 821 0.86 0.84 3 4 5 3.50 4 

AML 70 0.89 0.8 1 1 4 1.01 1 

LogMapLt 7 0.99 0.61 4 3 1 3.48 3 

POMAP ++ 1668 0.86 0.58 7 5 7 6.01 6 

Lily 4749 0.68 0.65 8 8 8 8 8 

XMap 20 0.99 0.31 5 6 3 5.48 5 

DOME 46 1 0.31 6 7 6 6.50 7 

weights - - - 0.4997 0.4946 0.0057 - - 

∗ Consensus Index = 0.85 
∗ Trust Level = 0.95 
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Table 8 

Ranking of systems participated in the 2018 OAEI disease and phenotype track. The task involves the alignment 

of DOID and ORDO. 

Time Precision Recall TOPSIS VIKOR PROM R ∗ Aggregated ranking 

LogMap 25 0.94 0.78 1 1 4 1.0843 1 

LogMapBio 1891 0.9 0.8 6 4 3 5.3494 5 

POMAP ++ 2264 0.87 0.8 7 5 7 6.4337 7 

LogMapLt 7 0.99 0.62 2 2 1 1.9718 2 

XMap 15 0.97 0.55 3 3 5 3.0562 3 

KEPLER 2746 0.88 0.57 8 8 8 8 8 

Lily 2847 0.59 0.78 9 9 9 9 9 

AML 135 0.51 0.87 5 7 6 5.5943 6 

DOME 10 1 0.44 4 6 2 4.5100 4 

weights - - - 0.6888 0.2831 0.0281 - - 

∗ Consensus Index = 0.87 
∗ Trust Level = 0.95 

Table 9 

Ranking of 14 systems participated in the OAEI 2018 anatomy track. 

Time (s) Precision Recall Recall + Consist. TOPSIS VIKOR PROM R ∗ Aggregated ranking 

LogMapBio 808 0.89 0.91 0.76 1 4 5 4 4.44 4 

DOME 22 1 0.62 0.01 0 13 11 7 11.19 11 

POMAP ++ 210 0.92 0.88 0.7 0 6 6 5 5.85 5 

Holontology 265 0.98 0.29 0.01 0 14 14 14 14.00 14 

ALIN 271 1 0.61 0 1 7 4 11 6.29 6 

AML 42 0.95 0.94 0.83 1 1 1 1 1.00 1 

XMap 37 0.93 0.87 0.65 1 2 2 2 2.00 2 

LogMap 23 0.92 0.85 0.59 1 3 3 3 3.00 3 

ALOD2Vec 75 1 0.65 0.09 0 12 10 9 10.66 10 

FCAMapX 118 0.94 0.79 0.46 0 8 7 10 7.87 8 

KEPLER 244 0.96 0.74 0.32 0 11 12 12 11.60 12 

LogMapLite 18 0.96 0.73 0.29 0 9 8 6 8.10 9 

SANOM 487 0.89 0.84 0.63 0 5 9 8 7.23 7 

Lily 278 0.87 0.8 0.52 0 10 13 13 11.79 13 

weights 0.4048 0.4413 0.1539 

∗ Consensus Index = 0.95 
∗ Trust Level = 0.97 

Table 10 

Ranking of systems participated in the 2018 OAEI conference track. The evaluation is based on the certain reference alignment. 

Precision Recall AvgConserViol AvgConsisViol TOPSIS VIKOR PROM R ∗ Aggregated ranking 

SANOM 0.78 0.76 5.15 4.6 9 4 7 7.67 8 

AML 0.83 0.7 1.86 0 3 1 2 2.35 2 

LogMap 0.84 0.64 1.19 0 1 2 1 1.04 1 

XMap 0.81 0.61 2.65 0.7 4 3 6 5.07 5 

KEPLER 0.76 0.61 5.86 7.57 10 9 10 9.96 10 

ALIN 0.88 0.54 0.1 0 2 5 3 2.69 3 

DOME 0.88 0.54 5.05 0.48 7 7 5 5.88 6 

Holontology 0.86 0.55 3.14 0.48 5 6 4 4.49 4 

FCAMapX 0.71 0.61 5.9 13 12 12 12 12.00 12 

LogMapLite 0.84 0.54 4.57 1.19 6 8 8 7.20 7 

ALOD2Vec 0.85 0.54 5.9 1.29 8 10 9 8.65 9 

Lily 0.59 0.63 7 6.2 11 11 11 11.00 11 

weights 0.3986 0.0436 0.5578 

∗ Consensus Index = 0.91 
∗ Trust Level = 0.95 
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natomy track computed by three MCDM methods, the final rank-

ng being obtained by using the proposed ensemble method. The

onsensus index and trust level for this track are 0.95 and 0.97,

espectively. Based on this table, AML, XMap, and LogMap are the

op three systems in the anatomy track. 

.4. Conference Track 

The conference track involves matching and aligning seven on-

ologies from different conferences. For this track, there are two

ifferent reference alignments, i.e., certain and uncertain. Table 10

abulates the result of the analysis of the 12 systems participated

n this track at the OAEI 2018 with the certain alignment, with a

onsensus index of 0.91 and a trust level of 0.95. Based on this
able, LogMap, AML, and Alin are the top systems. For the uncer-

ain version of the reference alignment, as Table 11 shows, AML,

ogMap, and Holontology are the top three systems. The consensus

ndex and trust level for this track are 0.93 and 0.95, respectively. 

.5. SPIMBENCH Track 

The SPIMBENCH task is another matching task, the aim of

hich is to determine when two OWL instances describe the same

reative Work. There are two datasets, called Sandbox and Main-

ox, each of which has a Tbox as the source ontology and Abox

s the target. Tbox contains the ontology and instances, and it has

o be aligned to Abox, which only contains instances. The differ-

nce between Sandbox and Mainbox is that the reference of the
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Table 11 

Ranking of systems participated in the 2018 OAEI conference track. The evaluation is based on the uncertain reference alignment. 

Precision Recall AvgConserViol AvgConsisViol TOPSIS VIKOR PROM Average Aggregated ranking 

SANOM 0.8 0.67 5.15 4.6 9 4 4 4.82 5 

AML 0.79 0.65 1.86 0 3 1 2 1.67 1 

LogMap 0.79 0.58 1.19 0 1 2 3 2.18 2 

XMap 0.79 0.55 2.65 0.7 4 3 5 3.85 4 

KEPLER 0.68 0.57 5.86 7.57 11 10 9 9.82 10 

Holontology 0.81 0.5 0.1 0 2 6 1 3.63 3 

ALIN 0.82 0.48 5.05 0.48 7 8 6 7.15 7 

FCAMa pX 0.67 0.56 3.14 0.48 5 5 7 5.69 6 

DOME 0.82 0.48 5.9 13 12 11 10 10.82 11 

ALOD2Vec 0.8 0.49 4.57 1.19 6 7 8 7.18 8 

LogMapLite 0.79 0.49 5.9 1.29 8 9 11 9.52 9 

Lily 0.58 0.56 7 6.2 10 12 12 11.67 12 

weights 0.1639 0.4935 0.3427 

∗ Consensus Index = 0.93 
∗ Trust Level = 0.95 

Table 12 

Ranking of systems participated in the 2018 OAEI SPEMBENCH track. The task is Sandbox. 

Precision Recall Time TOPSIS VIKOR PROM R ∗ Aggregated ranking 

AML 0.83 0.9 6220 2 3 3 3 3 

Lily 0.85 1 1960 1 1 1 1 1 

LogMap 0.94 0.76 5887 3 2 2 2 2 

weights 0 0.50 0.50 

∗ Consensus Index = 0.77 
∗ Trust Level = 1.00 

Table 13 

Ranking of systems participated in the 2018 OAEI SPEMBENCH track. The task is Mainbox. 

Precision Recall Time TOPSIS VIKOR PROM R ∗ Aggregated ranking 

AML 0.84 0.88 37,190 3 3 3 3 3 

Lily 0.85 1 3103 1 1 1 1 1 

LogMap 0.89 0.71 23,494 2 2 2 2 2 

weights 0.33 0.33 0.33 

∗ Consensus Index = 1.00 
∗ Trust Level = 1.00 
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former is available to the participants, while the latter is a blind

matching task so that participants do not know the real alignment

in advance. 

There are only three systems included in this track at the OAEI

2018. Tables 12 and 13 list the ranking of the systems for the Sand-

box and Mainbox tasks, respectively. The Sandbox task is interest-

ing, since two MCDM methods have identical rankings, while the

other, i.e., TOPSIS, differs in ranking two systems, as a result of

which its weight becomes insignificant, while the weight of the

other two rankings is about 0.50. The consensus index for this

ranking is 0.77, while its trust level is 1.00, since the final rank-

ing is identical to the ranking (or average) of the other two MCDM

methods. 

For the Mainbox task, Table 13 shows the ranking of the three

systems on this task. Interestingly, the rankings of the MCDM

methods are identical and they all take on a similar weight in the

proposed method. As expected, the consensus index and trust level

are also one. According to these tables, Lily performs best in both

tasks, followed by LogMap and AML. 

Remark 5.1. We discussed the ranking of TOPSIS, VIKOR, and

PROMETHEE for different OAEI tracks. They all had higher weights

in some tracks and lower weights in some of the others. However,

the aim of this study is not to compare MCDM methods or dis-

cuss their suitability. These methods can take on higher or lower

weights in different decision-making problems, and their weights

are entirely dependent on the computed rankings based on the

performance matrix of the decision-making problem in question. 
emark 5.2. In this study we used three MCDM methods for

hich we do not need to use the expert/decision-maker opinion

o make the final ranking. This, however, does not mean that we

annot use the MCDM methods in which expert/decision-maker

pinion is used to make the ranking (such as AHP/ANP, BWM). In

act the rankings (which are the input for our ensemble method)

ould come from any set of MCDM methods (with or without

xpert/decision-maker opinion). It is, however, important to know

hat regardless of the MCDM methods we use in our proposed

nsemble method, there is no need to have the opinion of an

xpert/decision-maker on comparing the rankings which are pro-

uced by the different MCDM methods. 

. Discussion 

As we discussed earlier, the consensus index and the trust level

ndicate two different aspects of the final aggregated ranking. Gen-

rally speaking, higher values are desirable for both indicators. The

onsensus index is an indicator of the agreement among all the

CDM methods being used, while the trust level shows the relia-

ility with regard to the final aggregated ranking. Below, based on

he main properties of the proposed approach and the findings of

he experiments, we elaborate on some general possible outcomes

f the proposed methods. 

• Consensus index high, trust level high: If all the MCDM meth-

ods being used have identical rankings, their weights are analo-

gous and equivalent to 1/ M , where M is the number of ranking

methods. In this case, the final aggregated ranking is precisely
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the average of the individual rankings. As a result, the proposed

ensemble method represents the average, or equivalently, the

HQ functions operate as the Euclidean norm. This is indeed ac-

ceptable, since there are no outliers when all the rankings are

identical. In this case, because there is full agreement among

all the MCDM methods being used, both consensus index and

trust level are one. 
• Consensus index low, trust level high: Where there is a low

consensus index and a high trust level, that can mean either of

two things. First, if a small fraction of the MCDM methods be-

ing used deliver rankings that deviate from the other rankings,

the proposed ensemble method treats them as outliers, assign-

ing them lower weights, which reduces their impact on the fi-

nal aggregated ranking. The presence of such methods can be

detected by inspecting the weights obtained by the proposed

ensemble method. Methods that have a lower weight are seen

as a deviation from the majority of MCDM rankings, as well as

from the final ranking, which means they are treated as out-

liers. The second option is when the number of methods with

lower weights is significant compared to the overall number

of the MCDM methods being used. The MCDM rankings with

higher weights are the intermediates of all the methods. As a

result, the intermediate rankings take on higher weights and

have a more profound impact on the final aggregated ranking.

In both of these cases, the agreement among the MCDM meth-

ods being used is low, while the final ranking is fully captured

by a fraction of the MCDM methods involved, which is why the

consensus index is insignificant and the trust level is high. 
• Consensus index low, trust level low: If all the MCDM rank-

ings in question deviate significantly from each other, the con-

sensus index will be low. In that case, there is not a share of

the MCDM methods involved with significantly higher weights,

which means that the trust level is also low. 
• Consensus index high, trust level low: This scenario does not

occur, because the trust level is high when there is a consensus

among the MCDM methods being used. 

This is a general discussion framework, and we think that the

evels could be defined by the decision-makers for a particular

roblem. 

. Conclusion 

In this paper, a new compromise ensemle method was pro-

osed, based on the half-quadratic (HQ) theory. The proposed

ethod can be used to compute a final aggregated ranking, in the

orm of the weighted sum of the MCDM rankings. The weights in

he proposed method were computed using the minimizer func-

ions inspired in the HQ theory, but it satisfied the basic properties

f weights in MCDM. In addition, using multiple performance met-

ics, the ranking of ontology alignment systems was modeled as an

CDM problem, where the systems and the performance metrics

erved as alternatives and criteria, respectively. In this regard, ap-

ropriate MCDM methods were reviewed, each of which could as-

ign a ranking to each system on a benchmark with respect to its

erformance metrics. 

We also introduced two indicators, consensus index and trust

evel, the former indicates the level of agreement among MCDM

anking methods, while the latter reflects the reliability of the

anking schemes. It became clear in the cases we examined that,

hen a ranking method deviates from the others, it has a low con-

ensus index but high trust level. As a result, these two indicators

re able to delineate different properties of the final aggregated

anking. 

Since evaluating and ranking ontology alignment systems are

mportant activities, in particular in light of the ontology align-
ent evaluation initiative (OAEI) competition, the approach dis-

ussed in this article can be used to produce a final ranking of on-

ology alignment systems in each of the OAEI tracks. The outcome

an provide greater insight into the overall performance of systems

nd promote the report provided annually by the OAEI organizer. 

This study can be extended in various ways. To begin with,

he performance metrics used to rank the alignment systems are

reated as though they are equally important, but it is worthwhile

o keep in mind that different performance metrics may in fact

ot be equally important, which means that one area of future re-

earch involves examining the preferences of different performance

etrics for different OAEI tracks by the experts in the domain, and

hen ranking the systems involved accordingly. To that end, a broad

ange of MCDM methods could be used. 

The proposed approach in this paper has the potential to be

sed for many real-world applications where a number of MCDM

ethods are used to rank a number of alternatives, and that a

onsensus among the methods being used are needed to come up

ith a final aggregated ranking. Finally, we think that it would be

nteresting to use the proposed method to integrate the votes in

oting systems. 
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